Partition Re-assignment: a theoretical study

Amin Mesmoudi ${ }^{1}$, Mohand-Saïd Hacid 2, and Emmanuel Coquery ${ }^{2}$
${ }^{1}$ LIAS/ENSMA, Poitiers University
${ }^{2}$ LIRIS, Lyon 1 University

1 Partition Re-assignment Problem

The quality of data partitioning is mainly related to the workload. We believe that partitioning technique could be adapted to the workload. In this vein, we propose two levels of partitioning:

- An initial partitioning: In this level, partitioning depends on the kind of data. It is performed during data loading. We offer partitioning tools and we leave to the system administrator the choice of how to select the partitions.
- Partitions update: We propose another technique that allows to choose the best possible partition placement by taking into account the cost related to query processing.

In this section, we discuss the design of the technique allowing to choose the best location for partitions. From a usage point of view, we offer the system administrator a tool to analyze the transfer costs between partitions, to choose another location able to satisfy constraints on system operation and to transfer partitions from one machine to another. Doing so, two problems may arise:

1. Shutdown Duration: We have to avoid transfer of costly partitions in time. Indeed, for the update, we must shutdown the system. As the system can not stay shutdown for a long period, it is necessary to integrate a constraint on the duration of the update. We express this constraint by using the maximum size of data to be sent or received by a machine.
2. Changing partition locations can cause load balancing problems. Indeed, one can have a machine with n TB of data and another with m GB! where $n \gg m$.
To remedy to this problem, we propose to use another constraint related to the maximum difference between the data size of two machines.

Example Let illustrate our problem with an example. In a given system, data is organized in four (4) partitions $P_{1}, P_{2}, P_{3}, P_{4}$. The system relies on three workers M_{1}, M_{2} and M_{3}. Figure 1 shows an example of partition locations and transfer logs between partitions. P_{1} and P_{4} are hosted by M_{1}, P_{3} is hosted by M_{2} and P_{2} is hosted by M_{3}. A cell, in the transfer matrix, indicates the number of network packets exchanged by two partitions.

Each partition has a related network cost. This cost is the number of packets transferred between partitions that are not hosted by the same machine. For our example, this cost is equal to 2219. By changing the location of P_{4} from M_{1} to M_{2}, the cost is equal to 1480 . We notice a gain of 739 packets.

Fig. 1. Example of partition location and transfer logs between partitions

Complexity of the problem We could formalize partition re-assignment problem as follows:

- Instance:
- P : a set of partitions
- M : a set of machines
- $T M: P \mathrm{x} P \rightarrow N^{+}$, transfer logs between partitions
- $S: P \rightarrow N^{+}$, the data size of the partition
- $X_{0}: P \rightarrow M$, initial assignment of partitions
- V_{L} : volume limit
- $D_{S L}$: different size limit
- Question: find $X: P \rightarrow M$ which minimizes:

$$
\begin{equation*}
\sum_{p, p^{\prime} \in P} Y\left(p, p^{\prime}\right) T M\left(p, p^{\prime}\right) \tag{1}
\end{equation*}
$$

This formula allows to calculate the network transfers (the principal cost we consider). We consider the cost of transfer between two partitions if those partitions are not in the same machine.
with

$$
Y\left(p, p^{\prime}\right)=\left\{\begin{array}{l}
0 \text { iff } X(p)=X\left(p^{\prime}\right) \tag{2}\\
1 \text { otherwise }
\end{array}\right.
$$

Y indicates if two partitions are in the same machine or not.

$$
\begin{equation*}
\forall m \in M \sum_{p \in P} K(p, m) S(p) \leq V_{L} \tag{3}
\end{equation*}
$$

This formula allows to control the volume of data sent by a machine and

$$
\begin{equation*}
\forall m \in M \sum_{p \in P} \bar{K}(p, m) S(p) \leq V_{L} \tag{4}
\end{equation*}
$$

allows to control the volume of data received by a machine.
with

$$
K(p, m)=\left\{\begin{array}{l}
0 \text { iff } X(p)=X_{0}(p) \text { or } X(p) \neq m \tag{5}\\
1 \text { otherwise }
\end{array}\right.
$$

K indicates if a partition has been transferred to another machine

$$
\begin{equation*}
\forall m, m^{\prime} \in M\left|\left(\sum_{\substack{p \in P \text { and } \\ X(p)=m}} S(p)\right)-\left(\sum_{\substack{p^{\prime} \in P \text { and } \\ X\left(p^{\prime}\right)=m^{\prime}}} S\left(p^{\prime}\right)\right)\right| \leq D_{S L} \tag{6}
\end{equation*}
$$

With this formula, we control the difference between data sizes of the machines.
Theorem 1. $P P$ is NP-Hard.
Let us start by some recalls on how to prove that a given problem is in the NP-hard class.
We say that an optimization problem A is NP-hard if: [?]

- A belongs to NP: There exists a polynomial algorithm allowing to verify that a candidate is a valid solution of the problem A.
- a decision problem A^{\prime} related to A is NP-Complete.

Definition 1. (Decision problem) A decision problem [?] is a problem with only two possible instances: "Yes" or "No"

To prove that a problem A^{\prime} is NP-Complete, we have to reduce a well known NP-complete problem to our problem, i.e., all inputs of the well known NP-complete problem can be represented as special cases of the problem A^{\prime} and a solution of A^{\prime} is a solution of the well known NP-complete problem. The last part of the proof consists in proving the correctness of the reduction.

We start by considering $P P_{d}$ decision problem related to PP. With the same inputs, the question corresponding to $P P_{d}$ is the following:

Question: Given a positive integer G , is there $X: P \rightarrow M$ where:
$\sum_{p, p^{\prime} \in P} Y\left(p, p^{\prime}\right) \times T M\left(p, p^{\prime}\right) \leq \mathrm{G}$
Formulas $2,3,4,5$ and 6 hold.
First of all, $P P_{d}$ belongs to NP since checking if a placement satisfies constraints related to $D_{S L}, V_{L}$ and G could be performed in polynomial time.

We subsequently propose to represent Knapsack (KS) as a special case of $P P_{d}$:
Knapsack problem:
Instance:

- O: a set of objects
$-W: O \longrightarrow Z^{+}:$weight of objects
$-V: O \longrightarrow Z^{+}:$value of objects
- w_{l} : weight limit of the Knapsack

Question: given an integer k , is there a subset $U \subseteq O$ such that:
$\sum_{o \in U} W(o) \leq w_{l}$, and
$\sum_{o \in U} V(o) \geq k$
We propose the flowing transformation ($\mathrm{KS}<_{R} P P_{d}$):

- $M=\left\{m_{1}, m_{2}\right\}:$ We consider a special case of $P P_{d}: P P_{R}$ with 2 machines.
- $P=O \cup\left\{p_{v}\right\}$: partitions are objects of the knapsack problem with an additional virtual partition $\left(p_{v}\right)$
$-X_{0}\left(p_{v}\right)=m_{2}, \forall o \in O, X_{0}(o)=m_{1}$
$-S(o)=W(o) / o \in O$ and $S\left(p_{v}\right)=w_{l}+1$

$$
T M\left(p, p^{\prime}\right)=\left\{\begin{array}{l}
V\left(p^{\prime}\right) \text { iff } p=p_{v} \text { and } p \in U \\
0 \text { otherwise }
\end{array}\right.
$$

$-G=\sum_{o \in U} V(o)-\mathrm{k}$
$-D_{S L}=\sum_{o \in O} W(o)+S\left(p_{v}\right)$

It is obvious that a solution of $P P_{R}$ implies $X\left(p_{v}\right)=m_{2}$
Now we will prove that each instance for KS is an instance for $P P_{R}$, for this we have to prove that:
$o \in U$ iff $X(o) \neq X_{0}(o)$
We start by considering that X is a solution for $P P_{R}$.

$$
\begin{align*}
\sum_{o \in U} S(o) & =\sum_{\substack{o \in U}} S(o)=\sum_{\substack{o, X(o) \neq X_{0}(o) \\
\text { and } o \neq p_{v}}} S(o) \tag{7}\\
& =\sum_{\substack{o, X(o)=m_{2} \\
\text { and } o \neq p_{v}}} S(o) \tag{8}\\
& =\sum_{\substack{o, X(o)=m_{2} \neq X_{0}(o) \\
\text { ando¥p }}} S(o)+\sum_{\substack{o, X(o)=m_{v} \neq X_{0}(o) \\
\text { and }=\left(o p_{v}\right)=X_{0}(o)}} S(o) \tag{9}\\
& =\sum_{o} K\left(o, m_{2}\right) S(o) \leq V_{L}=w_{l} \tag{10}
\end{align*}
$$

$$
\begin{align*}
\sum_{o \in U} V(o) & =\sum_{\substack{o, X(o) \neq X_{0}(o) \\
\text { and } o \neq p_{v}}} V(o) \tag{12}\\
& =\sum_{\substack{o, X(o) \neq X_{0}(o) \\
\text { and } o \neq p_{v}}} T M\left(p_{v}, o\right) \tag{13}\\
& =\sum_{\substack{o, X(o) \neq X_{0}(o) \\
\text { and } o \neq p_{v}}} Y\left(p_{v}, o\right) T M\left(p_{v}, o\right) \tag{14}
\end{align*}
$$

We assume that:

$$
\begin{align*}
& \vartheta=\sum_{o \in O} V(o)=\sum_{p \neq p_{v}} T M\left(p_{v}, p\right) \\
& \begin{aligned}
\sum_{o \in U} V(o) & =\vartheta-\sum_{o \notin U} V(o) \\
& =\vartheta-\sum_{\substack{X(o)=X_{0}(o) \\
a n d o \neq p_{v}}} T M\left(p_{v}, o\right) \\
& =\vartheta-\sum_{X(o)=X_{0}(o) \neq m_{2}=p_{v}}^{a n d o \neq p_{v}} \\
& =\vartheta-\sum_{\substack{o \in O \cup\left\{p_{v}\right\}}} Y\left(p_{v}, p\right) T M\left(p_{v}, o\right) \quad \text { because } Y\left(p_{v}, p\right)=0 \text { in the other cases } \\
& =\vartheta-\sum_{o, o, \in O \cup\left\{p_{v}\right\}} Y\left(o^{\prime}, o\right) T M\left(o^{\prime}, o\right) \quad \text { because } \mathrm{TM}\left(o^{\prime}, o\right)=0 i f o^{\prime} \neq p_{v} \\
& \geq \vartheta-G=k \quad i f \sum_{o, o, \in O \cup\left\{p_{v}\right\}} Y\left(o^{\prime}, o\right) T M\left(o^{\prime}, o\right) \leq G
\end{aligned} \tag{16}
\end{align*}
$$

Therefore:
$G=\vartheta-k, \vartheta \geq k$, otherwise knapsack does not have a solution
We will show that a solution of KS is a solution of $P P_{R}$. We assume that U is solution of KS.
We have, $o \in U$ iff $X(o)=m_{2}$ and $X\left(p_{v}\right)=m_{2}$
$o \notin U$ iff $X(o)=m_{1}$

$$
\begin{aligned}
\sum_{o, o, \in O \cup\left\{p_{v}\right\}} Y\left(o^{\prime}, o\right) T M\left(o^{\prime}, o\right) & \\
& =\sum_{o, \in O} Y\left(p_{v}, o\right) T M\left(p_{v}, o\right) \quad \text { becauseTM }\left(o^{\prime}, o\right)=0 \text { if } o^{\prime} \neq p_{v} \\
& =\sum_{X\left(p_{v}\right) \neq X(o)} T M\left(p_{v}, o\right) \\
& =\sum_{X(o) \neq m_{2}} T M\left(p_{v}, o\right) \\
& =\vartheta-\sum_{o \in U} V(o) \\
& \leq \vartheta-k \sum_{o \in U} V(o) \geq k \\
& \leq G \quad \vartheta-k=G
\end{aligned}
$$

We have to prove that $\forall m \in M \sum_{o \in O \cup p_{v}} K(o, m) S(o) \leq V_{L}$
We have two cases: $m=m_{1}$ and $m=m_{2}$

$$
\begin{aligned}
\sum_{o \in O \cup p_{v}} K\left(o, m_{1}\right) S(o) \quad \text { if } \mathrm{m}=\mathrm{m}_{1} & \\
& =0 \leq V_{L}
\end{aligned}
$$

In the second case:

$$
\begin{aligned}
& \sum_{o \in O \cup p_{v}} K\left(o, m_{2}\right) S(o) \quad \text { ifo } o \mathrm{U}, \mathrm{k}\left(m_{1}, o\right)=0 \text { and } k\left(m_{2}, o\right)=1 \\
& \qquad \begin{array}{l}
\quad=\sum_{o \in U} S(o) \leq w_{l}=V_{L} \quad \text { ifo } o \mathrm{U}, k\left(m_{1}, o\right)=0 \\
\\
\quad \text { and } \mathrm{k}\left(\mathrm{~m}_{2}, 1\right)=0
\end{array}
\end{aligned}
$$

We have to prove that $\forall m \in M \sum_{o \in O \cup p_{v}} \bar{K}(o, m) S(o) \leq V_{L}$ We have two cases: $m=m_{1}$ and $m=m_{2}$

We measure received data for each machine

$$
\begin{aligned}
\sum_{o \in O \cup p_{v}} \bar{K}\left(o, m_{1}\right) S(o)=\sum_{o \in U} S(o) \quad \text { ifm }=\mathrm{m}_{1} & \\
& \leq w_{l}=V_{L}
\end{aligned}
$$

In the other case:

$$
\begin{aligned}
\sum_{o \in O \cup p_{v}} \bar{K}\left(o, m_{1}\right) S(o) \quad \mathrm{m}_{1} & \\
& =0 \leq V_{L}
\end{aligned}
$$

Last condition:
$\forall m, m^{\prime} \in M\left|\left(\sum_{\substack{p \in P \text { and } \\ X(p)=m}} S(p)\right)-\left(\sum_{\substack{p^{\prime} \in P \text { and } \\ X\left(p^{\prime}\right)=m^{\prime}}} S\left(p^{\prime}\right)\right)\right| \leq D_{S L}$
We assume that $m=m_{1}$ and $m^{\prime}=m_{2}$.
We recall that:

$$
\begin{aligned}
\sum_{o \in O} S(o) & =\sum_{o \in U} S(o)+\sum_{o \notin O} S(o) \\
\sum_{o \in O} S(o)+S\left(p_{v}\right) & =\sum_{o \in U} S(o)+\sum_{o \notin O} S(o)+S\left(p_{v}\right) \\
\sum_{o \in O} S(o)+S\left(p_{v}\right) & \geq\left|\sum_{o \in U} S(o)-\sum_{o \notin O} S(o)-S\left(p_{v}\right)\right| \\
D_{S L} & \geq\left|\sum_{o \in U} S(o)-\sum_{o \notin O} S(o)-S\left(p_{v}\right)\right|
\end{aligned}
$$

If we go back to our formula:

$$
\begin{aligned}
\left|\left(\sum_{\substack{o \in O \cup\left\{p_{v}\right\} \text { and } \\
X(o)=m_{1}}} S(p)\right)-\left(\sum_{\substack{o \\
o^{\prime} \in O \cup\left\{p_{v}\right\} \text { and } \\
X\left(o^{\prime}\right)=m_{2}}} S\left(o^{\prime}\right)\right)\right| & =\mid\left(\sum_{o \notin U} S(p)\right)-\left(\sum_{o \in U} S(o)+S\left(p_{v}\right) \mid\right. \\
& \leq D_{S L}
\end{aligned}
$$

