
Partition Re-assignment: a theoretical study

Amin Mesmoudi1, Mohand-Säıd Hacid2, and Emmanuel Coquery2

1 LIAS/ENSMA, Poitiers University
2 LIRIS, Lyon 1 University

1 Partition Re-assignment Problem

The quality of data partitioning is mainly related to the workload. We believe that partitioning
technique could be adapted to the workload. In this vein, we propose two levels of partitioning:

– An initial partitioning: In this level, partitioning depends on the kind of data. It is performed
during data loading. We offer partitioning tools and we leave to the system administrator the
choice of how to select the partitions.

– Partitions update: We propose another technique that allows to choose the best possible parti-
tion placement by taking into account the cost related to query processing.

In this section, we discuss the design of the technique allowing to choose the best location for
partitions. From a usage point of view, we offer the system administrator a tool to analyze the
transfer costs between partitions, to choose another location able to satisfy constraints on system
operation and to transfer partitions from one machine to another. Doing so, two problems may
arise:

1. Shutdown Duration: We have to avoid transfer of costly partitions in time. Indeed, for the
update, we must shutdown the system. As the system can not stay shutdown for a long period,
it is necessary to integrate a constraint on the duration of the update. We express this constraint
by using the maximum size of data to be sent or received by a machine.

2. Changing partition locations can cause load balancing problems. Indeed, one can have a machine
with n TB of data and another with m GB! where n >> m.

To remedy to this problem, we propose to use another constraint related to the maximum
difference between the data size of two machines.

Example Let illustrate our problem with an example. In a given system, data is organized in four
(4) partitions P1, P2, P3, P4. The system relies on three workers M1,M2 and M3. Figure 1 shows an
example of partition locations and transfer logs between partitions. P1 and P4 are hosted by M1,
P3 is hosted by M2 and P2 is hosted by M3. A cell, in the transfer matrix, indicates the number of
network packets exchanged by two partitions.

Each partition has a related network cost. This cost is the number of packets transferred between
partitions that are not hosted by the same machine. For our example, this cost is equal to 2219.
By changing the location of P4 from M1 to M2, the cost is equal to 1480. We notice a gain of 739
packets.

2 Amin Mesmoudi, Mohand-Säıd Hacid, and Emmanuel Coquery

[][Partitions location] [][Transfer logs between

partitions]

Fig. 1. Example of partition location and transfer logs between partitions

Complexity of the problem We could formalize partition re-assignment problem as follows:

– Instance:

• P : a set of partitions
• M : a set of machines
• TM : PxP → N+, transfer logs between partitions
• S: P → N+, the data size of the partition
• X0:P → M , initial assignment of partitions
• VL: volume limit
• DSL : different size limit

– Question: find X:P → M which minimizes:∑
p,p′∈P

Y (p, p
′
)TM(p, p

′
) (1)

This formula allows to calculate the network transfers (the principal cost we consider). We
consider the cost of transfer between two partitions if those partitions are not in the same
machine.
with

Y (p, p
′
) =

{
0 iff X(p) = X(p

′
)

1 otherwise
(2)

Y indicates if two partitions are in the same machine or not.

∀m ∈ M
∑
p∈P

K(p,m)S(p) ≤ VL (3)

Partition Re-assignment: a theoretical study 3

This formula allows to control the volume of data sent by a machine and

∀m ∈ M
∑
p∈P

K(p,m)S(p) ≤ VL (4)

allows to control the volume of data received by a machine.
with

K(p,m) =

{
0 iff X(p) = X0(p) orX(p) 6= m

1 otherwise
(5)

K indicates if a partition has been transferred to another machine

∀m,m
′
∈ M |(

∑
p∈P and
X(p)=m

S(p))− (
∑

p
′
∈P and

X(p
′
)=m′

S(p
′
))| ≤ DSL (6)

With this formula, we control the difference between data sizes of the machines.

Theorem 1. PP is NP-Hard.

Let us start by some recalls on how to prove that a given problem is in the NP-hard class.
We say that an optimization problem A is NP-hard if: [?]

– A belongs to NP: There exists a polynomial algorithm allowing to verify that a candidate is a
valid solution of the problem A.

– a decision problem A
′

related to A is NP-Complete.

Definition 1. (Decision problem) A decision problem [?] is a problem with only two possible in-
stances: ”Yes” or ”No”

To prove that a problem A
′

is NP-Complete, we have to reduce a well known NP-complete
problem to our problem, i.e., all inputs of the well known NP-complete problem can be represented
as special cases of the problem A

′
and a solution of A

′
is a solution of the well known NP-complete

problem. The last part of the proof consists in proving the correctness of the reduction.
We start by considering PPd decision problem related to PP. With the same inputs, the question

corresponding to PPd is the following:
Question: Given a positive integer G, is there X:P → M where:∑
p,p′∈P

Y (p, p
′
)× TM(p, p

′
) ≤ G

Formulas 2,3,4,5 and 6 hold.
First of all, PPd belongs to NP since checking if a placement satisfies constraints related to

DSL, VL and G could be performed in polynomial time.
We subsequently propose to represent Knapsack (KS) as a special case of PPd:
Knapsack problem:
Instance:

– O: a set of objects
– W : O −→ Z+: weight of objects
– V : O −→ Z+: value of objects

4 Amin Mesmoudi, Mohand-Säıd Hacid, and Emmanuel Coquery

– wl: weight limit of the Knapsack

Question: given an integer k, is there a subset U ⊆ O such that:∑
o∈U

W (o) ≤ wl, and∑
o∈U

V (o) ≥ k

We propose the flowing transformation (KS <R PPd):

– M = {m1,m2}: We consider a special case of PPd: PPR with 2 machines.

– P = O ∪ {pv} : partitions are objects of the knapsack problem with an additional virtual
partition (pv)

– X0(pv) = m2, ∀o ∈ O, X0(o) = m1

– S(o) = W (o)/o ∈ O and S(pv) = wl + 1

–

TM(p, p
′
) =

{
V (p

′
) iff p = pv and p ∈ U

0 otherwise

– G =
∑
o∈U

V (o) - k

– DSL =
∑
o∈O

W (o)+S(pv)

It is obvious that a solution of PPR implies X(pv) = m2

Now we will prove that each instance for KS is an instance for PPR, for this we have to prove
that:

o ∈ U iff X(o) 6= X0(o)

We start by considering that X is a solution for PPR.

∑
o∈U

S(o) =
∑
o∈U

S(o) =
∑

o,X(o)6=X0(o)
and o 6=pv

S(o) (7)

=
∑

o,X(o)=m2

and o 6=pv

S(o) (8)

=
∑

o,X(o)=m2 6=X0(o)
ando6=pv

S(o) +
∑

o,X(o)=m1 6=X0(o)
o=pv

andX(o)=X0(o)

S(o) (9)

=
∑
o

K(o,m2)S(o) ≤ VL = wl (10)

(11)

Partition Re-assignment: a theoretical study 5

∑
o∈U

V (o) =
∑

o,X(o)6=X0(o)
and o 6=pv

V (o) (12)

=
∑

o,X(o)6=X0(o)
and o 6=pv

TM(pv, o) (13)

=
∑

o,X(o)6=X0(o)
and o 6=pv

Y (pv, o)TM(pv, o) (14)

(15)

We assume that:

ϑ =
∑
o∈O

V (o) =
∑

p 6=pv

TM(pv, p)

∑
o∈U

V (o) = ϑ−
∑
o 6∈U

V (o) (16)

= ϑ−
∑

X(o)=X0(o)
and o 6=pv

TM(pv, o) (17)

= ϑ−
∑

X(o)=X0(o)6=m2=pv

and o6=pv

Y (pv, o)TM(pv, o) (18)

= ϑ−
∑

o∈O∪{pv}

Y (pv, p)TM(pv, o) becauseY(pv, p) = 0 in the other cases (19)

= ϑ−
∑

o,o′∈O∪{pv}

Y (o′ , o)TM(o′ , o) becauseTM(o′ , o) = 0 if o′ 6= pv (20)

≥ ϑ−G = k if
∑

o,o′∈O∪{pv}
Y (o′ , o)TM(o′ , o) ≤ G (21)

Therefore:

G = ϑ− k, ϑ ≥ k, otherwise knapsack does not have a solution

We will show that a solution of KS is a solution of PPR. We assume that U is solution of KS.

We have, o ∈ U iff X(o) = m2 and X(pv) = m2

o /∈ U iff X(o) = m1

6 Amin Mesmoudi, Mohand-Säıd Hacid, and Emmanuel Coquery

∑
o,o′∈O∪{pv}

Y (o′ , o)TM(o′ , o)

=
∑
o,∈O

Y (pv, o)TM(pv, o) becauseTM(o′ , o) = 0 if o′ 6= pv

=
∑

X(pv) 6=X(o)

TM(pv, o)

=
∑

X(o) 6=m2

TM(pv, o)

= ϑ−
∑
o∈U

V (o)

≤ ϑ− k
∑
o∈U

V (o) ≥ k

≤ G ϑ− k = G

We have to prove that ∀m ∈M
∑

o∈O∪pv

K(o,m)S(o) ≤ VL

We have two cases: m = m1 and m = m2

∑
o∈O∪pv

K(o,m1)S(o) ifm=m1

= 0 ≤ VL

In the second case:

∑
o∈O∪pv

K(o,m2)S(o) ifo∈ U, k(m1, o)=0 and k(m2, o) = 1

=
∑
o∈U

S(o) ≤ wl = VL ifo/∈ U, k(m1, o) = 0

and k(m2, 1) = 0

We have to prove that ∀m ∈ M
∑

o∈O∪pv

K(o,m)S(o) ≤ VL We have two cases: m = m1 and

m = m2

We measure received data for each machine

∑
o∈O∪pv

K(o,m1)S(o) =
∑
o∈U

S(o) ifm=m1

≤ wl = VL

In the other case:

Partition Re-assignment: a theoretical study 7

∑
o∈O∪pv

K(o,m1)S(o) m1

= 0 ≤ VL

Last condition:
∀ m,m

′ ∈ M |(
∑

p∈P and
X(p)=m

S(p))− (
∑

p
′
∈P and

X(p
′
)=m′

S(p
′
))| ≤ DSL

We assume that m = m1 and m
′

= m2.
We recall that:

∑
o∈O

S(o) =
∑
o∈U

S(o) +
∑
o/∈O

S(o)

∑
o∈O

S(o) + S(pv) =
∑
o∈U

S(o) +
∑
o/∈O

S(o) + S(pv)

∑
o∈O

S(o) + S(pv) ≥ |
∑
o∈U

S(o)−
∑
o/∈O

S(o)− S(pv)|

DSL ≥ |
∑
o∈U

S(o)−
∑
o/∈O

S(o)− S(pv)|

If we go back to our formula:

|(
∑

o∈O∪{pv} and
X(o)=m1

S(p))− (
∑

o
′
∈O∪{pv} and

X(o
′
)=m2

S(o
′
))| = |(

∑
o/∈U

S(p))− (
∑
o∈U

S(o) + S(pv)|

≤ DSL

