Analysis and Simulation Tools for Probabilistic Real-Time Systems

Dorin Maxim ¹ Antoine Bertout²

¹University of Lorraine / Loria Nancy

²Inria de Paris

27th June 2017

Traditionnaly,

System : a set of real-time tasks τ_i with

Traditionnaly,

System: a set of real-time tasks τ_i with

- worst-case execution time *C_i* (WCET),
- minimal inter-arrival time T_i (MIT),
- a deadline D_i .

Traditionnaly,

System: a set of real-time tasks τ_i with

- worst-case execution time *C_i* (WCET),
- minimal inter-arrival time T_i (MIT),
- a deadline D_i .

Studying the schedule, we can get :

Traditionnaly,

System: a set of real-time tasks τ_i with

- worst-case execution time C_i (WCET),
- minimal inter-arrival time T_i (MIT),
- a deadline D_i .

Studying the schedule, we can get :

 \Rightarrow a worst-case response time R_i

Traditionnaly,

System: a set of real-time tasks τ_i with

- worst-case execution time C_i (WCET),
- minimal inter-arrival time T_i (MIT),
- a deadline D_i .

Studying the schedule, we can get :

- \Rightarrow a worst-case response time R_i
- ⇒ deduce schedulability (yes/no)

In a probabilistic context, System: a set of real-time tasks τ_i

In a probabilistic context, System: a set of real-time tasks τ_i

- ⇒ Replace scalar values by discrete random variables
 - probabilistic worst-case execution time C_i (pWCET),
 - probabilistic minimal inter-arrival time T_i (pMIT).

In a probabilistic context,

System: a set of real-time tasks τ_i

- ⇒ Replace scalar values by discrete random variables
 - probabilistic worst-case execution time C_i (pWCET),
 - probabilistic minimal inter-arrival time T_i (pMIT).

e.g,
$$C_i = \begin{pmatrix} 1 & 3 & 5 \\ 0.75 & 0.20 & 0.05 \end{pmatrix}$$

In a probabilistic context,

System: a set of real-time tasks τ_i

- ⇒ Replace scalar values by discrete random variables
 - probabilistic worst-case execution time C_i (pWCET),
 - probabilistic minimal inter-arrival time T_i (pMIT).

e.g,
$$C_i = \begin{pmatrix} 1 & 3 & 5 \\ 0.75 & 0.20 & 0.05 \end{pmatrix}$$

Studying the schedule, we can get :

In a probabilistic context,

System: a set of real-time tasks τ_i

- ⇒ Replace scalar values by discrete random variables
 - probabilistic worst-case execution time C_i (pWCET),
 - probabilistic minimal inter-arrival time T_i (pMIT).

e.g,
$$C_i = \begin{pmatrix} 1 & 3 & 5 \\ 0.75 & 0.20 & 0.05 \end{pmatrix}$$

Studying the schedule, we can get :

 \Rightarrow a distribution of worst-case response times \mathcal{R}_i

In a probabilistic context,

System: a set of real-time tasks τ_i

- ⇒ Replace scalar values by discrete random variables
 - probabilistic worst-case execution time C_i (pWCET),
 - probabilistic minimal inter-arrival time T_i (pMIT).

e.g,
$$C_i = \begin{pmatrix} 1 & 3 & 5 \\ 0.75 & 0.20 & 0.05 \end{pmatrix}$$

Studying the schedule, we can get :

- \Rightarrow a distribution of worst-case response times \mathcal{R}_i
- \Rightarrow deduce deadline miss probability of τ_i

Probabilistic Tools

We present two open-source¹ tools :

- PanSim for analysis and simulation
- extension of SimSo for simulation

¹Free and GNU GPL compatible

PanSim[']

Implementation of probabilistic analysis and simulator

- collection of Matlab functions
- fixed-priority task scheduling in uniprocessor
- provides pRTA² analysis as well as empirical response time distributions (from simulation)

 $^{^2}$ Maxim and Cucu, Response time analysis for fixed-priority tasks with multiple probabilistic parameters, RTSS 2013

PanSim

How to use it?

```
c1=[2; 1]; t1=[5, 6; 0.2, 0.8];
tau1={c1, t1};

c2=[3, 4; 0.9, 0.1]; t2=[7; 1];
tau2={c2, t2};

taskSet={tau1, tau2};

numberOfJobsToSimulate = 100;

[responseTimes,_,_] = simulate( taskSet, numberOfJobsToSimulate);
pWCRT = probabilisticWorstCaseResponseTime(taskSet,...);
```

Run it in Matlab!

PanSim

Fig. 1: PanSim in Matlab.

Extension based on SimSo³:

- free and open-source written in Python
- multiprocessor scheduling simulator
- modular, independent specification of scheduling algorithm (25 policies available)
- rich set of available metrics (response times, context switches, preemptions, etc.)

³Cheramy et al., SimSo: A simulation tool to evaluate real-time multiprocessor scheduling algorithms, WATERS 2014

Fig. 2: Text mode configuration.

Fig. 3: SimSo GUI.

Probabilistic extension of SimSo:

- new execution time model and use of the sporadic behaviour
- performed on text mode
- fully compatible with all original features

How to use it?

```
configuration.etm = "pwcet"
  configuration.add_task(name="T1", identifier=1,
                             activation_date=0, pwcet=[(2,1)],pmit=[(5,0.2),(6,0.8)],
     deadline=6, task_type = "Probabilistic",abort_on_miss=False)
\hookrightarrow
  configuration.add_task(name="T2", identifier=2,
                             activation_date=0, pwcet=[(3,0.9),(4,0.1)],pmit=[(7,1)],
     deadline=7, task_type = "Probabilistic",abort_on_miss=False)
  configuration.add_processor(name="CPU 1", identifier=1)
  configuration.scheduler_info.filename = "../simso/schedulers/DM_mono.py"
  model.run_model()
          for i.task in enumerate(model.task list):
                for j, job in enumerate(task.jobs):
                    print(job.response_time)
```

Execute it as a python script!

Examples

Considering a five tasks set with probabilistic parameters, we are interested in :

- computing an empirical response times distribution of the least priority task, $\tau_{\rm 5}$ $^{\rm 4}$
- computing an empirical distribution of the response time of the second job of au_5

⁴Bertout et al., Average Probabilistic Response Time Analysis of Tasks with Multiple Probabilistic Parameters, WiP session RTSS 2016

Examples

Response time distribution of task au_5

Examples

Jobs ($\tau_{5.1}$ and $\tau_{5.2}$) response time distributions

Conclusion

We presented two tools for probabilistic real-time systems :

- PanSim for analysis and simulation⁵
- a probabilistic extension of SimSo for simulation⁶
- different tools for different uses
- feel free to use it and contributions are welcome!

⁵https://github.com/dorinmaxim/PAnSim-Tool

⁶https://github.com/abertout/simso

Contributions wish list

- adding scheduling policies to PanSim
- integrating other analysis techniques (e.g technique ⁷) to PanSim
- extending existing system model or adding other model
- integration of the probabilistic extension to the SimSo GUI

⁷Diaz et al., Stochastic analysis of periodic real-time systems, RTSS 2002