
Appendix

Appendix 1: NP-hardness proof of the SOS problem

Let us start by some recalls on how to prove that a given problem is in the NP-hard class.

Theorem 1. The Stars ordering and Selection (SOS) problem is NP-Hard.

We say that an optimization problem A is NP-hard if: [2]

– A belongs to NP: There exists a polynomial algorithm allowing to verify that a candidate is a
valid solution of the problem A.

– a decision problem A
′

related to A is NP-Complete.

Definition 1. (Decision problem) A decision problem [2] is a problem with only two possible in-
stances: ”Yes” or ”No”

To prove that a problem A
′

is NP-Complete, we have to reduce a well known NP-complete
problem to our problem, i.e., all inputs of the well known NP-complete problem can be represented
as special cases of the problem A

′
and a solution of A

′
is a solution of the well known NP-complete

problem. The last part of the proof consists in proving the correctness of the reduction.

Proof. The decision problem related to SOS problem is defined as follows:

Definition 2. (SOS decision (SOSd) problem)

– Instance: Let q be a query and C an integer
– Question: Is there any acceptable plan P =< X, f > of q such that:

Costnet(X, f) ≤ 1 + 2

C∑
i=1

(
1

2

)i
Where,

Costnet(X, f) =
∑
qs∈ X

NC(qs)

With respect to the formula in 1, we take TTR = 1 in order to simplify the proof.

To prove the theorem 1, we make use of the vertex cover (VC) problem [1] as the well known
NP-complete problem.

Definition 3. (Vertex cover problem)

– INSTANCE: a graph G = (V,E), and a positive integer k.
– QUESTION: does G have a subset V

′
, with a size less than or equal to k, of V such that if edge

(u, v) is an edge of G, then u is in V
′
, or v is in V

′
, or both.

For the rest of the proof we assume that:

2

– V = {v1, ..., vp}
– Edges are of the form (vi, vj) where i>j.
– G does not contain edges of the form (vi, vi)
– k < p− 1, otherwise VC is trivial i.e., V is a solution.

The transformation concerns two parts. In the first part, we discuss how to specify the query,
and its associated components, from the graph of VC. In the second part, we discuss statistics (i.e.,
selectivity factors, number of data stars, ...) we used to choose the best plan.

We start by query components creation:

– Variables of q: Ya, Yb, Y1, ..., Yp, each node of the graph of VC is associated with a variable in
q. We also add two special variables, i.e., Ya and Yb.

– Triples of q: {(Ya, Pai, Yi)|1 ≤ i ≤ p} ∪ {(Yi, Pib, Yb)|1 ≤ i ≤ p} ∪ {(Yi, Pij , Yj)|(vi, vj) ∈ E} for
each arc in the graph of VC, we add a triple to the query. We also add a triples from Ya to all
nodes of the graph of VC and from all the nodes of the graph of VC to Yb.

– We use the notation
−→
Yα to represent forward query star and

←−
Yα to represent backward star

query where α ∈ {a, b, 1, ..., p} to represent forward from backward query stars. We also use
←→
Yα

to say that the related property can be applied to forward and backward query star with the
head Yα.

– The set of forward query stars:
−−→
SQq =

{−→
Yα|α ∈ {a, b, 1, ..., p}

}
.

– The set of backward query stars:
←−−
SQq =

{←−
Yα|α ∈ {a, b, 1, ..., p}

}
.

For graph fragment statistics, we assume that:

– We associate each star query with one and only one graph fragment. We use the notation
{Gfa, Gfb, Gf1, Gf2, ..., Gfp} to designate the set of graph fragments.

– Graph fragment are hosted by different machines, i.e., we can not find two graph fragment in
the same machine.

– SF(
−−→
Gfa,

←→
Gfi, Pai)=1: selectivity factor associated with the forward query star with the head a

and the query star have with a head in V (vertices of the graph of VC). With the symbol (←→,
we indicate that the fragment graph can be forward or backward).

– SF(
←→
Gfi,
−−→
Gfa, Pia)=1/5: selectivity factor between a query star has a head from V and the

forward query star with the head a.

– SF(
←→
Gfi,
←→
Gfj , Pij)=1: selectivity factor associated with any two star queries that have a head

from V.
– SF(

←−−
Gfi,
−−→
Gfi,−1)=1/2: selectivity factor associated with two star queries that have the same

head.
– SF(

−−→
Gfi,
←−−
Gfi,−1)=1/2: selectivity factor associated with two star queries that have the same

head.
– SF(

←→
Gfb,
←−−
Gfα, Pbα)=1: selectivity factor associated with the query star with a head b and another

query star.

– SF(
←→
Gfi,
←−−
Gfb, Pib)=2k+3: selectivity factor between any query star and the query star with the

head b.
– dist(

←→
Gfi)=2k+3: number of data stars in a graph fragment related to a head from V.

– dist(
←→
Gfa)=1: number of data stars associated to the graph fragment related to the star query

with the head a.

Appendix 3

– dist(
←→
Gfb)=1: number of data stars associated to the graph fragment related to the star query

with the head b.

We also set C to k.
We must now show that this transformation is correct, i.e., a solution of the instance of our

problem is also a solution of the VC problem and a solution of VC is also a solution to the instance
of our problem.

Let X = {vx1 , ..., vxk
} be the witness that VC (Vertex Cover) has a solution. We have to show

that there is an acceptable plan Py =< Y, f > of qG (the query built from the graph of VC) such
that:

Costnet(Y, f) ≤ 1 + 2

k∑
i=1

(
1

2

)i
We start by considering a particular plan:

Py =
[−→
Va,
−→
Yx1

,
←−
Yx1

, ...,
−→
Yxk

,
←−
Yxk

,
←−
Vb

]
where for each vertex xi in X, we associate the two star queries that have x as a head. The

forward query star will be followed by the backward star with the head. We also put the forward
star with the head a as the first star in the plan and backward star with the head b as the last star
of the plan.

We know that : 1) the distinct of
−−→
Gfa is 1, 2) each time we add a query star with a different

head we have an SF equal to 1, and 3) each time we add a query star with a same head we have
an SF equal to 1

2 .
We then calculate the cost of this plan as follows:

CostNET (Py) = 1 ∗ 1 + 1 ∗
(

1

2

)
+

(
1

2

)
∗ (1) +

(
1

2

)
∗
(

1

2

)
+

(
1

4

)
∗ (1) +

...+

(
1

2k−1

)
+

(
1

2k

)
+

(
1

2k

)
= 1 + 2

k∑
i=1

(
1

2

)i
Regarding the first condition of an acceptable plan, it is obvious that all triples are covered by

the graph.
Concerning the second condition of an acceptable plan of definition, if we start with Ya, we can,

at any time, trigger the execution of query star. It is obvious that this condition is verified.

Py is acceptable and it is obvious that CostNet(Py) ≤ 1 + 2
k∑
i=1

(
1
2

)i
. We can deduce that if VC

has a solution, decision problem related to plan selection and ordering problem has also a solution.
Let us now consider the other direction, i.e., we have a solution of the instance of our problem

and we have to prove that there exists a solution of VC.

Assume Py =< Y, f >= [Y0, Y1, ..., Yl] is an acceptable plan and Netcost(Py) ≤ 1 + 2
c∑
i=1

(
1
2

)i

4

Let X =
{
vα|
←→
Yα ∈ Y

}
X contains query star heads from the plan Py. We use the notation

←→
Yα to say that Yα is backward

or forward.
First, we have to show that X cover E (i.e., the set of edges of the graph of VC). Regarding the

first condition of an acceptable plan, we can easily, by replacing star cover by vertex cover show
that X covers E. In the rest of the proof, we have to show that |X| ≤ k.

Let n be the number of variables in Y. We show that costNet(Py) ≥ 1 + 2
n∑
i=1

(
1
2

)i
First, we start by computing costNet regarding selectivity factors.
We have:

CostNET (Py) = dist(GfY0
) ∗ SF (GfY0

, GfY1
, ∗) + dist(GfY0

) ∗ SF (GfY0
, GfY1

, ∗) ∗ SF (GfY1
, GfY2

, ∗)
+ ...+ dist(GfY0

) ∗ SF (GfY0
, GfY1

, ∗) ∗ SF (GfY1
, GfY2

, ∗) ∗ ... ∗ SF (Gf|Y |−1, Gf|Y |, ∗)

= dist(GfY0) ∗ (1 +

|Y |∑
i=1

SF (GfYi−1 , GfYi))

where Y0 is the first star query in the plan.
We know that Y has less than p variables. This implies that at least forward star and backward

star formed from a variable from the query is not involved in the plan. Since Ya has an edge to all
nodes in the graph, the only way to get a valid plan (by satisfying the first condition) is to put Ya
in the plan.

Now we will determine the position of Ya. We use the formula in 1.
Let us suppose that: Y = [Y0, Y1, ..., Ya, .., Yl]
costNet(Yp) = 2k+3 + 2k+3 ∗ ...

It’s obvious that Netcost(Yp) exceeds 1 + 2
k∑
i=1

(
1
2

)i
, indeed 2

k∑
i=1

(
1
2

)i
converges to 2.

The only proposal we left is to put Ya in the first position.
We know that Y has less than p variables, which means that at least forward star and backward

star formed from a variable from the query is not involved in the plan. Since Yb has an edge to all
nodes in the graph. The only way to get a valid plan (by satisfying the first condition) is to put Yβ
in the plan.

Now we will determine the position of Yβ . Note that SF (Yi, Yβ , Piβ)=2k+3, this implies that
if we put Yβ in a position different from the last position, the cost will exceed the defined limit,
namely 2.

We know that Y is in the form
[−→
Ya, ...,

←−
Yb

]
We will determine the lower bound of the cost of Y.
Suppose we have two plans Y and Y

′
, with:

PY =
[
...,
←→
Yxh

,
←→
Yxi

,
←→
Yxj

, ...,
]

and
PY ′ =

[
...,
←−
Yxi ,
−→
Yxi ,
←→
Yxj , ...,

]
With xi 6= xh 6= xj

Appendix 5

Note that we constructed PY ′ , by replacing in PY ,
←→
Yxh

by
−→
Yxi and

←→
Yxi by

←−
Yxi . We want to show

the impact of putting two stars with the same heads one after the other.

Let C be the cost we obtained before evaluating
←→
Yxh

and C
′

be the cost we obtained after

evaluating
←→
Yxj

.
Using the formula in 1, we obtain:

CostNet(PY) = C + C ∗ SF (
←−−→
Yxh−1

,
←→
Yxh

, ∗) + C ∗ SF (
←−−→
Yxh−1

,
←→
Yxh

, ∗) ∗ SF (
←−−→
Yxh−1

,
←→
Yxi

, ∗) + C ∗
SF (
←−−→
Yxh−1

,
←→
Yxh

, ∗) ∗ SF (
←→
Yxh

,
←→
Yxi , ∗) ∗ SF (

←→
Yxi ,
←→
Yxj , ∗) + C

′

We know that:

SF (
←−−→
Yxh−1

,
←→
Yxh

, ∗) = 1

SF (
←→
Yxh

,
←→
Yxi , ∗) = 1

SF (
←→
Yxi

,
←→
Yxj

, ∗) = 1

which implies that:

CostNet(PY) = C + C + C + C + C
′

In the same vein, for Y
′
, we get :

CostNet(Y
′
) = C + C ∗ SF (

←−−→
Yxh−1

,
←→
Yxh

, ∗) + C ∗ SF (
←−−→
Yxh−1

,
←→
Yxh

, ∗) ∗ SF (
←−−→
Yxh−1

,
←→
Yxi

, ∗) + C ∗
SF (
←−−→
Yxh−1

,
←→
Yxh

, ∗) ∗ SF (
←→
Yxh

,
←→
Yxi

, ∗) ∗ SF (
←→
Yxi

,
←→
Yxj

, ∗) + C
′′

We know that:

SF (
←−−→
Yxh−1

,
←→
Yxi , ∗) = 1

SF (
←→
Yxi

,
←→
Yxi

, ∗) = 1/2

SF (
←→
Yxi ,
←→
Yxj , ∗) = 1

Cost(PY ′) = C + 1/2 ∗ C + 1/2 ∗ C + 1/2 ∗ C + C
′′

It is obvious that C
′′
< C

′
, which implies that: Cost(Y′) ≤ Cost(Y)

We can deduce that any plan has a higher or equal cost than

PY2 =
[−→
Ya,
−→
Yx1 ,
←−
Yx1 , ...,

−−→
Yxn ,

←−−
Yxn ,

−→
Yb

]
PY2

is obtained by putting
−→
Yxi

(or
←−
Yxi

) directly after the opposite query star, i.e.,
←−
Yxi

(or
−→
Yxi

).
We use the cost of PY2

as the lower bound of the cost.
We will now compute the cost of PY2 .

6

Cost(PY2
) = 1 +

1

2
+ ...+

1

2n−2
+

1

2n−1
+

1

2n−1
+

1

2n−1
= 1 +

n∑
i=1

(
1

2

)i

We know that 1 +
n∑
i=1

(
1
2

)i
= Cost(PY2

) ≤ Cost(PY) ≤ 1 +
k∑
i=1

(
1
2

)i
We can induce that:

n ≤ k

We can deduce that X is a vertex cover with size ≤ k

References

1. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a symposium on the Com-
plexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, USA. pp. 85–103 (1972)

2. van Leeuwen, J. (ed.): Handbook of Theoretical Computer Science, Volume A: Algorithms and Com-
plexity. Elsevier and MIT Press (1990)

Appendix 7

Appendix 2: Experimental Queries

Watdiv

1.

SELECT ?v0 ?v1 ?v2 WHERE
{

?v0 <http://purl.org/ontology/mo/conductor> ?v1 .
?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v2 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/hasGenre> <http://db.uwaterloo.ca/~galuc/wsdbm/SubGenre83> .

}

2.

SELECT ?v0 ?v2 ?v3 WHERE
{

?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://db.uwaterloo.ca/~galuc/wsdbm/ProductCategory7> .
?v0 <http://schema.org/description> ?v2 .
?v0 <http://schema.org/keywords> ?v3 .
?v0 <http://schema.org/language> <http://db.uwaterloo.ca/~galuc/wsdbm/Language0> .

}

3.

SELECT ?v0 ?v1 WHERE
{

?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/likes> ?v1 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/subscribes> ?v2 .

}

4.

SELECT ?v0 ?v2 ?v3 WHERE
{

?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/subscribes> <http://db.uwaterloo.ca/~galuc/wsdbm/Website18627> .
?v2 <http://schema.org/caption> ?v3 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/likes> ?v2 .

}

5.

SELECT ?v0 ?v2 ?v3 ?v4 ?v5 WHERE
{

?v0 <http://ogp.me/ns#tag> <http://db.uwaterloo.ca/~galuc/wsdbm/Topic172> .
?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v2 .
?v3 <http://schema.org/trailer> ?v4 .
?v3 <http://schema.org/keywords> ?v5 .
?v3 <http://db.uwaterloo.ca/~galuc/wsdbm/hasGenre> ?v0 .
?v3 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://db.uwaterloo.ca/~galuc/wsdbm/ProductCategory2> .

}

LUBM

1.

SELECT ?x WHERE
{

?x <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://swat.cse.lehigh.edu/onto/univ-bench.owl#GraduateStudent> .
?x <http://swat.cse.lehigh.edu/onto/univ-bench.owl#takesCourse> <http://www.Department0.University0.edu/GraduateCourse0> .

}

8

2.

SELECT ?x WHERE
{

?x <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://swat.cse.lehigh.edu/onto/univ-bench.owl#Publication> .
?x <http://swat.cse.lehigh.edu/onto/univ-bench.owl#publicationAuthor> <http://www.Department0.University0.edu/AssistantProfessor0> .

}

3.

SELECT ?x ?y1 ?y3 WHERE
{

?x <http://swat.cse.lehigh.edu/onto/univ-bench.owl#worksFor> <http://www.Department0.University0.edu> .
?x <http://swat.cse.lehigh.edu/onto/univ-bench.owl#name> ?y1 .
?x <http://swat.cse.lehigh.edu/onto/univ-bench.owl#emailAddress> ?y2 .
?x <http://swat.cse.lehigh.edu/onto/univ-bench.owl#telephone> ?y3 .

}

4.

SELECT ?x WHERE
{

?x <http://swat.cse.lehigh.edu/onto/univ-bench.owl#memberOf> <http://www.Department0.University0.edu> .
}

5.

SELECT ?x WHERE
{

?x <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://swat.cse.lehigh.edu/onto/univ-bench.owl#UndergraduateStudent> .
}

6.

SELECT ?x WHERE
{

?x <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://swat.cse.lehigh.edu/onto/univ-bench.owl#GraduateStudent> .
?x <http://swat.cse.lehigh.edu/onto/univ-bench.owl#takesCourse> <http://www.Department0.University0.edu/GraduateCourse0> .

}

7.

SELECT ?x WHERE
{

?x <http://swat.cse.lehigh.edu/onto/univ-bench.owl#undergraduateDegreeFrom> <http://www.University0.edu> .
}

8.

SELECT ?x WHERE
{

?x <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://swat.cse.lehigh.edu/onto/univ-bench.owl#UndergraduateStudent> .
}

Yago

1.

SELECT ?GivenName ?FamilyName WHERE
{

?p <http://yago-knowledge.org/resource/hasGivenName> ?GivenName .
?p <http://yago-knowledge.org/resource/hasFamilyName> ?FamilyName .
?p <http://yago-knowledge.org/resource/wasBornIn> ?city .
?p <http://yago-knowledge.org/resource/hasAcademicAdvisor> ?a .
?a <http://yago-knowledge.org/resource/wasBornIn> ?city .

}

Appendix 9

2.

SELECT ?GivenName ?FamilyName WHERE
{

?p <http://yago-knowledge.org/resource/hasGivenName> ?GivenName .
?p <http://yago-knowledge.org/resource/hasFamilyName> ?FamilyName .
?p <http://yago-knowledge.org/resource/wasBornIn> ?city .
?p <http://yago-knowledge.org/resource/hasAcademicAdvisor> ?a .
?a <http://yago-knowledge.org/resource/wasBornIn> ?city .
?p <http://yago-knowledge.org/resource/isMarriedTo> ?p2 .
?p2 <http://yago-knowledge.org/resource/wasBornIn> ?city .

}

3.

SELECT ?name1 ?name2 WHERE
{

?a1 <http://yago-knowledge.org/resource/hasPreferredName> ?name1 .
?a2 <http://yago-knowledge.org/resource/hasPreferredName> ?name2 .
?a1 <http://yago-knowledge.org/resource/actedIn> ?movie .
?a2 <http://yago-knowledge.org/resource/actedIn> ?movie .

}

4.

SELECT ?name1 ?name2 WHERE
{

?p1 <http://yago-knowledge.org/resource/hasPreferredName> ?name1 .
?p2 <http://yago-knowledge.org/resource/hasPreferredName> ?name2 .
?p1 <http://yago-knowledge.org/resource/isMarriedTo> ?p2 .
?p1 <http://yago-knowledge.org/resource/wasBornIn> ?city .
?p2 <http://yago-knowledge.org/resource/wasBornIn> ?city .

}

5.

SELECT ?name1 ?name2 WHERE
{

?p1 <http://www.w3.org/2000/01/rdf-schema#label> ?name1 .
?p2 <http://www.w3.org/2000/01/rdf-schema#label> ?name2 .
?p1 <http://yago-knowledge.org/resource/isMarriedTo> ?p2 .
?p1 <http://yago-knowledge.org/resource/wasBornIn> ?city .
?p2 <http://yago-knowledge.org/resource/wasBornIn> ?city.

}

DBLP

1.

SELECT ?v0 ?v1 ?v2 WHERE
{

?v0 <http://purl.org/dc/elements/1.1/title> ?v1 .
?v0 <http://www.w3.org/2002/07/owl#sameAs> ?v3 .
?v0 <http://purl.org/dc/terms/bibliographicCitation> ?v2 .

}

2.

SELECT ?v0 ?v1 ?v3 WHERE
{

?v0 <http://www.w3.org/2000/01/rdf-schema#seeAlso> ?v1 .
?v3 <http://xmlns.com/foaf/0.1/page> ?v1 .

}

10

3.

SELECT ?v0 ?v3 ?v1 WHERE
{

?v0 <http://www.w3.org/2000/01/rdf-schema#seeAlso> ?v1 .
?v3 <http://xmlns.com/foaf/0.1/homepage> ?v1 .

}

4.

SELECT ?v0 ?v4 ?v6 WHERE
{

?v0 <http://purl.org/dc/terms/tableOfContent> ?v1 .
?v0 <http://swrc.ontoware.org/ontology#editor> <http://dblp.l3s.de/d2r/resource/authors/Rodney_W._Topor> .
?v0 <http://swrc.ontoware.org/ontology#number> ?v3 .
?v0 <http://www.w3.org/2000/01/rdf-schema#label> ?v4 .
?v0 <http://purl.org/dc/terms/issued> ?v5 .
?v0 <http://purl.org/dc/terms/bibliographicCitation> ?v6 .

}

5.

SELECT ?v0 ?v1 WHERE
{

?v0 <http://www.w3.org/2000/01/rdf-schema#seeAlso> <http://dblp.l3s.de/d2r/resource/publications/books/ph/Shasha92> .
?v0 <http://purl.org/dc/terms/tableOfContent> ?v1 .

}

6.

SELECT ?v0 ?v1 WHERE
{

?v0 <http://purl.org/dc/terms/tableOfContent> ?v1 .
?v0 <http://purl.org/dc/terms/bibliographicCitation> <http://dblp.uni-trier.de/rec/bibtex/series/cogtech/Helbig2006> .

}

