Towards an open collective knowledge base
in testing results

Lahcène BRAHIMI

Lahcene.brahimi@ensma.fr

www.lias-lab.fr/members/lahcenebrahimi

Sous la direction de:
M. Ladjel BELLATRECHE
Agenda

1. Context and problematic
2. Initiative of DBMS selection
3. Testing – Types and methods
4. Our test repository
 – Storage - User interface
5. Searching usage of our test repository
 - Recommender system – Algorithm - Usage
Context and problematic

![Diagram showing the models: Modèle Conceptuel -> Modèle Logique -> Modèle Physique -> Modèle Déploiement]

<table>
<thead>
<tr>
<th>Phase</th>
<th>Specification</th>
<th>Criteria</th>
<th>Evaluation tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptual design</td>
<td>- Requirements, data analysis, modeling, workloads</td>
<td>- Security, quality, understandability (usability)</td>
<td>- Expert & End-users (Syntax checking, mini DB, back to users, validation rules)</td>
</tr>
<tr>
<td>Deployment design (DBMS selection)</td>
<td>- System cost, features, portability, requirements, Hardware</td>
<td>- Performance</td>
<td></td>
</tr>
<tr>
<td>Logical design</td>
<td>- Data structure, data type, attribute domain</td>
<td>- Normalization</td>
<td>- Prototype check</td>
</tr>
<tr>
<td>Physical design</td>
<td>- Hardware, storage structure, access methods</td>
<td>- Performance, response time, energy consumption</td>
<td>- Cost model, benchmarking</td>
</tr>
<tr>
<td>Implementation</td>
<td>- Special storage, storage group, data files, data loading</td>
<td>- Performance, integrity, concurrent access, security</td>
<td>- Tuning (Integrated tools in the DBMS)</td>
</tr>
<tr>
<td>Exploitation</td>
<td>- New data, access by users, new business requirements</td>
<td>- Maintenance</td>
<td>- Audit, tuning (Integrated tools in the DBMS)</td>
</tr>
</tbody>
</table>

[Golfarelli 11, Jenkins 08, Bouarar 15]
1. Why are these issues so important to the practitioner?

2. How do the DBMS vendors view the selection/evaluation criteria currently used by many of its customers?

3. What does the DBMS vendor see as the most important issue in a DBMS selection?

4. How much does the DBMS selection process cost?
DB-Engines DBMS Ranking

[http://db-engines.com/en/ranking]

299 systems in ranking, March 2016

<table>
<thead>
<tr>
<th>Rank</th>
<th>Mar 2016</th>
<th>Feb 2016</th>
<th>Mar 2015</th>
<th>DBMS</th>
<th>Database Model</th>
<th>Score</th>
<th>Score</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Oracle</td>
<td>Relational DBMS</td>
<td>1472.01</td>
<td>-4.13</td>
<td>+2.93</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>MySQL</td>
<td>Relational DBMS</td>
<td>1347.71</td>
<td>+26.59</td>
<td>+86.62</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Microsoft SQL Server</td>
<td>Relational DBMS</td>
<td>1136.49</td>
<td>-13.73</td>
<td>-28.31</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>MongoDB</td>
<td>Document store</td>
<td>305.33</td>
<td>-0.27</td>
<td>+30.32</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>PostgreSQL</td>
<td>Relational DBMS</td>
<td>299.62</td>
<td>+10.97</td>
<td>+35.19</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>DB2</td>
<td>Relational DBMS</td>
<td>187.94</td>
<td>-6.55</td>
<td>-10.91</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>Microsoft Access</td>
<td>Relational DBMS</td>
<td>135.03</td>
<td>+1.95</td>
<td>-6.66</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>Cassandra</td>
<td>Wide column store</td>
<td>130.33</td>
<td>-1.43</td>
<td>+23.02</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>Redis</td>
<td>Key-value store</td>
<td>106.22</td>
<td>+4.14</td>
<td>+9.17</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>SQLite</td>
<td>Relational DBMS</td>
<td>105.77</td>
<td>-1.01</td>
<td>+4.06</td>
</tr>
</tbody>
</table>

The popularity of DBMS is based on the following parameters:

1- Number of mentions of the system on websites (google, bing)
2- Frequency of technical discussions about the system on websites (Stack Overflow and DBA Stack Exchange)
3- Number of job offers
4- Number of profiles in professional networks (LinkedIn)
Functional requirements:
In the database field, the functional requirements describe:
- the functionalities
- the functioning
They are specifying: the calculation, data manipulation and processing, identification, creation, insert, delete, update and others.

Non-functional requirements: describe how the system will do:
- the security,
- the performance (response time, refresh time, processing time, data import/export, load time),
- the capacity (bandwidth transactions per hour, memory storage),
- the availability,
- the data integrity,
- the scalability
- the energy, etc.

Non-functional requirements are difficult to test.
Testing – Types and methods

[Golfarelli 11, Tort 11, Haftmann 07]

<table>
<thead>
<tr>
<th>Type</th>
<th>Actor</th>
<th>Objective</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural testing</td>
<td>Designer / developer</td>
<td>Testing all phases of the life cycle of the database design</td>
<td>- Conceptual - Logical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Physical - Exploitation</td>
</tr>
<tr>
<td>Functional testing</td>
<td>End users</td>
<td>Testing a database as a final product</td>
<td>- Checking data integrity and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>consistency</td>
</tr>
<tr>
<td>Non-functional testing</td>
<td>Developper/ Administrator</td>
<td>Testing the interaction between the applications and their underlying</td>
<td>- Performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>databases</td>
<td></td>
</tr>
</tbody>
</table>

Two testing methods exist to answer the question above:

1. **Simulation**
 - Mathematical cost model
 - Formal methods

 is based on parameters related to the principal dimensions of the database:
 - Schema (length of an attribute)
 - Platform (disk page size)
 - Workload (selectivity factors)
 - DBMS - Operating system
 - Access methods and algorithms
 - Metrics

2. **Hardware experimentation**
Hardware experimentation

Testing environment

1. **Laboratory**
 - Time: 14/05/2015
 - Platform: Dell precision T1500
 - CPU: Intel Core i5 2.27GHz
 - Memory: 4GB of DDR3
 - Operating system: Ubuntu 14.04 LTS kernel 3.13
 - Deployment: Centralized
 - DBMS: Oracle 11gR2
 - Dataset: Star Schema Benchmark (SSB) datasets
 - Size: 100 GB
 - Workload: SSB queries
 - Access methods: Materialized views
 - Algorithm: Nondominated Sorting Genetic Algorithm NSGA II
 - Metrics: Response time CPU_Cost IO_Cost Energy
 - Hypothesis: Without cache

The same dimensions that are repeated in the testing (Platform, DBMS, operating system, workload, dataset, metrics ...)

2. **TPC (The Transaction Processing Performance Council)**
 - These tests are stored in websites of TPC such as TPC-H benchmarking
 - It uses the same dimensions
 - The tests are not really usable
Simulation : Our test repository

1- **Storage**: Test repository allowing persisting all environment of testing results;
2- **Usage**: Repository exploitation in order to deal with the problem of DBMS and platform selection.
Test repository – User interface

Manifest:
Excerpt of the test repository meta-model.
Basic concepts

Query-per-Hour Performance (QphH@size): This metric represents the number of queries executed for one hour relative to the size of the database.

Similarité: It is a comparison between two objects to determine the most important and useful relationships between them.

Distance Euclidienne:
\[D_E = \sqrt{\sum_{i=1}^{k} (X_i - Y_i)^2} \]

Normalisation: Resize all the attributes of data in the range 0-1
\[S_i = \frac{X_i - \text{MIN}(X_i)}{\text{MAX}(X_i) - \text{MIN}(X_i)} \]
Searching usage of our test repository

Our recommender system:

Our algorithm:

Step 1 - analyzing of the company manifest to identify the presence of dimensions;
Step 2 - getting a fragment of the data cube satisfying these dimensions (using Slice and Dice);
Step 3 - normalizing all the dimension’s values using formula (2);
Step 4 - computing the similarity between the company manifest and each instance of the data cube fragment. Note that an instance represents a test;
Step 5 - selecting the best propositions based on the result of sorting. Indeed, tests are sorted in relation to similarity results for each DBMS.
Step 6 - the company can choose its favorite DBMS based on its requirements such as price.
Example:
Process of our recommender system (1)

<table>
<thead>
<tr>
<th>Algorithm's steps</th>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Platform dimension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DBMS dimension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dataset dimension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Metrics dimension</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results Table

<table>
<thead>
<tr>
<th>DBMS</th>
<th>Test</th>
<th>Size</th>
<th>CPU</th>
<th>Memory</th>
<th>QphH</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSQL Server</td>
<td>Test1</td>
<td>1000</td>
<td>2.8</td>
<td>1536</td>
<td>588831</td>
</tr>
<tr>
<td></td>
<td>Test2</td>
<td>3000</td>
<td>2.5</td>
<td>3072</td>
<td>725686</td>
</tr>
<tr>
<td></td>
<td>Test3</td>
<td>3000</td>
<td>2.5</td>
<td>3072</td>
<td>700392</td>
</tr>
<tr>
<td></td>
<td>Test4</td>
<td>3000</td>
<td>2.8</td>
<td>3072</td>
<td>461837</td>
</tr>
<tr>
<td></td>
<td>Test5</td>
<td>10000</td>
<td>2.8</td>
<td>4096</td>
<td>652239</td>
</tr>
<tr>
<td>Oracle</td>
<td>Test6</td>
<td>1000</td>
<td>1.5</td>
<td>64</td>
<td>9853</td>
</tr>
<tr>
<td></td>
<td>Test7</td>
<td>3000</td>
<td>2.88</td>
<td>512</td>
<td>198907</td>
</tr>
<tr>
<td></td>
<td>Test8</td>
<td>3000</td>
<td>3</td>
<td>1024</td>
<td>205792</td>
</tr>
<tr>
<td></td>
<td>Test9</td>
<td>10000</td>
<td>1.5</td>
<td>288</td>
<td>108099</td>
</tr>
<tr>
<td></td>
<td>Test10</td>
<td>30000</td>
<td>1.6</td>
<td>1024</td>
<td>156980</td>
</tr>
<tr>
<td>DB2</td>
<td>Test11</td>
<td>100</td>
<td>3.6</td>
<td>4</td>
<td>1894</td>
</tr>
<tr>
<td></td>
<td>Test12</td>
<td>300</td>
<td>3</td>
<td>10165</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test13</td>
<td>1000</td>
<td>1.7</td>
<td>32</td>
<td>20221</td>
</tr>
<tr>
<td></td>
<td>Test14</td>
<td>1000</td>
<td>1.9</td>
<td>32</td>
<td>26156</td>
</tr>
<tr>
<td></td>
<td>Test15</td>
<td>3000</td>
<td>2.6</td>
<td>16</td>
<td>38672</td>
</tr>
</tbody>
</table>
Example:

Process of our recommender system (2)

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Table in above with the following formulas:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N_1 = \frac{\text{Size}_{\text{Test1}} - \min(\text{Size})}{\max(\text{Size}) - \min(\text{Size})})</td>
</tr>
<tr>
<td></td>
<td>(N_{\text{Test1}} = \frac{\text{Distance}_{\text{Test1}} - \min(\text{Distance})}{\max(\text{Distance}) - \min(\text{Distance})})</td>
</tr>
<tr>
<td></td>
<td>(\text{Distance}{\text{Test1}} = \sqrt{\sum{i=1}^{3} (N_{\text{Manifest}} - N_{\text{Test1}})^2})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>DBMS</th>
<th>Test</th>
<th>Size</th>
<th>N1</th>
<th>CPU</th>
<th>N2</th>
<th>Memory</th>
<th>N3</th>
<th>QphH</th>
<th>Distance</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>MySQL Server</td>
<td></td>
</tr>
<tr>
<td>Test1</td>
<td>1000</td>
<td>0,03</td>
<td>2,8</td>
<td>0,62</td>
<td>1536</td>
<td>0,37</td>
<td>588831</td>
<td>0,19</td>
<td>0,17</td>
<td></td>
</tr>
<tr>
<td>Test2</td>
<td>3000</td>
<td>0,10</td>
<td>2,5</td>
<td>0,48</td>
<td>3072</td>
<td>0,75</td>
<td>725686</td>
<td>0,59</td>
<td>0,52</td>
<td></td>
</tr>
<tr>
<td>Test3</td>
<td>3000</td>
<td>0,10</td>
<td>2,5</td>
<td>0,48</td>
<td>3072</td>
<td>0,75</td>
<td>700392</td>
<td>0,59</td>
<td>0,52</td>
<td></td>
</tr>
<tr>
<td>Test4</td>
<td>3000</td>
<td>0,10</td>
<td>2,8</td>
<td>0,62</td>
<td>3072</td>
<td>0,75</td>
<td>461837</td>
<td>0,57</td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>Test5</td>
<td>10000</td>
<td>0,33</td>
<td>2,8</td>
<td>0,62</td>
<td>4096</td>
<td>1,00</td>
<td>652239</td>
<td>0,87</td>
<td>0,77</td>
<td></td>
</tr>
<tr>
<td>Test6</td>
<td>1000</td>
<td>0,03</td>
<td>1,5</td>
<td>0,00</td>
<td>64</td>
<td>0,01</td>
<td>9853</td>
<td>0,64</td>
<td>0,57</td>
<td></td>
</tr>
<tr>
<td>Test7</td>
<td>3000</td>
<td>0,10</td>
<td>2,0</td>
<td>0,66</td>
<td>512</td>
<td>0,12</td>
<td>198907</td>
<td>0,10</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td>Test8</td>
<td>3000</td>
<td>0,10</td>
<td>3</td>
<td>0,71</td>
<td>1024</td>
<td>0,25</td>
<td>205792</td>
<td>0,14</td>
<td>0,12</td>
<td></td>
</tr>
<tr>
<td>Test9</td>
<td>10000</td>
<td>0,33</td>
<td>1,5</td>
<td>0,00</td>
<td>288</td>
<td>0,07</td>
<td>108099</td>
<td>0,70</td>
<td>0,62</td>
<td></td>
</tr>
<tr>
<td>Test10</td>
<td>3000</td>
<td>1,00</td>
<td>1,6</td>
<td>0,05</td>
<td>1024</td>
<td>0,25</td>
<td>156960</td>
<td>1,13</td>
<td>1,00</td>
<td></td>
</tr>
</tbody>
</table>

Oracle										
Test11	100	0,00	3,6	1,00	4	0,00	1894	0,42	0,37	
Test12	300	0,01	3	0,71	32	0,01	10165	0,20	0,18	
Test13	1000	0,03	1,7	0,10	32	0,01	20221	0,55	0,49	
Test14	1000	0,03	1,9	0,19	32	0,01	26156	0,46	0,41	
Test15	3000	0,10	2,6	0,52	16	0,00	38672	0,22	0,19	

| **DB2** | | | | | | | | | | |
| Test11 | 800 | 0,02 | 2,8 | 0,62 | 768 | 0,19 | 0,00 | 0,00 | |

<table>
<thead>
<tr>
<th>DBMS</th>
<th>QphH</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>MySQL Server</td>
<td>588831</td>
<td>0,17</td>
</tr>
<tr>
<td>Oracle</td>
<td>198907</td>
<td>0,09</td>
</tr>
<tr>
<td>DB2</td>
<td>10165</td>
<td>0,18</td>
</tr>
</tbody>
</table>
A Case study

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Workload</th>
<th>Platform</th>
<th>DBMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Case 2</td>
<td>✓</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Case 1

Manifest 1

- Metric Result: Unknown of ResponseTime metric
- Organism: My Company
- Platform: CPU: 2.8 Ghz - Thread: 60 - Processor: 4 - Core: 24 - Memory: 768 Gbytes
- Dbms: Unknown
- Data Set: TPC-H datasets - Size: 800 GB
- Workload: TPC-H queries (Q3, Q7, Q19)
- Metric: ResponseTime

Case 2

Manifest 2

- Metric Result: Unknown of ResponseTime metric
- Organism: My Company
- Platform: Unknown
- Dbms: Unknown
- Data Set: TPC-H datasets - Size: 800 GB
- Workload: TPC-H queries (Q3, Q7, Q19)
- Metric: ResponseTime

Results

<table>
<thead>
<tr>
<th>Oracle</th>
<th>MSQL Server</th>
<th>DB2</th>
<th>Sybase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3</td>
<td>1300.74</td>
<td>29.94</td>
<td>162.45</td>
</tr>
<tr>
<td>Q7</td>
<td>1327.01</td>
<td>36.69</td>
<td>1110.05</td>
</tr>
<tr>
<td>Q19</td>
<td>1124.39</td>
<td>10.07</td>
<td>1627.62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oracle</th>
<th>MSQL Server</th>
<th>DB2</th>
<th>Sybase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3</td>
<td>143.68</td>
<td>41.32</td>
<td>159.55</td>
</tr>
<tr>
<td>Q7</td>
<td>528.36</td>
<td>33.57</td>
<td>861.13</td>
</tr>
<tr>
<td>Q19</td>
<td>376.78</td>
<td>3.01</td>
<td>1081</td>
</tr>
</tbody>
</table>
Summary

- Warehouse covering different aspects of the testing environment (12 dimensions).

- Recommender system dedicating to recommend DBMS and platform for given requirements.

- Storage part (Dimensions détails)

- Usage part (Query similarity)