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Abstract—Probabilistic timing analyses are used to
decrease the pessimism introduced by deterministic
methods based on unique worst-case values. In partic-
ular, the Probabilistic Response Time Analysis com-
putes the worst-case response time distribution of a
task. Nevertheless, it is based on a worst-case pattern
of execution that may rarely occurs. Thus, in order to
reduce the pessimism introduced, we consider in this
paper the problem of computing an average response
time distribution of a task.

I. Introduction
Different methods have been developed to assess the

ability of hard-real-time systems to respect their timing
constraints. In the one hand, certain of those are based
on simulation or intensive testing. These are generally
counterbalanced by an accepted (empirical) marge of error,
introducing in this way a large pessimism to compensate
the optimism of their initial results. On the other hand, the
field of real-time scheduling proposes numerous theoretical
analyses(e.g [1], [2]). Due to the complexity of modeling
such critical systems and to the difficulty to represent their
behaviour precisely, these analysis are often based on very
pessimistic assumptions.

In the two cases, the pessimism leads to an over-
provisioning of the systems which is costly in terms of
resources. Also, it reduces the possibility to increase their
performance due to the limited available resources.

Probabilistic timing analyses offer an alternative in
giving a theoretical, safe, probability to miss some timing
constraints instead of having only a yes or no answer.
This information spares designers from rejecting systems
that have actually a very low probability of failure. For
instance, in the aerospace industry, one may compare the
maximum allowed probability of failure of 10−9 per hour of
operation (required by the certification authorities [3]) and
the probability of failure of 10−15 that the system might
experience per hour of operation [4].

Probabilistic timing analyses provide useful tools to
reduce the pessimism of deterministic methods. Maxim and
Cucu-Grosjean [5] proposed a Probabilistic Response Time
Analysis (PRTA) with multiple probabilistic parameters

(worst-case execution time, deadline and minimum inter-
arrival time) for fixed-task priority scheduling. This analysis
provides a worst-case response time (WCRT) distribution
from which we can deduce the probability of a system
to miss a deadline. They focused on the synchronous
probabilistic analysis, where they consider that the task
under analysis arriving simultaneously with all other tasks,
what corresponds to the worst-case situation. However, in
reality, this situation may seldom occur and sometimes
never happened. This also introduces overly pessimistic
estimations and gives a distorted view of the average
behaviour of the system.

In this paper, we consider the problem of computing an
average response time distribution on a given interval of
time.

Summary: We propose to study the average response
time distribution of tasks owing to the pessimism intro-
duced by synchronous analysis and unsafe response time
obtained by simulation. On this regard, the problem we
address is twofold. First, we need to determine a relevant
interval of study to compute a representative and safe
behaviour of the response time distribution. Second, it
requires to compute the response time of any job of a
task with multiple probabilistic parameters. Both questions
relate to open problems.
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instance, in the aerospace industry, one may compare the
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operation (required by the certification authorities [3]) and
the probability of failure of 10−15 that the system might
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Probabilistic timing analyses provide useful tools to
reduce the pessimism of deterministic methods. Maxim and
Cucu-Grosjean [5] proposed a Probabilistic Response Time
Analysis (PRTA) with multiple probabilistic parameters
(worst-case execution time, deadline and minimum inter-
arrival time) for fixed-task priority scheduling. This analysis
provides a worst-case response time (WCRT) distribution

from which we can deduce the probability of a system
to miss a deadline. They focused on the synchronous
probabilistic analysis, where they consider that the task
under analysis arriving simultaneously with all other tasks,
what corresponds to the worst-case situation. However, in
reality, this situation may seldom occur and sometimes
never happened. This also introduces overly pessimistic
estimations and gives a distorted view of the average
behaviour of the system.

In this paper, we consider the problem of computing an
average response time distribution on a given interval of
time.

II. Related work
Real-time software designers need to verify the functional

and non-functional behaviours of their systems. Timing
constraints are part of the latter and can be checked by
theoretical analysis and simulation.

A. Analysis
The real-time literature provides a considerable num-

ber of deterministic schedulability analyses for different
platforms and model. Most of them are based on the
processor demand analysis (PDA) [2] or on the response
time analysis (RTA) [1]. While the first only assesses if a
system is schedulable or not, the second gives the worst-
case response time of each task in the system. Thus, if
all the response times of the tasks are inferior or equal to
their deadline, the system is considered to be schedulable.
These deterministic schedulability tests consider worst-case
values and often produce pessimistic results. To cope with
this pessimism, probabilistic or stochastic counterparts
have been proposed. For instance, Diaz et. al [6] proposed
a probabilistic response time analysis (PRTA) for tasks
having their execution time characterised by a random
variable. Later, Maxim and Cucu-Grosjean [5] added
the support of probabilistic worst-case execution times
(pWCET) and probabilistic minimum-inter-arrival time
(pMIT). Besides theoretical analysis, a common practice in
the industry is to rely on testing or on simulation in order
to decrease the pessimism of analysis.

B. Simulation
A simulator models and reproduces the temporal be-

haviour of a system. If compliant with the true system



operating, it provides an empirical way to verify the timing
constraints instead of running the original system which is
not always possible. To counterbalance the optimism possi-
bly introduced, a widespread technique is to add a margin
of error empirically chosen by domain experts. Among the
academic (deterministic) simulators, one may cite SimSo [7]
which is compatible with a lot of multiprocessor scheduling
policies or Mast [8]. In the industry, RTaW-Sim [9] from
RTaW is focused on the analysis of real-time networks
while RapiTime developed by Rapita Systems [10] targets
general real-time embedded applications. As far as we know,
there is only one probabilistic analysis tool, specifically
prototyped for the work of Maxim et al. [11].

In our work, we mean to make use of simulators to obtain
empirical (average) response time distributions. This, in
order to guide our efforts in providing a safe analysis to
determine the average response time distribution of a task
described by probabilistic WCET and probabilistic MIT.

III. Problem description

A. System model
We model a system as a set of n tasks {τ1, τ2, ..., τn}

scheduled by fixed-task priority algorithm (as Deadline
Monotonic (RM)) on a uniprocessor platform. Without
loss of generality, we consider that τi has a higher priority
than τj for i < j.

Each task τi generates an infinite number of successive
jobs τij , with j = 1, . . . ,∞. All jobs are assumed to be
independent of other jobs of the same task and those of
other tasks.

Each task τi is characterised by two probabilistic pa-
rameters: a pWCET denoted by Ci and a probabilistic
minimal inter-arrival time (pMIT) denoted by Ti. Note
that in this paper, we use calligraphic typeface to denote
random variables. Each parameter is represented by a
random variable X having a probability function (PF )
fX (·) with fX (x) = P (X = x). The possible values of
Xi belong to the interval [Xmin, Xmax]. In this paper we
associate the probabilities with the possible values of a
random variable using the following notation:

X =

(
X0 = Xmin X1 · · · Xk = Xmax

fX (Xmin) fX (X1) · · · fX (Xmax)

)
(1)

where
∑k

j=0 fX (Xj) = 1.
The notions of pWCET and pMIT are defined as follows.

For more details, the reader can refer to [5].

Definition 1. The probabilistic worst case execution time
(pWCET) of a task describes the probability that the worst
case execution time of that task is equal to a given value.

Following the same reasoning the probabilistic minimal
inter-arrival time (pMIT) denoted by Ti describes the
probabilistic minimal inter-arrival times of all jobs.

Definition 2. The probabilistic minimal inter-arrival time
(pMIT) of a task describes the probability that the minimal
inter-arrival time of that task is equal to a given value.

Hence, a task τi is represented by a tuple (Ci, Ti). A job
of a task must finish its execution before the arrival of the
next job of the same task, i.e., the arrival of a new job
represents the deadline of the current job. Thus, the task
deadline may also be represented by a random variable
Di which has the same distribution as its pMIT, Ti. We
consider tasks with implicit deadlines, i.e., having the same
distribution as the pMIT.

B. Motivating example
Let us consider the task-set presented in Table I, which

has five tasks, and each task is represented by a pWCET
distribution and a pMIT distribution, with ten values per
distribution. For the sake of simplicity we have made all
probabilities equal to 0.1 and so we omit them from the
table. We are interested in the response time of the task
on the lowest priority level, i.e τ5.

Figure 1 depicts the response times of τ5 obtained in
three ways:

• the dashed blue curve represents, in the form of 1-CDF,
the probabilistic worst case response times of the task
in the synchronous case (i.e. worst case conditions)
computed using the the probabilistic response time
analysis of Maxim and Cucu-Grosjean [5].

• the solid red line is an empirical 1-CDF distribution
formed by simulating the probabilistic task-set and
recording the observed response times for 5 · 105
consecutive jobs of τ5. This simulation was performed
using an in-house probabilistic extension of the SimSo
simulator1.

• for completeness we have also added the deterministic
worst case response time obtained using the analysis
in [1]. Note that this is the largest value in the
probabilistic response time distribution - the dotted
blue curve - and is equal to 16341 and is represented
as a dotted vertical line.

In Figure 1 we may note that the response times observed
when simulating the system are far smaller than the deter-
ministic worst case response time, but also considerably
smaller than the probabilistic response times obtained
through analysis. We may also note that the curve obtained
through analysis is an upper-bound on the curve obtained
through simulation i.e. graphically, the simulated curve
is to the left of the analytical curve. While the analysis
provides a safe upper-bound an all possible behaviours
of the task it may, in some cases, be overly pessimistic.
This difference between analysis and observation is given
by the fact that the analysis concentrates on the worst
case conditions, when the analysed task is activated at
the same time as all higher priority tasks. But this worst

1The probabilistic simulator is available upon request to the
authors.



Table I
Probabilistic task set

task

τ1 pWCET 134 137 140 143 146 149 152 155 158 161
pMIT 3565 3637 3709 3781 3853 3925 3997 4069 4141 4213

τ2 pWCET 311 318 325 332 339 346 353 360 367 374
pMIT 7784 7940 8096 8252 8408 8564 8720 8876 9032 9188

τ3 pWCET 2879 2949 3019 3089 3159 3229 3299 3369 3439 3509
pMIT 26226 26751 27276 27801 28326 28851 29376 29901 30426 30951

τ4 pWCET 5540 5675 5810 5945 6080 6215 6350 6485 6620 6755
pMIT 19617 20010 20403 20796 21189 21582 21975 22368 22761 23154

τ5 pWCET 3403 3486 3569 3652 3735 3818 3901 3984 4067 4150
pMIT 32313 32960 33607 34254 34901 35548 36195 36842 37489 38136

case condition may rarely occur during the lifetime of the
system as task’ periods are variable, with a great impact
on the probability of synchronous releases.

We observe that the largest response time recorded
during simulation is equal to 15025 and it only appears
once, hence an empirical probability of 2·10−5. On the other
hand, the probability of appearance of the WCRT=16341
is computed to be in the range of 10−15 in the synchronous
case, meaning that it is highly unlike to actually see this
value (or other large values) during the lifetime of the
system. This means that there is still a large amount
of pessimism in the existing probabilistic response time
analysis and the gap between analysis and actual behaviour
of the system can be further narrowed. We believe that
there is a noteworthy interest in theoretically analysing
the average response time probability distribution of the
tasks in the system.

This led us to two underlying problems. First, it raises
the question of the interval of study. How many jobs should
we analyse to get a safe average response time distribution
we can rely on? Second, we need a probabilistic response
time analysis for any instance of the task. To our knowl-
edge, there is no such analysis with multiple probabilistic
parameters and the PRTA of Maxim and Cucu-Grosjean
is restricted to the synchronous case. We will attempt to
provide some intuition to these two problems, respectively
in section IV and in section V.

We also note that in some cases it may be more prob-
able that tasks synchronise their releases, for example in
systems where tasks have periods that are very similar (e.g.
harmonic) or even following the same (simple) distribution.
In these cases the existing probabilistic analysis is sufficient
as it would have a low degree of pessimism with respect
to the actual behaviour of the system. For this work, we
focus on the case when synchronisation is improbable and
there is a need to find a more precise analysis to represent
the entire lifetime of the system.

IV. Study interval

A first problem that we need to solve in order to be
able to compute the average response time distribution of
a task is determining the study interval in order to know
how many of its jobs need to be analysed and combined
into an average.
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Figure 1. Response time distributions of τ5 obtained in three different
ways

As task’ periods are described by random variables, it is
not possible to determine a study interval in the form of a
hyper-period as this implies computing the least common
multiple of all periods - and the least common multiple
function does not apply on distributions, but on single
values.

One way of going around this problem is to compute a
worst case hyper-period, using the worst case (i.e. smallest)
values in each pMIT distributions. This approach would
not necessarily result in a study interval, as it would be
very unlikely that tasks would re-synchronise at the hyper-
period and even more unlikely that the scheduling would
repeat itself past this point. A deterministic hyper-period
computed in this way would be, at best, a very pessimistic
study interval.

We propose instead a more natural solution to this
problem in the form of a probabilistic hyper-period, which
we define a follows:

Definition 3 (Probabilistic Hyper-Period). The Proba-
bilistic Hyper-Period of probability p, pHP(p), is equal to
the smallest interval, starting in the current time point, in
which the cumulated probability of possible synchronous
releases is no smaller than p.

Intuitively, starting with the current time t = 0 in which
we presume that tasks have been synchronously activated,
then, from this point onwards, there may be other potential
synchronisation points, each with a certain probability of
occurring. By summing up the probabilities of several such
(consecutive) points, we obtain a cumulative probability of
synchronisation. Once this cumulative probability reaches a
given threshold, e.g. p = 0.9, then the last synchronisation
point, t = tn, in this sequence gives us the length of
the probabilistic hyper-period pHP (p) = tn. We can be



t

p = 0.9

0.22

0

0.09 (0.31)

8

0.14(0.45)

20

0.27 (0.72)

26

0.21 (0.93)

30

Figure 2. Probabilistic synchronisation points of task with proba-
bilistic periods

certain with a probability p that there will be at least on
synchronisation between t = 0 and t = tn and that the
response time distributions of the jobs in this interval will
be representative for all jobs that may appear during the
entire life-time of the system. This concept is graphically
presented in Figure 2, with the black arrows (and text)
representing the various synchronisation points (and their
probabilities), while the red arrows (and text) represents
the cumulative probabilities of synchronisations occurring
- a higher arrow implies a higher probability of occurrence.

A larger probability p, up to at most 1, implies a larger
confidence in the study interval and a more precise average
response time distribution, as it contains more jobs that
may occur during the entire lifetime of the system. A
probability of p = 1 means that all representative jobs
of the task (and their response times) are taken into
consideration when computing the average response time
distribution.

Alternatively we may opt for a smaller probability p and
a smaller study interval pHP which will result in a more
pessimistic average response time distribution of the task.
In some cases we may be forced to choose a smaller study
interval, as synchronisations may be highly improbably.
When synchronisations are unlikely, the resulting study
interval tends to be prohibitively large and so the number
of jobs that would need to be analysed would be too high
and the effort of analysing them would be either too large
or unjustified by the decrease in pessimism.

V. Job Response Time Analysis
In section III-B, we stressed the need for an average

response time analysis of tasks in order to decrease the
pessimism of existing state of the art analyses. This requires
the computation of response time distributions of each job
in a study interval in order to combine them into an average.
This problem has already been address in the deterministic
case, in papers such as [12], [13]. Audsley [12] proposed
an analysis to compute the response time of any job in
the study interval in the case of asynchronous tasks by
determining the interference caused to the job by higher
priority jobs. Later, Coutinho et al. [13] introduced an
analysis based on idle instants that also supports sporadic

tasks. To our knowledge, the work of Diaz et al. [6] is the
only existing average probabilistic response analysis but it
is restricted to only probabilistic WCET (i.e. a single source
of variability in the task), which also has the advantage
that a study interval can be easily defined. We are currently
working on extending such analyses to task with multiple
probabilistic parameters.

VI. Conclusion
In this paper, we emphasised the need for an average

probabilistic response time analysis for real-time tasks, in
order to cope with the pessimism of existing analyses and
to bridge the gap between analysis and experiment/sim-
ulation/actual execution. To this end we identified two
underlying problems: defining an appropriate study interval
and being able to analyse the response time of any job
released in this interval. In future work, we plan on
providing such analysis for tasks with multiple probabilistic
parameters.
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