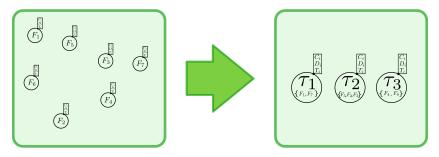
Minimizing the cardinality of a real-time task set by automated task clustering

Antoine Bertout, Julien Forget and Richard Olejnik

Laboratoire d'Informatique Fondamentale de Lille (LIFL) Université Lille1, France firstname.lastname@lifl.fr

October 16, 2013

Context


- Real-time systems with uniprocessor
- Task model (Liu et Layland)
 - C_i : worst case execution time of τ_i
 - T_i : activation period of τ_i
 - D_i : deadline of τ_i
 - constraint deadlines: $D_i \leq T_i$
 - $\circ~$ independent and synchronous tasks

Problem

- Up to ≈ 1000 high level functionalities in RT system software (e.g. aileron command, read pressure sensor, etc.)
- Functionalities implemented via real-time threads (tasks) by programmers
- RT operating systems (OS) support a limited number of concurrent threads (several tens of OS tasks)
 → Several functionalities grouped together in a thread
- Usually hand made in industry (error prone, tedious)
- Our solution: automated task clustering

Objective

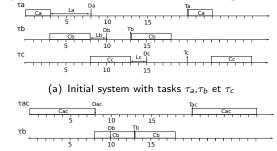
- Automatically grouping functionalities to tasks to minimize their number
- while keeping the system functionally equivalent
- while preserving schedulability

Task clustering

• Cluster τ_i and τ_j into τ_{ij}

$$\circ C_{ij} = C_i + C_j$$

$$\circ T_{ii} = T_i - T_i$$


- $\circ T_{ij} = T_i = T_j$
- D_{ij} = min(D_i, D_j) (taking shortest deadline ensures respect of initial constraints)
- What is a valid cluster?

$$1 T_i = T_i$$

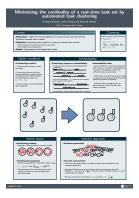
- 2 Laxity $L_i = (D_i C_i) \ge C_y$ (if $D_i \ge D_j$)
- 3 Whole system is still schedulable

Schedulability problem

System may not be still schedulable after clustering

(b) System after task clustering τ_a et τ_c

• In the second diagram, τ_b misses its first deadline after clustering of τ_a and τ_c


 \rightarrow Schedulability after each clustering must be checked!

Task clustering complexity

- Combinatorial explosion: number of possible clusterings in the Bell number range (e.g., $B_{500}=10^{844})$
- *Exact schedulability tests* have often pseudo-polynomial complexity *Sufficient tests* a linear complexity
- Exhaustive search untractable even using linear sufficient tests (no response after several days of computation for 20 tasks from first experiments)
- \rightarrow We need a heuristic to tackle this task clustering

Heuristic Approach

- I would be happy to explain to you how we use *schedulability test* as *heuristic cost function* in the front of my **poster**!
- Thanks for your attention!

