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Abstract—In this article, an improved version of Jiles-Atherton
model for least square identification is presented. First, a simpli-
fied anhysteretic magnetization model is used in order to provide
simple estimates of the initial parameters. Then, a normalization
of sensitivity functions is performed to improve the convergence
of the Levenberg-Marquardt algorithm, leading to the emergence
of optimal parameters. Experimental trials validate the proposed
method.

Index Terms—Magnetic hysteresis, Jiles-Atherton model, non-
linear least square algorithm.

I. INTRODUCTION

Among the most studied nonlinear phenomena, hysteresis
has always attracted the attention of researchers from a range
of communities, including mathematics, electrical engineering
and mechanics. In the domain of magnetism, the Jiles-Atherton
(JA) model, based on physical considerations, has been partic-
ulary successful [1] and is widely used in finite element-based
software and in the simulation of electronic design tools. Its
relative simplicity and the limited number of parameters make
the JA model a powerful tool and one which is well-positioned
compared to its competitors [2].

In terms of parameters-identification, the J.A model pos-
sesses two main disadvantages:
• The procedure calls for complex experimental trials in

order to obtain the initial parameters. As shown in [3]
essential trials are needed before starting the identification
algorithm. These consist of the original magnetization
curve, the major loop and the anhysteretic curve. The last-
mentioned curve is particularly difficult to obtain, and
although some original procedures have been proposed
[4], this method has disappeared in recent years.

• Due to the nonlinearities in the JA model, some conver-
gence problems may exist if the initial parameters are not
chosen correctly.

From the methodological point of view, the iterative method
proposed by Jiles in 1986 was quickly replaced by the nonlin-
ear optimization process of least squares [5], [6] or simulated
annealing techniques [7], [8]. It is well known that these
methods are very sensitive to the initial parameters and a
gap between the values of these parameters can lead to the
convergence towards a local minimum. In order to circumvent
this problem, genetic algorithms were proposed recently [9],
[10].

In this paper, it is demonstrated that good results may
be obtained with least square algorithms, with convergence

being improved. This comes about in two ways: through
the improvement in the estimation of the initial parameters
and through the modification of the nonlinear least square
algorithm. A discrete form of the J.A model is proposed in
section II, allowing calculations to be simplified over the
different steps of the procedure. Section III describes how
the improvement in the estimation of initial parameters is
accomplished. In section IV, a modification of the least square
algorithm, based on a normalization technique, is applied and
validated through a simulation. In addition the simulation data
is compared with the experimental data generated in section
V.

II. DISCRETIZATION OF THE JILES ATHERTON MODEL

The differential equation describing the Jiles Atherton
model is given by [3]

dM

dH
= (1− c) Man −M

δk

µo
− α(Man −M)

+ c
dMan

dH
. (1)

Where M is the total magnetization, H is the applied
magnetic field, µo is the magnetic permeability of free space,
k determines the hysteresis losses, c represents reversible
wall motion, α is the effective field and δ is a directional

parameter having the value +1 for
dH

dt
> 0 and −1 for

dH

dt
< 0.

The anhysteretic magnetization Man is given by Eq. (2)
using the Langevin function [11]

Man(H) = Ms(coth(
H + αM

a
)− a

H + αM
). (2)

With Ms being the saturation magnetization and a the
parameter which represents the anhysteretic behavior. A more
convenient form of (1), for the purpose of simulation, is given
by the following relationship

dM

dt
= (1− c)dH

dt

Man −M
δk

µo
− α(Man −M)

+ c
dMan

dt
. (3)

The five parameters to be estimated are θ̂
T

= [M̂s â ĉ α̂ k̂]
(notation ˆ denotes estimated values). The identification proce-
dure developed in section IV needs derivatives of the estimated
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Fig. 1. Comparison of the true curve Man (Eq. (6) with M̂l−1 = M̂anl−1 )
and pseudo Man curve (displacement of the upper branch around 0).

magnetic field M̂ with respect to the five parameters. Analytic
expressions of these derivatives are difficult to obtain because
of the implicit character of Eq. (3). Consequently, the Jiles
Atherton model is easier to handle in its discrete form. Deriva-
tives are estimated using the classical Euler approximation

dy

dt
=
yl − yl−1

Ts
. (4)

with Ts the sample period and l the sample index. The
discrete model is given by

M̂l = M̂l−1+

(1− ĉ)(Hl −Hl−1)(M̂anl−1
− M̂l−1)

δ.k̂

µo
− α̂(M̂anl−1

− M̂l−1)

+ ĉ(M̂anl
− M̂anl−1

),

(5)
with

M̂anl
= M̂s[coth

Hl + α̂M̂l−1

â
− â

Hl + α̂M̂l−1
]. (6)

III. IMPROVING THE ESTIMATION OF INITIAL PARAMETERS

A. Anhysteretic parameters initialization

Nonlinear least square algorithms start with initial vector
parameters θ̂

T

o = [M̂so âo ĉo α̂o k̂o] and, according to
reference [3], the relationships between these parameters
may be derived from the original magnetization curve, the
major loop and the anhysteretic curve. Theoretically, the
anhysteretic curve is obtained by imposing a given constant
magnetic field Ho, and by adding to it an oscillating field of
slowly decreasing amplitude. In Practice, the magnetization
M is obtained by integrating an induced voltage generated
by a measurement winding. The integration of the mean
value Ho leads to a drift which prevents the use of this
method. Accordingly, the autors decided to replace it with a
pseudo-curve obtained by centering the upper branch of the
major cycle around zero.

In figure 1, a set of parameters resulting from ref. [3]
(material Fe 0.8wt%C, parameters in table I, first column)
is used to simulate, on the one hand, the major loop using
Eq. (5) and (6). On the other hand, the anhysteretic curve is
obtained using Eq. (6) where only anhysteretic magnetization
is considered (M̂l−1 = M̂anl−1

). This curve may be compared
with the pseudo-curve in figure 1, which shows a good
approximation of Man curve.

The initial parameters M̂so , âo and α̂o, characterizing the
anhysteretic magnetization, are derived from the following
equations [3]:

âo =
M̂so

3
(

1

χ′an
+ α̂o), (7)

Fig. 2. ∆f = |f1(x)− f2(x, γ)| Vs x and γ

Fig. 3. ∆f = |f1(x)− f2(x, γ)| Vs x for different values of parameter γ

with

χ′an = lim
H→0M→0

{ d

dH
Man(H)} (8)

It is possible to propose a simpler solution to determine
these three initial parameters. Accordingly, we use the more
convenient expression

Man(H) =
2

π
Mstan

−1[
(H + αM)

a′
] (9)

with a
′

= γ.a

This function is interesting because it is a linear in the
parameters function. Consequently its parameters may be
estimated using a simple least square method, as will be
shown below. We are able now to verify that Eq. (2) may
be advantageously replaced by Eq. (9), considering the two
functions

f1 = coth(x)− 1

x
(10)

and

f2 = tan−1(x′) (11)

used in models (2) and (9) with x = H +αM and x′ =
x

γ

The error ∆f = |f1(x)− f2(x, γ)| is shown in figure 2. The
value γ leading to the minimal error is determined numerically
: γ = 1.5708 =

π

2
. In figure 3, the error ∆f is plotted for

different values of parameter γ, thus confirming the optimal
value derived above.

Consequently, whatever the parameters a and α, the model
(2) may be replaced by (9) by a

′
= π

2 a.
Now, the simplest model (9) may be used in order to obtain

the initial parameters (M̂so , â
′
o, α̂o) using linear least square

technique shown later, below.

Considering only anhysteretic magnetization , M is replaced
by Man in (9). For the purpose of allowing this equation to
be simulated, the following discrete form is proposed:

Manl
=

2

π
M̂so .tan

−1

[
1

â′o
Hl +

α̂o

â′o
Manl−1

]
(12)

Considering M̂so as a known parameter. We form the
intermediary variable M ′anl

defined by :

M ′anl
= tan

(
π

2

Manl

M̂so

)
(13)

The estimated value of M ′anl
can be written :
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M̂ ′anl
=

1

â′o
Hl +

α̂o

â′o
M̂anl−1

(14)

or equivalently:

M̂ ′anl
=
[
Hl M̂anl−1

]
.


1

â′o
α̂o

â′o

 = ϕT .θ̂′ (15)

Equation (15) can be generalized as a vector, e.g. :

M̂
′
an = P.θ̂′ (16)

M̂
′
an is the vector containing the N samples of the estimated

output, θ̂′T =

[
1

â′o

α̂o

â′o

]
, is the vector containing the

parameters to be determined.
P ∈ <N×2 is a matrix equal to P =

[
H Man−1

]
where

H ∈ <N−1 and Man−1
∈ <N−1are vectors defined by :

H =


H2

.

.

.
HN

 and Man−1
=


M̂an1

.

.

.

M̂anN−1

 (17)

θ̂′
T

is obtained by the Least Square solution :

θ̂
T

LS =
(
PTP

)−1
PTM ′an (18)

With

M ′Tan = [ M ′an2
.... M ′anN

] (19)

B. Validating the simulation

In order to validate the above initialization procedure,we
have again used again the major loop and the pseudo
anhysteretic curve shown in figure 1 (parameters from ref.
[3]). The modified model (12) is used to initialize the
parameters M̂so , âo and α̂o using least square solution (18).
The fourth parameter ĉo was then calculated using the
following relationship [3]:

ĉo =
3âoχ

′

in

M̂so

(20)

with

χ
′

in = lim
M→0H→0

dM

dH
(21)

The last parameter k̂o may be obtained from Eq. (1) and
Eq. (21)

Fig. 4. Pseudo-real loop (solid line) and estimated loop after initialization
(dashed line)

k̂o = µo
Man(Hc)

1− ĉo
.{α̂o+

1

(
1

1− ĉo
)χ′max − (

ĉo
1− ĉo

)
dMan(Hc)

dH

}

(22)
with χ′max = χ′Hc

, the differential susceptibility at the
coercive point. Using the three initial parameters M̂so , âo and

α̂o,
dMan(Hc)

dH
in Eq. (2) is then calculated.

The results are summarized in table I.

Material parameters Estimated initial parameters
Ms(A.m−1) 1.6× 106 1.59× 106

a(A.m−1) 1000 995.5
k(A.m−1) 700 697.43

α 1.4× 10−3 9.31× 10−4

c 0.22 0.28

TABLE I
ESTIMATED INITIAL PARAMETERS

The original magnetization curve and major cycle are suf-
ficient to obtain initial parameters close to real ones. The
curves are shown in figure 4. The two cycles are not identical,
confirming that the initializing procedure cannot provide the
true parameters directly. The initial parameters are thus used to
initiate a nonlinear least-squares algorithm, which is described
in the following section.

IV. IMPROVED NONLINEAR LEAST SQUARE ESTIMATION

A. Conventional nonlinear least square estimation

The parameter vector θ̂ is estimated minimizing the follow-
ing criterion

J = εT ε, (23)

with ε the residual vector ∈ <K×1 (with K the number of
samples) defined by :

ε = M? − M̂(θ̂), (24)

M? and M̂ are, respectively, vectors containing measured
and estimated samples of magnetic fields.

The criterion J is a scalar that represents the sum of the
quadratic errors between measured and estimated outputs [12].
Optimal values are obtained using the iterative Levenberg-
Marquardt algorithm [13] which achieves a harmonious com-
promise between the stability of the Gradient method and the
rapid convergence rate of the Gauss-Newton method

θ̂j+1 = θ̂j − [(J ′′ + λI)−1J ′]θ̂=θ̂j
. (25)

The parameter λ is tuned during the procedure. Thus, this
algorithm oscillates between the gradient (λ >> 1) and the
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Newton (λ << 1) methods.

The pseudo-Hessian J ′′ and the gradient J ′ can be written
as [14]

J ′ =
∂J

∂θ̂
= −2εTσθ̂, (26)

J ′′ =
∂2J

∂θ̂
2
∼= 2σT

θ̂
σθ̂, (27)

where σθ̂ ∈ <
K×5 is the sensitivity function matrix defined

by

σθ̂ =
∂M̂

∂θ̂
=

[
∂M̂

∂M̂s

∂M̂

∂â

∂M̂

∂ĉ

∂M̂

∂α̂

∂M̂

∂k̂

]
(28)

The sensitivity functions quantify the dependence of the
model predictions with respect to the parameters. The Euler
approximation may be used again to calculate these deriva-
tives, considering small variations εθ̂ around the parameter
vector θ̂:

σθ̂ =
M̂(θ̂(1 + ε))− M̂(θ̂)

ε.θ̂
. (29)

B. Rate of improvement in convergence using normalization

In the case of the JA model, parameters may have very
distant values (Ms ≈ 106 et α ≈ 10−3). Consequently the
algorithm can converge too slowly or may be, in the worst
case, simply aborted. Indeed, in Eq. (25), the matrix (J ′′ +
λI) must be inverted at each iteration. Values that are too
distant, particularly in diagonal terms, lead to conditioning
problems. Let us consider the example used in section III-B.
With this set of parameters (table I), the matrix (J ′′ + λI) is
calculated using Eq. (5), (6) and approximations (29), (27).
The condition number of the matrix (J ′′ + λI) is calculated
to give an indication of the accuracy of the results of matrix
inversion. A value near 1 indicates a well-conditioned matrix.
Results are shown in table II for different choices of parameter
λ.

λ condition number
1 3× 1017

106 45× 1012

1021 1.04

TABLE II
CONDITION NUMBER OF THE MATRIX (J ′′ + λI )

A correct conditioning may be obtained using a very large λ.
However, maintaining λ at a constant value leads to a gradient
algorithm with a very slow convergence. The parameter λ must
be tuned at each iteration in the optimization process. Another
solution consists in modifying the sensitivity functions. Let

us consider the two sensitivity functions
∂M̂

∂M̂s

and
∂M̂

∂α̂

shown on figure 5. The magnitude of the curve
∂M̂

∂M̂s

appears

much larger than the other and this leads to the conditioning
problems described above.

Fig. 5. Sensitivity functions
∂M̂

∂M̂s

and
∂M̂

∂α̂
without normalization.

To circumvent this problem, the sensitivity functions are
normalized [14]. Let us consider the estimated parameters
vector θ̂ with its initial value θ̂o

θ̂ = θ̂o + ∆θ̂ (30)

Vector ∆θ̂ is defined by ∆θ̂ = η̂T θ̂o with

η̂T =
[
η̂Ms

η̂a η̂c η̂α η̂k
]

(31)

The sensitivity functions matrix σθ̂ can be written as

∂M̂

∂θ̂
=

1

θ̂o

∂M̂

∂η̂
, (32)

where the sensitivity matrix ση̂ =
∂M̂

∂η̂
is now normalized

and with the same order of magnitude as the others. Marquardt
algorithm [13] now estimates the vector η̂, thus parameter
vector θ̂ using Eq. (30). Thanks to this method, a better
convergence may be achieved. According to this improvement,
the new algorithm is

η̂
j+1

= η̂
j
− {[J ′′ηη + λI]−1J ′η}η̂=η̂

j
, (33)

with

J ′ =
∂J

∂η̂
= −2εTση̂, (34)

J ′′ =
∂2J

∂η̂2
= 2σTη̂ ση̂, (35)

In order to illustrate the conditioning improvement, the
modified sensitivity function matrix (32) is calculated with the
parameters of table I. Figure 6 shows that the two functions
∂M̂

∂η̂Ms

and
∂M̂

∂η̂α
have the same order of magnitude, which is

desirable.

Fig. 6. Sensitivity functions
∂M̂

∂ηMs

and
∂M̂

∂ηα
with normalization.

Condition numbers are given in table III. The normalization
technique leads to a better matrix conditioning.

λ condition number
1 85153

106 85152
1021 1

TABLE III
CONDITION NUMBER OF THE MATRIX (J ′′ + λI ) WITH NORMALIZATION
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In order to illustrate the improvement in convergence, the
initial parameters of table I (second column) are used to
start, on the one hand, a standard Marquardt algorithm and,
on the other, a normalized Marquardt algorithm. The two
rates of convergence are shown in Fig. 7. We see that, using
normalization, the algorithm provides estimated parameters
after only 7 iterations. Without normalization, the estimation
converges more slowly.

Fig. 7. Rate of convergence Vs iterations, non-normalized algorithm (dashed
line), normalized algorithm (solid line).

V. EXPERIMENTAL RESULTS

The algorithm described above is now applied to a FeNi80
toroı̈dal core made of ribbon with 200µm thick, diameter:
8.5cm and an effective area of 1.28cm2).

A frequency generator associated with a 300 Watt integrated
linear amplifier provides the necessary current to obtain the
nominal functioning. Primary current i1(t) is measured with a
Tektronix A6302 current probe associated with a probe ampli-
fier TM502A (Fig.8). The primary current and the secondary
voltage are obtained with a sample period Ts = 0.1ms using a
dSpace DS1102 Controller Board associated with the Matlab
/Simulink environment. The magnetic field of the core is given
by:

h(t) =
i1(t).Np
Lm

, (36)

with Lm the magnetic path length and Np the number of
primary turns.

The magnetic induction is obtained using

b(t) =
1

Ns.S

∫
u2(t)dt. (37)

with S the magnetic flux area and Ns the number of
secondary turns. The magnetization M is calculated using Eq.
(36) and (38):

M(t) =
b(t)

µo
− h(t). (38)

The core is excited using a sinusoı̈dal voltage of 10Hz
frequency . Based on the experimental data, the identification
procedure is implemented:
• from the measured major loop (top of figure 9), initial

parameter M̂so = 7.5106 is determined and the pseudo-
anhysteretic curve is obtained by centering the upper
branch;

• initial parameters α̂o = 8, 9710−6 and âo = 4.86 are
estimated using the least squares solution (18);

• the last parameters ĉo = 0.698 and k̂o = 0.178 are
determined using Eq. (20) and (22);

• these five initial parameters are used to start the normal-
ized Levenberg-Marquardt algorithm (33).

Estimated initial parameters Optimized parameters
Ms(A.m−1) 7.5× 105 7.72× 105

a(A.m−1) 4.86 4.36
k(A.m−1) 0.18 2.44

α 8.97× 10−6 1.7× 10−5

c 0.7 0.49

TABLE IV
OPTIMIZED PARAMETERS

Fig. 8. Diagram of experimental set-up

The optimized parameters are shown in table IV.

Figure 9 demonstrates that there is excellent agreement
between experimental and estimated data. Reversal and in-
creasing cycles are shown in figures 10 and 11. The magneti-
zation M is correctly estimated, except for the case of the low
induction level. The problems encountered in the modeling of
minor cycles modeling are well known and not treated in this
work ([15], [16], [17]).

VI. CONCLUSION

Improvements in the Jiles Atherthon model identification
procedure depend on the initial parameters and on the cor-
rect conditioning of the matrices to be inverted. An original
intialization procedure was described allowing the five initial
parameters of the model to be calculated just from the knowl-
edge of the original magnetization curve and the major cycle
only. On the other hand, the normalization technique described
here allows the convergence of the model to be improved in
terms of needing only a small number of iterations. Other
improvements can be built in to the design in order to limit
the initial parameters to optimal ones and to circumvent the
problem of potential local minima.
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