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Abstract: This research concerns the vibration reduction transmitted by the thermal engine to the drivetrain. In the context of a

hybrid electric vehicle, the use of an electric synchronous machine, more specifically a permanent magnet synchronous machine,

is recommended to partly ensure vehicle propulsion but also to mitigate the torque pulsations generated by the engine. Most

strategies using this propulsion method require a very accurate position sensor. However, instead of using a sensor, this research

proposes the use of a position/speed observer. This approach is combined with linear parameter varying control to guarantee

consistent performance during speed transients. Thus, this strategy does not use additional hardware for a hybrid drive and

consumes very little additional electrical energy (excluding the electrical losses in the motor and the inverter). These methods are

illustrated within the context of an urban trip and clearly show the effectiveness of the proposed approach.

1 Introduction

Many countries have implemented policies to significantly reduce
emissions of greenhouse gasses such as carbon dioxide. Automotive
manufacturers have achieved these objectives by introducing solu-
tions such as downsizing and hybridisation. Both of these solutions
involve either a reduction in the number of cylinders or engine down-
sizing. The downsized engines then attain the required performance
by operating at higher average pressure. The use of turbo-chargers
allow these engines to deliver torque at levels comparable to those
of conventional engines.
However, this causes undesirable side effects such as cycle irregular-
ities, which cause torque oscillations. In the case of a hybrid electric
vehicle (HEV), an additional actuator is present and offers a new
degree of freedom: an electric motor (in most cases, a synchronous
motor with permanent magnets (PMSM)). Here, the main objective
is to use this engine for both electric propulsion and for mitigating
torque oscillations.
In that case, it generates improved performance in terms of the dura-
bility of the transmission and in terms of noise without increasing
the fuel consumption and degrading the effectiveness, as shown in
[1]. Several approaches have been followed to reduce the torque
oscillations and vibration in flexible structures: examples are stiff-
ening, isolation, and damping [2]. Among these solutions, damping
is most commonly used. From an energy point of view, there are two
methodologies: passive and active.
Passive solutions often use inertia, whereas active solutions use an
external energy source to act in the vibration peaks.

Several studies that have focused on techniques to achieve these
active solutions in HEVs have been reported in the literature. The
first solution, which is based on the use of an alternator and is effec-
tive at both steady and idling speed, was published in [3]. In [4],
the torque oscillations are reduced in an open loop. Approaches
with observers [5] and those based on neural networks [6] were also
implemented. An approach using PID and notch filters has been pro-
posed [7]. More recently, three approaches, i.e.H∞ [8], LPV [9] and
MPC [10], which limit the maximum torque of the electric motor,
were proposed. Additionally, a torque split strategy was employed
in combination with an automated mechanical transmission (AMT)
gear-shifting strategy [11].

In [12], the authors present three different solutions for a torque
damping control system, i.e. a conventional proportional integral
controller, an observer-based torque feed-forward technique, and an
original approach based on an adaptive multi-resonant controller.

In the case of electric vehicles, other authors, [13], proposed a
generalised real-time suppression strategy to mitigate the coupling
vibration during vehicle idling and cruising. The use of a high-
performance field oriented controlled (FOC) electric motor drive
enables a relatively small amount of rotation velocity offset to be
added to the traction motor to significantly reduce the resonant vibra-
tion with negligible impact on the vehicular speed. Other solutions
can be implemented in a wide range of applications, e.g. active rip-
ple compensation has been applied in domestically combined heat
and power [14]. However, all these approaches require precise and
expensive instrumentation. At a minimum, the approaches use the
measurements of the angular positions and a speed sensor. This
incurs additional costs and a point of mechanical weakness.

In the aforementioned work, the disturbance attenuation is per-
formed on static operating points, and an improvement is proposed
even when the speed changes (LPV control). The advantage of the
methodology presented in this article is that it does not require mod-
elling of the thermal engine because it is considered as a reference
model of non-stationary multi-sinusoidal disturbances. A strategy
must therefore be put in place to generate the reference trajecto-
ries. Therefore, a sensorless observer and a multi-sinusoidal dynamic
estimator are used together.

The new approach presented in this paper does not rely on the use
of a mechanical sensor. Indeed, a controller using a speed and posi-
tion observer is used in the synchronous electrical machine (PMSM)
controller. This not only ensures the control of the motor, but also the
use of a software sensor for active torque oscillation compensation.
In our application, the electrical motor is perfectly well known. We
have therefore chosen to implement an observer based on a physical
model of the PMSM. Several methods can be used, such as adaptive
observers [15, 16], an extended Kalman filter [17], or approaches
based on reference models[18]. In section 3, we present an adaptive
observer built from the PMSM park model.

The paper begins with a comprehensive overview of the issue.
In Section 3, the sensorless observer is presented. In the following
section, the control torque oscillations in an HEV are described. The
output regulation strategy is introduced in section 5 followed by the
design of the LPV. Finally, the simulation results are shown to prove
the effectiveness of the approach.

2 Problem statement

According to its principle of operation, an internal combustion
engine generates torque pulsation, which often takes the form of a
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sum of two torques, as shown in this relationship:

Tice = Tp + Ti (1)

where ice signify internal combustion engine. Ti is the torque gen-
erated by the oscillating masses and connecting rod; Tp is the
combustion torque generated by the pressure in the cylinder; Tp and
Ti can be mathically expressed by, see [19],

Tp = Pr(θth)

[
r cos(θth) + l

√
1− λ2m sin2(θth)

]
tan(ϕ),

Ti = (ma +mp)rω
2
th [cos(θth) + λm cos(2θth)] ∗[

r cos(θth) + l

√
1− λ2m sin2(θth)

]
tan(ϕ), (2)

where

tan(ϕ) =
λmsin(θth)√

1− λ2msin2(θth)
(3)

where θth describes the crankshaft position, ωth is the crankshaft
speed, Pr(θth) model the upward thrust on the piston and the
expression of sin(ϕ) = −λmsin(θth). In this relation λm = r

l and
r and l are the lengths of the crank and the connecting rod, respec-
tively. ma and mp are the connecting rod mass and the piston mass,
respectively.
The fluctuating torque is illustrated in Fig.1-2 at idling speed in the
cases of both one cylinder and four cylinders.

−80 −60 −40 −20 0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

frequency(Hz)

S
p

e
e

d
 F

F
T

 (
ra

d
/s

)

FFT

Fig. 1: Ripples Speed FFT of a mono cylinder
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Fig. 2: Ripples Speed FFT of 4 cylinders diesel engine

Unfortunately, this pulsed torque degrades the life cycle of the
drive train and reduces occupants’ comfort. The addition of an elec-
tric motor on the same shaft of the internal combustion engine, as is
the case in an HEV, makes it possible to overcome the undesirable
oscillating torque. Indeed, the torque relationship on the shaft is:

T = Tice + Te − Tl, (4)

where Te is the electric motor torque and Tl is the load torque.
Then, it is possible to attenuate the ripple torque generated by the

ICE with the electrical motor torque Te.
A global approach was followed in this paper. A block diagram
representing the global overview of the sensorless active control
approach can be found in Fig. 3. In the remainder of this paper,

ICE PMSM DRIVE

Currents Torque= iq

Observer
Harm.
Estim.

LPV
Active
Control

Sensorless Active Control

Ω

Fig. 3: Global control loop.

details of all parts of the sensorless control loop are presented. Ini-
tially, the part of the synchronous machine that is used as a sensor is
introduced.
Indeed, the work focuses on a speed observer using the electrical
motor current to estimate the speed and position. Then, LPV active
control is implemented to remove the disturbance.

3 PMSM adaptive observer

The observers for PMSM can be described in a reference frame
fixed with respect to the stator (the {α, β} reference frame) [20], or
linked to the rotor (the {d, q} reference frame). In the latter category,
several models have been developed to obtain full [21] or reduced
observers [22]. The models described in Park’s paper are interesting
for several reasons. First, in this reference frame, the quantities are
continuous, which simplifies the design of control laws. Moreover,
the linearisation of these models is simplified and makes it possible
to study possible problems of convergence, stability, or design [23].
Moreover, this type of observer is particularly suitable for extending
the number of quantities to be adapted (stator resistance and q-axis
inductance) [24].

3.1 Synchronous motor model

First, we introduce the synchronous motor model used to configure
the speed observer. In (4), the electromagnetic torque of the PMSM
is part of the propulsion torque. This torque, when vector-oriented
control is implemented, can be established in Park’s {d/q} reference
frame fixed to the rotor as [21]:

Te =
3

2
pψT

s J
T is (5)

where, J is a square matrix represented as:

J =

[
0 −1
1 0

]

and is =
[
id iq

]T
is the stator current, ψs =

[
ψd ψq

]T
is

the stator flux and p is the number of pole pairs. This expression will
be useful to control the motor torque.

The different equations required for the implementation of the
observer are introduced to enable the synchronous motor to be mod-
elled. First, the stator voltage equation in Park’s {d/q} is expressed
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as:

us = Rsis + ψ̇s + ωJψs (6)

Where us =
[
ud uq

]T
is the stator voltage, Rs is the stator

resistance, ω = θ̇ is the electrical angular speed of the rotor. In these
equations, the stator flux is represented by:

ψs = Lis + ψpm (7)

Where ψpm is the permanent magnet flux expressed as ψpm =[
ψpm 0

]T
and L is the inductance matrix which depends

respectively on the direct and quadrature axis inductances Ld and
Lq .

L =

[
Ld 0
0 Lq

]

3.2 PMSM Adaptive observer

As shown in Fig. 4, the observer that is used here is an adaptive
version. Indeed, initially, the observer uses as an error the difference
between the observed and measured currents. Based on the model
of the machine, this gap then allows the observer to be adjusted to
estimate the rotor position and speed accurately.

System

Adjustable
model PI

us is

îs +

−

ŵ

ĩs

Adaptive observer

Fig. 4: Adaptive observer representation.

The adaptive observer model is based on (6) and (7) and the state
space representation can be designed as [20, 25]:

˙̂
ψs = us −Rs îs − ω̂Jψ̂s + λĩs (8)

The different superscript ̂ represents the estimated quantities.
The error equation of the estimated stator currents can be written as:

îs = L−1
(
ψ̂s − ψpm

)
(9)

ĩs = is − îs (10)

The feedback gain matrix is λ, the design of which was deter-
mined by the following expression:

λ = λ1I + λ2J (11)

where I is the identity matrix. In that case, the gain λ1, λ2 is cho-
sen such that a pole placement is made in the complex plane. Fast
observer dynamics compared to those of the current loop can be
obtained by an appropriate selection of λ1 after determining the
roots of the characteristic equation of the observer model (6).

In the case of several variations, the observer can be adapted by
designing the PI controller with respect to this equation:

ω̂ = −kp · ǫ− ki

∫
ǫ · dt (12)

where kp and ki are coefficients of the PI regulator. The rotor posi-

tion θ̂ is the integrating part of the rotor angular speed. The current
error ǫ is evaluated from this error equation:

ǫ =
[
0 Lq

]
· ĩs (13)

4 Harmonics Hybrid Torque Control

The originality of the approach presented here, is to use a syn-
chronous motor as a pulsating torque generator to counteract the
disturbance generated by the engine. In this case, control is exer-
cised by injecting a current reference iqref in the PMSM. In the
HEV configuration, the electric motor is then regarded as the pro-
ducer of torque control. In this case, the internal combustion engine
acts as a generator of unsteady and multi-sinusoidal external distur-
bance. The proposed approach ignores the nonlinear model (2) of
the torque generated by the engine. In this study, the ICE is con-
sidered as an exogenous disturbance. Thus, the problem becomes a
generalised asymptotic regulation problem, as seen in [26]. Thus,
the control objectives are intended to assure quadratic stability while
ensuring the mitigation of ICE torque ripples. The systems Σ can
model the electromechanical system that is used to design the LPV
controller:

(Σ) :

{
ẋ = Ax+Bww +Buu

y = Cyx+Dyuu
, (14)

where xT = [θth, ωth, θe, ωe] ∈ R
n is the state vector (th stands

for thermal engine, e for electrical motor), u ∈ R
nu is the control

input vector (PMSM current iq), w ∈ R
nw is the exogenous distur-

bance which will be defined afterwards, y ∈ R
ny is the controlled

output vector (the diesel engine speed).

The matrices involved in (14) can be defined as follows:

A =





0 1 0 0
−k
J1

−c
J1

−k
rJ1

−c
rJ1

0 0 0 1
k

rJ2

c
rJ2

−k
r2J2

−c
r2J2



Bu =





0
0
0

3
2
pλ
J2



 ,

Bw =





0
0
0
0

0
1
J1
0
0

︸ ︷︷ ︸
B1

w

· · ·
· · ·
· · ·
· · ·

0
0
0
0

0
1
J1
0
0

︸ ︷︷ ︸
Bη

w





Cy =





0
1
0
0





T

(15)

Dyu = 0n×nu

where k is the stiffness; c is the damping coefficient; r is the
ratio between the PMSM (permanent magnet synchronous motor)
and diesel engine shafts; J1 is the ICE inertia mass moment; J2 is
the PMSM inertia mass moment; p is the number of pole pairs of
the PMSM; λ is the flux linkage per phase. θth and ωth are the
crankshaft position and speed respectively; θel and ωel are the rotor
position and speed, respectively. It is assumed that the current con-
troller of the synchronous motor can be modelled as a first order
Σel, where τe is the time constant of the current control loop and
describes the torque control loop of the variable-frequency drive.

In (14), w(t) is a non-stationary disturbance generated by a
multi-sinusoidal exogenous linear system. Suppose that w(t) repre-
sents η sinusoidal harmonics of which the frequencies are ωhi

(t) ∈
[ωhi

, ωhi
]; i ∈ {1 · · · η} and ωhi

(t) = i(ω0), where ω0 is supposed
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to be the varying parameter.
Then the exosystem becomes,





ẇ1

ẇ2

...
ẇη





︸ ︷︷ ︸
ẇ

= Ae(ω0(t))





w1

w2

...
wη





︸ ︷︷ ︸
w

(16)

where Ae(ω0) ∈ R
nw×nw and is given by,

Ae(ω0) =





0 ω0 · · · 0 0
−ω0 0 · · · 0 0

...
...

. . . 0 0
...

...
. . . 0 0

0 0 · · · 0 0 ηω0
0 0 · · · −ηω0 0





5 LPV Output regulation design

5.1 Output regulation design

In this subsection, a control strategy is developed to ensure torque
ripple reduction when the speed varies. Some LPV controller designs
can be found in [27–29]. The objective, therefore, is to develop
an LPV controller to ensure quadratic stability when non-stationary
disturbance needs to be eliminated.

For the synthesis of the LPV controller, a reference model is
considered to have the same model as (14). Thus, considering
e = xref − x (an error system), the following representation is
given:

(Σ∆)

{
ė = Ae+Bw∆w +Bu∆u

ȳ = Cye+Dyu∆u
, (17)

with e = xref − x;∆w = wref −w, ∆u = uref − u

and ∆̇w = Ae(ω0(t))∆w. This equation models the dynam-
ics of the non-stationary quasi-periodic disturbances. Designing a
controller K(ω0) capable of stabilising the system (17) makes it
necessary to make some assumptions.

Remark 1. In the context of this study, the limitation of the ripple
of the diesel engine torque requires a reference speed trajectory to
be defined. This trajectory is generated without the harmonics being
completely cancelled. A recursive least squares algorithm is used
to estimate this trajectory. A scalar κ ∈ R is introduced to modu-
late the level of disturbance attenuation. In this case, the controller
balances the energy consumption with the requirement of vibration
attenuation.

Proposition 1. Consider an LPV system in which the dynamics are
described by (Σ∆) with non-stationary disturbance, and assume that

A.1.Ae(ω0(t)) is anti-Hurwitz (i.e. has all its eigenvalues as non-
negative real parts),

A.2.(A,Bu) is stabilizable (i.e. ∃F : A+BuF is Hurwitz,

A.3.




A Bw

0 Ae(ω0(t))
Cy 0



 is detectable,

The controller K(ω0(t)) is designed such that

A.1.(Internal Stability) The closed-loop system with the controller
K(ω0(t)) is asymptotically stable,

A.2.(Almost Asymptotic Regulation) There exists κ such that

‖ȳ(t)‖ =
(
ȳ(t)Tȳ(t)

)1/2
6 κ ‖∆w(t)‖ , ∀t > 0, starting from

w(0).

It is necessary to introduce a term κ to change the attenuation
level of the unwanted harmonics. In particular, this allows the level
of the required electrical power to be reduced.

5.2 Asymptotic regulation transformation

A transformation of the problem is introduced to allow asymptotic
regulation and closed-loop stability. This transformation has been
inspired by ([30]).

Lemma 1. Considering Proposition 1 and if there exists Π ∈
R
n×nw and Γ ∈ R

n×nw that satisfy

−Bw +ΠAe(ω0)−AΠ−BuΓ(ω0) = Π̇ (18)
[

κI −CyΠ

(−CyΠ)T κI

]
> 0. (19)

Γ and Π are the solutions of these above equations, named Sylvester
equations see [30]. Any controller that solves this problem suggests
the following expression K(ω0(t)):

[
v̇

∆u

]

=





Ae −D
2
c(ω0)CyΠ C

2
c(ω0) D

2
c(ω0)

−Bc(ω0)CyΠ Ac(ω0) Bc(ω0)

Γ−D
1
c(ω0)CyΠ C

1
c(ω0) D

1
c(ω0)





[
v

ȳ

]

and can be implemented as, see Fig. 5

Ki(ω0) =

[
Ae(ω0) I

I 0

]

, (20)

Ka(ω0) =





Ac(ω0) Bc(ω0)

C
1
c(ω0) D

1
c(ω0)

C
2
c(ω0) D

2
c(ω0)




(21)

where Ki(δ) is a controller that replicates the dynamics of the
exogenous system and Ka(δ) is a controller that stabilises the
closed loop system (Σ∆).

In our case and in the following developments, Π is assumed to

be constant and, consequently Π̇ = 0.

Ka(ω0)
+

+
+

+

∆u
∆ua

−CyΠ
Γ(ω0)

ȳ

vi

∆u1

∆u2

Ki(ω0)

Fig. 5: Structure of the controller
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Using the following transformation,

x̃ =

[
I −Π
0 I

] [
e

−
[
0 Inw

]
v

]
+

[
0
I

]
∆w. (22)

the system can be expressed as,

{
˙̃x = Ã(ω0)x̃+ B̃∆ũ

∆ua = C̃x̃

where, Ã(ω0) =

[
A BuΓ(ω0)
0 Ae(ω0)

]
, B̃ =

[
0 Bu

I 0

]
and

C̃ =
[
Cy CyΠ

]

5.3 LPV output feedback synthesis

In this subsection, the LPV problem is transformed into a polytopic
description of the system in order to perform the computation using
Linear Matrix Inequalities (LMIs). Other strategies exist according
to which the LPV controller Ka(ω) can be designed. One of the
most popular is the “full block S-procedure" and the Linear Frac-
tional Transformation (LFT) representation [31, 32]. Here, an LMI
solution is preferred. In this paper, the following continuous time
LPV system is considered:

{
˙̃x = Ã(ρk)x̃+ B̃∆ũ

∆ua = C̃x̃

Assume that Ã(ρk) is a matrix which belongs to a set A as defined
in (23). This set is a polytope of matrices and represents a convex

combination of the extreme matrices Aj, j = 1 . . . 2M , referred to
as the vertices of A.

A =




Ã(ρk)| Ã(ρk) =
2M∑

j=1

ςiÃj, ςj ∈ ∆1




 , (23)

with

∆1 =









ς1
...

ς2M



 ∈ R
2M | ςj ≥ 0, ∀j ∈ 1 . . . 2M ;

2M∑

j=1

ςi = 1





(24)

Remark 2. The polytope vertices are composed with the extreme
values of ρi ∈ [ρ

i
, ρi], which are dependent on the speed ω0.

Let the following representation G̃ be introduced,

[
A B

C D

]

=




Ã(ρ) 0 0

0 0 0

0 0 0





+




0 B̃

I 0

0 0





[
Aa(ρ) Ba(ρ)

Ca(δ) Da(ρ)

]

︸ ︷︷ ︸
Ka(ρ)

[
0 I 0

C̃ 0 0

]

The accompanying controller Ka(ρ) can stabilise the plant G̃
under quadratic performance specification if there exists a symmetric

positive definite matrix P̃ in R
n×nu such that

Ã
T
f (ρ)P̃+ P̃Ãf (ρ) < 0 (25)

is feasible where the matrix Ãf has the following definition

Ãf (ρ) = Ãg(ρ) + B̃gKa(ρ)C̃g, (26)

with

Ãg(ρ) =

(
Ã(ρ) 0

0 0

)
, B̃g =

(
0 B̃

I 0

)
,

C̃g =

(
0 I

C̃ 0

)
.

Theorem 1. Consider the problem of controller design discussed
in Proposition 1. There exists a controller K(ρ) of the form (20)
that solves this problem and achieves quadratic stabilisation, if there

exists a matrix P̃ ∈ R
n×nu , Γ ∈ R

n×nw P̃ > 0, a state feedback
F0(ρ) that is a solution to (28), an unknown square and nonsin-

gular variable matrix Ga ∈ R
nu+nc , an unknown variable matrix

La(ρ) ∈ R
(nu+nc)×(ny+nc), and two unknown variables matrices

F1 ∈ R
(nx+nc)×(nx+nc) and F2 ∈ R

nx×(nx+nc) such that the
inequality (29) is verified. In such an event, the dynamical controller

Ka(ρ) = G−1
a La(ρ) stabilises the error system (17) asymptoti-

cally for all matrices Ã(ρ) described as a convex combination of
the elements in A.

1. Find P̃ and F̃0(ρ) that satisfy the following LMIs

P̃ = P̃
T > 0 (27)

P̃Ã0j + Ã
T
0jP̃ < 0, (28)

where j = 1 . . . 2M and Ã0j = Ãgj + B̃gjF̃0j; F̃0j: a state feed-

back matrix which stabilizes the following system G̃ ,

2. With P̃ and F̃0(ρ), find the accompanying controller Ka(ρ)
solution of the following LMI




ÃT

0jP̃+ P̃ÃT
0j P̃ 0

P̃ 0 0

0 0 0





+ Sym









F1

F2

0



 [
0 −I B̃g

]





+ Sym









0

0

I



 [
LajC̃g −GaF̃0j 0 −Ga

]



 < 0,

(29)

where j = 1 . . . 2M and F1, F2 are non-zero matrices and matri-

ces Ga and Laj are such that Kaj = G−1
a Laj.

3. Obtain a realization of the controller K(ω0) via (20).

Some details of the illustrated approach can be found in [9] and
in [33].

Proof.

In order to verify the existence of K(ω0) satisfying Proposi-

tion 1, the conditions of (18) and (19) could be proved by referring
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to Lemma 1. An LMI solution is proposed for designing the con-

troller Ka that ensures quadratic stabilisation. This condition is at

the origin of the Bilinear Matrix Inequalities (BMIs). However, it is

possible to transform it into a set of LMIs using the projection lemma

(see [9]). This approach relies on the application of a dynamic feed-

back control solution, which is then converted into a static output

feedback control problem. Let

Ãf = Ãg + B̃gF̃0 − B̃gF̃0 + B̃gKaC̃g (30)

= Ã0 + B̃g

(
KaC̃g − F̃0

)

by applying the projection lemma, the equation (25) becomes

equivalent to

[
ÃT

0 P̃ + P̃ Ã0 P̃

P̃ 0

]

+ Sym

{[
F1

F2

] [
0 −I

]}

+ Sym

{[
F1B̃g

F2B̃g

] [
KaC̃g − F̃0 0

]}
< 0

which can be written as




ÃT

0 P̃ + P̃ Ã0 P̃ 0

P̃ 0 0

0 0 0





+ Sym









F1

F2

0



 [
0 −I 0

]





+ Sym









F1B̃g

F2B̃g

0



 [
0 0 I

]





+ Sym









0

0

I



G
[
KaC̃g − F̃0 0 −I

]



 < 0

(31)

which corresponds to the condition (29) of the theorem which has
been expressed on the vertices of the polytope, see (24).

Inequality (31) holds if

[
ÃT

0 P̃ + P̃ Ã0 P̃

P̃ 0

]

+ Sym

{[
F1

F2

] [
0 −I

]}
< 0

(32)

Using the projection lemma, inequality (32) is equivalent to

P̃ Ã0 + Ã
T
0 P̃ < 0, (33)

which corresponds to the first statement of the theorem.
�

6 Simulation results

The HEV powertrain test simulator is composed of a mono-cylinder
diesel engine and a parallel-flywheel type of motor/generator. The
configuration of the simulator is based on the experimental platform,
which is represented in Fig. 6 and the characteristics of which are
provided in Tab. 1.

The complexity of the tests carried out in this study, in particular,
the use of a speed observer, a speed reference trajectory, and diesel
engine torque varying with time, meant that it was impractical to

Fig. 6: HEV Experimental platform

Hybrid powertrain Descriptions Specification

Diesel engine 499cm3 65 kW and 190 Nm
PMSM Motor/generator 15kW, 64Nm/2100rpm
IM (Induction Motor) dynamometer 47kw-1700rpm
Injection timing 600µs
diesel flow 13.3mg/injection
rail pressure 700 bar

Table 1 Hybrid powertrain specifications

carry out these experiments. Indeed, the bench shown in Fig. 6 is
a stationary bench and the PMSM drive does not allow the integra-
tion of a sensorless observer. This is the reason why it was decided
to conduct a simulation. However, the models used in the simula-
tor were validated and are representative of the actual behaviour of
the experimental bench. Although this platform consists of a single-
cylinder diesel combustion engine it would be easy to extend the
results to three- or four-cylinder engines. In this case the harmonics
would have different frequencies and amplitudes as represented in
Fig. 2. The overall scheme is described in Fig. 3.

The speed trajectory of the PMSM-combustion engine assembly
is shown in Fig. 7. The corresponding load torque has been rep-
resented in Fig. 8. The scheme represents an urban start-up and
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Fig. 7: Thermal engine speed reference

shut-down cycle. The design of the controller was based on three
harmonics and the numerical value of the controller can be found
in the appendix. In Fig. 9-10, a comparison is made between our
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Fig. 8: Load Torque

observer and that of [20] which is another type of nonlinear observer.
The results are similar and the estimation error is slightly lower in
our case. the output of the position/speed estimator presented in this
paper compares well with the measured speed. The error remains low
and the estimator follows the trajectory well in the frame of speed
dynamic variations.
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Fig. 9: Zoom of estimated speed error comparison : black =
mesured; blue= our approach; red= [20]
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Fig. 10: Zoom of estimated speed error comparison :blue= our
approach; red= [20]

A recursive least mean square algorithm is used to estimate all
speed ripple harmonics. As a consequence, a reference trajectory
yref can be generated without the unwanted harmonics. The results

concerning the attenuation of the first three harmonics of speed are
illustrated in Fig. 11.
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Fig. 11: 1st speed harmonic (top), 2nd harmonic (middle), 3rd
harmonic( bottom) green without control; blue with control.

The chattering present in the results is mainly due to the har-
monic behaviour of the reference trajectories. Even though it is
possible to attenuate more than three harmonics, we chose to atten-
uate the three most energetic and most troublesome (low frequency)
harmonics. We set the value of the coefficient κ = 0.25 of Propo-
sition 1 to prevent the harmonics from being completely attenuated.
This is because of the electrical power available in the PMSM. The
presented strategy correctly attenuates the set of torque ripples gen-
erated by the combustion engine. The ripple attenuation is made
considering the energy consumption and electrical power available.
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7 Conclusion

This paper presents an original attenuation solution for torque rip-
ples occurring in a combustion engine in the configuration of a
hybrid electric vehicle. The approach is based on an observer that
does not require the measurement of the torque, speed, or posi-
tion. An LPV output regulation strategy is added to meet the overall
requirements for mitigating the torque disturbance over a wide range
of speed variations. A simulation was then carried out to validate
the proposed approach. The advantage of this method is that it
does not require a nonlinear model of the system generating the
disturbance (here a diesel engine). In this case the system is con-
sidered as a non-stationary multi-sinusoidal perturbation generator.
This methodology can be easily extended to all systems generating
sinusoidal or pulsed signals such as a diesel power generators or
wind turbines. From the perspective of future work, the LPV control
should be improved by optimising the synthesis on different param-
eter domains (in this case the speed). Another original approach
would be to use observers with unknown inputs to estimate the multi-
sinusoidal disturbance.
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9 Appendix: Controller Numerical Values

For the operating point ω0 For the controller Ki:

Ki =















0 102 0 0 0 0

−102 0 0 0 0 0

0 0 0 204 0 0

0 0 −204 0 0 0

0 0 0 0 0 306

0 0 0 0 −306 0















For the controller Ka:

Aca0 =









−9.5187 0.2145 0.3869 0.2875

0.2126 −9.9053 0.1707 0.1270

0.3547 0.1581 −9.7149 0.2119

0.2956 0.1316 0.2375 −9.8234









Bca0 =









0.0974

0.0432

0.0714

0.0616









Cca0 = 1e
3

∗



















−0.3804 −0.1695 −0.2796 −0.2300

−0.0484 −0.0216 −0.0354 −0.0294

−0.9221 −0.4106 −0.6786 −0.5587

0.2433 0.1084 0.1789 0.1469

−1.5863 −0.7061 −1.1674 −0.9613

0.3933 0.1751 0.2895 0.2376

−0.0046 −0.0017 −0.0031 −0.0028



















Dca0 = 1e
3

∗



















−0.1326

−0.0207

−0.3088

0.0494

−0.4648

−0.0290

1.1083



















For Γ:

Γ0 =















−0.0008

0.3059

−0.0059

0.2903

−0.0181

0.2678















T

For the variation around this operating point : For the controller Ki:

Ki =















0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 2 0 0

0 0 −2 0 0 0

0 0 0 0 0 3

0 0 0 0 −3 0















For the controller Ka:

Aca1 = 1e
−3

∗









0.1032 −0.0083 −0.0205 0.0037

0.0438 −0.0025 −0.0056 0.0016

0.0737 −0.0046 −0.0111 0.0027

0.0667 −0.0035 −0.0097 0.0022









Bca1 = 1e
−5

∗









−0.6328

−0.2805

−0.4667

−0.3885









Cca1 = 1e
−3

∗



















−2.2 0.747 0.173 −0.32

−0.822 −0.534 −0.0666 −0.133

−2.118 0.427 1.1590 −0.098

1.588 −0.837 −1.1576 −0.621

−5.253 −0.277 −2.2470 −1.809

−1.37 −0.626 −1.3654 −1.367

−0.0070 −0.0036 0.0083 0.0009



















Dca1 = 1e
−4



















2.43

−1.48

5.80

−3.75

14.45

−6.17

0.023



















For Γ:

Γ0 = 1
e−3

∗















−0.0147

−0.0893

−0.1103

−0.3321

−0.3355

−0.6673















T
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