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a b s t r a c t

Modern control applications justify the need for improved techniques capable of coping with the non-
stationary nature of measured signals while being able to monitor systems in real-time. Empirical Mode
Decomposition (EMD) is known for its efficiency in time domain analysis of multi-component signals
through Intrinsic Mode Functions (IMFs) extraction. Recent years witnessed the introduction of Sliding
Window EMD (SWEMD) capable of analyzing signals in real time applications. However, complex signals
require several sifting iterationswhile a rather increased number of IMFsmight result in impracticality for
on-line applications. This paper introduces a newmodified faster SWEMDcapable of extracting harmonics
from non-stationary signals in real-time operation. The method uses the traditional EMD properties in
the first pass for a small number of sifting processes. In addition, a new section is added to the algorithm
based on inflection point tracking of the residue derivative from the first pass is added, in order to track
low frequency waves and render the analysis faster. The method is validated for non-stationary signals
with andwithout added colored noise and applied onmeasured turbine side angular velocity for harmonic
extraction in wind turbines as an application. The proposed method may well be used for fault detection
and disturbance rejection in mechanical systems.

© 2018 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Environmental concerns and worldwide policies aiming to re-
duce greenhouse gas emission shifted the focus of generating
power to renewable energy sources (hydro, solar, tidal, wind, etc.).
Wind energy attracted increased attention for its abundance and
the evolution of supporting technologies. Wind turbines rely on
thewind speed to convert its kinetic energy intomechanicalmove-
ment which finally produces electrical energy. Despite increasing
global installation [1], production cost is still high compared with
conventional power sources which requires greater investment
leading to increased cost per unit of generated power. Moreover,
high operation and maintenance costs remain a great challenge
specially in off-shore wind turbines where transmission lines cost
and logistical difficulties are encountered [2]. Thus the need for
health/condition monitoring strategies in conjunction with ad-
vanced control methods for efficiency improvement while reduc-
ing fault occurrence rate and maintenance cost [3,4]. This extends
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to all kinds of systems where faults need to be detected and
rejected, such as electric vehicles, robotics, etc.

Early research investigated stationary operation of wind tur-
bines. Scenarios included constant wind speed or step changing
wind speed. The aim is to study the behavior of wind turbines un-
der different faulty conditions. Traditional signal processing tech-
niques have been extensively used in the literature while some
advanced techniques were developed to cope with the research at
hand [5]. However, real time operation sees randomly changing
conditions and factors. In fact, factors influencing the wind tur-
bine operation such as weather, temperature, wind speed, load,
etc. are unpredictable and non-stationary processes. In this case,
conventional signal processing methods such as the Fast Fourier
Transform (FFT) became inefficient inmeeting system requirement
for non-stationary applications. In this prospect, harmonic and
oscillation detection is used by operators to assist control loops
in compensating unwanted harmonics in the system. Existing os-
cillation detection and isolation techniques in the literature can
be divided into on-line and off-line techniques for stationary and
non-stationary systems. Off-line methods include Integral Abso-
lute Error (IAE) [6], Auto covariance Function (ACF) [7], spectral
envelope method [8]. Recent off-line methods for non-stationary
signals include but not limited to Wavelet Transform, Discrete
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Cosine Transform (DCT) [9], and Empirical Mode Decomposition
(EMD) [10].

Despite good harmonic tracking and efficiency in signal pro-
cessing and research applications, the aforementioned off-line
techniques needed upgrading for on-line use. Most off-line tech-
niques can be implemented on-line while using sliding windows.
Methods with sliding windows are being used to copewith instan-
taneous signal characteristics change. Sliding window approaches
include but are not limited to EMD [11], DCT [12]. The EMD was
proposed by Huang [13] for nonlinear and non-stationary signals.
The EMD breaks non-stationary signals into mono-components
known as Intrinsic Mode Functions (IMFs). However, for great
amount of data the EMD is time consuming, while spline interpola-
tion requires a lot of computational effort, and over-sifting occurs.
Thus, the need for modified versions to counter these drawbacks.
FastEMD was introduced in [14] where matrix-free moving least
squares approximation is used. Raised cosine filter proved to be
faster than the EMD with lower sampling rate [15,16], while good
performance was encountered for short signals and windowed
version [17]. On the other hand, blockwise EMD applications [18–
20] are gainingmuch interest for real time applications. In addition,
new methods based on entropy indices were proposed in [21],
along with Complete Ensemble EMD (CEEMD) [22] where faults
were detected based on up to 7 IMF functions. This leaves other
harmonic components out of the analysis which may represent
other kinds of faults. Thus the need to put together a fast method
capable of guaranteeing all harmonic extraction. Merging the anal-
ysis of two consecutive blocks is prone to discontinuities known
as the ‘‘end effect’’. Several applications for Sliding Window EMD
(SWEMD) have been developed in the literature to reduce discon-
tinuities [11,23,24]. This paper proposes a new on-line modified
SWEMD capable of separating the carrier wave of a signal from
its added harmonics. It has the aim to helping control strategies
in better rejecting system disturbances based on a good harmonic
isolation or extraction.

On-line applications require speed and efficiency in signal anal-
ysis to copewith constantly incoming data. The traditional EMD re-
quires several sifting processes to complete full multi-component
isolation. Moreover, new sliding window techniques are using
data buffering with end effect reduction through extrapolation
and mirroring. This method aims to separate the carrier wave and
signal frequency components while reducing the processing time.
Themethod takes the property of the traditional EMD in separating
carrier wave and harmonics of a signal, then uses it in Pass 1
with a limited number of sifting processes (up to 4–5 in the worst
cases with remarkable added noise, versus 14–15 sifting processes
in the traditional case). Then in Pass 2, inflection points of the
derivative of the residue found in Pass 1 are tracked in order to
extract the low frequency wave of Pass 1 residue. This will ensure
complete separation of carrier and harmonic components of the
signal. To ensure discontinuity elimination between consecutive
windows in the online application, a new end effect method is
employed based on the time index. The method guarantees com-
putational cost reduction since less time is required for window
analysis, while preserving all signal characteristic for analysis.
The method allows control units detection of fault signatures as
well as disturbance rejection in multiple applications. Section 2
presents the traditional EMD method. Section 3 introduces the
new modified SWEMD along with its advantages in comparison
with the traditional and other SWEMDs applied in the literature.
Different signal examples are analyzed and discussed in order to
highlight the purpose the proposed method. Section 4 applies the
method for non-stationary signals through an application for wind
turbine angular velocity harmonic detection. Section 5 discusses
and concludes based on thematerial and results presented through
this paper while introducing the future work and its aims.

2. Traditional EMD technique and algorithm

Consider a portion x(t) of a signal χ (t) extracted between t−
and t+ where two consecutive extrema (minima or maxima) are
located. x(t) corresponds to an oscillation starting at a minimum
or maximum passing through a maximum or a minimum and
ending at a minimum or maximum respectively. This represents
the high frequency wave variations in x(t) and denoted as imf (t).
In addition, let r(t) represent the low frequency wave variations
or local trend in x(t). One can write χ (t) = imf (t) + r(t) for
t ∈ [t−, t+]. r(t) is knownas the residual,which canbe a first-order
or slowly varying trend. The high frequency wave imf (t) satisfies
the properties of an Intrinsic Mode Function (IMF) proposed by
Huang et al. [13]:

• The number of maxima and minima points must be equal or
differ by one from the number of zero-crossings.

• The signal must have a zero mean, in other words the am-
plitude between each consecutive maxima andminima point
must be symmetric.

The EMD aims to decompose the signal into a set of IMFs
meeting the aforementioned properties. It serves the purpose of
separating the high frequency wave from the signal, while making
the separated oscillation modes symmetric. If imf1(t) is the first
IMF of χ (t), then imf1(t) represents the high frequency wave. This
accomplished through the detection of local maxima and minima
points respectively. Once the extremas are found, an upper enve-
lope connecting the maxima, and a lower envelope connecting the
minima are obtained through a spline interpolation between those
points. The average of both upper and lower envelopes deduces
the non-constant mean. Subtracting the computed non-constant
mean from the analyzed signal based gives the IMF imf1(t). Thus,
the residue r1(t) is obtained based on Eq. (1).

χ (t) − imf1(t) = r1(t) (1)

The EMD algorithm may be summarized as follows:

1. Detect all extremas in χ (t).
2. Use spline interpolation to connect all maxima points and

form the upper envelope denoted as χmax(t).
3. Use spline interpolation to connect all minima points and

form the lower envelope denoted as χmin(t).
4. Compute the average or mean denoted by m(t) such that

m(t) =
χmax(t)+χmin(t)

2 .
5. Find the IMF imf1(t) such that imf1(t) = χ (t) − m(t).

The above steps are called the sifting process.
6. imf1(t) is considered the input for the next sifting process.

Envelopes and m(t) of imf1(t) are deduced and this value is
subtracted from imf1(t) such that imf1(t) := imf1(t) − m(t).
The sifting process keeps iterating until the properties for
the IMF are fulfilled.

7. Reduce the original signal χ (t) by the first mode such that
r1(t) = χ (t) − IMF1(t).

8. Residue r1(t) is considered the input data for the second IMF.
The process is repeated until all IMFs are extracted such that
ri(t) = ri−1(t) − imfi(t).

The algorithm ends when no further IMFs can be extracted, i.e
the residual no longer contains extrema points. One can conclude
that the EMDdissects the signals into a set of componentswith fre-
quency characteristics in the descending order through a set of fil-
ter banks. Finally the original signal χ (t) is decomposed such that

χ (t) = rn(t) +

n∑
i=1

imfi(t) (2)

where n is the number of modes. The flowchart for the EMD
algorithm is found in Fig. 1.
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Fig. 1. Flowchart for EMD algorithm.

3. Modified on-line SWEMD

3.1. Introduction

Traditional signal processing techniques have limited time-
frequency resolution. The FFT shows good time resolution in small
sized-windows, while good frequency resolution is recorded in
big sized windows. In addition, the Wavelet Transform (WT) has
a great computational cost reduces its efficiency for real time
applications. Since EMD methods rely on the time domain signal
representation, the frequency resolution issue is no longer a con-
cern. Consider the illustrative example for χ (t) = x1(t) + x2(t),
where x1(t) = sin(10t) + sin(30t) and x2(t) = sin(5t). The signal
χ (t) and its corresponding EMD decomposition is found in Fig. 2.
One can note that the algorithm stopped when no extremas are
detected. The decomposition shows a decreasing frequency value
component the closer the algorithm reaches the end. By adding
all IMF signals one can visualize the harmonic components of the
original signals. However,with the traditional EMD seven sifting it-
erations were required for full harmonics extraction and in on-line
applications for several datawindows it would be time consuming.
This is the first drawback tackled by the proposed method.

Fig. 3 is an illustrative example of an EMD application for carrier
and high frequency components separation in a signal. Some on-
line applications are fixing the number of sifting iterations in order
to prevent over-sifting in some cases. However, such a constraint
might well leave some low frequency components un-extracted.
Thus the need for an approach capable of applying a definitive
number of sifting iterations while reducing time consumption and
guaranteeing full harmonic extraction.

3.2. Problems with on-line EMD applications

All SWEMD techniques use buffers to accumulate a sufficient
amount of data for analysis. The same sifting process for the offline
EMD is used. The same process is repeated as long as data are
being fed to the buffer. The hitch resides in guaranteeing that the
following data block and analysis pick up fromwhere the first block
left off through smoothmerger. The challenges encountered can be
summarized as follows:

• IMFs are not the same for different iterations for each data
block. Thus choosing the same number of sifting iterations
is vital to guaranteeing continuous IMF connections between
consecutive data blocks analysis.

• Blockwise sifting process produces end effect which are un-
pleasant for real-time analysis. Thus the need to eliminate
them.

• When a definitive number of sifting iterations is set, some
blocks will still contain low frequency waves. This problem
needs to be resolved if all harmonics are to be isolated from
the carrier wave.

Rilling et al. [20] determined four to ten sifting iterations as
sufficient for meaningful IMF extraction. Furthermore, fewer sift-
ing iterations reduces over-sifting while preserving the physical
meaning in IMFs. Considering the end effect problem, it is known
that the trend function (subtracted at each iteration from the IMF
candidate function) is computed through extrema interpolation.
However, extremas do not extend to the end of the data block,
thus the envelope is extrapolated at its ends. Most EMD methods
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Fig. 2. EMD decomposition of χ (t) = x1(t) + x2(t).

Fig. 3. EMD methodology representation.

introduce cubic splines for extrema envelopes interpolation. In
cubic splines each cubic polynomial is fitted between every pair
of points being interpolated. In this case the solution depends on
all set of data being interpolated. Thus adding a single point, or
several data points may change the entire curve, which becomes
undesirable for real-time applications [25].

Hermite spline were suggested in [26], which instead forcing
the continuous characteristic to the second derivative, the first
derivative is fixed at each point [27]. Each spline is computed using
local information only, for each point at i is estimated through
averaging gradients between points i − 1 and i + 1. This indicates
that only the last spline changes when points are added to the data
block, while end effects can be seen only at the end of the last
spline. Fig. 4 shows that end effects are limitedwhenusingHermite
interpolation even for off-line applications.

The last fix is on the level of eliminating the end effect. Rilling
et al. [20] proposed extrapolation throughmirroring of the last ex-
tremas. This eliminates the end effects and guarantees the smooth
merging of consecutive data blocks. The modified version applied
in this paper uses an overlap of data between two consecutive
blocks while trimming unneeded excess. This guarantees a com-
plete continuation of the consecutive data blocks. The trimming
is based on two properties: the time index and the number of
extremas sufficient and necessary to override and eliminate end
effects.

3.3. Modified SWEMD for harmonic isolation and extraction

The modified SWEMD aims to separate the carrier wave from
existing harmonics. The fact that some signals need several sifting
loops in order to extract all containing components, while others
even after specifying the number of sifting iterations still contain-
ing harmonic components requires a new method.

In this paper, the proposed SWEMD uses the old EMD process
for a first pass called Pass 1. Pass 1 requires a limited number of
sifting processes. For the simple example found in Fig. 3, one sifting
iteration was needed in comparison with seven for the traditional
EMDmethod. Then the second pass called Pass 2 derives the signal
while applying aHermite interpolation in order to detect inflection
points. Inflection points indicate zero crossings, thus by projecting
these zero crossings to the residue fromPass 1 one can compute the
envelope thus extracting all remaining low frequencywaveswith a
major cut through in time consumption for algorithm application.
The advantages of the method can be summarized as follows:

• Instead of applying four to fifteen sifting processes (based
on the complexity and measurement noise existing in the
signal), a limited number of sifting processes is required for
Pass 1.

• The extraction of low frequency harmonics is guaranteed
through Pass 2. The time needed for a whole data block
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Fig. 4. Hermite (top) versus Cubic (bottom) interpolation for three IMF extraction iterations.

Fig. 5. Flowchart for EMD harmonic isolation.

analysis is guaranteed to be less than the time required using
the traditional EMD. Thus reducing time analysis for real-time
applications.

The algorithm for the proposed method is summarized as fol-
lows (see Fig. 5)

1. Buffer a set of data to form the data block.
2. Hermite spline interpolation for buffered χ (t).
3. Compute the mean

m1(t) =
χmax(t)+χmin(t)

2 (3)

4. Find the IMF for Pass 1

imf1(t) = χ (t) − m1(t) (4)

5. Find the residue for Pass 1

r1(t) = χ (t) − imf1(t) (5)

6. Derive r1(t).
7. Hermite spline interpolation for extrema detection and en-

velope computation for dr1(t)
dt .

8. Extract ti at which no end effect exists in dr1(t)
dt interpolation.

9. Compute the meanm2(t) for r1(t) through

m2(t) =
r1max (t)+r1min (t)

2
(6)

10. Find the IMF for Pass 2

imf2(t) = r1(t) − m2(t) (7)

11. Find the residue for Pass 2

r2(t) = r1(t) − imf2(t) (8)

12. Trim block signal at ti.
13. Save a data interval at the end of the block, with at least

seven extremas for overlapwith the following data block for
end effect trimming.

In order to guarantee envelope and signal continuation through
consecutive blocks, seven overlap extremas are required. In this
case, trimming occurs at a ti where dr1(t)

dt end effects can be elim-
inated thus guaranteeing the elimination of those of the original
signal.

3.4. The stationary case without end effect elimination

An example where each data block contains 31400 sample is
presented in Fig. 6, while only one sifting iteration and one IMF
is extracted in Pass 1. One can clearly note based on (9) and (10)
that all harmonics have been extracted while the carrier remains
at zero.

Each block requires between 1.5 ms for analysis. However for
the traditional EMD, eight sifting processes are required with a
Standard Deviation (SD) of 0.3 for complete component separation
while more time for analysis is required (2.3 ms). In addition,
such end effects existing in the analysis cause discontinuities and
unpleasant behavior even for stationary systems. In the following,
the method for end effect elimination and data block merger is
presented.
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Fig. 6. On-line SWEMDwithout elimination of the end effect . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 7. End effect elimination illustrative example in blockwise (windowed) EMD
. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

3.5. The stationary case with end effect elimination

Fig. 7 shows an illustrative example of themethod applied with
end effect elimination. For Data Block 1 only the resulting end
effect at the end in the red rectangle is to be trimmed. However,
for all following blocks the overlap in the green box and the end
effect in the red box are to be eliminated. This is done through good
extraction of time instances t ∈ [t1, . . . , ti], where i = 1, . . . , n and
n is the number of data blocks. In addition, the overlap guarantees
that the analysis of the following data block merges perfectly with
the previous one.

Using the end effect elimination illustration in Fig. 7, one ob-
tains the results shown in Fig. 8. It can be noted that for end effect
to be eliminated one needs greater number of samples in order to
guarantee both overlap and capture of ti. It is clear that all end
effects have been eliminated while perfect signal and envelope
continuation are guaranteed. In addition, for 60000 samples in this

case each block needs 4.5ms to be analyzed in the newmethod but
6.3 ms with the traditional EMD with the same SD. One can also
note that the end effect at the beginning of the first data block has
not been eliminated. This is due to the fact that no knowledge of
previous extremas exists in this case.

In fact examining parts (2) and (6) in Fig. 6, it is notable that the
end effect for the derivative interpolation of r1(t) isworse than that
of the original block input. Thus considering a ti at which the end
effect of the derivative of the r1(t) would be eliminated will surely
eliminate those in the original signal. The overlap to be chosen
must take into account a sample amount greater than that of the
interval in which the end effect exists.

However, this application is done for a stationary signal. To test
the ability of this method for non-stationary processes, a signal
with changing frequency and amplitude will be applied in the
following section, while an application for wind turbine’s angular
velocity during non-stationary operation is presented.

4. Modified SWEMD application for non-stationary processes

4.1. Introduction

In this section, the proposed method’s efficiency is tested for
non-stationary signals. For that purpose, the signal in Fig. 9 is
considered as a representation for speed change in wind turbines
while perturbation amplitude and frequency vary. One can note
5 different intervals where the frequency components vary along
with the amplitude and the offset.

The aforementioned method is applied in order to isolate the
carrier wave from the harmonics. The results are shown in Fig. 10.
imf1(t) shown in (3) is extracted through two sifting processes.
The residue in Pass 1 r1(t) still contained the low frequency wave
component, thus the need for Pass 2. After extracting the low
frequency wave, the carrier is completely separated from existing
harmonics found in the sum of imf1(t) and imf2(t).
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Fig. 8. On-line SWEMDwith elimination of the end effect . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 9. Non-stationary signal example.

Fig. 10. Modified SWEMD applied to a non-stationary signal . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 11. Aerodynamic torque produced by the wind profile.

4.2. Harmonic extraction of turbine side angular velocity in wind
turbines

Wind profiles drivingwind turbines are randomnon-stationary
processes. They introducedisturbances andharmonicswhichprop-
agate along the drive train, through the gearbox, until reaching the
generator and eventually the turbine current and voltage output.
The total wind speed is the combination of the measured speed
at the hub level along with the wind shear and tower shadow.
The following wind speed and aerodynamic torque formulation is
considered (see Fig. 11) [28,29]

veq(t, θ ) = veq0 + veqws + veqts (9)

where the wind speed measured at the hub level veq0 is expressed
as

veq0 = Vh (10)

The wind shear speed component veqws expression is

veqws = Vh

[
α(α − 1)

8

(
R
H

)2

+
α(α − 1)(α − 2)

60

(
R
H

)3

cos33θb

]
(11)

while the speed due to tower shadow veqts is found to be

veqts =
Vh

3R2

3∑
b=1

[
a2

sin2θb
ln

(
R2sin2θb

x2
+ 1

)
−

2a2R2

R2sin2θb + x2

]
(12)

Thus the total aerodynamic Taero is found to be

Taero(t, θ ) = ρAVhCp(λ0)

[
1
2
V 2
h

ωr
+

R
λ0

(veqws + veqts )

]
= T classical

aero + Tws
aero + T ts

aero

(13)

while Vh being the measured wind speed at hub level, α as
the empirical wind shear exponent, R being the turbine rotor

Table 1
Parameters values.
Parameter Value

α 0.3
R 56 m
H 90 m
a 8 m
x 3 m
ρ 1.25 kg/m3

Power 2.5 MW

radius, H is the hub height, a as the tower radius, x being the
distance of blade origin from the tower mid-line, ρ the air density,
A as the area swept by the blades, Cp is the power coefficient, λ0
being the tip speed ratio, ωr as the rotor speed, θb is the blade
angle position, T classical

aero being the classical torque produced by the
turbines, Tws

aero being the wind shear torque component, and T ts
aero

the tower shadow torque component. Parameters are shown in
Table 1. Fig. 11 shows the different aerodynamic torque compo-
nents for changing wind speed profile. One can note three types
of harmonics introduced to the measured turbine side angular
velocity. Disturbances are linked to the wind shear, tower shadow
and speed variations respectively. The measured angular velocity
is found in Fig. 12.

Control strategies will always tend to eliminate the harmonics
introduced to the system. The modified SWEMD will do the job in
separating these harmonics from the carrier wave, thus supporting
control strategies in better analyzing containing frequency compo-
nents. The process bloc diagram is shown in Fig. 13.

The modified SWEMD method is applied for the measured
angular velocity signal. The results are shown in Fig. 14. One sifting
process was sufficient for imf1(t) extraction. Residue r1(t) still
contained low frequency wave. Pass 2 extracted the remaining
harmonics, while residue r2(t) is harmonics-free. It is important to
note that a small deviation from the signal is encountered during
sudden speed change specially at the derivative level of r1(t).
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Fig. 12. Turbine side angular velocity.

However, this deviation does not influence the end result which
shows complete harmonic extraction and separation from carrier.
The proposed method is successful in non-stationary applications.

The last verification is applied through spectral analysis. The FFT
is applied for both high speed and low speed harmonics sections
found in (9) of Fig. 14. The results are shown in Fig. 15.

One can clearly note that all harmonics are preserved. In fact,
apart from the carrier physical quantity, all frequency and ampli-
tude information are well extracted. The harmonics seen in the
figure are related the normal wind speed variations, in addition
to the wind shear and tower shadow components. Thus a full
separation of all disturbances is observed.

This proves the effectiveness of the method in separating the
carrier wave from the harmonic components even for low fre-
quencywaves. In this case, the control strategy is capable of dealing
with disturbance rejection either for all harmonics or the added
harmonic by a fault or other exogenous factors. In addition, since
all angular velocity variation have been omitted, the control unit
will now be faster in dealing with harmonic rejection.

4.3. Harmonic extraction for turbine side angular velocity with added
measurement colored noise

In this section added measurement noise is considered. This
test proves the effectiveness of the proposed method when noise
exists in themeasurement. Several tests have been carried outwith
different colored noise. Fig. 16 shows the results in the presence
of 40 dB Signal to Noise Ratio (SNR) pink noise added to the
measurement.

Part (1) in Fig. 16 shows the first envelope interpolation in the
first sifting process. In fact, six sifting processes were required in
this case to extract all high frequency waves with an added Pass
2 were sufficient for complete carrier separation from harmonics
as seen in parts (2) and (3). Compared to the traditional EMD,
seventeen sifting processes were required to extract all IMFs. The
computation time is cut downby 2/3 in this case. Evenwith colored
added noise, themethod guarantees complete separation between
carrier and harmonic waves, while all discontinuities are elimi-
nated through the end effect method utilized. 5.8 s were required
for the 100000 sample window in the proposedmethod, while the
traditional EMD needed 14.3 s to complete IMF extraction.

A summary of computational time for different examples is
shown in Table 2, computation time is realized on PC: Intel(R)
Core(TM) i5-6600 CPU @ 3.30 GHz, 64 bits; Ram: 8 GB . The
results show that the new modified EMD approach cuts down
time consumption in computation process. Fewer sifting processes
are required while all harmonics have been extracted. This is an
advantage over the methods applied in [21,22] where detecting
faults is based on up to seven IMFs only. The frequency signature
extracted in this case is a reflection of any system performance.
Thus enabling the control strategy to reject disturbances, and de-
tect fault signatures no matter how small their physical value
was.

Fig. 13. Bloc Diagram of the modified SWEMD harmonics extraction for angular
velocity signal.

Table 2
Process comparison for different applications for bothmodified and traditional EMD.

Modified EMD Traditional EMD

Sifting processes Time Sifting processes Time

Stationary case 1 & 1 Pass 2 4.5 ms 7 6.3 ms
Non-stationary case 2 & 1 Pass 2 0.28 s 12 0.63 s
Measured angular
velocity

3 & 1 Pass 2 2.2 s 14 4.3 s

Angular velocity with
pink noise

6 & 1 Pass 2 5.8 s 17 14.3 s

5. Conclusion

Traditional signal processing methods are falling behind mod-
ern systemrequirements regardingnon-linearity, non-stationarity,
robustness, efficiency, reliability, etc. Thus, the need for new im-
proved methods capable of extracting signal characteristics for
better understanding of system operation. This paper introduces
a newmodified SWEMDmethod aiming to reduce processing time
while being applied on-line. The method uses the characteristics
of the traditional EMD in extracting IMFs, then applies an in-
terpolation to the derivative of the residue obtained in the first
section of the algorithm. In addition, a new approach for end effect
elimination is presented based on time indices and the number
of extrema chosen for data overlap. Results show efficiency and
speed in real time analysis while removing end effects successfully
and merging different data blocks. In fact, the method uses in
worst case scenario three sifting iterations and one derivative
interpolation to complete harmonic extraction. FFT analysis proves
complete frequency and amplitude information extraction from
the original signal.

The application for wind turbines shows the ability for applying
this new modified SWEMD on real systems. Furthermore, it can
be used as control strategy assistance for disturbance rejection of
harmonic compensation. Future work includes the application of
this method along with an Active Disturbance Rejection Control
(ADRC) strategy for harmonic rejection in wind turbines. In addi-
tion, a factor needs to be added similar to the standard deviation in
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Fig. 14. Modified SWEMD applied for angular velocity harmonics extraction . (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 15. FFT comparison between the original signal and its extracted harmonics through EMD (High speed section on top, Low speed section at the bottom).

Fig. 16. Modified EMD for the turbine side angular velocity measurement with added pink noise.
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order to find the sufficient necessary number of sifting processes
applied in Pass 1, before applying Pass2. Without the factor, one
needs to fix the number of sifting processes before applying the
algorithm and this number changes in different applications.
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