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Abstract The time synchronous averaging (TSA) is a well-
known technique used for early detection of bearing failure
in electrical machines. This method is very efficient if the
characteristic default frequency is perfectly known. In this
article, a reduced frequency model, derived from ESPRIT
algorithm, is used to provide a very accurate estimation of
the fault frequency. The precision obtained on this frequency
allows to applyTSAalgorithmunder optimal conditions. The
proposed method is tested on simulated and real vibration
signals for inner and outer ring faults. Finally, a fault indicator
is proposed to discriminate the healthy case from the faulty
one.

Keywords Vibration · Diagnosis · Signal processing ·
Bearing fault · TSA · ESPRIT · Frequency estimation ·
Filtering

1 Introduction

Nowadays, three-phase electrical machines are widely used
in industrial applications. To improve their reliability and
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availability, an early diagnosis has to be realized. That is why,
over the last decade, severalmonitoring techniques have been
developed and tested. The different failures which occur in
electrical machines can be classified into stator, rotor or bear-
ings faults. According to Electric Power Research Institute
(EPRI), bearing faults are the most frequent faults followed
by stator and rotor ones [1]. There are several reasons that
can lead to bearing failure such as mechanical damages,
misalignment, wear, lack or loss of lubricant and corrosion.
When the smooth surfaces of rolling contact are damaged,
high-stress conditions will be imposed on the surface caus-
ing a progressive deterioration of the bearing components
and reducing significantly its lifetime.

Electrical machines can be supervised using several phys-
ical quantities measurements such as temperature, magnetic
flux, mechanical vibrations or electrical currents [2]. Vibra-
tion analysis is clearly the preferred approach in industry
to detect faulty bearings. After measurement, collected data
are analyzed using signal processing methods classified
into three domains: time domain analysis (with different
statistics-based techniques) [3–7], frequency domain analy-
sis (spectral analysis, cepstral analysis, envelope spectrum)
[8–12] and time–frequency domain analysis (Wigner–Ville
Distribution, Wavelet transform, Short-time Fourier trans-
form and Empirical Mode Decomposition) [13–16].

The time synchronous averaging (TSA) [17–19] is well
known in the field of mechanical fault detection for several
decades. This approach can be interpreted as a very selective
band-pass filtering around a frequency defined by the user. It
allows tomake apowerful cleaningof the signal to let the fault
frequencies visible. However, this performance is obtained
only if the fault frequency is perfectly known. In many cases,
the relationships between characteristic bearing frequencies
with geometric considerations cannot determineprecisely the
fault frequency and the results provided by TSA can induce
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the user to error. In previous works, high-resolution (HR)
technics have been used to obtain this frequency with suffi-
cient accuracy. MUltiple SIgnal Classification (MUSIC) and
Estimation of Signal Parameters via Rotational Invariance
Technique (ESPRIT) are the most popular methods [20–22].
To reach the desired accuracy, these methods are generally
based on a frequency model with a large number of parame-
ters. It leads to several limitations because the search over
parameter space is computationally very expensive.

In this paper, a new procedure is proposed. An appropriate
pre-filtering greatly reduces the model size in ESPRIT algo-
rithm without loss of accuracy. The estimated characteristic
frequency is then used to process vibration signals with TSA
procedure in optimal conditions. In Sect. 2, fault character-
istic frequencies expressions are defined. Time synchronous
averaging method is recalled in Sect. 3. In Sect. 4, the enve-
lope model is defined and parameters are estimated using the
proposed method. Our technique is applied to experimental
data in Sect. 5 and a fault indicator is presented to discrimi-
nate different faulty cases.

2 Bearing characteristic frequencies

Let us consider the case where the inner ring of a ball bearing
is damaged by a failure mechanismmentioned above.When-
ever one of the ball rolls on the defect, an impulsive force
occurs and causes the vibration of the bearing. The bearing
response (inner, outer rings) occurs at its natural frequency
and it is quickly attenuated with time due to depreciation of
the impulse. The fundamental frequency of vibration signal
is directly linked to the ball passage on the defect.

The objective is to detect the bearing defect’s fundamental
frequency. It can be predicted from the bearing characteristic
geometry and the rotation speed of themechanical shaft [23].
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where

– fb the characteristic frequency of a ball,
– fi the characteristic frequency of the inner ring,
– fo the characteristic frequency of the outer ring,
– fc the characteristic frequency of the cage,
– fr the rotation frequency of the mechanical shaft,
– Nb the number of balls,

Dp

Db

Φ

Fig. 1 Schematic diagram of a ball bearing

– Db the ball diameter (see Fig. 1),
– Dp the pitch diameter (see Fig. 1),
– Φ the contact angle (see Fig. 1).

We consider in this work that the bearings are radial, i.e.,
with a contact angleΦ = 0◦.Moreover, these frequencies are
calculated with the consideration that the contacts ball/ring
are perfectly punctual and that the balls are rolling with-
out sliding. In real bearing, the balls slide at the same time
as they roll on the slopes. To take into account this sliding
phenomenon, a multiplicative sliding factor of frequency is
introduced, defined as the ratio between the rolling distance
and the slidingdistance. In practice, this factor varies between
0.96 and 0.98 for a healthy bearing and it is neglected in the
present case [24].

3 Time synchronous averaging

3.1 Envelope analysis

The envelope analysis [25] is used to monitor the high-
frequency response of the mechanical system with periodic
shocks such as gear or bearing defects. A pulse is generated
each time a component gets into contact with a defected sur-
face of the bearing. This pulse has an extremely short duration
compared to the interval between pulses. The pulse energy of
the fault is distributed at a very low level over a wide range of
frequencies. This wide energy distributionmakes the bearing
defects difficult to detect by conventional spectrum analysis,
specially with the presence of external vibrations produced
by other machine components. Fortunately, the impact often
excites a resonance in the system at a much higher frequency
than the vibrations generated by the other components. This
energydistribution is generally concentrated in a narrowband
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Fig. 2 The spectrum for two signals, without fault (top) and with an
inner ring fault (bottom)

near bearing resonance which can be easily detected. Figure
2 shows two spectra calculated from vibration signals which
can be found in the database of the web site “Data Bearing
Center” [26]. The first spectrum (top) refers to a healthy bear-
ing. The second signal (bottom) carries an inner ring fault.
Examining this figure closely, the resonance frequency fres
can be identified visually around 3000 Hz.

The high-frequency technique focuses on the narrow band
containing only the vibrations’ fault frequencies to define the
type of bearing failure. This technique consists in treating this
energy with an envelope detector. First of all, data are fil-
tered with a band-pass filter around the resonance frequency
fres. The center frequency of the band-pass filter should be
selected to coincidewith the resonance frequency of the stud-
ied spectrum. The bandwidth of the filter should be at least
twice the highest characteristic frequency of the defect, this
will ensure that the filter will pass the carrier frequency and at
least one pair of modulation sidebands. In practice, the band-
width should be slightly larger to accommodate the first two
pairs of modulation sidebands around the carrier frequency.
As a second step, the envelope of the signal is recovered by
amplitude demodulation technique. The Hilbert transform is
used to perform this treatment [27]. This demodulation is
equivalent to translating the spectrum of the filtered signal,
initially centered around the resonant frequency to 0 Hz.

The spectrum of the demodulated signal contains frequen-
cies defined by the harmonics of the characteristic frequency
fd of the fault surrounded by multiple modulation sidebands
of the shaft frequency fr . A classical model is given in [17]
to describe the spectral content of fault signals:

f = m. fd + n · fr (2)

a

b

Fig. 3 The envelope spectrum for two signals with a inner ring fault
and b outer ring fault

where

– m and n are relative integers,
– fr is the shaft frequency,
– fd is the fault frequency ( fi for an inner ring fault or fo
for an outer ring fault).

Figure 3 shows the spectrum of the envelope signal for
two distinct defects obtained from the Bearing Data Cen-
ter [26]. Figure 3a illustrates the envelope signal for inner
bearing fault. We can notice easily the appearance of the
inner fault frequency and its harmonics (the theoretical inner
fault frequency calculated using the characteristic geometry
and the rotation speed corresponds to 159.93 Hz). Figure3b
represents the envelope signal for outer bearing fault. The
frequency fault in this case corresponds to 106.4 Hz. Figure
4 presents a zoomed capture of the envelope signal for inner
ring fault to put the emphasis on the harmonics of the inner
ring characteristic frequency n · fi = n · 159.93 Hz modu-
lated by the shaft frequencies fr = 29.5Hz.A simplemethod
to detect a bearing fault consists in isolating the defect fre-
quency fd and its harmonics. It can be performed using the
Time Synchronous Averaging technique (TSA) recalled in
the following section.

3.2 Time synchronous averaging (TSA)

3.2.1 Principle of TSA

It has been demonstrated in [17] that the synchronous aver-
aging y(t) of a time signal x(t) using a trigger signal with
the frequency ft is equivalent to the convolution:
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Fig. 4 Envelope spectrum of a signal with inner ring defect (zoom)

y(t) = x(t) ∗ c(t) (3)

where c(t) is a train of M pulses of amplitude 1/M , spaced
with an interval of Tt = 1/ ft given by [18]:

c(t) = 1

M

M−1∑

i=0

δ(t + i · Tt ) (4)

In the frequency domain, y(t) defined in (3) is equivalent
to multiplying the Fourier transform of the signal x(t) by the
the Fourier transform of c(t), as it is shown below:

Y ( f ) = X ( f ) · C( f ) (5)

where C( f ) is the Fourier transform of c(t), which can be
considered as a comb filter function:

C( f ) = 1

M

sin(πMTt f )

sin(πTt f )
(6)

Increasing the number ofM pulses reduces the comb teeth,
and reduces the amplitude of the sidelobes between teeth. For
a large number of M , only exact frequency multiples of the
trigger frequency ft are passed through. Thus, the synchro-
nous averaging can be interpreted in the frequency domain
as a selective filtering that occurs at an integer multiple of the
trigger frequency ft . It also can be seen as a complete removal
of all frequencies, except those which are synchronized with
the frequency ft . The selectivity of this filter increases with
the number of pulses M .

Applying the TSA on the envelope signal by synchroniz-
ing the trigger with the fault frequency fd , reduces the model
(2) to:

f = m · fd (7)

This filtering eliminates the multiple components of the
rotational frequency fr , combinations of the frequencies fr
and fd and all spectral components independent of the fault.
As an example, to detect the presence of an inner ring fault,
the frequency of the trigger should be set to the fault fre-
quency of the inner ring ft = fi . The TSA will select fi and
its harmonics. In the next section, a simulated signal is built
to study the sensibility of TSA with trigger frequency.

3.2.2 Simulation of a reference signal

In presence of fault, the envelope signal will contain frequen-
cies defined by the model (2). This model can be reduced to
(7) only if the TSA procedure is performed with the exact
default frequency. To quantify the sensibility of TSA to
any error on frequency estimation, a simulation approach
is proposed. A signal built with 105 frequencies (from 0
to 1267 Hz), corresponding to model (2) and defined by
0 ≤ m ≤ 7 and 0 ≤ n ≤ 5 is considered. The purpose
of simulating a reference signal is to have a signal with the
same characteristics as the real one (containing just the fault
frequencies and its harmonics). So the fault frequency is well
known in this case. On other hand, the simulation approach
allows to add noise with a well-known signal to noise ratio
(SNR) value to study the ESPRIT sensibility to noisy envi-
ronment. From the Bearing Data Center, a real vibration
signal corresponding to an inner ring fault ( fd = fi ) is
used to manually estimate frequencies corresponding to the
model (2). Magnitudes and phases of the inner ring fault are
shown in Fig. 5. Let us note that the frequencies estimated
manually are not accurate enough to be used for synchro-
nous averaging. However, the obtained envelope signal is a
good approximation of a real envelope signal and its charac-
teristics (frequencies, magnitudes and phases) are perfectly
known and can be used to study the TSA performances. Now,
a reference signal (noted xiref(t) in the following) is sim-
ulated by adding 105 cosines corresponding to each value
(frequencies, magnitudes and phases) determined by manual
procedure. Figure 6 compares the simulated signal (bottom)
with the real signal (top). In the same way, a reference signal
for an outer ring fault is simulated from the experimental data
(noted xoref(t)).

3.2.3 Application of TSA

Table 1 shows the difference between the theoretical fi.theo
and the real fault frequency fi.real of the inner ring. The
theoretical frequencies are calculated using the bearing char-
acteristic geometry and the rotation speed of the mechanical
shaft. The real fault frequencies are determined by man-
ual procedure. It can be seen in this table that the error
increases with the harmonics. In this work, the number of
pulses M = 50 is chosen so that the pulse width is greater
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Fig. 5 Zoom of envelope spectrum of a signal with inner ring fault.
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ual procedure
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Fig. 6 Vibration signals spectrumwith inner ring fault, real signal (top)
and simulated signal (bottom)

than the double of the expected maximum deviation (in our
case it has been chosen greater than 2 × 2Hz = 4Hz).

In the following, TSA is applied to the two simulated refer-
ence signals xiref(t) and xoref(t). The used trigger frequency
ft is the true inner ring characteristic frequency. The results
are shown in Fig. 7 where the inner ring fault can be clearly
identified. The characteristic frequency fi and its harmonics
have been well isolated by TSA filtering. As expected, in
the case of an outer ring fault, the chosen trigger ft = fi is
not adapted for this case and the characteristic frequencies
are eliminated by the TSA procedure, except the frequencies
corresponding coincidentally to the inner ring frequency and
its harmonics (3 fo = 2 fi ∼= 318Hz, 6 fo = 4 fi ∼= 636Hz,
9 fo = 6 fi ∼= 954Hz). At this stage, it is improbable to

Table 1 Deviation between theoretical and estimated frequencies of a
signal with inner ring defect

fi 2 fi 3 fi 4 fi 5 fi

fi.theo (Hz) 159.9 319.86 479.79 639.7 799.6

fi.real (Hz) 159.55 319.15 478.64 638.12 797.6

|δ f | 0.35 0.71 1.15 1.58 2

Err (%) 0.21 0.22 0.24 0.24 0.25
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Fig. 7 The average spectrum for the reference signals xiref (t), xoref (t)
with ft = fi . a For inner ring fault and b for outer ring fault

conclude that the inner ring is damaged. This exceptional
equality can be explained by the fact that the ratio between the
pitch Diameter and the ball Diameter is equal to 5 (accord-
ing to the geometric characteristics of the bearing 6205-2RS
JEM SKF: Nb = 9, Dball = 7.94mm, Dpitch = 39mm,
Φ = 0◦). The Eq. (1) defined in Sect. 2 becomes:

⎧
⎪⎪⎨

⎪⎪⎩

fo(Hz) = fr
Nb

2

(
4

5

)

fi (Hz) = fr
Nb

2

(
6

5

) (8)

According to this equation, the frequencies 3 fo, 6 fo, 9 fo
are respectively equal to 2 fi , 4 fi , 6 fi for

Dp
Db

= 5. In the
Sect. 5.1, a procedure has been established to discriminate
inner bearing fault from other cases.

Now, let us consider the case where the theoretical charac-
teristic frequency is not determined precisely. Indeed, several
parameters in (1) can be poorly calculated or measured such
as the rotation frequency ( fr ). In these cases, the trigger
frequency is different from the real characteristic. Figure 8
shows the results obtained with ft = 0, 97 fi (error of 3 %).
It can be seen that a correct fault identification cannot be
obtained. The use of time synchronous averaging with the-
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oretical characteristic frequency does not guarantee that the
result is exploitable. The fault frequency must be estimated
with a high precision to extract the faulty cases from healthy
ones. In the following, a high-resolutionmethod is performed
to determine precisely this frequency.

4 Identification of the characteristic frequency
using a high-resolution method

4.1 ESPRIT method: general framework

The acronym ESPRIT stands for Estimation of Signal
Parameters viaRotational InvarianceTechnique. ESPRIT is
an approach based on subspace techniques which are known
to be very powerful estimation techniques [28]. The purpose
of using ESPRIT is to estimate the parameters of the signal
modeled in (9) and particularly, to estimate the frequency
modulations induced by the bearing fault. This technique
is based on a decomposition of the signal x(t) into two
eigenspaces: the signal generated by the damped sinusoidal
components s(t) andnoise subspace xk(t) forming its orthog-
onal complementary subspace.

x(t) = s(t) + xk(t)

=
K−1∑

k=0

ake
−δk t ei(ωk t+ϕk) + xk(t)

=
K−1∑

k=0

αk z
t
k + xk(t) (9)

The complex parameters αk = akeiϕk , zk = e−δk eiωk are,
respectively, the amplitude and the pole of the kth component

of the signal s(t). The parameter ak represents the amplitude
at the origin, ϕk the phase at the origin, δk the damping and
ωk the pulsation. In general case, these four parameters have
to be estimated for the K components of the signal. In this
work, the pulsation ωk = 2π fk implies that the frequency
fk = ωk/2π has to be determined with high precision.
As a first step, the Hankel matrix is calculated from the

discrete signal (9) [28,29].

X (t) =

⎡

⎢
⎢
⎢
⎣

xt−l+1 xt−l+2 · · · xt
xt−l+2 xt+1

...
...

xt−l+n xt−l+n+1 · · · xt+n−1

⎤

⎥
⎥
⎥
⎦

(10)

where the integers l and n are defined as N = n + l − 1
samples of the signal (in the application of this algorithm
n = l = Nt ). Applying the singular value decomposition
(SVD) on the Hankel matrix, a diagonal matrix S of the same
dimension as X , and unitary matricesU and V are calculated
so that X = U · S · V T .

ESPRIT algorithm is based on a strong property, rotational
invariance of space signal. Define the two matrices U↑, U↓
of dimension K − 1 containing, respectively, the K − 1 last
rows and the K − 1 first rows of the matrix U , where K is
the length of the eigenvalues vector {zk} of the model.

After determining the twomatricesU↑,U↓, the calculation
of the spectral matrix is given by (11), where (†) is referred
to the pseudoinverse of the matrix.

φ(t) = (U↓)† ·U↑ (11)

In particular, the eigenvalues of the spectral matrix φ(t)
are the eigenvalues {zk}k=0,1,...,K−1 of the model. Once the
complex poles are determined, the damping δk and the fre-
quency fk can be calculated by:

δk = − ln(|zk |) (12)

fk = 1

2π
arg(zk) (13)

As a second step, the Vandermonde matrix V n of dimen-
sion K × n is calculated using the complex poles determined
before as follows:

V n =

⎡

⎢
⎢
⎢
⎣

1 1 · · · 1
z1 z2 · · · zK
...

...

zn−1
1 zn−1

2 · · · zn−1
K

⎤

⎥
⎥
⎥
⎦

(14)

where

– K is the length of the eigenvalues vector {zk} of the
model.
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The complex amplitude αk is calculated by multiplying the
pseudoinverse of the matrix V n by the x(t) as it is shown in
(15). This leads to the determination of the amplitude ak and
the phase ϕk at the origin.

αk = (V n)† · x(t) (15)

ak = |αk | (16)

ϕk = arg(αk) (17)

This method will be applied to the envelope of the vibra-
tion signals to determine all the parameters of the model (9)
and especially to estimate the fault frequencies. This method
will be implemented in MATLAB environment and applied
to different vibrations signals to identify the defects of the
outer or the inner rings.

4.2 Algorithm simplification by pre-filtering

High-resolution methods are very efficient for signals con-
taining a large number of spectral components. The richer in
frequency components the signal is, the higher the number
of model frequencies characterizing the signal. It leads to
large matrices (the Hankel matrix Nt × Nt will have a large
dimension) and long computation times. In our case, only the
fault characteristic frequency is needed with high precision.
Consequently, ESPRIT algorithm can be simplified and the
number of model frequencies considerably reduced (reduc-
ing the length of the eigenvalues vector K ). However, the
signal must be pre-filtered to limit the range of the analysis
around the characteristic frequency.

To find optimal values for parameters Nt (order of the
Hankelmatrix) and K (length of the eigenvalues vector {zk}),
a white noise xk(t) is added to the reference signal:

xrefk(t) = xref(t) + xk(t), (18)

where xref(t) represents the signal built in Sect. 3.2.2. The
magnitude of xk(t) is tuned to obtain a desired signal to noise
ratio defined by:

SNR(dB) = 10log

[
RMS(xref)

RMS(xk)

]2

, (19)

with RMS(x) defined as the root mean square of the signal
x(t).

xrefk(t) is now filtered around the desired characteristic
frequency ( fi ). Results are shown in Table 2, respectively,
for K = 3 and 2 and Nt = 30 and 3. Estimations of the char-
acteristic frequency are performed on the one hand for the
reference signal (inner ring fault) without band-pass filtering.
On the other hand, this estimation is made with a pre-filtered
signal. The relative error is given as:

Table 2 Characteristic frequency estimation: optimal parameters for
an inner ring defect ( fd = fi )

SNR (dB)

−1 0 1 10

Witouth K 3 3 3 3

filtering Nt 30 30 30 30

Err(%) 0, 98 0, 93 0, 86 0, 8

Calculation time = 1, 74s

With K 2 2 2 2

pre- Nt 3 3 3 3

filtering Err(10−3%) 8 4, 6 0, 85 0, 5

Calculation time = 0, 6s

Err = freal − fest
freal

× 100 (20)

where

– freal is the real frequency.
– fest is the estimated one.

It can be seen that the pre-filtering around fi plays an
important role in the precision of the estimated frequency:
it reduces the frequency components around fi and makes
its identification easier by choosing the highest amplitude of
those components. It reduces also the matrix dimensions cal-
culated in the ESPRIT algorithm and consequently reduces
the computation time. It can be seen also in Table 2 the impact
of the noise on the proposed technique where the error is
decreasing (decreasing from 8 × 10−3 to 5 × 10−4 %) with
the increase of the SNR. On the simulated signal, the char-
acteristic frequency is obtained with a very good accuracy
for K = 2 and Nt = 3 (an error about 10−4 %), which
indicates the poor influence of the noise on the proposed
technique.

4.3 Influence of the contact angle Φ

The proposed technique is applied on inner ring fault signals
by introducing an error on the contact angle Φ to prove its
effectiveness regardless of the error introduced during the
measurement.

It can be noted in Table 3 that the calculated characteris-
tic frequency fi th varies for each contact angle value unlike

Table 3 Influence of contact angleΦ on the estimation of characteristic
frequency

The calculated fi th (Hz) The estimated f̂i (Hz)

Φ = 0◦ 159.92 159.54

Φ = 10◦ 159.52 159.54

Φ = 20◦ 158.30 159.54
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Fig. 9 The proposed approach for single bearing fault detection

the estimated frequency f̂i . This means that the proposed
technique is totally independent of the contact angle value.
In the next section, this methodology will be used for fault
detection on real data.

5 Experimental results

The MATLAB environment is used to implement the pro-
posed technique. According to previous sections, the fol-
lowing procedure is proposed to detect single point bearing
failure using vibration signals (Fig. 9):

1. Band-pass filtering of the signal around the resonance
frequency fres;

2. Calculation of the Hilbert transform and the envelope
signal;

3. Band-pass filtering of the envelope signal around the the-
oretical characteristic frequency fd ;

4. Characteristic frequency estimation using pre-filtering
and simplified ESPRIT algorithm;

5. Time synchronous averaging of the envelope signal with
the estimated characteristic frequency;

6. Decision making by calculating a fault indicator.

Table 4 shows results for experimental data from the Bear-
ing Data Center [26]. Two bearings with inner ring fault are
tested. The diameter of the artificial pitmade on the inner ring
varies from 0.007 to 0.021 in. In the following, this diameter
is called “fault diameter”. According to Sect. 4.2, the follow-

Table 4 Inner ring fault: characteristic frequency estimation using pre-
filtering and ESPRIT algorithm

fi th = 159.93Hz

Fault diameter (in.) 0.007 0.021

Estimated frequency (Hz) 159.54 159.79

Table 5 Outer ring fault: characteristic frequency estimation using pre-
filtering and ESPRIT algorithm

foth = 105.87Hz

Fault diameter (in.) 0.007 0.021

Estimated frequency (Hz) 106.29 106.03

ing parameters are chosen for the ESPRIT algorithm K = 2
and Nt = 3 as optimal values to achieve enough accuracy
as well as suitable computation time. The rotation frequency
of the mechanical shaft is fr = 29.53Hz. According to (1),
the theoretical characteristic frequency of the inner ring is
fi th = 159.93Hz.
The same tests are realized for an outer ring fault. The

results are given in Table 5. In this case, the theoretical char-
acteristic frequency of the outer ring is foth = 105.87Hz.

5.1 Results of TSA application

Tables 4 and 5 show that the simplified ESPRIT algo-
rithm gives a good estimation of the characteristic fre-
quencies. These frequencies can now be used to perform
the TSA filtering with the required accuracy. Figures 10
and 11 show the results of TSA applied to faulty bearings
with frequencies shown in Tables 4 and 5. Characteris-
tic frequencies and their harmonics are correctly isolated
and all external components are filtered which leads to a
clean signal containing just information about the bearing
fault.

The proposed technique has also proved its effectiveness
in function of different operating points when the motor load
was increased from 0 to 3 hp and the rotation speed was
slightly reduced from 1797 to 1730 rpm. Figure 12 shows
the results of applying TSA technique on inner bearing fault
signals with different motor load. According to this figure,
the characteristic frequency and its multiples are perfectly
isolated.

Finally, a bearing fault indicator is proposed to distinguish
the faulty case from the healthy one by calculating the sum
of the maximum amplitude of the signal Y ( f ) defined in (5)
for f = n · fd as it is shown in (21). This indicator is applied
to signals with inner ring fault, outer ring fault and healthy
signals for different motor loads.
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Fig. 10 The average spectrum for an inner ring fault with two different
fault diameters a 0.007 and b 0.021 in. (M = 50)
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Fig. 11 The average spectrum for an outer ring fault with two different
fault diameters a 0.007 and b 0.021 in. (M = 50)

Ind =
10∑

n=1

Y (n · fd) (21)

where

– fd represents one of the characteristic frequencies ( fi or
fo).

– n represents the multiples of the characteristic frequency.

Figure 13 shows the evolution of the proposed indicator
for several cases with fd = fi . A threshold (indth = 0.2)
is chosen as twice the maximum amplitude of the indicator
value when applying the TSA on the outer ring fault signal.
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Fig. 12 The average spectrum for inner bearing fault with a 1 hpmotor
load, b 2 hp motor load and c 3 hp motor load
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Fig. 13 Evolution of the indicator Ind for a healthy signal, b signal
with 0.007 in. inner ring fault diameter, c signal with 0.021 in. inner
ring fault diameter, d signal with 0.007 in. outer ring fault diameter and
e signal with 0.021 in. outer ring fault diameter

This figure proves that the proposed indicator can clearly
distinguish the inner ring fault from others cases.

Figure 14 shows the evolution of the proposed indica-
tor for several cases with fd = fo. This figure illustrates
the effectiveness of the proposed indicator which can clearly
discriminate the outer ring fault from others cases.

Figure 9 resumes the proposed technique. It allows detect-
ing single bearing fault. To characterize the fault (defected
component, fault severity) two steps are required. The first
one is the estimation of the real fault frequency which is
mostly different from the theoretical one using ESPRIT algo-
rithm. The second step is vibration signals filtering from all
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spectral components except those which coincide with real
fault frequencies and their harmonics (respectively, fi and
fo). Once the TSA is applied, an indicator Ind is calculated
for the two fault frequencies. The final step of this procedure
is decision making by evaluating the calculated indicator. If
the indicator exceeded a certain threshold, the bearing will
be considered defected, otherwise it is healthy.

6 Conclusion

This paper deals with the improvement of time synchronous
averaging using a simplified ESPRIT algorithm applied to
simulated and real vibration signals. The simplification has
been obtained by a pre-filtering of the envelope signal around
the fault frequency. ESPRIT algorithm has been also con-
siderably simplified and the number of model frequencies
reduced to the minimum by choosing optimal values for the
two parameters Nt and K to achieve enough accuracy as
well as fast calculation time. Finally, the resulting algorithm
is very fast and provides very accurate fault frequencies. This
accuracy permits to use these frequencies in a TSA filtering
with good performances. This algorithm is applied to vibra-
tion signals with inner and outer ring faults and different fault
diameters. The obtained results confirm that the combination
between TSA, ESPRIT and the pre-filtering achieves better
performances than the only application of TSA to vibra-
tion signals. The proposed algorithm shows its efficiency for
detection of the inner and the outer ring fault for different
fault diameters. The proposed procedure is able to distin-
guish inner from outer faults by setting the trigger frequency
ft equal to the fault characteristic frequencies. If the obtained

frequencies are not a train of this characteristic frequency
and its harmonics, then the bearing is considered healthy.
The proposed indicator is characterized by its simplicity and
effectiveness. The results show its capability of distinguish-
ing the inner ring bearing fault from the outer ring bearing
fault and the healthy bearing for different fault diameters and
motor loads.

The proposed approach was successfully tested for sin-
gle point bearing faults with various fault cases and load
conditions. Further investigations are required to study the
generalized roughness faults (multi-point bearing faults).
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