

International Conference

REAL-TIME AND
NETWORK SYSTEMS

RTNS’06

Poitiers, France
May 30-31, 2006

Sponsored by:

COM’SCIENCE PROGRAM
CNRS/ GdR ASR
ENSMA

Edited by:

Guy JUANOLE and Pascal RICHARD

2

PREFACE

This is the fourtheenth in the series of conferences on Real Time Systems. The aim of these
conferences is to provide a forum for the presentation, by academic researchers and practitioners,
of original works which cover the technological and scientific topics in the area of the distributed
real time systems: design process (the different phases between the requirement specification till the
implementation) and operational life.

The first thirdteens (from 1993 to 2005) were held in the environment of the "Real Time Systems"
Exhibition in Paris (at first, Palais des Congrés Porte Maillot, and then Paris Expo-Porte de Versailles).
In 2005, in Paris, it was decided, at first, to make a conference independent of the Exhibition and more
academic oriented„ second, to emphasize the role of Systems on Networks (hence the transformation
of the name from RTS to RTNS) and, then, to organize the 2006 conference in Poitiers.

In response to the call for papers, 29 papers were submitted and 18 were selected by the Program
Committee, which has permitted to organize seven sessions (2 on "Uniprocessor scheduling", 1 on
"Networks", 2 on "Resources and Data management" and 1 on "Worst Case Execution Time"). In
addition, we have been very fortunate to secure the service of the excellent international speaker
Professor S.K.Baruah (North Carolina University at Chapel Hill, USA) who will be giving an invited
paper titled "Multiprocessor Real-time Scheduling Theory: Questions (many) and answers (a few)".
These 19 presentations will provide an interesting snapshot of research results and directions covering
conference topics.

The quality of the program is due to the authors who submitted papers and to the members of the
program Committee and extra referees who have given their time to provide excellent reviews (three
for each paper). We are sincerely grateful to all of them.

We would like to thank the local organization committee, the conference secretary Claudine Rault,
Frédéric Ridouard for the conference web site and Michaël Richard for the proceedings. Many thanks
to six students from the Business and Administration Management Department of the University In-
stitute of Technology (University of Poitiers) for their major activities in the organization committee.
Special thanks to Nicolas Navet who organized the previous edition and provided lot of useful infor-
mation, and also to Françoise Simonot-Lion for her helpful contacts for finding the scientific support
of the CNRS. Finally, we are grateful to the institutions and people that helped to prepare and organize
the event.

Guy Juanole and Pascal Richard
Program Co-chairs

PREFACE

C’est la quatorzième édition de la série de conférences sur les systèmes temps réel. L’objectif de
ces conférences est d’établir un forum de présentations de chercheurs et d’industriels sur des travaux
originaux qui couvrent les sujets scientifiques et techniques dans le domaine des systèmes temps réel
distribués : méthodes de conception (les différentes phases entre les spécifications à la mise en œuvre)
et leur vie opérationnelle.

Les éditions précédentes (entre 1993 et 2005) se sont déroulées dans le cadre du salon "systèmes
temps réel" à Paris (Palais des Congrés Porte Maillot, puis ensuite Paris Expo-Porte de Versailles).
En 2005, à Paris, il a été décidé, premièrement, de rendre la conférence indépendante du salon et de
l’orienter vers un public plus académique, et deuxièmement, de prendre en compte le rôle des réseaux
dans ces systèmes (d’où la transformation de l’acronyme de la conférence de RTS à RTNS) et, enfin,
d’organiser l’édition 2006 à Poitiers.

En réponse de l’appel à communications, 29 articles ont été soumis et 18 ont été sélectionnés par
le comité de programme, qui ont permis d’organiser 7 sessions (2 sur "l’ordonnancement monopro-
cesseur", 1 sur les "réseaux", 2 sur "la gestion des ressources et des données" et 1 sur "le calcul des
pires temps d’exécution"). En supplément, nous avons l’honneur d’accueillir le professeur S.K.Baruah
(North Carolina University à Chapel Hill, USA) qui présentera un exposé invité intitulé "Théorie de
l’ordonnancement temps réel multiprocesseur : questions (beaucoup) et réponses (quelques-unes)".
Ces 19 présentations fournissent une vue intéressante des résultats de recherche et des thèmes de
recherche couvrant les thèmes de la conférence.

La qualité du programme est due aux soumissions des auteurs ainsi qu’aux membres du comité de
programme et aux relecteurs extérieurs qui ont prodigués d’excellentes révisions des articles (trois par
article). Nous sommes sincèrement reconnaissants envers chacun d’entre eux pour le travail accompli.

Nous tenons à remercier tous les membres du comité local d’organisation et Claudine Rault, la
secrétaire de la conférence, Frédéric Ridouard pour le site web de la conférence, ainsi que Michaël
Richard pour les actes du congrès. Nous remercions aussi les six étudiants du département "Gestion
des Entreprises et Administrations" de l’Institut Universitaire de Technologie de Poitiers pour leurs
importantes activités au sein du comité d’organisation. Nous tenons tout spécialement à remercier
Nicolas Navet, qui a organisé la précédente édition de la conférence, pour l’ensemble des informations
qu’il nous a transmis, ainsi que Françoise Simonot-Lion pour ses contacts qui ont permis d’avoir le
soutien scientifique du CNRS. Enfin, nous sommes très reconnaissants aux institutions et personnes
qui ont permis de préparer et organiser cet événement.

Guy Juanole et Pascal Richard
Présidents du comité de programme

PROGRAM CO-CHAIRS /PRESIDENTS DU COMITE DE PROGRAMME
Guy JUANOLE (LAAS, Toulouse, France) and Pascal RICHARD (LISI, Poitiers, France)

PROGRAM COMMITTEE /COMITE DE PROGRAMME

L. Almeida (University of Aveiro, Portugal)

P. Amer (University of Delaware, USA)

Ch. André (I3S, Sophia Antipolis, France)

S.K. Baruah (University of North Carolina, USA)

A. Cervin (Lund Institute of Technology, Sweden)

F. Cottet (LISI, ENSMA, Poitiers, France)

J.-D. Decotignie (CSEM, Neuchâtel, Suisse)

A.-M. Déplanche (IRCCyN, Nantes, France)

J.A. Fonseca (University of Aveiro, Portugal)

J.M. Fuertes (Technical Univ. of Catalonia, Spain)

J. Goossens (ULB, Bruxelles, Belgique)

Z. Hanzalek (Tech. Univ., Prague, Czech Republic)

T.W. Kuo (National Taiwan University, Taiwan)

F. Lepage (CRAN, UHP Nancy, France)

L. Lo Bello (University of Catania, Italy)

Z. Mammeri (IRIT, UPS Toulouse, France)

P. Minet (INRIA-Rocquencourt, France)

N. Navet (LORIA, Nancy, France)

N. Nissanke (London South Bank Univ., UK)

I. Puaut (IRISA, Rennes, France)

G. Rodríguez-Navas (Univ. of Balearic Islands,
Palma de Mallorca)

T. Sauter (Austrian Acad. of Sciences, Austria)

M. Silly-Chetto (IRCCyN, Nantes, France)

D. Simon (INRIA-Rhônes Alpes, France)

F. Simonot-Lion (LORIA-INPL, Nancy, France)

D. Simplot-Ryl (LIFL, Lille, France)

L. Thiele (ETH, Zürich, Switzerland)

Y. Trinquet (IRCCyN, Nantes, France)

F. Vasques (University of Porto, Portugal)

F. Vernadat (LAAS, Toulouse, France)

L.T. Yang (St. Francis Xavier University, Canada)

ORGANIZATION COMMITTEE /COMITE D’ORGANISATION

F. Carreau (LISI/ENSMA, Poitiers)

B. Chauvière (LISI/ENSMA, Poitiers)

S. Enon (IUT GEA Poitiers)

J. Foulny (IUT GEA Poitiers)

A. Geniet (LISI/ENSMA, Poitiers)

D. Geniet (LISI/ENSMA, Poitiers)

P. Girard (LISI/ENSMA, Poitiers

E. Grolleau (LISI/ENSMA, Poitiers)

P. Occelli (IUT GEA Poitiers)

S. Pailler (LISI/ENSMA, Poitiers)

E. Parrault (IUT GEA Poitiers)

C. Rault (LISI/ENSMA, Poitiers)

M. Richard (LISI/ENSMA, Poitiers)

P. Richard (LISI/ENSMA, Poitiers)

F. Ridouard (LISI/ENSMA, Poitiers)

A. Sauquet (IUT GEA Poitiers)

E. Soulat (IUT GEA Poitiers)

K. Traore (LISI/ENSMA, Poitiers)

LIST OF REVIEWERS /LISTE DES RELECTEURS

L. Almeida (University of Aveiro, Portugal)

P. Amer (University of Delaware, USA)

Ch. André (I3S, Sophia Antipolis, France)

S.K. Baruah (University of North Carolina,
USA)

I. Calvo (Universidad del Pais Vasco, Portugal)

A. Cervin (Lund Institute of Technology, Swe-
den)

F. Cottet (LISI, ENSMA, Poitiers, France)

J.-D. Decotignie (CSEM, Neuchâtel, Suisse)

A.-M. Déplanche (IRCCyN, Nantes, France)

S. Faucou (IRCCyN, Nantes, France)

J.A. Fonseca (University of Aveiro, Portugal)

J.M. Fuertes (Technical Univ. of Catalonia,
Spain)

J. Goossens (ULB, Bruxelles, Belgique)

Z. Hanzalek (Tech. Univ., Prague, Czech Repub-
lic)

P.E. Hladik (IRCCyN, Nantes, France)

H.R Hsu (National Taiwan University, Taiwan)

C.M. Hung (National Taiwan University, Tai-
wan)

T.W. Kuo (National Taiwan University, Taiwan)

F. Lepage (CRAN, UHP Nancy, France)

L. Lo Bello (University of Catania, Italy)

Z. Mammeri (IRIT, UPS Toulouse, France)

P. Minet (INRIA-Rocquencourt, France)

N. Navet (LORIA, Nancy, France)

N. Nissanke (London South Bank Univ., UK)

M. Peca (CTU Prague, Czech Republic)

I. Puaut (IRISA, Rennes, France)

G. Rodríguez-Navas (Univ. of Balearic Islands,
Palma de Mallorca)

T. Sauter (Austrian Acad. of Sciences, Austria)

M. Silly-Chetto (IRCCyN, Nantes, France)

D. Simon (INRIA-Rhônes Alpes, France)

F. Simonot-Lion (LORIA-INPL, Nancy, France)

D. Simplot-Ryl (LIFL, Lille, France)

Y.Q Song (Loria, Nancy, France)

M. Sousa (University of Porto, Portugal)

L. Thiele (ETH, Zürich, Switzerland)

Y. Trinquet (IRCCyN, Nantes, France)

J. Trdlicka (CTU, Prague, Czech Republic)

F. Vasques (University of Porto, Portugal)

F. Vernadat (LAAS, Toulouse, France)

L.T. Yang (St. Francis Xavier University,
Canada)

C.Y. Yang (National Taiwan University, Taiwan)

Contents

Session I Invited talk

• Multiprocessor Real-time Scheduling Theory: questions (many) and answers (a few),
Sanjoy K. Baruah . 11

Session II Uniprocessor Scheduling I

•Worst-case analysis of feasibility tests for self-suspending tasks,
Frédéric Ridouard, Pascal Richard . 15

• Bi-Criteria Fixed-Priority Scheduling in Hard Real-Time Systems: Deadline and Importance,
A. Aguilar-Soto, G. Bernat . 25

• Near-Optimal Fixed Priority Preemptive Scheduling of Offset Free Systems,
Mathieu Grenier, Joël Goossens, Nicolas Navet . 35

Session III Network

•Worst-case Analysis of a mixed CAN/Switched Ethernet architecture,
Jérôme Ermont, Jean-Luc Scharbarg, Christian Fraboul . 45

• R-(m,k) firm: A novel QoS scheme for real-time flow guarantee in Networks,
Jian Li, YeQiong Song . 55

• SCoCAN: A communication Protocol for Distributed Real Time Systems,
J.O. Coronel, P. Pérez, G. Benet, F. Blanes, J.E. Simó, A. Crespo . 65

Session IV Resource and Data Management I

• Utility Accrual Real-Time Resource Access Protocols with Assured Individual Activity Timeliness
Behavior,
Peng Li, Binoy Ravindran, E. Douglas Jensen . 77

• Improvement of QoD and QoS in RTDBS,
Emna Bouazizi, Claude Duvallet, Bruno Sadeg. 87

Session V Multiprocessor Scheduling

• The Partitioned Multiprocessor Scheduling of Non-preemptive Sporadic Task Systems,
Nathan Fisher, Sanjoy K. Baruah . 99

7

• Probabilistic QoS Assessment of Tasks with Uncertain Parameters in Multi-Processor Scheduling,
Amare Leulseged and Nimal Nissanke . 109

• A Comparison of Global and Partitioned EDF Schedulability Tests for Multiprocessors,
Ted Baker . 119

Session VI Resource and Data Management II

• Solving Allocation Problems of Hard Real-Time Systems with Dynamic Constraint Programming,
P.E. Hladik, H. Cambazard, A-M. Deplanche, N. Jussien . 131

• Schedulability Analysis of Serial Transactions,
Karim Traore, Emmanuel Grolleau, Francis Cottet . 141

• The Real-Time MATPLC,
Mario de Souza and Adriano Carvalho . 150

Session VII Worst-case Execution Time

• Code padding to improve the WCET calculability,
Christine Rochange and Pascal Sainrat . 159

• A Verifiable and Distributed WCET Computation for Constrained Embedded Systems,
Nadia Bel Hadj Aissa, David Symplo-Ryl . 169

• Dymamic Instruction Cache Locking in Hard Real-Time Systems,
Alexis Arnaud, Isabelle Puaut . 179

Session VIII Uniprocessor Scheduling II

• Polynomial Time Approximate Schedulability Tests for Fixed-Priority real-time tasks: some nu-
merical experimentations,
Pascal Richard . 191

• Feasibility Conditions with Kernel Overheads for Periodic Tasks with Fixed Priority Scheduling on
an Event Driven OSEK System,
Franck Bimbard, Laurent George . 200

Author Index . 207

8

Invited talk

9

Multiprocessor Real-time Scheduling Theory:
questions (many) and answers (a few)

Sanjoy K. Baruah
University of North Carolina at Chapel Hill, USA.

Abstract:

Due to various inherent advantages of multiprocessor platforms, real-time application systems are increas-
ingly coming to be implemented upon such platforms. However, theoretical developments have not kept pace:
currently, our formal understanding of the behavior of such multiprocessor systems is approximately where our
knowledge of uniprocessor systems was in the early 1970’s. There is consequently a need for developing a
theory of multiprocessor real-time scheduling that is as complete and sophisticated as uniprocessor real-time
scheduling theory currently is, and that will prove as useful to the designers of real-time systems as uniprocessor
real-time theory does today. In this presentation, I will propose a research agenda for multiprocessor real-time
scheduling theory that aims to address this need. I will also briefly outline the progress that has been made thus
far towards achieving the goals in this agenda.

11

12

Uniprocessor Scheduling I

13

Worst-case analysis of feasibility tests for self-suspending tasks

Fréd́eric Ridouard, Pascal Richard
LISI-ENSMA

Av C. Ader, T́eléport 2 BP 40109
86961 Futuroscope Cedex, France

{frederic.ridouard,pascal.richard}@ensma.fr

Abstract

In most real-time systems, tasks invoke external opera-
tions processed upon dedicated processors. External opera-
tions introduce self-suspension delays in the task behaviors.
In such task systems, checking that deadlines will be meet
at run-time isNP-Hard in the strong sense. For that rea-
son, known response time analysis (RTA) only compute up-
per bounds of worst-case response times. These pessimistic
estimations lead in practice the designers of a real-time sys-
tem to oversize the computer features. The aim of this paper
is to quantify the pessimism used in known RTA methods.
We propose an exact exponential time feasibility test and de-
fine upper bounds of competitive ratio of three known RTA
techniques.

Keywords: Real-time, On-line scheduling, self-suspension,
Maximum response time.

1 Introduction

A real-time system is a system in which the correctness of
the system depends not only on correctness of computa-
tions, but also on the time at which the results are produced
(if a result is late, it is a fault). A real-time system can
be seen as a task system where each task must respect its
constraints. A task meets its deadline if it completes its
execution before its deadline otherwise the task misses its
deadline. There exists a feasible schedule for a task system
if all deadlines are met.

Several models of recurring real-time tasks have been de-
fined. The simplest but also the most fundamental model is
provided by theperiodic task modelof Liu and Layland [8].
In this model, a periodic taskτ has only two characteristics
τ = (C, T): C is the worst-case execution requirement of
task τ and T its period between two successive releases.
Consequently, an instance of the periodic taskτ (a job) is
generated and released in the system afterT units of times

with an execution requirement equals toC. A job must
complete its execution before the next release (T units of
time later). Tasks are assumed to be independent.

Most of real-time systems contain tasks with self-
suspension. A task with a self-suspension is a task that
during its execution prepares specifics computations (e.g.
In/Out operations orFFT on a digital signal processor).
The task is self-suspended to execute the specifics com-
putations upon external dedicated processors. External
operations introduce self-suspension delays in the behavior
of tasks. The task waits until the completion of the external
operations to finish its execution. Generally, the execution
requirement of external operations can be integrated in the
execution requirement of the task. But, if self-suspension
delays are large, then such an approach cannot be used to
achieve a schedulable system. Thus self-suspension must
be explicitely considered in the task model.

We have already proved [13] that the feasibility problem
of scheduling task systems isNP-Hard in the strong
sense. We have also shown the presence of scheduling
anomalies underEDF for scheduling independent tasks
with self-suspension upon an uniprocessor platform when
preemption is allowed. We have proved [14] that classical
on-line scheduling algorithms are not better than2 com-
petitive to minimize the maximum response time. In this
paper, we show that on-line and deterministic scheduling
algorithms are not optimal to schedule tasks with self-
suspension. The Response Time Analysis (RTA) can only
compute upper bounds of worst-case response times in a
reasonable amount of time. These pessimistic estimations
lead in practice to oversize the computer features. The aim
of this paper is to quantify the pessimism used in three
knownRTAmethods based on fixed-priority task systems.

Several feasibility tests are presented and defined for
analysing tasks allowed to self-suspend. For fixed-priority
task systems, there exist tests based on the computation of

Worst-case analysis of feasibility tests for self-suspending tasks

Fréd́eric Ridouard, Pascal Richard
LISI-ENSMA

Av C. Ader, T́eléport 2 BP 40109
86961 Futuroscope Cedex, France

{frederic.ridouard,pascal.richard}@ensma.fr

Abstract

In most real-time systems, tasks invoke external opera-
tions processed upon dedicated processors. External opera-
tions introduce self-suspension delays in the task behaviors.
In such task systems, checking that deadlines will be meet
at run-time isNP-Hard in the strong sense. For that rea-
son, known response time analysis (RTA) only compute up-
per bounds of worst-case response times. These pessimistic
estimations lead in practice the designers of a real-time sys-
tem to oversize the computer features. The aim of this paper
is to quantify the pessimism used in known RTA methods.
We propose an exact exponential time feasibility test and de-
fine upper bounds of competitive ratio of three known RTA
techniques.

Keywords: Real-time, On-line scheduling, self-suspension,
Maximum response time.

1 Introduction

A real-time system is a system in which the correctness of
the system depends not only on correctness of computa-
tions, but also on the time at which the results are produced
(if a result is late, it is a fault). A real-time system can
be seen as a task system where each task must respect its
constraints. A task meets its deadline if it completes its
execution before its deadline otherwise the task misses its
deadline. There exists a feasible schedule for a task system
if all deadlines are met.

Several models of recurring real-time tasks have been de-
fined. The simplest but also the most fundamental model is
provided by theperiodic task modelof Liu and Layland [8].
In this model, a periodic taskτ has only two characteristics
τ = (C, T): C is the worst-case execution requirement of
task τ and T its period between two successive releases.
Consequently, an instance of the periodic taskτ (a job) is
generated and released in the system afterT units of times

with an execution requirement equals toC. A job must
complete its execution before the next release (T units of
time later). Tasks are assumed to be independent.

Most of real-time systems contain tasks with self-
suspension. A task with a self-suspension is a task that
during its execution prepares specifics computations (e.g.
In/Out operations orFFT on a digital signal processor).
The task is self-suspended to execute the specifics com-
putations upon external dedicated processors. External
operations introduce self-suspension delays in the behavior
of tasks. The task waits until the completion of the external
operations to finish its execution. Generally, the execution
requirement of external operations can be integrated in the
execution requirement of the task. But, if self-suspension
delays are large, then such an approach cannot be used to
achieve a schedulable system. Thus self-suspension must
be explicitely considered in the task model.

We have already proved [13] that the feasibility problem
of scheduling task systems isNP-Hard in the strong
sense. We have also shown the presence of scheduling
anomalies underEDF for scheduling independent tasks
with self-suspension upon an uniprocessor platform when
preemption is allowed. We have proved [14] that classical
on-line scheduling algorithms are not better than2 com-
petitive to minimize the maximum response time. In this
paper, we show that on-line and deterministic scheduling
algorithms are not optimal to schedule tasks with self-
suspension. The Response Time Analysis (RTA) can only
compute upper bounds of worst-case response times in a
reasonable amount of time. These pessimistic estimations
lead in practice to oversize the computer features. The aim
of this paper is to quantify the pessimism used in three
knownRTAmethods based on fixed-priority task systems.

Several feasibility tests are presented and defined for
analysing tasks allowed to self-suspend. For fixed-priority
task systems, there exist tests based on the computation of

15

worst-case response time: Kimet al. [7], Jane W. S. Liu
[9] and Palenciaet al. [11, 12]. The latter approach can
be used forEDF scheduling [12]. There exists also a test
based on the utilization factor of the processor [4]. But,
no study concerning the quality of these tests are known to
exhibit relative merits of these methods. Consequently, our
approach is to analyze the relevance and quality of these
tests.

We next analyse the feasibility tests of Kimet al. [7] and
Liu [9] to schedule tasks with self-suspension. Before, we
define the task model (Section 2). In Section 3, the fea-
sibility tests of Kim and Liu are presented. In Section 4,
we present the main technique to evaluate the on-line al-
gorithms. In Section 5, we show that it is impossible to
define an optimal on-line algorithm to schedule tasks sys-
tems when tasks are allowed to self-suspend. Lastly, the
feasibility tests are analyzed to determine their pessimism.

2 Task model

We consider that task systems are based on a collection
of periodic and independent tasks. LetI be a task system
of n tasks. Every occurrence of a task is called a job.
Every taskτi (1 ≤ i ≤ n) arrives in the system at time
0, its relative deadline is denotedDi and its periodTi. If
its relative deadline is equal to the period, the task has a
implicit deadline else if justDi ≤ Ti constrained deadline.
The maximum execution requirement of a taskτi is Ci.

In the system, preemption of tasks is allowed. Conse-
quently, a job can be suspended at any time to allow the
execution of others jobs and later on will be resume to
continue its execution.

To simplify our results , we consider that tasks are allowed
to self-suspend at most once. The Figure 1 presents this
model. Every taskτi (1 ≤ i ≤ n) has two subtasks (with a
maximum execution requirementCi,k, 1 ≤ k ≤ 2) sep-
arated by a maximum self-suspension delayXi between
the completion of the first subtask and the start of the sec-
ond subtask. Such delays change from one execution to
another since they model execution requirements of ex-
ternal operations. Consequently every taskτi is denoted:
τi : (Ci,1, Xi, Ci,2, Di).

Figure 1. Task model

The utilization factor of a periodic taskτi, is the ratio of
its execution requirement to its period:U(τi) = Ci/Ti.
The utilization factor of a task systemτ is the sum of the
utilization factors of all tasks:U(τ) =

∑n
i=1 U(τi).

The maximum response timeRi of a taskτi is equal to
the difference between the completion time and the release
date. To minimize the maximum response time of a task set
is to minimizemax Ri.

A task set is saidfeasibleif there exists a schedule such that
all tasks are completed by their deadlines at run-time.

3 Presentation of feasibility tests

In the following section,we present three feasibility tests:

• Kim et al. [7]: To define their feasibility tests, they use
the works of Wellings [16] and Minget al. [10]. They
define two tests based on the same principle : to con-
sider a task with a self-suspension in two independent
tasks without any suspension delay.

• Jane W. S. Liu [9]: This feasibility test determines
the blocking time due to self-suspension and higher-
priority tasks.

3.1 Feasibility tests of Kimet al. [7]

Wellings et al. [16] studied the tasks with self-suspension
but with Ci,1 = 0. The self-suspension is called release
jitter [3, 16]. A release jitter for a task is the difference of
time between arrival and release time. Consequently, they
use task set in which each task has a release jitter. To deter-
mine the response time of a taskτi, they use the following
recurrence relation:

R0
i = Ci

Rn+1
i = Ci +

i−1∑
j=1

⌈
Rn

i + Xj

Tj

⌉
Cj (1)

The recurrence stops ifRn+1
i = Rn

i . And the worst-case
response time ofτi is Rn

i + Xi. To prove that the taskτi is
schedulable,Rn

i + Xi must be less than or equal toDi.

Ming et al (cf [10]) have modified the recurrence relation
of Wellings (1) to take into account any task with a self-
suspension:

R0
i = Ci + Xi

Rn+1
i = Ci + Xi +

i−1∑
j=1

⌈
Rn

i + Xj

Tj

⌉
Cj (2)

16

However, Minget al. consider the suspension delay as a
part of execution requirement. But external operations are
scheduled upon dedicated processors. Consequently, such
an approach can increase unnecessarily the worst-case re-
sponse times of tasks. Kimet al. (cf [7]) define two new
feasibility tests to compute worst-case response times of
tasks with self-suspensions.

3.1.1 Method A of Kim

They consider thatDi ≤ Ti for all i and tasks can be pre-
empted. This first method subdivide each taskτi with self-
suspension in two independent tasks without suspension :

• τi,1, released at timeri without release jitter and with
a processing requirement ofCi,1.

• τi,2, released at timeri, its jitter Ji,2 equalsXi and a
processing requirement equal toCi,2.

The two generated tasks inherit the period and the deadline
of τi.

To prove the schedulability of taskτi, we must transform
τi into τi,1 andτi,2, and we then calculate the worst-case
response time of the generated tasks.τi,1 has a release jitter
equal to0 andτi,2 has one equal toXi. The worst-case of
τi,1 andτi,2 are calculated independently. To calculate the
worst-case response time ofτi,1, the Wellings’s formula (1)
is used:

Rn+1
i,1 = Ci,1 +

i−1∑
j=1

⌈
Rn

i,1

Tj

⌉
Cj,1

+
i−1∑
j=1

⌈
Rn

i,1 + Xj

Tj

⌉
Cj,2

Computations stop for the smallest positive integern
satisfiesRn+1

i,1 = Rn
i,1 and the worst-case response time

R∗
i,1 of τi,1 is equal toRn

i,1. If R∗
i,1 ≤ Di then τi,1 is

schedulable. Otherwise, we cannot conclude thatτi,1 is
schedulable.

The worst-case response time ofτi,2 is calculated with the
following recurrent formula:

Rn+1
i,2 = Ci,2 +

i−1∑
j=1

⌈
Rn

i,2

Tj

⌉
Cj,1

+
i−1∑
j=1

⌈
Rn

i,2 + Xj

Tj

⌉
Cj,2

The worst-case response timeR∗
i,2 of τi,2 is calculated. To

finish, if (R∗
i,1 + Xi + R∗

i,2) ≤ Di, thenτi is schedulable,
otherwise we cannot conclude.

3.1.2 Method B of Kim

This approach is an improvement of Ming’s method (cf.
Formula 2). This method consider the suspension delays
as part of processing requirement of tasks. But without this
assumption, during the interval of timeXi, other tasks can
be scheduled. To calculate the worst-case response time of a
task,Xi can be reduced and furthermore the worst-case re-
sponse time ofτi can be shortened. Consequently, to calcu-
late the worst-case response time of a taskτi, the following
recurrent formula is used:

Rn+1
i = Ci + Mi +

i−1∑
j=1

⌈
Rn

i

Tj

⌉
Cj,1

+
i−1∑
j=1

⌈
Rn

i + Xj

Tj

⌉
Cj,2

WhereMi = Xi −
∑i−1

j=1

⌊
Xi

Tj

⌋
Cj

If Rn+1
i = Rn

i andRn
i ≤ Di thenτi is schedulable. Other-

wise, we cannot conclude if it is schedulable or not.

Remark 1 SinceMi ≤ Xi, if τi is schedulable with the
Ming’s method (cf. Formula 2), then the task is schedulable
with the method B of kim.

3.2 The Liu’s method [9]

To take into account the extra delay suffered by a task
τi due to its own self-suspension and the suspension of
higher-priority tasks, Liu [9] considers this delay as a factor
of blocking time ofτi, denotedbi(ss).

The blocking time of a task due to its own suspension is
not more thanXi. To determine the blocking time due to a
higher-priority taskτk, we must study two cases:

• τk cannot delayτi during more thanCk units of time
since the taskτk can be scheduled (or partially sched-
uled) during the suspension ofτi because the processor
is idle.

• Moreover, ifXk < Ck then the blocking time cannot
be more thanXk units of time.

Consequently, the blocking factor due to each higher-
priority tasks,τk is never more than the suspension delay
of τk and never more thanCk.

Finally, the blocking timebi(ss) is equal to:

bi(ss) = Xi +
i−1∑
k=1

min(Ck, Xk)

17

Note that Liu’s method is not expected to perform as well
as the Kim’s methods, since it does not specify where the
suspension occurs within the task.

4 Validation of on-line algorithms

4.1 Introduction

This paper is interested by the validation of on-line algo-
rithms. For any objective function, we wish to know the
quality of the solution obtained with an on-line scheduling
algorithm (hereafter referred to as the performance guaran-
tee of the algorithm). This quality will not be better than
the quality obtained by an optimal off-line algorithm. Two
commonly used methods to evaluate the performance of an
on-line algorithm are known:

• The simulation : The on-line scheduling algorithms are
compared and evaluated in the confine of a stochastic
model.

• The competitive analysis : The on-line algorithm is
compared with an optimal off-line algorithm for the
same problem so that the on-line algorithm achieves
its worst-case results.

4.2 The simulation

The simulation allows to compare the on-line algorithms.
To evaluate the performance of an on-line algorithm, this
method defines a stochastic model by assuming a certain
probabilistic distribution to compute task features. With this
model, a task system is generated and it is submitted to ev-
ery on-line algorithm.
However, the on-line algorithm is then evaluated within the
confine of the stochastic model. Moreover, this approach
is inconsistent with the environments of on-line algorithms.
Because the probabilistic distribution model based on past
observations will always model the future arrivals of jobs.
But, as pointed out by Karp [6], this assumption is inconsis-
tent with the nature of on-line algorithms unless the future
resemble to the past.

4.3 The competitive analysis

The first results of this approach are the results obtained by
Sleator and Tarjan[15] in 1985. This approach compares
the on-line algorithm to an optimal clairvoyant algorithm
in the worst-case. The optimal off-line algorithm (saidthe
adversary) defines the instances of problem to compare the
two algorithms. But a good adversary defines instances of
problem so that the on-line algorithm achieves its worst-
case performance. To analyse deterministic algorithms, two
equivalent adversaries can be used:

• The oblivious adversary defines the task system in ad-
vance based on the characteristics of the on-line algo-
rithm, and serves it optimally.

• The adaptive on-line adversary defines the next request
of tasks according to the decision taken by the on-line
algorithm, but serves it immediately.

An algorithm that minimizes a measure of performance, is
c-competitive if the performance obtained by the on-line
algorithm is less than or equal toc times the value of the
optimal algorithm. More formally, given an on-line algo-
rithm A and a task systemI, the performance obtained by
the on-line algorithmA (Resp.the adversary) in scheduling
I is denotedσA(I) (Resp. σ∗(I)). Consequently,A is
c-competitive if there exists a task systemI and a constant
c so thatσA(I) ≤ cσ∗(I).

The competitive ratiocA of an on-line algorithmA is the
worst-case ratio while considering any instanceI.

Definition 1 The competitive ratio,cA, of the on-line algo-
rithm A to minimize a performance criterion while consid-
ering any instanceI is:

cA = sup
toutI

σA(I)
σ∗(I)

5 On-line algorithms are not optimal

In this section, we demonstrate that there exists no on-line
optimal algorithm to schedule task systems when tasks are
allowed to self-suspend upon uniprocessor systems.

Theorem 1 No on-line deterministic algorithms are opti-
mal to schedule tasks systems when tasks are allowed to
self-suspend upon a uniprocessor system.

Proof :
To prove this theorem, we use the competitive analysis with
an adaptative adversary (cf. Section 4.3). Hence, we define
a task system and according to the scheduling decision of
any on-line and deterministic algorithm, the adversary de-
fines the next request of tasks so that the on-line algorithm
misses a deadline and the adversary serves it optimally. We
define a task systemI and we show that no on-line deter-
ministic algorithm can schedule optimallyI. We consider
that at time0 two tasks are available:

τ1 : C1,1 = 1, X1 = 7, C1,2 = 1, D1 = 10, T1 = 10
τ2 : C2,1 = 1, X2 = 4, C2,2 = 1, D2 = 9, T2 = 10

Let A be an on-line algorithm. At time0, to make its
scheduling decision,A has two choices:

18

1. The on-line algorithmA does not scheduleτ2 at time0
(this schedule is presented Figure 2.a). Either it sched-
ulesτ1 or it lefts the machine idle. In the two cases,
it schedulesτ2 at time t, with 0 < t ≤ 3 to respect
the deadline ofτ2 (For the Figure 2.a,t = 2). But at
time 3, an other taskτ3 with a period equals to10 is
released:

τ3 : C1,1 = 1, X1 = 2, C1,2 = 3, D1 = 9

At time 3, the on-line algorithmA schedulesτ3

since it has not laxity. ButA has not enough time to
completeτ2 andτ3 before their common deadline at
time 9. ConsequentlyA has done a bad choice and
hence, the scheduling ofI underA is not feasible.

The optimal off-line algorithmschedules at time0, τ2

and at time1, τ1. At time 3, τ3 is released and imme-
diately run. At time5, τ2 is resumed from its self-
suspension and completed at time6. Finally, τ3 is
completed at time9 and τ1 at time 10. Figure 2.b
presents the scheduling ofI under an optimal off-line
algorithm.

Figure 2. The on-line algorithm A does not
schedule τ2 at time 0 but at time t = 2

Consequently, we show that if an on-line and deter-
ministic algorithm chooses to not runτ2 at times0, it
is not optimal since there exits a feasible schedule of
I.

2. WhenA schedulesτ2 at time 0, at time 1, it must
scheduleτ1 to respect its deadline. At time2 arrives
τ4 with implicit deadline (T4 = D4):

τ4 : C1,1 = 4, X1 = 3, C1,2 = 1, T1 = 10

A schedulesτ4 at time 2 (to respect its deadline)
and at time6, τ2 is resumed from its self-suspension
and scheduled. But between time9 and10, A must
completeτ1 andτ4, hence it is impossible.A cannot
schedule the task systemI. Figure 3.a presents the
scheduling ofI underA.

The optimal off-line algorithm schedules at time0, τ1,
at time1, τ2 and at time2, τ4. At time6, τ2 is resumed

and completed at time7. Finally, τ1 is completed at
time9 andτ4 at time10. Figure 3 presents the schedul-
ing of I obtained by the adversary.

Figure 3. The on-line algorithm A schedules
τ2 at time 0

Consequently, there exits no optimal on-line and determin-
istic algorithm to schedule task systems upon uniprocessor
system when tasks are allowed to self-suspend.

�

6 Analysis of feasibility tests

6.1 Introduction

In this section, the feasibility tests presented in the Sec-
tion 3 are analyzed. We use the two validation techniques
presented in Section 4. These feasibility tests compute the
upper bound of the maximum response time of every task.
At first time, we establish the pessimism of these estima-
tions. To determine this pessimism, we use the approach
presented by Epstein and Rob Van Stee in [5]. They pro-
vided lower bounds for on-line deterministic (or random-
ized) algorithms for several optimization criteria. They
studied problems in term of competitive analysis. They au-
tomatically generated a huge number of synthetic task sets.
For each task set, they computed the competitive ratio for
the on-line algorithm studied. Finally, they kept the task set
with the worst competitive ratio. In our work, the optimal-
ity criteria is the minimization of the maximum response
time. We use the same method: we generate, with a brute
force generation (as done in [1] for non-preemptive system),
a huge number of task sets and for each feasibility test we
keep the task set leading to the worst competitive ratio. To
complete this analysis, we define a stochastic model to gen-
erate a lot of task systems. With these task systems, statis-
tics are defined to compare these tests.
The feasibility tests presented in this paper are based on
fixed-priority task systems. Consequently, to use the com-
petitive analysis (cf. Section 4.3), we don’t use an optimal
off-line algorithm as adversary but we use the fixed priority
algorithm (RM).

19

6.2 Simulation environment

The first constraint is to obtain schedulable task systems.
The utilization factor of generated task systems is bounded
by 0.7. Decreasing the utilization factor is an important
parameter for generating feasible task systems.

The presence of anomalies for scheduling tasks with
self-suspension in fixed-priority task system [13, 14] in-
creases the costs of computations since reducing processing
requirement can lead to worst-case response times of tasks.

The feasibility tests are based on the fixed-priority schedul-
ing algorithmRM. But, we proved [13, 14] that schedul-
ing anomalies can occur while scheduling tasks with self-
suspension underRM. Consequently, if the execution re-
quirement of a task is decreased of one unit of time, the
response time can increase and a deadline can be missed.
Hence, to determine the exact worst-case response time of
task systems where tasks are allowed to self-suspend, we
must test all possible processing requirements (and suspen-
sion delays) for each job of each task.

Remark 2 Ci (resp.Xi) is the upper limit to its processing
requirement (resp. worst-case suspension delay) of taskτi.
Consequently, we consider that the execution requirement
(resp. suspension delay) of a task can vary between1 and
Ci (resp. Xi) since all parameters are integers. Moreover,
Ci,1, Xi andCi,2 belong to the interval[1, 4].

We define two rules to reduce the hyperperiod length:

• To minimize the length of the hyper period, the tasks
are synchronous.

• To minimize the computations and the length of the
hyper period, tasks have harmonic periods (Definition
2).

Definition 2 LetI : (τ1, τ2, . . . , τn) be a task system.I has
harmonic periods if and only if the two following properties
are respected:

T1 ≤ T2 ≤ · · · ≤ Tn

∀i, i ∈ {2, . . . , n}, Ti mod Ti−1 = 0

Remark 3 We assume that tasks are indexed in increas-
ing order of periods. The second property limits the length
of the feasibility interval and the number of jobs within it.
Consequently the task with the smallest priority isτn. Since
we use the fixed priority scheduling algorithm,τn has the
longest period.

To generate a task: first, the executive requirements and the
suspension delays are computed. Finally, to determine the

period, the period of the task previously generated, is mul-
tiplied until the utilization factor (of the task system) is less
than0.7.
Finally, we consider tasks with implicit deadlines. More-
over, the generated task systems contain only two or three
tasks to firstly limit time while computing exact response
times, and secondly to exhibit task systems leading to
worst-case performance guarantees.

6.3 Lower bounds

6.3.1 Introduction

Next subsections detail task sets automatically generated by
our simulator leading to the worst-case performance of the
three considered feasibility tests.

6.3.2 Method A of Kim

Lower bound 1 The lower bound of the competitive ratio
for the feasibility test of the method A of Kim to minimize
the maximum response time while scheduling tasks allowed
to self-suspend at most once is2, 91667.

Proof:
Let IA be the following task system containing three tasks:

τ1 : C1,1 = 3, X1 = 2, C1,2 = 3, T1 = 12
τ2 : C2,1 = 3, X2 = 1, C2,2 = 1, T2 = 96
τ3 : C3,1 = 1, X3 = 1, C3,2 = 1, T3 = 96

The upper bound of the maximum response time obtained
with the method A of Kim denotedσA

i for each taskτi of
IA is:

τ1 : σA
1 = 8, τ2 : σA

2 = 17, τ3 : σA
3 = 35

Figure 4. The exact maximum response time
obtained by RM while scheduling IA.

Figure 4 presents the exact maximum response time ob-
tained with the fixed-priority scheduling algorithmRM.
There are no scheduling anomalies and for that reason, tasks
are scheduled with their worst-case execution requirements
and suspension delays. At time0, RM schedulesτ1 and
during its suspension it schedules partiallyτ2. At time 7,
τ2 is scheduled. At time9, τ2 is suspended andτ3 sched-
uled. Finally at time11, τ2 finishes its execution andτ3, at

20

time12. Hence, the exact maximum responses time of tasks
(denotedσRM

i) are:

τ1 : σRM
1 = 8, τ2 : σRM

2 = 11, τ3 : σRM
3 = 12

Consequently, the worst-case competitive ratio forI is:

cRM
A = sup

anyI

σA(I)
σRM (I)

≥ σA(IA)
σRM (IA)

≥ max
(

σA
1

σRM
1

,
σA

2

σRM
2

,
σA

3

σRM
3

)
≥ σA

3

σRM
3

=
35
12

= 2.91667

�

6.3.3 Method B of Kim

Lower bound 2 The lower bound to minimize the maxi-
mum response time for the method B of Kim is equal to
2, 75.

Proof:
Let IB be the following task system:

τ1 : C1,1 = 1, X1 = 1, C1,2 = 3, T1 = 6
τ2 : C2,1 = 1, X2 = 3, C2,2 = 2, T2 = 270
τ3 : C3,1 = 3, X3 = 2, C3,2 = 3, T3 = 810

The upper bound obtained with the second method of Kim
for each taskτi of IB and denotedσB

i is equal to:

τ1 : σB
1 = 5, τ2 : σB

2 = 22, τ3 : σB
3 = 35

Figure 5. The exact maximum response time
obtained by RM while scheduling IB .

Figure 5 presents the exact maximum response time of task
τ2. At time 0, RM schedulesτ1 since it has the highest
priority. At time 1, τ1 is suspended andτ2 scheduled. At
time 2, τ2 is suspended andτ1 is completed. At time3, τ3

is scheduled during the suspension ofτ2. At time 6, τ1 is
released and at time8, τ2 is completed. Consequently, we
obtain the following exact response times:

τ1 : σRM
1 = 5, τ2 : σRM

2 = 8, τ3 : σRM
3 = 24

Consequently, the competitive competitive ratio for the sec-
ond method of Kim is:

cRM
B = sup

anyI

σB(I)
σRM (I)

≥ σB(IB)
σRM (IB)

≥ max
(

σB
1

σRM
1

,
σB

2

σRM
2

,
σB

3

σRM
3

)
≥ σB

2

σRM
2

=
22
8

= 2.75

�

6.3.4 Jane W. S. Liu’s method

Lower bound 3 The competitive ratio on RM obtained
with the method of Liu is2, 875 to minimize the maximum
response time for tasks are allowed to self-suspend at most
once.

Proof:
We use the instanceIB defined in the Theorem 2. The upper
bound of maximum response time obtained with the method
of Liu for each taskτi of IB and denotedσL

i are:

τ1 : σL
1 = 5, τ2 : σL

2 = 23, τ3 : σL
3 = 47

Figure 5 presents the exact maximum response time ob-
tained withRM while schedulingIB . These results are:

τ1 : σRM
1 = 5, τ2 : σRM

2 = 8, τ3 : σRM
3 = 24

Hence, the competitive ratio obtained for the method of Liu
to minimize the maximum response time is equal to:

cRM
L = sup

anyI

σL(I)
σRM (I)

≥ σL(IB)
σRM (IB)

≥ max
(

σL
1

σRM
1

,
σL

2

σRM
2

,
σL

3

σRM
3

)
≥ σL

2

σRM
2

=
23
8

= 2.875

�

6.3.5 Comparison of feasibility tests

These results show that the method B ofKim obtained the
best results. But, we cannot conclude that the best feasibil-
ity test is the method B. Because, the only possible conclu-
sion is that these feasibility tests are not comparable. We
cannot conclude since it is possible for each feasibility test
to determine tasks sets where the feasibility test is the best
test but it is the worst for another. Kimet al. have already
proved that their two methods are not comparable [7]. Now
to prove that all the tests are not comparable, we show that

21

the method A ofKim and the method ofLiu are not compa-
rable:
Let I be the following task set:

τ1 : C1,1 = 2, X1 = 3, C1,2 = 1, T1 = 7
τ2 : C2,1 = 1, X2 = 3, C2,2 = 2, T2 = 56
τ3 : C3,1 = 3, X3 = 1, C3,2 = 2, T3 = 392

The competitive ratio obtained for the three tests:

σRM
A (I) = 1.47

σRM
B (I) = 1.30

σRM
L (I) = 1.80

The ratio obtained with the method A ofKim is better than
the ratio obtained with the method ofLiu.

Let I ′ be the following task set:

τ1 : C1,1 = 2, X1 = 3, C1,2 = 1, T1 = 9
τ2 : C2,1 = 2, X2 = 3, C2,2 = 3, T2 = 45
τ3 : C3,1 = 2, X3 = 2, C3,2 = 1, T3 = 90

The ratios onRM are:

σRM
A (I ′) = 1.69

σRM
B (I ′) = 1.06

σRM
L (I ′) = 1.56

But with this task set, the method ofLiu is better than the
method A of Kim. To conclude all tests are not comparable.
Consequently, we can define a last test: the best method.

6.3.6 The Best Method

This method consist in applying forevery task all tests
and to store the smallest computed response time. Such a
method can help to decrease the competitive ratio (but we
have no formal proof of that fact).

Lower bound 4 The competitive competitive ratio ob-
tained while considering for each task system the best fea-
sibility test is2, 16667 to minimize the maximum response
time for tasks allowed to self-suspend at most once.

Proof:
Let IC be the following task system:

τ1 : C1,1 = 1, X1 = 1, C1,2 = 3, T1 = 9
τ2 : C2,1 = 1, X2 = 3, C2,2 = 1, T2 = 72
τ3 : C3,1 = 3, X3 = 2, C3,2 = 1, T3 = 648

The exact maximum response time obtained with the algo-
rithm RM are:

τ1 : σRM
1 = 5, τ2 : σRM

2 = 6, τ3 : σRM
3 = 14

The Table 1 presents for each task, the competitive ratio
obtained with each feasibility test.

Tasks Method A
of Kim

Method B
of Kim

Method of
Liu

τ1 1.00 1.00 1.00
τ2 2.17 2.17 2.33
τ3 1.57 1.43 1.64

Table 1. Competitive ratio for each task of IC

Consequently, the competitive competitive ratio ,CBst for
this method is:

cRM
Bst = sup

anyI

σBst(I)
σRM (I)

≥ σL(IC)
σRM (IC)

≥ sup
1≤i≤3

{inf{cRM
A (τi), cRM

B (τi), cRM
L (τi)}}

≥ 2.16667

�

6.4 Simulation results

6.4.1 Introduction

In this section, we present numerical results obtained during
the brute force generation described in Section 6.2. All tests
(upper bounds and the exact test) have been applied to every
generated task set. We are aware that such a simulation en-
vironment is not sufficient (cf. [2]) to exhibit relative merits
of the considered feasibility tests that they are only valid in
the confine of our stochastic model (see Section 6.2).

6.4.2 Results

To obtain relevant results from a statistical point of view,
we generated one million of tasks sets. The tasks sets are
generated with the procedure defined in Section 6.2. The
Table 2 presents statistical results obtained by the simulator
for the feasibility tests.
The first row of the Table 2 presents the percentage of times
where every feasibility test has been the best one (while
scheduling task sets). The method B ofKim leads to the
best results.
The average competitive ratios in row2 of the Table 2 al-
lows us to remark that the method B ofKim is the feasibility
test arriving in first position. But even if the percentage of
the method ofLiu is equal to zero, this feasibility test has a
average less than the average of the method A ofKim.

22

With the standard deviations (row 3 of the Table 2), the
feasibility test with the smallest standard deviation is the
method A ofKim.

Feasibility
tests

Method
A of Kim

Method
B of Kim

Method
of Liu

Best
method

3.64% 99.8% ≈
0.00%

Average ra-
tios

1.65 1.21 1.50

Standard
deviations
of ratios

0.18 0.20 0.22

Table 2. Results of simulation for the feasibil-
ity tests for task systems with 2 or 3 tasks

7 Conclusion

In this paper, we have presented some results on tasks
allowed to self-suspend at most once. For such task
systems there exists no on-line optimal algorithm. We also
presented the performances of three different feasibility
tests. For these tests, our aim was to compute their
pessimisms since they compute an upper bound of the
exact maximum response time of tasks. To determine this
pessimism, we use the approach of Epstein and Van Stee
[5] and also the competitive analysis. But the feasibility
tests are not compared to an optimal algorithm, but to the
fixed-priority on-line algorithmRM. Hence, we shown that
the competitive ratio of feasibility tests are between2.75
and 2.91667 implying the designers of real-time system
to oversize the computer features. We also shown that
feasibility tests are not comparable. But, if for each task,
we apply every feasibility test and we retain the best then
the competitive ratio decreases to2.16667. Finally, for
task sets with a small number of tasks and exactly one
self-suspension per task, the method B of Kimet al. is the
best one.

In further works, an interesting issue is to analyze others
feasibility tests and to consider a more general stochas-
tic environment (with task sets having a larger number of
jobs). Also to extend the approach to theEDF schedul-
ing policy and the feasibility test of Palencia [12] (based
on EDF). An other interesting issue can be to consider de-
pendent tasks (tasks with shared resources or precedence
constraints) [11].

References

[1] I. Alzeer, P. Molinaro, and Y. Trinquet. Calcul ex-
haustif du temps de rponse de tches et messages dans
un systme temps rel rparti.In Proceedings of the13th
Real-Time Systems, 2005.

[2] E. Bini and GC. Buttazzo. Biasing effects in
schedulability measures.IEEE Proceedings of the
16th Euromicro Conference on Real-Time Systems
(ECRTS04), Catania, Italy, July 2004.

[3] A. Burns. Preemptive priority-based scheduling: An
appropriate engineering approach.in Advances in
Real-Time Systems, S.H. Son, Ed.,Prentice Hall, New
Jersey, pages 225–248, 1995.

[4] U. C. Devi. An improved schedulability tast for
uniprocessor periodic task systems.proc. Euromicro
Conference on Real-Time Systems (ECRTS’03), pages
23–30, 2003.

[5] L. Epstein and R. Van Stee. On non-preemptive
scheduling of periodic and sporadic tasks.Theoreti-
cal Computer Science, 299:439–450, 2003.

[6] R. Karp. On-line algorithms versus off-line algo-
rithms: How much is it worth to know the future?
Algorithms, Software, Architecture, IFIP Transactions
A-12, Information processing:1:416–429, 1992.

[7] I-G. Kim, K-H. Choi, S-K. Park, D-Y. Kim, and M-
P. Hong. Real-time scheduling of tasks that contain
the external blocking intervals.Real-Time and Embed-
ded Computing Systems and Applications(RTCSA’95),
1995.

[8] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard real-time environ-
ment.Journal of the ACM (Association for Computing
Machinery), 20(1):46–61, 1973.

[9] Jane W. S. Liu.Real-Time Systems, chapter Priority-
Driven Scheduling of Periodics Tasks, pages 164–165.
Prentice Hall, 2000.

[10] L. Ming. Scheduling of the inter-dependent messages
in real-time communication.Proc. of the First Inter-
national Workshop on Real-Time Computing Systems
and Applications, Dec. 1994.

[11] J.C. Palencia and M. Gonzales-Harbour. Schedulabil-
ity analysis for tasks with static and dynamic offsets.
Proceedings of the 19th IEEE Real-Time Systems Sym-
posium, 1998.

23

[12] J.C. Palencia and M. Gonzales-Harbour. Offset-based
response time analysis of distributed systems sched-
uled under edf.Proceedings of the IEEE Real-Time
Systems Symposium, 2003.

[13] F. Ridouard, P. Richard, and F. Cottet. Negative results
for scheduling independent hard real-time tasks with
self-suspensions.Proceedings of the 25th IEEE Inter-
national Real-Time Systems Symposium (RTSS’04), 1,
December 2004.

[14] F. Ridouard, P. Richard, and F. Cottet. Ordonnance-
ment de tches indpendantes avec suspension.Proceed-
ings of the 13rd RTS Embedded Systems (RTS’05), 1,
April 2005.

[15] D. D. Sleator and R. E. Tarjan. Amortized efficiency
of list update and paging rules.Communication of the
ACM 28, 2:202–208, 1985.

[16] A.J. Wellings, M. Richardson, A. Burns, N. Audsley,
and K. Tindell. Applying new scheduling theory to
static priority pre-emptive scheduling.Software Engi-
neering Journal, 1993.

24

Bicriteria Fixed-Priority Scheduling in Hard Real-Time Systems:
Deadline and Importance

A. Aguilar-Soto∗ and G. Bernat
Department of Computer Science,

The University of York
Heslington, York YO10 5DD
{aas, bernat}@cs.york.ac.uk

Abstract

In the context of fixed priority scheduling on hard real-
time systems, we investigate the scheduling problem where
timing and QoS requirements have to be optimized. The
QoS is expressed in terms of relative importance relation-
ships. Thus, the problem is formulated as finding an opti-
mal priority ordering that maximises the importance cri-
terion. Optimality in this context means that there is not
other feasible schedule with higher importance. The main
contribution is an algorithm that finds such optimal prior-
ity assignment inO((n2 +n)/2) wheren is the number of
tasks. We indicate that if any QoS requirement can be cor-
related with the importance concept, our algorithm can
find a good solution for problems with such QoS require-
ments. We exemplify this by applying the algorithm to the
problem of minimizing the total number of preemptions.

1 Introduction

Hard real-time systems must simultaneously handle
timing and Quality of Service (QoS) requirements. While
classical scheduling policies cope satisfactorily only with
the timing ones, dealing simultaneously with both require-
ments is still an issue.

During the specification of requirements, QoS require-
ments (e.g. safety, reliability, performance) are defined.
These requirements form a multidimensional set of req-
uisites interrelated that must be conveyed throughout all
stages of the cycle development. Normally, conflicts
among requirements exist and then, tradeoffs have to be
defined to help the designers with their decisions. As-
signing importances to the requirements is a mechanism
to specify such tradeoffs. In effect, typically the require-
ments are not equally important; some may be essential
while others may be desirable, and therefore each require-
ment should be rated by importance and/or stability to
make these differences clear and explicit [9].

∗Supported by CONACYT grant No. 61146

During the design phase, real-time system can be struc-
tured as a set of concurrent, preemptive tasks with hard
and/or soft deadlines. A single task provides somebenefit
to the system when it achieves all or part of one or more
requirements. The tasks share some scarce computer re-
sources that must be allocated wisely in order to obtain the
greater benefit possible. This is a scheduling problem that
can be solved by scheduling approaches such as the Fixed
Priority Scheduling (FPS) scheme.

FPS is considered an industry standard providing good
performance, predictability and flexibility. On FPS, the
assignment of priorities and the feasibility analysis are the
two main areas of work. The former establishes the or-
der at which the tasks will be executed and the last checks
whether the timing constraints will be fulfilled. When the
benefit is measured only with regard to the timing require-
ments, FPS allows solving problems with complex tasks
models [6]. However, when the benefit includes other QoS
measures, FPS exhibits some weaknesses.

For instance, FPS normally assigns high priorities to
tasks with either shorter periods (Rate Monotonic [15])
or shorter relative deadlines (Deadline Monotonic [16]).
However, important tasks may not have short periods or
deadlines. It is true that, for such tasks, the priorities can
be raised cutting the tasks down into smaller ones with
shorter periods, but it increases the run-time overhead and
introduces artificial constraints to the problem [25].

In hard real-time systems, when the benefit is measured
with respect to the timing requirements, “meet all hard
deadlines” is a criterion usually defined. How to measure
the benefit with respect to QoS requirements is still motive
of discussion and research.

In the context of FPS, we deal with thebicriteria
scheduling problemwhere hard timing requirements have
to be met and the QoS should be maximized.

1.1 Measuring the QoS
In order to include QoS requirements in a scheduling

problem, a QoS metric has to be defined. A QoS re-
quirement can be either quantitative or qualitative, and
testable for presence in their implementation. If quanti-

25

tative, quantifiable in at least one scale of measure [8].
The literature shows that the QoS can be expressed

with artifacts such as time-value functions and then, met-
rics such as “the value accrued” during a window time are
utilised. Including timeliness and value into the schedul-
ing decisions is sought by the value-based schemes.

In the the value-based (or reward-based) schemes, the
value is represented as utility functions that describe the
utility obtained when a task completes [10]; this utility
can remain static or can vary with the time. Value-based
schemes use the utility as either a priority or a admission
policy. These schemes have several drawbacks namely:

1. They are heuristics.

2. They do not guarantee the timing constraints.

3. There is not a methodology for the design of utility
functions [13].

4. It is assumed, a priori, that arithmetic operations can
be performed with the the utility functions, which it
is not necessarily true [18].

Drawbacks (1) and (2) have relegated value-based
scheduling into the domain of soft dynamic-priority real
time systems. Points (3) and (4) are related with the mean-
ing of value. Prasad et al. [18] have shown that the as-
signment and the use of values are not separated issues
but linked. Any assignment of values must conform to a
scaleof measurements and the scheduling scheme must be
cognizant of the scale utilized to perform only meaningful
operations.

The above drawbacks discourage us for using time-
value functions to express the QoS in the bicriteria
scheduling problem. Instead we observe the problem in
a slightly different way by defining qualitative importance
relationships to measure the QoS.

1.1.1 Importance Relationships

Time-value functions are a powerful tool for representing
and reasoning about QoS preferences. However, they can
be very difficult to both derive and measure.

An alternative form of expressing QoS requirements is
using a class of preferential statements of the form “it is
more important to me that the value of X be higher than
the value of Y”. These statements are calledrelative im-
portance statements[4]. Such statements do not require
complex quantitative assessment. A complete framework
for expressing the relative importances is found in [4].

By rewriting the above statement as “X is more impor-
tant than Y”, we can define thetask importanceas a pref-
erence for executing a task with regard to the other tasks
in the system. For example, assuming that in a real-time
database system a taskτa implements a critical transaction
and a taskτb implements something else, safety and relia-
bility will be comprised ifτa is interrupted frequently; the
statement “τa is more important thanτb” expresses this as
a QoS requirement.

1.2 The Bicriteria problem
Assuming that the QoS is conveyed as importance rela-

tionships, the bicriteria scheduling problem can be formu-
lated asfinding a feasible priority ordering that maximises
the importance. Two challenges can be devised:

• How to define the importance metric.

• How to solve the bicriteria scheduling problem.

Solving problems with multiple criteria is not simple;
optimizing one criterion could decrease the value of the
other criteria in the problem and hence, a number of so-
lutions are possible. However, when the commitments
among criteria are specified, optimal solutions can be de-
fined. In hard real time systems, the commitment is with
the timeliness; the deadlines must be satisfied and the im-
portance is only a secondary objective. We observe that if
the tasks set is feasible under FPS, then there exist a sub-
set of priority orderings that are feasible. The aim is to
find the feasible priority ordering that maximises its im-
portance.

Note that by labeling a set ofN tasks according to im-
portance, the set ofN ! orderings of tasks in lexicograph-
ical order is also ordered according to importance. For
example, forN = 3 tasks{a, b, c} wherea is the most
important andc the lower, the3! orderings area b c, a c b,
b a c, b c a, c a b, c b a. If we assign priorities according to
positionx y zsuch thatx has the highest andy the lowest
priority, only a subset of these orderings may be feasible.
The aim is to find the feasible ordering, which is higher
(or lower) in lexicographical order of importance. If in
our caseb a c, c a bandc b aare feasible, thenb a c is the
optimal priority ordering; i.e it is the closest one toa b c.

In general, this problem can be solved by generating
theN ! priority orderings in lexicographical order and test-
ing them for feasibility. The first one that is schedulable is
the optimal one. This is computationally intractable even
for small N . We show how a pseudo-polynomial algo-
rithm can find the optimal in the section 6.

The rest of the paper is organized as follow: Section 2
summarizes some related work. Section 3 establishes the
process model. Section 4 illustrates an example. Section 5
defines the problem and Section 6 presents the solution.
Finally, Sections 7 and 8 presents an evaluation and our
conclusions respectively.

2 Related work

To the best of our knowledge no algorithm for solv-
ing this problem has been reported in the literature. How-
ever, algorithms for finding feasible priority assignments
that optimize other additional QoS criteria have been de-
scribed. For instance: in [14] a priority assignment al-
gorithm improves system fault resilience in fault-tolerant
hard real-time systems. Approaches to reduce the num-
ber of preemptions in FPS have been published but such
solutions introduce additional problems such as requir-
ing non-standard runtime support [24], or multiplying the

26

number of tasks to be scheduled by at least a factor of
two [7]. In the energy consumption problem, the use of
energy must be bounded to guarantee stability and/or ex-
tended the lifetime of a system. In this case, the system in-
cludes specialized hardware (e.g. Dynamic Voltage Scal-
ing processor [19] or I/O Device Power States [11]) and
the solutions are pairs(priority,power-state)such that at
run-time both the priority and the power-state are applied.
A number of papers related to this problem have been
published and some solutions can be found in [22] and
[3]. On Real-Time Databases Systems, transactions must
satisfy timing constraints and consistency constraints of
the database [20]. In [12] periodic transactions that ac-
cess main memory resident data via read/write locks are
scheduled using rate monotonic. On the other hand, the
vast literature on value-based scheduling is primordially
related to soft real-time systems. In this paper we present
a more general approach.

3 Process model

We consider an extension of the traditional process
model, where a set ofN computer tasks must be sched-
uled on a single processor system. Atask setis a collec-
tion of tasks and anordering is a totally ordered task set.

3.1 Tasks
The tuple(C, T,D, P,B, J, I) characterises a taskτ

whereC is the worst case computation time,T is the pe-
riod or the minimal inter-arrival time between two con-
secutive releases, depending whether it is periodic or spo-
radic; D is the deadline of the task relative to the actual
release (i.e. ifτ is invoked at timet, it should have fin-
ished byt + D); P is the priority of the task where1 is
the highest andN is the lowest priority; without loss of
generality we assume that two tasks do not share the same
priority. The blocking factorB is the maximum interfer-
ence that a task may suffer from lower priority tasks due to
a share resource protocol [21]. The release jitterJ is the
maximum elapsed time between the programmed initial
release time and the real ready-to-run time, which usually
is zero for periodic tasks.

The importanceI is an unique natural number repre-
senting the importance of the task with regard to the other
tasks in the system, where1 is the highest one. Note that
this imply that ifτi is most important thatτj thenIi < Ij

for any twoτi, τj . The comparison between importance
will be called a lexicographiccomparison as follow, if
τi is most important thanτj thenτi is lexicographically
smaller thanτj . Finally, the tasks are preemptive, they are
released at time zero and they do not suspend themselves.

3.2 Task Set
Let S be a set ofN tasks andS≺ = 〈τ1 τ2 . . . τN 〉

an ordering onS with relation≺ (“precede to”) such that
τj ≺ τj+1, ∀ j = 1, 2, . . . , N − 1. To simplify the nota-
tion we will usea, b, c, . . . z to denote tasks and therefore

〈a b c . . . z〉 is an ordering on setS = {a, b, c, . . . , z}.
Note that the ordering can be specified implicitly by the
〈a b c . . . z〉 notation without requiring the≺ operator.
For instance, given the order relationD=“has a shorter
deadline than”, and a task set{a, b, c} with Da > Db >
Dc, its ordering under this relation isSD = 〈c b a〉. Note
that we use{ } to denote a set and〈 〉 to denote an order-
ing. Following this convention:

• The ordering defines a priority assignment over the
tasks such as, ifa ≺ b thenPa > Pb.

• For a given tasks setS, we denoteŜ the set of all
possibleN ! orderings ofS.

• Any two orderings inŜ can be compared according
their importance as follow: letα, β ∈ Ŝ, we say that
α is most important thanβ if comparing each ele-
ment α[k] with β[k], starting from the leftmost to
the rightmost, the first difference is in thekth task
and the importance ofα[k] is greater than the impor-
tance ofβ[k]. Note that it is similar to comparing
two strings. Furthermore, note that becauseα[k] is
more important thanβ[k] thenα[k] is lexicographi-
cally smaller thanβ[k]; therefore, we can say that if
the orderingα is most important than the orderingβ
thenα is lexicographically smaller thanβ; we de-
note it asα ≺lex β. The operator≺lex also applies
to tasks; e.g.τi ≺lex τj .

• Any ordering 〈a b c . . . j k . . . x y z〉 can be repre-
sented as〈φ ω〉where the prefixφ is 〈a b c . . . j〉 and
the suffixω is 〈k . . . x y z〉. The meta-ordering〈φ ∗〉
denotes all the orderings in̂S starting with prefixφ.

Lets define some interesting orderings onS:

• For anyA ⊆ S, δ(A) is an ordering with priorities
assigned according the Deadline Monotonic Priority
Ordering (DMPO) [5] where the functionδ ordersA
according the relation”has a shorter deadline than”.

• SD is the ordering by DMPO; i.e.SD = δ(S).

• SI is the ordering with priorities assigned according
the relation”is more important than”. Note thatSI

is the lexicographically smallest ordering in̂S.

Finally, the following functions are defined:

• Forα ∈ Ŝ, the functionF (α) returnstruewhenα is
feasible, i.e. the orderingα passes the FPS test [1];
otherwise returnsfalse.

• Due toŜ can be ordered lexicographically, for all or-
derings inŜ, its lexicographic order defines

I : Ŝ → [0, 1, . . . , (N !− 1)]

which is a function that indexes each element inŜ,
such that for anyα, β ∈ Ŝ

α ≺ β ⇔ I(α) < I(β)

27

τ T D C R I QoScode

e 100 80 13 13 5 3,2,1
d 240 240 37 50 4 3,1,2
c 330 330 55 118 3 2,3,1
b 350 350 56 174 2 2,1,3
a 480 400 68 292 1 1,2,3

Table 1. Set S5 with QoS codes where 1=Safety, 2=Re-

liability, and 3=Performance.

therefore, the lexicographic distance between any or-
dering can be determined. Note thatI(SI) = 0.

4 Motivational Example

In order to illustrate the problem, let us consider an hy-
pothetical system with several QoS requirements, which
must be implemented in a fixed-priority real-time operat-
ing system. The requirements are (in order of criticality)
Safety (S=1), Reliability (R=2) and Performance (P=3).

The tasks have individual QoS requirements that can be
coded according a string with elements S,R,P. For exam-
ple, a task with high-safety, medium-reliability and low-
performance requirements is coded as (1,2,3), i.e. (S,R,P).

The tasks are as follows:τa implements a control al-
gorithm which is essential for the stability of the system
and then the designer assigns the code (1,2,3).τb reads in-
puts from sensors and store them in a database. The code
(2,1,3) is assigned because the database represents the ex-
ternal environment and then, the data freshness is essential
for reliability. Similar reasoning can be given to the other
tasks. Their codes are shown in the table 1.

Observing the codes: in terms of safety “τa is more
important thanτb”; in terms of reliability “τb is more im-
portant thanτa”; in terms of performance “τa is equally
important thanτb”. It is easy to conclude that in terms
of the overall QoS, “τa is more important thanτb”. Simi-
lar reasons can be given to specify the rest of importance
values but for the sake of simplicity, we omit them.

Note that this assignment of QoS codes provides a par-
tial order (e.g. X is equally important than Y). However,
the designers can always use a tie-break rule using their
knowledge specific to the application. This methodology
is only a simple example of how the importances can be
assigned. A complete framework is found in [4].

Our objective is to guarantee that all activities meet
their deadlines and fulfil their importance requirements.
The tasks have deadlines less than or equal to their periods
and hence, the ordering under DMPO isSD = 〈e d c b a〉.

Table 1 shows the tasks set with their respective worst-
case response timesRj , computed with the response time
analysis equation [1]. The orderingSD is feasible and
hence, from the point of view of the timing constraints, it
is satisfactory. However, it would be better ifa andb have
higher priorities to meet their importance requirements.
These two task are the most important.

SI = 〈a b c d e〉 is a priority assignment by importance;
unfortunatelySI is unfeasible (underSI , Re is 229). We
will show later that an assignmentS∗ = 〈b e a d c〉 is opti-
mal in the sense that both, it is feasible and it is the closer
one toSI .

5 Deadline vs Importance: The Scheduling
Problem

In real-time systems meeting the timing constraints is
fundamental while any other QoS requirement can be con-
sidered as a soft requirement. Consequently, maximizing
the importance is a requirement that can be relaxed as for
example, defining different levels of satisfaction with re-
spect to the level of importance; while closer to the most
important ordering, greater the satisfaction. We can for-
mulate the problem asfinding a feasible priority ordering
that minimises the distance to the most important order-
ing. More formally:

Problem 5.1 (BiCriteria Scheduling Problem). Given a
set of tasks and a orderingSI , find S∗ which is an assign-
ment of fixed-priorities that meets their deadlines and is
the closest toSI .

In section 6.2 we present an algorithm which finds an
ordering that solves the scheduling problem stated above.
We affirm that, if all tasks are feasible under the deadline
monotonic priority ordering, then there exist a subset of
possible feasible orderings where the importance objec-
tive can be achieved. Our algorithm looks at this subset
and finds the one which is the closest toSI , the ideal so-
lution.

Our algorithm is based on the traditional scheduling
theory on real-time systems [5] and on the multi-criteria
scheduling theory developed on the operational research
area [23]. The next section introduces some concepts on
multi-criteria scheduling and defines some metrics. These
metrics provide the clues to show our solution.

5.1 Multicriteria Scheduling Problems
T’kindt and Billaut [23] define themulticriteria

scheduling problemas “the problem which consists of
computing a pareto-optimal schedule for several conflict-
ing criteria”. A simple definition of pareto-optimal sched-
ule is given by Pinedo [17] in the context of minimization
problems: “A schedule is calledpareto-optimalif it is not
possible to decrease the value of one objective without in-
creasing the value of the other”. When only two criteria
are involved in the problem (as in our case), all pareto-
optimal solutions can be represented in a cartesian plane
such that, all tradeoffs between criteria can be shown.

Graphical representation of the problems assists both,
to illustrate the problem and to identify clues to solve it.
Figure 1 represents the space of solutions of a task set
measured by one pair of metrics such that the optimums
tends to zero. Note that the point that minimises simulta-
neously both criteria does not exist.

28

Solutions Space

Z1(S)

Z
2

(S
)

O
ptim

um

X
X

X
X

X
X

X
X

X

X

X
X

X

X
X X

X

X

Figure 1. A Bicriteria Solution Space. A dot represents

a possible solution and a ×marks a pareto-optimal so-

lution

5.2 Deadlines (ZD)
The first objective is to meet the deadlines. On fixed

priority scheduling the optimal solution is to assign prior-
ities according to the DMPO.Any fixed-priority ordering
S′ is feasible if and only ifRj ≤ Dj ,∀ j ∈ S′. Therefore,
for all j in S′ we have

Rj ≤ Dj ⇒
Rj

Dj

≤ 1 ⇒
Rj

Dj

≤ max
∀j

{

Rj

Dj

}

≤ 1

Doing

ZD(S′) = max
∀j∈S′

{

Rj

Dj

}

we are able to define:

Definition 5.2. An orderingS′ is feasible iffZD(S′) ≤ 1
where

ZD(S′) = max
∀j∈S′

{

Rj

Dj

}

(1)

Note that, ifZD ≤ 1 the orderingS′ is feasible; other-
wise it is unfeasible. Furthermore, whenZD = 1 or very
close to1, it indicates at least one task finishes very close
to its deadline. This metric give us more expressiveness
that a simple yes/no answer.

5.3 Importance (ZI)
The second objective is with regard to the tasks impor-

tance. In our model the importance only requires fulfill-
ing the properties of a totally ordered set such that any
a, b ∈ S can be compared.

As defined in section 3, anyS
′

∈ Ŝ can be indexed
by a function. The most important ordering isSI , which
is lexicographically smaller and henceI(SI) = 0. In the
lexicographic order, any two consecutive orderings differ
only by a pair, and the most important of them is always
the lexicographically smaller. Consequently, the distance
from any orderingS′ to SI is simply I(S′). Therefore,

119

0

23

47

71

95

0.5 1 1.5 2 2.5

S
D

S
I

S*

abcde

edcba

decba

cedba

bedca

aedcb

Deadline Z (S)D 5

^

Im
p
o
rt

an
ce

Z

(S
)

I
5

^

Feasible Unfeasible

Figure 2. Plotting all priority orderings of S5. SI is not

feasible. SD is feasible but has low importance metric.

The optimal bicriteria S∗ is 〈b e a d c〉

119

0

23

47

71

95

0.5 1 1.5 2 2.5

S*

abcde

edcba

decba

cedba

bedca

aedcb

^

Im
p
o
rt

an
ce

Z

(S
)

I
5

^

Deadline Z (S)D 5

Feasible Unfeasible

Figure 3. Similar to figure 2 but the priority orderings

are connected according their lexicographic order

we will defineZI , the metric which describes the distance
from any ordering toSI as follow.

ZI(S
′) = I(S′) (2)

This metric defines the second objective. We will show
how to applyZD andZI using our example.

5.4 Portraying the problem
Figure 2 shows all5! = 120 priority orderings ofS5

(from table 1) plotted with both metrics.
For example, the response times forSD are

{13, 50, 118, 174, 292}; it is feasible but it has low im-
portance because its index is 119. On the other hand
the response times forSI are {68, 124, 179, 216, 229}
and therefore it is not schedulable. The optimalS∗ is
〈b e a d c〉with response times{56, 69, 150, 187, 292} and
index 44. Note that:

• With respect toZD, there are 32 feasible orderings
(ZD(Ŝ5) ≤ 1);

29

• With respect to bothZD andZI , the best solutions
tend to zero. This example is an extreme case where
SI is completely opposite toSD.

Clearly, the problem is how to determineS∗ without
having to enumerate all the orderings. We can figure out
a solution looking at figure 3 carefully; it contains the
same data but the points are connected successively such
as they would be generated (in lexicographic order). Note
that there are local minimums (left-side peaks) distributed
around the indexes 23, 47, 71, 95 and 119. In addition
note on the left side, which orderings correspond to such
points. The Index 23 corresponds to〈a e d c b〉 where〈a〉
is the most important task plus a suffix〈e d c b〉 ordered by
DMPO. The Index 47 is〈b e d c a〉 where〈b〉 is the second
most important task plus a suffix ordered by DMPO. The
rest have the same pattern. Our algorithm uses this pattern
to reduce the search space.

6 Solving The Deadline and Importance
Problem

This section is divided in two parts:

1. We show how a set̂S can be organized in a tree, and
how whole subtrees can be skipped by identifying
some local minimums called entry-points.

2. We present the algorithm D&I, which performs a
branch and bound search into the tree defined. In the
worst-case it performsN

2
+N
2

steps to find the solu-
tion. The algorithm is described and its optimality is
proved.

6.1 Organizing the Search Space
The search space consists on the setŜ ordered lexico-

graphically and organized as a tree. For the sake of sim-
plicity and without loss of generality, we will defineSI as
〈a b c . . . z〉 wherez is theN th task.

The root of the tree is〈a b c . . . z〉. The immediate
sons of this three are theN subtrees〈a ∗〉, 〈b ∗〉, 〈c ∗〉,
. . . , 〈z ∗〉 ordered lexicographically. Each one of these
subtrees hasN−1 sub-subtrees where each one hasN−2
ones and so on. For example,〈a ∗〉 has〈a b ∗〉, 〈a c ∗〉,
〈a d ∗〉, . . . , 〈a z ∗〉. Therefore, any subtree can be repre-
sented as〈φ ∗〉. A vertexis represented as〈φ ω〉.

The reason for organizing the space into subtrees with
this configuration comes from an interesting property re-
lated with the optimality of DMPO and the generality of
the FPS test:

• First, DMPO is optimal in the sense that if a set
is schedulable by any fixed-priority ordering then it
also is schedulable under DMPO.

• Second, the FPS test is necessary and sufficient and
it is independent of the assignment of priorities.

Consider an orderingSI = 〈a b c d〉 and an ordering
SD = 〈d c b a〉. Suppose that we apply the FPS test toSI

and we find thatSI is feasible. The optimality of DMPO
indicates that it is no necessary to apply the test toSD

because ifSI is feasible thenSD is also feasible; but the
contrary is not true, ifSD is feasible we cannot assure
anything about the feasibility ofSI or any other combina-
tion. However we can affirm that ifSD is unfeasible then
any ordering of these four tasks will also be unfeasible.

Now, consider that we extendSD with an arbitrary task
such that we have an ordering〈x d c b a〉 (remember that
〈d c b a〉 is ordered by DMPO) and we apply the FPS test.
If 〈x d c b a〉 is feasible, then there are some orderings in
〈x ∗〉 that are feasible. However, if〈x d c b a〉 is unfeasible
we can affirm that no ordering in〈x ∗〉 is feasible.

Lets define us any vertex〈φ ω〉 with ω ordered by
DMPO as follow.

Definition 6.1 (entry-point). An entry-pointto a subtree
〈φ ∗〉 is a vertex withω ordered by DMPO; i.e.

entry point= 〈φ δ(ω)〉

.

The next theorem resume the above observations.

Theorem 6.2. If the entry-point〈φ δ(ω)〉 is unfeasible
then any ordering in〈φ ∗〉 is also unfeasible.

Proof. By contradiction, suppose that there exist a feasi-
ble ordering in〈φ ∗〉 sayS′ = 〈φ ω〉. On the other hand
Sδ = 〈φ δ(ω)〉 is an unfeasible ordering. Both orderings
share the sameφ and differ only by the order onω.

Note that ifω has less than 2 tasks, thenS′ = Sδ and
this contradiction proves the theorem. Otherwise, the fea-
sibility of S′ andSδ depends only onω; all tasks inφ are
not affected by any change inω.

The proof of optimality of the DMPO assignment [5]
shows us that, becauseS′ is feasible, exchanging any pair
of tasks (inω) non-ordered by shorter deadline give us a
feasible orderingS′′. Following the same process we ob-
tain orderingsS′′′, S′′′′, . . . , Sn which are also feasible.
The last one isSn with its ω ordered by DMPO.Sn is
identical toSδ and thereforeSδ is feasible. This contra-
dicts the hypothesis and concludes the proof.

Note that whenφ is empty, the entry point isSD and
hence, ifSD is unfeasible then all orderings ofS are un-
feasible. In addition, the theorem gives us a useful corol-
lary. Consider a subtree〈φ ∗〉 and a feasible vertex〈φ ω〉.
The proof of 6.2 shows that orderingω by deadlines will
give us another feasible ordering and hence:

Corollary 6.3. If an ordering 〈φ ω〉 is feasible then
〈φ δ(ω)〉 is also feasible.

The Theorem 6.2 will be used to examine the search
space. Testing a vertex〈φ δ(ω)〉 allows us to decide

30

Algorithm 1 D & I (Deadline and Importance)

Require: SD feasible,SI unfeasible
1: Setφ ⇐ ∅, ω ⇐ SI , ωδ ⇐ SD ,k = 0
2: while SizeOf(ω) > 1 do
3: let τ ⇐ ω[k]
4: let ωδ−j ⇐ delete(ωδ, τ)
5: build S∗test ⇐ 〈φ τ ωδ−j〉
6: if F (S∗test) then
7: S∗ ⇐ S∗test

8: φ ⇐ 〈φ τ〉
9: ω ⇐ delete(ω, τ)

10: ωδ ⇐ ωδ−j

11: k ⇐ 0
12: else
13: k ⇐ k + 1
14: end if
15: end while

whether the subtree〈φ ∗〉 can be skipped or whether we
need to look inside it. This process is applied recursively
to each subtree performing, in this way, a branch and
bound search. The corollary will be used to prove the op-
timality of the algorithm proposed.

6.2 The Algorithm D&I
The algorithm D&I (Deadline & Importance) examines

the entry-point of the subtrees in lexicographic order from
the closest toSI to the remotest one and from the top to
the bottom. There are two preconditions which must be
fulfilled:

• SD must be feasible; otherwise no feasible solution
exists.

• SI must be unfeasible; otherwise we do not need to
perform a search becauseSI is the solution.

The next variables are used:

• φ is the prefix to the actual subtree indexed.

• ω is the complement ofφ; i.e. S = φ ∪ ω and∅ =
φ ∩ ω.

• ωδ is δ(ω).

• τ is thekth task ofω acquired orderly from left to
right.

• ωδ−τ is ωδ without τ .

• S∗test is the entry-point to be tested.

Let S be a tasks set with orderingsSD andSI , feasible
and unfeasible respectively. The algorithm builds keys to
index each subtree in lexicographic order. A key is built
by appending toφ a taskτ (step 3) fromω. The lexi-
cographical order is achieved following the sequence in
ω which is SI . The key indexes the subtree〈φ τ ∗〉 and
hence we build its entry-pointS∗test (steps 4-5).S∗test is

tested (step 6) and if it is feasible, it is saved as a partial
solution S∗, τ is deleted from bothω and ωδ, φ is up-
dated and the indexk is reset (steps 7-11); otherwise,k
is advanced to the nextτ . D&I stops when there are not
more subtrees to visit (ω has length one). Note that the
worst-case is when the only solution isSD and its order is
contrary toSI . In this case, the entry-point of the firstN
subtrees will be tested and theN th will be S∗test = SD;
afterward, the next level ofN − 1 subtrees will be tested
and the(N − 1)th will be againS∗test = SD and so on.
Thus, in the worst-case, the solution will always beSD. It
is also easy to show that the algorithm will always stop.

6.2.1 Complexity

The worst-case occurs when the only solution isSD and
its order is contrary toSI . In such case the loop is exe-
cutedN times andω is reduced toN − 1 elements; after-
ward the loop is executedN − 1 times andω is reduced
to N − 2 elements and so on. Therefore the loop exe-
cutesN + (N − 1) + (N − 2) + . . . + 1 = N2

+N
2

times.
At each iteration, a feasibility test of complexityE is per-
formed and therefore the complexity of the algorithm D&I
is O(E × N2

+N
2

). In other words, the algorithm finds
the solution in a polynomial number of steps but the total
complexity is pseudo-polynomial due to the FPS test.

6.2.2 D&I proof

Theorem 6.4. The algorithmD&I yields an optimal so-
lution for the problem 5.1 of guaranteeing all deadlines
and minimizing the distance toSI

Proof. By contradiction. Suppose that at thenth iteration,
there exists an orderingSo that is both, feasible and lexi-
cographically closest toSI . D&I finds S∗ and hence we
need to prove that either:

1. S∗ is unfeasible

2. S∗ is not the closest toSI .

Note the next facts aboutSo andS∗:

• So is lexicographically smaller thanS∗ (i.e So ≺lex

S∗).

• They are lexicographically different but before a task
j they are identical; i.e. they share the same prefix
φ = 〈a b c . . . j〉 and differ on their suffix.

So = 〈φ ωo〉 whereωo = 〈k . . . l . . .〉

S∗ = 〈φ ω∗〉 whereω∗ = 〈l . . . k . . .〉

Consequentlyk ≺lex l.

• So andS∗ share the same entry point〈φ ωδ〉 where

ωδ = δ(ωo) = δ(ω∗)

31

119

0

23

47

71

95

abcde

edcba

decba

cedba

bedca

aedcb

0.5 1 1.5 2 2.5

S*

1

2

3

4

5

6

9
8

Step Schedule ö Feasible ù

1 aedcb a No abcde

2 bedca b Yes abcde

3 baedc ba No acde

4 bceda bc No acde

5 bdeca bd No acde

6 bedca be Yes acde

7 beadc bea Yes acd

8 beacd bea No cd

9 beadc beac Yes c

7

^

Deadline Z (S)D 5

^

Im
p

o
rt

an
ce

Z

(S
)

I
5

Feasible Unfeasible

Figure 4. D&I applied to S5 showing the sequence of

operations.

• So is feasible and therefore〈φ δ(ωo)〉 is also feasible
(corollary 6.3).

So and S∗ share the same feasible entry-point and
hence,〈φ ωδ〉 has been tested and saved (step 7) as the
nth partial solutionS∗n. The next iterations will give
S∗n+1 → S∗n+2 . . . → S∗n+m → S∗. All will be feasible
because the step 7 accepts only feasible ones. Therefore
S∗ is feasible andit contradicts the first hypothesis.

Consequently, it is necessary to prove that although
feasible,S∗ is not better thanSo which is the closest fea-
sible solution toSI .

D&I builds and tests new orderings joining the ac-
tual φ with a taskτ and ordering the rest of the tasks
by DMPO (steps 3-6). Becausek ≺lex l, the ordering
〈φ k δ(. . . l . . .)〉 is tested before than〈φ l δ(. . . k . . .)〉.

The ordering tested is

So
test = 〈φ k δ(. . . l . . .)〉

Two cases occur:

• If So
test is feasible, D&I will accept it and never will

find S∗ because they both are in different paths. This
is not possible becauseS∗ is found by D&I.

• If So
test is unfeasible thenSo is also unfeasible (The-

orem 6.2) whichcontradicts the hypothesis 2.

This concludes the proof.

6.2.3 An example

Applying the algorithm D&I to the tasks setS5, it finds
the orderingS∗ in nine steps (figure 4).

At the beginning,φ is empty andω is 〈abcde〉. The
first element is acquired to create a key〈a〉 to test the
entry-point〈a edcb〉 (1© in the graph); the test fails and
then the subtree〈a ∗〉 is skipped. The next element inω
is obtained and〈b edca〉 is tested (2©); it is feasible and

Figure 5. For high utilisations, the number of feasible

tasks sets decreases and therefore, the distance be-

tween SD and S∗ gets smaller. The distance between

SA and S∗ increases slightly.

then〈b〉 is appended toφ and〈b〉 is deleted from bothω
andωδ. The next three orderings tested (3©, 4©, 5©) are un-
feasible, and therefore only the indexk is updated. After-
wards,〈b edca〉 and〈b eadc〉 are tested successively and
saved (6©, 7©); the next ordering fails (8©) and the next
one passes the test (9©). ω has length 1 and D&I stops.

7 Evaluation

This section is divided in two: The first one presents
some results on the performance evaluation of the D&I
algorithm. The second part shows how the algorithm can
be used to reduce the total number of preemptions.

For the experiments we have generated random task
sets ofN tasks with utilisations from 0.5 to 0.95 and
N = 4, 5, 6, 7, 8 tasks. Each task set is created by ran-
domly chosen task’s computation times between 2 and 50
time units, and then randomly chosen the periods to ap-
proximate the utilisation desired. Without loss of gener-
ality, we assign the deadlines equal to the periods. The
importance is varied according each experiment. In addi-
tion, it is guaranteed that all task sets are feasible under
deadline monotonic scheduling.

7.1 Performance evaluation
The first experiment quantifies how good (or bad) is

using the DMPO assignment and the swapping priority
assignment defined in [2] against D&I for the bicriteria
problem. The swapping priority algorithm receives an un-
feasible ordering and finds a feasible one (if it exists) by
swapping pairs of task priorities. In this context, the swap-
ping algorithm will receive an unfeasible ordering by im-
portance and will produce a feasible one.

LetsS be a task set with importances randomly chosen
and with priority orderingsSI (by importance),SD (by
DMPO),SA (by swapping algorithm) andS∗ (by D&I al-
gorithm); the goodness of the orderings is given by the
index metricZI . For each set, we compute both their or-
derings and their indexes. A point in figure 5 represents

32

Figure 6. The solutions SD and SA move dramati-

cally away from S∗ conforming the number of tasks

increases.

the average index of 1000 sets of 7 tasks for a level of
utilisation.

For high utilisations the number of feasible task sets
decreases, and hence the difference between DMPO and
D&I is reduced. On the other hand, the difference against
SA growths slightly. Note that by the optimality of D&I,
it is never the case that the index ofSD orSA can be lower
thanS∗.

The graphics for task sets withN equal to 4, 5, 6 and
8 are not depicted because they are similar to figure 5.
More interesting is to show how fast the solutionsSD or
SA move away fromS∗. Consider the data in figure 5;
computing the distancesZI(S

D)−ZI(S
∗) andZI(S

A)−
ZI(S

∗) for their respective utilisations and calculating its
average give us the average distanceΨ(SD) andΨ(SA)
respectively. Computing these distances for differentN
give us figure 6; this is the variation of the distance toS∗

with respect the number of tasks per set. Note how fast
they move away fromS∗.

7.2 Minimizing the number of preemptions
This experiment quantifies the impact that using the

D&I algorithm has on an overall system metric. For illus-
trative purposes we consider the problem of meeting the
deadlines and reducing the total number of preemptions.

We note that in a fixed priority system, a task is pre-
empted only by high priority tasks. In addition, if the
task remains active during less time (e.g. shorterC), the
high priority tasks will have less chance of interrupting
it. Therefore, we can conjecture that tasks with shorterC
should have lower priorities (i.e. they are less important)
to reduce the possibility of being preempted, or recipro-
cally: “τi is more important thanτj if Ci > Cj”. We ver-
ify this conjecture by performing extensive simulations as
follow:

A particular set ofN tasks is simulatedN ! times, once
per different priority ordering, during a time window of
10000 ticks. Its number of preemptions is computed and
stored in a table[ordering , preemptions]and then the
preemptions are normalized according their minimum and

Avg Number of Preemptions for Sets of 7 Tasks

0

0.2

0.4

0.6

0.8

1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Utilisation

P
re

em
pt

io
ns

 N
or

m
al

iz
ed

 .

 BI-OPT

 EDF

 DM

 LC

 D&I(LC)

Figure 7. Minimizing the total number of preemptions.

maximum. Thus, the normalized number of preemptions
for any possible priority assignment is recorded. This ta-
ble allows us to find the optimal orderingS-OPTfor the
single criteria problem of minimizing the number of pre-
emptions (no considering deadlines), which is the min-
imum in the table. We tested different priority assign-
ments such as the shortest computation time first (1/C),
the largest computation time first (LC), the largest period
first and other simple rules and we found that none of them
achievedS-OPT; among these rules,LC was the best.

Based on this, for each one of the task sets analysed we
assign importances based on theLC criteria: the largest
the computation time, the higher the importance. We then
use the D&I algorithm to find a feasible schedule which is
closer to theLC ordering (D&I(LC)). To compare the per-
formance, we also display other indicative priority assign-
ments, namely deadline monotonic (DM), largest com-
putation time first (LC), and the Earliest Deadline First
scheduling policy (EDF). In addition we find, by force
brute, the optimal bicriteria solution (BI-OPT) examining
theN ! elements in the table.

Figure 7 shows the results of this experiment for sets
of 7 tasks. The graphics for sets of 4, 5 and 6 tasks are
similar (no showed). We do not compute the task sets of 8
tasks because it is computationally expensive (8! × 1000
simulations). TheS-OPTsolution is zero andLC is signif-
icantly close to it (6.7% distant on average); however both
them miss deadlines. The optimal solution for this bicrite-
ria problem isBI-OPT. Note that for high utilisations, the
number of feasible tasks sets decreases and therefore, the
BI-OPT moves away fromLC. The performance ofEDF
is better thanDM but it is still poor compared theBI-OPT.
Finally, our solution D&I(LC) is substantially closer to the
optimum (11.9% distant on average) and much better than
EDF andDM for all utilisations excepting 0.95. Naturally,
being the ruleLC a heuristic, our solution will also be nec-
essarily a heuristic. However, the results indicate that the
D&I algorithm provides a remarkable improvement over
other approaches. Comparison with other on-line heuris-
tics are not really possible as they do not guarantee dead-
lines, and only provide best effort figures.

33

8 Conclusions

On the context of fixed priority scheduling, we pro-
pose an approach to deal with the bicriteria problem where
meeting the deadlines and maximising the QoS expressed
as relative importances are the objectives.

The solution that maximises the importance is not nec-
essarily feasible and therefore, we reformulate the bicri-
teria problem as finding a feasible priority ordering that
minimises the distance to the most important ordering.

In order to solve the bicriteria problem, we present
the optimal algorithm D&I, which performs a branch and
bound search into the space formed by theN ! possible or-
derings, ordered lexicographically by importance. Taking
advantage of some interesting properties of the optimality
of the deadline monotonic priority ordering, and some par-
ticular characteristics of the lexicographic order, we iden-
tify some patterns into the search space. This permits to
solve the problem inO((N2 + N)/2) steps; however its
complexity is pseudo-polynomial due to the fixed priority
feasibility test.

Our approach is optimal in the sense that the priority
ordering found is feasible and no other feasible priority
assignment exist with higher importance. It is valid for
any fixed priority system.

Complex frameworks exist to express the relative im-
portances but in our model, we only require that the im-
portance constitutes a totally ordering set. Sometimes a
total ordering could not be established and hence, we sug-
gest using the deadlines to make the decision; i.e. if two
tasks are incomparable by importance, the shortest dead-
line precedes; in this way, the total ordering is obtained.

References

[1] A. N. Audsley, A. Burns, M. Richardson, K. Tindell, and
A. J. Wellings. Applying new scheduling theory to static
priority pre-emptive scheduling. Software Engineering
Journal, 8(5):284–292, 1993.

[2] N. C. Audsley. Optimal priority assignment and feasibility
of static priority tasks with arbitrary start times. Technical
report, Dept. Computer Science, University of York, 1991.

[3] H. Aydin, R. Melhem, D. Mosse, and P.M. Alvarez. De-
termining optimal processor speeds for periodic real-time
tasks with different power characteristics. InProc. of the
13th EuroMicro Conference on Real-Time Systems, Delft,
Netherlands, Jun 2001.

[4] R. Brafman and C. Domshlak. Introducing variable impor-
tance tradeoffs into cp-nets. InWorkshop on Planning and
Scheduling with Multiple Criteria, April 2002.

[5] A. Burns and A.J. Wellings.Real-Time Systems and Pro-
gramming Languages. Addison Wesley, 3rd edition, 2001.

[6] Alan Burns. Preemptive priority-based scheduling: an ap-
propriate engineering approach. InAdvances in real-time
systems, pages 225–248. Prentice-Hall, Inc., 1995.

[7] R. Dobrin and G. Fohler. Reducing the number of pre-
emptions in standard fixed priority scheduling. InProc.

14th Euromicro International Conference on Real-Time
Systems, Work in Progress Session, 2002.

[8] Tom Gilb. Towards the engineering of requirements. Re-
quirements Engineering 2, 165-169., 1997.

[9] IEEE. IEEE Recommended Practice for Software Require-
ments Specifications. IEEE Standard 830-1998, 1998.

[10] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven
scheduling model for real-time operating systems. InIEEE
Real-Time Systems Symposium, pages 112–122, 1985.

[11] R. Krishnapura and S. Goddard. Dynamic real-time
scheduling for energy conservation in i/o devices. InWork-
shop on Constraint-Aware Embedded Software, volume 2.
24th IEEE Real-Time Systems Symposium, Dec 2003.

[12] R. Rajkumar L. Sha and J.P. Lehoczky. Concurrency con-
trol for distributed real-time databases.SIGMOD Rec.,
17(1):82–98, 1988.

[13] P. Li, B. Ravindran, and E. D. Jensen. Adaptive time-
critical resource management using time/utility functions:
Past, present, and future. InProc. of the 28th Annual Int.
COMPSAC’04 - Workshops and Fast Abstracts, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

[14] G. Lima and A. Burns. An optimal fixed-priority assign-
ment algorithm for supporting fault-tolerant hard real-time
systems.IEEE Transactions on Computers, 52(10):1332–
1346, Oct 2003.

[15] C. L. Liu and James W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time environment.J.
ACM, 20(1):46–61, 1973.

[16] M. F. Richardson N. C. Audsley, A. Burns and A. J.
Wellings. Hard real-time scheduling: The deadline mono-
tonic approach. In W. A. Halang and K. Ramamritham,
editors,Real-Time Programming, pages 127–132. 1992.

[17] Michael Pinedo.Scheduling: Theory, Algorithms, and Sys-
tems. Prentice Hall, 2002. ISBN: 0-13-028138-7.

[18] D. Prasad, A. Burns, and M. Atkins. The valid use of utility
in adaptive real-time systems.Real-Time Systems, 25(2-
3):277–296, 2003.

[19] H. Aydin R. Melhem, N. AbouGhazaleh and D.l Mosse.
Power management points in power-aware real-time sys-
tems. InPower aware computing, pages 127–152. Kluwer
Academic Publishers, 2002.

[20] Krithi Ramamritham. Real-time databases.Distributed
and Parallel Databases, 1(2):199–226, 1993.

[21] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheri-
tance protocols: An approach to real-time synchronization.
IEEE Trans. Comput., 39(9):1175–1185, 1990.

[22] Y. Shin and K.Choi. Power conscious fixed priority
scheduling for hard real-time systems. InProc. of the 36th
ACM/IEEE conference on Design Automation, pages 134–
139. ACM Press, 1999.

[23] Vincent T’kindt and Jean-Charles Billaut.Multicriteria
Scheduling Theory, Models and Algorithms. Springer-
Verlag, 2002.

[24] Y. Wang and M. Saksena. Scheduling fixed priority tasks
with preemption threshold, 1999.

[25] Jia Xu and David Lorge Parnas. Priority scheduling ver-
sus pre-run-time scheduling.Real-Time Syst., 18(1):7–23,
2000.

34

Near-Optimal Fixed Priority Preemptive Scheduling of Offset Free Systems

Mathieu Grenier∗ Joël Goossens+ Nicolas Navet∗

LORIA-INRIA ∗

Campus Scientifique, BP 239
54506 Vandoeuvre-lès-Nancy- France

{grenier, nnavet}@loria.fr

Université Libre de Bruxelles+

Département d’Informatique, CP 212
1050 Bruxelles, Belgium
joel.goossens@ulb.ac.be

Abstract

In this paper, we study the problem of the fixed pri-
ority preemptive scheduling of hard real-time tasks. We
consider independent tasks, which are characterized by a
period, a hard deadline, a computation time, and an off-
set (the time at which the first request is issued) where the
latter can be chosen by the scheduling algorithm.

Considering only the synchronous case is very pes-
simistic for offset free systems, since the synchronous case
is the worst case in terms of schedulability. In this pa-
per, we propose a new technique, based on the Audsley’s
priority assignment, that reduces significantly the search
space of the combinatorial problem consisting in choos-
ing the offsets. In addition, we propose new offset assign-
ment heuristics and show the improvement of combining
the new technique and the new heuristics.

1. Introduction

Problem definition. This study deals with the fixed pri-
ority preemptive scheduling of tasks in a real-time systems
with hard constraints, i.e., systems in which the respect of
time constraints is mandatory. More specifically, we con-
sideroffset free systemswhere the offsets can be chosen by
the scheduling algorithm. The activities of the system are
modeled by independentperiodic tasksτi as introduced
in [8]. The model of the system is defined by a task set
∆ of cardinalityn, ∆ = {τ1, τ2, ..., τn}. A periodic task
τi is characterized by a quadruple (Ci, Ti, Di, Oi) where
each request ofτi, called instance, has an execution time
of Ci, a relative deadlineDi. Ti time units separate two
consecutive instances ofτi (henceTi is the period of the
task). The first instance ofτi occurs at timeOi (the task
offset in the following). The system is said schedulable if
each instance finishes before its deadline.

Three different kinds of periodic task sets can be distin-
guished:synchronoussets, where all offsets are equal to0,
asynchronoussets, in which the constraints of the system
determine the offsets, and finallyoffset freesets. Inoffset
freesystems, there is no constraint on offsets, hence they
may be chosen beforehand by the scheduling algorithm.

It may be noticed, that considering only the synchronous
case is very pessimistic, since the synchronous case is the
worst case, in the sense that, if the system is schedulable
in the synchronous case it follows that this is also the case
in all asynchronous situations (see [3], for instance). Our
scheduling problem is the following, given the task char-
acteristicsTi’s, Ci’s, andDi’s, determine a feasible offset
(if any) and fixed priority assignment.

Related work. In [5], the concepts ofconcreteandnon-
concretetask sets are introduced. Anon-concretetask set
is a set for which the offsets are not determined, aconcrete
version of such a task set can be obtained by considering
a particular offset configuration. Hence, a non-concrete
task setgeneratesa collection of concrete task sets. A
non-concrete task set∆ is schedulable [5], if all the cor-
responding concrete sets are schedulable. While an offset
free system is schedulable if at least one concrete task is
schedulable.

Well-known results concern the optimality for asyn-
chronous (and synchronous) task sets. But first a def-
inition, a priority assignment rule is optimal for asyn-
chronous (resp. synchronous) systems if, when a schedu-
lable priority assignment exists for some asynchronous
task set (resp. for the synchronous case), the priority as-
signment given by the rule is also schedulable. In [7],
the non-optimality of the Deadline Monotonic (i.e., lower
the deadline, higher the priority) is proven, and an optimal
priority assignment rule is suggested by considering then!
different priority assignments. In [1, 2] Audsley proposed
an optimal priority assignment algorithm, which examines
at mostn2 priority assignments, this algorithm is often re-
ferred as the Audsley’s algorithm in the literature.

More recent results concern the optimality for offset
free systems. In [4, 3], the authors show the interest of
offset free systems and in [4] the non-optimality of rate-
monotonic assignments when offset free systems are con-
sidered. Although there is an infinite number of asyn-
chronous cases for a task set, the problem is restricted [3]
by considering only non-equivalent offset assignments
with an optimal offset assignment rule. Since, the number
of combinations remains exponential, an efficient heuris-
tic with a lower complexity is proposed, nameddissimilar

35

offset assignment.
Well-known results concern the schedulability analy-

sis for synchronous systems [6, 10]. For asynchronous
systems as well, schedulability analysis has been studied.
Due to space limitation, we shall not give details here. We
know for instance (see [7]) that[0, Omax + 2P) whereP

is the LCM of the periods andOmax = maxj(Oj), is a
feasibility interval.

Contributions. In this paper, we show how to use the
Audsley’s algorithm to reduce the complexity ofoffset as-
signmentby decreasing the number of tasks examined in
the assignment. The optimal offset assignment cannot al-
ways be used due to its exponential complexity. Then, we
propose new assignment heuristics that improve signifi-
cantly upon the one presented in [3] as it will be shown in
the experiments.

Organization. Section 2 recalls the results from [3] that
are useful for the understanding of our contribution. Sec-
tion 3 shows how the Audsley’s algorithm can be used
to decrease the complexity of the offset assignment al-
gorithm. New heuristics are then proposed in Section 4,
whose efficiency are assessed in Section 5.

2. Known offset assignments

In this section, we summarize known results on the
scheduling of offset free systems. In particular, we sum-
marize the approach developed in [3].

2.1. Scheduling of offset free systems
The topic of this study is the fixed (and preemptive)

scheduling of offset free systems. In these systems, the
offset of the tasks can be chosen by the scheduling algo-
rithm. Consequently, we have to choose (off-line):

– the task priorities, and

– the task offsets.

2.2. Optimal offset assignment
Let us assume that the priorities of the tasks are already

fixed, and we consider the specific priority assignmentP ,
which could be for instance the Deadline Monotonic. We
considerfixed priority scheduler, hence at each time in-
stant, the scheduling policy assigns the CPU to the in-
stance of task with the highest priority (if any). Suppose
that the system is not schedulable in the synchronous case
with P , we would like to find an asynchronous situation
for which the system is schedulable. In the following, we
shall distinguish between two kinds of optimality:

Definition 1 A priority assignment ruleP is optimal in
the asynchronous case, if when a schedulable priority as-
signment exists,P provides a schedulable system in the
very same asynchronous situation.

Definition 2 An assignment offset ruleO is optimal un-
der a priority allocation ruleP , if when a schedulable
offset assignment exists withP ,O provides a schedulable
asynchronous situation with the very same priority assign-
mentP .

The optimal offset assignment considered in [3] is sum-
marized in this section. The main idea is to test the
schedulability of all the non-equivalent asynchronous sit-
uations of a task set.

All offset combinations may be found by restricting the
offsets such asO1 = 0 and∀i ∈ [2, n] | Oi ∈ [0, Ti).
Consequently number of combinations is upper bounded
by

∏n

i=2 Ti = O((max2≤j≤nTj)
n−1).

To further reduce the number of offset assignments,
it is possible to consider only offset assignments lead-
ing to non-equivalent asynchronous situations. Two asyn-
chronous situations are defined to beequivalent, if they
have the same periodic behavior. Indeed, the schedule be-
comes periodic with a period ofP = lcm{T1, .., Tn}).
This periodic behavior only depends on the relative
phasing of the task instances, i.e., on the tuple(O1

(mod T1), O2 (mod T2), . . . , On (mod Tn)). This tu-
ple characterizes the relative time shift between the in-
stances of various tasks [4].

For two tasksτ1 andτ2, two choices (O2 = O1 + v1

andO2 = O1 + v2) are said equivalent if they define the
same relative phasing:

∃k1, k2 ∈ N : (O1 + v1 + k1 · T2) modT1

=
(O1 + v2 + k2 · T2) modT1 ,

(1)

which is equivalent to:

v1 ≡ v2(mod gcd{T1, T2}). (2)

From Equations 1 and 2 it follows that only the values
0, 1, ..., gcd{T1, T2} − 1 must be considered and are non-
equivalent choices forO1 andO2.

The optimal offset assignment algorithm, in order
to explore all possible non-equivalent asynchronous sit-
uations for the task set, constructs iteratively the sit-
uations. First, it sets the non-equivalent choices for
O2 (the offsetO1 is arbitrarily fixed to0) by consid-
ering for O2 all integer values in the[0, gcd{T1, T2})
interval. Next, by assuming at each step that the
offsets O1, O2, ...Oi−1 are set, consider for the off-
set Oi the interval [0, gcd{Ti, lcm(T1, ..., Ti−1)}) (in-
stances of task sub-set{τ1, ..., τi−1} having a period of
lcm(T1, ..., Ti−1)).

2.3. Dissimilar offset assignment
The method of [3], presented in Section 2.2, reduces

the non-equivalent offset assignment from
∏n

i=2 Ti to
Qn

i=2
Ti

P
. Despite this significant reduction, the number of

offsets considered by the optimal algorithm remains ex-
ponential. In [3], the author defines then a heuristic that
provides a single offset assignment for a task set.

36

The basic idea of the heuristic is to shift away, as far
as possible, the offsets of the tasks for which some in-
stances would be most probably in conflict for the use of
the CPU. Precisely, the offset of tasks having instances re-
leased in small periods of time, and thus being close to the
“synchronous” case, will be shift away as far as possible.
Hence, a measure is introduced to estimate the proximity
of an offset assignment with the synchronous case. The
dissimilar offset assignment algorithm allocates the off-
sets of the periodic tasks to maximize this measure, which
is defined as the length of the shortest interval that con-
tains at least one instance of each task.

The technique considers first the (minimal) distance
between two instances of tasksτi andτj in the periodic
part of the schedule. The computation of this distance is
performed according to Theorem 1.

Theorem 1 ([3]) Let r ∈ [0, gcd{Ti, Tj}). If Oi = Oj +
r (or Oj = Oi + r), the minimum distance between an in-
stance ofτi and an instance ofτj is min{r, gcd{Ti, Tj}−
r}.

It follows from Theorem 1 that the minimum distance
between an instance ofτi and τj is upper bounded by
⌊

gcd{Ti,Tj}
2

⌋

and corresponds to the offset assignment

Oi = Oj +
⌊

gcd{Ti,Tj}
2

⌋

(or Oj = Oi +
⌊

gcd{Ti,Tj}
2

⌋

). In

this case,r is equal to
⌊

gcd{Ti,Tj}
2

⌋

or
⌈

gcd{Ti,Tj}
2

⌉

.

The dissimilar offset assignment algorithm fixes the
offsets of the periodic tasks. The algorithm sorts the cou-
ples of tasks(τi, τj) in decreasing value of gcd{Ti, Tj},
in order to maximize the measure defined above. Next, it
sets iteratively the offsetOi andOj of the sorted couples
of tasks(Ti, Tj) to obtain the highest minimum distance

(i.e., r =
⌊

gcd{Ti,Tj}
2

⌋

). During this assignment, three
cases may occur:

1. whenOi andOj are not yet set, a random offset is

chosen forOi andOj = Oi +
⌊

gcd{Ti,Tj}
2

⌋

,

2. whenOi (resp. Oj) is fixed andOj (resp. Oi) is

not, Oj = Oi +
⌊

gcd{Ti,Tj}
2

⌋

(resp. Oi = Oj +
⌊

gcd{Ti,Tj}
2

⌋

),

3. whenOj andOi are already chosen, there is nothing
to do.

The maximal time complexity of this algorithm for as-
signing the offsets isO(n2 · (log T max + log n2) where

T max def
= max1≤k≤n(Tk).

3. Complexity reduction

In this section we propose a technique, based on the
Audsley’s priority assignment, to reduce significantly the
search space. But first, we shall present the Audsley’s al-
gorithm [1] itself.

3.1. Audsley’s algorithm
The Audsley’s algorithm [1] performs an optimal static

priority assignment for asynchronous systems (according
to Definition 1).

A priority assignment is defined by:

γ : {1, 2, ...n} → {τ1, τ2...τn},

where the assignment functionγ(i) gives the taskτk as-
signed to the priority leveli using the convention: lower
the priority level, higher the priority.

The Audsley’s algorithm considers at mostO(n2) dis-
tinct priority assignments. First, it attempts to find alow-
est priority viabletaskτi in ∆, i.e., tries to assign the pri-
ority leveln.

Definition 3 Taskτi is lowest priority viable whenτi is
assigned the lowest priority of any task in∆ and:

– The remaining tasks in∆ are assigned priorities in
any arbitrary order, the sole restriction being that all
these priorities be higher than the priority assigned
to τi.

– During run-time scheduling, the semantics is weak-
ened as follows: instances generated by tasks other
thanτi may miss their deadlines (if they do so, they
continue execution until completion); however, in-
stances generated byτi may not miss any deadlines.

Next, the algorithm recursively determines a lowest
priority viable task in the sub-set∆\{τi} of n − 1 tasks
(i.e., assigning priority leveln − 1). The Audsley’s
pseudo-algorithm is given in Algorithm 1.

Input : task set∆ = {τ1, τ2..., τn}
Result: task set with no assigned priority

procedureaudsley(∆);
if ∆ = ∅ then

priority assignment succeed:
return ∆;

end
if no task is lowest priority viablethen

priority assignment failed:
return ∆;

else
let τi a lowest priority viable task;
assign lowest priority to τi:
γ(|∆|) = τi;
return audsley(∆\{τi});

end

Algorithm 1 : Audsley’s algorithm.

After executing the Audsley’s algorithm, two cases
may occur:

1. The priority assignment of the Audsley’s algorithm
leads to a schedulable system (i.e., priority assign-
ment succeed): the set of task∆ is schedulable with
the priority assignment given by functionγ.

37

2. Otherwise, the Audsley’s algorithm fails to assign the
priority of level i wherei ∈ [1, n] (i.e., priority as-
signment failed). However, instances of the set of
tasks{γ(i + 1), γ(i + 2), ..., γ(n)} meet their dead-
line. Indeed, the schedulability of a task at a priority
level, with a fixed scheduling preemptive policy, de-
pends only on the set of higher priority tasks, what-
ever the assignment of priority among this set [1, 2].

The non-optimality of the Audsley’s priority assign-
ment for offset free systems

We shall see that while the Audsley’s priority assignment
is optimal for asynchronous systems it is not the case for
offset free systems. But first a definition.

Definition 4 ([4]) A priority assignment rule is optimal
for offset free systems if when a schedulable priority as-
signment (P) and offset assignment (O) exist for some off-
set free task set, there is a schedulable offset assignment
(O′) for the priority assignment given by the rule.

The priority assignment of the Audsley’s algorithm de-
pends on the offset assignmentO, actually Audsley con-
siderasynchronous systems(the offsets must be already
fixed). Thus, Definition 4 is not applicable in the case
of the Audsley’s priority assignment and consequently the
Audsley’s priority assignment is not optimal for offset free
systems.

3.2. Reducing the search space using the Audsley’s al-
gorithm

In this section, we shall explain how to assign the pri-
oritiesand the offsets together. Figure 2 presents the flow
of our approach in a pseudo-algorithmic form. First, we
initialize the offsets to consider thesynchronoussituation.
Then, the Audsley’s algorithm is used to assign priorities
(in the synchronous case), more precisely the (recursive)
functionaudsley (Algorithm 1) is used. If it success-
fully assigns priorities (case 1, Section 3.1), the system
is schedulable in the synchronous case. Otherwise, the
Audsley’s algorithm fails in the synchronous case (case 2,
Section 3.1), a schedulable asynchronous situation should
be looked for. Consequently we first use at this step a
rule to choose the offsets—for the subset of tasks returned
by audsley: ∆′ def

= ∆\{γ(i + 1), γ(i + 2), ..., γ(n)}—
and then the priorities using the Audsley’s algorithm for
the second timesbut on the subset∆′ (not on the origi-
nal task set). Indeed, the sub-set of tasks{γ(i + 1), γ(i +
2), ..., γ(n)} respects their timing constraints in the syn-
chronous situation without considering the offsets and the
priorities among the set of higher priority tasks. Thus, the
tasks in{γ(i + 1), γ(i + 2), ..., γ(n)} are lowest prior-
ity viable in the synchronous case. Since the synchronous
case is the worst case, these tasks remain lowest priority
viable in an asynchronous situation. That is why, in the
following, the offset assignment scheme can safely take
into account only the tasks in the set∆′.

Step 3:
∀τi ∈ ∆

′ , set Oi
with the chosen offset assignment

�����
� �����
� �����
� Task set ∆

schedulable
(synchronous)

�����
� �����
� �����
� Task set ∆

schedulable
(asynchronous)

�
�
��

�
� �

�
��

�
� �

�
��

�
� Task set ∆

unschedulable
with the chosen

offset assignment

b
b

b
b
"

"
"

"b
b

b
b
"

"
"

"b
b

b
b
"

"
"

"b
b

b
b
"

"
"

"b
b

b
b
"

"
"

"b
b

b
b
"

"
"

"
Step 2:

∆
′
= audsley(∆)

(synchronous case)

∆
′
= ∅

∆
′ 6= ∅

���� ���� ���� Task set ∆

Step 1:
∀τi ∈ ∆, Oi = 0

∆
′′ 6= ∅

∆
′′

= ∅

b
b

b
b
"

"
"

"b
b

b
b
"

"
"

"b
b

b
b
"

"
"

"b
b

b
b
"

"
"

"b
b

b
b
"

"
"

"b
b

b
b
"

"
"

"
Step 4:

∆
′′

= audsley(∆′)
(asynchronous case)

Algorithm 2 : Offset and priority allocation algorithm.

With this method the number of tasks to consider for
the offset assignment is much lower as it will shown in
the experiments of Section 5.2. Since the time complexity
of the offset assignment depends on the number of tasks
and their periods, the time complexity is, thus, reduced.

4. Near-optimal offset assignment heuristics

In this section, we propose several assignment heuris-
tics, which provide alternative offset allocations when the
dissimilar offset assignment fails to produce a schedulable
asynchronous situation.

The functioning scheme of these new heuristics is very
similar to the one of the dissimilar offset assignment: cou-
ples of tasks are ordered according to a criteria, then the
task offsets are chosen from the top of the resulting or-
dered list to its bottom. The new heuristics provide dif-
ferent offset allocations than the dissimilar offset strategy
since they do not only consider the minimal distance be-
tween tasks. For instance, some try to “separate” tasks
with the highest utilization rate (i.e.Ck

Tk
). We propose

4 new offset assignment heuristics that take into account
other characteristics of the task set than the minimal dis-
tance between tasks. Our 4 heuristics consider the couples
(τk, τi) by decreasing values of:

1.
(

Ck

Tk
+ Ci

Ti

)

· gcd(Tk, Ti)

2. max
(

Ck

Tk
, Ci

Ti

)

· gcd(Tk, Ti)

3. Ck

Tk
+ Ci

Ti

4. −gcd(Tk, Ti)

38

The heuristics 1,2 and 3 sort the couples of tasks by
considering their utilization rate. Different ways of intro-
ducing the utilization rate in the ordering provide several
asynchronous situations, which may lead to a schedula-
ble asynchronous situation. In heuristic 1 (resp. 2), the
utilization rate of the couples of tasks (resp. the maxi-
mal utilization rate) is taken into account balanced by their
gcd. Rule 3 arranges the(τk, τi) according to decreasing
utilization rate.

Heuristic 4 first focuses on the couples of tasks(τk, τi)
for which the minimal length between instances is small.
The (τk, τi) are thus ordered according to decreasing
value of−gcd(Tk, Ti) to set the offset of the couples with
the less choices in the offset assignment.

These new assignment heuristics are considered to-
gether. The combined used of these heuristics, in our
experiments (Section 5.5), provides a “near-optimal” off-
set assignment. The complexity of these new heuristics
is identical as the one of the dissimilar offset assignment
(i.e.,O(n2 · (log T max + log n2)), because the algorithm
that performs the assignment is the same, except for the
ordering of the couples of tasks.

5. Experimental results

In this section, we present our experimental results. We
make use of the Algorithm 2 defined in Section 3.2.

5.1. Experimental setup
In the experiments, the global loadU is chosen for each

set∆ of n tasks. Since the sets∆ have to be unschedu-
lable in the synchronous case, the loadU has to be suffi-
ciently high. The utilization rate (Ck

Tk
) of each taskτk is

uniformally distributed in the
[

U
n
· 0.9 , U

n
· 1.1

]

interval.
The computation timeCk of each taskτk is randomly cho-
sen with an uniform law in the[cmin, cmax] interval, the rel-
ative deadlineDk is uniformally chosen in the[dmin, dmax]
interval , and the periodTk is upper bounded bytmax.

In the following, we make use of the tuple
(n, U, cmin, cmax, dmin, dmax, tmax) to denote the actual pa-
rameters used in our task sets random generation.

5.2. Complexity reduction using the Audsley’s algo-
rithm

In this section, the actual reduction of the search space
using the Audsley’s algorithm is studied. The improve-
ment is evaluated with task sets randomly generated ac-
cording to the tuple(n, 0.8, 2, 30, Tk − 0.9 × (Tk −
Ck), Tk +0.9× (Tk−Ck), 200) with n being the number
of tasks in the[5, 17] interval. We made approximately
13000 simulations for each graph (13 points per graph).

In Figure 1, the curve in plain style presents the per-
centage of task sets unschedulable in the synchronous case
which have at least one lowest priority viable task in the
synchronous situation. One can observe that at least 38 %
of the task sets include a lowest priority viable task. For

 20

 30

 40

 50

 60

 70

 80

 90

 6 8 10 12 14 16

%
 o

f t
as

k
se

ts

Cardinality of task sets (load=0.8)

Audsley’s algorithm sucessfully assigns the lowest priority
No priority is assigned by Audsley’s algorithm

Figure 1. Percentage of unschedulable task
sets in the synchronous case, which in-
cludes at least one lowest priority viable
task in the synchronous case.

these task sets, the Audsley’s algorithm (step 2, Algo-
rithm 2) allows to reduce the number of tasks in the off-
set assignment. One can also note from Figure 1 that the
percentage decreases with the number of tasks. This phe-
nomenon is probably related to our task generation algo-
rithm. Indeed, in order to keep the lcm of the tasks within
bounds that still allow to assess the feasibility by simula-
tion, restrictions are imposed on the task set characteris-
tics. When the number of tasks becomes large, the tasks
tend to have the same characteristics and they tend thus to
behave in a rather similar manner. Hence, when a task is
not lowest priority viable, the probability to find another
lowest priority viable task is rather low.

In Figure 2, we consider only task sets which have at
least one lowest priority viable task. The curve in plain
style shows the percentage of tasks being lowest priority
viable after step 2, Algorithm 2 (i.e., tasks in the set∆ \
∆′). The dotted curve represents the percentage of tasks
τj , which are not (i.e., tasks in the set∆′).

 30

 35

 40

 45

 50

 55

 60

 65

 70

 6 8 10 12 14 16

%
 o

f t
as

ks
 in

 th
e

ta
sk

 s
et

Cardinality of task sets (load=0.8)

tasks with an assigned priority
tasks with no assigned priority

Figure 2. Proportion of lowest priority viable
tasks.

As can be seen from the plot of Figure 2, at least 30 %
of tasks are lowest priority viable (in the synchronous
case). Thus, less than 70 % of the tasks have actually to

39

be considered for the offset assignment.
In order to accurately evaluate the complexity reduc-

tion obtained with the Audsley’s algorithm, we study the
actual reduction of the search space brought by the use of
the Audsley’s algorithm. In Figure 3, we consider again
only task sets with at least one lowest priority viable task.
The curve shows the percentage of search space reduction.

 53

 54

 55

 56

 57

 58

 59

 60

 6 8 10 12 14 16

%
 o

f c
om

pl
ex

ity
 r

ed
uc

tio
n

Cardinality of task sets (load=0.8)

Figure 3. Search space reduction using the
Audsley’s algorithm.

From the simulation results, presented in Figure 3, the
search space reduction is always greater than 53 %.

The conclusion that can be drawn from these exper-
iments is that for a very significant number of systems
(more than 38 % in our experiments), at least 30 % of
the tasks can be allocated a priority by the Audsley’s al-
gorithm (i.e., are lowest priority viable). This allows to
reduce the search space of the offset assignment scheme
by at least 53 %.

5.3. Offset free for increasing feasibility
This subsection aims to show the interest of offset free

systems for schedulability, by using the optimal offset as-
signment.

Task sets are randomly generated according to the tu-
ple(5, U, 2, 30, Tk−

Tk−Ck

2
, Tk, 30) with U chosen in the

[0.73, 0.95] interval. We made approximately6000 sim-
ulations for each graph (6 points per graph). It should
be noticed that the time complexity of the optimal assign-
ment rule, that is used in these experiments, is high, and
checking if a system is schedulable or not may require a
very long computation time (since we have to consider—
in the worst case—all non-equivalent offset assignments).
For this reason, we have strongly limited the number of
tasksn and the maximum value of the periods in our sim-
ulations to reduce the number of non-equivalent offset as-
signment and thus diminish the complexity of the schedu-
lability.

We now evaluate the percentage of systems unschedu-
lable in the synchronous case which becomes schedula-
ble in an asynchronous case (i.e., we use the optimal off-
set assignment). Once again, we use Algorithm 2 to de-
termine these percentages. Figure 4 represents the per-
centage of systems unschedulable in the synchronous case

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.75 0.8 0.85 0.9 0.95

%
 o

f t
as

k
se

ts

Load

unschedulable in the synchronous case
schedulable only in an asynchronous case

Figure 4. Percentage of systems un-
schedulable in the synchronous case (dot-
ted curve) and systems only schedulable
with an asynchronous configuration (plain
curve). The cpu load ranges from 0.7 to
0.95 .

(dotted curve), and the percentage of systems schedulable
only in an asynchronous case (plotted style curve). From
Figure 4, one can observe that the percentage of task sets
unschedulable in the synchronous case increases with the
load, which confirm the intuition that it is harder to find a
schedulable system when the load is high. Moreover, the
percentage of task sets schedulable in an asynchronous sit-
uation increases with the load (up to 18 %) until the load
reaches0.87, then it starts to decrease. Intuitively, it is
clear that task sets tend to be unschedulable, whatever the
offset allocations, when the load becomes too high.

5.4 Combined use of the heuristics: efficiency com-
pared to the optimal allocation

Figure 5 shows the percentage of task sets schedula-
ble in a particular asynchronous situation (non-equivalent
to the synchronous situation) which remains schedulable
with the dissimilar offset assignment rule (dashed curve)
and with at least one of our new heuristics (curve in plain
style).

As can be seen on Figure 5, the assignment heuristics
find a schedulable asynchronous situation for at least 51 %
and up to 95 % of the task sets in which such a situation
exists. The chance of finding a schedulable assignment
logically decreases with the load.

The combined used of the heuristics enables us to find
an important percentage of the schedulable asynchronous
situations. From Figure 5, it is obvious that the combina-
tion of our new heuristics outperforms the dissimilar offset
assignment.

5.5. Relative performances of the heuristics
In this section, the improvement brought by the new

heuristics is discussed more precisely. Task sets are ran-

40

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0.75 0.8 0.85 0.9 0.95

%
 o

f t
as

k
se

ts
 s

ch
ed

ul
ab

le
 in

 a
 p

ar
tic

ul
ar

 a
sy

nc
hr

on
ou

s
si

tu
at

io
n

w
hi

ch
 r

em
ai

ns
 s

ch
ed

ul
ab

le

Load

dissimilar offset assignment
one of our new heuristics

Figure 5. Dissimilar offset assignment vs.
our new heuristics.

domly generated according to the tuple(n, U, 2, 30, Tk −
Tk−Ck

2
, Tk, 30) with U chosen in the{0.8, 0.9} set andn

in the [5, 11] interval. We made approximately7000 sim-
ulations for each graph (7 points per graph).

The offsets and priorities assignment are performed ac-
cording to Algorithm 2 of Section 3.2. At step 4, the asyn-
chronous situations correspond to the offset assignments
produced by the dissimilar offset assignment and by the
new heuristics.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 6 7 8 9 10 11

%
 o

f t
as

k
se

ts
 u

ns
ch

ed
ul

ab
le

 in
 th

e
sy

nc
hr

on
ou

s
ca

se
sc

he
du

la
bl

e
w

ith
 th

e
of

fs
et

 a
ss

ig
nm

en
t h

eu
ris

tic

Cardinality of task sets (load=0.8)

schedulable with one of the heuristics
(dissimilar offset) gcd(Tk,Ti)

(heuristic 1) (Ck/Tk+Ci/Ti)*gcd(Tk,Ti)
(heuristic 2) max(Ck/Tk)*gcd(Tk,Ti)

(heuristic 3) Ck/Tk+Ci/Ti
(heuristic 4) -gcd(Tk,Ti)

Figure 6. Percentage of the task sets un-
schedulable in the synchronous case that
becomes schedulable with the different off-
set assignment heuristics (80 % CPU load).

Figure 6 and 7 display the percentage of tasks sets un-
schedulable in the synchronous situation which become
schedulable in the asynchronous situation produced by
each of the heuristics. The experiments are done with a
global load of0.8 in Figure 6 and of0.9 in Figure 7. From
these Figures, one sees that the offset assignment heuris-
tics significantly increase the schedulability compared the

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 6 7 8 9 10 11

%
 o

f t
as

k
se

ts
 u

ns
ch

ed
ul

ab
le

 in
 th

e
sy

nc
hr

on
ou

s
ca

se
sc

he
du

la
bl

e
w

ith
 th

e
of

fs
et

 a
ss

ig
nm

en
t h

eu
ris

tic

Cardinality of task sets (load=0.9)

schedulable with one of the heuristics
(dissimilar offset) gcd(Tk,Ti)

(heuristic 1) (Ck/Tk+Ci/Ti)*gcd(Tk,Ti)
(heuristic 2) max(Ck/Tk)*gcd(Tk,Ti)

(heuristic 3) Ck/Tk+Ci/Ti
(heuristic 4) -gcd(Tk,Ti)

Figure 7. Percentage of the task sets un-
schedulable in the synchronous case that
becomes schedulable with the different off-
set assignment heuristics (90 % CPU load).

synchronous case. For instance, in Figure 6, the percent-
age of task sets schedulable with an asynchronous situa-
tion produced by the heuristics is at least 40.5 % and up to
97 %. The improvement steadily increases with the num-
ber of tasks: for instance, in Figure 6, the percentage of
schedulable task sets in an asynchronous situation is equal
to 71 % for 7 tasks, while it is 88.9 % for9 tasks. This
can be intuitively explained by the fact that the higher the
number of tasks, the higher the freedom degree to set the
offsets, and thus, the farther from the synchronous case
the system can be.

One also observes that, very logically, the percent-
age of systems schedulable in an asynchronous situation
strongly decreases when the load is high. For instance,
the percentage of schedulable systems for sets of8 tasks
is 83.1 % for a load of0.8 of 32 % for a load of0.9 (Fig-
ure 7).

The different heuristics can be compared using Fig-
ure 6 and 7. We observe that the dissimilar offset as-
signment performs very well, usually better than the new
heuristics. However, using all heuristics together (i.e.,try
the offset assignment returned by each of the heuristics)
allows to clearly outperform the dissimilar offset assign-
ment alone. The heuristics (including the dissimilar offset
assignment) are in some way very complementary. For
instance, 37.9 % of the task sets are schedulable with at
least one of our heuristics for 9 tasks (Figure 7) while only
26.3 % are schedulable with the dissimilar offset assign-
ment. It is worth noting that the complexity of each of the
new heuristics is the same as the dissimilar offset assign-
ment and, in practice, the computing time does not raise
problem whatever the cardinality of the task set.

In conclusion, our experiments show that the combined
used of all the heuristics lead to a near near-optimal off-
set assignment, which allows to increase considerably the

41

percentage of systems schedulable compared to the sole
asynchronous situation.

6. Conclusion

In this paper, we have studied the problem of the static
preemptive scheduling of offset free systems. First, we
have shown that the search space for assigning the offset
may be reduce of up to 50 % with an appropriate use of the
Audsley’s algorithm. Then, new heuristics are proposed
to improve upon the result of the dissimilar offset assign-
ment scheme introduced in [3]. These heuristics provide
alternative asynchronous cases, which allow to increase
very significantly the number of schedulable systems with
regards to pessimistic synchronous case. The combined
use of all these heuristics provides a near-optimal offset
assignment. Indeed, according to our experiments con-
ducted with for a global load of0.8 for task sets having a
cardinality in[5, 11], the set of heuristics enables to sched-
ule at least40.5% and up to97% of task sets, which are
unschedulable in the synchronous case.

A similar study remains to be conducted for the non-
preemptive case, which is of interest for scheduling
frames on networks but also for many small embedded
systems without preemptive capabilities. In a first step,
it has to investigated whether a similar complexity reduc-
tion procedure based on the Audsley’s algorithm can be
devised for the non-preemptive case (see [9] for some re-
sults on the use of the Audsley’s algorithm in the non-
preemptive case). Then, offset assignment heuristics ded-
icated to the non-preemptive case have to be proposed and
their efficiency evaluated.

In the future, we also intend to evaluate if integer linear
programming can be used to determine offsets in an effi-
cient manner; the main problem will be here to define the
cost functions that lead to schedulable systems.

References

[1] N. Audsley. Optimal priority assignment and feasibil-
ity of static priority tasks with arbitrary start times. Re-
port YO1 5DD, Dept. of Computer Science, University of
York, England, 1991.

[2] N. Audsley. On priority assignment in fixed priority
scheduling.Inf. Process. Lett., 79(1):39–44, 2001.

[3] J. Goossens. Scheduling of offset free systems.Real-Time
Systems, 24(2):239–258, March 2003.

[4] J. Goossens and R. Devillers. The non-optimality of the
monotonic priority assignements for hard real-time sys-
tems.Real-Time Systems, 13(2):107–126, sep 1997.

[5] K. Jeffay, D. Stanat, and C. Martel. On non-preemptive
scheduling of periodic and sporadic tasks. InProc. of
the 12th IEEE Real-time Systems Symposium (RTSS 1991),
1991.

[6] J. P. Lehoczky. Fixed priority scheduling of periodic task
sets with arbitrary deadlines. InProc. of the 11th IEEE
Real-Time Systems Symposium, pages 201–213, Florida,
USA, 1990.

[7] J. Leung and J. Whitehead. On the complexity of fixed pri-
ority scheduling of periodic, real-time tasks.Performance
Evaluation, 2:237–250, 1982.

[8] C. Liu and J. Layland. Scheduling algorithms for multi-
programming in hard-real time environnement.Journal of
the ACM, 20(1):40–61, 1973.

[9] R. Saket and N. Navet. Frame packing algorithms for au-
tomotive applications. Available as research report INRIA
RR-4998, to appear in Journal of Embedded Computing,
2006.

[10] K. Tindell, A. Burns, and A. Wellings. An extendible ap-
proach for analysing fixed priority hard real-time tasks.
Real-Time Systems, 6(2):133–151, 1994.

42

Network

43

Worst-case analysis of a mixed CAN/Switched Ethernet architecture

Jérôme Ermont, Jean-Luc Scharbarg, Christian Fraboul
IRIT-ENSEEIHT
2, rue Camichel

31000 Toulouse - France
Jerome.Ermont@enseeiht.fr

Abstract

Embedded systems have specific real-time require-
ments that led to the development of dedicated communi-
cation protocols. Such systems often face increasing com-
munication needs and the integration of switched Ether-
net architecture. But moving from existing dedicated field-
busses architectures to new Ethernet based architectures
is not always easily feasible, due to industrial constraints.

In this paper, we evaluate a solution for integrating
existing data busses (such as CAN, which is an impor-
tant standard in automotive context) on a global archi-
tecture that respects increasing bandwidth requirements.
We consider both event-triggered and time-triggered so-
lutions, incorporating the scheduling on CAN and the
CAN/Ethernet bridging strategy. The evaluation is per-
formed using timed automata and UPPAAL, and aims at
bounding end-to-end delays and jitter.

1. Introduction

Fieldbusses , e.g., CAN [16], WorldFIP [29], Profibus
[29] have been developed in the context of real-time appli-
cations (distributed computer control systems) that have
specific communication requirements such as:

• bounded end-to-end transmission delays in order to
guarantee respects of deadlines,

• the bounded and small jitter for periodic traffic.

However, the amount of information that are nowadays
exchanged in such systems have been increasing steadily
and is now reaching the limits of traditional fieldbusses,
especially in terms of bandwidth [12].

Switching from dedicated fieldbusses to Ethernet is a
classical trend in embedded systems due to the wide ac-
ceptance of the Ethernet standard and its evolution toward
a more predictable switched architecture.

However, successful experience with introduction of a
switched Ethernet in avionic systems (AFDX, [4, 15]) is
mainly due to the preservation of the applications commu-
nication model (periodic schemes) and the respect of the
expected real time properties (bounded delay).

The goal of the study presented in this paper is to build
an heterogeneous architecture obtained by interconnect-
ing existing CAN data busses on a switched Ethernet.
In this context, we aim at comparing, on the one hand,
event-triggered systems using native CAN MAC and an
event-triggered strategy for transmitting CAN frames on
Switched Ethernet, on the other hand a system with a
time-triggered behavior (TTCAN like [17]) on the whole
network.

The proposed evaluation is based on timed automata.
It aims at determining worst-case end-to-end delays and
jitters on CAN frames.

Section 2 presents briefly TTCAN and switched
Ethernet technologies and defines the heterogeneous
CAN/Switched Ethernet architecture studied in this paper.
Section 3 presents the application traffic over the network
and proposes event-triggered and time-triggered strategies
to schedule the traffic. Section 4 describes the modelling
of the application and the network with timed automata.
Section 5 shows how worst-case delays on CAN frames
can be calculated. Section 6 concludes the paper and
presents points we are presently studying and some ideas
for future work.

2. Network architecture

The network architecture will comprise the two com-
munication technologies CAN and switched Ethernet. In
this section, we present briefly those two technologies.
Then, we describe the network architecture that we will
consider in the remaining of the paper.

2.1. CAN
CAN (Controller Area Network) [16] is a serial com-

munication protocol suited for networking sensors, actua-
tors and other nodes in real-time systems. The CAN spec-
ification defines several versions of the protocol for the
physical and the data link layer. In this paper, we shortly
present CAN 2.0 A. Several application layer protocols
have been proposed (CANOpen, CAN Kingdom,. . .).

The CAN addressing system is based on message iden-
tifiers: a frame does not have a destination nor a source
address. Frames are broadcasted on the bus. Stations get

45

the frames they are interested in by a filtering process of
the identifiers.

Figure 1. CAN frame (sizes in bits)

The frame format is depicted in Figure 1. The details
of each field will not be presented. The relevant fields for
the remainder of the paper are the following:

• the identifier field, which as mentioned earlier iden-
tifies the data contained in the frame,

• the DLC field which gives the length (in bytes) of the
data field,

• the data field which is the payload of the frame.

Bit-stuffing is used to avoid the transmission of long se-
quences of bits with identical value [23]. As soon as 5
bits of identical value are transmitted, a bit of opposite
value is automatically inserted. This mechanism is valid
for the whole frame, except IFS, EOF, ACK and the last
bit of CRC.

The medium access method (MAC) is CSMA/CR
(Carrier Sense Multiple Access / Collision Resolution):
the starting of frame transmissions on the bus are syn-
chronous. When two or more stations start a transmission
simultaneously, the one with the highest priority identi-
fier (lowest value) wins and the others stop their transmis-
sion. This is implemented by a collision detection on a
bit by bit basis. When a station transmits 1 (recessive bit)
and detects 0 (dominant bit), it knows that a frame with
a higher priority is being transmitted and, consequently,
it immediately stops transmission. This mechanism guar-
anties strict priority order on identifiers, provided identi-
fiers are unique. It implies limitations of the bandwidth
and the maximal length of the bus (e.g., 1 Mbs for 40 me-
ters).

Some drawbacks of the CAN native MAC have been
identified. First, it is event-triggered: when a station has
a frame to transmit, it tries to. It will succeed as soon
as no frame with a higher priority is being transmitted.
This mechanism can induce large jitter on periodic frames.
Second, identifiers are associated with frames statically.
This imposes a scheduling algorithm using static priori-
ties, e.g., rate monotonic [22] when periodic traffic is con-
sidered. It is well known that higher utilization of the
medium is obtained with a scheduling algorithm using dy-
namic priorities, e.g., Earliest Deadline First [22].

Solutions have been proposed to solve those draw-
backs. Most of them add a protocol over CAN native
MAC (e.g., [11, 24]).

Time triggered CAN (TTCAN) [14, 17] is a well-
known solution. It imposes a static scheduling on CAN.

This scheduling is memorized in a table, the matrix cy-
cle, which is known by all the stations. This schedul-
ing comprises in particular exclusive, arbitration and free
windows. Each exclusive window is dedicated to exactly
one frame identifier while an arbitration window is shared.
Free windows allow some evolution of the application.
The stations are resynchronized with a trigger message
broadcasted periodically by the master station. Figure 2
gives an example of a matrix cycle. Each line of the table
is called a micro-cycle and has a durationDuc. The num-
ber of micro-cycles in the table is a power of 2. All the
windows in a given column of the table have the same du-
ration. The reference message can be easily recognized by
its identifier. With TTCAN’s level 1, the reference mes-
sage only holds some control information in one byte. In
extension level 2, the reference message holds additional
control information (e.g., the global time information of
the master) and covers four bytes.

Ref

Ref

Ref

Ref

M1

M1

M1

M1

M2

Arb

M3

Arb

Free

M4

Arb

M4

Arb

Arb

Free

Arb

M5

M5

M5

M5

M4

M4

M2

Free

M1

M1

Arb

Arb

Figure 2. Example of a matrix cycle

In the remaining of the paper, we will consider both
native CAN MAC and TTCAN.

2.2. Full Duplex Switched Ethernet
Full Duplex Switched Ethernet is an enhancement of

Ethernet. The Ethernet link layer [13] is designed for
computer local networks where high bandwidth and low
cost hardware is more important than guaranteed dead-
lines and/or jitter.

The Ethernet addressing system is based on MAC ad-
dresses: each Ethernet entity has a unique MAC address.
In each frame, the destination (unicast, broadcast or multi-
cast) and source addresses are inserted. Frames are broad-
casted on the physical layer. Entities get the frames there
are interested in by a filtering process.

The Ethernet native medium access method is
CSMA/CD (Carrier Sense Multiple Access / Collision
Detection): the collision resolution mechanism is non de-
terministic and leads to unbounded transmission delays.

Full Duplex Switched Ethernet is a way to bypass the
medium access strategy of Ethernet: each station is di-
rectly connected to an Ethernet switch with a full duplex
link. Then, the medium is always free. Consequently
guaranteed performances are strongly connected to poli-
cies of the switch. Many literature has been devoted to
the subject (see for instance [30] concerning service dis-
ciplines in packet-switching networks). In this paper, we
consider a very basic switch with a First-In First-Out pol-
icy on each output port.

46

2.3. Heterogeneous CAN / Switched Ethernet architec-
tures

Our goal is to interconnect several CAN busses with a
full duplex switched Ethernet network, in order to bypass
CAN limitations while keeping the widely existing CAN
technology. Such an architecture is depicted in figure 3. It
includes four CAN busses and an Ethernet switch. There
is a bridge station between each CAN bus and the switch.
The switch has four receive ports and four queued transmit
ports. When a frame arrives at the switch, the control logic
determines the transmit port and tries to transmit the frame
immediately. If the port is busy because another frame is
already being sent, the frame is stored in the first-in first-
out transmit port queue. The memory to store pending
frames is obtained from a shared memory pool. If no more
memory is available, the received frame is dropped.

rx
port

rx
port

port
tx

port
tx

rx
port

rx
port

port
tx

port
tx

CAN2

CAN3CAN4

S1

S4

S2

S3

CAN1

switch
fabric

Figure 3. Network architecture

More generally, the architecture includesNc CAN
busses and the switch hasNc receive ports andNc queued
transmit ports. Network architectures with more than one
switch are not considered in this paper.

3. Application traffic over the network

All the traffic is transmitted on CAN data busses or/and
Switched Ethernet network. First, we detail the main char-
acteristics of each kind of traffic. Second, we summarize
interesting bridging strategies for CAN traffic that has to
be transmitted over Switched Ethernet. Then, we describe
more precisely a strategy that is intended to allow an end-
to-end time-triggered behavior. Finally, we summarize the
purpose of the evaluation of the network architecture with
the given application traffic.

3.1. Kinds of traffic
The traffic on the whole network can be divided in three

kinds:

local CAN traffic: all the frames of this traffic are pro-
duced by a station on a CAN data buss and con-
sumed by stations all on the same CAN data buss;
consequently, those frames don’t have to be transmit-
ted on switched Ethernet,

global CAN traffic: all the frames of this traffic are pro-
duced by a station on a CAN data buss (their home

bus) and consumed by stations among which at least
one is on a CAN data busd with d 6= s (all those
d busses are called the distant busses of the global
CAN frame); consequently, those frames have to be
transmitted on switched Ethernet,

non-CAN Ethernet traffic: all the frames of this traf-
fic are produced by a station on the switched Eth-
ernet network and consumed by stations all on
the switched Ethernet network; consequently, those
frames don’t have to be transmitted on any CAN data
bus.

CAN traffic (local and global) is composed of messages.
Each messageMi consists in the periodic production of
a frame with a givenDLC. MessageMi period is de-
notedPi. Each frame ofMi has a relative deadline equal
to the periodPi. We impose that all periods are harmonic
in order to simplify the TTCAN implementation of the ap-
plication. We don’t consider aperiodic nor sporadic CAN
traffic. A global message is not transferred on a CAN bus
which is neither its home bus nor one of its distant busses.

Non-CAN Ethernet traffic is composed of a set of
flows. Each flow is a sequence of frames with a fixed
length and an exponential inter-arrival law.

Concerning the scheduling of frames on CAN data
busses, we consider the two following solutions:

CAN native MAC is considered and identifiers are allo-
cated to CAN messages following a rate monotonic
policy (messages with the smallest period get the
higher priority [22]),

TTCAN is considered withDuc (the duration of the ba-
sic cycle) equal to half the smallest periodPi among
CAN messages and the duration of the matrix cycle
equal to the biggest periodPi among CAN messages
(this implies that each CAN message is scheduled at
most every two basic cycle). As an example, if there
are three CAN messagesM1, M2 andM3 with pe-
riods 2, 4 and 4ms, we haveDuc = 1 ms and a
matrix cycle of4 ms.

3.2. Bridging strategies for global CAN traffic
As global CAN traffic has to be transmitted on the

switched Ethernet network, it is necessary to define a
bridging strategy between CAN and switched Ethernet.
As explained in [26], the very different CAN and Ether-
net characteristics make an encapsulating policy the best
choice. The encapsulation consists in putting the Identi-
fier, DLC and Data fields of CAN frames in the Data field
of the Ethernet frame (the other fields of CAN frames can
be easily reconstructed). This means that a CAN frame
occupies at most 10 bytes of the Data field of an Ethernet
frame. The following strategies will be considered:

the one for one strategy: it is the most straightforward
strategy, since each CAN frame is put in a separate
Ethernet frame and transmitted as soon as possible,

47

the n for one strategy: it consists in frame bunching
with exactlynCAN frames in an Ethernet frame, im-
plying that each global CAN frame has to wait until
there isn pending CAN frames in the bridge station,

the timed n for one strategy: it consists in frame bunch-
ing with a bounding of the delay a global CAN frame
has to wait before being transmitted over Ethernet,

the time-triggered strategy: it consists in applying a
TTCAN like strategy over the whole network (CAN
and Ethernet) for global CAN frames; more details
will be given later on.

The three first strategies have been compared by simula-
tion in [27], considering CAN native MAC. The results
show that thetimed n for one strategy gives the best ra-
tio of CAN frames meeting their deadlines, whatever non-
CAN Ethernet load is. Concerning then for one strat-
egy, greater values ofn are better when non-CAN Ether-
net load increases, while the percentage of CAN frames
missing their deadline increases withn for low non-CAN
Ethernet loads (see [27] for details).

Those three strategies can be applied using TTCAN for
the scheduling of frames on CAN data busses. However,
they won’t keep the time-triggered behavior of TTCAN.
Consequently, they won’t be studied.

The time-triggered strategy is proposed in the context
of TTCAN for the scheduling of frames on CAN data
busses. It has been presented in [25]. It is described more
precisely in the next paragraph.

3.3. The time-triggered strategy
It is based on the following principle. Each bridge sta-

tion is the TTCAN master of its CAN bus. In order to
obtain a time-triggered behavior on the whole network,
all global frames ready on a bridge are encapsulated in a
single Ethernet frame and broadcasted via the switch at
predefined instants. The following problems have to be
solved:

• the choice of transmission instants,

• the synchronization between the different CAN
busses, when initializing the system and to compen-
sate clock drifts,

• the coordination of the different TTCAN tables.

A possible solution to those problems is depicted in figure
4 with the four CAN data busses architecture of figure 3.

On this example, Global messages imply three CAN
busses (all the messages of CAN bus 4 are local and bus
4 will be ignored) :X is produced on CAN bus 2 and
consumed on CAN bus 1,Y is produced on CAN bus 3
and consumed on CAN busses 1 and 2,Z is produced on
CAN bus 1 and consumed on CAN bus 2,T is produced
on CAN bus 2 and consumed on CAN bus 3. The period
of messagesX, Y , Z andT is 20 ms. TTCAN tables are
given on figure 5. Windows where messages are produced

Ref

Ref X Z T

Ref Y

Ref X Z

Ref Y

Ref T

YRef Z
CAN 1

CAN 2

CAN 3

Figure 4. Time-triggered over switched Eth-
ernet

are underlined. The duration of the micro-cycleDuc is 10
ms for the three tables (half the smallest period). Local
messages are not considered in this example.

Ref X Z
Ref

T
Y

Ref Y
Ref T

CAN 1
Ref ZY
Ref

CAN 2 CAN 3
X

Figure 5. TTCAN tables

A master is defined among bridges stations - here, the
bridge of CAN bus 1 is chosen. Its role is to synchro-
nize the CAN busses at initialization time. Following syn-
chronizations do not require a master. At the beginning
of the application, the first TTCAN micro-cycle executes
on CAN bus 1. At the end of this cycle, the bridge of
CAN bus 1 broadcasts to bridges of CAN busses 2 and
3 an Ethernet frame encapsulating global CAN frameZ.
This Ethernet frame synchronizes the three CAN busses.
Then, the second TTCAN micro-cycle executes on CAN
bus 1, while the first one executes on CAN busses 2 and
3. At the end of the TTCAN micro-cycle, each bridge
broadcasts an Ethernet frame encapsulating ready global
CAN frames (X andT for CAN bus 2,Y for CAN bus 3).
Those Ethernet frames synchronize the three CAN busses,
which then execute the next TTCAN micro-cycle.

The main characteristics of this solution are:

1. the transmission instants correspond to the ends of
micro-cycles,

2. the synchronization of different CAN busses is done
at the end of each micro-cycle, via Ethernet frames
exchanges,

3. the TTCAN tables are built so that, when a global
frame is sent on its source bus during a micro-cycle,
it is sent on its destination bus during the next micro-
cycle (see for example frameY in figure 4),

4. a global CAN frame stands in the same column in all
TTCAN tables (e.g., frameY is always in column 2
on figure 4).

The time triggered behavior is obtained on each individual
CAN bus by the construction of the TTCAN table.

48

Native CAN TTCAN
One for one strategy *
n for one strategy *
Timed n for one strategy *
Time-triggered strategy *

Table 1. Allowed configurations

As mentioned earlier, a global CAN frame has con-
sumers in different CAN busses including the one where it
is produced. Characteristics 3 and 4 above imply there is a
delay of one micro-cycle between the transmission of the
message on its home bus and the transmission on its dis-
tant busses. This delay has to be taken into account when
designing the application. It includes the synchronization
delay which depends on the transmission delays on Ether-
net links, the delay induced by the switch and the delays
induced by the drift between bridges clocks. Those delays
have to be bounded precisely.

3.4. Purpose of the evaluation
As stated earlier, two important communication re-

quirements of real time applications are bounded end-to-
end transmission delays and bounded and small jitter for
periodic traffic. As a consequence, the evaluation of the
different configurations of our network architecture espe-
cially addresses the two following points:

• calculate a bound on the end-to-end delay of each
CAN frame, so that we can guaranty that no missed
deadline arise on CAN traffic,

• bound the jitter for each periodic CAN message.

The allowed configurations are summarized in table 1. In
the next section, we will propose both a modelling of the
one for one strategy that can be easily extended to the
two other event-triggered strategies and a modelling of the
time-triggered strategy.

4. Modelling the network architecture with
timed automata

Several approaches can be used to evaluate the behav-
ior of a given application on a network architecture. In
[26, 25], we developed a simulation model to compare dif-
ferent CAN / Ethernet bridging strategies. Such a model is
inefficient to determine a worst-case end-to-end delay on
CAN messages. The Network Calculus ([9, 10]) has been
applied in the AFDX network system for Airbus embed-
ded networks [4, 15]. However, it is often difficult to eval-
uate the quality of the obtained worst-case end-to-end de-
lay (is it possible to approach or reach this delay?). Here,
we use timed automata. We have already applied them in
the contexts of a production cell [21] and avionics systems
[6].

In this section, we first give a short overview of timed
automata. Then, we successively present the modelling of

the CAN/switched Ethernet and TTCAN/switched Ether-
net architecture with timed automata. In these modellings,
no non-CAN Ethernet traffic will be considered.

4.1 Modelling with timed automata
Timed automata have been first proposed by Alur and

Dill [3] to describe systems behavior with time. A timed
automaton is a finite automaton with a set of clocks,i.e.
real and positive variables increasing uniformly with time.
Transitions labels are:

• a guard,i.e. a condition on clock values,

• actions,

• updates, which assign new value to clocks.

Composition of timed automata is obtained by syn-
chronous product. Each actiona executed by a first timed
automaton corresponds to an action with the same name
a executed in parallel by a second timed automaton. In
other words, a transition which executes actiona can only
be done if another transition labeleda is possible. The two
transitions are performed simultaneously. So communica-
tion use rendez-vous mechanism.

Performing transitions requires no times. Conversely,
time can run in nodes. Each node is labeled by an invari-
ant, that is a boolean condition on clocks. Node occupa-
tion is dependent of the invariant. The node is occupied if
the invariant is true.

Timed automata have been extended. One extension is
committed nodes. The goal of these nodes is to ensure
atomicity between consecutive execution of discrete ac-
tions [20]. As an example, consider the three automata of
the figure 6.

s1 s2
m1

A2

s1 s2
m2

A3

m2
s3

m1
s1 s2A1

Figure 6. Example of committed nodes

A1 performs m1 and simultaneously A2 performs m1.
Then A1 performs m2 and simultaneously A3 performs
m2. As s2 of A1 is committed, the two transitions m1 and
m2 are performed simultaneously without time evolution.
So, this extension allows to model broadcast communica-
tion mechanism through timed automata.

Another extension is timed automata with shared inte-
ger variables. In timed automata with shared integer vari-
ables, a set of variables is shared by timed automata. In
such a way, these values can be consulted and updated by
any timed automata [20, 7].

A system modelled with timed automata can be veri-
fied using model-checking. The reachability analysis is
performed by model-checking. It consists in encoding the

49

property in terms of reachability of a given node of one of
the automata. So, the property is verified by the reacha-
bility of node if and only if the node is reachable from an
initial configuration. Reachability is decidable and algo-
rithms exist [20]. Unfortunately, reachability analysis is
undecidable on timed automata with shared integer vari-
ables, but some semi-algorithms exist.

In the following subsections, we model the CAN
/ Switched Ethernet architecture and the TTCAN /
Switched Ethernet architecture presented in section 3 us-
ing timed automata with shared integer variables. Proper-
ties will be verified using UPPAAL model-checker [1].

4.2 Modelling the CAN / Switched Ethernet architec-
ture

In this subsection, we model the CAN / Switched Eth-
ernet architecture of section 3. The structure of the model
is depicted in figure 7. It is composed of four kinds of
timed automata:

• a function automaton models periodic real-time func-
tions,

• a transceiver automaton represents a part of the
medium access layer,

• an arbiter automaton implements the CAN arbiter,

• a switch automaton models an output port of the Eth-
ernet switch.

Function Function Function

Switch

CAN2

Function Function Function

Transceiver Transceiver Transceiver

Arbiter

Transceiver Transceiver Transceiver

Arbiter

CAN1

CAN3

Figure 7. The CAN / Switch Ethernet model

The presented model only considers theone for one
encapsulation strategy. It can be easily extended to the
n for one and timed n for one strategies by the adding
of bridge automata between CAN and the switch. Such
automata will be described in the TTCAN context.

4.2.1 The function automaton

As all CAN messages are periodic in our context, each
function of the system sends a frame periodically. The
automaton is depicted in Figure 8.
msgId corresponds to the identifier field in CAN

frame. The function automaton waits the duration of
period[msgId]. It leaves the node when the clock

t_period=period[msgId]
sendMsg[msgId][busId]
t_period:=0

t_period<=period[msgId]

Figure 8. Function automaton

t period is equal toperiod[msgId]. The message is
then sent to the corresponding CAN busvia the action
sendMsg[msgId][busId].

4.2.2 The transceiver automaton

The transceiver automaton is the first part of the medium
access layer. Figure 9 depicts its behavior.

idle

transmit[busId]
arbreq[msgId][busId]:=1

endTransmit[msgId][busId]
arbreq[msgId][busId]:=0

sendMsg[msgId][busId]

transmitMsg[msgId][busId]

Figure 9. Transceiver automaton

This automaton is first idle, waiting for the signal
sendMsg[msgId][busId], which is the sending request
from an upper layer. When it receives this signal, it
immediately send the signaltransmit[busId]. This
signal requests access to the bus identified bybusId.
The shared integer variablearbreq[msgId][busId] al-
lows to identify the message which requests the
bus. When the transmitter wins the bus, it re-
ceives the signalmsgTransmit[msgId][busId]. When
the message is completely transmitted, the signal
endTransmit[msgId][busId] is received and the vari-
ablearbreq[msgId][busId] is reset.

4.2.3 The arbiter automaton

As explained in section 2.1, the bitwise arbiter of a CAN
bus consists in choosing the lowest identifier, which corre-
sponds to the highest priority, of the set of pending frames.
Modelling of such an arbiter is proposed in [18]. It imple-
ments the following loop:

for i in 0 to max_identifier_value do
if arbreq[i]=1 then

begin
transmit message i;
wait end of transmission;

end
end for;

We have adapted this solution to our context. Figure 10
shows the resulting timed automaton.

The nodeh ≤ 0 models the loop. When the identifier
is selected, the automaton simulates the transmission by
waiting for a delaytransmission delay. Then it sends
a signalendTransmit[msgId][busId] to the transmitter
and simultaneously a signalforwardTransmit[msgId]
to the switch.

50

idle

h<=0

transmit[busId]
h:=0, i:=0

h=0 & i<max_identifier_value
& arbreq[i][busId]!=1
i:=i+1i:=0

transmit[busId]
h=0

h=0 & i=max_identifier_value

h:=0

h=transmission_delay

h:=0

forwardTransmit[i] msgTransmit[i][budId]

endTransmit[i][busId]

i:=0

h<=transmission_delay

transmit[busId]

h=0 & i<max_identifier_value
& arbreq[i][busId]=1

Figure 10. Arbiter automaton

4.2.4 The switch automaton

As explained in section 2.2, the switch uses FIFO policy
on each queued transmit port. Each node of the automaton
models a location in the queue. Consequently, the number
of nodes of the automaton equals the size of the queue.
Figure 11 shows a switch automaton for a transmit port
with queue sizen. Each transition from a nodePi to
a nodePi+1 of the automaton models the arrival of one
frame at the transmit port. The identifier of the frame is
the parameter of theforwardTransmit event.delay is
the transmission time of the frame. In a first approach,
we consider it is the same for every frame, meaning that
frame length is constant.

idle P0 P1 Pn

h=delay
sendMsg[msg1]

h=delay
sendMsg[msg1]
msg1:=msg2, h:=0

h<=delayh<=delayh<=delay

forwardTransmit[0]forwardTransmit[0]

forwardTransmit[1]

forwardTransmit[m] forwardTransmit[m]

forwardTransmit[1]

h:=0, msg1:=0

h:=0, msg1:=1

h:=0, msg1:=m

msg2:=0

msg2:=1

msg2:=m

Figure 11. Switch automaton

4.2.5 The global system

First, we model the transmission on one busi by compos-
ing functions, transceivers and arbiter:

Busi = ((Functioni,0||Transceiveri,0)|| . . . ||
(Functioni,n||Transceiveri,n))
||Arbiteri

whereFunctioni,j is a function sending a message with
an identifier of valuej, Transceiveri,j is the correspond-
ing transceiver.

Finally, the global system is the composition of n bus
and the switch:

System = (Bus0||Bus1|| . . . ||Busn)||Switch

4.3 Modelling the TTCAN / Switched Ethernet archi-
tecture

We consider the model depicted Figure 12 which con-
sists in the following components:

• a function automaton transmits a time-triggered mes-
sage,

• a bridge TTCAN/Ethernet automaton encapsulates
CAN frames in Ethernet frames,

• a bridge Ethernet/TTCAN automaton transmits CAN
frames encapsulated in Ethernet frames to the
destination CAN bus following the time-triggered
schema,

• a switch automaton,

• and two Ethernet links.

Function Function Function

Bridge TTCAN/Ethernet

Ethernet link

Switch

Ethernet link

Bridge TTCAN/Ethernet

Figure 12. The TTCAN/Switch model

4.3.1 The function automaton

This function sends a signalsendMsg[msgId][idCan]
corresponding to the messagemsgId at the instant
sendT ime[msgId] (in order to respect the time-triggered
schema) and then waits the beginning of the sending cycle
(Figure 13).

h<=sendTime[msgId] h<=tt_cycle

h=tt_cycle

h=sendTime[msgId]

h:=0

sendMsg[msgId][idCan]

Figure 13. The function in time-triggered
strategy

4.3.2 The bridge TTCAN/Ethernet automaton

The bridge TTCAN/Ethernet automaton constructs the
Ethernet frame by encapsulating CAN frames. The model
is depicted in Figure 14.

51

sendMsg[msgId1][busId]
h<tt_cycle

i:=i+1

sendMsg[msgId2][busId]
h<tt_cycle

i:=i+1

sendMsg[msgIdn][busId]
h<tt_cycle

i:=i+1

h==tt_cycle

h:=0, number_of_frames:=i, i:=0
sendFrame[idCan]

Figure 14. Model of the bridge CAN/Ethernet

During the cycle duration, each time the bridge re-
ceives the signalsendMsg[msgIdn][idCan] which cor-
responds to a CAN frame, it encapsulates the frame into
the pending Ethernet frame. When the cycle duration
elapses, the bridge sends this Ethernet frame to the switch
using the signalsendFrame[idCan]. The shared inte-
ger variablenumber of frames[idCan] indicates how
many frames have been encapsulated into the Ethernet
frame.

4.3.3 The bridge Ethernet/TTCAN automaton

The bridge Ethernet/TTCAN automaton transmits CAN
frames of the received Ethernet frame to the destination
CAN respecting the time-triggered schema. Figure 15
represents its behaviour.

i<number_of_frames[idFrame]
sendMsg[msgId1][idCan]
i:=i+1

i<number_of_frames[idFrame]
sendMsg[msgIdn][idCan]
i:=i+1

i<number_of_frames[idFrame]transmitMsg[idFrame]
i:=0 transmitMsg[idFrame]

Fail

Figure 15. Model of the bridge Ethernet/CAN

The automaton receives thetransmitMsg[idFrame]
from the switch automaton.idFrame identifies the in-
put CAN. The transmission of each frame is modelled
by the reception ofnumber of frames[idFrame] sig-
nals namedsendMsg[idMesn][idCan] from functions
of same type as previously described. An error can be
detected, which leads to theFail node in the Figure,
whentransmitMsg[idFrame] is received before all the
CAN frames have been transmitted, i.e. when the number
of transmitted frames is lower than the number of CAN
frames in the Ethernet frame.

station message bus priority period trans.
time

(ms) (ms)
s1 m1 bus1 0 4 0.135
s2 m2 bus2 1 4 0.115
s3 m3 bus3 2 10 0.095
s4 m4 bus4 3 10 0.075
s5 m5 bus5 4 12 0.135
s6 m6 bus5 5 12 0.115

Table 2. Configuration of CAN / Switched
Ethernet case study

4.3.4 The Ethernet links automata

The Ethernet link between the TTCAN/Ethernet bridge
and the switch is modelled in Figure 16. It consists in
adding a delay between the signalsendFrame[idCan]
sent by the bridge andforwardTransmit[idCan] re-
ceived by the switch.

h:=0
h<=trans_delay

h=trans_delay
forwardTransmit[msgId]

sendFrame[msgId]

Figure 16. Model of an Ethernet link

The automaton modelling the Ethernet link between
the switch and the Ethernet/TTCAN bridge is similar to
the switch automaton depicted in Figure 11.

5. Worst-case delay calculation

In this section, we show how worst-case end-to-end de-
lay can be obtained from the models of section 4 Con-
sider the case study depicted in Figure 17 composed of
eleven stations communicating on five CAN buses inter-
connected by an Ethernet switch. Six stations sends a
message periodically. The configuration is given in table
2. The switch imply a transmission delay of 0.080ms. We
won’t consider any delay within CAN/Ethernet bridges.
This case study is modelled as described in section 4.

s3

s2

s4
b4

b3

b2

s1
b1

b5
s5 s6

Switch

bus2

bus3

bus4

bus1

bus5

Figure 17. The CAN/Switch model

Model-checking is used to determine the global trans-
mission delay of each message in the system. The method
consists in verifying that a message is received before a
global transmission delay. In other words, the property to

52

Message Global trans. delay
(ms)

m1 0.595
m2 0.460
m3 0.345
m4 0.670

Table 3. Worst-case delays

verify is “given a messagemi, the global transmission de-
lay of the messagemi, notedd(mi) must be lower than
a bounded delaydi : d(mi) ≤ di”. The test automata
method can be used to help the verification process. This
method is described in [7, 5] and consists in constructing
a test automaton which encodes the considered property.
Then, the model-checking consists in calculating if a re-
ject node is reachable or not. The test automaton of our
property is depicted in Figure 18.

h:=0
startTransmission[msgId]

endTransmission[msgId]

h>delay[msgId]

startTransmission[msgId]

endTransmission[msgId]

Figure 18. The test automaton

First, it waits for startTransmission[msgId] sig-
nal which is immediately transmitted (using a com-
mitted node) aftersendMsg[msgId] in each automa-
ton function. If h > delay[msgId], i.e. no
signal endTransmission[msgId] is detected before
delay[msgId], the reject node, represented by the node
with an unhappy face, is reached and the property is false.
So, we compute, for each message, the lower value of the
global transmission delay using the model-checker UP-
PAAL. Results are given in table 3 and show that the
worst-case occurs when all the messages are sent at the
same time. Due to transmission delays, messages posi-
tions in the switch are: 1:m4, 2: m3, 3: m2, 4: m1. m4
takes 0.075+0.080=0.155ms to access to bus5. During this
time,m5 is completely transmitted on bus5 andm6 is in
transmission since 0.020ms.m4 is delayed. At 0.235ms,
m3 try to access to bus5. When transmission ofm6 is
finished at 0.250ms, the priority ofm3 is higher than the
one ofm4 and then is transmitted to bus5. In accordance
with messages priorities, transmission ofm2 can starts at
0.345ms and transmission ofm1 at 0.460ms.m4 is then
sent at 0.595ms.

Consider now the system of Figure 19 composed of
three CAN busses. It illustrates the worst-case delay cal-
culation on the TTCAN/Switched Ethernet model. It in-
cludes two function on each input bus and four functions
on the output bus, two CAN / Ethernet bridges and two
Ethernet / CAN bridges. Configuration is given in table 4.
The micro-cycle is 1ms.

b4

b3

b2

b1

b5

s1 s2

s3 s4

Switch
bus5

bus2

bus1

bus3

bus4

Figure 19. The TTCAN/Switch model

Message Bus Trans.
Instant
(ms)

m1 bus1 0.200
m2 bus1 0.600
m3 bus2 0.500
m4 bus2 0.700

Table 4. TTCAN Configuration

To bound the jitter, the Ethernet link transmission delay
is increased until the Fail node is reached in the bridge
Ethernet / CAN. The property is then “fail node should
not be reached”. Given a switching delay of 0.020ms, the
maximum valid value for the Ethernet link transmission
delay is 0.060ms.

Computing the worst case delay on the two case studies
using a Pentium IV with 2Go of memory takes less than
5s on UPPAAL 3.4.11.

6. Conclusion and future works

In this paper, we mainly focused on two types of com-
munication technologies:

• the Controller Area Network (CAN), with both the
native CAN MAC and the time-triggered version
(TTCAN), which is a good example of determinis-
tic real-time communication system,

• Switched Ethernet, which is a popular non real-time
communication system.

The aim of the paper was to study the use of switched
Ethernet in conjunction with CAN for communications
in a real-time system. More precisely, the challenge was
to define and evaluate event-triggered and time-triggered
mechanisms on a mixed CAN / switched Ethernet archi-
tecture.

The event-triggered behaviour is obtained by the native
CAN MAC and an event-triggered encapsulation strat-
egy. The time-triggered strategy extends TTCAN over the
whole network (exchanges between CAN data busses take
place at the end of each TTCAN micro-cycles).

We have proposed an evaluation method for the differ-
ent proposed solutions using timed automata modelling
and UPPAAL. With our models, we are able to determine
worst-case end-to-end delays for CAN frames. We still
have to validate this calculation on more significant case

53

studies. In this context, it will probably be necessary to
simplify CAN modelling in order to overcome combina-
torial explosion.

Moreover, our models have to be expanded, especially
in the following ways:

• the introduction of jitters between the different CAN
busses,

• the introduction of non-CAN Ethernet traffic,

This will probably imply the use of probabilistic timed au-
tomata [28, 19]. Moreover, the introduction of non-CAN
traffic will imply the use of a more sophisticated Ethernet
switch, in order to be able to differentiate traffics.

Among other points that should be studied, there is
the use of other time-triggered strategies on CAN, such
as FTTCAN [2] and an architecture with a more global
Ethernet including several switches.

Finally, it would be valuable to compare the approach
proposed in this paper, based on timed automata, with
other approaches such as the one based on network calcu-
lus. A preliminary similar comparison has been conducted
in the AFDX context [8].

References

[1] http://www.uppaal.com.
[2] L. Almeida, P. Pedreiras, and J. A. G. Fonseca. The ftt-can

protocol : why and how.IEEE transactions on industrial
electronics, 49(6), dec 2002.

[3] R. Alur and D. L. Dill. Theory of Timed Automata.The-
oritical Computer Science, 126(2):183–235, 1994.

[4] ARINC Specification 664: Aircraft Data Network, Parts
1,2,3,4,5,8. Technical report, Aeronotical Radio Inc.,
2002-2005.

[5] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Pe-
tit, L. Petrucci, and Ph. Schnoebelen.Systems and Soft-
ware Verification. Model-Checking Techniques and Tools.
Springer, 2001.

[6] F. Boniol, G. Bel, and J. Ermont. Trois approches pour
la modelisation et la verification des systemes embarques.
Technique et Science Informatique, 22(5):539–569, 2003.

[7] A. Burguẽno Arjona. Vérification et synth̀ese de systèmes
temporiśes par des ḿethodes d’obervation et d’analyse
paraḿetrique (in english). PhD thesis, Ecole Nationale
Suṕerieur de l’Áeronautique et de l’Espace, Toulouse,
France, 1998.

[8] H. Charara, J.-L. Scharbarg, J. Ermont, and C. Fraboul.
Methods for bounding end-to-end delays on an AFDX net-
work. In ECRTS’06, Dresden, July 2006.

[9] R. Cruz. A calculus for network delay, part I.IEEE Trans-
actions on Information Theory, 37(1):114–131, January
1991.

[10] R. Cruz. A calculus for network delay, part II.IEEE
Transactions on Information Theory, 37(1):132–141, Jan-
uary 1991.

[11] M. Di Natale. Scheduling the can bus with earliest dead-
line techniques. InProceedings of the IEEE Real-Time
Systems Symposium, 2000.

[12] D. Dietrich and T. Sauter. Evolution potentials for fieldbus
systems. InIEEE Workshop on Factory Communication
Systems, Porto, September 2000.

[13] CSMA/CD access method. IEEE Standard 802.3, IEEE,
2002.

[14] T. Führer, B. M̈uller, W. Dieterle, F. Hartwich, R. Hugel,
and M. Walther. Time triggered communication on can. In
International CAN Conference, 2000.

[15] J. Grieu, F. Frances, and C. Fraboul. Preuve de
déterminisme d’un ŕeseau embarqué avionique. InActes
du 10̀eme Colloque Francophone sur l’Ingenierie des Pro-
tocoles, Paris, 7-10 Octobre 2003.

[16] ISO. ISO International Standard 11898 - Road vehicles -
Interchange of digital information - Controller Area Net-
work for high-speed communication, nov 1993.

[17] ISO. ISO International Standard 11898-4 - Road vehicles
- Controller Area Network - Part 4 : Time-Triggered Com-
munication, dec 2000.

[18] J. Krákora, L. Wasznioski, P. Pı́ša, and Z. Hanźalek. Timed
Automata Approach to Real Time Distributed System Ver-
ification. In5th IEEE International Workshop on Factory
Communication Systems, Vienna, September 2004.

[19] M. Kwiatkowska, G. Norman, R. Segala, and J. Spros-
ton. Verifying Quantitative Properties of Continuous Prob-
abilistic Timed Automata.Lecture Notes in Computer Sci-
ence, 1877:123–??, 2000.

[20] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nut-
shell. International Journal on Software Tools for Tech-
nology Transfer, 1(1–2):134–152, 1997.

[21] D. L’Her, J.-L. Scharbarg, P. Le Parc, J. Vareille, and
L. Marce. Specification and verification of the korso pro-
duction cell. InINCOM, Nancy, june 1998.

[22] C. Liu and L. J.W. Scheduling algorithms for multipro-
gramming in hard real-time environment.Journal of ACM,
20(1):46–61, 1973.

[23] T. Nolte, H. Hansson, C. Norstrom, and S. Pun-
nekat. Using bit-stuffing distributions in CAN analy-
sis. InIEEE/IEE Real-Time Embedded Systems Workshop
(RTES), 2001.

[24] P. Pedreiras and L. Almeida. Edf message scheduling on
controller area network.Computing and control engineer-
ing journal, pages 163–170, aug 2002.

[25] J.-L. Scharbarg, M. Boyer, J. Ermont, and C. Fraboul.
Ttcan over mixed can/switched ethernet architecture. In
Proc. of the 10th International Conference on Emerg-
ing Technologies and Factory Automation, Catania, Italy,
September 2005. IEEE.

[26] J.-L. Scharbarg, M. Boyer, and C. Fraboul. Can-ethernet
architectures for real-time applications. InProc. of the
10th International Conference on Emerging Technologies
and Factory Automation, Catania, Italy, September 2005.
IEEE.

[27] J.-L. Scharbarg, M. Boyer, and C. Fraboul. Interconnect-
ing can busses via an ethernet backbone. InProc. of the 6th
International Conference on Fieldbus Systems and their
Applications, Puebla, Mexico, November 2005. IFAC.

[28] J. J. Sproston.Model Checking Probabilistic Timed and
Hybrid Systems. PhD thesis, University of Birmingham,
Birmingham, UK, 2001.

[29] J.-P. Thomesse. Fieldbusses and interoperability.Control
Engineering Practice, 7:81–94, 1999.

[30] H. Zhang. Service disciplines for guaranteed performance
service in packet-switching networks.Proceedings of the
IEEE, 83(10):1374–1396, October 1995.

54

�

���������	
������������������������
�������	�����������
������	�������
���

�	�
�����

�������������

���������	�
�	�	��������������

 ! "#�$�
%&��'(��)*���
�+���%�,-�.(�
���

����)���	�
/�	0)&(�/�(1�

�

2�3	&
����4�

�������������

���������	�
�	�	��������������

 ! "#�$�
%&��'(��)*���
�+���%�,-�.(�
���

����)���&
�0)&(�/�(

�

�

���
����

����� ����	� �	���
��� ��
��� 	������������������ ��	�����

���������	�
�������������������������������	����
�����

 ������������	�!������	� ������������������ �������	�������

�����	�������!�!����	������������
�	������������� ���	�
����

�����
� 	����	���� ����	��
������ ��������	�� ���	�
���� ���

����� ��	���� ��
� ���� ��� �
� �	 ��	�	��� ��� 	����	���

����"����
������
����������	�����������	��������	�
���� �
�

��
����	�!�����������������	���������
��	��
��	�������
����

��� �������� �� �����	� 	����	��� ����"����
� ����� ����

����	��
�������� ���	�
���� ���� ��������	�� ��
��	��
�!� #��

����� ��������	�� ���	�
����� ����������	�� �	������� ����

���	�
�����
�����������������	
�������������������������
��

�� ��
��������� �������� ��≤��!� $
������ ��� ������
�� ��

�	�
�������
�
���	����������	���	���������!�!������
������

��������	�� �
�� ��
����	�� �� �� �� �	�
�������
�
���	

����������	��	�	�����	��	��	�	�����������	�������!�������

��
��	��
��	�������
����� ��������� ����	����	�����������

����� 	�������� ���������
�� ����� ��� ���������� ����

�	�
�������
�� �
� ����
����	�����	��������������
�� �������

�	������
� �����	����!��

%
����� ��������� �� ������
�����
����� ��������������	��

������� ��� ���� �	������� ����� ���� ��������
�� ��� ��
���

�	������ ��
�	�� �����
����� ����� &�� ��'����� (������

�&'(�!�&'(������������	�������	���	���
�����������������

���� �	� �
� ���	������������ �
� ����� ��� ����
����	��

��
������
� ����� ���� ���	�
����
�� ���� ����������	���

��
��	��
�!� ���� ��������
�� ��
�����
� ��	� ����� ���	�
���� ���

����
���	���
����	�
������&'(���	�����	�!�

)�
��� �� ����	���
����� ���������
� �
� ���� ������
��

��
��	��
�� 	�������
� ��	�������� ��� ��������� �����
�� ����

��
�	����������������������	��������!��

�

 ! "��
�#���	�����#�$��	���	����

 ! %�&���	�'��������	
����
���������
���
�
��(
���
&5�%�+������&(����&(���
%��&(��(��)��	����
%�

6��	
�����(�	��)� ���)	���	&
�/�7&5�'�(-��&(��(&'	%	
���8���
5	�8� �(�
��	��	&
� %�)�+� ���(�
���-�
�	�8�(� �
���('�
&(�
9	����('� �&
�	���� 	
� �
� ���	�	�
�� �&)��	&
� :�;/� �
� ����-� �&(�
�(&'	%	
����6&�
%�%��(�
��	��	&
�%�)�+��&����)&5�<�
���('=�&(�
���)����&���)&5��<9	����('=-�������)&5�&���
���
�(�����6�(��+�

�(���	�� <����� &�� �&��� $��� ���)	���	&
�� �
%� ���(�����%�
9	����('� �)���� &�� �)&5�=-� �� 6�
%5	%�8� (���('��	&
� �&)	�+�
���&(%	
���&��8�����>�(����&���8���)&5�	���
�&'�(��(&'	�	&
	
��
&
�/�?8	��)��%���&�)&5�(��&�(�����)	@��	&
� 	
� �'�(��������/�
�
&�8�(��(&6)���5���8&�)%�%��)�5	�8�	
��(&'	%	
��(��)��	���
3&�� 	�� �8��
��5&(>� �&
����	&
� 6������� &�� �8�� (&���(�
&'�()&�%/�?8	����
�&���(�58�
������8�	
�)�%���&
��&(���'�(�)�
(&���(�� 58	�8� %&�
&�� ����&(�� 9	����('/� ��� 	�� ��+�)��%� �&�
���>��� %(&�-� �)�8&��8� &����	&
�)� ���>��� %(&��� �&�)%� 6��
�&)�(���%-�)&
�� �&
�����	'�� ���>��� %(&��� ����� 6�� �'&	%�%�
�	
���	����
�%(���	��))+�%��������8��3&���&(����)	���	&
�����8�
��� ��%	&A'	%�&� %	����	&
/� B
�&(��
���)+-� �,	��	
�� ������
��
�����
����8��������8����?9�<?�)�9(&�=�%&�
&���%%(����
�8���&
�����	'�����>���%(&���(&6)��/��C9� <��
%&��C�()+�
9�����	&
=� :�;�8���6��
��(&�&��%��&�%��)�5	�8��8���(&6)���
5	�8� (�
%&�� %(&��	
�/� 7&5�'�(-� 	�� %&���
&�� �	'�� �
+�
���(�
����&
�
&
��&
�����	'�����>���%(&��/�

?8��>�+�	%���5���,�)&	��8�(��	���&���>���8���%'�
�����&��
�8�� D
���(�)E����>���)&����&)�(�
��� &�� ��)�(����)���� &��(��)�
�	��� ���)	���	&
�� �&� (�%���� �8�� ����	�	�
�� 6�
%5	%�8�
(���('��	&
/� �
� ����-� 	�� 5�� �&
�	%�(� ���)	���	&
�� ���8� ���
'	%�&�&
�%���
%-������)��8&
+-��
��(
���(�%	&-����/-���
+�&��
�8�����
��&)�(�������>���)&������&� �&����,��
�/����������>��
�8�� �,���)��&���8�����>��	@�%�'&	����(�
��	��	&
� &���8�� ���
��)��8&
+� ��('	��/� �
����%� �&� ���(�
���� �8�� (�)	�6)��
�(�
��	��	&
� &�� �))� �8�� ���>���� 5	�8� ��)�(��� %�)�+-� 	�� 	��
�(���(�6)���&�%(&����'&	������>���	��	����

&��6���(�
��	���%�
	
��	��� <�+�	��))+�!""����&(� �����)��8&
+=/�?8�� <�->=��	(��
�&%�)�	
�(&%���%�6+�7��%�&�	��
%�����
��8�
�:�;���
�6��
���%� �&� ����	�+� ���8� >	
%� &�� �&)�(�
��� 6+� 	
�(&%��	
�� �8��
�(�����)� 3&�� %��(�%��	&
� 6��5��
� ���	��+	
�� �))� ���>���F�
%��%)	
��� <	/�/� <>->=��	(�� ���(�
���=� �
%� <�->=��	(��
���(�
���/� 3&�� ��
�����
�� ���&(%	
�� �&� �8�� <�->=��	(��
�&%�)� 8��� ��'�(�)� �%'�
������� <�=� %�(
��
��5&(>�
�&
����	&
-� ���>���� �(�� %(&���%� ���&(%	
�� �&� �8�� <�->=�
�&%�)�(��8�(� �8�
�
&
�%���(�	
	��	��))+� ��� �8�� ����� &�� ?9�
�
%� �C9/�?8����
%��	(�6)��)&
���&
�����	'�����>���%(&���
��
� 6�� �'&	%�%1� <�=� �8�� ����� �&� �	�� ��� &
)+� <�->=��	(��
���(�
���� 	
����%� &�� <>->=��	(�� ��+� (���	(��)���� (��&�(���
(���('��	&
��	
����8���'�(����5&(>)&�%�	��(�%���%�6+�������&(�
&���A>��&(��(&'	%	
���8���	
	����3&��)�'�)/�?8	��)�����&	
��
	��	
��(���	
��58�
��&
����	&
�&���(��&(�58�
��8�����>�(����
(���('��	&
� <	/�/-� &'�(��(&'	�	&
	
�=� ��

&�� 6�� �(&'	%�%� ���
�%�	��	&
��&
�(&)/��

55

�

 !(%�����
������)
��������������	�'���������	
��

��#�����
���������
���
����	(����)�
��-��8�� <�->=��	(���&%�)�:�;� �������&�6���
�

	
��(���	
�� &
�� �&(� (��&)'	
�� 6&�8� &�� �8�� �(&6)���� &�� �8��
(��&�(��� &'�(��(&'	�	&
	
�� �
%�)&
�� �&
�����	'�� ���>���
%(&��/� ?8�� <�->=��	(�� �&%�)� ��+�� �8��� �8�� %��%)	
��� &�� ���
)����� �� &��� &�� �
+� �&
�����	'�� �� ���>���� ����� 6�� ���/�
G&(�&'�(� ���>���� 58&��� %��%)	
�� ��

&�� 6�� ���� �(��
&��
�(�
��	���%�<	/�/�%(&���%=-��8	��	��58+�5�������8����(��D�	(��
(��)��	��E� 	
����%� &�� D�&���(��)��	��E/� &�	��� �8����8�� ��(��
D�
+� �&
�����	'�� �� ���>���E� 	��)	��� �� �)	%	
�� 5	
%&5�
���(�
�����&(� ���)&5/� �&���5&(>� �,	���� 	
� ���)+	
�� <�->=�
�	(���&�3&����
�����
�/� �
� :!;-� 	���(&�&��%��&����� <�->=�
�	(�� �&%�)� 	
����%� &�� �C9� �&(� �&
����	&
� �&
�(&)� �
%�
�,��(��
��))+� �8&5�%� 	��� 	
��(���/� 7&5�'�(�
&�8	
�� 	��
�(&'	%�%� �&
��(
	
�� �8�� �(�
��	��	&
� %�)�+� ���(�
���/� : ;�
�(&�&��%��
�	
���(��	&
�&���8���,	��	
��<�->=��	(����8�%�)	
��
�)�&(�8��� 	
�&� �8�� 9	����('� �(�8	�����(�� �&(� �(&'	%	
��
�'�(������(�&(��
���	��(&'���
�/�

�
��	�	'�)+-� (���('	
�� (��&�(���� ���&(%	
�� �&� <�->=�
(���	(���
�� (��8�(� �8�
� <>->=� �8&�)%� (�%���� �8��
������(+�
(��&�(��� (���('��	&
/� ?8	�� 	�� �(��� �&(� �,���)�� �&(��8�� �����
58�
��)&5�� �(�� ��('�%�6+� ��H.3� ��('�(� :#;� &(�58�
� &
)+�
����	��	�� <�->=��	(�� ���(�
���� 	�� (���	(�%/� B
�&(��
���)+-� 	��
8���6��
��(&'�
��8���	
���
�(�)-��&(���8	�'	
��#���
�	�	��	��
<�->=��	(�����(�
���-�&
��8����&�(���('��(��&�(�������&(%	
��
�&�<>->=��	(���	
����8��5&(�������������6���&
�	%�(�%�:I-�J-��;/�
G&(�&'�(-��8���(&6)���&��
&
��(������	'����8�%�)	
��&��*�
<�	->	=��	(�� �&
��(�	
�%� �)&5�� <�� +,�� -�� *=� &
� �� �	
�)��
(��&�(��� <�(&����&(� &(�
��5&(>�)	
>=� 8��� 6��
� �(&'�%� ��
8�(%�	
���(&
����
��-����8��8���
&�&��	��)���8�%�)	
����
�6��
�,�����%� �
%�(� ���8� �&%�)/� ?8	�� �(&6)��� ��(&��)+�
�&��(&�	���� �8�� �(���	��)� 	
��(���� &�� ��	
�� �8�� <�->=��	(��
�&%�)��&(�
��5&(>�(��&�(�����
�����
�/��

.���%��&��8	��)&5���)	@��	&
��(&6)��� <%����&���8�(%=-�

�8(��� (����(�8� %	(���	&
�� �(�� �&��	6)�/� ?8�� �	(��� &
�� 	�� �&�

)&&>��&(��8����6�&��	��)���8�%�)	
����	
��8��(��	�����8&%�/�

?8	�� 	�� ��
�(�))+�
&�� ��	��6)�� �&(� &
�)	
�� 3&�� �&
�(&)�

6������� &���8��)&
���&����	
���	��/�?8�� ���&
%�&
�� 	���&�

����	�)	@�� �8�� ��(���� ���/� .&(� 	
���
��-� 	
� :�";-� 6+�

����	�)	@	
���8����(�����&%�)����8��8����8�����>����&���))��8��

��(����������8�'���8��������(�
��	��	&
��	����
%��8�������

��(&%-��8����)	@��	&
�����&(� 	�� 	��(&'�%/�7&5�'�(��8	�� �&�

��(�	��)�(� ��(���� �&%�)� ��

&�� 6�� %	(���)+� ���)	�%� �&� �8��

��)�	��%	���(�
��	��	&
� 	
� 58	�8� ���8� ��(�����&�)%�8�'��

	���%	���(�
�����>���)�
��8� �
%���(&%/�?8���8	(%�5�+� 	���&�

�,��
%��8��<�->=��	(��&
�/��
�:��;-��8��%��%)	
���&�����>����

�(��(�)�,�%��&�(�%�����8��(��&�(���(���	(���
�/��

 !* %����	����
�)
�)�����
�
��8	������(�5���&))&5��8���8	(%�(����(�8�%	(���	&
� �
%�

�(&�&��� �&� �&%	�+� �8�� �&
����� &�� <�->=��	(�/� �
����%� &��
�&
�	%�(
���8���(�%	�	&
�)����(�
����&���8��	
%	'	%��)����>���
%��%)	
�-� 5�� %��	
�� �� �)&6�)� %��%)	
�� �&(� �
+� �(&��� &�� ��
�&
�����	'�����>���/�.&(��))+-�	
��
�	
��('�)�:����;-��8���&�(���
8�����
�������>�����&��8��
��5&(>-��8�
��8��%���	
��	&
��8&�)%�
6�� ����(�%��&�(���	'�� ���)������� ��&
���8��� <%�)	'�(�%� �
�

�	��	� �	�
��=�6��&(�� �	��� �K∆-� 58�(�� ∆� 	�� �8�� ��,	����

�&)�(�6)���(�
��	��	&
�%�)�+������%�6+��8��
��5&(>��&(� �
+�
�(&���&�����&
�����	'�����>���/��

H 	�8� �8	��
&'�)� %��	
	�	&
-� 	�� 	�� &6'	&��� �8��� �8�� 3&��
(���	(���
�� 	�� �	'�
��(&����(��)&5� &(���(� ���(�����%��)&5�
�&	
��&��'	�5� 	
����%�&���8����(����>���%��%)	
�� <�->=��	(��
�&
��(�	
�/��&�5����))��8	����)�,�%�<�->=��	(�����(�
�����
%�
�8&(��
�%�6+���<�->=��	(�/��

 !+ ,-.�� ���� ���)���	���� 	�)��������	���� ��� ��

�������	
���������
.&(�	��)���
�	
����<�->=��	(����8���-�5���)�&�%��	�
�%�

��
�5����8�
	��-���))�%�9&�6)�����>�����>��� <9��=��&(�
%(&��	
�����(&�&(�	&
�&�����>����&�����)&5�&(����)����&���)&5��
	
������&��
��5&(>��&
����	&
�58)����))����(�
���	
���8����
<�->=��	(���&
��(�	
��&��<(-�6=�6&�
%�%�:��;��)&5�/�H8�(��(�
���
%���&(��8���'�(�����(('�)�(����58)��6��8��6�(��/��
�:� ;�	��
8���6��
��8&5
��8���<(-�6=�6&�
%�%���
�	
�)�%����(&%	���
%�
��&(�%	���)&5��<5	�8�&(�5	�8&���L	���(�=/�

 !/ 0����������������	
���������	��)��	�	���#��
?8����<�->=��	(����8������
�6���&
�	%�(�%����&
��&���8��

(��)��	��� �&
��(�	
�� (�)�,��	&
� ��(����	��� �	�)�(� �&� �8��
�	
58��)� �&%�)� :��;-� �(����6���%� �&%�)� :�!;� �
%� $	(���)�
5	
%&5��&
��(�	
�%��&%�)�:��;/�H ��5))��8&5��8�����<�->=�
�	(��	������
�(�)��&%�)�58	�8���
�	
�)�%���8���(�'	&���&
��/�

 !1 2
'��	3��	����������)�)�
�
?8��(����&���8	������(�	��&(��
	@�%�����&))&5	
�/�����	&
���

%���(6���	
��&(��%���)��8����<�->=��	(����8���/�?8��9���
���8�
	���	���(���
��%�	
�����	&
��/��
�����	&
�!�5��%	������
&
��8���,	��	
���&
��(�	
��(�)�,��	&
���(����	����
%��8&5��8��
��
�(�)	�+�&���8����<�->=��	(����8���/�����	&
� ������(@���
&�(��&
�(6��	&
�/�

(! ���������	
���������

(! $��	���	���������������	
���

��������&
�	%�(����(�%	�	&
�)���(&%	��&(���&(�%	�����>
�
�����

%���(6�%����Γ�+�τ,�- �τ
�!������>�	��%���(6�%�6+�τ��+����������
���� ���� ���-� 58�(�� ��� ���
%�� �&(� �8�� �,����	&
� �	��� &�� �
�

	
���
��-���� ���
%���&(��8����(&%� &(��	
	���� 	
��(��(('�)�

�	���&��	
���
���-����	���8��(�)��	'��%��%)	
��6��&(��58	�8��8��

	
���
��� ����� 6�� �&��)���%-� &�8�(5	��� �8�� 	
���
��� 5))�

�	���	���%��%)	
���
%�	
��	(��(��)��	��-�	��	��%(&���%�%	(���)+�

5	�8&����,����	&
.��
%��������%���(6���8����8��%��%)	
��&�����

)��������&���&���
+��&
�����	'�����	
���
���������6�����/�

?8�� �(���	��)� �%'�
����� &�� <�->=��	(�� �&
��(�	
�� 	�� �&�

	
�(�����������8�����&��	6)���8����)	@��	&
�����&(�&�������>�

���� 58	�8� 	�� �	'�
� 	
� ��(��� &��
�

��

�� �

��

� �=
� /� �6'	&��)+-� �8	��

��)	@��	&
���

&��6��8	�8�(��8�
��""M-����8��8����8��'�	��&��

�� �+����� 	�� �&� 	��(&'�� �8�� ��)	���	&
� ����&(� �&� �""M� ���

�&��/��

������������������������������ �����������������������������
�
�7�(��5�������8����(�����>��&(�>���	
���)&����&��8��(��)��	�����8�%�)	
��

��(�	
&)&�+/�7&5�'�(-�	���8&�)%��
%�(���
%��8��������>�	������
�(�)���(��
58	�8���
����
%��&(����&�(�����
�(��	
�����>����	
��8���&
��,��&��
��5&(>��

56

�

�����
�	&
�%�	
��8���(�'	&�������	&
-��
�)�
&5-��8�(��	��

&����
&
��(������	'����8�%�)	
���+�����58	�8���
������
�

	
��(���	
�� ��	
� �&(� �� ��
�(�)� ���>� ���� �
%�(� <�->=��	(��

�&
��(�	
�/� �&� �8��� 5�� 5))� �(&�&��� �� (�)�,�%� <�->=��	(��

(��)��	����&
��(�	
���&�(��&)'���8	��)&5���)	@��	&
��(&6)��/�

(!(,��	�	�	���������������	
�����������
�	���

�
���<�- =��	(���&
��(�	
��	���8&5
�	
�.	�/��/�

�

��6�	���%�5&(>�

C,�����%�5&(>�

�� ��

�/∆�

��

�

∆�

�� � �

� � �

�����

�����

�
�	'!� ����<�- =��	(���&
��(�	
��

�

����������	��	������������	�������������

�
��
+��	���	
��('�)�:����;�<5	�8�����≥�=�������>���6�	������
	���

&�� 5&(>)&�%� �&� �� ��('�(/� ?8�� ��('�(� �8&�)%� �	
	�8� �8��

�,����	&
�&�����)���������&
���8���<�
��	��	��	�
����6��&(��

�	��� �K∆-� 58�(��∆� 	���8����,	�����&)�(�6)��%�)�+������%�

6+��8����('�(��&(��8���(&���&�����
	��/��

�

?8���&))&5	
���&	
���8�)���&��
%�(���
%��8	��%��	
	�	&
/�

�= ��
+��	���	
��('�)����
�����)	%	
��5	
%&5-�58	�8���
�

���(���(&���
+��	����&	
�-�%�
&��%�6+��/�

�= ��� ���>� τ�� ��
� �	�8�(� 6�� �&%�))�%� 6+� �� ��(&%	�� &(�

��&(�%	�� �&�(�������� ���� ���� ���� &(� 6+� �� <(-6	=�6&�
%�%�

�&�(��� �
%�(�����������	���&
��(�	
�� 6��� 5	�8� ∆� ��� �8��
%��%)	
�� &�� �
+� �(&��� &�� >� �&
�����	'�� 	
���
����

���(�	
������	����/��

�= �?8���&
��(�	
�� 	�� �	'�
� �&(� ���8����>�� �'�(+����>���
�
(���	(�� 	��� &5
� �&
��(�	
�� 5	�8&��� �&
�	%�(
�� &�8�(�

���>�/� ?8�� �+����� �8&�)%� ���(�
���� ��<�->=��	(��

�&
��(�	
��	
%	'	%��))+��&(����8����>/�

!= �?8�� (��)��	��� �&
��(�	
�� 	
�)�%��� �5&� ����&(��� <�->=�

����&(��
%�%�)�+�����&(/�

 = �<�->=�����&(�&���&
��(�	
������)���������&
����	
���
����

�8&�)%� 6�� �,�����%� 5	�8	
� �8�� %�)�+� �&
��(�	
�� ∆/� �
�
��
�(�)�����-�<�->=�����&(����)	����&��8���)	%	
��5	
%&5/�

7&5�'�(�	����
��)�&����)	����&��8��
&�&'�()���	
���	,�%�

5	
%&5�/�

#= �9�)�+� ����&(� ∆�� �8	�� ����&(� ����(��� �8��� <�->=� ����&(�

�����6��(��)	��%�6��&(������,	����%�)�+�����(��8���
%�

&���8��(�)����� &���8�� �
��
� 	
���
��� ���(�	
���(&���	��� �/�

.&(� �8�� �)	%	
�� 5	
%&5� (���	(���
�-� 	�� (���	(��� �8���

�(&��
&������(�58�
�&
�����>���
�(�����>�	
���
���� 	
�

�	���)�
��8�
&�� ���))�(� �8�
� -� ���8� �8��� �8�� �+�����

����(����8���,����	&
�&�����)�������	
���
����6��&(��/∆/�
&�&'�()���	
�� 5	
%&5� L���� (���	(��� �8��� ����(� �8��

(�)����� &�� �� ���>-� ���)����� �� 	
���
���� �(�� �,�����%�

��&
�� �8�� �	(��� �� 	
���
���-� ��� 5�))� ��� �8���� ��&
��

<>K�=
�8
��&��>

�8
�	
���
���-��
%��&�&
/�

(!*))�	���	���	�������
���

��������(��8���&��(�8�
�	&
� &����<�->=��	(���&
��(�	
�-� 5��

�	'���
��,���)��	
�
��5&(>�-�����8&5
�	
�.	�/��/�?8���&�(���

8��� ��'	(���)� ����>-� �
%� 	�� ��
%���8�����>�����(&�� 	��� ����>�

8��%� �8(&��8� �8��
��5&(>/� ?8�� %���	
��	&
� 8��� �)�&� ��

�&((���&
%	
�� ����>-� �
%� �%%���8��(���	'�%����>�����&��8��

����>� ��)/� ����&�	
�� 	
� �8�� �	��� 	
��('�)� :��� �;-� �� ���>����

8�'��6��
���
���&��8��%���	
��	&
-��8��3&���(&'	%�%�6+��8��

��5&(>� ����� ����(�� �8�� %���	
��	&
� �&� (���	'�� ���)�������

���>���� ��&
���8�� �� �&(� �%%	
�� 	
�&� 	��� ����>�6��&(�� �/∆/�
?8�(���(������%	���(%�6)�����>����	
����&
�����	'��&
��/��

�

�

Network

���
��

,���	���	��

2

k

3

1

2

m

3

1 �
�	'!�(����(�.)&5�3&��

�

�����))+-� ��<�->=��	(�� �&
��(�	
�� (��)����� �8��

�&
'�
�	&
�)� (��)��	��� �&
��(�	
�� &
� �8�� 	
%	'	%��)� ���>���

%��%)	
�/��

(!+ ,������
��	��� ��� ���������	
�� �#�����'��� �&�

4	
���������#��	�'�)����
��

.	�/���8&5���8���%'�
�����&��&�(���<�->=��	(���&
��(�	
��

	
��&
�(����5	�8��&
'�
�	&
�)���(����>���%��%)	
���&
��(�	
�/�

C��8�6)&�>����
%���&(������>��/�

�

�

∆�

�� #��� !� � I��� J� �� �" ��� �#��� �! � � �I��� �J ��� �"�

#��� � I��� �" ��� �#� �I�� �J

#��� � J��� �� �� �! �I�� �J �"�

�

�	'!�*��C,���)��&����'	(���)���8�%�)	
�������(
��
%�(�<�- =�

�	(���
%���<�- =��	(���&
��(�	
��

�

?8�� �	��� ���
�(&� <�	(���)	
�=� �8&5�� �� ��(&%	�� ���>���

��(�����8�����
%�������>���������8�6��	

	
��&����(&%�&����

���&
%�/�?8�����&
%����
�(&�<�
%�)	
�=��8&5������8�%�)	
��

�
%�(� <�- =��	(�� �&
��(�	
�/� �
� �8�� ���&
%� ���
�(&-� �8��

��('�(� 	�� &6)	��%� �&� ��('�� �))� �(�+� 6)&�>�/� ��8�(5	��-� �8��

�+�������))�� 	
�&���)�(�������-� ���8�����8���
�8
�6)&�>/��
���

�8�� �+����� ��))�� 	
�&� ��)�(�� ������ <	/�/� �8�� <�->=��	(��

�&
��(�	
��	��'	&)���%=-��8����('�(�	����))�&6)	��%��&���('���8��

�,�������>����<�#
�8
-��I

�8
-��J

�8
=��&�(���&(���+����/�&����8���

�8	�� &6)	��%� ��('	��� &�� ���>���-� ��8�%�)�%� 5	�8� &�8�(�

��(����-� 5))������� 8	�8�(��&�(���(���	(���
�� <&(�(�%���%�

��)	@��	&
=� �&(�	
�� �8�� �&���))�%� 	
��(��(�
��� �&	
�� :I;-�

:�#;/�?8��5�))�%	��(6���%� 	
��(��(�
����&	
����&�)%�(�%����

57

�

�8�� (��&�(��� (���	(���
�� :�#;/� 7&5�'�(-� �8�� &��	��)�

%	��(6��	&
� &�� �8&��� 	
��(��(�
��� �&	
��� 	�� �
� ��8�(%�

�(&6)��� 	
� ��(&
�� ��
��-� ��>	
�� 	�� 	��&��	6)�� �&� �)5�+��

(�%���� �8�� &'�(��(&'	�	&
	
�� �(&6)��/� ?8�� �8	(%� ���
�(&�

�8&5�� �� �����
��� �
%�(� ��<�- =��	(�� �&
��(�	
�-� 58&���

5	
%&5� �	@�� 	�� �&
�	��(�%� ���&(%	
���&� ��<�- =� �&
��(�	
��

5	�8� �K∆/����%�(����
�'�(�+�6+��)	%	
���8��5	
%&5�&(�6+�
�&�	�	&
	
���8��
&�&'�()���	
��5	
%&5�-��
%�5))��	
%��8�(��

�(���)5�+�����)����������>����	
��8��5	
%&5�
&������(�58	�8�

6��	

	
��&����(&%�	��	���)	%���&/��)�8&��8��8�(���(����)&��&��

%��%)	
�� �	����-� �8�� �����
�����
� ��))�6�� �������%�6+� ��

<�- =��	(�/�

(!/ ���������	
��	�����5	������#��#�)�	����

��� 	�� &6'	&��� �8��� &�(� ��<�->=��	(�� �����(
� 	�� �&(��

�)�,	6)���8�
��8�� <�->=��	(�� &
�/� �)�8&��8��8�(�� �(�� �&���

%��%)	
�� �	����-� 	�� ��
� 6�� �������6)�� �&(� �� (��)��	���

��)�	��%	���&���
	���	&
� ���8����$&��-�$&9-� ���5�))����

�&���
��5&(>�%��&
�(&)� �+������ 58�(�� &'�(�����)�%�%����

�(���(�
��	���%�6+���
��5&(>/�

�
��(�'	&��� ����	&
-� 5�� &
)+� �8&5�%� �� �	��)�� �,���)��

���
�(&��
%�(���<�- =��	(���
%�<�- =��	(���&
��(�	
��-�6���	��

	��
&���&� ��+��8��� �))��(�
��	��	&
���&�)%��&)�(�����8��)&���

(���� &�� !"M/�����(� �))-��� �
%� �� &����<�->=��	(���&
��(�	
��

��
� 6�� �&
�	��(�%� ��� �
+�
���(�)�
��6�(/� ?8��

�&
�	��(��	&
�� �8&�)%� 6�� %&
�� ���&(%	
�� �&� �8�� ����	�	�%�

�&���
	���	&
�(���	(���
�/�

�

?8����<�->=��	(����8����6�	
������	�	�%-�5���(&�&���	
�

�8��
�,�� ����	&
� �� �(���	�� �&
�(&)� ���8�
	��� �&(�

%���(�	
	��	��))+����(�
���	
����<�->=��	(���&
��(�	
��5	�8�

8	�8� ��)	@��	&
� ����&(/� �
� ����� ���	��+	
�� ��<�->=��	(��

�&
��(�	
��	��
&�����('	�)��(&6)����	
����8��<�->=�����&(��
%�

�8��%�)�+�����&(��(���5&��
���&
	�������&(���&(����	'�
���('�(/�

�
� �8�� &
�� 8�
%-� ��('	
�� �&(�� 	
���
���� <&(� ���>���=�

��'&�(�� �8�� <�->=� ����&(� 6���)��%�� �&� �&(�� %�)�+/� �
� �8��

&�8�(� 8�
%-� %(&��	
�� �&(�� 	
���
���� <&(� ���>���=� ��+�

(�%���� �8�� %�)�+� ����&(� 6��� (�>� �&� L�&��(%	@�� �8�� <�->=�

����&(/�

*! ,-.��,������-�����.�������

���&(%	
�� �&� ��<�->=��	(�� �&
��(�	
�-� 5�� %�'�)&�� &
��

&'�)����8�
	�����(��%����9����(&���8���(�%	�	&
�)�)��>+�

6��>���:��;/�9���8����5&�)��>��
���%���('	
�����>�<��=�

�
%�9	���(%	
�����>�<9�=����%��	���%�	
�.	�/�!/�

*! �-	6�	#���#������,-.�������	���

.	(��)+-� �&� �	��)	�+� �8�� �(&6)��-� 5�� ���(�� �8�� �
�)+�	��

5	�8���)	��	%��&%�)-�58&���5&(>)&�%�	��	
���(���&��N5���(F�

�8��� ��
� 6�� ��)	�� 	
�	
	���	��))+/� ?8��
��5&(>� �8&�)%�

���(�
�����8��N5���(F��8����(�'�)���8(&��8���-�58)����8��9��

�&
�(&))�%�6+�&
���5	��8��	'����8�������	�+��&��8(&5�&����8��

5���(��(&���8��6��>��/�H 	�8��8�� ��('	��� ���(�
�����&(���-�

��<�->=��	(����&
��(�	
���&�)%�6�����	��	�%/�?8��5���(��&	
��

�8(&��8� �8�� 9�� 	�� %	���(%�%-� �
%� ��
� 6�� �(����%� 5	�8�

58���'�(����8&%�
�'�(�L�&��(%	@	
���8��
��5&(>�3&�/��

�

�

��('	
�����>�

9	���(%	
�����>�

�5	��8�

<(-6=�6&�
%�%��)&5�

�

�	'!�+��9&�6)�����>�����>���<�	��	%�G&%�)=�

���� ��� �
%���� %�
&���(������	'�)+��8�������	�	��� &�� ���

�
%�9�/�?8���&
�(&)��5	��8�&��9��5&(>�����&(%	
���&��8��

���
�	�+�&���8��5&(>)&�%� <(��(���
��%�6+��8��8�	�8��&���8��

5���(� 	
� �8�� 6��>��� �
%� %�
&��%� 6+� �=/� ?8	�� ��
��	&
� 	��

��))�%������� ����	��������
�	����
����
�<9?����
��	&
=-�

��� �8&5
� 	
�.	�/� -�58�(���� ���
%���&(��8��&��
�%�������&��

�8��9�� �5	��8� <&(�5���(� ����=� �
%�"� ���
%���&(��8���)&��%�

�����/�

�����

�

�

�

�	'!�/��9&�6)��?8(��8&)%���&
�(&)�.�
��	&
�&���8���5	��8�

*!(��
�	��� ��
��� ��#�
� �
��������#�#� �

	����

��
���!�

H�� ��>�� �8�� <(-6=�6&�
%�%� �(('�)� ��(���� ��� �� ��
�(�)�

�&�(��� �&%�)/� ?8	�� 	�� �&� ��+� �8��� �8�� ����)��	'�� �(('�)�

��('��	������(�6&�
%�%�6+�<	� =�:��;-�58�(��	�	���8���'�(����

�(('�)�(���-��
%� �	���8��6�(��/�9�
&�	
��6+�.	<�=��8����
��	&
�

&���8���(('�)���('�-��8��5&(>)&�%��(('�%�����
+�	
��('�)�0���

�1�	������(�6&�
%�%�6+��

�

< = < = < =����� "� � � �) �) � 	 � � � �− ≤ + − ∀ ≤ ≤ �

�

�?8	��<	� =�6&�
%�%��&�(�����
�(�����>��
	���&��5&(>)&�%�

	
����	���)�
��8�
&����))�(��8�
��O �

	

+
� �−
� �
� �

:��;/��

�����	
���8����8��5&(>)&�%��(('�)�6&�
%�	���
%�(��8����

<�->=��	(�� �&
��(�	
�/� 9�(
�� �8�� 	
�(���
�� &�� �8�� 5���(�

8�	�8�-��8�� �5	��8�&��.	�/!�(���	
���)&��%��
�)��8��8�	�8��

	
�(�������&�23/��
��� 	�� 	�� &��
�%� ���23-� 	��(���	
�� &��
�%�

������ �
�)� �8�� 8�	�8�� (�%����� �&� 2,/� H8�
� �8�� �5	��8� 	��

&��
�%�<�&
�(&)���
��	&
F��'�)���	���=-��8��9	���(%	
�����>�

�8(&5�� &��� �8�� 5���(� �(&�� �8�� 6��>��-� �&� �8��� �8�� 5���(�

8�	�8�� 5))� 6�� ������	'�)+� (�%���%� �&� ����(�� %�)�+� ����&(/�

9�(
�� �8	�� �(&��%�(�-� 	�� 	�� &6'	&��� �8���
&� �&(�� �8�
�

58

�

��A<��K��=� ���
�	�+� &�� 5���(���
������ �8(&��8�9�-� ���8�

�8����8	�����(6����5))�6�����%��&����(�
�����8��<�->=�����&(/�

�

��

�
��
�
�

��

��
�
�
�

�

��

��

� �	� � �� �

���

�	���

��
�	�����
���

7))�
�����#����

�

	������
���

�
�	'!�1����('	�����('���'&)��	&
�&��9���

�

.	�/�#��8&5���8���'&)��	&
�&���8����('	�����('���
%�(��8��

�(�	��)�����)��	'�� �(('�)���('�/� &�	����8��� ��� 	�� �)5�+��

&
���('	����
)�����8��6��>���	������+/�

! ����	�	�������#	�	�����
��	6�	#���#������,-.�

����(� �
%�(���
%	
�� �8�� ���8�
	��� �
%� 	��� ���(6���� �&�

��(�
����<�->=�����&(��
%�%�)�+�����&(-�5��5))��(&�&����8��

����	�	�
�� �&
%	�	&
� �&� �&
�	��(�� 9��� 	
� &(%�(� �8���

%���(�	
	��	�����(�
������
�6����8	�'�%/�

��� �8&5
� 	
�.	�/#-� ��<�->=��	(���&
��(�	
�� 	���(&�&��%�

	
� �&
%	�	&
� &�� �&
����	&
� &(� &'�()&�%-� ���8� �8��� 	�� 	��

&6'	&����8������P�(/��&��8��8�	�8��&��5���(��(&5��8	�8�(��
%�

8	�8�(�	
��8��	
��('�)��	
�-�����8��9���5	��8�	���)&��%�	
	�	�))+/�

�
����8��8�	�8��(���8�����-�9���5	��8�	��&��
�%�%����&��8��

%&�6)�� �8(��8&)%� �&
�(&)� ��
��	&
� <.	�/ =/� �
� �%%	�	&
-� 5��

�	'����K��Q(-� �&��8����8��8�	�8��&��5���(��&���)&5�(� �
%�

)&5�(��
�)��8��8�	�8��%��(�������&� ��� <	
��8�� 	
��('�)���=/�

?8	�� �(&��%�(�� 	�� 	��(���%� &
� �
�)� �))� �(('�)� 5���(� 8���

�����%��8(&��8��	�8�(����&(�9�/�

�

8���
��� ���

��� �8��)	��	%� �&%�)� &�� 9��� 	�� �&
�	��(�%� �
%�(� �&))&5�

�&
%	�	&
-� �8�
� �8�� ��<�->=��	(�� �&
��(�	
�� 5))� 6��

%���(�	
	��	��))+����(�
���%/�

�

�&
%	�	&
�<�=������4,/43Q	1�
�

�

4 �

4 � �
≥

−
�

�

�
4 	

�
≥ 1�

�

�&
%	�	&
�<�=�����	��6Q��-��8�
� ()� � �

� � � �

��, -
 2 2 2

4 4 4 4

−
+ < ∆

+
��

��������� � ������������)��� ()� � � �

� � � �

��, -
2 2 2 2

4 4 4 4

−
+ < ∆

+
�

�

9
������
4�
�����
��,���
��	������������������	/�

��� �8��)	��	%� �&%�)-� 5���(� 	�� �
� 	
�	
	���	��)� ����(�)�

<�8���
	���&�)%�6�� ��&�-� �&)���)�-� �(��� &(��&
-� ���/=/� H ��

�&
�	��(��4,-��
%�43����
�

�

4 �

4 � �
≥

−
/�����3��<�=�(��(���
���8��

�8(&��8���� ���
�	�+� �8(&��8� ��� %�(
�� ;"-�;-� �
%� 39�<�=�

(��(���
�� �8�� �8(&��8���� ���
�	�+� �8(&��8� 9�/� ��� ��
� 6��

�
��(�%� �8��� �

�

< =

< =

�'

&'

� � 4 �

� � 4 � �
≥ ≥

−
-� �	
��� ��� 	�� �)5�+�� &
�

��('	��� �
)���� �8�� 6��>��� 	�� ����+-� 58)�� 9�� 	�� &
)+� &
�

��('	��� %�(
�� �8�� �5	��8� 	�� &��
/� ?8��� 	
� �
+� >� �
	��� &��

5���(������%��8(&��8�����
%�9�-��8�(���(�����)��������
	���

����	
���8(&��8���/�

4�
�����
��3���
��	��������	�
�������
�����������	������

��������	����58�
����
	���&��5���(�	��������%�	
�&��8��9������

�	��� ��O
�

	

+
� �−
� �
� �

/� H �� ��)��)���� �8�� ��,	���� %�)�+� &�� ��

���>�����('	��%�6+��	�8�(����&(�9�/��

�
�������	��58�
��8���5	��8�&��9��	��&��
-��
%��8	�������

	����(�8�(�%	'	%�%�	
�&��5&���6��������6Q����
%�6P��/��

���6Q��-��8��6�(�����������8����,	����6��>���)&�%-��8�
�

��� �
%�9�� ��('	����8�� 5&(>)&�%��&���8�(��
�)��8��8�	�8��

%��(�������&���/�?8�(�����(-������('	����)&
���
�)��8��6�(���

	���	
	�8�%/�H ��>
&5��8���(���)���	
��8��%�)�+�&���8����('	���

�&(��8��6�(���	���	'�
�6+���

�

� �

� � �

 2 2

4 4 4

−
+

+
� � <�=�

�

�
��8	������-� 	��6P��-��8��8�	�8�������%��(����� &
����8��

�5	��8�	��&��
-��&��8����,	����%�)�+���
�6���	'�
�6+��

�

� � �

� � �

2 2 2

4 4 4

−
+

+
� � <�=�

�

�
&�8�(������ 	���8����8��8�	�8�� 	�� �&�
��(��&� ��-�6����8��

�5	��8� 	�� ��))� �)&��%/� ��� 5))� ��('	��� �)&
�� �8�� 5&(>)&�%�

�
�)� ����+� �8�� 6��>��/� ?8	�� ����� (���)��� 	
� �8�� %�)�+� &��

��('	��-��	'�
�6+��

�

�

�

2

4
� � <�=�

�

������������(���8���	
��
+�������8����,	����%�)�+�	��
&�

�&(���8�
��-��&��8���5���	'���8���&
%	�	&
�<�=/�

:�#����)
���!�

�

�
� �� �&
�(���� �+����-� �8�� �&�(��� 8��� 	��� ���(6����� &��

�(('�)� ��('�� ����(� 6&�
%�%� 6+� <	� =� �
%� ��<�->=��	(���

(���	(���
�-� �&� 	
� �8�� �
�)+�	�-� �8���� ��(�����(�� �(��

(���(%�%� ��� �8�� >
&5
� ��(�����(�/� G&(�&'�(-� 5�� ��
� ����

�8���'�)�6)��6�
%5	%�8-��&���� �8&�)%�6���&
�	��(�%��
%�(�

�8���'�)�6)��6�
%5	%�8/�����%�&
��8����>
&5
���(�����(��

5���8&�)%��&
��	�����&
��9���<�&
�	��(��43��2,��23=��&��&����

5	�8��8	���)&5��&(��(&'	%	
���8��%���(�	
	��	����<�->=��	(��

���(�
���/��

�

59

�

*!+ ����
	���))�	���	�������	6�	#�,-.�

?&��8&5��8��
���(��)����)	���	&
-���%	&�������(����F�

��(�����(���(���&
�	%�(�%/�.&(��,���)�-��	'�
�&
���)&5-� 	��

��
�(������G6���&���'�(�����(('�)�(����5	�8�#>6	��&��6�(��/�

���8��8����8���)&5� 	��6&�
%�%�6+�<(-6=O<�G6��-�#>6	�=/����

�
��,���)�-�5����������8������8�����(����	���
%�(���<�- =�

�	(���&
��(�	
���
%�5	�8��O�"�������8����(��)&5�%��%)	
�/��

�����	
�� �8��� ��� �%�	��	&
� �&
�(&)-� &
)+� �/#G6���

6�
%5	%�8� 	�� �'�)�6)�/� �6'	&��)+-� 	�� 	��
&�� �&��	6)�� �&�

���(�
�����8��%��%)	
��&���))��8�����>���-�����&
����	&
���(��

�
�'&	%�6)�/�H �� ������K���O��/� (�O��/ G6��-� �&��8����8��

������)�
��8� ��
� 6�� ������	'�)+� (�%���%� 	
� ����� &��

�&
����	&
/� ?8�
-� 9��� 	�� 	��)���
��%� �
%��&
�	��(�%� ���

��O�/ G6	�A�1� �
%� ��O�G6	�A�� ���&(%	
�� �& � �

�
4 4

� �
=

−
1�

�&(�&'�(-� ��� �
%� ��� �(�� �&
�	��(�%� ��� �8��� ��O#>6	�-�

��O��>6	�/�H 	�8��8	���&
�	��(�%�9��-��8����,	����%�)�+�

��
� 6�� ��)��)���%� 6+� �&(��)�� <�=� ��� J��/� �&� 5�� ��
�

���(�
���� �����≤J��≤�O�"��/� H8)�-� �&(� ���(�
���	
�� �))�

���>���� �
%�(� %�)�+� &�� �"��-� 	�� (���	(��� 	/ 5�����O�

�/�G6	�A�� &��6�
%5	%�8� :��;/� H 	�8�9��-� 	�� ���(�
����� ��

<�->=��	(���&
��(�	
��	
��(&'	%	
��J���%�)�+-�6���	��(���	(���

&
)+� �/ G6	�A�� &�� 6�
%5	%�8/� �
��	�	'�)+-� 	
� �8	�� �,���)�-�

9��� ��
� ��))� 5&(>� �
%�(� ���))�(� 6�
%5	%�8-� �&� 9��� 	��

(&6�����
%�(����))�(�6�
%5	%�8/��

*!/ 9��������#������,������-�����.������

�
� �8�� ���>��� �5	��8	
��
��5&(>� �8�� 	
�&(���	&
� �(��

�
�����)���%�������>���-� �
%��8��
&
��(�����	&
� 	��5	%�)+�

���)&+�%/��&�5��
&5�%�'�)&���8��9����&%�)����&(%	
���&�

�8�� �(�
�)�(�+� &���8�����>���� �
%��
%�(��8��%	��(�����	��/�

����(5�(%�-��8���	'�
���<�->=��	(���	��&(�
��%��8��
��6�(�

&�����>���/�.	�/I�%��	�����8�����8�
	��/�?5&�
�5���(����(��

�%%�%-�
���%� �����	�	�������� ������� <?$�=��&(�9���
%�

��-�(������	'�)+/�?8�+���>���
��
�	(�����>����(&���8��9���

����(��8����('	���&���8����((�
�����>���	
��8����)'��/�?$��&��

�8��9����
� &
)+� �����8��
�,��%�(
���8�� �5	��8� 	�� ��))� 	
�

&��
�%������/��

�

�
�	'!�;�����>���G&%�)�&��9���

�

?8���5	��8�8�(��	���)�&��&
�(&))�%�6+��8��9?����
��	&
/�

����(5�(%�-��&(��8�����>����&%�)-��8��'�)����&��2,��
%�23��(��

&�)&
��(� �8�� ���
�	�+� &�� �8�� 5���(-� 6��� �8��
��6�(� &��

���>���1��&�(��(���
���8�����
�	�+�&��5&(>)&�%�5������2,��&(�

23�-�58�(����%�
&�����8���	@��&���8�����>���<	
��
	��&��6	��&(�

6+��=/��

*!1 ����	�	�������#	�	������,-.�	��)��������#���
9����&��8�����>����(�
�)�(�+-��8������	�	�
���&
%	�	&
�5))�

6���&(���&��)�,��8�
��8���&���8��9���)	��	%��&%�)-�58	�8�
	���	'�
�	
��8���&))&5	
���8�&(��/�

8���
���(���
?8�� ����	�	�
�� �&
%	�	&
� �&(� ���(�
���	
�� ��<�->=��	(��

�&
��(�	
��&���8�����>����&%�)���
�6���	'�
�����&))&5	
���

<�=� �
�

�

4 �
2

4 � �
≥ ≥

−
�

�

<�=�� ���6P���

� � � �

� � � �

�
��, -

2 2 2 2
� �

4 4 4 4

� �� �− −
� �+ ≤ ∆� �� �+� �� �

�

�)���

� � �

� � � �

�
��, -

2 2 2
� �

4 4 4 4

� �� �− −
� �+ ≤ ∆� �� �+� �� �

�

�

9
������
4�
�����
��,���
��	������������������	/�

�����
�	&
�%�	
��8��)	��	%��&%�)-�	���8&�)%�6���(&'	%�%��8���

�

�

4 �

4 � �
≥ − ����	
��8��)	��	%��&%�)/�.�(�8�(�&(�-�5���������>��

	
�&����&�
���8���(�
�)�(�+�&���8�����>��/���
�������8���?$��

&��9��8���L������>�
�&
�����>���58�
��8��6��>���8�	�8��	��

��K�-��8�
��8���5	��8�5))�6���)&��%/�?8�(��&(�-��8����('	���

�	��� &��?$��&��9��5))��&
�	
���
�

�

�
-� �
%� ���5))�6�� &
�

��('	������)����� �

�

2
�

4
/�?8����('	����(&������8&�)%�6���8������

	�� �)5�+�� &
� ��('	���%�(
��9��%&��-��8�
� �

� �

�2

4 4
> /� ?8	��

%�%����� �8�� �
�

�

4 �
2

4 � �
≥ ≥

−
/� H �� ���� ��� ��� �8�� �	
	����

'�)������8����� �

�
2

� �

	
= � �−� �
-��
%�	��	���)��(��8���2362,/��&�5��

��
��8&&��� &
�� ��	��6)��'�)����&(� ��-� 58	�8� 	��
�	�8�(��&&�

���8�6	��
&(���������8���5	��8�(&������&&��(����
�)+/��

4�
�����
��3��	��%�('�%�5	�8��8���������(����+�����8����&(�

)	��	%��&%�)��&����(�
����%�)�+�����&(/��

:�#����)
���!�

�

*!; ����
	���))�	���	������)������,-.���#���

���F���&
�	%�(��8��������&
�(�����,���)�����	
��8��)	��	%�

�&%�)-��8�����>����	@��	���O#>6	�-��8�
�5����
��&
�	��(���8	��

9��� ��� ��O�/!!G6	�A�-� ��O"/�#G6	�A�-� ��O�-� ��O /� H 	�8�

60

�

�8	�� �&
�	��(�%� 9��-� ��<�->=��	(�� � 	�� ���(�
���%�

�

�

�
����

2
� �

4

−
≤ O�"���≤��O��"��/��

+! <��)�
	���� �	��� ����
�
�����	���

�����
�	���
���5��	�����
���'	���

?8����<�->=��	(����8����	������(����+��&�(�)�,��8���&&��	�8��

<�
%� �

������(+=� 8�(%� (��)��	��� �&
��(�	
�/� �	�)�()+-�

�	
58��)��&%�)� :��;-��(����6���%��&%�)� :�!;� �
%�$	(���)�

5	
%&5��&
��(�	
�%��&%�)� :��;���
� �)�&�6���&
�	%�(�%� ���

&�8�(� �&
��(�	
�� (�)�,��	&
� ��(����	��/� �
� 58��� �&))&5�� 5��

5))�%	������&
��8&����&%�)���
%��8&5��8�����<�->=��	(��	��

����
�(�)��&%�)�58	�8���
�	
�)�%���8��&�8�(�&
��/�

+! -	�	���	��� ��� ��	�	3��	��� '�	�� �����

#���
�	�	��	���������	
��'��
������	��
�6�	
�#�

?8��	
	�	�)��&�	'��	&
�&��<�->=��	(���&
��(�	
��	���8����8��

%��%)	
���&�����)�������&���&���
+����&
�����	'�����>���������

6�� ���(�
���%/� �	�)�(� �&� <�->=��	(�� �&
��(�	
�-� 9+
��	��

H 	
%&5��&
��(�	
�� ��8�%�)	
�� <9H��=� :�";���
� ������� ��

��(��	
� %��%)	
�� �	����� ���8� �8��� �� 	�� �8�� ��,	����

�������6)�����>���)&���	
����	,�%��	'�
�5	
%&5������>���/�

�<���=��	(���
%�9H����&
��(�	
���L������>�� 	
�&����&�
��

�8�����
�	�+�&���8��%��%)	
������&(��	��-�58�(��������(����	��

%��	
�%�5	�8���'�(�)�&�8�(���(�����(�-� ���8���� �	�
�������
�

������ ��	���� �
�� �	����
�� 	���/� ?8	�� �
)���(�)	��� &��

�
�)+�	��(���)��� 	
�6�%���)	���	&
�&��(��&�(��-� �
%��8	���&&(�

��)	@��	&
� ����&(�������� �8�� �&
�	%�(�6)�� &'�(��(&'	�	&
	
��

&�� �8�� �+����/� ���	
-� �8	�� &'�(��(&'	�	&
	
�� ������� �8��

<���=��	(�� &(� 	��� �	�)�(� �+������ <�/�/�9H��=��&�)&����8�	(�

�(���	��)�	
��(���/�?8&���������8�'��6��
��8&5
�	
�:I-�J-��;/��

�
� :J;-� &
�� �8�&(��� 	�� �(&�&��%��&� �8&5� �8�� ��)	@��	&
�

����&(� &�� �� ������ ���� ��('	��%� 6+� ��)�	�(&����&(� �
%�(�

5	
%&5��&
��(�	
�/�?8��(���)�� 	��'�(+�����	�	��	�-� ���8��8���

�8�� �+�������))�� 	
�&� ��)�(�� ������ <
&� ��8�%�)�6)�=� �'�
� 	
�

�(6	�(�(+�)&5���)	@��	&
/�?8���8�&(���	���	'�
�����&))&5����

.&(��
��(6	�(�(+�
&
�
����	'��(��)�
��6�(����
%���
���(�)�

��6�(� �-� �8�(�� �,	���� �� �
	���	@�� H 	
%&5��&
��(�	
�%�

��(��������Γ-� ���8��8����8�����(��������)	@��	&
�(����&��Γ� 	��
)�����8�
�&(�����)��&��-��
%�Γ� 	��
&����8�%�)�6)��6+�9H���

:�";�&
����(&����&(�/��

�
�����-����8����8�&(���8����)�&�6��
��	'�
��&(�<�->=��	(��

�&
��(�	
��	
�:�;/����8�����8�����

B
%�(� �
� �(6	�(�(+�)&5� ��)	���	&
-� �8�(�� 	�� �)5�+�� ��

��(��������Γ-�58	�8���������8���+�����'	&)�����8��<�->=��	(��

�&
��(�	
�/�

��� ��
�	&
�%� �6&'�-� �(&'	%	
�� %���(�	
	��	�� <���=��	(��

���(�
������
�&6)	���(��&�(���(���('��	&
����&(%	
���&�<���=�

�	(�/�?8	��	���&���+��8���<���=��	(��)&�����	����(���	��)�	
��(����

�&(�(�%��	
���8��
������(+�(��&�(���(���('��	&
/��

+!(<��)��5	�&������	�&�

G&(����
�(�)-�	
�:I-�J;-�	��8���6��
��(&'�
��8����

?8�� ��8�%�)�6)	�+� &�� �� ��(���� ���� �
%�(� <�->=��	(�� &(�

9H����	�����(&6)���&����8�(%�	
���(&
����
��/�

+!* 2���
�
���5�#������
�	�����#����

�
�����-��8��%��%)	
�� &�� 	
���
��� 	��
&���8��8&)+� �(�)�&��

(��)��	����&���
	���	&
-��
%��8�(��8�'��6��
���)&��&��5&(>�

�8��� �(+� �&� (�)�,� �8�� %��%)	
��� �&� ��	
� 8	�8�(� ��)	@��	&
�

����&(-� ���8� ��� �(����6���%� �&%�)� :�!;-� �	
�58��)�

��8�%�)	
�� :��;� �
%� '	(���)� %��%)	
�� 5	
%&5� ��8�%�)	
��

:��;-����/�

?8���(����6���%��&%�)�%��	
���������&�����>�-�58	�8�	���&�

�,������5	�8	
����8��(����<�	���5	
%&5=��
%�	���&��&��)����

6��&(���8���
%�&���(���/�?8���(&6)���	���&���8�%�)���8�����>�

����	
����	
�)���(����5	�8�%��%)	
��9/��

.(����6���%� �&%�)� �������� �8��� �))� ���>� 	
���
���� �(��

��&(�%� 	
��� �	
�)������������8��6��	

	
��&���8���(���� <	/�/�

(�)����%� ��� �8�� ����� �	��� ��� �8�� 6��	

	
�� &�� �8�� �	���

5	
%&5=/��
��8	������-��8����)	@��	&
�&���(&����&(���
�(���8�

�""M/��)��()+-�	���8���&��)����>�F�	
���
�����	@��	��	
��(&(�&(�

����)� �&� �8�� �(���� �	@�-� �
+�
&�	%)�� ��8�%�)	
�� ��
� �(����

5	�8��8���5	�8&����
+��&
��(�	
��'	&)��	&
/�?8����8�%�)	
��

	
����(������
�6��(������%��&�%&�5	�8�	
�	
	������>�	
���
���/�

&��� �8����(����6���%� �&%�)�(��&'��� �8�� %��%)	
��� &��

	
���
�����&��(&'	%������8�%�)	
��	
��8��������(�����	@���&(�

�))� ���>�/� 7&5�'�(-� �&(� ��((�
�� %	'�(��� ���)	���	&
�-� ���>��

%���
%�%	���(�
���(�����	@�-�58	�8���>����8���(����6���%�

�&%�)�)	��)�� 	
��(�����&(��(���	��)����� 	
��8��3&���&
�(&)� 	
�

��5&(>�/�

�
� &�(� &�	
	&
-� �	
58��)� �&%�)� 	�� �&(�� 	
��(���	
�� �&�

(���('��%	���(�
�����
�	�+�&���	���	
�%	���(�
���(�����	@���&(�

���8����>/�?8����
�(�)	@�%��	
58��)���8�%�)	
���(&6)���	��

�
� &��)	
�� ��8�%�)	
���&(� ����))	���6���%��&���
	���	&
� ���

�&))&5���4	'�
�����)�	����R<��-�6�=-� <��-�6�=-�S -� <�
-�6
=T�&��

&(%�(�%� ��	(�� &�� �&�	�	'�� 	
����(�-� %���(�	
�� �
� 	
�	
	���

�����
��� &'�(��8�� �+�6&)��R�-� �-� �-� S -�
T� ���8��8��-� �&(�

���8��-�,≤����≤�
-��
+���6�����
���&�� ���&
�����	'���+�6&)��

�&
��	
�� ���)���������	����&�� ��/�9	���(
���(&���(����6���%�

�&%�)-��	
58��)����(�
������8���,����	&
��	��� 	
����)	%	
��

�(���/�

?&���8�(-� �	
58��)� �&%�)� �
%� �(����6���%� �&%�)� ��
�

�	
%�&��	��)���8�%�)	
����8���-��
%��8�	(���)	@��	&
�����&(�

��
� �(('�� �&� �""M/� 7&5�'�(-� ��� ��
�	&
�%-� �(����6���%�

�&%�)��&
��(�	
�� �))����>�� 	
� ���
	�����(���-� &
��8�� &�8�(�

8�
%-� �	
58��)� 	�� %��	�
�%� �&(� ����))	���6���%�

�&���
	���	&
� �&%�)� 58	�8� &
)+� �&
��(
�� �
	�� �	@��

�,����	&
� �	��/� ?8�+� ��

&�� ��('	��� ��((�
�� %	'�(���

��)�	��%	�����)	���	&
�/�

�	�)�(��&���<�->=��	(����&
��(�	
�-�U8�
���
%�H ����:��;�

�(&�&��%���(�)�,�%�5	
%&5��&
��(�	
���&���	
���)	���	&
/� ���

�))&5�����>�	
���
�����&�6����('	��%�����(��8�	(�%��%)	
��-����

)&
�����	����
����(�
�������	
	�����(���	&
�&����('	����&���

���>�	
����	,�%�5	
%&5/�������8�%�)	
�����8�
	���)�
��8�
��

�8�� 	
���
���F� %��%)	
��-� �
%� �8�� %��%)	
��� �(�� �&%	�	�%�

���&(%	
�� �&� �8�� �,����	&
� �	��/� G&(�&'�(-� ���)	>�� ���

9H��-� '	(���)�%��%)	
�� ��8�%�)	
�� (���	(��� ����	�))+��8���

�8�����>���8&�)%�8�'���8���
	���	@���,����	&
��	����
%��8�	(�

��(&%������6���8����)�	�)�� &���8�� �,����	&
��	��/� &�	���

61

�

�8����8	���&%�)���
�6��(���(%�%���� �� ����	�)�'�(�	&
� &����

<�->=��	(�� �&
��(�	
�� 	
� ����� �8��� ��<�->=��	(�� ��8���

(���	(��� <�->=� ����&(� 	
�
&�&'�()���	
�� 5	
%&5� <�	,�%�

5	
%&5=�5	�8�%�)�+�����&(�∆O"/��
�
� &
�� 5&(%-� ��<�->=��	(�� �+
�8��	@�%� �))� �8�� �6&'��

��
�	&
�%� (�)�,��	&
� ��(����	��� �&� %��	
�� �� �&(�� ��
�(�)�

��8���� �&(� ��
�(�)� ���>� ���/� ?8	�� ��8���� ��
� 6��

%���(�	
	��	��))+����(�
������	
��9����
%�(��8�� ����	�	�
��

�&
%	�	&
�<�8�&(������
%��=��(&�&��%�	
�����	&
��/�

�
� �8��
�,�� ��6����	&
-� 5�� 5))� �8&5
� �8�� �%'�
�����

��	
�%�6+���<�->=��	(����8���/��	��)��
�&��)+-�	�������6��

&�	��%��8�����<�->=��	(���&
��(�	
����
�6��5�))����(�
���%�

�'�
�5	�8��8���(�%	�	&
�)� �	��)����8�%�)	
���&)	�+-� ���8����

�����G&
&�&
	���&)	�+/���

�

�

�

�

�
�

�	'!=����8�%�)	
���(����&��?�6)���/

�

+!+ <��)�
	�����&��	�����	����

�
� �8	�� ��6����	&
-� 5�� �	'�� �� ���
�(&� �&� �8&5� �8��� ��

<�->=��	(�� �&
��(�	
�� ��
� �	�
	�	��
�)+� ��	
� �8�� ��)	���	&
�

����&(� �&���(�%� 5	�8� <�->=��	(�� �&
��(�	
�� �
%� 9H���

�&
��(�	
�/�

?8�����
�(&��&
�	����	
��&�(����>�-����8�&��58	�8�8�����

<�	->	=��	(���&
��(�	
�/� H �� 5))� �	��)���� �&(� �� ��(���%�)�+�

����&(�<	/�/-�∆O"=��&��8&5��8��8	�8���	
�&����)	���	&
/��
?8�� ���>� ���� 	�� ��8�%�)�%� �
%�(�
&
� �(������	'�� �	,�%�

�(&(�+� ��8�%�)	
�-� �
%� �8�� �(&(�+� 	�� 	
%	����%� 6+� �8��

	
%�,/�?8�
-��8����8�%�)���(����	���8&5
�	
�.	�/J/�

&�	����8�����<�->=��	(���&
��(�	
����(��5�))����(�
���%�

�&(� �	�8�(� �)	%	
�� 5	
%&5� &(�
&�&'�()���	
�� 5	
%&5� 5	�8�

62

�

@�(&�%�)�+�<∆O"=/����8��8��-��&(��
+����>-�	
��
+�5	
%&5�&��
�	@�� ����-� �8�(�� �(�� ���)�������� 	
���
���� �,�����%/� 9��8�%�

5	
%&5�	����(>�%�	
�.	�/�J-�58	�8���
�8�)���8��(��%�(���&�

'�(�+��8	�/�

�

�
��(&%�

<��=�

C,����	&
��	���

<��=�
��<�->=��	(��

τ,� J� �� <�-�=�

τ3� �"� J� <�-!=�

τ7� �#� !� <�-�=�

τ8� �"� I� < -I=�

B�)	���	&
� JJM�5	�8�∆O"�
8����� �����<�->=��	(���	��)��	&
����
�(&�

�

��� 	���)�&����+��&�%	��&'�(��8�����)&��&���	���%�%��%)	
���

�,	���%�(
���8�� ��8�%�)	
���(�����&(� τ7� �
%� τ81� �����%�6+�
�8	�-� �))� %��%)	
�� ��8����� <9H��� �
%� <�->=��	(��

�&
��(�	
�=� 5))� 6�� '	&)���%/� 7&5�'�(-� ��<�->=��	(��

�&
��(�	
��(��)���%��8����(�	
���
���%��%)	
��6+��8��%�)�+�&��

�(&��� &�� 	
���
���-� � ���8� �8��� �� 8	�8� ��)	���	&
� 	�� ��	
�%�

<JJM=/� &����8����&(�� ��	
� &����)	���	&
���
�6�� ��8	�'�%�

5	�8��8��
&�@�(&�%�)�+�����&(/�

G&(�&'�(-��8	�� ���
�(&�%��)��5	�8��8����(&%	�����>� ���-�

58	�8� ��>��� 	�� %	���(�
�� �(&�� �8��
���(��)� ���)	���	&
��

�	'�
� 	
� ����	&
� �/� ?8��
���(��)� ���)	���	&
�� �	'�
� 	
�

����	&
� �� �(�� ���)	���	&
�� &�� 9��� �&(� �8�� ���>�� ����(�

6&�
%�%�6+�<(16=-�58)����(&%	�����>�8���)����6�(��/����	
-�

&
�� &���8�� &�8�(�%��%)	
�� ��8����� ��
� ��8	�'���8�� �����

��	
� 	
� ����� &�� �	�8�(� �8	�� ���
�(&� &(� �8��
���(��)�

���)	���	&
��	
�����	&
��/�

/! <������	���

�	
��� �8�� ��((�
��
��5&(>�� &���
� ��))�� 	
�&� �&
����	&
�

�����%� 6+� �8�� &'�()&�%� &(� �8�� &'�(��(&'	�	&
	
�� 	��
&��

�)5�+���&��	6)�-��(�����)�%��(�%��	&
�&��3��)	�+�&����('	���

	
�
��5&(>�� 	��
������(+� �&(� ���	�	�
�)+� ����&(�	
�� �8��

���>���)&��� �&)�(�
�� (��)��	��� ���)	���	&
�� ���8� ��� $&��-�

$&9-� ���/� ��)���	'�)+� %	���(%	
�� ���>���� ���&(%	
�� �&� �8��

<�->=��	(���&%�)�%�(
��&'�()&�%���(&%��	���8��>�+�	�����&��

&�(����(&��8/�

�
��8	������(-��5&���	
��&
�(6��	&
����
�6���&�
%/��
��

	���8���5���(&�&��%���
&'�)�(��)��	���3&���&
��(�	
�-�
���%�

��� ��)�,�%� <�->=��	(���&
��(�	
�/� B
%�(��8	�� ��<�->=��	(��

�&
��(�	
�-�)&
���&
�����	'��)&���&�����>������
�6���'&	%�%-�

���8��8��� 	�� 	�� ��	��6)�� �&(�%	'�(�� ��)�	��%	�� ���)	���	&
�/�

?8	��
&'�)�(��)��	����&
��(�	
��(��)�����%��%)	
����&(� ���8�

���>��� 6+� �� %�)�+� ����&(� &�� �� ���>��� �(&��-� �&(�&'�(-� 	��

&(�
����&��8���&(����
�(�)�<6-(=�6&�
%�%���(����-�	
�)�%	
��

��(&%	���
%���&(�%	��&
��/���
&�8�(��&
�(6��	&
�	���8���&
��

%+
��	�����8�
	��-���))�%�9&�6)�����>�����>��-�8���6��
�

�(&�&��%� �&� %���(�	
	��	��))+� ���(�
���� �8�� ��<�->=��	(��

�&
��(�	
�/��

?8�� �&���(�&
� 5	�8� &�8�(� ��8����� �8&5�%� �8��

��
�(�)	�+� &�� ��<�->=��	(�� �&
��(�	
�� 	
� �&
�(���� 5	�8�

9H��-�.(����6���%�G&%�)-��	
58��)�G&%�)-� �
%�$	(���)�

9��%)	
�� ��8�%�)	
�� �&%�)/� .�(�8�(�&(�-� �	��)��	&
�

���
�(&���8&5�%�8&5���<�->=��	(���&
��(�	
��	
�(�������8��

(��&�(�����)	@��	&
�6+�(��)��	
��%��%)	
��� &�����>����5	�8�

�8��%�)�+�&���(&���&�����>���/�

����
�������

:�;�C)�4�
%+-�G/�/-��/��&��-�V/4/��8	
-�DC'&)��	&
�&���8���
��(
���

3&���
%�����&(���&(��&���(��)��	������)	���	&
�E-��	������
������

����$999-�$&)/��-�&/I-����"J#���"!-���)+��""�/�

:�;� .)&+%-� �/-� �
%� ���&6�&
-� $/-� W��
%&�� C�()+� 9�����	&
�

4���5�+�� �&(� �&
����	&
� �'&	%�
��W/� �
� #4:5$999�

�	�
������
���
�*����	��
��-��<�=-������������/��

:�;� G/� 7��%�&�	� �
%� �/� ����
��8�
-� D�� %+
��	�� �(&(�+�

���	�
��
�� ���8
	���� �&(� ��(����� 5	�8� <�->=��	(�� %��%)	
��E-�

�CCC� ?(�
����	&
�� &
� �&�����(�-� !!<!=-� ���!!�X�! �-�

9��/��� /�

:!;�./�H �
�� �
%��/�G&8����(�-� DB�	
��%	���(�
�	���%� ��('	�����&�

����&(�� �
��(
��� ��)��8&
+E-� �&�����(� �&���
	���	&
�-�

$&)/�!-�������J-����J!#��J !-�9��/��""�/�

: ;� ��(���)� �/-� 4/� G�
	��(�
-� D9+
��	�� �)��������%� 3�����

��
�����
�� �&(� ���)�6)�� ��%	�� ��('�(�E-�;��	
�� ��� ��������

�
��������	���'&)/##-�&/�-���/������J-�G�+��""�/�

:#;� V&�6Y�-� �/-� �&
�-� 2/3/-� D�&���?&)�(�
�� 3&�� ��	
�� .	(��

�&
��(�	
��� 	
� 4��(�
���%� ����� ��5&(>�E-� ,<��� $999� ����

����� �
�� 9� ������ ����
����� �
�� #��������
��

���#�=3<<8�-�?&(&
�&�<��
�%�=�� ��J�G�+��""!/�

:I;�4/�3��
��
%�Z/�7�-�DC
8�
��%�.	,�%��(&(�+���8�%�)	
��5	�8�

<�-�>=��	(��4��(�
���E-��(&�/����������CCC����)�?	����+������

�+��&�	��-���/I��JJ-��()�
%&-�.)&(%�-�<B��=-�&'��6�(��I�

�"-���"""/�

:J;�G&>-��/V/��
%�H /��/�H �
�-�DH 	
%&5��&
��(�	
�%����)�?	���

��(&%	�� ?��>� ��8�%�)	
�E-� 33
�� $999� ��������� ��������

���������� �����=<,�-� ��� ��!-� �&
%&
-� C
�)�
%-� 9����6�(�

"����"#-��""�/�

:�;��/���/� ����	�	�
���&
%	�	&
��&(�4��(�
���	
�� <�->=��	(�����)�

?	�������	(���
��B
%�(���9���C9.���8�%�)	
�/�?��8
	��)�

(��&(��&/��"����! �-�������%��9C�-������-���
-��""�/�

:�";��	�8�(%�H���-�2��	
��U8�
�-�V�(���
���85�
��
%��8(��	�
�

�&�))�6���(-� W9+
��	�� H 	
%&5��&
��(�	
�%� ��8�%�)	
�� &��

���)�?	��� ��(����� 	
�G�%	�� ��('�(�W-�$999� �	�
������
���
�

4������	�-�$&)���� �-���6�(�#-���/�I!!�I �-���
���""!�

:��;�2��	
��U8�
�-��	�8�(%�H�����
%�Z	
�3	-�W��$	(���)�9��%)	
��

��8�%�)�(� �&(� H 	
%&5��&
��(�	
�%� ��('	��� 4��(�
����W-� 	
�

>	������
������ ���� 3?���$999���������� �������� ����������

������-�9����6�(��""!/�

:��;�����&�%��-��/2/��
%��/�?8	(�
-�*����	��4�����@�#�����	��

��� &���	��
������ ������
�� ��������)�	� ���� $
��	
��-� �
)	
��

$�(�	&
� &�� �8�� �&&>� &�� ��(
��(� $�()��� X� ���� �" "-� ��)+�

�"""�

:��;��/�7&)��-��/�G&>-��/� �&�	�(-� �/�?�)�8	
�>+-� �
%�9/�$�('�)/�

D?8�� �	
58��)����(��)��	��� ��8�%�)	
�� �(&6)��E/� �
� �(&�/� &��

�8����
%�7�5�		� �
��(
��	&
�)��&
��(�
���&
��+�������	�
��-�

������#�� � I"�-���
��(+���J�/�

:�!;� .(�
>� �	6�(��&-� �+)'�	
� ���@��-� ���	� G�)8��-� 9�
	�)�

G&���/� W.��)�� ?&)�(�
�� ���)�?	��� 4)&6�)� ��8�%�)	
�� &
�

G�)�	�(&����&(�W-��/"� �-�����8�C�(&�	�(&��&
��(�
���&
����)�

?	����+�����-������/��

:� ;� �/� V&�6Y�-� 2/3/� �&
�-� WC'�)���	&
� �
%� 	��(&'���
�� &��

(���&
����	���6&�
%���&(�(��)��	������)	���	&
���
%�(�
&
��(��

����	'�� �	,�%� �(&(�+� ��8�%�)	
�W-� $
��	
����
�� ;��	
�� ���

63

�

>	�������
� �����	��-� $&)/!�-� &/�!-� ���J�������-� ?�+)&(�[�

.(�
�	���(&��-���)+��""!/�

:�#;�/��	�-�C/�7+&
-�2/��&
�-�D�(%&

�
����
���&����&
�(�	
����

<�->=��	(�� ��� �&�6	
��&	(�� %��� �&��E-� �?�F�"" -� ��(��

<.(�
��=-���()��"" /�

�

�

64

SCoCAN: A communication Protocol for Distributed Real
Time Systems

J.O. Coronel, P. Pérez, G. Benet, F. Blanes, , J.E. Simó, A. Crespo

Departamento de Informática de Sistemas y Computadores.
Universidad Politécnica de Valencia, Spain.

jacopa1@doctor.upv.es, { pperez, gbenet, pblanes, jsimo, alfons }@disca.upv.es

 Abstract

This paper describes a communication protocol, called
SCoCAN (for Shared Channels on CAN). This protocol is
based on a hybrid communication scheme combining time
triggered (TT) and event triggered (ET) paradigms with
temporal isolation. Both traffic types are handled by time
slots dedicated to each one. SCoCAN has been primarily
projected as a communication infrastructure for
distributed control applications. Its main goal is to
provide determinism in the communication, but without
wasting the bus bandwidth. This is achieved by means of a
dynamic bandwidth recovery method, based on the
recycling of the unused time slots.

1. Introduction1

Nowadays, distributed embedded systems are more
and more used in complex control architectures with
high degree of autonomy. It is common to find them in
flight controllers, cars, robots, industrial control, and so
on, where fieldbus-based communication systems are
frequently found.

Embedded systems generally operate as closed-loop
control systems: they sample sensors, calculate
appropriate control responses and send those responses
to actuators. Hence, to achieve a correct operation of
control loops and an appropriate integration of
information - both spatial and temporal - real time
performance is strongly required. And therefore, the
computational resources of each node as well as the
temporal characteristics of the communication fieldbus
must be taken into account at designing time [9].

Fieldbus designers are typically concerned about the
capacity to deliver both time triggered (TT) and event
triggered (ET) communication services under timing
constraints. Therefore, an adequate scheme seems to be a
combination of both TT and ET services, trying to share
their respective advantages. This is the approach used in
the SCoCAN protocol.

Although there is a great variety of real time buses,
CAN[4] (Controler Area Network) is one of the
preferred solutions to communicate distributed systems
into reduced spaces, such as in mobile robots [17]. But
the native CAN protocol does not guarantee a minimum
jitter nor the exact moment of transmission due to the

1 This work is being developed under the FEDER-CICYT grant
nº DPI2002-04434-C04-03.

high variability of response times in CAN messages,
produced by error conditions in the channel and by the
traffic overload [18]. This can produce missing deadlines
in some control applications. As demonstrated in [15],
communication jitter have an adverse effect into many
distributed control systems. To avoid these problems,
some modifications to the native CAN protocol have
been made, leading to new hybrid protocols to appear,
such as TTCAN [7], FTTCAN [1] and SCoCAN (our
case). These protocols will be introduced in a
forthcoming section.

In the next section 2 the main characteristics of the ET
and TT communication paradigms have been
highlighted, as well as the hybrid ET-TT approach,
emphasizing some characteristics such as bandwidth
efficient utilization and jitter. Afterwards, in section 3 is
presented the SCoCAN protocol, describing its main
temporal characteristics, the different slot types and
latency specifications. Next, in section 4, several existing
protocols on CAN, are compared with SCoCAN. Finally,
in section 5 the implementation of SCoCAN in the YAIR
robot is used as a case study to test the performance of
the protocol.

2. Communication Paradigms

Two different communication approaches for the
design of communication infrastructures in distributed
applications are mainly used: Event-Triggered (ET) and
Time-Triggered(TT) [13], [11]. In the event-triggered
(ET) paradigm the system activities, such as the sending
of a message, are triggered by the occurrences of events
in the environment, whereas in the time-triggered (TT)
paradigm the activities are triggered by the progression
of the global time. This section will compare those two
paradigms, whose emphasis is related to requirements of
predictability, resource utilization and efficiency.

2.1 Event-Triggered Paradigm.

In Event Triggered communication systems the
temporal control is external to the communication
system. That is, only the sender node has knowledge
about the point in time when a message has to be
transmitted. Therefore, the required amount of resources
(i.e.., network bandwidth) for the worst-case
communication can become higher when one considers
the situation in which all nodes attempt to communicate
simultaneously. However, ET paradigm is efficient

65

concerning average resource utilization, since the nodes
generate messages only in response to significant state
changes in the environment.

In addition, the ET communication does not explicitly
require a global notion of time, and consequently neither
synchronization methods. Moreover, the ET
communication can support different system
configurations that change over time, thus the
communication infrastructure is supplied of flexibility
[12]. However, the temporal uncertainty of the ET
communication protocols can be large and have an
adverse effect on control systems [15].

Typically, the ET communication is used to convey
alarm conditions, asynchronous non real-time traffic, or
sporadic and large data blocks.

2.2 Time-Triggered Paradigm.

In TT communication systems, temporal control
resides within the communication system, and is
independent of the application in the nodes. All
communication occurs at predetermined instants in the
time at a rate determined by the dynamics of the
environment under control. This allows a relative phase
control among the streams of messages to be transmitted
over the communication bus, and consequently, a
reduction on the number of nodes that attempt to
transmit simultaneously. Besides, this feature leads to
composability with respect to the temporal behaviour,
one of the most important properties of TT
communication as is emphasized by Kopetz[12]. On the
other hand this paradigm allows an efficient management
of resources utilization in communication peak loads.
However, if the load condition is low or average, then
the resources utilization will be worse than those
obtained with a comparable ET approach.

In TT communication, the clocks of all nodes must be
synchronized to form a global notion of time. Hence,
they require system-wide synchronization mechanisms
that can increase the complexity of system management.
However, as previously described, the TT approach
allows the phase control over the communication, and
therefore is possible to eliminate or bound the
communication jitter.

Usually, the TT communication is adequate for control
applications that require regular transmission (e.g. engine
control, motion control, robots control) and it is used to
convey data with critical timing, periodic and with long
deadlines.

2.3 Joining E-T and T-T paradigms.

Previously, the characteristics of ET and TT paradigms
were separately described. However, many practical
applications of distributed embedded control, such as
automotive systems and robots, require the exchange of
information of both sporadic and periodic nature. This
last is associated with control loops and the first with
alarms, management or code delegation between nodes.
Even though these two types of traffic can be conveyed

over totally ET systems (as CAN[4] based systems), or
totally TT systems (such as TTP[19]), the network
efficiency suggests to join both paradigms, sharing their
particular advantages, such as intermediate level of
flexibility due to the ET part (any node can attempt to
transmit) and a predictable temporal behaviour due to the
TT part. However, the combination must implement
temporal isolation of both types of traffic, to prevent that
asynchronous ET traffic can ruin the advantages of the
TT paradigm due to mutual interference. A way to
achieve this isolation is allocating bandwidth exclusively
to each type of traffic.

However, this hybrid scheme is not recent, e.g. in [14]
two consecutive phases dedicated to one type of traffic
each are defined. Consequently, the bus time turn into an
alternate sequence of TT and ET phases. Another typical
examples of protocols that using this hybrid scheme are
FTTCAN [1], FlexRay[3] and TTCAN[7], moreover, the
first and third protocols are one example of a hybrid
scheme over fully ET native bus, and the second is one
example of transmission over fully TT native bus.

3. Existing Protocols

Nowadays there is a great variety of fieldbus protocols
and their election must be made in agreement with the
application’s requirements and with some relevant
characteristics, such as ease of implementation,
flexibility, fault tolerance, commercial availability,
temporal constraints, required bandwidth, type of
transmitted data, etc. For their relevance and interest,
some existing protocols will be described in this section,
highlighting their main characteristics.

WorldFIP [8] fieldbus uses a centralized MAC
protocol (master–slave), first, the master has to poll the
nodes for the existence of aperiodic requests to be
served, and this is normally carried out using the periodic
traffic assigned to each node. Then, when a node
indicates that it has pending aperiodic requests, the
master has to poll the node for the identification of the
individual requests and finally process them one at a
time. Therefore, into this protocol the handling of ET
traffic is relatively inefficient, requiring a considerable
amount of bandwidth to allow the master node to stay
alert for aperiodic requests.

Foundation Fieldbus-H1[8] has one communication
scheme comparable to WorldFIP. A Link Active
Scheduler (LAS) is used for scheduling transmissions of
TT messages and authorizing the exchange of data
between Link Masters (LMs) devices. Furthermore, this
scheduling allows the transmission of event-triggered
messages only during precise time windows that do not
extend beyond of the time used by the time-triggered
messages. The LAS organizes the communication
passing a virtual token ring to put order in the access to
the network. This token-based method is also relatively
inefficient because the token itself consumes bandwidth,
and the nodes with pending aperiodic communication
requests have to wait for the token even if the remaining
nodes in the ring list have no requests.

66

TTP (Time Triggered Protocol) [19] is based on a pure
TDMA (time-division multiple access) approach, with
exclusive slots and with static scheduling. The support of
time-triggered traffic is obvious whereas the event-
triggered traffic can only be supported by pre-allocating
a number of slots for the transmission of eventually
pending event-triggered messages. However, these slots
are dedicated and, at a given instance, if there is not any
transmission request for the respective message, the slot
remains unused. This time-based polling mechanism for
each event-triggered message produces high efficiency
under worst case requirements and low efficiency under
average-case requirements. Although TTP supports
addition of nodes by booking enough time in the TDMA
round, this causes extra bandwidth to be allocated,
constituting an inefficient bandwidth management.

FlexRay [3] combines a time-triggered along with an
event-triggered system. Based on an extended TDMA
media access strategy, it has a communication cycle
divided into a mandatory static segment, and an optional
dynamic segment. In the static segment, requirements
such as latency and jitter are handled by means of
deterministic communication timing. Into this segment
the time slots are equally sized and the point of time
when a frame is transmitted on the channel is exactly
known. The slot assignment is done off-line during
system planning. The dynamic segment consists of one
slot of fixed duration and subdivided into mini-slots. A
prioritization scheme enables variable bandwidth
distribution during runtime. Each sending controller has
a mini-slot assigned to a transmit-frame. However, this
latter is equivalent to assigning different wait time to
asynchronous messages according to their priority. This
mechanism can result in substantial bus idle time when
there are ready-to-send, yet low-priority messages.
Moreover, if a high-priority ET message is generated just
later of its assigned mini-slot, this message must wait
until next communication cycle, whereas other low-
priority messages can be transmitted.

Flexible Time Triggered CAN (FTTCAN)[1] is an
extension of CAN, based on a dynamic scheduling
TDMA. FTTCAN has a basic cycle divided into two
windows, one asynchronous used to transmit ET
messages and whose access to the bus is determined by
the conventional CAN protocol. The second window is
synchronous, being in this window where the TT
messages are transmitted. In this window the traffic is
dynamically scheduled by a master central node. This
feature enables the online admission control of dynamic
requests for periodic communication because the
respective requirements are held centralised into one
local table. In this protocol the handling of ET traffic and
network utilization is efficient, and also, it has a flexible
handling of TT traffic supporting online admission of
change requests for this traffic. However, into
synchronous window (TT traffic), lowered and bounded
communication jitter might appear due to that within this
windows the access to the bus is determined by the
conventional CAN protocol.

Time Triggered CAN (TTCAN) [7] is another
extension of CAN, based on static schedule TDMA.
TTCAN uses a reference message to indicate the
beginning of each basic cycle. A basic cycle is divided
into three different types of windows: private windows,
used to transmit one specific message only, arbitration
windows, where the nodes compete by the access to the
bus as in a conventional communication of CAN, and
free windows, used for future extensions. In this protocol
the basic cycles are not always the same. The complete
pattern of TTCAN traffic is integrated by a consecutive
number of basic cycles that form a matrix. However,
there are several practical constraints that must be
observed when building the table. For example, all the
windows in the same column must be of equal width and
type. Moreover, the exclusive windows are dedicated to
the transmission of a single time-triggered message.
However, the fact that there is a CSMA-based MAC
protocol that resolves collisions at bus access during the
arbitration windows greatly simplifies the handling of
event-triggered traffic.

4. Introduction to SCoCAN.

A first approach for the proposed SCoCAN protocol
was presented in [6]. SCoCAN (Shared Channel on
Controller Area Network) is a higher layer protocol on
top of the CAN data link layer, and follows a hybrid
communication scheme, combining time triggered (TT)
and event triggered (ET) traffic, but with temporal
isolation (achieved by exclusive allocation of bandwidth
to each type of traffic in successive time slots).The main
goal of SCoCAN is to remove or reduce the jitter, also
exploiting the maximum physical bandwidth of the bus.
The former is achieved by triggering the time slots
sequence, supplying determinism to the communication
bus; whereas the latter is achieved by means of dynamic
bandwidth recovery by recycling unused time slots. The
adoption of CAN bus for SCoCAN protocol has several
advantages. It simplifies and makes efficient the
handling of event-triggered traffic due to the CAN
collision resolution mechanism which utilizes an access
method CSMA/CR [4]. Moreover, CAN network
controllers and their cabling are relatively inexpensive
and the relatively robust physical layer with respect to
error detection and tolerance of physical faults enables
SCoCAN-based systems operate in harsh environments.
And additionally, the CAN controllers have great
commercial availability and can be found embedded into
several microcontrollers as well as in microprocessors.

The nomenclature used in our protocol follows. The
SCoCAN bus time is organized as a sequence of variable
duration time-slots. This sequence is called Basic Cycle
(BC), and the slots size, distribution and assignments are
defined at pre-runtime. The BC is organized as a static
time table and is distributed to all nodes on network at
start-up. In addition, changes between pre-defined and
post-defined operational modes are also allowed. The
nodes are synchronized by a strictly periodic reference
message named Sync Message (SM), which marks the

67

starting of each basic cycle. This message is sent by a
master node.

Within each BC are defined several successive time-
slots used to convey different types of traffic: Private
slots are used to convey time-triggered traffic, and are
called private because in each of these slots only a node
can transmit data. Shared slots are used to convey
exclusively event-triggered traffic, and are called shared
because all nodes may try to transmit using the native
CAN arbitration mechanism. And finally, the Recycled
slots are the result of a dynamic transformation (at
runtime) of private slots into shared slots when these
first remain unused. This transformation achieves high-
bandwidth efficiency by means of an active bandwidth
recovery and avoiding a waste of bus bandwidth.

To reinforce the temporal isolation between time-
triggered and event-triggered traffic and to maintain the
temporal properties of TT traffic, such as composability,
the transmissions that could not be completed within the
shared slots must be removed from the network
controller transmission buffer, keeping them in the
transmission queue. Thus, a short idle time will be
defined at the end of each shared slot when this is
followed by a private slot or Sync Message.

4.1. The Basic Cycle and their time slots

The time between two synchronization frames
constitutes a Basic Cycle (BC) (see Figure 1). And this is
formed by adding successive time slots of variable
duration, whose length will depend on the transmitted
data characteristics. The duration of the whole BC sets
the temporal resolution of the communication system.
Therefore, the transmission periods of the time-triggered
traffic are integer multiples of the BC duration.

As previously described, the time slots of a BC can be
used to convey messages with TT or ET characteristics,
and any message to be sent has the CAN data format and
utilizes a standard CAN message. Moreover, a table that
determines the rank of CAN identifiers for each message
(depending on traffic type and its priority) must be also
defined.

In SCoCAN network, all the nodes will use a
transmission time-table to define the BC of protocol,
which is previously defined and saved in all nodes
during bus start-up routine. Additionally, several
operational modes (transmission tables) can be
predefined into nodes or dynamically distributed on the
network (at runtime).

Figure 1. A Basic Cycle (BC) in SCoCAN.

The Figure 1 shows an example of basic cycle, with
the synchronization message followed by private slots
and shared slots. (In the figure, one Private Slot has been
recycled to Shared).

4.1.1 The Synchronization Message

The synchronization of the modules within the
network is done via a periodic Sync Message (SM)
which is clocked by one primary or secondary master
node. All nodes of the SCoCAN network identify the
reference message by its identifier (generally this
message has the highest priority). The receipt of SM
causes a new reconfiguration of local timers and restarts
the cycle time in each node. Additionally, this message
may hold additional control information, such as time
information or operational modes.

Depending on implementation, the synchronization
process may get delays because of differences in SM
message reception time in each node (see Figure 2). The
synchronization accuracy depends on the physical signal
propagation on the bus line and on the processing time of
the message. This small delay will cause differences on
the starting point of the time slots which must be taken
into account. In the Figure 2, nodes 0 and 1 have sensed
the reference message in different instants of time, and
consequently, in the synchronization process an
uncertainty interval may be found.

Figure 2. Delays produced during synchronization.

4.1.2 Private Slots.

These slots are used for messages with hard real time
constraints, synchronization messages or configuration
messages, (i.e., for time-triggered traffic).

In these slots, only one of the nodes is allowed to
transmit data (proprietary node) avoiding eventual
collisions on bus access. Thus, the communication jitter
can be eliminated or bounded. Each node checks when it
is allowed to transmit by scanning a local time table
containing the identification of the message, type of slot,
duration and proprietary node.

The assignation of messages to private time-slots is
off-line scheduled, and moreover, to provide flexibility

68

to scheduling, the same message identifier may be
assigned to several time slots into the same BC.

To provide reliable communication, the automatic
retransmission caused by transmission errors,
(characteristic of the original CAN protocol) is allowed
into these slots, but the total retransmission duration is
limited to the length of the slot where it takes place.

4.1.3 Shared Slots.

These slots are intended for messages with non-critical
timing (soft real time constraints), alarms or messages
with large blocks of data, (i.e. for event-triggered traffic).

These slots have not any proprietary. Thus, the nodes
use the native priority-based distributed arbitration
mechanism of the original CAN protocol and
consequently, inheriting its efficiency in handling event-
triggered traffic. The scheduling policy is priority driven,
with fixed priorities expressed as message identifiers.
The automatic retransmission caused by transmission
errors of original CAN protocol is also allowed in these
slots. But, to maintain a strict temporal isolation between
both types of traffic (Time-Triggered and Event
Triggered), the private slots must be protected from
interference of ET traffic. This is achieved by adding a
short idle time to the end of each shared slot (see Figure
3) when this is followed by a private slot and to the
ending of a BC. All transmission activity is suspended in
this idle time, including retransmissions and the nodes
with pending ET transmission requests are kept on hold
until the next shared slot.

Figure 3. Shared Slot.

4.1.4 Recycled Slots.

An important characteristic of our protocol is that the
private slots (for TT traffic) can be transformed into
shared slots, when in the private slots there are no data
to be transmitted. This transformation is dynamic (during
runtime) providing a dynamic bandwidth recovery and
avoiding a waste of bus resources.

When inactivity on the bus is detected during an
interval of time (inactive time) after the starting point of
a private slot, other nodes with ET traffic queue, are
allowed to start to send their messages (see Figure 4).
This inactivity may be discovered directly by sampling
the CAN bus for the type A nodes, or by a particular
message reception (called Sync1) in the case of type B
nodes. The wait time to detect inactivity is named
recycling time.

Figure 4. Detection of inactivity in Private Slots.

Recycled Slots.

In protocols such as TTCAN or TTP, when a private

slot is allocated to a node and for any reason this node is
turned off, (e.g. HW fault or maintenance), it can cause
a waste of bus bandwidth; because these time slots
remain allocated and unused. However, in the case of
SCoCAN, its recycling mechanism enables private slots
to be transformed into shared slots for ET traffic, thus
recovering the bus bandwidth.

4.2 Node types in SCoCAN.

 Primary Master Node: its job is to synchronize all
nodes on network with high timing accuracy. This node
sends SM’s to mark the starting of basic cycle. Also, the
master node must be capable to detect inactivity via
hardware in private slots and must indicate the
unoccupied condition of the slot by sending a particular
message (Sync 1). This last feature can be also delegated
to other node.
 Secondary Master Node: a pre-defined set of nodes
(named as Secondary Master Nodes) in the network
constantly monitors the activity of the primary master
node. If the primary master node fails, any secondary
master node immediately handles the synchronization
task. Similar criteria as in [10] would be used for the
selection of the secondary master node.

Node Type A: Node with an intelligent board, capable
of sampling the CAN bus lines, and detect inactivity via
hardware. This feature allows these nodes to quickly
transmit when there is inactivity during the private slots.

Node Type B: Node without capacity of bus sampling.
This type of nodes can not recycle the empty private
slots unless other specialised node (Master node) sends a
short message (Sync1), signalling the unoccupied
condition of the private slots.

4.3 Latency Specifications

In this section we present the analysis for the worst-
case latency of non-critical messages over shared slots
on SCoCAN protocol. The analysis has similarities with
the analysis described in [17][18], used for computation
of maximum transmission latencies on classical CAN
networks. The main difference is that the test described
in this paper mixes the transmission of TT critical
messages on private slots with the transmission of non-

69

critical messages on shared slots in a schema equivalent
to classical CAN.

Timing analysis makes the following simple
assumptions about the characteristics of a message m:

• Message m has a bounded size,
• Transmission periods Tm are known and

constant,
• Jitters to first shared slot JSm are also known,
• The length and identifier of all messages are

known.
Timing analysis makes also the following simple

assumptions about protocol features:
• The distribution of the shared and private slots

on each basic cycle is static.
• The private slots transformation into shared

slots feature is not applied.
• The exploitation of private messages is not

included.
• The transmission is free of errors.

The longest time Rm from task activation until message
m gains control of the bus can be calculated using the
following extended schedulability test Eq. (1).

mmmm CwJSR ++= (1)

Where JSm is the blocking time due to private slots,
from the BC start time until the first shared slot and it
depends on the system configuration. These parameters
is used in a similar way with the blocking factor B, due
to messages of lower priority in the equation described in
[18] used for computation of maximum transmission
latencies on classical CAN networks.

The Cm factor is the longest time taken to physical
transmission of message m defined by:

bitm
m

m ts
s

C ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎥⎦

⎥
⎢⎣
⎢ +

= 847
5
834 (2)

Where sm is the number of bytes in the data field of
message m, and tbit is the time taken to transmit a bit on
bus. The term wm (Eq 3) represents the worst-case
queuing delay message m. It is similar to longest time
between placing the message in CAN controller registers
to start of transmission of the message m on a shared slot
and it is presented in the recursive equation 3:

n

m
n

mm
n
m ISPIHPBw ++=+1 (3)

Where the term Bm is the worst-case blocking time of

message m due to lower priority messages.

jmlpjm CB
)(

max
∈

= (4)

The
n

mhpI)(is the delay due to interference between
transmission of message m and the set of higher priority
messages. This is a recursive relation where the factor n
defines iteration on the computation. Generally, the
initial value is zero, which permits a fast convergence.

j
mhpj j

n
mn

m C
T
wIHP ∑

∈ ⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
=

)(

 (5)

Where hp(m) is the set of messages with higher

priority than message m.

()∑
∞

<
<

=

+=

m
n
m

n
iCB

R
RkT

k

nk
m

nk
m

n
m ISISPnISP

φ

0

,, Pr
(6)

The n

spI (eq. 6) is a blocking time on the message m
due to private slots and it is divided to two factors which
depend to allocation of slot into basic cycle. Where φm
is signal threshold quality of message m. TCB is the rate
of basic cycle. k is the amount of basic cycle until the
message is transmitted.

() ()se
lCBe

lCB

n
ink

m T
mT

RISPn 0
, ·1,min ττ

τ
+−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎥
⎢
⎣

⎢
+

= (7)

The equation 7 shows the interference produced by

private slots at the end of the BC.

The meaning of the terms
position

numslot.τ follows: position
indicates the (s)tarting point or the (e)nding point of the
slot, respectively; whereas slot.num denotes the order
number of the slot into the set of shared slots ΨSS : {0, ···,

h, ···,l}. Thus,
s
0τ refers to the time corresponding to the

starting of the first slot.

() ()∑
<∧Ψ∈

+ −⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎥
⎢
⎣

⎢
+

=
n
i

s
hss Rh

e
h

s
he

hCB

n
ink

m mT
RrISP

τ

ττ
τ 1

, ·1,min (8)

This equation show the interference produced by the

private slots into basic cycle, but the interference defined
by the equation 7 is not included.

5. CAN protocols comparison

In this section the behaviour of four protocols
(TTCAN, FTTCAN, SCoCAN and native CAN) are
compared using discrete simulation of several sets of
messages by means of a java application tool developed
ad-hoc.

 The set of messages are generated automatically by
the application and clustered in two groups: HRT and
SRT (hard real time and soft real time). The HRT are
messages with high priority identifier, (in this
simulation, any message with an identifier under 1024)
and the SRT are the rest of messages (SRT identifiers
range between 1024 and 2047). The bus bandwidth
reserved by the compared protocols each group is: 60%
for SRT and 40% for HRT. (Note that in CAN there are
not differences for both traffic types). In FTTCAN,

70

asynchronous and synchronous windows have reserved
the 60% and 40% size of basic cycle respectively. And
finally, TTCAN and SCoCAN have defined the 40% of
the slots as private slots.

To observe the behaviour of each protocol for SRT
traffic, the application applies a workload of 100% of
bus bandwidth for SRT messages and then simulates this
scenario for different levels of HRT messages workload.

The next figures 5, 6 and 7, depict the results of
simulations using 0%, 50% and 99% HRT workload
levels for reserved private slots and show the maximum
latencies in microseconds versus the message identifiers.
It must be also noted the logarithmic scale for latencies.
Finally, in the figure 8 the latencies corresponding to the
HRT messages when a 99% of HRT bandwidth is used
are shown. (This is the same case as in the previous
figure 7).

1000 1200 1400 1600 1800
10

2

10
3

10
4

10
5

Identifier

La
te

nc
y

(μ
s)

FTTCAN
SCoCAN
TTCAN
CAN

Figure 5. Latencies of SRT messages without HRT

workload.

1000 1100 1200 1300 1400 1500 1600 1700
10

2

10
3

10
4

10
5

Identifier

La
te

nc
y

(μ
s)

FTTCAN
SCoCAN
TTCAN
CAN

Figure 6. Latencies of SRT messages when a 50% of

HRT bandwidth is used.

1000 1100 1200 1300 1400 1500 1600
10

2

10
3

10
4

10
5

Identifier

La
te

nc
y

(μ
s)

FTTCAN
SCoCAN
TTCAN
CAN

Figure 7. Latencies of SRT messages when a 99% of

HRT bandwidth is used.

0 50 100 150 200 250
10

1

10
2

10
3

10
4

Identifier

La
te

nc
y

(μ
s)

FTTCAN
SCoCAN
TTCAN
CAN

Figure 8. Latencies of HRT messages when a 99% of

HRT bandwidth is used.

Examining figures 5 to 7, for each HRT workload, it

can be observed that the latencies of SRT messages on
TTCAN and FTTCAN are not modified by the variation
of the HRT workload percentage. This is a consequence
of the complete isolation properties of both traffic types.
In the case of TTCAN (see fig.8), the jitter for HRT
messages are minimal, whereas in the case of FTTCAN
the jitter depends on HRT workload, having a maximum
bounded by the length of the synchronous window.

In contrast, the maximum latencies on CAN and
SCoCAN depend on the workload of HRT messages.
This behaviour is natural on CAN and it follows the
Tindell formula [18]. Note that in SCoCAN, for lower
HRT workloads, SRT latencies are similar to the CAN
case, but for higher HRT workloads, the SRT latencies
are similar to those of TTCAN case. This effect is due to
the reuse of the available HRT bandwidth.

71

6. Case study

The SCoCAN protocol has been implemented on the
YAIR2 autonomous mobile robot, whose distributed
architecture, temporal sensors and actuators
characteristics, and message frames are defined in [5]
and [16]. Several field tests and several data acquisition
and analysis tools have been implemented, to validate
the performance of the protocol. These will be described
next.

6.1 Basic Characteristics of the test

The YAIR robot [2] is a distributed system with
embedded intelligent modular nodes which manage
different subsystems, such as sensors, actuators and
control devices. Each node also handles the SCoCAN
communication protocol. The nodes involved in the
present test are: infrared node: it reads a ring with 16 IR
sensors; motor node: it is used to control the robot's
motors and to send speed, acceleration and odometer
messages; odometer node: it generates high-resolution
position data; ultrasonar node: it sends for each reading
the digitised envelope of an ultrasonic echo; central
node: it is the main processor of robot. A more detailed
description of each node can be read in [5] and [17].

Given the YAIR’s architecture and the temporal
characteristics of the devices into their distributed system
[5][15][16], some basic parameters of the test have been
selected: the first one, a basic cycle of 10ms and divided
into 20 slots of 500 microseconds each has been defined
(see Figure 9), (although in the implementation the
neighbouring shared slots are joined). And second,
transmission features of CAN messages such as such as
CAN identifier, data size, assigned slot into the BC, slot
type, rate and number of CAN messages sent each period
are defined in the table 1.

Other SCoCAN features are also defined as follows:
• The idle time used is 10us
• The recycled time used is 20us.
• And the CAN transmission rate is established in

1Mbps.

Figure 9. SCoCAN basic cycle for the YAIR robot

In these tests, three basic type of traffic can be found:

2 YAIR stand for Yet Another Intelligent Robot and is
currently developed in our laboratory.

• TT traffic: this is produced by central, infrared,
odometer and motor nodes.

• Continuous ET traffic: this is generated by ultra
sonar node.

• Sporadic ET traffic: this is produced by all the nodes
on the network, and this traffic is formed by some
alarms and data file transfer. This latter is used to
code delegation and distributed file system.

Table 1. Features of the messages used in the
SCoCAN tests on YAIR robot.

6.2 Data acquisition and analysis tools

To store the transmission and reception time of
messages for further analysis and to handle the SCoCAN
protocol, a real time communication driver together with
a real time CAN monitor were implemented.
Additionally, several data analysis tools were developed
to obtain the main features of communication process,
such as utilization factor of CAN bus, message latencies,
jitter, amount of recycled slots and accuracy of data
transmission into the private slots.

6.3 Working modes used in the test

Two working modes of the SCoCAN protocol have
been implemented (see Figure 10) on YAIR robot:
• SCoCANv1: only one message can be conveyed into

private slots. The retransmission by error is disabled
which will permit a physical replication of buses. An
example of this test is shown at the top of Figure 10.

• SCoCANv2: The automatic retransmission by error
is enabled on all the slots. Moreover, several shared
messages (ET messages) can be conveyed into the
end of each private slot even though a TT message
is transmitted. However, this transmission of ET
messages is possible only when there are not errors
on the transmission of the previous TT message.
(See Figure 10).

In both tests, the fundamental characteristics of

SCoCAN protocol are implemented, such as the
recycling of the slots.

 500us

S.19

Shared Private

10 ms

P.2 P.1 SYNC

72

Figure 10. Working modes used in the tests.

6.4 Results of the SCoCAN test

Using the analysis tools, the simulation time was
established in 100 basic cycles. In the Table 2, the main
results of SCoCANv1 test are showed. In this test, the
maximum utilization factor (UF) of CAN bus versus
basic cycles (BC) was 64.23%, while the minimum UF
was 53.83%. Moreover, 35.7% of private slots were
recycled and hence the bus bandwidth was not wasted.

Table 2: Main features of the SCoCANv1 test
SCoCANv1 TEST

Simulation time 100 basic cycles

Maximum UF/BC 64.23%

Minimum UF/BC 53.83%

Average UF/sec 58.38%

Deviation
<|6us|

Deviation
<|4us|

Deviation
<|2us| Private slots with

transmission time
deviation <|x| μs 100% 98.1% 71.0%

Recycled slots 250 recycled / 700 private

On the other hand, the features of SCoCANv2 test are
presented in the Table 3. In this test, the maximum
utilization of CAN bus by cycle was 82.56%, whereas
the minimum UF was of 59.03% and the amount of
private slots that were recycled is similar to the
SCoCANv1 test.

Table 3: Main features of the SCoCANv2 test
SCoCANv2 TEST

Simulation time 100 basic cycles

Maximum UF/BC 82.56%

Minimum UF/BC 59.03%

Average UF/sec 66.85%

Deviation
<|6us|

Deviation
<|4us|

Deviation
<|2us| Private slots with

transmission time
deviation <|x| μs 100% 96.1% 77.7%

Recycled slots 250 recycled / 700 private

In the Figure 11, the temporal evolution of the UF
parameter is shown. In this figure some maximum
transmission peaks which correspond with the start of the
transmission of data files together with echo data and
other TT messages can be distinguished. As expected, in
the SCoCANv2 test, UF is higher than obtained in
SCoCANv1, since in this latter, the transmission ET
messages at the ending of each private slot is not
allowed.

In both tests, the maximum transmission time
deviation (that is, the difference between the instant of
transmission of a private message and the real starting
time of its slot), produced in messages allocated to
private slots was always less than 6μs. (This includes the
synchronisation uncertainty and clock drifts). Moreover,
in more than 70% of the private slots, this transmission
time deviation is less than 2 μs.

Figure 11. Utilization factor of CAN using SCoCAN

protocol in the two tests carried out.

7 Conclusions

In this paper we have discussed the advantages and
disadvantages of event-triggered and time-triggered
paradigms in fieldbus communication systems as well as
of several existing fieldbus protocols. Afterwards, we
propose a new protocol, SCoCAN, which is intended as
a communication infrastructure for distributed control
applications. The main feature of this protocol is that it
supports a combination of TT and ET traffic, with
temporal isolation between them. And additionally the
jitter of messages into the private slot is eliminated and
the management of network bandwidth and of ET traffic
is improved due in part to the dynamic recovery of the
private slots when these are idle. To appreciate the effect
of dynamic BW recovery, a simulation-based
comparison between three CAN-based protocols and
SCoCAN were carried out with positive results.

The SCoCAN protocol has been implemented and
analyzed on the YAIR mobile robot. The analysis of
transmitted messages shows a good response that agrees
well with our expectations.

73

References

[1] Almeida, L., Pedreiras, P., Fonseca, J.A., “The

FTTCAN protocol: Why and how”, IEEE
Transactions on Industrial Electronics, Volume 49,
Issue 6, pp. 1189-1201. Dec. 2002

[2] Benet, G., Blanes, F., Simó, J.E., Crespo, A., “A
Multisensor Robot Architecture with Distributed
Behaviour Selection”. Proceedings of the 5th IFAC
Workshop on Intelligent Manufacturing Systems
(IMS’98), Gramado, Brasil, 1998.

[3] Berwanger, J., C. Ebner, et al. (2001). FlexRay--
The Communication System for Advanced
Automotive Control Systems. SAE World
Congress, Detroit, SAE Press paper 2001001-0676.
BMW (1999).

[4] CiA (CAN in Automation). “CAN Application
Layer for Industrial Applications”, Documents No.:
DS-201...DS-207, Version 1.1. 1996.

[5] Coronel, J.O, Blanes, F., Pérez, P., Benet,G., Simó,
J.E., “Arquitectura de Control distribuida usando
nodos empotrados con RT-LINUX sobre el
protocolo de comunicaciones SCoCAN”, XXV
Jornadas de Automática. (Spain). Sep. 2004.

[6] Coronel, J.O, Blanes, F., Benet, G., Pérez, P.,
Simó, J.E., “CAN-based Distributed Control
Architecture using the SCoCAN Communication
Protocol”, Proc. IEEE Int'l Conf. on Emerging
Technologies and Factory Automation,
ETFA'2005, vol 1. 2005

[7] Fuhrer, T., Muller, B., Dieterle, W., Hugel, R.
“Time Triggerd Communication on CAN”. Cia
CAN. 7th international CAN Conference 2000.

[8] General Purpose Fieldbus: Vol. 1: P-Net; Vol. 2:
PROFIBUS; Vol. 3:WorldFIP, Amend.1:
Foundation Fieldbus-H1, European Standard
EN50170, 2000.

[9] Heath, Steve, “Embedded Systems Design”,
Oxford: Newness, 2003.

[10] H. Garcia-Molina and D. Barbara. How to assign
votes in a distributed system. J. ACM, 32(4):841-
860, 1985

[11] H. Kopetz, “Should responsive systems be event-
triggered or time-triggered?,” IEICE Trans. Inform.
Syst.,vol. E76-D. 1993

[12] H. Kopetz, Real-Time Systems Design Principles
for Distributed Embedded Applications Kluwer
Academic Publishers, 1997.

[13] J.-P. Thomesse and M. Leon Chavez, “Main
paradigms as a basis for current fieldbus concepts,”
in Proc. FeT’99 (Int. Conf. Fieldbus Technology),
Magdeburg, Germany, Sept. 1999.

[14] P. Raja and G. Noubir, “Static and dynamic polling
mechanisms for fieldbus networks” ACMOperating
Syst. Rev., vol. 27, no. 3, 1993.

[15] Pérez, P., Benet, G., Blanes, F., Simó J. E.
“Communications jitter influences on Control
loops using Protocols for Distributed Real-Time
Systems on CAN bus”. 5th IFAC International
Symposium. SICICA’03. Aveiro (Portugal). 2003

[16] Pérez, P., Posadas, J.L., Benet, G., Blanes, F.,
Simó, J.E., “An Intelligent Sensor Architecture for
Mobile Robots” 11th International Conference on
Advanced Robotics - IEEE ICAR’03. University of
Coimbra (Portugal). 2003

[17] Posadas, J.L., Pérez, P., Simó, J.E., Benet, G.,
Blanes, F., "Communications Structure for Sensory
data in mobile robots". Engineering Applications of
Artificial Intelligence, vol. 15, no. 3, 341-350.
2002.

[18] Tindell, K., Burns, A. y Wellings, A. J.,
“Calculating Controller Area Network (CAN)
message response time”, Control Engineering
Practice, Vol. 3(8). 1995.

[19] TTP/C Protocol, version 0.5, TTTech
Computertechnik, Vienna, 1999.

74

Resource and Data Management I

75

Utility Accrual Real-Time Resource Access Protocols with Assured Individual
Activity Timeliness Behavior

Peng Li
Microsoft Corporation

Redmond, WA 98052, USA
pengli@microsoft.com

Binoy Ravindran
ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA
binoy@vt.edu

E. Douglas Jensen
The MITRE Corporation

Bedford, MA 01730, USA
jensen@mitre.org

Abstract

We present a class of utility accrual resource access pro-
tocols for real-time embedded systems. The protocols con-
sider application activities that are subject to time/utility
function time constraints, and mutual exclusion constraints
for concurrently sharing non-CPU resources. We consider
the timeliness optimality criteria of probabilistically satisfy-
ing individual activity utility lower bounds and maximizing
total accrued utility. The protocols allocate CPU bandwidth
to satisfy utility lower bounds; activity instances are sched-
uled to maximize total utility. We establish the conditions
under which utility lower bounds are satisfied.

1. Introduction

Many emerging real-time embedded systems such as
robotic systems in the space domain (e.g., NASA’s Mars
Rover [5]) and control systems in the defense domain (e.g.,
phased array radars [6]) operate in environments with dy-
namically uncertain properties. These uncertainties include
transient and sustained resource overloads (due to context-
dependent, activity execution times) and arbitrary, activity
arrival patterns. Nevertheless, such systems desire assur-
ances on activity timeliness behavior, whenever possible.

The most distinguishing property of such systems, is that
they are subject to “soft” time constraints (besides hard).
The time constraints are soft in the sense that completing an
activity at any time will result in some (positive or negative)
utility to the system, and that utility depends on the activ-
ity’s completion time. Such soft time-constrained activities
are often subject to optimality criteria such as completing
all activities as close as possible to their optimal comple-
tion times—so as to yield maximal collective utility.

Time/utility functions [7] (TUFs) allow the semantics
of soft time constraints to be precisely specified. A TUF,
which generalizes the deadline constraint, specifies the util-

ity to the system resulting from the completion of an ac-
tivity as a function of its completion time. A TUF’s utility
values are derived from application-level QoS metrics. Fig-
ures 1(a)–1(b) show some TUF time constraints of two de-
fense applications (see [4] and references therein for appli-
cation details). Classical deadline is a binary-valued, down-
ward “step” shaped TUF; 1(c) shows examples.

-
Time

6Utility
Track

Association

0

bbbb

(a)

-
Time

6Utility
Plot Correlation

Track Maintenance

S
S

S
S

0

HHH

(b)

-
Time

6Utility

0

(c)

Figure 1. Example TUF Time Constraints. (a):
AWACS association [4]; (b): Air Defense corre-
lation & maintenance [4] ; (c): Step TUFs.

When activity time constraints are expressed with TUFs,
the timeliness optimality criteria are often based on accrued
activity utility, such as maximizing sum of the activities’
attained utilities or satisfying lower bounds on activities’
maximal utilities. Such criteria are called Utility Accrual
(or UA) criteria, and scheduling algorithms that consider
UA criteria are called UA scheduling algorithms.

UA criteria directly facilitate adaptive behavior during
overloads, when (optimally or sub-optimally) completing
more important activities, irrespective of activity urgency, is
often desirable. UA algorithms that maximize summed util-
ity under downward step TUFs (or deadlines), meet all ac-
tivity deadlines during under-loads (see algorithms in [9]).
When overloads occur, they favor activities that are more
important (since more utility can be attained from them), ir-
respective of urgency. Thus, deadline scheduling’s optimal
timeliness behavior is a special-case of UA scheduling.

77

1.1. Contributions

Many embedded real-time systems involve mutually ex-
clusive, concurrent access to shared, non-CPU resources,
resulting in contention for the resources. Resolution of the
contention directly affects the system’s timeliness behavior.

UA algorithms that allow concurrent resource sharing
exist (see [9]), but they do not provide any assurances on
individual activity timeliness behavior—e.g., assured util-
ity lower bounds for each activity. UA algorithms that pro-
vide assurances on individual activity timeliness behavior
exist [8], but they do not allow concurrent resource shar-
ing. No UA algorithms exist that provide individual activity
timeliness assurances under concurrent resource sharing.

We solve this exact problem in this paper. We consider
repeatedly occurring application activities that are subject
to TUF time constraints. Activities may concurrently, but
mutually exclusively, share non-CPU resources. To better
account for non-determinism in task execution and inter-
arrival times, we stochastically describe those properties.
We consider the dual optimality criteria of: (1) probabilis-
tically satisfying lower bounds on each activity’s accrued
utility, and (2) maximizing total accrued utility, while re-
specting all mutual exclusion resource constraints.

We present a class of lock-based resource access proto-
cols that optimize this UA criteria. The protocols use the
approach in [8] that include off-line CPU bandwidth allo-
cation and run-time scheduling. While bandwidth alloca-
tion allocates CPU bandwidth share to tasks, scheduling or-
ders task execution on the CPU. The protocols resolve con-
tention among tasks (at run-time) for accessing shared re-
sources, and bound the time needed for accessing resources.

We present three protocols, which differ in the type of
resource sharing that they allow (e.g., direct, nested). We
analytically establish upper bounds on the resource access
times under the protocols, and establish the conditions for
satisfying utility lower bounds.

Thus, the paper’s contribution is the class of resource
access protocols that we present. We are not aware of any
other resource access protocols that solve the UA criteria
that are solved by our protocols.

The rest of the paper is organized as follows: Section 2
describes our models. In Section 3, we summarize the band-
width allocation and scheduling approach in [8] for com-
pleteness. Section 4 introduces resource sharing in this ap-
proach, and Sections 5, 6, and 7 present the protocols. In
Section 8, we show a formal comparison of lock-based ver-
sus lock-free resource access protocols. We demonstrate
that neither is always better than the other. We conclude in
Section 9.

2. Models and Objectives

Tasks and Jobs. We consider the application to consist
of a set of tasks, denoted as T = {T1,T2, · · · ,Tn}. Each in-
stance of a task Ti is called a job, denoted as Ji, j, j≥ 1. Jobs
are assumed to be preemptible at arbitrary times.

We describe task arrivals using the Probabilistic
Unimodal Arrival Model (or PUAM) [8]. A PUAM spec-
ification is a tuple 〈p(k),w〉,∀k≥ 0, where p(k) is the prob-
ability of k arrivals during any time interval w. Note that
∑∞

k=0 p(k) = 1. Poisson distributions P (λ) and Binomial
distributions B(n,θ) are commonly used arrival distribu-
tions. Most traditional arrival models (e.g., frames, peri-
odic, sporadic, unimodal) are PUAM’s special cases [8].

We describe task execution times using non-negative
random variables—e.g., gamma distributions.

A job’s time constraint is specified using a TUF (jobs
of a task have the same TUF). A task Ti’s TUF is denoted
as Ui(t); thus job Ji, j’s completion at a time t will yield an
utility Ui (t). We focus on non-increasing TUFs, as they
encompass the majority of time constraints in applications
of interest to us (e.g., Figure 1).

Resource Model. Jobs can access non-CPU resources
(e.g., disks, NICs, locks), which are serially reusable and
are subject to mutual exclusion constraints. Similar to re-
source access protocols for fixed-priority algorithms [10]
and for UA algorithms [9], we consider a single-unit re-
source model. Thus, only a single instance of a resource is
present and a job explicitly specifies the desired resource.
The requested time intervals for holding resources may be
nested, overlapped or disjoint. Jobs are assumed to explic-
itly release all granted resources before the end of their ex-
ecution.

Optimality Criteria. We define a statistical timeliness
requirement for tasks. For a task Ti, this is expressed as
〈AUi,APi〉, which means that Ti must accrue at least AUi
percentage of its maximum utility with the probability APi.
This is also the requirement for each job of Ti. For e.g., if
{AUi,APi} = {0.7,0.93}, then Ti must accrue at least 70%
of its maximum utility with a probability no less than 93%.
For a task Ti with a step TUF, AUi is either 0 or 1.

We consider a two-fold optimality criteria: (1) satisfy all
〈AUi,APi〉, if possible, and (2) maximize the sum of utili-
ties accrued by all tasks. The first criterion is binary in the
sense that it is either satisfied or not. The second criterion
demands as much accrued utility as possible. Our algorithm
first tries to satisfy criterion (1).

3. Bandwidth Allocation and Scheduling

For non-increasing TUFs, satisfying a designated AUi re-
quires that the task’s sojourn time is upper bounded by a
“critical time”, CTi. Given a desired utility lower bound

78

AUi, ∀t1 ≤ CTi,Ui(t1) ≥ AUi and ∀t2 > CTi,Ui(t2) < AUi
holds. To bound task sojourn time by CTi, we conduct
a probabilistic feasibility analysis using the processor de-
mand approach [3]. The key to using the processor demand
approach here is allocating a portion of processor band-
width to each task. We first define processor bandwidth:

Definition 3.1. If a task has a processor bandwidth ρ, then
it receives at least ρL processor time during any time inter-
val of length L.

Once a task is allocated a processor bandwidth, the band-
width share can be realized and enforced by a proportional
share (or PS) algorithm (e.g., [11]). A PS algorithm can re-
alize and enforce a desired bandwidth ρi for a task Ti with a
bounded allocation error, called maximal lag, Q, as follows:
Ti will receive at least (ρiL−Q) processor time during any
time interval L. Under a PS scheme, jobs of a task execute
on a “virtual CPU” that is not affected by other task behav-
iors. We focus on bandwidth allocation at an abstract level
— using any PS algorithm with a lag Q — hereafter.

Theorem 3.1. Suppose there are at most k arrivals of a
task T during any time window of length w and all jobs
of T have identical relative critical time D. Then, all job
critical times can be satisfied if the underlying PS algo-
rithm provides T with at least a processor bandwidth of
ρ = max{(C + Q)

/
D,C/w}, where C is the total execution

time of k jobs released by T in a time window of w, and Q
is the maximal lag of the PS algorithm.

Proof. Let Cp(0,L) be the processor demand and Sp(0,L)
be the available processor time for task Ti on a time interval
of [0,L], respectively. The necessary and sufficient condi-
tion for satisfying job critical times is:

Sp(0,L)≥Cp(0,L),∀L > 0 (3.1)

Let ρ be the processor bandwidth allocated to T . Thus,
Sp(0,L) = ρL−Q. Further, the total amount of processor

time demand on [0,L] is Cp(0,L) =
(⌊

(L−D)
/

w
⌋
+1

)
C.

Therefore, Equation 3.1 can be rewritten as:

ρL−Q≥
(⌊

(L−D)
/

w
⌋
+1

)
C,∀L > 0 (3.2)

Since
(
(L−D)

/
w+1

) ≥ (⌊L−D
w

⌋
+1

)
, it is sufficient to

have ρL−Q ≥ (L−D
w +1

)
C,∀L > 0 so that Equation 3.2

is satisfied. This leads to:

ρ≥ C
w

+
1
L

(
C +Q−C

D
w

)
,∀L > 0 (3.3)

It is easy to see that ρ is a monotone of L. For a positive
C + Q−C D

w , the maximal ρ occurs when L = D, which
yields ρ = (C+Q)

/
D. For a negative C+Q−C D

w , the max-
imal ρ occurs when L = ∞. Combining these two cases, the
theorem follows.

For simplicity, we only consider the case ρ≥ (C+Q)
/

D,
which implies D < w. Note that critical sections in a PS
algorithm can be handled by setting Q as the longest criti-
cal section of all tasks. Let Ni be the random variable for
the number of arrivals during a time window wi. Then, the
processor demand of task Ti during a time window wi is
Ci = ∑Ni

j=1 ci, j, where ci, j is the execution time of job Ji, j.
By Theorem 3.1, ρi ≥ (Ci +Q)

/
CTi, where CTi is Ti’s criti-

cal time. To satisfy the assurance probability, we require:

Pr

[
Ni

∑
j=1

ci, j ≤ ρiCTi−Q

]
≥ APi (3.4)

The above condition is the fundamental bandwidth re-
quirement for satisfying a task’s critical time. If Ni = k, the
total processor time demand during a time window becomes
∑k

j=1 ci, j. Therefore, Equation 3.4 can be rewritten as a sum
of conditional probabilities:

∞

∑
k=0

(
pi(k)×Pr

[
k

∑
j=1

ci, j ≤ ρiCTi−Q

])
≥ APi (3.5)

3.1. Bandwidth Solutions

Equation 3.4 can be rewritten as:

1−Pr [Ci ≥ ρiCTi−Q]≥ APi (3.6)

By Markov’s Inequality, Pr[X ≥ t] ≤ E(X)
/

t for any non-
negative random variable. Therefore,1− Pr[Ci ≥ ρiCTi −
Q] ≥ 1−E(Ci)

/
(ρiCTi−Q). If we can determine a ρi so

that 1−E(Ci)
/
(ρiCTi−Q)≥ APi, Pr[Ci ≤ ρiCTi−Q]≥ APi

is also satisfied. This becomes:

ρi ≥ E(Ci)
CTi (1−APi)

+
Q

CTi
(3.7)

Note that Ni in Equation 3.4 is a random variable and fol-
lows a distribution specified by pi(a). By Wald’s Equation,
E(Ci) = E

(
∑Ni

j=1 ci, j

)
= E(ci)E(Ni). Thus,

ρi ≥ E(ci)E(Ni)
CTi (1−APi)

+
Q

CTi
(3.8)

This solution is applicable for any distributions of ci and
Ni, and only requires the average number of arrivals and the
average execution time.

With minimal assumption regarding task arrivals and ex-
ecution times, the solution given by Equation 3.8 may be
pessimistic for some distributions. Thus, an algorithm that
demands and utilizes the information of full distributions
for task arrivals and execution times is also presented in [8].

For job scheduling, [8] presents a scheduling algorithm
called UJSsched that uses the Highest Utility Density

79

First heuristic. UJSsched has the property that if all job
critical times can be satisfied by EDF, then UJSsched is
also able to do so and accrues at least the same utility as
EDF does. Further, if not all job critical times can be satis-
fied, then UJSsched accrues as much utility as possible.

4. Resource Sharing With Locks

Proportional share uses large time quanta to ensure mu-
tual exclusion. This works well for short critical sections.
However, we conjecture that for some cases, a small time
quantum combined with lock-based, resource access proto-
cols may yield lower bandwidth requirement. When time
quanta are smaller than the length of critical sections, pre-
emptions of a task while it is inside a critical section may
happen. Thus, we use locks to ensure mutual exclusion.
With locks, three types of blocking can occur:

Direct Blocking. If a job Ji,m requests a resource R that
is currently held by another job J j,k, we say that job Ji,m is
directly blocked by job J j,k. Job J j,k is called the blocking
job. Because processor bandwidth is allocated on a per task
basis, we also say that task Ti is blocked by task Tj.

Transitive Blocking. If a job Ja is blocked by job Jb
which in turn is blocked by job Jc, we say that job Ja is
transitively blocked by Jc.

Queue Blocking. Let a set of tasks T B =
{Tb1,Tb2, · · · ,Tbk} be simultaneously blocked on a resource
R, held by task To. When To releases R, one of the blocked
tasks, e.g., task Tbm, will acquire R and continue execution.
Thus, another task Tbn will suffer additional blocking due to
Tbm, besides the blocking due to To. We call such an addi-
tional blocking queue blocking, as it is caused by a queue of
blocked tasks. This definition can be expanded to the case
of multiple tasks in T B being granted R before Tbn.

The objective of resource access protocols is to effec-
tively bound or reduce task blocking times. We present
three protocols, called the Bandwidth Inheritance Protocol
(BIP), Resource Level Policy (RLP) and the Early Blocking
Protocol (EBP). BIP speeds up the execution of a blocking
task and thus reduces direct blocking times. It is inspired
by the Priority Inheritance Protocol (PIP) [10] in priority
scheduling. RLP bounds the queue blocking time suffered
by a task. However, BIP and RLP allows transitive blocking
and deadlocks. EBP avoids deadlocks and bounds transitive
blocking times.

Recall that UJSsched [8] is used to resolve competition
among jobs of the same task. Thus, resource blocking can
occur among jobs, which complicates the analysis of the
job scheduling algorithm. Note that assurance requirements
are at the task level. Thus, we simply disallow preemptions
while a job holds a resource. From the perspective of the
virtual processor, UJSsched is invoked when a new job
arrives and when the currently executing job completes.

Transitive blocking and deadlocks can occur only in the
presence of nested critical sections; Lemma 4.1 states this
observation. Thus, BIP and RLP disallow nested sections.

Lemma 4.1. Transitive blocking can occur only in the
presence of nested critical sections. That is, if a job Ja is
transitively blocked by another job Jc, there must be a job
Jb that is currently inside a nested critical section.

Proof. By the definition of transitive blocking, there exists
a job Jb that blocks Ja and is blocked by Jc. Since Ja is
blocked by Jb, Jb must hold a resource, e.g., R1. Further, the
fact that Jb is blocked by Jc implies that Jb requests another
resource, e.g., R2, which is currently held by Jc. Thus, Jb
must be inside a nested critical section.

Besides the property of no transitive blocking, lack of
nested critical sections also prevents deadlocks, since hold-
and-wait — a necessary condition for deadlocks — is disal-
lowed. We now introduce a few notations and assumptions:
• zi, j: jth critical section of task Ti;
• di, j: duration of critical section zi, j on a dedicated pro-

cessor without processor contention;
• Ri, j: resource associated with critical section zi, j;
• d j

i : duration of task Ti’s critical section that accesses
resource Ri;

• zi,k ⊂ zi,m: zi,k is entirely contained in zi,m;
• All critical sections are “properly” nested, i.e., for any

pair of zi,k and zi,m, either zi,k ⊂ zi,m, or zi,m ⊂ zi,k, or
zi,k
T

zi,m = /0;
• All critical sections are guarded by binary semaphores.

5. Bandwidth Inheritance Protocol

BIP’s key idea is to speed up the execution time of a
blocking task T , by transferring all bandwidth of tasks that
are blocked by T . Thus, the blocked tasks loose their band-
width and become stalled. We define BIP as a set of rules:

1. If a task Ti is blocked on a resource R that is currently
held by a task Tj, the processor bandwidth of task Ti is
inherited by task Tj. That is, the processor bandwidth
of task Tj is temporarily increased to ρi + ρ j until Tj
releases resource R. In the meanwhile, the bandwidth
of task Ti becomes zero. Thus, Ti is stalled even if some
jobs of Ti are eligible for execution.

2. Bandwidth inheritance is transitive. That is, if a task
Ta is blocked by Tb which in turn is blocked by task Tc,
then the bandwidth of Ta is also transferred to Tc.

3. Bandwidth inheritance is additive. Suppose a task Ta
holds a resource R, and a set of tasks T B = {Ti,∀i =
1, ...,k} are all blocked on R. Then, the bandwidth of
Ta is increased to ρa +∑k

i=1 ρi.
BIP’s three rules indicate how the bandwidth of blocked

tasks can be transferred to the blocking task for the three

80

types of blocking. By doing so, we reduce the duration of
the blocking task’s critical section. Task bandwidth can be
transferred through dynamic task join and leave operations
— EEVDF [11] allows this while maintaining a constant
lag.

5.1. Blocking Time under BIP

We now upper bound a blocking task’s duration of criti-
cal section. Assume that the blocking task has a total band-
width of ρ, possibly through bandwidth inheritance. Then,
the duration of the critical section is di/ρ. Therefore, the
key to bound the duration is to lower bound the processor
bandwidth allocated to a blocking task. An arbitrarily small
bandwidth essentially yields an unbounded blocking time.

Section 3 presented methods to determine the minimal
bandwidth needed to satisfy task utility bounds, without re-
source blocking. We now establish the relationship between
the bandwidth requirements with and without blocking.

Theorem 5.1. In Theorem 3.1’s task model, if a task is
blocked on resource access, the minimal required band-
width is ρ = (B +C + Q)

/
D, where B is the total blocking

time of jobs of the task during a time window W.

Proof. The proof is similar to that of Theorem 3.1 [8]. To
satisfy job critical times, the available processor time during
any time interval [0,L], excluding the blocking time, should
be greater than or equal to job processor demand:

Sp(0,L)−Q−
(⌊

L−D
W

⌋
+1

)
B≥

(⌊
L−D

W

⌋
+1

)
C,∀L > 0

(5.1)
This leads to:

ρL≥
(⌊

L−D
W

⌋
+1

)
(B+C)−Q,∀L > 0 (5.2)

By the same argument as in the proof of Theorem 3.1, we
have ρ≥ (B+C +Q)

/
D.

Thus, if ρmin
i = (Ci + Q)

/
Di is Ti’s processor band-

width by assuming no resource blocking, it is safe to
use ρmin

i as the lower bound on Ti’s bandwidth even in
the presence of resource blocking. Also, observe that if
Ti is a blocking task, it must inherit the bandwidth of
at least one blocked task. Let T R be the set of tasks
that may be blocked by Ti. Ti’s total bandwidth while
it is inside the critical section (of using resource R) is
at least ρmin

i + min{ρmin
j | j 6= i

V
Tj ∈ T R }. The direct

blocking time caused by Ti is upper bounded by (di +
Q)

/(
ρmin

i +min{ρmin
j | j 6= i,Tj ∈ T R }

)
, where di is the

duration of Ti’s critical section for R. This blocking time
calculation is repeated for all critical sections of a task, and
for all jobs of a task in a time window.

5.2. Bandwidth Allocation under BIP

Let each task Ti access ni resources, denoted Ri, j, j =
1, . . . ,ni. Let dRi, j denote the maximal length of the
critical section for accessing resource Ri, j, and ρmin

Ri, j
de-

note the smallest ρmin among all tasks that may access
Ri, j. Ti’s direct blocking time for accessing Ri, j is BRi, j =

dRi, j

/(
ρmin

Ri, j
+ρmin

i

)
. A job of Ti’s direct blocking time is:

BD =
ni

∑
j=1

BRi, j =
ni

∑
j=1

dRi, j +Q

ρmin
Ri, j

+ρmin
i

, (5.3)

where ni is the number of critical sections of Ti. By The-
orem 5.1, we require that the probability of satisfying task
critical time is at least APi. This leads to:

∞
∑

k=0
pi(k)Pr[B+C +Q≤ ρiCTi]≥ APi ⇒

∞
∑

k=0
pi(k)Pr

[
k

ni
∑
j=1

dRi, j +Q

ρmin
Ri, j

+ρmin
i

+
k
∑
j=1

ci, j +Q≤ ρiCTi

]
≥ APi

(5.4)
For all tasks, we first calculate the minimal bandwidth

requirements without resource blocking, i.e., ρmin
i , using the

techniques in Section 3. The direct blocking time for each
job of Ti, namely BD is then calculated. Observe that the net
effect of resource blocking is an increase in task execution
time. In the case of direct blocking, the execution time of
a job is increased by BD, which has been calculated. Once
the blocking time is calculated, the bandwidth requirement
under BIP can be computed from Equation 5.4. Solutions
in Section 3 can be applied to solve Equation 5.4 for ρi.

6. Resource Level Policy

RLP’s idea is to associate a static numerical value with
each task, called a task’s Resource Level (or RL). A task’s
RL is static in the sense that it is assigned when the task is
created, is maintained intact during the task’s life time, and
is the same for all jobs of the task. By using static RLs, we
aim to produce a predictable order for accessing a shared
resource, in case a queue of tasks are blocked on the same
resource. Thus, queue blocking times can be bounded.

If there are n tasks in a system, the RLs of tasks are in-
tegers from 1 to n. We assume that a larger numeric value
means higher RL. There are different ways for assigning
static RLs. In general, static RLs must be assigned reflect-
ing our objective of maximizing summed utility. Here, we
propose several alternatives for assigning static RLs:
(1) Maximal Height of TUF. For any pair of tasks, if

maxUi > maxU j, then RLi > RL j. maxUi is the max-
imal height of a TUF, i.e., maxU = {Ui(t)|Ii ≤ t ≤ Xi}.
Ii and Xi are the first and last time instances on which

81

Ui(t) is defined. The approach is easy to implement and
works well for step TUFs. However, it ignores task ex-
ecution time information. Further, for non-step TUFs,
the maximal TUF height may be much higher than task
accrued utility.

(2) Pseudo Slope. For a task Ti, this is defined as:
pSlopei = Ui(Ii)/(Xi− Ii). Pseudo Slope seeks to cap-
ture a TUF’s shape, but it ignores task execution times.

(3) Pseudo Utility Density. For a task Ti, this measures the
utility that can be accrued, by average, per unit execu-
tion time: pUDi = Ui(ρmin

i E(ci))
/

ρmin
i E(ci).

Using static RLs, the task with the highest RL will be
granted a resource R if there is a queue of tasks blocked on
R. Thus, when calculating the queue blocking time for task
Ti, we only need to consider tasks with RLs higher than that
of Ti—e.g., if RLi = i, then Ti only suffers queue blocking
due to tasks Tj, j = i+1, ...,n.

1t 2t 3t 4t 5t 6t 7t

T1

T2

T3

T4

Normal execution

Critical section

Resource request

Resource release

Figure 2. An Example of Using Static Re-
source Levels

Unfortunately, this scheme of using static RLs may yield
unbounded queue blocking times for low RL tasks. Figure 2
shows an example. In Figure 2, task T2 is blocked on a
resource request and is later starved.

To overcome the difficulty with static RLs, we introduce
the concept of Effective Resource Level (or ERL). Besides
RL, each task is associated with an ERL, which may in-
crease over time. The idea is to use ERL to prevent a
few high RL tasks from dominating the usage of shared re-
sources. With ERLs, RLP works as follows:

1. If a task is not blocked on any resource, its ERL is the
same as its static RL.

2. Whenever a resource R is released, the ERL’s of all
tasks that are currently blocked on R are increased by
n, where n is the number of tasks in the system.

3. When a resource R becomes free, one of the blocked
tasks with the highest ERL is granted resource access.
If a tie among the highest ERL tasks occurs, the task
with the longest blocking time wins.

4. When a task acquires the resource on which it was
blocked, its ERL returns to its static RL.

Theorem 6.1. Under RLP, a task Tk can be queue blocked
on a resource R for at most (m−2) critical sections, where
m is the number of tasks that may access R.

Proof. Consider a set of tasks T B , including task Tk, that
are blocked on a resource R. Obviously, |T B | ≤ m− 1,
because one task must be holding the resource. At time
instant t0, let R be released by the current blocking task.
Thus Tk’s ERL is increased to RLk +n, which is higher than
RLi,∀i. This high ERL effectively ensures that no tasks that
are blocked on R after t0 can queue block Tk. Therefore,
Tk can only suffer additional queue blocking from existing
blocked tasks, which are at most (m− 3) critical sections.
Note that at t0, one of the tasks from T B namely task Tr, is
granted resource R. Therefore, the number of the remaining
blocked tasks, excluding Tk, is |T B − Tk| − 1 ≤ (m− 3).
The theorem follows by summing up queue blocking times
before and after instant t0, i.e., 1+(m−3) = (m−2).

Theorem6.1 leads to the following corollary:

Corollary 6.2. The ERL of a task Ti is within the range
of [RLi,(m−1)n+RLi], where m is defined in Theorem 6.1
and n is the number of tasks in the system.

Proof. By Theorem 6.1, a task can suffer a queue block-
ing time of at most (m−2) critical sections. In addition, it
suffers one direct blocking. Upon releasing a shared re-
source, these blocking tasks increase the ERL of a task
(m− 2) + 1 = m− 1 times. Since each increase is n, the
ERL of Ti is bounded by (m−1)n+RLi.

Theorem 6.3. Let TR be the set of tasks that may access
resource R. Theorem 6.1’s queue blocking time bound is
tight for any Ti ∈ TR, except the highest RL task in TR.

Proof. Without loss of generality, let TR = {T1,T2, ...,Tm}
and RLi = i. We prove this theorem by showing that there
always exists a resource access pattern so that any task Ti ∈
TR, i < m suffers a queue blocking time of (m− 2) critical
sections. The resource access pattern can be constructed as
follows: Let ti be a time stamp and satisfies ti+1 > ti. Now:
• t0: Task Ti+1 is holding resource R and tasks T B =
{Tk|Tk ∈ TR,k 6= i

V
k 6= i + 1} are blocked on R.

|T B |= (m−2).
• t1: Task Ti+1 releases R. A task in T B , say Tr is

granted resource R. ERL’s of remaining tasks in T B
are increased by n.

• t2: Task Ti+1 requests R and is blocked on R.
• t3: Task Ti requests R and is blocked on R.
Now, at time t3, the ERL of task Ti is lower than those

of all other tasks in the blocked task queue, which includes
(m− 2) tasks. Therefore, Ti will suffer a queue blocking
time of (m−2) critical sections.

We now revisit the example in Figure 2. In Figure 3, we
show the behavior of tasks by using the dynamic resource
level adjustment rules. Note that the numbers on each time-
line of a task indicates the ERL of that task. In this case,

82

1t 2t 3t 4t 5t 6t 7t

T1

T2

T3

T4

Normal execution

Critical section

Resource request

Resource release

4

3

2

1

4

3

2

1 1

6

7

4 4

10

3

4

2

11

10

8

3

14 2

3 7 3

8 4

8t

Figure 3. Dynamic Resource Levels

m = 4. Thus, task queue blocking times should be bounded
by m−2 = 2 critical sections, which is consistent with Fig-
ure 3. Observe that task T2 is queue blocked for exactly two
critical sections (of T3 and T4, respectively). On the other
hand, task T3 suffers one critical section of queue blocking
for its resource requests; task T4 only incurs one critical sec-
tion of queue blocking during its second resource request.

We consider a task Tb, along with a queue of k tasks, that
are blocked by a task Ta. Figure 4 shows this scenario.

k tasksTa Tb

Figure 4. An Example of Queueing Blocking

To determine Tb’s queue blocking time, we examine the
blocking time due to each task in the k− task queue. Ob-
serve that the qith task in the k− task queue executes with
a CPU bandwidth of at least ρmin

qi +
(

∑k
j=i+1 ρmin

q j

)
+ρmin

b =(
∑k

j=i ρmin
q j

)
+ρmin

b due to bandwidth inheritance. Thus, the
total queue blocking time resulting from the k tasks is:

BQ[k] =
k

∑
i=1

dqi +Q(
k
∑
j=i

ρmin
q j

)
+ρmin

b

(6.1)

Let dq = max{dqi|i = 1, ...,m − 2} and ρmin
q =

min{ρmin
q j
| j = 1, ...,m−2}. Then, BQ[k] is bounded by:

Bm
Q[k] =

k

∑
i=1

dq +Q(
k
∑
j=i

ρmin
q

)
+ρmin

b

=
k

∑
i=1

dq +Q
(k− i+1)ρmin

q +ρmin
b

=
k

∑
i=1

dq +Q
iρmin

q +ρmin
b

(6.2)

We need to determine a k such that Bm
Q[k] achieves its

maximal value and thus bounds Tb’s queue blocking time.
We show that the maximal queue blocking time occurs with
maximal number of tasks in the queue, i.e., k = (m−2).

Lemma 6.4. The Bm
Q[k] function defined in Equation 6.2

monotonically increases with k.

Proof. We define two auxiliary functions B−Q [k] and B+
Q [k].

B−Q [k] is the amount of blocking time that may be reduced
if a (k+1)th blocked task is added into the existing k− task
queue. B+

Q [k] is the additional queue blocking time due to

the (k +1)th blocked task. That is, B−Q [k] =
k
∑

i=1

dq+Q
iρmin

q +ρmin
b
−

k
∑

i=1

dq+Q
(i+1)ρmin

q +ρmin
b

and B+
Q [k] = dq+Q

ρmin
q +ρmin

b
= B+

Q .

Now, the relationship between Bm
Q[k + 1] and Bm

Q[k] can
be derived as: Bm

Q[k + 1] = Bm
Q[k] + B+

Q −B−Q [k]. It follows

that: B−Q (k)
/
(dq +Q) =

k
∑

i=1

1
iρmin

q +ρmin
b
−

k
∑

i=1

1
(i+1)ρmin

q +ρmin
b

=
k
∑

i=1

(
1

iρmin
q +ρmin

b
− 1

(i+1)ρmin
q +ρmin

b

)

= 1
ρmin

q +ρmin
b
− 1

2ρmin
q +ρmin

b
+ 1

2ρmin
q +ρmin

b
− 1

3ρmin
q +ρmin

b
+

· · ·+ 1
kρmin

q +ρmin
b
− 1

(k+1)ρmin
q +ρmin

b

= 1
ρmin

q +ρmin
b
− 1

(k+1)ρmin
q +ρmin

b

= 1
ρmin

q +ρmin
b

kρmin
q

(k+1)ρmin
q +ρmin

b

= 1
ρmin

q +ρmin
b

kρmin
q

kρmin
q +ρmin

q +ρmin
b

< 1
ρmin

q +ρmin
b

= B+
Q

/
(dq +Q)

Therefore, Bm
Q[k +1] = Bm

Q[k]+B+
Q −B−Q [k] > Bm

Q[k].

By Lemma 6.4, a task Ti’s queue blocking time is BQ =
∑ni

j=1 Bm
Q j

[m j−2], where Bm
Q j

[m j−2] is the maximal queue
blocking time for accessing resource Ri, j. Now,

Bm
Q j

[m j−2] =
m j−2

∑
l=1

(
(dq j +Q)

/(
lρmin

q j +ρmin
i

))
(6.3)

Using a technique similar to that in Equation 5.4, the band-
width requirement under RLP is:

∞

∑
k=0

pi(k)Pr[BD +BQ +C +Q≤ ρiCTi]≥ APi

⇒
∞

∑
k=0

pi(k)Pr
[
k

ni

∑
j=1

dRi, j +Q

ρmin
Ri, j

+ρmin
i

+

k
ni

∑
j=1

Bm
Q j

(m j−2)+
k

∑
j=1

ci, j +Q≤ ρiCTi
]≥ APi (6.4)

7. The Early Blocking Protocol

We design EBP to deal with nested critical sections.
Nested sections may create deadlocks and transitive block-
ing. EBP’s basic idea is to block an “unsafe” resource re-
quest even if the requested resource is free. An unsafe re-
source request is one that may cause deadlocks. Meanwhile,
a safe request is granted. [2, 10] uses a similar scheme.

83

Let a task T invoke nest req res(R′,RV) to enter a nested
critical section. In their order of access, RV , called a “re-
source vector,” is a list of resources that T may access while
it is inside nested critical sections. R′ is RV ’s first element.

For single-unit resources, a deadlock occurs if and only
if there is a cycle in the resource graph. A cycle can only
be formed by at least two tasks inside nested critical sec-
tions. Further, there must be at least one resource R that is
requested by one task Ti and which is held by another task
Tj, both of which are inside nested critical sections—i.e.,
the resource vectors of Ti and Tj overlap. Thus, EBP com-
pares the resource vector of a requesting task with those of
the existing tasks. If any resource vectors overlap, there is a
deadlock possibility, and the requesting task is blocked.

We formulate EBP as follows: Let a task T invoke
nest req res(R′,RV).

1. If R′ is held by another task, then T is blocked.
2. If R′ is free, then nest req res(R′,RV) may or may not

be granted, per the following:
(a) Let Tnest be the set of tasks that are currently in-

side nested sections. For any task Ti ∈ Tnest , let
RVi be Ti’s current resource vector.

(b) If for any task Ti ∈ Tnest , RV
T

RVi = /0, then
nest req res(R′,RV) is granted; the request is
blocked otherwise.

3. When a task exits a nested critical section, RLP checks
if granting any pending nest req res(R′,RV) is safe.
If more than one pending nest req res(R′,RV) is safe,
then RLP is invoked.

We now establish that EBP is deadlock-free and can
bound transitive blocking times.

Lemma 7.1. Under EBP, for any pair of tasks that are cur-
rently inside nested critical sections, their resource vectors
do not have common elements.

Proof. Let tasks T1 and T2 enter nested critical sections at
instants t1 < t2, respectively. If RV1

T
RV2 6= /0, then T2 can-

not enter its nested section. Thus, the resource vectors of T1
and T2 do not have common elements.

Lemma 7.1 leads to Theorem 7.2 and Corollary 7.3:

Theorem 7.2. EBP avoids deadlock.

Corollary 7.3. Under EBP, if a task T1 is blocked by a task
T2 while T1 is inside nested critical sections, then T2 is not
inside nested critical sections.

Proof. Suppose T2 is inside nested critical sections. If T1 is
blocked by T2, then T1 needs a resource R that is currently
held by T2. Thus, R is a common element in T1 and T2’s
resource vectors. This violates Lemma 7.1.

Theorem 7.4. Under EBP, a chain of transitive blocking
includes three tasks.

Proof. We use Ti → Ri to denote that task Ti needs resource
Ri. Similarly, Ri → Ti means that resource Ri is currently
held by task Ti. Thus, a chain of transitive blocking has the
form T1 → R1 → T2 → R2 → T3 → . . .→ Tn. Since there is a
chain of transitive blocking, n≥ 3. It is easy to see that any
task Ti, i 6= 1

V
i 6= n must be inside nested critical sections.

By Corollary 7.3, if T2 is inside nested critical sections, T3
cannot be inside nested critical sections. Therefore, T3 must
be at the end of the chain. Thus, n = 3.

Theorem 7.5. Let a task T requests resource Ri. Let
Ti, j be the set of tasks that have a resource vector RV =
{. . . ,Ri, . . . ,R j, . . .} and let T j be the set of tasks that may
access resource R j. T ’s transitive blocking time for Ri

is bounded by (dmax + Q)
/

(ρmin + ρmin
Ri, j

+ ρmin
R j

). ρmin is

T ’s minimal bandwidth, dmax = max{d j
k |Tk ∈ T j}, ρmin

Ri, j
=

min{ρmin
k |Tk ∈ Ti, j}, and ρmin

R j
= min{ρmin

k |Tk ∈ T j}.

Rj

Ri

Rj

Ri

T1

T2

T3

1t 2t 3t 4t

Figure 5. Illustration of Transitive Blocking

Proof. Consider a chain of transitive blocking as in Fig-
ure 5. Task T1 is transitively blocked by task T3 when it
requests resource Ri. By Theorem 7.4, the scenario illus-
trated in Figure 5 is the only possible scenario.

Further, task T3 has a bandwidth of at least ρmin
1 +ρmin

2 +
ρmin

3 due to bandwidth inheritance. We consider the worst
case where the most pessimistic bounds are assumed. That
is, ρmin

2 = ρmin
Ri, j

= min{ρmin
k |Tk ∈ Ti, j} and ρmin

3 = ρmin
R j

=
min{ρmin

k |Tk ∈ T j}. The theorem follows.

8. Lock-Based versus Lock-Free

As discussed earlier, our conjecture is that for some
cases, our lock-based, resource access protocols may work
well. For other cases, the lock-free scheme—i.e., setting
quantum size as the longest critical section in the system [1],
may perform better. We now explore the conditions under
which resource access protocols may be beneficial, and the
reverse conditions as well.

The discussion focuses on two aspects: (1) bandwidth
requirement for a given task; and (2) feasibility of a task
set. Given a set of n tasks and their allocated bandwidth,

84

if ∑n
i=1 ρi ≤ 1, we say that the task set is feasible for the

particular bandwidth allocation. Otherwise, the task set is
said infeasible for the particular allocation.

We first introduce some notations:
• ρp

i : bandwidth requirement of task Ti under lock-based
resource access protocols;

• ρnp
i : bandwidth requirement of task Ti under the lock-

free scheme (also called non-preemptive scheme as
there will be at most one preemption while a task tries
to access a resource [1]);

• Qp: quantum size under the lock-based resource ac-
cess protocols

• Qnp: quantum size under the lock-free scheme.

Lemma 8.1. Suppose Qnp equals to the length of a critical
section of task Tm (accessing resource Rm). If a task Ti may
be blocked on Rm, then ρp

i > ρnp
i .

Proof. Let dR = Qnp be the length of the critical section. If
task Ti may be blocked on R, it suffers at least one direct
blocking due to access to R. The direct blocking time is
calculated as:

BD = k
ni

∑
j=1

dRi, j +Qp

ρmin
Ri, j

+ρmin
i

≥ dR +Qp

ρmin
R +ρmin

i
≥ dR +Qp > dR

(8.1)
The total blocking time is B = BD + BQ + BT ≥ BD > dR.
Given the total execution time of C during a time window,
we have:

B+C +QP > dR +C +Qp = Qnp +C +Qp > Qnp +C
(8.2)

Recall that the fundamental bandwidth requirement under
resource access protocols is:

∞

∑
k=0

pi(k)Pr
[
Bk +Ck +Qp ≤ ρp

i CTi
]≥ APi (8.3)

and under the lock-free scheme is:

∞

∑
k=0

pi(k)Pr
[
Ck +Qnp ≤ ρnp

i CTi
]≥ APi (8.4)

where Ck is the sum of k job execution times, Bk is the total
blocking time of k jobs. Since Ck +Qnp < Bk +Ck +Qp,∀k,
ρnp

i < ρp
i .

Lemma 8.2. Suppose Qnp equals to the length of a critical
section of task Tm (accessing resource Rm). If a task Ti may
not be blocked on Rm, then ρp

i can be smaller than ρnp
i .

Proof. We prove this lemma by considering an extreme
case where resource Rm is only accessed by task Tm and
another task Tk. All other tasks in the system do not use
any shared resources. For any task that does not use any

shared resource, its blocking time is zero. Further, Qp can
be smaller than Qnp. Therefore,

B+C +Qp = C +Qp < C +Qnp (8.5)

If that is the case, ρp
i is smaller than ρnp

i .

Theorem 8.3. If a task set is feasible under the lock-free
scheme, it can be infeasible under resource access proto-
cols, and vice versa.

Proof. We prove this theorem by examples.
1. A task set is feasible under the lock-free scheme, but

infeasible using resource access protocols.
Suppose all tasks access a single resource R in a system.

By Lemma 8.1, ρnp
i < ρp

i ,∀i = 1, ...,n. Thus,

n

∑
i=1

ρnp
i <

n

∑
i=1

ρp
i (8.6)

Also assume
n
∑

i=1
ρnp

i = 1 for this particular task set. Then,
n
∑

i=1
ρp

i > 1, and hence the task set if infeasible under re-

source access protocols.
2. A task set is feasible under resource access protocols,

but infeasible under the lock-free scheme.
Consider a system where only two tasks, T1 and T2 need

to access a resource R. Other tasks do not need to access
any shared resources. Let:

Up =
n
∑

i=1
ρp

i = (ρp
1 +ρp

2)+
n
∑

i=3
ρp

i

Unp =
n
∑

i=1
ρnp

i = (ρnp
1 +ρnp

2)+
n
∑

i=3
ρnp

i

(8.7)

By Lemma 8.1, ρnp
i < ρp

i , i = 1,2. However, if ρp
1 + ρp

2 is
small enough, we have:

Up ≈
n
∑

i=3
ρp

i

Unp ≈
n
∑

i=3
ρnp

i

(8.8)

By Lemma 8.2, ρp
i < ρnp

i , i = 3, ...,n. Therefore, Up < Unp.
If Up = 1 for this particular task set, then the task set if
infeasible under the lock-free scheme.

Through Lemmas 8.1 and 8.2 and Theorem 8.3, we
demonstrate that neither the lock-free scheme, nor the re-
source access protocols are always better than the other.
Specifically, if only a small number of tasks share a few re-
sources, then using resource access protocols is beneficial.
If resources are shared by most of the tasks in the system,
then the lock-free scheme is more suitable in terms of band-
width requirement.

85

Another hybrid case is that tasks can be partitioned into
logical groups. Tasks in each logic group closely interact
with each other and share resources. In addition, resource
sharing across group boundaries is rare. For example, in
a networked computer, device drivers may share the pro-
tocol input/output queues with the network protocol stack.
On the contrary, a word processor is very unlikely to ac-
cess the protocol queues. For this hybrid case, if the critical
sections in a logic group are considerably longer than those
in other groups, resource access protocols may still help to
reduce bandwidth requirement. If all critical sections are
on the same magnitude, little can be gained by using re-
source access protocols. Resource access protocols may
even adversely affect system performance, because smaller
time quanta result in higher overhead.

9. Conclusions

We present three UA resource access protocols. The pro-
tocols consider activities that are subject to TUF time con-
straints, and mutual exclusion constraints on sharing non-
CPU resources. We consider the timeliness objective of
probabilistically satisfying lower bounds on the utility ac-
crued by each activity, and maximizing the total accrued
utility. The protocols allocate CPU bandwidth to activities
to satisfy utility lower bounds, while activity instances are
scheduled to maximize total utility. We analytically estab-
lish the conditions under which utility bounds are satisfied.

The protocols presented here have been folded into a tim-
ing analysis software tool, in corporation with an industrial
vendor. The tool is currently being used in US DoD pro-
grams. Future work includes studying the sensitivity of the
protocols to the accuracy of the required scheduling param-
eters, and extending them to multiprocessors.

References

[1] J. H. Anderson, R. Jain, and K. Jeffay. Efficient object shar-
ing in quantum-based real-time systems. In IEEE RTSS,
pages 346–355, December 1998.

[2] T. P. Baker. Stack-based scheduling of real-time processes.
Real-Time Systems, 3(1):67–99, March 1991.

[3] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms
and complexity concerning the preemptive scheduling of pe-
riodic, real-time tasks on one processor. Real-Time Systems,
2(4):301–324, Nov. 1990.

[4] R. Clark, E. D. Jensen, A. Kanevsky, J. Maurer, et al. An
adaptive, distributed airborne tracking system. In IEEE WP-
DRTS, pages 353–362, April 1999.

[5] R. K. Clark, E. D. Jensen, and N. F. Rouquette. Software
organization to facilitate dynamic processor scheduling. In
IEEE WPDRTS, April 2004.

[6] GlobalSecurity.org. Multi-platform radar technology inser-
tion program. http://www.globalsecurity.org.

[7] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven
scheduling model for real-time systems. In IEEE RTSS,
pages 112–122, December 1985.

[8] P. Li, B. Ravindran, and E. D. Jensen. Utility accrual
real-time scheduling with probabilistically assured timeli-
ness performance. In PARTES Workshop, ACM EMSOFT,
Sept. 2004.

[9] B. Ravindran, E. D. Jensen, and P. Li. On recent advances in
time/utility function real-time scheduling and resource man-
agement. In IEEE ISORC, pages 55 – 60, May 2005.

[10] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Trans. Computers, 39(9):1175–1185, Sept. 1990.

[11] I. Stoica, H. A.-Wahab, K. Jeffay, et al. A proportional share
resource allocation algorithm for real-time, time-shared sys-
tems. In IEEE RTSS, pages 288–299, December 1996.

86

Improvement of QoD and QoS in RTDBSs∗Emna Bouazizi, Claude Duvallet and Bruno SadegLIH, Université du Havre, 25 rue Philippe LebonBP 540, F-76058 LE HAVRE Cedex{Emna.Bouazizi,Claude.Duvallet,Bruno.Sadeg}�univ-lehavre.frAbstratIn urrent researh toward the design ofmore powerful behavior of RTDBS under un-preditable workloads, di�erent researh groupsfous their work on QoS (Quality of Servie)guarantee. Their researh is often based onfeedbak ontrol real-time sheduling theory.However, due to the high servie demand, andeven with guarantee, some transations maymiss their deadlines. In this paper, we pro-pose a tehnique whih allows to exeute trans-ations on time using fresh and preise datawhile taking into aount the global size of thedatabase. We have extended the feedbak-basedmiss ratio ontrol by both using multi-versionsdata, and proposing a data management poliyombining (1) limitation of the versions num-ber and (2) dynami adjustment of this limitaording to a maximum database size para-meter. Simulation results have shown that theproposed approah suessfully provides tightmiss ratio guarantees and hight quality of datafreshness.1 IntrodutionIn previous years, a lot of work has beendone on RTDBSs [12℄[13℄, whih are systemsdesigned to manage appliations where it isdesirable to exeute transations timely usingfresh and preise data [1℄. Sine the work-load in this systems is unpreditable, the sys-tem may beome quikly overloaded, leadingto the derease of the well-known RTDBS per-formane riterion: the number of transationsthat omplete before their deadlines.To support these appliations, some teh-niques based on Quality of Servie (QoS) guar-antee have been proposed to ontrol the tran-sient overshoot. They are often based on
∗Real-Time Database Systems

feedbak ontrol real-time sheduling theory[10℄[11℄. Up to now, the major drawbak isthat in ase of on�its between transations,some transations are bloked, or aborted andrestarted. This may lead transations to missdeadlines. To address this problem, we haveextended the feedbak-based miss ratio on-trol by using a multi-versions data arhite-ture. This limits data aess on�its betweentransations, enhaning then the onurrenyand limits the deadline miss ratio.The main objetive of our approah is tomaximize the number of transations whihmeet their deadlines. In addition, our workaims to support a ertain freshness for the dataaessed by time-onstrained transations un-der a ondition: the �xed maximum size of thedatabase. To this purpose, we merge two previ-ously approahes proposed in [6℄ and [7℄. In thenew mixed approah, the number of versions isdynamially adjusted, but does not have to ex-eed a threshold whih onsists in a maximumdata versions number, and also does not haveto exeed a �xed threshold whih onsists inthe maximum database size.The remaining of the paper is organizedas follows. Setion 2 desribes the real-timedatabase model. In Setion 3, our proposedmodel is desribed. Some simulation resultsare given and ommented in Setion 4. In Se-tion 5, we onlude the paper and give someperspetives.2 Real-Time Database modelWe onsider �rm RTDBS model, in whihlate transations are aborted beause they areuseless after their deadline, and we onsider amain memory database model.This work on QoS guarantees is guided bythe following premises:1. Transations are exeuted aording to
87

their priority and they are lassi�ed intotwo ategories: update transations anduser transations (see setion 2.2).2. We keep di�erent versions for eah dataitem. These versions are dynamially ad-justed by verifying the data freshness andonsidering the Data Error (DE). Data Er-ror is omputed by omparing the dataversion stored in the database with theorresponding value of the data in the realworld. DE must respet an upper boundgiven by the Maximum Data Error (MDE)[2℄. In our real-time database, validity in-tervals are used to maintain the temporalonsisteny between the real world and thesensor data stored in the database [12℄. Adata version di is onsidered temporallyinonsistent (not fresh or stale) if the ur-rent time is later than the timestamp of
di followed by its absolute validity inter-val (denoted AV Ii), i.e CurrentT ime >

T imestampi + AV Ii (see setion 2.3).
2.1 Data modelData objets are lassi�ed into either real-time or non real-time data. A non real-timedata is a lassial data found in onventionaldatabases, whereas a real-time data has a va-lidity interval beyond whih it beomes useless.These data may hange ontinuously to re�etthe real world state (for example, the urrenttemperature value). Eah real-time data hasa timestamp indiating the last observation ofthe real world state. In our model, we onsideronly real-time data.Many versions of a real-time data item maybe stored in the database and the number ofversions onsidered may be either �xed or dy-namially adjusted. To store a version, datafreshness and the MDE parameters are takeninto aount.
2.2 Transaction modelTransations are lassi�ed into two lasses:update transations and user transations. Up-date transations are used to update the valuesof real-time data in order to re�et the state ofreal world. Update transations are exeutedperiodially and have only to write sensor data.User transations, representing user requests,arrive aperiodially and may read real-timedata, and read or write non real-time data.

2.3 Performance metricsThree main performane metris are on-sidered: MissRatio (MR), DataFreshness(DF), and DataError (DE) [3℄.1. MissRatio: the transations miss ratio isde�ned as follows:
MR = 100×

#Late

#Terminated
(%) (1)where #Late denotes the number of trans-ations that have missed their deadline,and #Terminated is the number of ter-minated transations.2. DataFreshness: in RTDBS, data an be-ome outdated. To measure the freshnessof a data item di in an RTDB, the no-tion of absolute validity interval (AVI) isused. A data version is related to a times-tamp indiating the latest observation ofthis data item in the real world. di is on-sidered temporally onsistent (or fresh)if (CurrentT ime − T imestamp(di) 6

AV I(di)). The database freshness analso be measured. It represents the ratiobetween fresh data and all the data in thedatabase.3. DataError: it represents the deviationbetween the urrent data value (CV(di))and the updated value (UV(di)) when di

6= 0. The upper bound of the error isgiven by the maximum data error (de-noted MDE). DE of data version di is de-�ned as:
DEi = 100×

CV (di)− UV (di)

CV (di)
(%) (2)We note that the quality of data (QoD) de-pends on its freshness and on DE, whereas thequality of transation (QoT) depends on theMiss Ratio.3 Multi-Versions Data-FeedbakControl Sheduling Arhite-ture

3.1 IntroductionIt is well known that feedbak ontrol is verye�etive in management of QoS in RTDBS, un-der unpreditable workloads [4℄. The goal is toontrol the system performanes, de�ned by aset of ontrolled variables in order to satisfy a
88

Monitor

U
Unew

Source1

Sourcem

....

User Transactions

Stream1

Streamm

....

Update Transactions
Transaction Handler

FM CC BS

Admission
Controller

Precision
Controller

MDE

Miss Percentage
MDE

Abort/Restart/Preempt

Dispatched

Ready Queue

Block Queue

Miss Percentage

QoD
Manager

Controllers
Miss Ratio/Utilization

Freshness

CPU Utilization

Blocked

Figure 1. A Feedback Control Scheduling Architecture (FCSA) [2].given QoS spei�ation. The general outlineof the feedbak ontrol sheduling arhitetureis given in Figure 1. An RTDBS onsists ofseveral omponents. In our study, the ompo-nent we are interested in are: the admissionontroller, the ready queue, the bloked queue,and the transation handler.For the QoS management, a monitor, a missratio ontroller, an utilization ontroller anda QoD manager are added to the system inorder to adjust its performanes and to on-trol the information �ows. An Admission Con-troller (AC) is used to avoid system overloadby rejeting some user transations. Transa-tions handler provides a platform for managingtransations. It onsists of a Conurreny Con-troller (CC), a Freshness Manager (FM) and abasi sheduler (BS). Transations are shed-uled by a Basi Sheduler in the ready queueusing, for example, the EDF sheduling pol-iy [9℄. The FM heks the freshness beforea transation aesses a data item. It bloks auser transation if the target data item is stale.Based on the two phase loking protool, theCC ensures the onurrent transations serial-izability. In ase of on�it between transa-tions, when a higher priority transation usesthe data item, transations with lower prioritywill be bloked. At eah sampling period, themonitor samples the system performane datafrom the transation manager and sends themto the ontroller. The miss ratio and utiliza-tion ontroller generates signals based on thesampled miss ratio and utilization data.Feedbak ontrol has been proven to be verye�etive in supporting a required performanespei�ation [3℄.The base of our work are the artiles ofAmirijoo et al. [2℄[5℄. We have extended the

FCS arhiteture by exploiting several versionsof real-time data, and then proposed the Multi-Versions Data-Feedbak Control Sheduling(MVD-FCS) approah [6℄[7℄. In this setion,we present a new approah whih enhanesMVD-FCSA depited in Figure 2 where thesolid arrows represent the transation �ows andthe dotted arrows represent the real-time data�ows.
3.2 Motivation for MVD-FCSAIn RTDBS, an update transation alwayswrites a real-time data item while a user trans-ation reads real-time data items. In general,only update transations modify the real-timedata. Most on�it ases ome from inompati-ble aess patterns when an update transationwants to modify a data item that is aessedby user transations. One of these transa-tions must be aborted and restarted aord-ing to the used onurreny ontrol protool.Furthermore, when the aessed data item arestale, the FM bloks the user transation. Thisinreases the risk that transations miss theirdeadline. MVD notion is used to alleviate thisrisk. When an update transation wants tomodify a real-time data, a new data version isreated. We onsider all data values that or-respond to di�erent versions of the same dataitem.To summarize, in the FCSA, two ations areonsidered important for improving the MVD-FCSA servie:
• In ase of on�it between transations,when a higher priority transation uses thedata item, transations with lower prioritywill be bloked.

89

Transactions
Real−Time Data

Scheduler

Ready Queue Transactions

Deadline
Controller

Aborted

Freshness
Manager

V1,1

V1,2

V1,3

V2,1

V2,2

V2,3

Vn,1

Vn,2

Vn,3

Transactions
Handler

Blocked Transactions

Real−Time Data Manager

Sending

Restart /

Abort /
Suspend

MDE

Real−Time Data Access

Executing

Data−1 Data−2 Data−n

....

....

....

Transactions

Completed

Concurrency
Controller

Figure 2. Multi-Version Data - Feedback Control Scheduling Architecture.

• FM bloks user transations if the aededdata are stale.To enhane this protool and to minimizethe transation miss ratio, we have proposedthe MVD-FCSA, whih onsists of the reationof data versions as soon as on�its (read-write) our between transations. This ap-proah limits the data aess on�its betweentransations, and then enhanes the onur-reny. When an update transation wants tomodify a real-time data, a new data version isreated.
3.3 MVD-FCSA componentsThe majority of MVD-FCSA omponentsexist in the lassial feedbak ontrol shedul-ing arhiteture [2℄, but they are adapted asfollows.3.3.1 Real-time transations ShedulerTransations are sheduled aording to theirpriority. The priority of a transation dependson both its deadline and its type (update oruser transation). Hene, we merge EDF pol-iy with respet to transation type and prior-ity. A lower priority transation an be shed-uled if there are no ready transations withhigher priority to shedule.3.3.2 Deadline ControllerTo ontrol transation validity [9℄[8℄, the Dead-line Controller (denoted DC) uses three on-trolled variables: transation deadline, urrenttime and minimal exeution time. If the ur-rent time is greater than transation deadline,the transation will be aborted. Otherwise, DC

makes a seond test, where a transation is a-epted only if the sum of its minimal exeutiontime and the urrent time is lower than trans-ation deadline. Otherwise the transation willbe aborted. If the two veri�ations steps su-eed, then the transation is transferred to thedata Freshness Manager (FM).3.3.3 Freshness ManagerThe Freshness Manager heks if transationsissued from the deadline ontroller aess freshdata. Freshness Manager (FM) is used to pro-vide better QoS in RTDBS where several trans-ations aess to the same fresh data. It heksthe freshness of aeded data just before atransation ommits. This way, the data a-essed by ommitted transations are alwaysfresh at ommit time. If the aessed data isfresh, transations an be exeuted and thensent to the transations handler. Otherwise, ifthe aessed data item is urrently stale or ifits validity is estimated to be expired before thedeadline of the transation, then FM bloks theuser transation. The bloked transation willbe transferred from the bloked queue to theready queue as soon as the orresponding up-date has ommitted. In our arhiteture, theFM heks the freshness of aessed data, i.e.,AVI is not reahed and data remains fresh untilthe end of the transation exeution. There-fore, we verify that AVI of aessed data isgreater than the transation deadline. To thispurpose, we use MVD. So, the freshness ondi-tion must be onsidered by heking the fresh-ness of the most reent data version that is notwrite-loked by other transation(s).
90

3.3.4 Real-Time Data ManagerThe main objetive of this omponent is toguarantee the data freshness and to enhanethe deadline miss ratio even in the presene ofon�its and unpreditable workloads.To ahieve this goals, in [7℄ we have useda MVD with a �xed number of data versions.This number is �xed in advane by the DBAaording to QoS requirement level, and itis the same for eah real-time data. In [6℄,we have enhaned this approah by allowingthe dynami adjustment of the version num-ber. For eah data, we have a version queue.The queue is ontinuously updated in order tolimit the number of data versions by supress-ing/adding versions, based on both the datafreshness and MDE riterion. The size of eahversion queue, denoted SVQ, is dynamiallyadjusted aording to the following formula:
SV Qi,j = ⌊

AV Ij

Periodi

⌋ (3)where Periodi is the period of transactioni,and AV Ij is the absolute validity interval of dj .RTDBSs usually monitor the urrent real-world state using periodi updates. In thispaper, we investigate several important prob-lems to guarantee the desirable quality of real-time data servies in terms of timeliness, fresh-ness, preision, the dereasing of transationmiss deadline and the database size onstraint.In a reent paper [6℄, we have shown thatMVD-FCSA is a good solution to alleviatethe risk that transations miss their dead-lines ompared to the lassial feedbak ontrolsheduling approahes. However, in [6℄ the pro-posed approah does not take into aount thedatabase size.In this paper, we have extended the lastapproah (MVD-FCSA with dynamially ad-justed number of data versions) by takinginto aount the database size onstraint. Wemerge the two approahes desribed in [7℄ and[6℄, i.e. the number of data versions is dynami-ally adjusted and does not have to exeed the�xed threshold representing the number of dataversions, and we have onsidered in the sametime a threshold representing the database size.In this new approah, a data item will be a-essed only if its version number is lower thanthe maximum database size. This way, RTDBsize onstraints are respeted. The respet ofthe threshold of the RTDB size is a pratialfator for RTDBS spei�ation.

3.3.5 Conurreny Control with MVDOne of the most important issues in the designof RTDBS is the onurreny ontrol ompo-nent. Its objetives are (i) to ontrol the inter-ation between onurrently transations and(ii) to maintain the database onsisteny. Inthis paper, we fous on the interation betweenupdate and user transations.The database onsisteny an be maintainedusing onurreny ontrol protools. We use2PL-HP (Two Phase Loking-High PriorityProtool) where lower priority transations willbe bloked or aborted if a higher priority trans-ation aesses a data item. Otherwise, thetransation is aborted and restarted. Conse-quently, the 2PL-HP may inrease the exeu-tion time of transations. This leads transa-tions to miss their deadlines. To address thisproblem, i.e. to alleviate this risk, we propose(1) the MVD tehnique that allows user trans-ations to not wait for the last version if datais urrent updating, and (2) an adapted 2PL-HP when the maximum number of versionsis reahed. The priority is applied on trans-ations group that aessed to the same dataversion [6℄. The priority of transations grouporresponds to the highest transation priorityamong all transations in this group.4 Simulations and results
4.1 SimulationsWe have studied and evaluated the behaviorof an RTDBS aording to a set of performanemetris. The performane evaluation is under-taken by a set of simulation experiments, wherea set of parameters have been varied. Table 1summarizes these parameters.The simulated workload onsists of updateand user transations. Update transationsoupy approximately 50% of the workload.The period of update transation (Periodi)is uniformly distributed and estimated exe-ution time is given by: ExecutionT imei =
NbOfOperationi × OpExecT ime, where
NbOfOperationi and the OpExecT ime rep-resent respetively the number of operationsin the transation Ti and the exeution timeof an operation.The model onsists of eight omponents.We have used two transation generators: anupdate transation generator (UpdateTrans-Gen) whih generates update transations andan user transation generator (UserTransGen)

91

Parameter Meaning Value
NbOfOperations Number of opera-tions in an usertransation [1, 5℄
OpExecT ime Exeution time ofan operation 1s
Periodi Periodiity of up-date transation [1000ms,5000ms℄

Table 1. Parameters of Simulation.whih generates user transations. The work-load model haraterizes transation in termsof the number of read/write operations. Up-date transations an only write one data.Transations are sheduled by a sheduler(Sheduler) in ready queue aording to theirpriority. The priority assignment formulais given by P(Ti)= 1/deadline (Ti). Dead-line ontroller (DC) uses three ontrolled vari-ables: transation deadline (deadline), ur-rent time (StartTime) and minimal exeu-tion time (ExeutionTime). The deadline for-mula is alulated as follows: deadline(Ti) =
StartT ime+ExecutionT ime×(1+SlakT ime)where SlakT ime is a onstant that providesontrol over tightness/slakness of transationdeadlines. To hek the freshness of aesseddata, the freshness manager uses the AVI pa-rameter. Transations handler ontrols theexeution of transations. Conurreny on-troller use the adapted 2PL-HP protool toontrol the interation between transations[6℄. The real-time data management (RTDM)is the most important omponent of our model.In the sets of experiments, we have varied thedatabase size and the maximum number ofdata versions for eah data item. The databasesize represents the number of versions.
4.2 ResultsSine in our approah we have only ex-tended the transations �ows of the lassialFCSA, the performane metri in our experi-ments is the suess ratio. The graphial re-sults show the miss ratio of transations whenusing MVD-FCSA. We have evaluated the be-havior of the system by varying a set of param-eters:1. The threshold of data versions number2. The threshold of database size3. The number of transations

4.2.1 Experiment 1: Results of MVD-FCSAAs shown in Figure 3, when we use the lassi-al FCSA (with one version), the MVD-FCSAwith two versions and the MVD-FCSA withfour versions, the resulting suess ratio in-reases as soon as the number of versions in-reases.
 0

 20

 40

 60

 80

 100

 20 40 60 80 100

S
uc

ce
ss

 r
at

io
Number of update transactions

One data version
Two versions
Four versions
Number of versions dynamically adjusted(a) For update transations

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

S
uc

ce
ss

 r
at

io

Number of user transactions

One data version
Two versions
Four versions
Number of versions dynamically adjusted(b) For user transations

Figure 3. Simulation results for the
MVD-FCSA.Compared to the e�et of using MVD-FCSAwith a �xed number of versions, using MVD-FCSA with dynamially adjusted number ofdata versions shows a relatively high suessratio, as shown in Figure 3.4.2.2 Experiment 2: Varying thethreshold of database size usingthe mixed approah of MVD-FCSAWe use our mixed approah (dynami adjust-ment of data versions with maximum �xed

92

number). In Figure 4, we have �xed a thresholdof data versions number (equal to 4 versions)and we have varied the database size (500, 750,1000). In Figure 5, we have also varied thedatabase size, while the threshold of data ver-sions number is equal to 6.Figures 4 et 5 show the e�et of varyingthe database size. The resulting suess ra-tio inreases aording to the inrease of thedatabase size.
 0

 20

 40

 60

 80

 100

 20 40 60 80 100

S
uc

ce
ss

 r
at

io

Number of update transactions

Threshold of Database = 500
Threshold of Database = 750
Threshold of Database = 1000(a) Update transations

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

S
uc

ce
ss

 r
at

io

Number of user transactions

Threshold of Database = 500
Threshold of Database = 750
Threshold of Database = 1000(b) For user transations

Figure 4. Simulation results when us-
ing the mixed approach of MVD-FCSA
(maximum number of versions = 4)
and varying the threshold of database
size.

4.2.3 Experiment 3: Varying thethreshold of data versions num-berWe have also used the mixed approah ofMVD-FCSA. We have �xed the database sizeand we have varied the threshold of data ver-sions number. Compared to the e�et of usinga maximum of six versions, the use of four ver-

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

S
uc

ce
ss

 r
at

io

Number of update transactions

Thresold of database = 500
Thresold of database = 750
Thresold of database = 1000(a) For update transations

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

S
uc

ce
ss

 r
at

io

Number of user transactions

Threshold of Database = 500
Threshold of Database = 750
Threshold of Database = 1000(b) For user transations

Figure 5. Simulation results when us-
ing the mixed approach of MVD-FCSA
(maximum number of versions = 6)
and varying the threshold of database
size.sions shows a relatively high suess ratio, asshown in Figures 6 and 7. This may be ex-plained by the omplexity of the versions man-agement.

4.3 Summary of results and discussionsWe have ompared the system perfor-manes, in terms of miss ratio, by varying thedatabase size and by varying the maximumnumber of data versions. All experiments sim-ulation show that:1. MVD-FCSA minimizes transationsmiss deadline (ompared to the lassialFCSA).2. Generaly, the suess ratio inreases a-ording to the inrease of the number ofversions.
93

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

S
uc

ce
ss

 r
at

io

Number of update transactions

Four versions
Six versions(a) For update transations

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

S
uc

ce
ss

 r
at

io

Number of user transactions

Four versions
Six versions(b) For user transations

Figure 6. Simulation results of using
the mixed approach of MVD-FCSA:
varying the number of versions and
the threshold of database size 500.3. The suess ratio inreases aording tothe inrease of the database size.4. When the size of the database is �xed, theperformanes are not enhaned beyond aertain threshold whih represents a max-imum number of versions for eah data.5 Conlusion and future workIn this paper, we have presented the multi-versions data-feedbak ontrol sheduling ar-hiteture for quality of servie management.We have used multi-versions data with dynami-ally adjusted number of versions while takinginto aount the RTDB size onstraint. Thisimprovement onsists in minimizing the num-ber of on�its by minimizing the number ofaborted transations when using an adapted2PL-HP onurreny ontrol protool.Simulation results show that MVD-FCSA

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

S
uc

ce
ss

 r
at

io

Number of update transactions

Four versions
Six versions(a) For update transations

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

S
uc

ce
ss

 r
at

io

Number of user transactions

Four versions
Six versions(b) For user transations

Figure 7. Simulation results of using
the mixed approach of MVD-FCSA:
varying the number of versions and
the threshold of database size 1000.with dynamially adjusted number of data ver-sions may be applied e�iently in RTDBS, i.emore transations meet their deadlines. Wenote that the respet of the threshold of theRTDB size might be a pratial fator for RT-DBS spei�ation.We plan to extend this work in several ways.We will take into aount the data importane.Indeed, in ase of a small threshold of theRTDB size, all data beyond the threshold valueare not aessed whatever their importane.The importane of the data item may be mod-eled by assigning to eah data item a weightaording to its importane. Further, we alsoplan to extend our work to manage deriveddata and to onsider other aspets to studydi�erent omponents of the feedbak ontrolsheduling arhiteture for quality of serviemanagement in RTDBS. Among them, we willdeal with impreise omputing [2℄, applied tovideo ontents.

94

Referenes[1℄ R. Abbott and H. Garia-Molina.Sheduling Real-Time Transations: APerformane Evaluation. InternationalJournal of Distributed and ParallelDatabases, 1(2), 1988.[2℄ M. Amirijoo, J. Hansson, and S. H. Son.Algorithms for Managing Real-time DataServies Using Impreise Computation. InProeedings of International Confereneon Real-Time and Embedded ComputingSystems and Appliations (RTCSA), Tai-wan, 2003.[3℄ M. Amirijoo, J. Hansson, and S. H. Son.Error-Driven QoS Management in Impre-ise Real-Time Databases. In Proeedingsof 15th Euromiro Conferene on Real-Time Systems (ECRTS), Portugal, 2003.[4℄ M. Amirijoo, J. Hansson, and S. H.Son. Spei�ation and Management ofQoS in Impreise Real-Time Databases.In Proeedings of International DatabaseEngineering and Appliations Symposium(IDEAS), Hong Kong, 2003.[5℄ M. Amirijoo, J. Hansson, and S. H. Son.Spei�ation and Management of QoSin Real-Time Databases Supporting Im-preise Computations. IEEE Transa-tion Knowledge and Data Engineering,55(3):304�319, Marh 2006.[6℄ E. Bouazizi, C. Duvallet, and B. Sadeg.Management of QoS and Data Freshnessin RTDBSs using Feedbak ControlSheduling and Data Versions. In
8th IEEE International Symposium onObjet-oriented Real-time distributedComputing (IEEE-ISORC'05), Washing-ton, 2005.[7℄ E. Bouazizi, C. Duvallet, and B. Sadeg.Using Feedbak Control Sheduling andData Versions to enhane Quality of Datain RTDBSs. In IEEE International Com-puter System and Information Tehnology(ICSIT'2005), Alger, Algerie, 2005.[8℄ C.S. Date. An Introdution to DatabaseSystems. Addison-Wesley, 1985.[9℄ C. Liu and J. Leyland. Sheduling Al-gorithms for Multiprogramming in HardReal-Time Environment. Journal of theACM, 20(1):46�61, 1973.

[10℄ C. Lu. Feedbak Control Real-TimeSheduling. PhD thesis, University of Vir-ginia, May 2001.[11℄ C. Lu, J.A. Stankovih, G. Tao, andS.H. Son. Feedbak Control Real-Time Sheduling: Framework, Model-ing and Algorithms. Real-Time Systems,23(1/2):85�126, 2002.[12℄ K. Ramamritham. Real-Time Databases.Journal of Distributed and ParallelDatabases, 1(2):199�226, 1993.[13℄ K. Ramamritham, S.H. Son, and L.C.DiPippo. Real-Time Databases and DataServies. Real-Time Systems, 28:179�215,2004.

95

96

Multiprocessor Scheduling

97

The Partitioned Multiprocessor Scheduling of Non-preemptive Sporadic Task
Systems∗

Nathan Fisher Sanjoy Baruah
The University of North Carolina at Chapel Hill

Abstract

We consider polynomial-time algorithms for partitioning
a collection of non-preemptive or restricted-preemption tasks
among the processors of an identical multiprocessor platform.
Since the problem of partitioning tasks among processors (even
with unlimited preemption) is NP-hard in the strong sense, these
algorithms are unlikely to be optimal. For task systems where the
ratio between the largest execution time and the smallest relative
deadline is small, we provide a sufficient condition for feasibility.
The application of this algorithm to preemptive quantum-based
systems is also discussed. For all other task systems, we experi-
mentally evaluate different variants of our heuristic over sets of
randomly generated tasks.

1 Introduction

In many real-time systems, completea priori knowl-
edge of job release times is either impractical or impos-
sible. Thesporadic task model[16] provides a charac-
terization of real-time computation of such task systems
by allowing time between the release of successive jobs
of a task to vary. For a sporadic taskτi, aminimum inter-
arrival separationparameter (historically called thepe-
riod) describes the minimum time interval between suc-
cessive jobs of a task. A collection of jobs generated by
the sporadic task system is calledlegal if the minimum
inter-arrival separation is respected for each task. Arel-
ative deadlineparameter identifies the time interval from
a job’s release time to its absolute deadline during which
execution of the job must complete. A collection of spo-
radic tasks is called asporadic task system.

The advantage of preemptive scheduling on uniproces-
sors has been known since Lui and Layland [14] showed
that total utilization of a uniprocessor is achievable under
preemptiveEDF scheduling. In preemptive scheduling, a
job may be halted before the completion of its execution
and resumed at a later time. However, in many systems,
preemption is impractical or undesirable due to the high
overhead involved in context switching between different
tasks. Innon-preemptive scheduling, once a job begins

∗This research has been supported in part by the National Sci-
ence Foundation (Grant Nos. ITR-0082866, CCR-0204312, and CCR-
0309825).

execution it executes continuously on the processor until
its completion. Non-preemptive scheduling for these sys-
tems can reduce scheduling overhead, and have the fol-
lowing additional benefits [12]: elimination of the need
for complex resource sharing protocols for resources or
critical sections that are local to a processor; reduction in
the implementation complexity of scheduling protocols;
and estimates of worst-case execution time for tasks may
be more accurate in the non-preemptive model.

In addition to pure non-preemptive tasks, it is
sometimes useful to model both preemptive and non-
preemptive behavior in the same system. The
restricted-preemption modelallows tasks to execute non-
preemptively in short intervals, and be preempted in-
between the non-preemptive intervals. Each task speci-
fies anon-preemption parameterwhich indicates the max-
imum length of time a task may non-preemptively exe-
cute. Notice that a non-preemptive system can be rep-
resented in the restricted preemption model by setting the
non-preemption parameter for each task equal to its execu-
tion requirement. A preemptive system can be represented
by setting the non-preemption parameter for each task to
zero. The restricted-preemption model is also useful for
characterizing the behavior ofquantum-basedscheduling
systems.

An important endeavor in real-time scheduling theory
is determining whether a task system isfeasibleon a given
processing platform. A task system is feasible if there
exists, for each legal collection of job releases, a sched-
ule on the processing platform in which no task misses a
deadline. For non-preemptive and restricted-preemption
systems, a more restrictive notion of feasibility can be de-
fined: feasibility without inserted idle times (IIT). A task
system is feasible without IIT if there exists a schedule for
every legal collection of jobs in which a processor is never
idle while there are jobs awaiting execution. A scheduling
algorithm isoptimal in this model if it can schedule every
task system that is feasible without IIT.
Uniprocessor Scheduling.The non-preemptive real-time
scheduling of sporadic tasks has been studied extensively
for uniprocessor platforms. For sporadic task systems
where each task’s relative deadline is equal to its period,
Jeffay et al. [12] proved that the non-preemptiveEar-
liest Deadline Firstalgorithm (EDF) [14] is optimal on
uniprocessors with respect to scheduling without IIT, and

99

they provided necessary and sufficient conditions forEDF-
schedulability. Non-preemptiveEDF schedules at each
idle instant the job with the nearest deadline (from the set
of jobs awaiting execution). George et al. removed the
restriction on a task’s relative deadline, showed thatEDF

is optimal without IIT [10], and provided modified neces-
sary and sufficient conditions forEDF-schedulability [11].
Researchers have also focused different techniques and
models [2, 9, 6] for limiting preemptions in an attempt to
obtain the benefits of both preemptive and non-preemptive
scheduling.
Multiprocessor Scheduling. For the multiprocessor
scheduling of non-preemptive and restricted-preemption
sporadic tasks, two alternative paradigms exist:global
and partitioned scheduling. For restricted-preemption
and non-preemptive global scheduling, a job executing a
non-preemptive code section will execute continuously on
the same processor; a job executing a preemptive code-
section can be halted and can resume execution on a dif-
ferent processor. For non-preemptive partitioned schedul-
ing, a task is assigned to a processor, and all jobs of the
task are always executed on that processor.

Non-preemptive and restricted-preemption multipro-
cessor scheduling of sporadic tasks has received much
less attention. Baruah [5] considered the non-preemptive
global scheduling of periodic and sporadic tasks on an
identical multiprocessor platform. To the best of our
knowledge, there has been no work done on the parti-
tioned scheduling of non-preemptive sporadic task sys-
tems.
This research. We consider the non-preemptive and
restricted-preemption multiprocessor scheduling of spo-
radic task systems under the partitioned paradigm. Since
partitioning tasks among processors reduces the multipro-
cessor scheduling algorithm to a series of uniprocessor
scheduling problems (one to each processor), the optimal-
ity (without IIT) of non-preemptiveEDF [12, 10] makes
EDF a reasonable algorithm to use as the run-time sched-
uler on each processor. Therefore, we henceforth make
the assumption that each processor, and the tasks assigned
to it by the partitioning algorithm, are scheduled during
runtime according to non-preemptiveEDF and focus on
the partitioning algorithm.

Recently, Albers and Slomka [1] developed a fully
polynomial-time approximation scheme for determining
the feasibility of preemptive sporadic task systems on a
uniprocessor. Their results also extend to non-preemptive
sporadic task systems. In [7], we non-trivially applied the
results of Albers and Slomka to obtain a polynomial-time
partitioning algorithm for preemptive sporadic task sys-
tems. In this paper, we extend and generalize the results
in [7] to be applicable for non-preemptive and restricted-
preemption systems. To address some of the drawbacks
of the simple restricted-preemption partitioning algorithm
that we derive, we also consider a family of heuristics
which we evaluate experimentally.
Organization. In Section 2, we present background

on the non-preemptive and restricted-preemption sporadic
task model. We also discuss uniprocessor feasibility tests
for restricted-preemption sporadic tasks. In Section 3,
we design a simple algorithm for partitioning restricted-
preemption systems, and evaluate this algorithm theoret-
ically. The application of this algorithm to preemptive
quantum-based systems is explored as well. In Section 4,
we consider some more pragmatic heuristics for partition-
ing and evaluate their performance empirically. In Sec-
tion 5, we draw together the conclusions of this paper.

2 Task and machine model

A restricted-preemption sporadic task[6] τi =
(ei, qi, di, pi,) is characterized by aworst-case execution
requirementei, a non-preemption parameterqi, a (rela-
tive) deadlinedi, and aminimum inter-arrival separation
pi. In general, a restricted-preemption sporadic task is
subject to the trivial constraints thatqi ≤ ei, ei ≤ pi, and
ei ≤ di. Theutilization of taskτi represents the amount
computational capacity required byτi on a single proces-
sor and is denoted byui

def= ei/pi. The non-preemption
parameterqi specifies the maximum length of time at
which τi may execute non-preemptively on a single pro-
cessor. Observe that this parameter specifies only the in-
terval length during whichτi executes non-preemptively,
not the start and end times of the non-preemptive interval.
In our model,τi may execute non-preemptively for up to
qi time units starting at any point in time, and may do
so arbitrarily often (subject to the constraints of the other
task parameters). We may model a pure non-preemptive
sporadic task by settingqi = ei.

We will assume that we are given a multiproces-
sor Π comprised of m identical processors,Π =
{π1, π2, . . . , πm}. Let τ be a system ofn restricted-
preemption sporadic tasks whereτ = {τ1, τ2, . . . , τn}
andτi = (ei, di, pi, qi) for all i, 1 ≤ i ≤ n.

We may categorize sporadic task systems based on
the relationship between the values ofpi anddi for each
τi ∈ τ . For the purposes of this paper, we consider three
subclasses based on this relationship:

• Implicit-deadline : Each sporadic taskτi ∈ τ satisfies the
constraint thatdi = pi.

• Constrained: Each sporadic taskτi ∈ τ satisfies the con-
straint thatdi ≤ pi.

• Arbitrary : There is no restriction placed on the relation-
ship betweendi andpi.

2.1 The Demand-Bound Function
For any sporadic taskτi and any real numbert ≥ 0, the

demand bound functionDBF(τi, t) is the largest cumula-
tive execution requirement of all jobs that can be gener-
ated byτi to have both their arrival times and their dead-
lines within a contiguous interval of lengtht. It has been
shown [8] that the cumulative execution requirement of
jobs ofτi over an interval[to, to + t) is maximized if one
job arrives at the start of the interval – i.e., at time-instant

100

to – and subsequent jobs arrive as rapidly as permitted —
i.e., at instantsto + pi, to +2pi, to +3pi, . . . Equation (1)
below follows directly [8]:

DBF(τi, t)
def
= max

(
0,

(⌊
t− di

pi

⌋
+ 1

)
× ei

)
(1)

Albers and Slomka [1] have proposed a technique for
approximatingthe DBF; the following approximation to
DBF is obtained by applying their technique:

DBF∗(τi, t) =
{

0, if t < di

ei + ui × (t− di), otherwise
(2)

As stated earlier, it has been shown that the cumula-
tive execution requirement of jobs ofτi over an interval is
maximized if one job arrives at the start of the interval, and
subsequent jobs arrive as rapidly as permitted. Intuitively,
approximationDBF∗ (Equation 2 above) models this job-
arrival sequence by requiring that the first job’s deadline
be met explicitly by being assignedei units of execution
between its arrival-time and its deadline, and thatτi be as-
signedui×∆ t of execution over time-interval[t, t+∆ t),
for all instantst after the deadline of the first job, and for
arbitrarily small positive∆ t.

Observe that the following inequalities hold for allτi

and for allt ≥ 0:

DBF(τi, t) ≤ DBF∗(τi, t) < 2 · DBF(τi, t) . (3)

2.2 Uniprocessor Feasibility
It has been shown [12] that the response time of a task

τi (i.e. the time from a job’s release to its completion)
is maximized in the following scenario: Letτk (k > i)
be the task with the largest non-preemptive execution re-
quirement. The worst-case sequence is if a job ofτk is re-
leased just prior to the release of a job ofτi, and all other
tasksτj (j 6= i, k) release jobs simultaneously withτi;
in addition, successive jobs ofτj are released as soon as
legally possible. Any feasibility test for non-preemptive
sporadic systems must determine whether a deadline miss
will occur in this scenario. The feasibility test we use for
non-preemptive and restricted-preemptions uniprocessor
systems is from [6]:

Theorem 1 (from [6]) A restricted-preemption sporadic
task systemτ = {τ1, . . . , τn} is feasible (without IIT) if
and only if

∀t : 0 ≤ t :
n∑

i=1

DBF(τi, t) ≤ t, (4)

and for all τj = (ej , qj , dj , pj) where1 ≤ j ≤ n

∀t : 0 ≤ t ≤ dj : qj +
n∑

i=1
i 6=j

DBF(τi, t) ≤ t (5)

Throughout the remainder of this paper, we will
adopt the convention that “feasibility” is with respect to
restricted-preemption model without IIT.

3 A Partitioning Algorithm

Given a system of sporadic tasks, the problem of deter-
mining whether it is possible for the task system to always
satisfy all timing constraints is calledfeasibility-analysis.
In this paper, we are interested in partitioned feasibility-
analysis. Even for implicit-deadline sporadic task sys-
tems under the preemptive model, partitioned feasibility-
analysis is NP-hard in the strong sense (by transforma-
tion from the bin-packing problem [13]). Unfortunately,
the complexity results extend to partitioned feasibility-
analysis of all restricted-preemption (or non-preemptive)
sporadic task systems.

For the preemptive model, several bin-packing heuris-
tics have been studied [15]. Typically, each of the bin-
packing heuristics adheres to the following pattern:

1. Tasks of the task system are sorted by some criteria.

2. Tasks are assigned (in order) to a processor upon which
they “fit” according to a sufficient (and sometimes neces-
sary) condition.

In Section 3.1, we describe such a partitioning al-
gorithm. Section 3.2 derives sufficient conditions for
schedulability of a restricted-preemption task system us-
ing this algorithm. The algorithm and the derivation of the
sufficient conditions generalizes work done for partition-
ing of preemptive sporadic task systems in [7]. Section 3.3
describes an application of this algorithm for preemptive
quantum-based scheduling.

3.1 Algorithm NP-PARTITION

We now describe a simple partitioning algorithm
called NP-PARTITION. Given a restricted-preemption
sporadic task systemτ comprised ofn sporadic tasks
τ1, τ2, . . . , τn, and a processing platformΠ com-
prised of m unit-capacity processorsπ1, π2, . . . , πm,
NP-PARTITION will attempt to partitionτ among the pro-
cessors ofΠ. TheNP-PARTITION algorithm is a variant
of a bin-packing heuristic known asfirst-fit-decreasing.
For this section, we will assume the tasks ofτi are indexed
in non-decreasing order of their relative deadline (i.e.
di ≤ di+1, for 1 ≤ i < n). Let qmax(τ) def= maxn

i=1{qi}
denote the maximum non-preemption parameter of any
task inτ .

The NP-PARTITION algorithm considers the tasks
in increasing index order (i.e. τ1, τ2, . . .). We will
now describe how to assign taskτi assuming that tasks
τ1, τ2, . . . , τi−1 have already successfully been allocated
among them processors. Letτ(π`) denote the set of tasks
already assigned to processorπ` where1 ≤ ` ≤ m. Con-
sidering the processorsπ1, π2, . . . , πm in any order, we
will assign taskτi to the first processorπk, 1 ≤ k ≤ m,
that satisfies the following two conditions:

di −

∑

τj∈τ(πk)

DBF∗(τj , di)

 ≥ ei + qmax(τ) (6)

101

and
1−

∑

τj∈τ(πk)

uj

 ≥ ui ; (7)

If no suchπk exists, then AlgorithmNP-PARTITION re-
turnsPARTITIONING FAILED: it is unable to conclude that
sporadic task systemτ is feasible upon them-processor
platform. Otherwise,NP-PARTITION returnsPARTITION-
ING SUCCEEDED.

If τ is a constrained, sporadic task system, then it suf-
fices to check only Equation 6:

Lemma 1 For constrained sporadic task systems, any
τi and πk satisfying Equation 6 during execution of the
NP-PARTITION algorithm will also satisfy Equation 7

Proof: Observe that for any constrained taskτi, Equa-
tion 2 implies that for allt ≥ di,

DBF∗(τi, t) = ui × (t + pi − di) ≥ ui × t.

Hence, Equation 6

≡
(
di −

∑
τj∈τ(πk) DBF∗(τj , di) ≥ ei + qmax(τ)

)

⇒ di −
∑

τj∈τ(πk)(uj × di) ≥ ei + qmax(τ)

⇒ 1−∑
τj∈τ(πk) uj ≥ ei

di
+ qmax(τ)

di

⇒ 1−∑
τj∈τ(πk) uj ≥ ui + qmax(τ)

di
(8)

The last inequality implies Equation 7.
We must now show that by assigning taskτi to pro-

cessorπk we have not adversely affected the feasibility
of tasksτ1, τ2, . . . , τi−1 previously assigned to the pro-
cessors. The next lemma shows that the system remains
EDF-feasible if we assign tasks according to Equations 6
and 7.

Lemma 2 If the tasks previously assigned to
each processor wereEDF-feasible (with respect to
restricted-preemption) on that processor and Algorithm
NP-PARTITION assigns taskτi to processorπk, then the
tasks assigned to each processor (including processorπk)
remainEDF-feasible on that processor.

Proof: Observe that assigningτi to processorπk does
not affect the tasks previously assigned to other proces-
sors. Therefore, we focus our attention only onπk, and
show that ifτ(πk) wasEDF-feasible prior to the addition
of τi, and Equation 6 and 7 are satisfied, thenτ(πk)∪{τi}
remainsEDF-feasible after the addition ofτi.

For the sake of contradiction, assume thatτ(πk) andτi

satisfies Equation 6 and 7 ofNP-PARTITION, but thatEDF

misses a deadline when scheduling the tasksτ(πk)∪{τi}
on processorπk. Let tf be the time that processorπk

misses a deadline. Observe thattf > di sinceτ(πk) is
EDF-feasible before the addition ofτi.

By Theorem 1, either

DBF(τi, tf) +
∑

τj∈τ(πk)

DBF(τj , tf) > tf (9)

or there existsτ` ∈ τ(πk) ∪ {τi} such that

q` +
∑

τj∈τ(πk)∪{τi}
j 6=`

DBF(τj , tf) > tf . (10)

We will show that if either Equation 9 or 10 is true,
then a contradiction is reached. Assume that Equation 9
is true. Then, sinceDBF∗ is an upper bound onDBF,

DBF∗(τi, tf) +
∑

τj∈τ(πk)

DBF∗(τj , tf) > tf (11)

Since tasks are considered in order of non-decreasing
relative deadline, it must be the case that all tasksτj ∈
τ(πk) havedj ≤ di. We therefore have, for eachτj ∈
τ(πk),

DBF∗(τj , tf) = ej + uj(tf − dj) (By definition)

= ej + uj(di − dj) + uj(tf − di)
= DBF∗(τj , di) + uj(tf − di) (12)

Furthermore,

DBF
∗(τi, tf) +

∑

τj∈τ(πk)

DBF
∗(τj , tf)

≡ (ei + ui(tf − di)) + (By Equation 12 above)
 ∑

τj∈τ(πk)

DBF
∗(τj , di) + uj(tf − di)

≡

ei +

∑

τj∈τ(πk)

DBF
∗(τj , di)

+(tf − di)

ui +

∑

τj∈τ(πk)

uj

Consequently, Inequality 11 above can be rewritten as
follows:

ei +
∑

τj∈τ(πk)

DBF∗(τj , di)

 +

(tf − di)

ui +

∑

τj∈τ(πk)

uj

 > (tf − di) + di (13)

However by Condition 6, (ei +∑
τj∈τ(πk) DBF∗(τj , di)) ≤ di − qmax(τ) ≤ di);

Inequality 13 therefore implies

(tf − di)

ui +

∑

τj∈τ(πk)

uj

 > (tf − di)

which in turn implies that

(ui +
∑

τj∈τ(πk)

uj) > 1

102

which contradicts Condition 7.
Now, assume that Equation 10 is true. Similar to Equa-

tion 11, we obtain

qmax(τ) +
∑

τj∈τ(πk)∪{τi}
j 6=`

DBF∗(τj , tf) > tf . (14)

Following similar logical steps of Equations 12
through 13, we would obtain from Equation 14:

(ui +
∑

τj∈τ(πk)∪{τi}
j 6=`

uj) > 1.

which also contradicts Equation 7.
Since both Equations 9 and 10 lead to a contradiction,

our supposition that processorπk missed a deadline at
time tf is false. Thus,τ(πk) ∪ {τi} will always meet all
deadlines on processorπk.

The correctness of AlgorithmNP-PARTITION follows,
by repeated applications of Lemma 2:

Theorem 2 If Algorithm NP-PARTITION returnsPARTI-
TIONING SUCCEEDEDon task systemτ , then the resulting
partitioning isEDF-feasible.

Run-time complexity. In attempting to map taskτi, ob-
serve that AlgorithmNP-PARTITION essentially evalu-
ates, in Equations 6 and 7, the workload generated by the
previously-mapped(i − 1) tasks on each of them pro-
cessors. SinceDBF∗(τj , t) can be evaluated in constant
time (see Equation 2), a straightforward computation of
this workload would requireO(i + m) time. Hence the
runtime of the algorithm in mapping alln tasks is no more
than

∑n
i=1O(i + m), which isO(n2) under the reason-

able assumption thatm ≤ n.

3.2 Theoretical Evaluation
In this section, we derive a set of sufficient conditions

for the success ofNP-PARTITION. In particular, for each
subclass of restricted-preemption sporadic tasks we derive
a different sufficient condition: Theorem 3 corresponds
to implicit-deadline systems, Theorem 4 for constrained
systems, and Theorem 5 for arbitrary systems.

Given a task systemτ , the following notation and ter-
minology will be useful for our analysis.

dmin(τ)
def
= minn

i=1{di}
ρ(τ)

def
= qmax(τ)/dmin(τ) (max. blocking ratio)

umax(τ)
def
= maxn

i=1{ui} (max. utilization)

usum(τ)
def
=

∑n
i=1 ui (system utilization)

δi
def
= ei/di (task load ratio)

δmax(τ)
def
= maxn

i=1{δi} (max. load ratio)

δsum(τ)
def
= maxt>0

(∑n
i=1 DBF(τi,t)

t

)
(system load)

The following lemma describes subcases where either
Equation 6 or 7 is trivially satisfied. The corollary imme-
diately following shows that certain combination of sub-
cases imply thatτ is trivially restricted-preemption feasi-
ble on a single processor. The lemma and corollary will

be useful in proving the main results of Theorems 3, 4,
and 5.

Lemma 3 Given a restricted-preemption sporadic task
systemτ and an m unit-capacity processor systemΠ,
NP-PARTITION has the following properties:

P1: If usum(τ) ≤ 1, Equation 7 is always satisfied.

P2: If δsum(τ) ≤ 1−ρ(τ)
2 , then Equation 6 is always sat-

isfied.

P3: Let τ be an implicit-deadline system. If
usum(τ) ≤ 1 − ρ(τ), then both Equations 6
and 7 are always satisfied.

Proof: P1 is trivially true, since violating Equation 7
requires that(ui +

∑
τj∈τ(πk) uj) exceed 1.

To see P2, observe thatδsum(τ) ≤ 1−ρ(τ)
2 implies that∑

τj∈τ DBF(τj , t0) ≤ t0(1−ρ(τ))
2 for all t0 ≥ 0. By In-

equality 3, this in turn implies that
∑
τj∈τ

DBF∗(τj , t0) ≤ t0(1− ρ(τ)) (15)

for all t0 ≥ 0; specifically at t0 = di when eval-
uating Equation 6 forτi. Evaluating Equation 15 at
t0 = di implies thatei +

∑i−1
j=1 DBF∗(τj , di) ≤ di −

qmax(τ). Since τ(πk) ⊆ {τ1, τ2, . . . , τi−1} when at-
tempting to addτi to processorπk in NP-PARTITION,
ei+

∑
τj∈τ(πk) DBF∗(τj , di) ≤ di−qmax(τ). This implies

Equation 6.
To see P3, observe that

usum(τ) ≤ 1− ρ(τ) (16)

trivially implies Equation 7. It remains to show that Equa-
tion 6 is satisfied. In an implicit-deadline system, it fol-
lows from Equation 2 thatDBF∗ can be rewritten as:

DBF∗(τi, t) =
{

0, if t < di

uit, otherwise
(17)

By multiplying both sides of Equation 16 bydi, we
obtain

∑n
j=1 ujdi ≤ di − qmax(τ)

⇒ ei +
∑n

j=1
j 6=i

ujdi ≤ di − qmax(τ)

⇒ ei +
∑n

j=1
j 6=i

DBF∗(τj , di) ≤ di − qmax(τ)

⇒ ei +
∑i−1

j=1 DBF∗(τj , di) ≤ di − qmax(τ).

Sinceτ(πk) ⊆ {τ1, τ2, . . . , τi−1} when attempting to add
τi to processorπk in NP-PARTITION, the last inequality
implies Equation 6.

Corollary 1

1. Any restricted-preemption spo-
radic task system τ satisfying
(usum(τ) ≤ 1

∧
δsum(τ) ≤ 1−ρ(τ)

2) is success-
fully partitioned on any number of processors≥ 1
by NP-PARTITION.

103

2. Any constrained, restricted-preemption
sporadic task system τ satisfying
(δsum(τ) ≤ 1−ρ(τ)

2) is successfully partitioned on
any number of processors≥ 1 by NP-PARTITION.

3. Any implicit-deadline, restricted-preemption spo-
radic task systemτ satisfying(usum(τ) ≤ 1−ρ(τ)) is
successfully partitioned on any number of processors
≥ 1 by NP-PARTITION.

Proof: Part 1 and 3 follow directly from Lemma 3, Equa-
tions 6 and 7 ofNP-PARTITION will always evaluate to
“true.”

Part 2 follows directly from Lemmas 3 and 1. By
Lemma 1, we need only determine that Equation 6 is sat-
isfied. By Property P2 of Lemma 3, this is ensured by
havingδsum(τ) ≤ 1−ρ(τ)

2 .

We are now prepared to prove sufficient conditions
for NP-PARTITION successfully partitioning an implicit-
deadline, restricted-preemption sporadic task system.

Theorem 3 Any implicit-deadline, restricted-preemption
sporadic task systemτ where ρ(τ) < 1 − usum(τ) is
successfully scheduled byNP-PARTITION on m unit-
capacity processors, for any

m ≥ usum(τ)− umax(τ)
1− ρ(τ)− umax(τ)

(18)

Proof Sketch: The proof is by contradiction. Assume
that Equation 18 is true, butNP-PARTITION fails to par-
tition τ . Then there exists a taskτi ∈ τ such that when
attempting to addτi to each processorπk ∈ Π, either
Equation 6 or 7 is violated. Corollary 1 implies for each
πk ∈ Π

usum(τ(πk) ∪ {τi}) > 1− ρ(τ) (19)

because otherwise when attempting to assignτi to proces-
sorπk, NP-PARTITION would be able to “fit”τ(πk) and
τi on the same processor.

Summing Inequality 19 over allπk ∈ Π, and noting
that the tasks on these processors is a subset ofτ , we ob-
tain

usum(τ) + (m− 1)ui > m(1− ρ(τ))
⇒ m(1− ρ(τ)− ui) < usum(τ)− ui

⇒ m < usum(τ)−ui

1−ρ(τ)−ui

Observe thatusum(τ) > 1 − ρ(τ); otherwise,τ would
be trivially feasible according to Corollary 1. Therefore,
the left-hand side of the above inequality is maximized
whenui is as large as possible. This implies,

m <
usum(τ)− umax(τ)
1− ρ(τ)− umax(τ)

which contradicts our assumption, thereby proving the
lemma.

In the next lemmas, we describe the necessary condi-
tions for algorithmNP-PARTITION failing to assignτi to
a processor inΠ. If τi was not assigned to a processor then
either Equation 6 or 7 evaluated to false for eachπk ∈ Π.
Lemma 4 quantifies the maximum number of processors
for which Equation 6 is false; Lemma 5 quantifies the
maximum number of processors for which Equation 7 is
false.

Lemma 4 Let m1 denote the number of processors,0 ≤
m1 ≤ m, on which Equation 6 fails when the partitioning
algorithm is attempting to mapτi. Assuming thatρ(τ) <
1− δi,it must be the case that

m1 <
2δsum(τ)− δi

1− ρ(τ)− δi
(20)

Proof: LetΠ1 be the set ofm1 processor for which Equa-
tion 6 evaluates to false when attempting to add taskτi.
Then, for eachπk ∈ Π1,

∑

τj∈τ(πk)

DBF∗(τj , di) > di − ei − qmax(τ)

Summing over all πk ∈ Π1, and noting that⋃
πk∈Π1

τ(πk) ⊆ τ , we obtain

n∑

j=1

DBF∗(τj , di) > (di − ei − qmax(τ))m1 + ei

⇒ (by Inequality 3)

2
∑n

j=1 DBF(τj , di) > (di − ei − qmax(τ))m1 + ei

⇒
∑n

j=1 DBF(τj ,di)

di
> m1

2
(1− δi − qmax(τ)

di
) + ei

2di
(21)

By definition ofδsum(τ)
∑n

j=1 DBF(τj , di)
di

≤ δsum(τ). (22)

Chaining Inequalities 21 and 22, and observing that
ρ(τ) ≥ qmax(τ)

di
, we obtain

m1
2 (1− δi − ρ(τ)) + ei

2di
< δsum(τ)

⇒ m1 < 2δsum(τ)−δi

1−ρ(τ)−δi

which is claimed by the lemma.

Lemma 5 Let m2 denote the number of processors,0 ≤
m2 ≤ m, on which Equation 7 fails when the partitioning
algorithm is attempting to mapτi. It must be the case that

m2 <
usum(τ)− ui

1− ui
(23)

Proof: LetΠ2 be the set ofm2 processor for which Equa-
tion 7 evaluates to false when attempting to add taskτi.
Then, for eachπk ∈ Π2,

1− ui <
∑

τj∈τ(πk)

uj

104

Summing over all πk ∈ Π2, and noting that⋃
πk∈Π2

τ(πk) ⊆ τ , we obtain

(1− ui)m2 + ui <
∑n

j=1 uj

⇒ m2 < usum(τ)−ui

1−ui

which is asserted by the lemma.
We are now prepared to prove sufficient conditions for

success ofNP-PARTITION on constrained and arbitrary
task systems.

Theorem 4 Any constrained, restricted-preemption spo-
radic task systemτ whereρ(τ) < 1− δmax(τ) is success-
fully scheduled byNP-PARTITION on m unit-capacity
processors, for any

m ≥ 2δsum(τ)− δmax(τ)
1− ρ(τ)− δmax(τ)

(24)

Proof: The proof is by contradiction. Assume that task
systemτ and platformΠ satisfy Inequality 24, but that
NP-PARTITION fails to assign some taskτi ∈ τ to any
processor. By Lemma 1, it must be the case that Equa-
tion 6 fails for taskτi on each of them processors (i.e.
m equalsm1 from Lemma 4). Consequently, Lemma 4
implies

m <
2δsum(τ)− δi

1− ρ(τ)− δi

By the second part of Corollary 1,δsum(τ) > 1−ρ(τ)
2 ; oth-

erwise,τ can trivially be partitioned byNP-PARTITION.
In this case, the right-hand side of the above inequality is
maximized whenδi is as large as possible. Thus,

m <
2δsum(τ)− δmax(τ)
1− ρ(τ)− δmax(τ)

which contradicts Inequality 24.

Theorem 5 Any restricted-preemption sporadic task sys-
temτ whereρ(τ) < 1−δmax(τ) is successfully scheduled
byNP-PARTITION onm unit-capacity processors, for any

m ≥ 2δsum(τ)− δmax(τ)
1− ρ(τ)− δmax(τ)

+
usum(τ)− umax(τ)

1− umax(τ)
(25)

Proof Sketch: The proof is by contradiction. Assume
that task systemτ and platformΠ satisfy Inequality 25,
but thatNP-PARTITION fails to assign some taskτi ∈ τ
to any processor. LetΠ1 be the set ofm1 processor on
which Equation 6 evaluates to false while attempting to
assignτi. Let Π2 be the remainingm2 processors (i.e.
m2

def= m−m1) on which Equation 7 evaluates to false.
According to Part 1 of Corollary 1,(usum(τ) > 1)

or (δsum(τ) > 1−ρ(τ)
2); otherwise,NP-PARTITION could

trivially partition τ on a single processor. We will consider
three separate cases and show that in each case a contra-
diction will arise. Due to space requirements we only fully
show the first case.

Case(i): (δsum(τ) > 1−ρ(τ)
2 and usum(τ) > 1).: In this

case, bothm1 andm2 are non-zero. Summing Inequali-
ties 20 and 23 of Lemmas 4 and 5 (respectively), we obtain

m = m1 + m2 <
2δsum(τ)− δi

1− ρ(τ)− δi
+

usum(τ)− ui

1− ui

Because (δsum(τ) > 1−ρ(τ)
2), (usum(τ) > 1), and (ρ(τ) <

1 − δmax(τ)), the right-hand side of the above inequality
is maximized when bothδi andui are as large as possible.
Therefore,

m <
2δsum(τ)− δmax(τ)
1− ρ(τ)− δmax(τ)

+
usum(τ)− umax(τ)

1− umax(τ)

which contradicts Inequality 25.

Case(ii): (δsum(τ) > 1−ρ(τ)
2 and usum(τ) ≤ 1). Similar

to Case (i) via a simple application of Lemma 4.

Case(iii): (δsum(τ) ≤ 1−ρ(τ)
2 and usum(τ) > 1). Similar

to Case (i) via a simple application of Lemma 5.

3.3 Quantum-based Preemptive Scheduling
A quantum-basedscheduler allocates a processor to

tasks in “blocks” of time calledquantums. During a quan-
tum a task may execute non-preemptively until the earliest
of the following two events occurs: the task completes ex-
ecution or its quantum expires. In the event of task com-
pletion, the scheduler is invoked, and the next available
task (according to the scheduling algorithm) with remain-
ing execution is assigned the newly idle processor. If the
quantum expires prior to the completion of the task, the
task is preempted and the scheduling algorithm makes a
decision about what task to execute in the next quantum
(possibly the same task). In this model, a job of a task
can be “blocked” by a lower-priority (assuming a priority-
based scheduling algorithm) only if it arrives in the mid-
dle of a quantum. Therefore, the maximum blocking time
for any task in the system is equal to one quantum. We
will make the following simplifying assumptions about
the system:

1. The scheduler is invoked only at the completion of the ex-
ecution of a job, or at the end of the quantum.

2. The scheduler’s execution requirement is negligible.

3. The quantum-size is less than the execution requirement of
each task in the system.

4. The quantum sizes are fixed and identical on each proces-
sor.

NP-PARTITION is a highly applicable partitioning al-
gorithm for these quantum-based systems. We can model
a quantum-based system by setting, for each taskτi ∈ τ ,
qi equal to the quantum-size. SinceNP-PARTITION re-
servesqmax(τ) units of “slack” at every instance of time
on each processor, this guarantees that each task assigned
to a processor can still meet its deadline despite being
blocked for a quantum’s duration of time. In fact, even
an optimal partitioning algorithm for a multiprocessor
quantum-based must ensure that a job can be delayed

105

for one quantum. Therefore, we can evaluate the per-
formance ofNP-PARTITION in quantum-based systems
using a technique know asresource augmentation[17].
Resource algorithm compares a given algorithm against
a hypothetical optimal algorithm and determines the fac-
tor by which we augment the processing platform for the
given algorithm to match the performance of the optimal.
For the purpose of this paper, the resource augmentation
technique is as follows: given a task system that is known
to be feasible upon a particular platform (with respect to
quantum-based scheduling), we determine the multiplica-
tive factor of speed by which we must augment our plat-
form in order forNP-PARTITION to returnPARTITIONING

SUCCEEDED(shown in Theorem 6).
First, we need a technical lemma that characterizes the

necessary conditions for feasibility. In [7], Baruah and
Fisher showed for preemptive systems that the larger of
δmax(τ) andumax(τ) represents the maximum computa-
tional demand of any task, and the larger ofδsum(τ) and
usum(τ) represents the maximum computational demand
of a preemptive sporadic task systemτ . This result triv-
ially extends to restricted-preemption systems.

Lemma 6 (from [7]) If task systemτ is feasible (under
either the partitioned or the global paradigm) on an iden-
tical multiprocessor platform comprised ofm processors
of computing capacityξ each, it must be the case that

ξ ≥ max(δmax, umax) ,

and
m · ξ ≥ max(δsum, usum) .

Theorem 6 Given an identical multiprocessor platform
Π with m processors and a restricted-preemption spo-
radic task systemτ feasible on Π without IIT, the
NP-PARTITION algorithm has the following performance
guarantees for a quantum-based system with quantum-
size equal toqmax (i.e. ρ(τ) = qmax

dmin(τ)):

1. if τ is an implicit-deadline system, then
NP-PARTITION will successfully partition τ
upon a platform comprised ofm processors that are

each
(

2− 1
m

1−ρ(τ)

)
times as fast as the processors ofΠ.

2. if τ is a constrained system, thenNP-PARTITION

will successfully partitionτ upon a platform com-

prised ofm processors that are each
(

3− 1
m

1−ρ(τ)

)
times

as fast as the processors ofΠ.

3. if τ is an arbitrary system, thenNP-PARTITION will
successfully partitionτ upon a platform comprised

of m processors that are each
(

4− 2
m

1−ρ(τ)

)
times as fast

as the processors ofΠ.

Proof Sketch: Due to space considerations, we will only
show the proof of the third claim. The other claims can be
proven similarly.

Assume that we are given arbitrary task systemτ fea-
sible (without IIT) onm processors each of speedξ, it
follows from Lemma 6 thatτ must satisfy the following
properties:

δsum(τ) ≤ m · ξ usum(τ) ≤ m · ξ
δmax(τ) ≤ ξ umax(τ) ≤ ξ

Suppose thatτ is successfully scheduled onm unit-
capacity processor byNP-PARTITION. By substituting
the inequalities above in Equation 25 of Theorem 5, we
get

m ≥ 2δsum(τ)−δmax(τ)
1−ρ(τ)−δmax(τ) + usum(τ)−umax(τ)

1−umax(τ)

⇐ m ≥ 2mξ−ξ
1−ρ(τ)−ξ + mξ−ξ

1−ξ

⇐ m ≥ 2mξ−ξ
1−ρ(τ)−ξ + mξ−ξ

1−ρ(τ)−ξ

≡ ξ ≤ m(1−ρ(τ))
4m−2

≡ 1
ξ ≥

4− 2
m

1−ρ(τ)

which is claimed in the third part of the theorem.

4 Heuristics

Though NP-PARTITION is useful for theoretically
evaluating preemptive quantum-based systems, it pes-
simistically assumes that any task in the system could
potentially blocked forqmax(τ) time units (Equation 6).
Therefore, the algorithm is impractical for all but small
values ofρ(τ) and entirely unusable forρ(τ) > 1. In a
general restricted-preemption system, we may not need
assume the same maximum non-preemption parameter
each processor. In this section, we will consider a fam-
ily of polynomial-time heuristics based on the first-fit-
decreasing bin-packing heuristic. Section 4.1 will de-
scribe each of the heuristics we consider. Section 4.2 will
present our empirical-evaluation methodology and results.
We will also discuss potential theoretic justifications for
the experimental results.

4.1 Heuristic Descriptions
As mentioned in the beginning of Section 3, typical

partitioning heuristics will first sort the tasks according
to some criteria, and then assign the tasks to a proces-
sor according to a sufficient condition for “fitting”. The
NP-PARTITION algorithm matches this heuristic pattern
by sorting tasks in (non-decreasing) order of relative dead-
line and adding tasks to processors (in order) according to
Equations 6 and 7. In this section, we consider a family
of algorithms that each sorts tasks in non-increasing order
according to different criteria and assigns a task to the first
processor upon which it fits (each algorithm is a variant
of first-fit-decreasing). The conditions for fitting are the
same for each heuristic considered and are a more opti-
mistic sufficient conditions than used forNP-PARTITION

(i.e. a task is more likely to be assigned to a processor).
The following are the eleven different sorting criteria:1

di

(same asNP-PARTITION), 1
pi

, ei, qi, ui, λi
def= ei

min(di,pi)
,

106

δi, ûi
def= qi

pi
, λ̂i

def= qi

min(di,pi)
, δ̂i

def= qi

di
, andrandomorder.

Each heuristic is denoted byFFD-NP-〈sorting-criteria〉.
For each the above heuristics, we will attempt to add

tasksτi ∈ τ to processors ofΠ in the order specified.
Since we have potentially changed the order that tasks are
assigned, Lemma 2 is not necessarily valid. Therefore,
every time we assign a taskτi to a processorπk, we must
check that each task inτ(πk) meets its deadline after the
addition ofτi. We will add a taskτi to processorπk only if
it does not affect theEDF-feasibility of the tasks ofτ(πk).

Equations 6 and 7 of theNP-PARTITION algorithm en-
sured that Equations 4 and 5 of Theorem 1 are not vio-
lated, by leaving enough slack on a processor to fit the job
with the largest non-preemption parameter. We can con-
sider a more optimistic test by making the following ob-
servation:since we are consideringEDF-schedulability, a
taskτj on a processor may only be blocked (i.e. a priority
inversion occurs) if a task with a larger relative deadline
is executing when a job ofτj arrives. Therefore, when
checking if taskτi fits on a processorπk, we need only
check if all tasksτj ∈ τ(πk) with dj < di have enough
slack to accommodate being blocked byτi for qi time
units. We must also ensure that the added demand placed
on πk by τi after timedi does not affect the slack neces-
sary to accommodate jobs ofτj ∈ τ(πk) with dj > di.
Therefore, we replace Equation 6 with the following con-
ditions: for eachτ` ∈ {τ} ∪ τ(πk),

d` −

∑

τj∈τ(πk)
dj<d`

DBF∗(τj , d`)

 ≥ e` + max

τj∈{τ}∪τ(πk)
dj>d`

{qj}. (26)

It turns out that if Equations 26 and 7 are true, then
we can safely addτi to processorπk. The full proof of
correctness is omitted due to space considerations.
Run-time Complexity. For eachπk ∈ Π, let ik be the
number of tasks assigned to processorπk at the time we
are attempting to assign taskτi. For eachτ` ∈ {τi} ∪
τ(πk), it takesO(ik) time to evaluate the

∑
DBF∗(τj , d`)

term andO(1) time to evaluatemax{qj} term in Equa-
tion 26. Therefore, the time complexity for testing ifτi

fits on processorπk is O(i2k). This implies the overall
time-complexity of each of the heuristics isO(n4).

4.2 Empirical Evaluation
Methodology. For empirically evaluating each of the
heuristics, we generated a set of pseudo-random tasks sets
in a manner similar to Baker [3]. We pseudo-randomly
generate a partition ofm + 1 preemptive tasks. That
is, each processor is assigned a set of randomly gener-
ated tasks which are preemptively feasible on the pro-
cessor, and the total number of tasks in this initial set
is m + 1. The method of generating an individual task
τi = (ei, qi, di, pi) is as follows: we generate a random
utilization parameterui for the task according to the expo-
nential distribution with mean individual task utilization
of 0.25. We then randomly generate the periodpi from a
uniform distribution with values ranging from 1 to 1000.
The execution requirementei is computed from the task
utilization and period. The relative deadlinedi of a task

is an integer value chosen from the uniform distribution
with range[ei, 2pi].

A partition of thesem + 1 tasks is randomly gen-
erated such that each task is preemptively feasible. If
τ(πk) is the set of tasks from the initial task set as-
signed to processorπk, the condition of feasibility is∑

τj∈τ(πk) DBF∗(τj , t) ≤ t for all t ≥ 0. After deter-
mining an initial partition, we compute a maximum non-
preemption parameter̂qi for each task in this partition, and
assign toqi a value chosen from the exponential distribu-
tion with range[0, min(ei, q̂i)]. To generate subsequent
task sets, we add a randomly generated task to the current
partition and attempt to fit it on any processor. If the task
fits on the processor, we add the resulting task set to our
sample; otherwise, we start over with a newly generated
set ofm + 1 tasks.

We generated several different sets of task systems ac-
cording to the methodology described. However, due to
space consideration, we discuss only one set of 1,000,000
randomly generated task systems. Each of the task sys-
tems generated are feasible on a four processor platform.
Figure 1 shows the distribution of generated task systems
with respect to a task system’sδsum value ([4] gives justi-
fication for usingδsum as metric of comparison).
Results and Discussion.The results of running each of
the eleven heuristics over the sample set are shown in Fig-
ure 2. The values are shown forδsum ≥ 2.5 only, as
the smallerδsum-valued task systems are partitionable by
all heuristics. The major trend we have observed from
this experiment and other experiments (omitted for space)
are that heuristics that have the non-preemption parame-
ter qi in the sorting criteria (i.e.FFD-NP-qi, FFD-NP-ûi,
FFD-NP-λ̂i, andFFD-NP-δ̂i) dominate heuristics that ex-
clude qi for δsum ≤ 3.8. Indeed,FFD-NP-qi dominates
all heuristics forδsum ≤ 3.8. A potential reason for the
domination of the heuristics usingqi is that by assigning
tasks with larger non-preemption parameter first, we more
effectively utilize the slack on each processor. If we ig-
nored theqi parameter in ordering tasks, we may not leave
enough room for future tasks with largeqi. However, ac-
cording to Figure 2, heuristics based on the task load or
density (FFD-NP-λi and FFD-NP-δi) may be more effec-
tive thanqi-based heuristics for task systems with high
δsum values. Not surprisingly,FF-NP-RANDOM does the
worst and is dominated by all other heuristics since it does
not exploit any information about the task system.

5 Conclusions

Non-preemptive scheduling of tasks has the advantage
of decreasing system complexity and scheduling over-
heads. However, little work has been done on study-
ing non-preemption for partitioned multiprocessor sys-
tems. In this paper, we considered the parititoned mul-
tiprocessor scheduling of restricted-preemption and non-
preemptive sporadic task systems. We introduced a sim-
ple partitioning algorithmNP-PARTITION for which we

107

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 0.5 1 1.5 2 2.5 3 3.5 4

Number

of

Task Sets

δSUM

Distribution

Figure 1. Distribution of
δsum values for randomly
generated task sets

0

0.2

0.4

0.6

0.8

1

2.6 2.8 3 3.2 3.4 3.6 3.8 4

Fraction

of

Schedulable

Task Sets

δSUM

Heuristics

FFD-NP-di

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3

3 3
3 3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

FFD-NP-qi

+ +
+

+
+ +

+

+
+

+

+

+

+

+

+

FFD-NP-ei

2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2

2
2

2 2 2
2

2
2

2
2

2
2

2
2

2
2

2

2

2

2

2

2

2

FFD-NP-pi

× × × × × × × × × × × × × × × ×
× × × ×

×
× ×

×
×

×
×

×

×
×

×

×

×

×

×

×

×

×

×

FFD-NP-ui

△△△△△△△△△△△△△
△△

△
△

△
△

△
△

△
△

△
△

△
△△

△
△△△

△△

△

△

△

△

△

FFD-NP-δi

⋆ ⋆
⋆ ⋆ ⋆

⋆
⋆

⋆

⋆

⋆

⋆

⋆

⋆

FFD-NP-λi

b b b b b b b b b b b b b b b b
b b

b b
b b b

b b b
b b

b
b b

b
b

b

b

b

b

b

b

FFD-NP-ûi

c c
c c

c c
c

c
c

c c
c

c

c

c

c

c

c

c

c

FFD-NP-δ̂i

e e
e e

e e e
e

e
e

e
e

e

e

e

e

e

e

e

e

FFD-NP-λ̂i

r r
r r

r r r
r

r
r

r
r

r

r

r

r

r

r

r
r

FF-NP-RANDOM

s s s s s s s s s s s s s
s

s
s

s
s

s
s

s
s s

s
s

s

s
s

s

s
s

s

s

s

s

s

s

s
s

Figure 2. Comparison of partitioning heuristics

derived sufficient conditions for success (Theorems 3, 4,
and 5). NP-PARTITION can be applied to partition-
ing preemptive sporadic tasks in a multiprocessor sys-
tem that uses quantum-based scheduling. For quantum-
based systems, we were able to characterize the effective-
ness ofNP-PARTITION in terms of resource augmentation
bounds (Theorem 6).

To address the drawbacks of the pessimistic behavior of
NP-PARTITION, we considered eleven different partition-
ing heuristics for restricted-preemption sporadic task sys-
tems. We characterized the performance of these heuris-
tics empirically over a set of randomly generated task
systems, and observed that heuristics which use the non-
preemption or load information of the task system outper-
form heuristics that ignore this information. In the future,
we would like to obtain better theoretical bounds for the
heuristics presented in Section 4.

References

[1] K. Albers and F. Slomka. An event stream driven approx-
imation for the analysis of real-time systems. InProceed-
ings of the EuroMicro Conference on Real-Time Systems,
pages 187–195, Catania, Sicily, July 2004. IEEE Computer
Society Press.

[2] T. P. Baker. Stack-based scheduling of real-time processes.
Real-Time Systems: The International Journal of Time-
Critical Computing, 3, 1991.

[3] T. P. Baker. Comparison of empirical success rates of
global vs. partitioned fixed-priority and EDF scheduling
for hard real time. Technical Report TR-050601, Depart-
ment of Computer Science, Florida State University, 2005.

[4] T. P. Baker, N. Fisher, and S. Baruah. Algorithms for deter-
mining the load of a sporadic task system. Technical report,
Department of Computer Science, Florida State University,
2005.

[5] S. Baruah. The non-preemptive scheduling of periodic
tasks upon multiprocessors.Real-Time Systems: The In-
ternational Journal of Time-Critical Computing. Accepted
for publication.

[6] S. Baruah. The limited-preemption uniprocessor schedul-
ing of sporadic task systems. InProceedings of the Eu-
roMicro Conference on Real-Time Systems, pages 137–
144, Palma de Mallorca, Balearic Islands, Spain, July
2005. IEEE Computer Society Press.

[7] S. Baruah and N. Fisher. The partitioned multiprocessor
scheduling of sporadic task systems. InProceedings of
the IEEE Real-Time Systems Symposium, Miami, Florida,
December 2005. IEEE Computer Society Press.

[8] S. Baruah, A. Mok, and L. Rosier. Preemptively schedul-
ing hard-real-time sporadic tasks on one processor. InPro-
ceedings of the 11th Real-Time Systems Symposium, pages
182–190, Orlando, Florida, 1990. IEEE Computer Society
Press.

[9] P. Gai, G. Lipari, and M. di Natale. Minimizing mem-
ory utilization of real-time task sets in single and multi-
processor systems-on-a-chip. InProceedings of the IEEE
Real-Time Systems Symposium. IEEE Computer Society
Press, December 2001.

[10] L. George, P. Muhlethaler, and N. Rivierre. Optimality and
non-preemptive real-time scheduling revisited. Technical
Report RR-2516, INRIA: Institut National de Recherche
en Informatique et en Automatique, 1995.

[11] L. George, N. Rivierre, and M. Spuri. Preemptive and non-
preemptive real-time uniprocessor scheduling. Technical
Report RR-2966, INRIA: Institut National de Recherche
en Informatique et en Automatique, 1996.

[12] K. Jeffay, D. Stanat, and C. Martel. On non-preemptive
scheduling of periodic and sporadic tasks. InProceedings
of the 12th Real-Time Systems Symposium, pages 129–139,
San Antonio, Texas, December 1991. IEEE Computer So-
ciety Press.

[13] D. S. Johnson.Near-optimal Bin Packing Algorithms. PhD
thesis, Department of Mathematics, Massachusetts Insti-
tute of Technology, 1973.

[14] C. Liu and J. Layland. Scheduling algorithms for multi-
programming in a hard real-time environment.Journal of
the ACM, 20(1):46–61, 1973.

[15] J. M. Lopez, J. L. Diaz, and D. F. Garcia. Utilization
bounds for EDF scheduling on real-time multiprocessor
systems. Real-Time Systems: The International Journal
of Time-Critical Computing, 28(1):39–68, 2004.

[16] A. K. Mok. Fundamental Design Problems of Distributed
Systems for The Hard-Real-Time Environment. PhD the-
sis, Laboratory for Computer Science, Massachusetts In-
stitute of Technology, 1983. Available as Technical Report
No. MIT/LCS/TR-297.

[17] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal
time-critical scheduling via resource augmentation. InPro-
ceedings of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing, pages 140–149, El Paso, Texas, 4–6
May 1997.

108

Probabilistic QoS Assessment of Tasks with Uncertain Parameters in
Preemptive Multi–Processor Scheduling

Amare Leulseged and Nimal Nissanke
Institute for Computuing Research, Faculty of BCIM

London South Bank University, London, UK

Abstract

This paper presents a probabilistic approach for Qual-
ity of Service (QoS) assessment of periodic tasks with
uncertainties in computation times and deadlines in
priority–driven multi–processor execution environments.
The approach is a generally applicable one but is aimed at
novel non–critical real–time applications (e.g. multime-
dia). Uncertainties bear a truly random character at task
request times, though in between arrival times they can be
worked out by tracing the execution process in time. Con-
sidering each task in turn, its possible execution scenarios
are systematically worked out in relation to other tasks in
the system. This permits the computation of the probabil-
ity of task execution at each instant of time and, hence,
the probability distribution of each task in the next instant
in time, leading in turn to the determination of QoS indi-
cators such as success rate, expectation of response time
latency and jitter between consecutive task instances in a
straightforward manner. A stochastic simulation demon-
strates the validity of the approach.

1 Introduction
The objective of this paper is to develop a sufficiently

general probabilistic framework for the analysis of multi-
processor schedulability of tasks with uncertain parame-
ters. Though no specific assumptions are made to that ef-
fect, the approach is considered particularly suitable for
assessing the Quality of Service (QoS) indicators of indi-
vidual tasks with uncertainties in their resource require-
ments. As is well known, QoS criteria are becoming im-
perative in the design of non–critical real-time applica-
tions such as video conferencing and other multimedia
applications, where traditional techniques based on worst
case execution times invariably result in highly conserva-
tive uneconomic designs.

Among the works devoted to uncertainties in real-time
tasks and their implications on scheduling is the Statistical
Rate Monotonic Scheduling approach [1, 2] dealing with
periodic tasks with variable execution times expressed
through a probability density function and a QoS measure
defined in terms of the failure probability of tasks. An
important part of its strategy, however, is a job admission
controller intended to safeguard the QoS of tasks already

admitted. The work by Manolache et al. [11] deals with
performance analysis of periodic non–preemptable tasks
with the uncertainties in their execution times specified in
the form of a continuous probability distribution function.
A motivation for the latter is to avoid the complexity asso-
ciated with discrete states, though an important source of
the efficiency of this technique appears to lie in the anal-
ysis conducted alongside the construction of the underly-
ing stochastic process. Based on Markov process mod-
elling and sharing the same aspirations as this paper, the
work [5] proposes a stochastic approach to fixed priority
and dynamic scheduling of periodic tasks with uncertain-
ties in their computation times. However, the approach
is limited to uni–processor scheduling. Gardner [7] pro-
poses Stochastic Time Demand Analysis for determining
the lower bound on execution rates in uni–processor fixed
priority context. This is based on an extension of the pe-
riodic task model to include both a guaranteed execution
time ranging from zero to the maximum execution time
and a guaranteed inter–release time above the required
minimum inter–release time, depending on the real-time
nature of the tasks concerned. Zhou et al. [14] propose
a modified rate monotonic schedulability analysis, incor-
porating two experimentally determined parameters to ac-
count for uncertainties in operating system overheads: a
constant representing the CPU utilisation of operating sys-
tem activities and a worst–case timer delay factor. Edgar
et al. [6] propose the use of Gumbel distribution for esti-
mating the worst–case execution time as an extreme value.
Another important contribution is the Real–Time Queue-
ing Theory [9], though it is yet to demonstrate its applica-
tion in relation to any practically significant problems.

Based on a discrete time model, our work deals with
dynamic multi-processor real-time scheduling [8, 10, 13]
and with static and dynamic uni-processor real-time
scheduling [12]. Though the discrete time model gen-
erally raises the complexity of computations involved, it
offers the capability to analyse, in principle, problems of
any arbitrary nature and not necessarily those which fit in
with standard mathematical models. The work [13] deals
with a probabilistic analysis of dynamic multi–processor
scheduling with emphasis on the overall performance of
the scheduling environment as a whole. However, lacking
the means to identify individual tasks, the latter could not

109

address the QoS performance of individual tasks except
in a limited sense. In contrast, the works [8, 10, 12] shift
the focus to scheduling of individual tasks, though the ap-
proaches taken in [8, 10] for multi-processor case and [12]
for uni-processor case are completely different. The ap-
proach in [12] uses ‘timed sequences of probabilities’ for
working out the execution patterns and termination times
of tasks, allowing the calculation of a range of QoS indi-
cators. Demonstrative examples in [5] and [7] being lim-
ited to uni-processor scheduling, it is easier to compare,
amongst our work, [12] against [5, 7]. In this respect, the
results in [12] are broadly in line with the simulation in
[7] and the analytical results in [5], as well as our own
simulation results.

This paper and the thesis [8], [10] being a prelimi-
nary version of the same, propose a new framework for
probabilistic analysis of tasks with uncertainties in multi–
processor scheduling and, hence, their QoS issues on an
individual basis. Uncertainties concern only computation
times and deadlines expressed indirectly through laxities
(a measure of urgency). These are represented in terms
of probability mass functions (PMF) and are of truly ran-
dom nature at the request times of tasks. The essence of
the approach is in how to work out theirPMFs in between
request times as the tasks are executed using any priority–
driven scheduling algorithm, including algorithms such as
the Least Laxity First (LLF) and the Earliest Deadline First
(EDF). This forms the basis for arriving at several QoS in-
dicators of practical interest, e.g. rate of successful execu-
tion, response time latency, jitter and so forth. Extending
the work [10], this paper deals with several important is-
sues, in particular, a verification of the approach using a
stochastic simulation, an assessment of the complexity of
the approach as presented here, a more accurate way of
calculating jitter and a study of the effect of tie–breaking
on probabilistic predictions.

Section 2 presents the core ideas of the proposed
framework. Section 3 examines practically useful perfor-
mance and QoS indicators. Section 4 sets out the relation-
ship of the above with a stochastic simulation. Section 5
illustrates the use of the approach and demonstrates its va-
lidity using a stochastic simulation. Section 6 concludes
the paper with a summary of achievements.

2 Analytical Framework
2.1 Representation of Tasks

Considering a setΩ of n tasksτi , i = 1, 2, · · · , n, let
each taskτi arrive at fixed time intervals separated by a
periodTi but with an unpredictable computation timeCi .
For generality, as justified in [8], the deadline ofτi is also
considered unpredictable and is specified in terms of lax-
ity (urgency)Li , that is, the length of time from the current
time to the deadline minus the computation time. Thus,Li

and Ci are both treated as random variables at the time
of τi ’s each arrival. Their sampling spaces are the sets of
integers0 . . lmax and1 . . cmax respectively, the notation
x . . y denoting the set of integers fromx to y inclusively,
andcmaxandlmax representing, respectively, the maximum

envisaged values of the computation time and the laxity.
A convenient visualisation of tasks with particular val-

ues of l and c is to view them as points on a two–
dimensional orthogonal (discrete) coordinate system with
l (horizontal) andc (vertical) as its axes; see Figure 1(a).
This system is referred to as thel–c space. The area en-
closed within0 6 l 6 lmax and1 6 c 6 cmax is referred
to as thescheduling domainand is denoted byS. By in-
cluding l = -1 in this representation, we use the termexit
domain, and the symbolE, to refer to the points onl = -1,
or onc = 0, but excluding the point (-1, 0). Given a task
at a particular point(l, c), if it were to be executed at time
t, its position at time(t + 1) would be at(l, c− 1), other-
wise at(l − 1, c). In the case of tasks which have exited
the system, any tasks located onl = -1 are failed tasks,
while those onc = 0 are successfully executed ones. The
scheduling and exit domains together are referred to as
thetask domainand is denoted bȳS. Uncertainties in task
parameters are taken into account in a general form by
treatingLi andCi as jointly discrete random variables with
a joint probability mass function (PMF) pLi ,Ci (l, c) or, for
brevity, bypi(l, c).

pi(l, c) = PLi ,Ci [{ (l′, c′) : l′ = l, c′ = c}] (1)

As a function of two random variables, the above denotes
the probability ofτi having a laxity l and computation
time c at the time ofτi ’s arrival or, referring to the two–
dimensional representation, the probability ofτi arriving
at a point(l, c). Thus, referring to the illustration in Fig-
ure 1(a),τ2 has a probability of 0.6 having a laxity 1 and
a computation time 2.

As pi(l, c) in (1) keeps changing with time, the notation
pt

i(l, c) denotes the probability ofτi having the pair of val-
ues(l, c) at timet. pt

i(l, c) acquires its random value only
at times whenτi is freshly requested; i.e. whent mod Ti

is equal to zero. At other times,pt
i(l, c) is determined by

pt−1
i (l, c) and the manner in whichτi has been executed at

time (t − 1). In essence, the determination ofpt
i(l, c) for

each taskτi and for each time valuet over the scheduling
domain lies at the heart of the given scheduling problem.
2.2 Scheduling Algorithms and Task Execution

The scheduling model consists of a multi-processor
system withM identical processors, such that any task can
be executed on any processor, and with no explicit consid-
eration of preemption and task migration costs. Given an
arbitrary priority–driven scheduling algorithmφ, a func-
tion fφ(l, c) returns the priority level assigned byφ to any
task located at(l, c) as a natural numberK ranging from
Kmin to Kmax. Priorities are assumed to decrease with in-
creasingK. For example, inEDF fφ(l, c) returns(l + c)
(i.e. relative deadline) asK and inLLF just l (i.e. laxity).
At any particular instant in time, associated with any given
valueK, K = fφ(l, c) for some(l, c), are three subsets of
the setΩ of n tasks. These are:

1) ΩK
1 (l, c) – The set of all tasks having a non–zero

probability of being at a point(x, y) in S such that
fφ(x, y) < K; i.e. of being of a higher priority than
any task at(l, c).

110

0.5

0.2 0.3

0 1 2 3 l

c

2

1

3

τ3

τ2

τ1

0 1 2 3 l

2

1

3

c

0 1 2 3 l

2

1

3

c

Ω1

Ω2

τ
i

τ
1

τ
3

τ
2 Ω3

τ
i

0.3

0.6

0.1 0.4

0.3 0.2

0.1

−1

0.2

0.5

0.2

0.1

deadline under

under EDF

consideration

0.4

0.1

0.3

0.6
0.3

0.3

0 1 2 3 l

3

c

2

1

a) tasks , i = 1, 2, 3, in isolation b) tasks , i = 1, 2, 3, in task domain

Figure 1. a) Distributions pi for each τi , i = 1, 2, 3 and b) task sets Ωk, k = 1, 2, 3, in the task domain

2) ΩK
2 (l, c) – The set of all tasks having a non–zero

probability of being at a point(x, y) in S such that
fφ(x, y) = K; i.e. of being of an identical priority to
any task at(l, c).

3) ΩK
3 (l, c) – The set of all tasks having a non–zero

probability of being at a point(x, y) in S such that
fφ(x, y) > K or of being in the exit domainE; i.e.
of being of a lower priority than any task at(l, c) or
having exited the system.

The above sets are not necessarily pairwise disjoint,
since a task may belong to more than one set at the same
time. For brevity, from now on we use the simpler nota-
tion ΩK

j , j = 1, 2, 3, for referring to the above sets. Fig-
ure 1(b) shows the task sets,Ω3

j , j = 1, 2, 3, for the set
of tasks comprisingτi , i = 1, 2, 3, given in Figure 1(a),
underEDF scheduling at a relative deadline of 3 units of
time; i.e. withφ = EDF in fφ(x, y) andK = 3. Thus, in
Figure 1(b),Ω3

1 = {τ1, τ2} andΩ3
2 = Ω3

3 = {τ1, τ2, τ3}.
Considering a particular taskτi in ΩK

2 for scheduling,
let us now select three setsωj , for j = 1, 2, 3, with pj

elements in each, such thatτi ∈ ω2 and
a) ωj ⊆ ΩK

j (i.e., eachωj is a subset of the correspond-
ing ΩK

j). As a result,0 6 pj 6 | ΩK
j |.

b) ω1 ∪ ω2 ∪ ω3 = Ω, Ω being the set of all tasks in the
task domain (in the system).

c) ωj ∩ ωk = ∅ for j, k = 1, 2, 3 andj 6= k (i.e., they are
pairwise mutually disjoint).

Note thatp1 + p2 + p3 = n. A 3-tuple of the form
(ω1, ω2, ω3) represents a particularscheduling scenarioof
τi . Note that each task appears exactly in one, but some,
ωj . All tasks inω1 enjoy higher priority thanτi , those in
ω2 enjoy the same priority asτi , and those inω3 enjoy
lower priority thanτi . For example, in Figure 1(b), when
schedulingτ2 at (1, 2) underEDF, two possible scenar-
ios are: ({τ1}, {τ2, τ3}, {}) and ({τ1}, {τ2}, {τ3}) with
τ2 ∈ ω2. Let Rω

i denote the set of all such possible sce-
narios. The size ofRω

i for a given taskτi is necessary in
the assessment of complexity of the approach as presented
here; see Section 2.3. Obviously, it depends on how the
tasks are spread over the task domain and can be found as

| Rω
i |=

n∏

k=1

NΩ
τk

(2)

whereNΩ
τk

denotes the number of setsΩK
j , j = 1, 2, 3, of

which τk is an element, taking values 1, 2 or 3 only. In
other words, eachτk appears at least in one of theΩK

j sets

but, in general, appears inNΩ
τk

number ofΩK
j sets. In the

case ofτi , however,NΩ
τi

= 1 sinceτi is considered to be
only in ω2. (2) can be proven by mathematical induction.

The execution probability of a particular taskτi in ΩK
2

depends on two factors: firstly, on the realisation of its
possible execution scenarios and, secondly, on its choice
for execution by the scheduling algorithm concerned, both
expressed in probabilistic terms. In connection with the
first, given thatr ∈ Rω

i , let Pi,r denote the probability of
the realisation of a particular scenarior. Furthermore, for
any scenarior = (ω1, ω2, ω3) and anyτ ∈ ωk, k = 1, 2, 3,
let pτ (ωk) denote the sum of probabilities of a taskτ be-
ing anywhere in the region covered by the corresponding
set ΩK

k . Obviously,pτ (ωk) can be determined knowing
pt

τ (l, c), introduced in Section 2.1. Note that considera-
tion of ΩK

k as a whole in working outpτ (ωk) helps us to
avoid point–wise enumeration of task scenarios in thel–c
space. This could result in some reduction in the complex-
ity – an issue dealt with in Section 2.3 later.Pi,r can be
determined as the product of the probabilities of each of
the tasks participating in the scenarior. That is

Pi,r =
∏

k=1,2,3

(
∏

τj ∈ ωk

pτj (ωk)) (3)

Turning to the second factor, there are two possibili-
ties that need to be taken into consideration, namely, that,
given that the scenarior is realised, the task under con-
sideration,τi , is definitely executed (whenp1 + p2 6 M,
M being the number of available processors), or may en-
counter a tie with other tasks at the same priority level
(when p1 < M ∧ p1 + p2 > M). In the latter case,
there are basically two different ways of breaking the tie,
namely, completely non–deterministically, that is, with a
uniform probability among the tasks involved in the tie,
or according to some secondary priority criterion. The
former suits better the level of abstraction maintained in
this work and, hence, has already been considered in our
previous work [10]. However, a simulation used for the
verification of the approach (to be discussed in Section 5)
has revealed that the manner of tie breaking could have
a noticeable effect on the results. Any simulation being
an implementation, often involving some specific design
choices, verification of theoretical predictions by simula-
tion invariably requires consideration of how the ties are
broken in the simulation. This explains the reason for con-
sidering in this work both the above approaches to the res-
olution of ties.

111

Scenario Deadline (Probability:pτj (ωk)) Pi,r - prob. of scenario ρ2,r(1, 2) P2,r × ρ2,r

r = (ω1, ω2, ω3) τ1 τ2 τ3 realisation; eq. (3) eq. (4) see eq. (6)

({τ1}, {τ2, τ3}, {}) 2 (0.2) 3 (0.6) 3 (0.8) 0.2× 0.6× 0.8 = 0.096 1
2

0.048

({}, {τ2, τ3}, {τ1}) 4 (0.5) 3 (0.6) 3 (0.8) 0.5× 0.6× 0.8 = 0.24 2
2

= 1 0.24

({}, {τ1, τ2}, {τ3}) 3 (0.3) 3 (0.6) 4 (0.2) 0.3× 0.6× 0.2 = 0.09 1
2

= 1 0.048

Table 1. Calculations in (6) illustrated

Let ρi,r be the probability of execution ofτi by any one
of the availableM processors in scenarior. Pursuing the
non–deterministic option to tie–breaking first,ρi,r can be
found as

ρi,r =

1 if p1 + p2 6 M
M−p1

p2
if p1 6 M − 1 ∧ p1 + p2 > M

0 otherwise
(4)

The second condition of the above has a non-zero proba-
bility only if at least one of theM processors can effec-
tively be reserved for tasks operating at the same prior-
ity level asτi . These conditions constrain the manner in
which the setsωk, k = 1, 2, 3, can be chosen for execution
and, thus, limits the number of scenarios eligible for exe-
cution. Turning now to the second option to tie–breaking,
whereby a tie is always broken in one way or another ac-
cording to some secondary priority (or preference) crite-
rion, leteligiblebe a predicate expressing such a criterion.
In this respect, leteligible(τi) be true if and only ifτi is
eligible for execution according to the secondary priority
criterion. In this case

ρi,r =

1 if (p1 + p2 6 M) ∨
(p1 6 M − 1 ∧ p1 + p2 > M ∧ eligible(τi))

0 otherwise
(5)

In computingτis overall conditional probability of ex-
ecution over the points(l, c) such thatfφ(l, c) = K, that is
vi,K , all possible scenarios inRω

i (l, c) must be taken into
consideration. That is

vi,K =
∑

r ∈Rω
i

Pi,r × ρi,r (6)

As an illustration, consideringτ2 for scheduling in the
context depicted in Figure 1(b), Table 1 shows how to
calculate the terms in the summation (6) for three spe-
cific scenarios. [Note that in order to reduce the clutter
we have deliberately omitted writing the temporal index
t in various quantities introduced above, though they are
really functions of time. As is done below, it is time to
restore the temporal indexation witht.] Having obtained
the conditional probabilityvt

i,K of τi , asvi,K in (6), it is
possible to derive the actual execution probability ofτi at
all the points(l, c) wherefφ(l, c) = K at timet as

ext
i(l, c) = pt

i(l, c)× vt
i,K (7)

as the joint probability of the event captured in (6) in con-
junction with the event thatτi is actually at(l, c). The
corresponding probability ofτi missing execution (non-
execution) at(l, c) at timet follows from the above as

msti(l, c) = pt
i(l, c)− ext

i(l, c) (8)

Consequently, for points(l, c) in the task domain the prob-
ability of τi being at(l, c) at the next time unit(t + 1)

depends on the probability ofτi having been executed at
(l, c + 1) at timet and the probability ofτi having missed
execution at(l + 1, c) at timet. This results in

pt+1
i (l, c) = ext

i(l, c + 1) + msti(l + 1, c) if (l, c) ∈ S (9)

assuming that each of the functionsext
i(l, c) andmsti(l, c)

returns zero for any(l, c) /∈ S. However, if at timet τi lies
on the linec = 1, or on the linel = 0, then it has a proba-
bility of exiting the system by successfully completing, or
by failing to meet its deadline, respectively. Therefore

pt+1
i (l, c) = pt

i(l, c) + ext
i(l, c+ 1) if l > 0 ∧ c = 0 (10)

pt+1
i (l, c) = pt

i(l, c)+msti(l+1, c) if l = -1 ∧ c > 0 (11)
requiring the points in the exit domain to ‘accumulate’ the
probabilities of any task exiting the system successfully,
or unsuccessfully. Equations (9)–(11) in effect describe
how to compute the probability of any task in the schedul-
ing domain at timet finding itself, in general, in the task
domain at time(t + 1). Obviously, this process of com-
putation can be performed for alln tasks in thel–c space
and for all time values of interest. This results in a com-
plete characterisation of the evolution ofpt

i(l, c) over time
which, as was suggested at the outset in Section 2.1, forms
the basis of subsequent computation QoS indicators of in-
dividual tasks.
2.3 Computational Issues

Implicit in the analytical framework introduced above
is a way to compute the distribution of tasks over thel–c
space. Its focus has been to gain an insight into the prob-
lem of probabilistic scheduling rather than an efficient
way to computing. Nevertheless, an assessment of the al-
gorithmic complexity is necessary and it requires making
explicit the computations involved in some detail. This is
the purpose of the algorithmexecutet given below. It is a
recursive algorithm with respect to time and, each timet,
returns the taskPMFs in the form of a three dimensional
matrix result[i, l, c] (lines 2 and 29). Indicesi, l, c of result
signify respectively the task indices, the laxities and the
computation times and rangei ∈ 1 . . n, l ∈ -1 . . lmax and
c ∈ 0 . . cmax (line 2). The matrixpt[i, l, c] (line 2) is of an
identical form toresult but, with its additional index (su-
perscript)t, stands essentially forpt

i(l, c). The matrixpt

consists of the taskPMFs as applicable at timet, whereas
resultconsists of the taskPMFs computed by the algorithm
to be used at timet + 1 in the case of tasks not requested
at timet + 1.

The iteration in lines 4–7 over the tasks inΩ initialises
the matrixpt

i(l, c), assuming any of its elements initially
unspecified to be zero. The case of freshly requested tasks
at timet is dealt with in line 5. The matrixpinit [i, l, c] (line

112

5) is identical in form topt and consists of the taskPMFs
to be used at each request time of the tasks concerned.
The iteration between lines 8–22 computesext

i(l, c) and
msti(l, c) of (7)–(8), represented here respectively as matri-
cesex[i, l, c] andms[i, l, c] (lines 19 and 20), forK varying
fromKmin toKmax. The functioncomp-Ω (line 9) first com-
putes the setsΩK

j , j = 1, 2, 3. In lines 10–22 is an iteration
over each task inΩK

2 . The functioncomp-Rω
i (line 11)

computes all possible execution scenarios. In lines 13–17,
the algorithm computes the conditional probability of ex-
ecution of the task concerned assuming it to be there with
the relevant priority. In lines 18–21, the algorithm calcu-
lates the actual probability of execution, as well as that of
missing execution, of each task at points having the same
K value. The probability of each task being at specific
points in task domain, which is to be used in the next time
unit, is calculated in lines 24–28 following a literal trans-
lation of (9)–(11). In line 29,executet returns the matrix
result[i, l, c] which is to be used in the next time unit.
1. algorithm executet

2. var result[i, l, c], pt[i, l, c], ex[i, l, c], ms[i, l, c], – local variables
ΩK

1 , ΩK
2 , ΩK

3 , Rω
i , Pi,r , ρi,r , vi,K ;

3. begin
4. for i ∈ 1 . . n do
5. if t mod Ti = 0 then pt[i, l, c] := pinit [i, l, c] for (l, c) ∈ S̄;
6. else pt[i, l, c] := executet−1;

– initialises or updates the PMFs
7. end for
8. for K from Kmin to Kmax do
9. (ΩK

1 , ΩK
2 , ΩK

3) := comp-Ω;
– function for computingΩK

j for j from 1 to 3

10. for i ∈ ΩK
2 do

– for each task on the line
11. Rω

i := comp-Rω
i ;

– function for computing all scenarios of taskτi

12. vi,K := 0.0
– initialisevi,K to zero

13. for each r ∈ Rω
i do

– for each scenario containingτi

14. Pi,r := comp-Pi,r ;
– function for computingPi,r ; eqn (3)

15. ρi,r := comp-ρi,r ;
– function for computingρi,r ; eqns (4) or (5)

16. vi,K := vi,K + Pi,r × ρi,r ;
– conditional prob. ofτi ; eqn (6)

17. end for
18. for (l, c) such that fφ(l, c) = K do

– for each scheduling point on linefφ(l, c) = K
19. ex[i, l, c] := p[i, l, c]× vi,K ;

– prob. ofτi being executed at(l, c); eqn (7)
20. ms[i, l, c] := p[i, l, c]− ex[i, l, c];

– prob. ofτi missing execution at(l, c); eqn (8)
21. end for
22. end for
23. end for
24. for i ∈ 1 . . n do
25. for (l, c) ∈ S̄do – eqns (9)–(11)
26. result[i, l, c] := ex[i, l, c + 1] + ms[i, l + 1, c];

if (l, c) ∈ S
result[i, l, c] := pt[i, l, c] + ms[i, l + 1, c];

if (l = −1) and (c > 0)
result[i, l, c] := pt[i, l, c] + ex[i, l, c + 1];

if (l > 0) and (c = 0)
27. end for
28. end for
29. return result
30. end algorithm excecutet

Turning to the complexity of the above algorithm, it is
sufficient here to focus on the running time of the segment
of statements between lines 8–23, bearing in mind the
smaller additive contribution of the remaining segments
of the algorithm. The running time is estimated per ev-
ery time unit of scheduling underEDF, scheduling under
LLF being only marginally different. Omitting the deriva-
tion here for reasons of space, the cost of executing the
statements concerned is found be ofO(n23n−1). Despite
the reduction in complexity achieved earlier by avoid-
ing point–wise enumeration of task scenarios, this reflects
the inherently combinatorial nature of the scenario space.
Though it is manageable for moderately sized problems,
this is an issue that requires further research.

3 Quality of Service Indicators
Knowing the time history of taskPMFs, that is,pt

i(l, c)
for τi , i ∈ 1 . . n and for all points in the task domain
and all time values of interest, it is possible to compute
various Quality of Service (QoS) indicators of individual
tasks. These include the rates (probabilities) of successful
execution or failure of each task, latency in response time,
jitter (irregularity in termination times between successive
task instances), etc. For the time values of interest, let
us consider the Least Common Multiple (LCM) L of the
periods of tasks under consideration, i.e.,LCM of Ti for
i ∈ 1 . . n. All tasks are assumed to arrive initially at time
zero and thereafter each taskτi to arrive at everyTi time
units. The request time for thejth instance ofτi , denoted
asτi,j , coincides with the end of the period of(j− 1)th in-
stance and, as a consequence, thejth instance terminates
only from next time unit onward since it must last at least
one time unit.

Turning to QoS indicators, letSi,j (or Fi,j), j = 1. .L/Ti ,
denote the overall probability of successful execution (or
failure) of τi,j anywhere within its period. It follows from
(7) and (8) that

Si,j =
j Ti∑

k=(j−1)Ti+1

(
lmax∑

l=0

exk
i (l, 1)

)

Fi,j =
j Ti∑

k=(j−1)Ti+1

(
cmax∑
c=1

mski (0, c)

)
(12)

The expressions within parentheses in the above, denoted
below bySk

i,j andFk
i,j , represent the probability of success-

ful execution and the probability of failure ofτi,j at thekth
time unit. LetRi,j represents thesuccess response timeof
τi,j , the probability of it successfully terminating within
the firstdi time units of its period,0 < di 6 Ti , can be
found as

P(Ri,j 6 d) =
d∑

k=1

S(j−1)Ti+k
i,j (13)

Jitter can be defined in several ways, for example, as a
measure of irregularity, relative to task periods, of time be-
tween termination times of consecutive task instances, or
that between the start and completion times of individual
task instances. The latter gives input/output jitter as appli-
cable to control problems and can be dealt with by making
use ofRi,j in (13). Dealing only with the former, letGi be a

113

τ
i, j

τ
i, j+1 τ

i, j+2
τ

i, j+1
τ

i, j+2
τ

i, βτ
i, j

T i

T i(j−1) T i(j−1) T i
T i

T i

T i
T i

T i

failedfailed failed

g g
t

a) one possibility

t
g

b) another possibility

b = t + + g b = t + + g

successfully completed instancesinstance arrivals

a = t + − g

Figure 2. Jitter relative to successfully completed instances

random variable giving the length of time between the ter-
mination times of two consecutive instances ofτi and let
us define the regularity jitter ofτi asJi =| Gi − Ti |, Ji be-
ing a random variable ranging over0 . . Ti . As a measure,
jitter can be obtained in a variety of forms: as a proba-
bility P(Ji = g) of τi experiencing a particular value of
regularity jitterg, or as an expectation.

Dealing with the so-calledsuccess regularity jitter, let
us usēJi,j,next to refer to the regularity jitter between the
successfully executed instanceτi,j andτi ’s next success-
fully executed instance. As shown in Figure 2, there are
two possibilities: Figure 2(a) showing the case of consec-
utive instances successfully completing, and Figure 2(b)
the case of there being intervening failures between suc-
cessfully completed instances. Thus, the probability of
J̄i,j,next taking a valueg can be defined as

P(J̄i,j,next = g) =
j Ti∑

t=(j−1)Ti+1

St
i,j (W1 + W2) (14)

whereW1 andW2 are given by

W1 =

{
Sa

i,α if j Ti < a

0 otherwise

W2 =

Sb
i,β

β−1∏

k=j+1

Fi,k if j + 1 < β

Sb
i,β if j + 1 = β ∧ a < b

0 otherwise

(15)

andSt
i,j denotes, as defined earlier, the probability ofτi,j

successfully completing at thetth time unit,a = (t + Ti −
g), b = (t + Ti + g), α = d(a/Ti)e andβ = d(b/Ti)e;
dxe denoting the ceiling ofx. Based on the definition of
regularity jitter in [3], termination of an instance of a task
g time units before, or after, its period, as counted from
the time of its last termination, has the same effect. In this
respect,W1 in (14) represents the probability of the next
instance, that is,τi,j+1, successfully terminatingTi − g
time units afterτi,j ; see Figure 2(a).W2 in (14), however,
represents the probability of the next successful instance
following τi,j successfully terminatingg + Ti time units
afterτi,j ; see Figures 2(a) and 2(b). This allows for poten-
tial failures of one or more instances ofτi following the
successful termination ofτi,j .

Let J̄i represents the success regularity jitter ofτi . With
ui = L

Ti
, the probability of̄Ji having a valueg is defined as

P(J̄i = g) =
1
ui

ui+1∑

j=1

P(J̄i,j,next = g) (16)

The probability of successful execution of a task, or
a set of tasks, in a given environment is another impor-
tant QoS attribute guaranteeing a required level of service.
If Si(m, n) denotes the probability of successful execu-
tion of taskτi in an environment withm processors andn
tasks, then an increase inm is generally expected to raise
Si(m, n), while an increase inn to lower it. Though the
interplay of these effects, as well as that of other factors
such as individual task parameters, has not been a subject
addressed here, an example in [10] illustrates the effect of
the number of processors on successful task executions.
4 Verification by Stochastic Simulation

This section presents the formulae to be used in the
stochastic simulation, presented in Section 5, for verifying
the probabilistic approach described above. The stochas-
tic simulation is based on a large sample of instances of
each taskτi generated according to itsPMF pi(l, c) used
at request times, introduced in Section 2.1, with a suf-
ficiently closely matching relative frequency distribution
(histogram). LettingL denote theLCM of task periods,
the simulation period is assumed to coverq LCM cycles,
or qL time units in total. Thus, each taskτi is requested
Qi = q× L

Ti
number of times over the whole simulation

period. Based on the results of the stochastic simulation,
various QoS indicators such as probability of successful
execution, probability of failure and response time latency
can be obtained and compared against analogous results
established by the probabilistic analysis.

When dealing with various quantities encountered in
simulation, let us distinguish them notationally from their
equivalent counterparts in the probabilistic analysis by the
use of an overbar. Thus,̄τ k

i,j represents thejth instance of
τi in the kth simulation cycle, fork ∈ 1 . . q andS̄i,j and
F̄i,j be the rates of successful execution and failure of the
jth instances ofτi respectively, forj = 1, 2, . .L/Ti . The
latter are defined as the ratios of total number of successful
executions, and likewise failures, ofτ̄ k

i,j to the total number
of cycles. In other words

S̄i,j =
1
q

q∑

k=1

Ti∑
t=1

Yk,t
i,j and F̄i,j = 1− S̄i,j (17)

whereYk,t
i,j =

1 if τ̄k
i,j is executed successfully

at time t within its period
0 otherwise

114

τ
5

�� ��

�� � ��

� �	

c
3

2

1

0 1
e)

2 3

0.1

0.2 0.3

0.2

l

0.2

τ
4

�

�

�� ��

��

2

c
3

2

1

0 1
d)

0.2

0.2

0.3 0.2

0.1

3 l
τ

2

��

��

��

3

2

1

0 1
b)

2 l

c

0.3

0.6

0.1

3
τ

1

��

����

0 1 2 3

Laxity (l)

C
om

pu
ta

ti
on

 ti
m

e
(c

)

1

2

3

0.2

0.5

0.3

a) τ
3

 !

"#

$ $%

& &'

c
3

1

0 1 2 3 l

0.4

2 0.3 0.2

0.1

c)

Figure 3. Characteristics Li and Ci of tasks τi , i = 1, · · · , 5, at request times.

Task 1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
ro

b
a

b
il

it
y

 o
f

S
u

c
.

E
x

e
c

u
ti

o
n

LLF-Prob

LLF-Sim

EDF-Prob

EDF-Sim

Task 2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

P
ro

b
a
b

il
it

y
 o

f
S

u
c
.
E

x
e
c
u

ti
o

n

LLF-Prob

LLF-Sim

EDF-Prob

EDF-Sim

Task 3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12

Request Number

P
ro

b
.
o

f
S

u
c
.
E

x
e
c
u

ti
o

n

LLF-Prob

LLF-Sim

EDF-Prob

EDF-Sim

Task 4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12

Request Number

P
ro

b
.

o
f

S
u

c
.

E
x
e
c
u

ti
o

n

LLF-Prob

LLF-Sim

EDF-Prob

EDF-Sim

Figure 4. Probabilistic and simulation results for tasks τ1–τ4 in Task Set 3 under LLF and EDF

scheduling with random tie–breaking.

Task 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
ro

b
.

o
f

S
u

c
.

E
x

e
c

u
ti

o
n

LLF-Prob

LLF-Sim

EDF-Prob

EDF-Sim

Task 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

P
ro

b
.
o

f
S

u
c
.
E

x
e
c
u

ti
o

n

LLF-Prob

LLF-Sim

EDF-Prob

EDF-Sim

Task 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

Request Number

P
ro

b
.

o
f

S
u

c
.

E
x
e
c
u

ti
o

n

LLF-Prob

LLF-Sim

EDF-Prob

EDF-Sim

Task 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

Request Number

P
ro

b
.
o

f
S

u
c
.
E

x
e
c
u

ti
o

n

LLF-Prob

LLF-Sim

EDF-Prob

EDF-Sim

Figure 5. Probabilistic and simulation results for tasks τ1–τ4 in Task Set 3 under LLF and EDF

scheduling with highest–indexed–task–first tie–breaking.

115

τ1 τ2 τ3 τ4 τ5

(l, c) P Hist (l, c) P Hist (l, c) P Hist (l, c) P Hist (l, c) P Hist
(0,2) 0.2 0.202 (0,1) 0.3 0.302 (0,3) 0.4 0.404 (1,2) 0.2 0.202 (1,2) 0.1 0.101
(1,2) 0.3 0.299 (1,2) 0.6 0.599 (1,2) 0.3 0.300 (2,1) 0.1 0.100 (2,2) 0.2 0.201
(1,3) 0.5 0.498 (2,3) 0.1 0.099 (2,1) 0.1 0.100 (2,2) 0.3 0.300 (2,3) 0.2 0.199

(2,2) 0.2 0.196 (2,3) 0.2 0.202 (3,2) 0.2 0.202
(3,2) 0.2 0.196 (3,3) 0.3 0.296

Table 2. Comparison between the frequencies of the generated data and the probability values

Sched. Task 1 2 3
regime Task Set 1 2 3 1 2 3 1 2 3
EDF Mean 0.9738 0.9048 0.8060 0.9935 0.9650 0.9306 0.9570 0.8972 0.8057

St. Dev. 0.0608 0.1018 0.1162 0.0115 0.0294 0.0324 0.0615 0.0624 0.0545
LLF Mean 0.9917 0.9918 0.8062 0.9876 0.9389 0.8412 0.9897 0.9417 0.7880

St. Dev. 0.0181 0.0501 0.0717 0.0212 0.0515 0.0522 0.0198 0.0554 0.0642

Table 3. Mean and Standard Deviation for the Si,j of τ1, τ2 and τ3 in Task Sets 1, 2 and 3.

Using the probabilistic notions for comparative pur-
poses, the probability of̄τi,j having asuccess response
time t is defined as the ratio of the total number ofτ k

i,j in-
stances successfully executed at timet within their periods
to the total number of cycles. LettinḡRi,j denote the suc-
cess response time of instancesτ k

i,j , for t = 1, 2, . .Ti , the
probabilities ofτ k

i,js successfully terminating at timet, and
the probabilities of them successfully terminating withint
time units in their periods, can be defined respectively as

P(R̄i,j = t) =
1
q

q∑

k=1

Yk,t
i,j , P(R̄i,j 6 t) =

1
q

q∑

k=1

t∑
s=1

Yk,s
i,j (18)

with Yk,t
i,j andYk,s

i,j remaining as defined in (17).
Consideringsuccess regularity jitterof tasks, letJ̄i,g

represents the total count of measurementsg observed
over the simulation time in relation toτi , where g =
| y− Ti | andy is the length of time between termination
times of two consecutive successfully executed instances
of τi . The probability ofτi having a success regularity
jitter g is defined as the ratio of total count to the total
number of instances

P(J̄i = g) =
J̄i,g

Qi
(19)

5 An Illustrative Example
Our previous work [10] illustrates in some detail the

kind of results that can be obtained using the proposed ap-
proach, in particular, a comparison of the probability of
successful execution of individual task instances over the
LCM of task periods underEDF and LLF scheduling, the
same on average as a function of the number of available
processors and a measure of jitter experienced by individ-
ual tasks. These can be important indicators of perfor-
mance of individual tasks and the system as a whole. In
this paper, we extend this example to include other as-
pects, in particular, a verification of the approach by a
stochastic simulation (described in Section 4), the effect
of tie–breaking on scheduling (described in Section 2.2)
and additional QoS indicators (described in Section 3).

The illustration consists of three related examples
involving three separate sets of tasks:{ τ1, τ2, τ3 },
{ τ1, τ2, τ3, τ4 } and{ τ1, τ2, τ3, τ4, τ5 }; these are referred

to as Task Sets 1, 2 and 3 respectively. The latter two
are intended to show the adverse effect of the increased
workload due toτ4 andτ5 on scheduling the tasks in Set
1. ThePMF-valuespi(l, c) of individual tasks at their re-
quest times, used in probabilistic analysis, are shown in
Figure 3. Interpretation of these data is such that, accord-
ing to Figure 3(a),τ1 has a probability of 0.3 arriving with
a laxity 1 and a computation time 2 and a probability of
0.5 arriving with the same laxity but a computation time
3. Task periods are 4, 6, 5, 5 and 6 respectively. (N.B.
these values are not related to any particular application.)
The above tasks are scheduled usingLLF and EDF algo-
rithms on two processors. The data used in the stochastic
simulation have been generated randomly from the data in
Figure 3 covering a simulation period consisting of 1000
LCM cycles. Table 2 compares thePMF-values (underP)
used in probabilistic analysis and the relative frequency
histograms (underHist) of the dada used in simulation.

Turning to the results, Table 3 presents the cumulative
probabilities of successful execution of tasksτ1, τ2 and
τ3 for all three Task Sets in theEDF andLLF regimes over
their respective periods over theLCM in terms of the mean
and the standard deviation. The table shows the adverse
effect of the increased workload due toτ4 on its own (in
Task Set 2), andτ4 and τ5 together (in Task Set 3) on
the execution ofτ1, τ2 andτ3 (Task Set 1). It also shows
how different tasks tend to benefit differently from the two
scheduling algorithms,τ1 andτ3 favourably fromLLF and
τ2 from EDF. Despite their inadequacy for drawing any
general conclusions, these examples tend to suggest a link
between the algorithms and the more dominant task char-
acteristic on the probability of successful execution.

Figure 4 presents the probability of successful exe-
cution of individual task instances over theLCM due to
both probabilistic predictions and simulation outcomes.
Though in the case of tasksτ1 andτ2 the results due to
two approaches are fairly close to each other, there is a
marked difference in the case ofτ3 underEDF scheduling,
probabilistic results even indicating a better performance
underEDF than underLLF and, to an extent, a reversal of
performance in the simulation. In this respect, it is worth

116

Task 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8

Jitter

P
ro

b
a
b

il
it

y

Prob

Sim

Task 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5 6 7 8 9 10 11 12

Jitter

P
ro

b
a
b

il
it

y

Prob

Sim

Task 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8 9 10
Jitter

P
ro

b
a

b
il

it
y

Prob

Sim

Task 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8 9 10
Jitter

P
ro

b
a

b
il

it
y

Prob

Sim

Figure 6. Probability of success regularity jitter experienced by tasks τ1–τ4 in Task Set 3.

noting that the above set of results in Figure 4 is based on
non–deterministic tie-breaking strategy discussed in Sec-
tion 2.2.

In contrast, Figure 5 shows analogous results using a
highest–indexed–task–first strategy to tie breaking, con-
sistently offering greatest advantage toτ5 and least advan-
tage toτ1. It has also been observed thatEDF exhibited
less number of ties compared toLLF. As a result, tasks
such asτ1 and τ2, which are relatively less advantaged,
are less affected by this strategy underEDF in compari-
son toLLF. In the case ofτ3, with reference to the ob-
servation made above on non–deterministic tie-breaking,
not only has there been an improvement in its perfor-
mance but also an apparent narrowing down of the gap
between probabilistic and simulation results underEDF.
Enjoying higher priority over other tasks whenever a tie
is encountered,τ4 andτ5 exhibit a high performance un-
der both algorithms, both tasks showing a probability of
1.0 in successful execution inLLF and τ4 a probability
of over 0.8 in successful execution inEDF. An analo-
gous analysis has been conducted for tie–breaking based
on lowest–indexed–task–first strategy. Though the results
of this analysis are not given here for reasons of space,
the outcome is a reversal of the above, lettingτ1 enjoy
the best performance andτ5 the worst. In this case,τ1

and τ2 achieve a probability of 1.0 in successful execu-
tion in LLF in both probabilistic analysis and simulation.
The probability of successful execution ofτ3 under both
highest–indexed–task–first and lowest–indexed–task–first
strategies is higher than that under non–deterministic tie-
breaking strategy.

Illustrating the effect of the scheduling algorithmsEDF

and LLF on success regularity jitter, i.e. the jitter expe-
rienced by successive successful instances of the tasks

concerned, Figure 6 shows a close correlation between
the probabilistic predictions and the simulation results for
tasksτ1–τ4 in Task Set 3 under non–deterministic tie–
breaking. Figure 7 makes a similar comparison of the ex-
pectation of (average) response times of the same tasks but
under highest–indexed–task–first approach to tie break-
ing. In this case too there appears to be a close correlation
between the probabilistic predictions and the simulation
results, but except forτ3.

6 Conclusions
This paper presents an analytical approach for com-

puting QoS indicators of tasks with uncertainties exe-
cuted by a multi-processor system. Tasks are periodic but
are characterised by uncertainties in computation times
and deadlines (expressed indirectly through laxity, or ur-
gency), described in terms of jointly discrete probability
mass functions. At the request times, task computation
times and laxities are truly random in character, though
subsequently their variation is dependent on the manner
of execution. Though onlyEDF and LLF algorithms are
considered here, the approach is applicable to the study
of execution under any priority driven algorithm. By ex-
amining possible computation times and laxities of each
task in turn, a systematic approach is developed for enu-
merating its execution scenarios involving other compet-
ing tasks. Knowing the probability of realisation of each
scenario and the manner in which the task under consid-
eration is treated in the face of competition by other tasks
at the same priority level, its execution probability is com-
puted for each time value. Essentially, this allows a way
to work out the probability distribution of each task at ev-
ery instant of time from the probability distributions of
all tasks in the previous time instant. These probability
distributions form the basis of QoS assessment of indi-

117

Task 1

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
v
e
ra

g
e
 R

e
s
p

o
n

s
e
 T

im
e

LLF-Prob

LLF-Sim

EDF-Prob

EDF-Sim

Task 2

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

A
v

e
ra

g
e

 R
e

s
p

o
n

s
e

 T
im

e

LLF-Prob

LLF-Sim

EDF-Prob

EDF-Sim

Task 3

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12

Request Number

A
v
e
ra

g
e
 R

e
s
p

o
n

s
e
 T

im
e

LLF-Prob

LLF-Sim

EDF-Prob

EDF-Sim

Task 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12

Request Number

A
v
e
ra

g
e
 R

e
s
p

o
n

s
e
 T

im
e

LLF-Prob

LLF-Sim

EDF-Prob

EDF-Sim

Figure 7. Expectation of response times of tasks τ1–τ4 in Task Set 3.
vidual tasks. In this connection, the paper presents how
to compute QoS indicators such as the rate of successful
execution, latency in response time and jitter.

An example illustrates the approach in some detail with
particular reference to the benefits to be gained and the ca-
pabilities of the approach, with a further stochastic simu-
lation demonstrating the general validity of the approach.
These results indicate some sensitivity of the analysis to
the manner in which any ties are broken among tasks
competing at the same priority level, thus highlighting the
practical significance of the manner of tie–breaking at the
implementation level.

The combinatorial nature of the enumeration of exe-
cution scenarios inevitably results in anO(n23n−1) com-
plexity, making the direct application of the approach as
proposed to scheduling large numbers of tasks infeasible.
Therefore, the approach should be regarded as applica-
ble only to moderately sized problems. As is the case
with most applications, limitation of uncertainty only to
computation times would help to reduce the complexity.
In addition to providing a general solution, an important
contribution of this work is the comprehensive insight it
has given to understanding various computational aspects
of probabilistic scheduling. The result is a sound founda-
tion for undertaking research into more efficient schedul-
ing algorithms, possibly, employing heuristic means to re-
duce the complexity. Another important issue that needs
addressing is the establishment of the validity of the ap-
proach using a more comprehensive range of simulations
and, if possible, the bounds of this validity.

References
[1] A. Atlas and A. Bestavros. Statistical rate monotonic

scheduling.19th IEEE Real-Time Systems Symposium. 1998.
[2] A. Atlas and A. Bestavros. Design and Implementation of

Statistical Rate Monotonic Scheduling in KURT Linux.IEEE
Real-Time Systems Symposium. 1999.

[3] L. David, F. Cottet and N. Nissanke. Jitter Control in On-
line Scheduling of Dependent Real-time Tasks.22nd IEEE
Real-Time Systems Symposium, London, 2001.

[4] M. L. Dertouzos and A.K. Mok. Multi-Processor On-line
Scheduling of Hard Real-time Systems.IEEE Trans. on Soft-
ware Engineering, 15(12), December 1989.

[5] J. L. Diaz, D. F. Garcia, et al. Stochastic Analysis of Peri-
odic Real-time Systems.23rd IEEE Real-Time Systems Sym-
posium, Austin, Texas, 2002.

[6] S. Edgar and A. Burns Statistical Analysis ofWCET for
Scheduling.22nd IEEE Real-Time Systems Symposium. Lon-
don, UK. 2001.

[7] M. Gardner. Probabilistic Analysis and Scheduling of Crit-
ical Soft Real–Time Systems. Ph.D. Thesis. Univ. of Illinois
at Urbana–Champagn. 1999.

[8] A. Leulseged. Probabilistic Analysis of Real-Time Multi-
Processor Scheduling. PhD Thesis, London South Bank Uni-
versity; November 2005.

[9] J. P. Lehoczky, “Real–time Queueing Theory”,17th Real-
time System Symposium, December 1996.

[10] A. Leulseged and N. Nissanke. Probabilistic Analysis of
Multi–processor Scheduling of Tasks with Uncertain Param-
eters.9th International Conference on Real–Time Embedded
Computing Systems and Applications. Taiwan, R.O.C. 2003.

[11] S. Manolache, P. Eles and Z. Peng. Memory and Time–
efficient Schedulability Analysis of Task Sets with Stochastic
Execution Time.13th Euromicro Conference on Real–Time
Systems.2001, Pages 19–26.

[12] N. Nissanke, L. David and F. Cottet. Probabilistic Preemp-
tive Schedulability Analysis. Int. Workshop on Probabilistic
Analysis Techniques for Real Time and Embedded Systems
(PARTES 2004), Pisa, September 2004.

[13] N. Nissanke, A. Leulseged and S. Chillara. Probabilistic
Performance Analysis in Multiprocessor Scheduling.Com-
puting and Control Engineering Journal.13(4), August 2002.

[14] L. Zhou, K. G. Shin and E. A. Rundensteiner. Rate-
monotonic scheduling in the presence of timing unpre-
dictability. IEEE Real–Time Technology and Applications
Symposium. 1998.

118

A Comparison of Global and Partitioned EDF Schedulability Tests for
Multiprocessors

Theodore P. Baker∗

Florida State University
Dept. of Computer Science
Tallahassee, FL 32306 USA

baker@cs.fsu.edu

Abstract

This paper compares the performance of several vari-
ations on EDF-based global and partitioned multiproces-
sor scheduling algorithms, together with their associated
feasibility tests, on a variety of pseudo-randomly chosen
sets of sporadic tasks. A new hybrid EDF-based scheme is
shown to perform better than previously studied priority-
based global scheduling schemes, though not as well as
EDF-based first-fit partitioned scheduling.

1 Introduction

Recent trends in microprocessor design have drawn in-
terest to multi-core and multiprocessor designs for high
performance embedded real-time systems. The predom-
inant approach to scheduling multiprocessor hard-real-
time systems has been partitioned, in which each task is
assigned statically (more or less) to one processor. Parti-
tioned scheduling has the virtue of permitting schedulabil-
ity to be verified using well-understood single-processor
analysis techniques.

The alternative to partitioned scheduling is global
scheduling, in which there is a single job queue from
which jobs are dispatched to any available processor ac-
cording to a global priority scheme. Until recently, it was
believed that global scheduling policies with fixed job pri-
orities1, such as Rate Monotonic and Earliest-Deadline-
First (EDF), could not even guarantee schedulability for
systems of hard-deadline tasks whose total processor de-
mand exceeded the capacity of a single processor. How-
ever, there have been several recent improvements in the
worst-case analysis of global hard-deadline multiproces-
sor scheduling [1, 5, 12, 13, 2, 8, 9, 11, 4]. Among other
developments, the EDF-US[1/2] scheduling policy[18], in
which a few high-utilization tasks are scheduled at top pri-
ority and other tasks are scheduled according to deadlines,

1Here, fixed-job-priority scheduling is distinguished from fixed-task-
priority, where a task is as a sequence of jobs. That is, with EDF schedul-
ing the priority of each task varies from one job to another, but the prior-
ity of each job is fixed at the time the job is released.

has been shown to guarantee worst-case schedulability up
to the same processor utilization level as partitioned EDF
scheduling.

Global scheduling remains controversial. There are
individuals who believe strongly that global scheduling
is impractical, because of the overhead of synchronizing
schedulers between processors and the lost performance
due to translation look-aside buffer and memory cache
misses following the migration of a tasks between pro-
cessors. On the other hand, the concept of global schedul-
ing is appealing, especially in systems where average as
well as worst-case response time is important. It is a
well-known result of queueing theory that single-queue
scheduling produces better average response times than
queue-per-processor scheduling [15].

This paper attempts to compare the present state of the
art for global EDF scheduling against the state of the art
for partitioned EDF scheduling. Because the worst-case
performance of both approaches has been shown to be the
same, at least for the case where deadline equals period,
the comparison is of empirical performance. That is, what
are the odds that a randomly chosen set of periodic or spo-
radic tasks can be guaranteed schedulable by a given com-
bination of scheduling policy and feasibility test? As a
further contribution, the paper introduces a previously un-
studied hybrid global scheduling algorithm, called EDF-
LM.

2 Prior Work

For the review of prior work, some terminology is
needed.

2.1 Terminology
A task set τ is a collection of sporadic tasks

{τ1, τ2, . . . , τn}. Each task generates a potentially in-
finite sequence ofjobs, and is characterized by a triple
τi = (ci, di, Ti). The parameterci is theworst-case ex-
ecution time requirementof each job ofτi anddi is the
deadlineof each job relative to its release time. If the
task isperiodic, Ti is the separation between the release

119

times of the jobs, and called theperiodof the task. If the
task issporadic, Ti is interpreted instead as just themini-
mum separationbetween the release times of the jobs. It
follows that aperiodic task setis a restricted form ofspo-
radic task set.

The utilization of a taskτi is denoted byui
def= ci/Ti,

and thedensityof τi is denoted byλi
def= ci/min(di, Ti).

2.2 General Limitation
Andersson, Baruah, and Jonsson [1] showed that the

utilization guarantee for EDF or any other fixed-job-
priority multiprocessor scheduling algorithm – whether
partitioned or global – cannot be higher than(m + 1)/2
on anm-processor platform. This result holds for inde-
pendent periodic task sets with deadline equal to period,
and generalizes directly to the sporadic case.

2.3 Partitioned Scheduling
The optimal partitioning of tasks among processors is

reducible to the bin packing and integer partition prob-
lems, which are known to be NP complete. Therefore,
research on partitioned multiprocessor scheduling has fo-
cused on the analysis of heuristic algorithms for the as-
signment of tasks to processors, and on bounding how
badly they can do compared to an optimal algorithm.
Some of this research has looked at average-case perfor-
mance. Other research has attempted to find tight bounds
on the worst-case performance of heuristic partitioning al-
gorithms.

Lopezet al. [16] showed that it is possible to schedule
on m processors any system ofn independent periodic
tasks with maximum individual utilization= umax and
total utilization< mβEDF+1

βEDF+1 whereβEDF = b1/umaxc.
For the unrestricted case, whereumax = 1 andβEDF =
1, this says the guaranteed utilization bound is(m+ 1)/2.
It follows from Andersson, Baruah, and Jonsson [1] that
this result is tight.

Baruah and Fisher [4] studied a partitioning algorithm
that assigns tasks to processors by a first-fit algorithm in
deadline-monotonic order (that is, sorted by increasing
deadline). The single-processor test for fit is based analy-
sis of a demand-bound function, as follows:

Theorem 1 (BF) A set of independent sporadic tasks
τ1,. . . ,τn is EDF schedulable on one processor if both of
the following hold for each taskτi:

di −
n∑
j=1

DBF∗(j, di) ≥ ci (1)

1−
n∑
j=1

uj ≥ ui (2)

whereui = ci/Ti and

DBF∗(i, t) =
{

0, if t < di
ci + (t− di)ui, otherwise

ci
Ti
≤ λ ci

Ti
> λ

di ≤ Ti
ci
Ti

(1 + Ti−di
dk

) ci
Ti

(1 + Ti
dk

)− λ di
dk

di > Ti
ci
Ti

ci
Ti

(1 + Ti
dk

)

Table 1. Definition of βk(i).

2.4 Global Scheduling
Goossens, Funk, and Baruah [13] showed that a sys-

tem of independent periodic tasks can be scheduled suc-
cessfully onm processors by EDF scheduling if the total
utilization is at mostm(1−umax) +umax, whereumax is
the maximum utilization of any individual task. They also
showed that this utilization bound is tight, in the sense that
there is no utilization bound̂U > m(1−umax)+umax+ε,
whereε > 0, for whichU ≤ Û guarantees EDF schedu-
lability. Srinivasan and Baruah [18] also examined the
global EDF scheduling of periodic tasks on multiproces-
sors, and showed that any system of independent periodic
tasks for which the utilization of every individual task is
at mostm/(2m− 1) can be scheduled successfully onm
processors if the total utilization is at mostm2/(2m− 1).

In 2002, Srinivasan and Baruah [18] proposed a
method for dealing with a few heavy tasks, using ahybrid
scheduling policy. Their idea is to give highest (fixed)
priority to to tasks of utilization greater than some con-
stantζ, and schedule the other tasks according to the ba-
sic EDF algorithm. This algorithm is called EDF-US[ζ].
Algorithm EDF-US[m/(2m−2)] was shown to correctly
schedule onm processors any periodic task system with
total utilizationU ≤ m2/(2m− 2).

In 2003, Goossens, Funk and Barush [13] introduced
another hybrid method, called PriD, for periodic task sys-
tems. The idea is to choose thek tasks (0 ≤ k < m)
with highest utilization (ui) and give those special tasks
top priority; the remainingn − k tasks are scheduled ac-
cording to the EDF policy. The valuek is chosen to be
the minimum such that the remainingn−k tasks satisfy a
utilization-based schedulability test form− k processors.

Baker [2, 3] derived several sufficient feasibility tests
form-processor preemptive EDF scheduling of sets of pe-
riodic and sporadic tasks with arbitrary deadlines, includ-
ing the following.

Theorem 2 (BAK) A set of independent sporadic tasks
τ1, . . . , τn is EDF-schedulable onm identical processors
if, for every taskτk, there exists a positive valueµ ≤ m−
(m− 1)λk such that

N∑
i=1

min(βk(i), 1) ≤ µ

whereλ = m−µ
m−1 andβk(i) is as defined in Table 1.

Baker also showed that the optimal value ofζ in EDF-
US[ζ] with respect to maximizing the worst-case guaran-
teed schedulable utilization isζ = 1/2, for which the uti-
lization bound is(m + 1)/2. It follows from the argu-
ment in [1] that this bound is tight, and it is identical to

120

the worst-case utilization bound for EDF-based first-fit-
decreasing (FFD) partitioned scheduling.

Bertogna, Cirinei and Lipari [8] made further improve-
ments in global EDF schedulability tests. First, they ob-
served that the proof of the utilization bound test of [13]
extends naturally to cover pre-period deadlines if the uti-
lization ui = ci/Ti is replaced byci/di. As observed
by Sanjoy Baruah2, the same proof extends to the case
of post-period deadlines ifci/di is replaced by density
(λi = ci/min(di, Ti)).

Theorem 3 (GFB) A set of independent sporadic tasks
τ1,. . . ,τn is EDF schedulable onm identical processors
if

n∑
i=1

λi ≤ m− λmax(m− 1)

whereλmax = max{λi|i = 1, . . . , n}.

Bertognaet al. also developed the following new
schedulability test.

Theorem 4 (BCL) A set of independent sporadic tasks
τ1,. . . ,τn with constraintdi ≤ Ti is EDF schedulable on
m identical processors if for each taskτk one of the fol-
lowing is true:∑

i 6=k

min{βi, 1− λk} < m(1− λk) (3)

∑
i 6=k min{βi, 1− λk} = m(1− λk) and

∃i 6= k : 0 < βi ≤ 1− λk
(4)

where

βi =
Nici + min{ci,max{0, dk −NiTi}}

dk

and

Ni =
⌊
dk − di
Ti

⌋
+ 1

Bertognaet al. demonstrated that the BCL, GFB, and
BAK tests are generally incomparable, but observed that
the BCL test seemed to do better than the rest on task sets
with a few “heavy” (high utilization) tasks. They reported
simulations on collections of such pseudo-randomly gen-
erated tasks sets, for which the BCL was able to discover
significantly more schedulable task sets than either of the
other two tests. However, they did not compare these re-
sults against the EDF-US[ζ] hybrid method of handling
heavy tasks, or any other hybrid method. Since such hy-
brid methods are much better at handling a few heavy
tasks than pure EDF scheduling, it is more important how
a schedulability test for such task systems performs in the
hybrid environment than in the pure EDF environment.

2personal communication

3 Empirical Comparisons

To evaluate the overall efficacy of the known schedu-
lability tests for global EDF scheduling, and to compare
the efficacy of globalversuspartitioned scheduling, a se-
ries of experiments were conducted on pseudo-randomly
generated sets of periodic tasks.

Of course, the usual disclaimers for such simulations
apply. The performance of a scheduling policy and
schedulability test on generated task sets is only sugges-
tive of the performance that can be expected in practice.
The schedulability tests do not take implementation over-
heads into account. The distribution of test cases consid-
ered in any such experiment may bias the outcome. In
fact, it can be argued that for each specific application the
consideration of any more cases than the one task set at
hand should be biased, since the only important question
is whether that one task set can be successfully scheduled.
Perhaps as the system evolves the task set may change and
the question will be asked again, but for each application
one is still interested a very small and very specific collec-
tion of task sets.

So, what good are simulation results, such as those re-
ported below? Ideally, for each application one should
experiment with different scheduling policies and tests on
the specific task set of interest, and perhaps also with a
range of variations that anticipate future evolution of the
system. However, when one has a large number of choices
of scheduling policies and schedulability tests, each of
which could work better on some cases, such exhaustive
experimentation is not be practical for every application.
How does one narrow the range of choices? The same
need for narrowing the range of scheduling policy choices
arises when one is deciding which policies too support in
a generic real-time operating system kernel. In this con-
text, the statistical trends over large numbers of task sets
should be a better predictor of comparative performance
than pure intuition.

For these experiments, 48 different datasets were con-
sidered, each containing 1,000,000 task sets. The datasets
were generated in several different ways, with the hope of
discovering some correlation between the way the tasks
were generated and which combination of scheduling pol-
icy and schedulability test did better. However, the trends
across all the experiments were quite similar, and the
space here is limited, so only the results of a few repre-
sentative experiments are reported.

3.1 Task Set Generation Methodology
These methods by which the datasets were generated

were based on the following goals:

1. Focus on cases where scheduling performance is
most likely to matter, excluding task sets that are
clearly so easy that it does not matter how they are
scheduled (trivially schedulable), or that are clearly
impossible to schedule by any method (infeasible).

121

2. For each model, generate as large a sample of task
sets as is practical.

3. Cover a range of multiprocessor sizes.
4. Cover a variety of deadline models.
5. Cover a variety of distributions of task utilizations,

including for comparison the bimodal kind of distri-
bution of Bertogna, Cirinei, and Lipari [8].

6. Keep the number of cases small enough to allow run-
ning a complete battery of tests in less than a day.

Task periodsTi were chosen pseudo-randomly from
the integer interval[1, 1000]. Task utilization factors (and,
implicitly, the compute times) were chosen according to
the following distributions, truncated to bound the indi-
vidual task utilizations between 0.001 and 0.999:

1. uniformly chosen from[1/Ti, 1]
2. bimodal distribution: heavy tasks uniformly cho-

sen from[0.5, 1]; light tasks uniformly chosen from
[1/Ti, 0.5]; probability of being heavy = 1/3

3. exponential distribution with mean 0.25
4. exponential distribution with mean 0.50

The deadlines were chosen in several different ways:

1. period:di = Ti
2. constrained:di uniformly chosen from[ci, Ti].
3. unconstrained:di uniformly chosen from[ci, 4Ti]
4. superperiod: di uniformly chosen from
{Ti, 2Ti, 3Ti, 4Ti}

Datasets were generated for three different numbers of
processors (m = 2, 4, 8), as follows: An initial set of
m+ 1 tasks was generated, and tested. Then another task
was generated and added to the previous set, and all the
schedulability tests were run on the new set. This pro-
cess of adding tasks was repeated until the total processor
utilization exceededm. The whole procedure was then
repeated, starting with a new initial set ofm+ 1 tasks.

Note that the above method of generating task sets al-
ready eliminates tasks sets that can be trivially scheduled
by assigning one task per processor, or that are clearly
infeasible because they have utilization greater thanm.
Additional screening was performed, to remove task sets
with total density

∑n
i=1 λi ≤ 1.0 (schedulable by EDF on

one processor) or total loadδsum≥ m (infeasible onm
processors) [4, 10]. The load-bound function is defined by

δsum
def=

n∑
i=1

DBF(τi, t)
t

and

DBF(τi, t)
def= max(0, (b t− di

pi
c+ 1)ei).

Many infeasible task sets were still included in the ex-
periments, because the only necessary and sufficient test
for global EDF schedulability ofn tasks onm processors

known to this author has worst-case execution time of the
orderO(mn · Πn

i=1Tici). The author implemented and
tested that algorithm, but running it on datasets of the size
considered here was not practical. Reporting the perfor-
mance of the efficient sufficient tests of feasibility against
one another on large numbers of tasks sets seemed more
useful than comparing them against a perfect but compu-
tationally impractical test on a much smaller number of
task sets, with smaller periods.

Note that [8] implies that “simulation of the schedule
up to the hyper-period checking for missed deadlines” is
a necessary and sufficient test for schedulability. This au-
thor is not aware of any proof that such a simulation is a
sufficient test for feasibility of sporadic task sets, or even
of periodic tasks sets with arbitrary initial release time off-
sets. Even under the assumption of strictly periodic tasks
and simultaneous start times, if periods can exceed dead-
lines simulation to the hyper-period is not sufficient.

The results of the experiments are displayed as his-
tograms. For example, see Figure 1.For all the his-
tograms in this paperthe horizontal axis represents values
of a task set’s total density, and each bucket corresponds
to a range of values[i · 0.01, (i + 1) · 0.01). The verti-
cal axis indicates a number of task sets. The plotted lines
with datapoint symbols (“X”, asterisk, square,etc.) show
how many task sets were verifiably schedulable according
to one pair of a scheduling algorithm and a schedulabil-
ity test. The legend shows the meaning of each datapoint
symbol. There is also a solid upper line, with legend “N”,
which shows the total number of task sets of the given den-
sity in the dataset, including both feasible and infeasible
task sets.

3.2 Representative of Global EDF
To choose a representative for global EDF scheduling,

simulations were run comparing the performance of sev-
eral schedulability tests, for both pure EDF scheduling
and some hybrids. The following sufficient tests for feasi-
bility under pure global EDF scheduling were considered:

BAK Baker’s test as stated in Theorem 2 above.
GFB Goossens, Funk and Baruah’s test, extended to ar-

bitrary deadlines by Bertogna, Cirinei and Lipari, as
stated Theorem 3 above.

BCL Bertogna, Cirinei, and Lipari’s test, as stated in
Theorem 4 above.

Figures 1-2 compare the performance of these tests on two
datasets, with pure global EDF scheduling. Figure 1 is for
one of the datasets were the BCL test excelled. Figure 2 is
for one of the datasets where the GFB excelled. Through a
detailed analysis of specific cases one can verify that each
of the three tests is able to verify schedulability for some
task sets that are not verifiable by the other tests. How-
ever, the histograms show some clear global patterns: (1)
the overall performances of the generalized GFB test and
BAK test are similar, with the GFB test generally taking
the lead; (2) as reported in [8], BCL does better for task

122

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 100 150 200 250 300 350 400

GFB
BAK
BCL

N

Figure 1. Constrained deadlines, bimodal utilization
distribution, four processors

 0

 2000

 4000

 6000

 8000

 10000

 12000

 100 150 200 250 300 350 400

GFB
BAK
BCL

N

Figure 2. Constrained deadlines, exponential utiliza-
tions with mean 0.25, two processors

sets with a few heavy tasks; (3) none of the tests is able
to show that very many of the task sets are schedulable.
Lacking a practical necessary and sufficient test of global
EDF schedulability, one cannot say for certain whether
the low rate of success is a property of the global EDF
scheduling policy or of the schedulability tests. How-
ever, the much better performance of the hybrid schedul-
ing policies reported below (using the same schedulability
tests) gives some evidence that the main weakness is with
the pure EDF policy.

3.3 Hybrid Global Schemes
As mentioned in Section 2.4, the performance of global

scheduling for systems with a few heavy tasks can be im-
proved by giving special treatment to the heavy tasks. As
the EDF-US[ζ] algorithm was originally proposed in [18],
the heaviness criterion wasui > ζ. However, this idea
can be generalized to other schedulability tests and the
need for a fixed cut-off valueζ can be eliminated. The
fundamental idea is a generalization of the PriD scheme
of Goossens, Funk and Barush [13]: thek most prob-

lematic tasks (0 ≤ k < m) for the given schedulability
test are chosen to receive top priority; the rest of the tasks
are scheduled according to the EDF policy. Thek special
tasks will certainly meet their deadlines. Schedulability
of the n − k remaining tasks can be verified using the
pure global EDF schedulability test under the (very con-
servative) assumption that they need to run on them − k
remaining processors. Successively larger values ofk are
tried, until one is found for which the system is schedu-
lable, or until allm − 1 values have been tried without
success.

The performance of the following hybrids of EDF and
highest-utilization-first scheduling were tested, along with
several other variations:

1. EDF-US[1/2]: give special priority to all the tasks of
utilization greater than 1/2;

2. EDF-LM3: give special priority to thek tasks with
highest density value (λi), wherek is the smallest
value between 0 andm for which the system can be
verified as schedulable by some test for global EDF
(e.g., GFB, BCL, BAK).

Note that EDF-LM is actually a family of algorithms,
since the choice ofk is dependent on which global schedu-
lability test is applied. Figure 3 shows the results of ap-
plying these two hybrid EDF scheduling policies, for both
the GFB and the BCL tests, on the same datasets reported
in Figure 1 and Figure 2. The performance of the two
tests with pure global EDF scheduling is also included,
for comparison. These results are typical of what was ob-
served on all of the datasets,i.e., The EDF-LM hybrid
schemes clearly find a much higher number of verifiably
schedulable task sets at every total utilization level than
the GFB test alone.

These figures also show the comparative effectiveness
of the GFB and BCL tests in the hybrid context. It can be
seen that the GFB performs consistently better. Observe
that Figure 1 is the same dataset, with a few heavy tasks,
for which BCL seemed to have an advantage in Figure 1.
Over all the tests run, the EDF-LM hybrid scheduling with
the GFB test was able to verifiably schedule significantly
more task sets than any of the other combinations.

3.4 Representative of Partitioned EDF
To select a representative for partitioned scheduling,

several EDF-based partitioning schemes were evaluated.
In each case the tasks were assigned to processors accord-
ing to the first-fit algorithm in order of some metric, such
as relative deadline (di) or density (λi). Two tests for fit
were evaluated: (BF) the sufficient test of [4]; (BHR) the
necessary and sufficient test of Baruahet al. [7]. The
strength of the BF test is its low complexity, which is
O(n). In contrast, the worst-case upper bound on the
complexity of the BHR test is the LCM of the task pe-
riods.

3The “LM” in EDF-LM stands for “lambda-monotonic”, since the
tasks are considered in increasing order ofλi.

123

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 100 150 200 250 300 350 400

EDF-US[1/2] w/GFB test
pure EDF w/GFB test
EDF-LM w/GFB test

EDF-US[1/2] w/BCL test
pure EDF w/BCL test
EDF-LM w/BCL test

N

Figure 3. Purevs. hybrid scheduling with GFB and
BCL tests, constrained deadline, bimodal utilization, 4
CPUs

 0

 2000

 4000

 6000

 8000

 10000

 12000

 100 150 200 250 300 350 400

EDF-US[1/2] w/GFB test
pure EDF w/GFB test
EDF-LM w/GFB test

EDF-US[1/2] w/BCL test
pure EDF w/BCL test
EDF-LM w/BCL test

N

Figure 4. Purevs. hybrid scheduling with GFB and
BCL tests, constrained deadline, exponential utilization
with mean 0.25, 2 processors

Figure 5 compares the success rates of the first-fit-
decreasing algorithm with three different ordering heuris-
tics: decreasing utilization (FFD-U); decreasing density
(FFD-L); increasing relative deadline (FFD-D). With this
and other datasets, the performances of FFD-L and FFD-
U were very close. On some datases FFD-L dominated
by a small margin, and and others the results were indis-
tinguishable. Figure 6 compares the success rates of the
FFD-L algorithm with the BHR (exact) and the BF (ap-
proximate) tests for single-processor EDF schedulability.
The BF FFD-L scheme does not do quite as well as the
BHR FFD-L scheme, but it is more efficiently computable
and provides performance that is fairly close to the exact
test.

3.5 Partitioned versusGlobal
The final set of experiments compared the performance

of global EDF-based scheduling against partitioned EDF
scheduling. Since the global approach already appeared

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 100 200 300 400 500 600

FFD-U w/BHR test
FFD-L w/BHR test
FFD-D w/BHR test

N

Figure 5. Performance of ordering heuristics compared,
constrained deadline, bimodal utilization, 4 CPUs

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 100 200 300 400 500 600

FFD-L w/BHR test
FFD-L w/BF test

N

Figure 6. Performance of BHR vs BF tests compared,
constrained deadline, bimodal utilization, 4 CPUs

to be the underdog, it was given every advantage: (1) be-
sides pure global EDF, EDF-LM (the EDF hybrid based
on giving extra priority to a few high-density tasks) was
included in the comparison; (2) instead of applying just
one schedulability test, if a task set failed the GFB test
the BCL test was applied, and if it failed both of those
the BAK test was applied; (3) for the partitioned approach
the FFD-L (first-fit in order of decreasing density) was ap-
plied using the BF test for single-processor schedulability.
The results for several datasets are shown Figures 7-8. The
pattern exhibited in these examples persisted over all of
the datasets tested. In all cases the hybrid global schedul-
ing scheme improved the success rate significantly over
pure EDF, but it still fell short of the success rate with
partitioned scheduling.

The GFB, BAK, and BCL family of tests all seem to
have an inherent limitation of densityλi = m, because
they are conceptually based on bounding density. This
limitation is especially apparent for the casem = 2, where
the drop-off is very sudden. It is clear that the parti-
tioned methods do not have this limitation. What is not

124

clear is whether the limitation is a property of global EDF
scheduling or just a limitation of the current generation of
global schedulability tests (which seems more likely).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 100 150 200 250 300

EDF
EDF-LM

FFD-L
N

Figure 7. Constrained deadline, bimodal utilization, 2
CPUs

 0

 5000

 10000

 15000

 20000

 25000

 100 150 200 250 300 350 400

EDF
EDF-LM

FFD-L
N

Figure 8. Unconstrained deadline, bimodal utilization,
2 CPUs

4 Conclusions and Future Work

The experiments reported here indicate that the avail-
able schedulability tests for global EDF scheduling have
improved significantly. However, the global approach has
not yet pulled ahead. Partitioned scheduling still appears
to have an advantage over the best feasibility tests for
global scheduling, with respect to the statistical chance
of being able to schedule an arbitrary hard-deadline task
set. If one also takes into consideration the fact that static
task assignment has lower runtime overhead, partitioned
scheduling looks even stronger.

This is not the end of the globalvs.partitioned schedul-
ing question. Further progress in the analysis of global
EDF scheduling appear possible. Even if global EDF

 0

 2000

 4000

 6000

 8000

 10000

 12000

 100 150 200 250 300 350 400

EDF
EDF-LM

FFD-L
N

Figure 9. Constrained deadline, exponential utilization
w/mean 0.25, 2 CPUs

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 100 200 300 400 500 600

EDF
EDF-LM

FFD-L
N

Figure 10. Constrained deadline, bimodal utilization, 4
CPUs

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 100 200 300 400 500 600

EDF
EDF-LM

FFD-L
N

Figure 11. Unconstrained deadline, bimodal utiliza-
tion, 4 CPUs

125

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 100 200 300 400 500 600

EDF
EDF-LM

FFD-L
N

Figure 12. Constrained deadline, exponential utiliza-
tion w/mean 0.25, 4 CPUs

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 100 200 300 400 500 600 700 800 900 1000

EDF
EDF-LM

FFD-L
N

Figure 13. Unconstrained deadline, bimodal utiliza-
tion, 8 CPUs

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 100 200 300 400 500 600 700 800 900 1000

EDF
EDF-LM

FFD-L
N

Figure 14. Constrained deadline, bimodal utilization, 8
CPUs

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 100 200 300 400 500 600 700 800 900 1000

EDF
EDF-LM

FFD-L
N

Figure 15. Constrained deadline, exponential utiliza-
tion w/mean 0.25, 8 CPUs

does not ultimately prove to be competitive with parti-
tioned EDF scheduling, there are other global scheduling
schemes to be considered. Some of these can even guaran-
tee worst-case schedulability at higher processor utiliza-
tion levels than the(m+1)/2 bound for job-static priority
scheduling.

There are several variants of the PFAIR concept.
Baruah, Cohen, Plaxton and Varvel [6] showed that
PFAIR scheduling is optimal for scheduling periodic tasks
on a multiprocessor, has a linear-time necessary and suf-
ficient schedulability test, and for sufficiently small quan-
tum size can guarantee schedulability at processor utiliza-
tion levels arbitrarily close tom. Srinivasan and Anderson
showed that the PFAIR approach is also optimal for mul-
tiprocessor scheduling of sporadic and rate-based tasks
[17], and there have been many more variations and ex-
tensions to the PFAIR theory made since that. The main
problem with PFAIR scheduling is the need to slice time
into small quanta, and the consequently high implementa-
tion overhead. In this regard, the fixed-job-priority algo-
rithms, like those considered in this paper have an advan-
tage, whether applied globally or partitioned.

Is there another algorithm that can break the(m+1)/2
bound but does not require such frequent time slicing as
the PFAIR approach? One possibility is suggested by the
work on “throw-forward” scheduling, shown by Johnson
and Maddison [14] to be optimal for scheduling batches
of independent jobs on a multiprocessor system. It will
be interesting to see whether the idea of throw-forward
scheduling (which is to combine consideration of deadline
and laxity) can be extended to periodic and sporadic tasks
systems and a sufficient test for schedulability found.

Of course there are also some remaining questions
about the comparative implementation overhead of the
global vs. partitioned approaches. Global scheduling
can have higher overhead in at least two respects: the
contention delay and the synchronization overhead for a
single dispatching queue is higher than for per-processor
queues; the cost of resuming a task may be higher if it is on

126

a different processor (due to interprocessor interrupt han-
dling and cache reloading) than on the processor where it
last executed. The latter cost can be quite variable, since
it depends on the actual portion of a task’s memory that
remains in cache when the task resumes execution, and
how much of that remnant will be referenced again be-
fore it is overwritten. These issues are discussed at some
length by Srinivasanet al. in [19], which includes some
simulation results comparing the overhead of global EDF
andPD2 scheduling, a PFAIR variant. It seems that only
experimentation with actual implementations can make a
conclusive case as to how serious are these overheads, and
how they balance against any advantages global schedul-
ing may have for on-time completion of tasks in real ap-
plications.

Acknowledgments

The author thanks the referees for their constructive
criticisms, including the advice to omit some parts of the
original submission, including the description and eval-
uation of an improved version of the BAK global EDF
schedulability test whose proof of correctness would not
fit, figures showing the obvious fact that combining the
GFB, BAK, and BCL tests results in improved accuracy as
compared to the individual tests. The author is also grate-
ful to Michele Cirinei for proof-reading the final copy of
this paper and catching several errors.

References

[1] B. Andersson, S. Baruah, and J. Jonsson. Static-priority
scheduling on multiprocessors. InProc. 22nd IEEE Real-
Time Systems Symposium, pages 193–202, London, UK,
Dec. 2001.

[2] T. P. Baker. Multiprocessor EDF and deadline monotonic
schedulability analysis. InProc. 24th IEEE Real-Time Sys-
tems Symposium, pages 120–129, 2003.

[3] T. P. Baker. An analysis of EDF scheduling on a multipro-
cessor.IEEE Trans. on Parallel and Distributed Systems,
15(8):760–768, Aug. 2005.

[4] S. Baruah and N. Fisher. Partitioned multiprocessor
scheduling of sporadic task systems. InProc. of the 26th
IEEE Real-Time Systems Symposium, Miami, Florida,
Dec. 2005.

[5] S. Baruah and J. Goossens. Rate-monotonic schedul-
ing on uniform multiprocessors.IEEE Trans. Computers,
52(7):966–970, July 2003.

[6] S. K. Baruah, N. Cohen, C. G. Plaxton, and D. Varvel.
Proportionate progress: a notion of fairness in resource
allocation.Algorithmica, 15:600–625, 1996.

[7] S. K. Baruah, R. R. Howell, and L. E. Rosier. Algorithms
and complexity concerning the preemptive scheduling of
periodic real-time tasks on one processor.Real-Time Sys-
tems, 2, 1990.

[8] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedu-
lability analysis of EDF on multiprocessor platforms. In
Proc. 17th Euromicro Conference on Real-Time Systems,
pages 209–218, Palma de Mallorca, Spain, July 2005.

[9] M. Bertogna, M. Cirinei, and G. Lipari. New schedula-
bility tests for real-time tasks sets scheduled by deadline
monotonic on multiprocessors. InProc. of the 9th Inter-
national Conf. on Principles of Distributed Systems, Pisa,
Italy, Dec. 2005.

[10] N. Fisher, T. P. Baker, and S. Baruah. Algorithms for deter-
mining the demand-based load of a sporadic task system.
Submitted for Publication, 2006.

[11] N. Fisher and S. Baruah. The partitioned, static-priority
scheduling of sporadic real-time tasks with constrained
deadlines on multiprocessor platforms. InProc. of the 9th
International Conf. on Principles of Distributed Systems,
Pisa, Italy, Dec. 2005.

[12] S. Funk, J. Goossens, and S. Baruah. On-line scheduling
on uniform multiprocessors. InProc. 22nd IEEE Real-
Time Systems Symposium, pages 183–192, London, UK,
Dec. 2001. IEEE Computer Society.

[13] J. Goossens, S. Funk, and S. Baruah. Priority-driven
scheduling of periodic task systems on multiprocessors.
Real Time Systems, 25(2–3):187–205, 2003.

[14] H. H. Johnson and M. S. Maddison. Deadline scheduling
for a real-time multiprocessor. InProc. Eurocomp Confer-
ence, pages 139–153, 1974.

[15] L. Kleinrock. Queueing Systems - Volume 2: Computer
Applications. Wiley Interscience, 1976.

[16] J. M. Lopez, M. Garcia, J. L. Diaz, and D. F. Garcia.
Worst-case utilization bound for EDF scheduling on real-
time multiprocessor systems. InProc. 12th Euromicro
Conf. Real-Time Systems, pages 25–33, 2000.

[17] A. Srinivasan and J. Anderson. Optimal rate-based
scheduling on multiprocessors. InProc. 34th ACM Sym-
posium on Theory of Computing, pages 189–198. ACM,
May 2002.

[18] A. Srinivasan and S. Baruah. Deadline-based scheduling
of periodic task systems on multiprocessors.Information
Processing Letters, 84:93–98, 2002.

[19] A. Srinivasan, P. Holman, J. H. Anderson, and S. Baruah.
The case for fair multiprocessor scheduling. InProc. 11th
International Workshop on Parallel and Distributed Real-
time Systems, Apr. 2003.

127

128

Resource and Data Management II

129

Solving Allocation Problems of Hard Real-Time Systems with Dynamic
Constraint Programming

Pierre-Emmanuel Hladik1, Hadrien Cambazard2, Anne-Marie D́eplanche1, Narendra Jussien2

1 IRCCyN, UMR CNRS 6597 2 École des Mines de Nantes, LINA CNRS
1 rue de la Nöe – BP 9210 4 rue Alfred Kastler – BP 20722

44321 Nantes Cedex 3, France 44307 Nantes Cedex 3, France
{hladik,deplanche}@irccyn.ec-nantes.fr {hcambaza,jussien}@emn.fr

Abstract

In this paper, we present an original approach (CPRTA
for ”Constraint Programming for solving Real-Time Al-
location”) based on constraint programming to solve an
allocation problem of hard real-time tasks in the context
of fixed priority preemptive scheduling. CPRTA is built on
dynamic constraint programming together with a learning
method to find a feasible processor allocation under con-
straints. It is a new approach which produce in its cur-
rent version as acceptable performances as classical al-
gorithms do. Some experimental results are given to show
it. Moreover, CPRTA shows very interesting properties. It
is complete —i.e., if a problem has no solution, the algo-
rithm is able to prove it—, and it is non-parametric —i.e.,
it does not require specific initializations—. Thanks to its
capacity to explain failures, it offers attractive perspec-
tives for guiding the architectural design process.

1. Introduction

Real-time systems have applications in many indus-
trial areas: telecommunication systems, automotive, air-
craft, robotics, etc. Today’s applications are becoming
more and more complex, as much in their software part
(an increasing number of concurrent tasks with various in-
teraction schemes), as in their execution platform (many
distributed processing units interconnected through spe-
cialized network(s)), and in their numerous functional and
non-functional requirements too (timing, resource, power,
etc. constraints). One of the main issues in the archi-
tectural design of such complex distributed applications
is to define an allocation of tasks onto processors so as
to meet all the specified requirements. In general, it is
a difficult constraint satisfaction problem. Even if it has
to be solved off-line most of the time, it needs efficient
and adaptable search techniques which are able to be in-
tegrated into a more global design process. Furthermore,
it is desirable that those techniques return relevant infor-
mation intended to help the designer who is faced with
architectural choices. The ”binary” result, in particular,

(has a feasible allocation been found?: yes and here it
is, or no, and that’s all) which is usually returned by the
search algorithm is not satisfactory in failure situations.
The designer would expect some explanations justifying
the failure and enabling him to revisit his design. There-
fore, more sophisticated search techniques that would be
able to collect some knowledge about the problem they
solve are required. Here are the general objectives of the
work we are conducting.

More precisely, the problem we are concerned with
consists in assigning a set of periodic, preemptive tasks
to distributed processors in the context of fixed prior-
ity scheduling, to respect schedulability but also to ac-
count for requirements related to memory capacity, co-
residence, redundancy, and so on. We assume that the
characteristics of tasks (execution time, priority, etc.) and
the ones of the physical architecture (processors and net-
work) are all known a priori —Only static real-time sys-
tems are here considered—.

Assigning a set of hard preemptive real-time tasks in
a distributed system under allocation and resource con-
straints is known to be an NP-Hard problem [14]. Up to
now, it has been massively tackled with heuristic meth-
ods [18], simulated annealing [21] and genetic algorithms
[16]. Recently, Szymanek et al. [20] and especially Ekelin
[7] have used constraint programming to produce an as-
signment and a pre-runtime scheduling of distributed sys-
tems under optimization criteria. Even if their context is
different from ours, their results have shown the ability of
such an innovative approach to solve an allocation prob-
lem for embedded systems and have encouraged us to go
further.

Like numerous hybridation schemes [9, 4], the way
we are investigating uses the complementary strengths of
constraint programming and optimization methods from
operational research. In this paper, we present its prin-
ciple and study its performances. It is a decomposition-
based method (related to logic Benders-based decompo-
sition [9]) which separates the allocation problem from
the scheduling one: the allocation problem is solved by
means ofdynamic constraint programmingtools, whereas

131

the scheduling problem is treated with specific real-time
schedulability analysis. The main idea is to ”learn”
from the schedulability analysis to re-model the allocation
problem so as to reduce the search space. In that sense, we
can compare this approach to a form oflearning from mis-
takes. Lastly we underline that a fundamental property of
this method is the completeness : when a problem has no
solution, it is able to prove it (contrary to heuristic meth-
ods that are unable to decide).

The remainder of this paper is organized as follows. In
section 2, we describe the problem. Section 3 is dedicated
to the description of the master- and sub-problems, and
the relations between them. The logical Benders decom-
position scheme is briefly introduced and the links with
our approach are put forward. In Section 4 the method is
applied to a case study. Some experimental results are pre-
sented in Section 5. Section 6 shows how it is possible to
set up a failure analysis able to aid the designer to review
his plans. It is a first attempt that proves its feasibility and
will need to go deeper. The paper ends with concluding
remarks in Section 7.

2 The problem description

2.1 The real-time system architecture
The hard real-time system we consider can be modeled

by a software architecture: the set of tasks, and a hard-
ware architecture: the execution platform for the tasks, as
represented in Fig. 1.

p1 p2

p3 p4 m4

m1 m2

m3

τ1

τ2 τ3

τ4

τ5

τ6

τi : (Ti, Ci, prioi, µi)
cij : (dij , prioij)

c12

c24

c13

c34

c56
δbandwidth

Figure 1. An example of hardware (left) and
software (right) architecture.

By hardware architecturewe mean a setP =
{p1, . . . , pk, . . . , pm} ofm processors with fixed memory
capacitymk and identical processing speed. Each pro-
cessor schedules tasks assigned to it with a fixed priority
strategy. It is a simple rule : a static priority is given to
each task and at run-time, the ready task with the highest
priority is put in the running state, preempting eventually a
lower priority task. Those processors are fully connected
through a communication medium with a bandwidthδ. In
this paper, we look at a communication medium called
a CAN buswhich is currently used in a wide spectrum
of real-time embedded systems. However any other com-
munication network could be considered as far as its tim-
ing behaviour (including its protocol rules) is predictable.
Thus the first experiments we have conducted addressed a
token ring network.

CAN (Controller Area Network) [5] is both a protocol
and physical network. CAN works as a broadcast bus
meaning that all connected nodes will be able to read all
messages sent on the bus. Each message has a unique
identifier which is also used as the message priority. On
each node waiting messages are queued. The bus makes
sure that when a new message gets selected to transfer,
the message with the highest priority, waiting on any
connected node, will get transmitted first. When at least
one bit of a message has started to be transfered it can’t
get preempted even though higher priority messages
arrive. As a result, the CAN’s behaviour will be seen
subsequently as the one of a non preemptive fixed priority
message scheduling.

Thesoftware architectureis modeled as a valued, ori-
ented and acyclic graph(T , C). The set of nodesT =
{τ1, ..., τn} represents the tasks. A task in turn is a set
of instructions which must be executed sequentially in the
same processor. The set of edgesC ⊆ T × T refers to the
data sent between tasks.

A taskτi is defined through timing characteristics and
resource needs: its periodTi (as a task is periodically
activated ; the date of its first activation is free), its
worst-case execution time without preemptionCi and its
memory needµi. A priority prioi is given to each task.
Taskτj has priority overτi if and only if prioi < prioj .
Edgescij = (τi, τj) ∈ C are weighted with its tramission
time Cij (the time it takes to transfer the message on
the bus) together with a priority valueprioij (useful in
the CAN context). Task priorities are assumed to be
different. The same assumption is made on message
priorities. In this model, we assume that communicating
tasks have the same activation period. However, we don’t
consider any precedence constraint between them : they
are periodically activated in an independent way, and they
read input data and write output data at the beginning and
the end of their execution.

The underlying communication model is inspired from
OSEK-COM specifications [17]. OSEK-COM is an uni-
form communication environment for automotive control
unit application software. It defines common software
communication interface and behaviour for internal com-
munications (within an electronic control unit) and exter-
nal ones (between networked vehicle nodes) which is in-
dependent of the communication protocol used. It is the
following. Tasks that are located on the same processor
communicate through local memory sharing. Such a lo-
cal communication cost is assumed to be zero. On the
other hand, when two communicating tasks are assigned
to two distinct processors, the data exchange needs the
transmission of a message on the network. Here we are
interested with theperiodic transmission modeof OSEK-
COM. In this mode data production and message trans-
mission aren’t synchronised : a producer task writes its
output data into a local unqueued buffer from where a pe-

132

(b) tasks are allocated on
different processors

(a) tasks are allocated on the
same processor

τi τj

Mij

cij

τi τi τjτj

Figure 2. Depending of the task allocation,
a message exists, or not.

riodic protocol service reads it and sends it into a mes-
sage. The building of protocol data units considered here
is very simple : each data that has to be sent from a pro-
ducer taskτi to a consumer taskτj in a distant way gives
rise to its proper messageMij . Moreover in this paper,
for a sake of simplicity, theasynchronous receiving mode
is preferred. It means that the release of a consumer task
τj is strictly periodic and unrelated with theMij message
arrival : when a node receives a message from the bus, its
protocol records its data into a local unqueued buffer from
where it can be read by the taskτj . In [8] an extension of
this work to asynchronous receiving modeis proposed in
which a message reception notification activates the con-
sumer task.

As a result, depending on the task allocation, an edge
cij of the software architecture may give rise to two differ-
ent equivalent schemes as illustrated in Fig. 2. In Fig. 2(b),
Mij inherits its periodTi from τi and its priorityprioij
from cij .

Therefore from a scheduling point of view, messages
on the bus are very similar to tasks on a processor. Like for
tasks, each messageMij is ”activated” everyTi units of
time; its (bus) priority isprioij ; and it has a transmission
timeCij .

2.2 The allocation problem
An allocation is a mappingA : T → P such that:

τi 7→ A(τi) = pk (1)

The allocation problem consists in finding the mappingA
which respects the whole set of constraints described in
the immediate below.

Timing constraints. They are expressed by the means
of relative deadlines for the tasks. A timing constraint en-
forces the duration between the activation date of any in-
stance of the taskτi and its completion time to be bounded
by its relative deadlineDi. Depending on the task alloca-
tion, such timing constraints may concern the instanciated
messages too. For tasks as well as messages, their rela-
tive deadline is hereafter assumed equal to their activation
period.

Resource constraints. Three kinds of constraints are
considered —precise units aren’t specified but obviously

they have to be consistent with the given expressions—:

• Memory capacity: The memory use of a processor
pk cannot not exceed its capacity (mk):

∀k = 1..m,
∑

A(τi)=pk

µi ≤ mk (2)

• Utilization factor : The utilization factor of a proces-
sor cannot exceed its processing capacity. The fol-
lowing inequality is a necessary schedulability con-
dition :

∀k = 1..m,
∑

A(τi)=pk

Ci
Ti
≤ 1 (3)

• Network use: To avoid overload, the messages car-
ried along the network per unit of time cannot exceed
the network capacity:∑

cij = (τi, τj)
A(τi) 6= A(τj)

Cij
Ti
≤ 1 (4)

Allocation constraints. Allocation constraints are due
to the system architecture. We distinguish three kinds of
constraints.

• Residence: a task may need a specific hardware or
software resource which is only available on specific
processors (e.g. a task monitoring a sensor has to
run on a processor connected to the input peripheral).
This constraint is expressed as a couple(τi, α) where
τi ∈ T is a task andα ⊆ P is the set of available host
processors for the task. A given allocationA must
respect:

A(τi) ∈ α (5)

• Co-residence: This constraint enforces several tasks
to be assigned to the same processor (they share a
common resource). Such a constraint is defined by a
set of tasksβ ⊆ T and any allocationA has to fulfil:

∀(τi, τj) ∈ β2, A(τi) = A(τj) (6)

• Exclusion: Some tasks may be replicated for some
fault-tolerance objectives and therefore cannot be as-
signed to the same processor. It corresponds to a set
γ ⊆ T of tasks which cannot be placed together. An
allocationA must satisfy:

∀(τi, τj) ∈ γ2, A(τi) 6= A(τj) (7)

An allocationA is said to bevalid if it satisfies alloca-
tion and resource constraints. It isschedulableif it satis-
fies timing constraints. Finally, a solution to our problem
is a valid and schedulable allocation of the tasks.

133

3 Solving the problem

Constraint programming (CP) techniques have been
widely used to solve a large range of combinatorial prob-
lems. They have proved quite effective in a wide range of
applications (from planning and scheduling to finance –
portfolio optimization – through biology) thanks to main
advantages: declarativity (the variables, domains, con-
straints description), genericity (it is not a problem de-
pendent technique) and adaptability (to unexpected side
constraints).

A constraint satisfaction problem(CSP) consists of a
setV of variables defined by a corresponding setD of
possible values (the so-calleddomain) and a setC of con-
straints. A solution to the problem is an assignment of a
value inD to each variable inV such that all constraints
are satisfied. This mechanism coupled with a backtrack-
ing scheme allows the search space to be explored in a
complete way. For a deeper introduction to CP, we refer
to [2].

3.1 Solving strategy : Logic-based Benders decom-
position in CP

Due to space limitation, we only give the basic princi-
ples of this technique. Our approach is based on an exten-
sion of a Benders scheme. A Benders decomposition [3]
is a solving strategy of linear problems that uses a parti-
tion of the problem among its variables:x, y. A master
problem considers onlyx, whereas a subproblem tries to
complete the assignment ony and produces a Benders cut
added to the master. This cut is the central element of the
technique, it is usually a linear constraint onx inferred by
the dual of the subproblem. Benders decomposition can
therefore be seen as a form oflearning from mistakes.

For a discrete satisfaction problem, the resolution of
the dual consists in computing the infeasibility proof of
the subproblem (in this case, the dual is called aninference
dual) and determining under what conditions the proof re-
mains valid to infer valid cuts. The Benders cut can be
seen in this context as an explanation of failure which
is learnt by the master. We refer here to a more general
Benders scheme calledlogic Benders decomposition[9]
where any kind of subproblems can be used as long as the
inference dual of the subproblem can be solved.

We propose an approach inspired from methods used to
integrate constraint programming into a logic-based Ben-
ders decomposition [4]. The allocation and resource con-
straints are considered on one side, and schedulability on
the other (see Fig. 3). The master problem solved with
constraint programming yields a valid allocation. The
subproblem checks the schedulability of this allocation,
eventually finds out why it is unschedulable and designs a
set of constraints, namednogoodswhich rules out all the
assignments which are unschedulable for the same reason.

Master problem
(constraint programming)

Resource constraints
Allocation constraints

Subproblem
(schedulability analysis)

Timing constraints

Le
ar

ni
ng

valid allocation
unschedulable

nogoods

schedulable allocation

Figure 3. Logic-based Benders decomposi-
tion to solve an allocation problem

3.2 Master problem
As the master problem is solved using constraint pro-

gramming techniques, we need first to translate our prob-
lem into CSP. The model is based on a redundant formu-
lation using three kinds of variables:x, y, w.

Let us first considern integer-valued variablesx which
are decision variables and correspond to each task, repre-
senting the processor selected to process the task:∀i ∈
{1..n}, xi ∈ {1, . . . ,m}. Then, boolean variablesy
indicate the presence of a task on a processor:∀i ∈
{1..n},∀p ∈ {1..m}, yip ∈ {0, 1}. Finally, boolean
variablesw are introduced to express whether a pair of
tasks exchanging data are located on the same processor
or not: ∀cij = (τi, τj) ∈ C, wij ∈ {0, 1}. Integrity
constraints are used to enforce the consistency of the re-
dundant model.

One of the main objectives of the master problem is to
solve efficiently the assignment part. It handles two kinds
of constraints: allocation and resource.

• Residence:(cf. Eq. (5)) it consists of forbidden val-
ues forx. A constraint is added for each forbidden
processorp of τi: xi 6= p

• Co-residence:(cf. Eq. (6))∀(τi, τj) ∈ β2, xi = xj

• Exclusion: (cf. Eq. (7))AllDifferent(xi|τi ∈ γ). An
AllDifferentconstraint on a setV of variables ensures
that all variables amongV are different.

• Memory capacity: (cf. Eq. (2)) ∀p ∈
{1..m},

∑
i∈{1..n} yipµi ≤ µp

• Utilization factor: (cf. Eq. (3)) Letlcm(T) be the
least common multiple of periods of the tasks —
utilization factor and network use are reformulated
with the lcm of task periods because our constraint
solver cannot currently handle constraints with both
real coefficients and integer variables—. The con-
straint can be written as follows:

∀p ∈ {1..m},
∑

i∈{1..n}

yip lcm(T)Ci
Ti

≤ lcm(T)

134

• Network use: (cf. Eq. (4)) The network capacity is
bound byδ. Therefore, the size of the set of messages
carried on the network cannot exceed this limit:∑

i∈{1..n}j∈{1..n}

wij lcm(T)Cij
Ti

≤ lcm(T)

3.3 Subproblem
The subproblem we consider here is to check whether a

valid solution produced by the master problem is schedu-
lable or not. A widely chosen approach for the schedu-
lability analysis of a task setS is based on the following
necessary and sufficient condition [15] :S is schedulable
if and only if, for each task ofS, its worst-case response
time is less or equal to its relative deadline. Thus the sub-
problem solving leads us to compute worst-case response
times for tasks on processors and for messages on the bus.
According to the features of the considered task and mes-
sage models, as well as the processor and bus scheduling
algorithms, a ”classical” computation can be used and its
main results are given in the immediate following.

Task worst-case response time. For independent and
periodic tasks with a preemptive fixed priority scheduling
algorithm, it has been proven that the worst execution sce-
nario for a taskτi happens when it is released simultane-
ously with all the tasks which have a priority higher than
prioi. WhenDi is (less or) equal toTi, the worst-case
response time forτi is given by [15]:

Ri = Ci +
∑

τj∈hpi(A)

⌈
Ri
Tj

⌉
Cj (8)

wherehpi(A) is the set of tasks with a priority higher than
prioi and located on the processorA(τi) for a given allo-
cationA, anddxe calculates the smallest integer≥ x. The
summation gives us the number of times tasks with higher
priority will execute beforeτi has completed. The worst-
case response timeRi can be easily solved by looking for
the fix-point of Eq. (8) in an iterative way.

Message worst-case response time.As mentioned ear-
lier, message scheduling on the CAN bus can be viewed as
a non-preemptive fixed priority scheduling strategy. Thus
when doing a worst-case response time equation for a
message, Eq. (8) has to be reused with some modifica-
tions. First it has to be changed so that a message only
can be preempted during its first transmitted bit instead of
its whole execution time. Second a blocking time, i.e. the
largest time the message might be blocked by a lower pri-
ority message, must be added. The resulting worst-case
response time equation for the CAN messageMij is [22]:

Rij = Cij + Lij (9)

with

Lij =
∑

M ′∈hpij(A)

⌈
Lij + τbit

T ′

⌉
C ′+ max

M ′∈lpij(A)
{C ′−τbit}

(10)

τ1

τ2

τ3

τ4

τ1

τ2

τ3

τ4

Deadline miss Deadline miss

Figure 4. Illustration of a schedulability
analysis. The task τ4 does not meet its
deadline. The subset {τ1, τ2, τ4} is identified
to explain the unschedulability of the sys-
tem.

wherehpij(A) (respectivelylpij(A)) is the set of mes-
sages derived from the allocationA with a priority higher
(respectively lower) thanprioij ; τbit is the transmission
time for one bit (τbit is in relation with the bus bandwidth
δ, τbit = 1/δ) ; C ′ is the worst-case transmission time for
the messageM ′.

Here as well the computation of Eq. (10) can be solved
iteratively.

3.4 Cooperation between master and subproblem(s)
We now consider a valid allocation (as the one the con-

straint programming solver may propose) in which some
tasks are not schedulable. Our purpose is to explain why
this allocation is unschedulable, and to translate this into
a new constraint for the master problem.

Tasks. The explanation for the unschedulability of a
taskτi is the presence of tasks with higher priority on the
same processor that interfere withτi. For any other allo-
cation withτi andhpi(A) on the same processor, it is sure
thatτi will still be detected unschedulable. Therefore, the
master problem must be constrained so that all solutions
whereτi andhpi(A) are together are not considered any
further. This constraint corresponds to aNotAllEqualon
x —A NotAllEqualon a setV of variables ensures that at
least two variables amongV take distinct values—:

NotAllEqual(xj |τj ∈ Si(A) = hpi(A) ∪ {τi})

It is worth noticing that this constraint could be ex-
pressed as a linear combination of variablesy. However,
NotAllEqual(x1,x3,x4) excludes the solutions that contain
the tasksτ1, τ3, τ4 gathered onanyprocessor.

It is easy to see that this constraint is not totally rele-
vant. For example, in Fig. 4,τ4 that shares a processor
with τ1,τ2 and τ3 misses its deadline. Actually the set
S4(A) = {τ1, τ2, τ3, τ4} explains the unschedulability but
it is not minimal in the sense that if we remove one task
from it, the set is still unschedulable. Here, the setS4(A)′

= {τ1, τ2, τ4} is sufficient to justify the unschedulability.
In order to derive more precise explanations (to achieve

a more relevant learning), a conflict detection algorithm,
135

namelyQuickXplain[10] (see algorithm 1), has been used
to determine a minimal (w.r.t. inclusion) set of involved
tasksSi(A)′. A new function is defined,Ri(X), as the
worst-case response time ofτi as if it was scheduled with
those tasks belonging to the setX that have priority over
it:

Ri(X) = Ci +
∑

τj∈hpi(A)∩X

⌈
Ri(X)
Tj

⌉
Cj (11)

Algorithm 1 Minimal task set
QUICKXPLAIN TASK(τi, A,Di)

X := ∅
σ1, ..., σ#hpi(A) {an enumeration ofhpi(A). The enu-
meration order ofhpi(A) may have an effect on the
content of the returned minimal task set}
while Ri(X) ≤ Di do
k := 0
Y := X
while Ri(Y) ≤ Di k < #hpi(A) do
k := k + 1
Y := Y ∪ {σk} {according to the enumeration
order}

end while
X := X ∪ {σk}

end while
return X ∪ {τi}

Messages. The reasoning is quite similar. If a message
Mij is found unschedulable, it is because of the messages
in hpij(A) and the longest message inlpij(A). We denote
Mij(A) their union together with{Mij}. The translation
of this information in term of constraint yields to:∑

Mab∈Mij(A)

wab < #Mij(A)

where#X stands for the cardinality ofX.
It is equivalent to aNotAllEqualconstraint on a set of

messages since to be met it requires that at least one mes-
sage ofMij(A) ”disappear” (wab = 0).

Like for tasks, so as to reduce the set of involved
messages, QUICKXPLAIN has been implemented, using
a similar adaptation of Eq. (9) and (10). It returns a min-
imal set of messagesMij(A)′.

Integration of nogoods in constraint programming
solver. Dynamic integration of nogoods at any step of
the search performed by the MAC (Maintaining arc con-
sistency) algorithm of the constraint solver is based on the
use of explanations. Explanations consist of a set of con-
straints and record enough information to justify any de-
cision of the solver such as a reduction of domain or a
contradiction. Dynamic addition/retraction of constraints
are possible when explanations are maintained [12].

For example, the addition of a constraint at a leaf of
the tree search will not lead to a standard backtracking

from that leaf (which could be very inefficient as a wrong
choice may exist at the beginning of the search because
the constraint was not known at that time). Instead, the
solver will jump (MAC-CBJ for conflict directed back-
jumping) to a node appearing in the explanation and there-
fore responsible for the contradiction raised by the new
constraint. More complex and more efficient techniques
such as MAC-DBT (for dynamic backtracking) exist to
perform intelligent repair of the solution after the addition
or retraction of a constraint.

4 Applying the method to an example

An example to illustrate the theory is developed here-
after. It will show how the cooperation between master-
and sub-problems is performed. Table 1 shows the char-
acteristics of the considered hardware architecture (with
4 processors) and Table 2 those of the software architec-
ture (with 20 tasks). The entry ”x, y → j” for the taskτi
indicates an edgecij with Cij = x andprioij = y.

pi p0 p1 p2 p3

mi 102001 280295 360241 41617

Table 1. Processor characteristics

τi Ti Ci µi prioi Message
τ0 36000 2190 21243 1 600,1→ 13
τ1 2000 563 5855 6 500,3→ 8
τ2 3000 207 2152 15 600,7→ 7
τ3 8000 2187 21213 3
τ4 72000 17690 168055 7 300,4→ 9
τ5 4000 667 6670 8 800,5→ 19
τ6 12000 3662 36253 14
τ7 3000 269 2743 16
τ8 2000 231 2263 12 100,6→ 18
τ9 72000 6161 59761 9
τ10 12000 846 8206 4 200,2→ 15
τ11 36000 5836 60694 20
τ12 9000 2103 20399 10
τ13 36000 5535 54243 13
τ14 18000 3905 41002 18
τ15 12000 1412 14402 5
τ16 6000 1416 14301 17 700,8→ 17
τ17 6000 752 7369 19
τ18 2000 538 5487 11
τ19 4000 1281 12425 2

Table 2. Task and message characteristics

The problem is constrained by :

• residence constraints:

– CC1 : τ0 must be allocated top0 or p1 or p2.

– CC2 : τ16 must be allocated top1 or p2.

– CC3 : τ17 must be allocated top0 or p3.
136

• co-residence constraint:

– CC4 : τ7, τ17 andτ19 must be on the same pro-
cessor.

• exclusion constraints:

– CC5 : τ3, τ11 andτ12 must be on different pro-
cessors.

To start the resolution process, the solver for the mas-
ter problem finds a valid solution in accordance withCC1,
CC2, CC3, CC4 andCC5. How the constraint program-
ming solver finds such a solution is here out of our pur-
pose. The valid solution it returns is:

• processorp0: τ2, τ5, τ7, τ8, τ9, τ17, τ19.

• processorp1: τ4, τ6, τ12, τ13.

• processorp2: τ0, τ11, τ14, τ15, τ16.

• processorp3: τ1, τ3, τ10, τ18.

One deduces that messages areM0,13,M1,8,M4,9,M8,18,
M10,15, andM16,17.

It is easy to check it is a valid solution by considering
allocation and resource constraints:

• µ2 +µ5 +µ7 +µ8 +µ9 +µ17 +µ19 = 93383 ≤ m0;

• µ4 + µ6 + µ12 + µ13 = 278950 ≤ m1;

• µ0 + µ11 + µ14 + µ15 + µ16 = 151642 ≤ m2;

• µ1 + µ3 + µ10 + µ18 = 40761 ≤ m3;

• C2
T2

+ C5
T5

+ C7
T7

+ C8
T8

+ C9
T9

+ C17
T17

+ C19
T19

= 0.972 ≤ 1;

• C4
T4

+ C6
T6

+ C12
T12

+ C13
T13

= 0.938 ≤ 1;

• C0
T0

+ C11
T11

+ C14
T14

+ C15
T15

+ C16
T16

= 0.794 ≤ 1;

• C1
T1

+ C3
T3

+ C10
T10

+ C18
T18

= 0.894 ≤ 1.

• C0,13
T0

+ C1,8
T1

+ C4,9
T4

+ C8,18
T8

+ C10,15
T10

+ C16,17
T16

=
0.454 ≤ 1.

The subproblem checks now the schedulability of the
valid solution. The schedulability analysis proceeds in
three steps.

First step: analysing the schedulability of tasks. The
worst-case response time for each task is obtained by ap-
plication of Eq. (8) and it is compared with its relative
deadline. Hereτ5, τ12, τ16 andτ19 are found unschedula-
ble.

Second step: analysing the schedulability of messages.
The worst-case response time for each message is ob-
tained by application of Eq. (9) and Eq. (10) and it is
compared with its relative deadline. HereM1,8 is found
unschedulable.

Third step: explaining why this allocation is not
schedulable. The unschedulability ofτ5 is due to the in-
terference of higher priority tasks on the same processor:
hp5 = {τ2, τ7, τ8, τ9, τ17}. By applying QUICKXPLAIN -
TASK (see algorithm 1) withhp5 ordered by increasing
index, we findS5(A)′ = {τ5, τ9} as minimal set. Conse-
quently, the explanation of the unschedulability is trans-
lated into the new constraint:

CC6 : NotAllEqual{x5, x9}

In the same way, by applying QUICKXPLAIN TASK:

• for τ12: CC7 : NotAllEqual{x6, x12, x13},

• for τ16: CC8 : NotAllEqual{x11, x16},

• for τ19: CC9 : NotAllEqual{x9, x19}

ForM1,8, we have:

M1,8(A) = {M0,13,M1,8,M4,9,M8,18,M16,17}.

QUICKXPLAIN returns{M0,13,M1,8,M4,9,M16,17} as
M1,8(A)′ the minimal set. An other constraint is created:

CC10 : w0,13 + w1,8 + w4,9 + w16,17 < 4

These new constraintsCC6, CC7, CC8, CC9 and
CC10 are added to the master problem. They define a
new problem for which it has to search for a valid solution
and so on.

After 20 iterations between the master problem and the
subproblem, this allocation problem is proven without so-
lution. This results from 78 constraints learnt all along
the solving process. This example has been solved using
ŒDIPE (see Section 5). On a computer with a G4 proces-
sor (800MHz), its computing time was 10.3 seconds.

5 Experimental results

We have developed a dedicated tool named ŒDIPE [6]
that implements our solving approach (CPRTA). It is
based on the CHOCO [13] constraint programming system
and PALM [11], an explanation-based constraint program-
ming system.

For the allocation problem, no specific benchmarks are
available as a point of reference in the real-time commu-
nity. Experiments are usually done on didactic examples
[21, 1] or randomly generated configurations [18, 16]. We
opted for this last solution. Our generator takes several
parameters into account:

• n, m, mes: the number of tasks, processors (exper-
iments have been done on fixed sizes:n = 40 and
m = 7) and edges;

• %global: the global utilization factor of processors;

• %mem: the memory over-capacity,i.e. the amount
of additionnal memory available on processors with
respect to the memory needs of all tasks;

137

Mem. %mem Alloc. %res %co−res %exc Sched. %global Mes. mes/n %msize

1 60 1 0 0 0 1 40 1 0 0
2 30 2 15 15 15 2 60 2 0.5 70
3 10 3 33 33 33 3 90 3 0.875 150

Table 3. Details on difficulty classes

• %res: the percentage of tasks included in residence
constraints;

• %co−res: the percentage of tasks included in co-
residence constraints;

• %exc: the percentage of tasks included in exclusion
constraints;

• %msize : the size of a data is evaluated as a percent-
age of the period of the tasks exchanging it.

Task periods and priorities are randomly generated.
Worst-case execution times are initially randomly chosen
and evaluated again so as:

∑n
i=1 Ci/Ti = m%global.

The memory need of a task is proportional to its
worst-case execution time. Memory capacities are ran-
domly generated while satisfying:

∑m
k=1mk = (1 +

%mem)
∑n
i=1 µi. For a sake of simplicity, only linear data

communications between tasks are considered and the pri-
ority of an edge is inherited from the task producing it.

The number of tasks involved in allocation constraints
is given by the parameters%res, %co−res, %exc. Tasks
are randomly chosen and their number (involved in co-
residence and exclusion constraints) can be set through
specific levels. Several classes of problems have been de-
fined depending on the difficulty of both allocation and
schedulability problems. The difficulty of schedulabil-
ity is evaluated using the global utilization factor%global

which varies from 40 to 90 %. Allocation difficulty
is based on the number of tasks included in residence,
co-residence and exclusion constraints (%res, %co−res,
%exc). Moreover, the memory over-capacity,%mem has
a significant impact (a very low capacity can lead to solve
a packing problem, sometimes very difficult). The pres-
ence of data exchanges impacts on both problems and the
difficulty has been characterized by the ratiosmes/n and
%msize. %msize expresses the impact of data exchanges
on schedulability analysis by linking periods and message
sizes.

Table 3 describes the parameters of each basic diffi-
culty class. By combining them, categories of problems
can be specified. For instance, a W-X-Y-Z category corre-
sponds to problems with a memory difficulty in class W,
an allocation difficulty in class X, a schedulability diffi-
culty in class Y and a network difficulty in class Z.

5.1 Results
Table 4 summarizes some of the results of experiments

with CPRTA. We do not give the results for all the inter-
mediate classes of problems (like 1-1-1-1, 2-1-1-1, etc.)

because they are easily solved and they don not exhibit
a specific behaviour. %RES gives the number of prob-
lem instances successfully solved (a schedulable solution
has been found or it has been proven that none exists)
within the time limit of 10 minutes per instance. %VAL

gives the percentage of schedulable solutions found (thus
%RES− %VAL gives the percentage of inconsistent prob-
lems). ITER is the number of iterations between the mas-
ter problem and the subproblem. CPU is the mean com-
putation time in seconds. NOG is the number of nogoods
inferred from the subproblem. The data are obtained in
average (on instances solved within the required time) on
100 instances (40 tasks, 7 processors) per class of diffi-
culty with a Pentium 4 (3 GHz).

First, by examining the CPU column, we notice that
CPRTA still remains very efficient in spite of its seeming
complexity. Moreover as measured by ITER and NOG,
the cooperation between master and sub-problems is quite
significant and the learning is of some importance.

The lines 1 to 5 in Table 4 show results for high diffi-
culty classes without communications between tasks. The
results in lines 1 to 3 are very good. They illustrate the
basic ability of constraint programming to consider mem-
ory and allocation constraints. Lines 4 and 5 display some
performances that are going down when the schedulability
difficulty increases. Indeed, the schedulability constraints
set is empty at the beginning of the search. Therefore, all
the knowledge dealing with schedulability has to be learnt
from the subproblem. Furthermore, learning is only ef-
fective when a valid solution is produced by the master
problem solver and as a consequence it is not really inte-
grated into the constraint programming algorithm. To im-
prove CPRTA performances from this point of view, a new
approach is now being developed that integrates schedula-
bility analysis into the constraint programming algorithm
so as not ”to delay” its taking into account —it is not a
Benders decompostion, it is a new constraint defined from
schedulability properties—.

The lines 6 to 8 deal with allocation problems where
tasks may communicate. Once more, one can notice
that when data exchanges increase (and thus message ex-
changes on the bus too), the CPRTA performances de-
crease. Reasons are the same as those of task schedula-
bility: the more the messages are on the bus, the more
their scheduling becomes difficult. Moreover, we have ob-
served that nogoods inferred from message unschedulabil-
ity are usually ”weaker” (the search space cut is smaller)
than the ones inferred from task unschedulability. Learn-
ing is then less efficient for this kind of problems. As for

138

tasks, we hope to improve CPRTA by integrating the net-
work schedulability as a global constraint into the master
problem.

cat. %RES %VAL ITER CPU NOG
1 2-2-2-1 100.0 56.0 13.5 1.6 95.2
2 3-2-2-1 98.0 57.0 31.0 10.4 133.2
3 2-3-2-1 99.0 19.0 6.6 1.4 43.5
4 1-1-3-1 74.0 74.0 95.7 115.7 471.6
5 2-2-3-1 67.0 12.0 8.3 33.2 59.7
6 2-2-2-2 98.0 69.0 21.1 7.5 69.9
7 1-2-2-3 66.0 43.0 188.3 70.5 110.7
8 2-2-2-3 47.0 30.0 137.7 66.8 117.2

Table 4. Average results on 100 instances
randomly generated into classes of prob-
lems

5.2 Comparison with simulated annealing
As to get comparative performances for CPRTA, a sim-

ulated annealing (SA) algorithm, inspired from [21], has
been implemented. In [21] the energy function takes into
account residence, exclusion and memory constraints as
well as task deadline constraints. To be consistent with
the CPRTA model, the schedulability of messages on the
CAN bus and co-residence constraints have been inte-
grated too. The implementation has been optimized so
as to reduce computation times of this energy function.

SA is a heuristic method. As a consequence, in our
case, it can only conclude on problems with a solution.
Therefore, in Table 5 only CPRTA results for such prob-
lems are compared to SA. As seen on Table 5, except
for problems for which CPRTA must be improved (see
Section 5.1), CPRTA produces as satisfactory results as
SA does, but with better computation times. Introduction
of schedulability as a constraint into the master problem
should improve CPRTA, and certainly increases its effi-
ciency in a significant manner. Moreover, it should be
pointed out that even if CPRTA is sometimes less efficient
than SA, CPRTA solves on average more problems than
SA does if we take into account problems without solu-
tion.

SA CPRTA
cat. %VAL CPU %VAL CPU

2-2-2-1 56.0 4.7 56.0 2.4
3-2-2-1 53.0 50.8 57.0 17.4
2-3-2-1 16.0 35.5 19.0 4.1
1-1-3-1 99.0 3.2 74.0 115.7
2-2-3-1 20.0 113.9 12.0 60.82
2-2-2-2 68.0 18.1 69.0 10.0
1-2-2-3 64.0 52.0 43.0 27.4
2-2-2-3 62.0 59.1 30.0 58.6

Table 5. Comparison between CPRTA and
SA

6 Explanations

In comparison with other search methods, using a con-
straint solver may help ”intrinsically” to answer some
classical queries when a problem is proven without so-
lution such as: why does my problem have no solution
? Usually, when the domain of a variable of a CSP be-
comes empty (no value exists that will respect all the con-
straints on that variable), basic constraint programming
systems notify the user that there is no solution. Neverthe-
less, thanks to the versatility of the explanation-based con-
straint approach we use, those relevant constraints, which
explain the failure, are made available in addition [11].

Thus in the case of an allocation problem for which
no solution has been found, we analyse the set of con-
straints that is returned to explain the problem inconsis-
tency. There can be many reasons to explain inconsis-
tency. At the design level, we would like to be able to
incriminate high level characteristics of the system such
as : allocation constraints, schedulability requirements of
tasks, processors or network limitation. However, two
points of view, based on the software or hardware archi-
tecture, can be adopted. We will first focus on the char-
acteristics of the software architecture by analysing how
each task is ”responsible” for the failure. We will give
there some insight on the way a critical task from the
schedulability point of view can be identified. Each fail-
ure of the search process due to schedulability is analysed
and transformed into a constraint criterion that encapsul-
tates an accurate reason for this failure. The study of those
criteria may lead to the guilty tasks. The rationale of this
evaluation is based on the following remarks:

• The more a task appears within a nogood, the more
this task has an impact on the schedulability incon-
sistency.

• The level of propagation performed by a nogood (ei-
therNotAllEqual(xi) or

∑
wij < B), i.e its impact

within the proof is strongly related to its size (the
number of tasks it involves). ”Small”NotAllEqual
have stronger impact.

In its general form, a constraint (learnt from a nogood)
is defined byNotAllEqual(xi) or

∑
wij < B (see Sec-

tion 3.4). We denoteNAE the set of constraints in the
NotAllEqual form andSUMthe set of constraints in the
second form. For a taskτi a constraint criterionCi is eval-
uated:

Ci =
∑

c ∈ NAE
xi ∈ c

1
#c

+
∑

c ∈ SUM
∃j, wij ∈ c ∨ wji ∈ c

1
#c

This criterion considers the presence of a task in each con-
straint and its impact. BiggerCi is, bigger the impact of
τi is on the inconsistency. By studying tasks with highCi
and understanding why they have such an impact on the

139

inconsistency (e.g. low priority allocation, too large pro-
cessor utilization), it is possible to change some require-
ments (e.g. by adapting priorities, or choosing a different
version for a task with an other period) and so to obtain a
solution for the problem.

Table 6 givesCi obtained on the example of the Sec-
tion 4 with ŒDIPE [6]. Taskτ19 has the biggestCi. This
task has a low priority together with a high processor uti-
lization (C19/T19 = 0.32). By just changing its priority to
the highest one, and reusing CPRTA, we found a solution
for this problem.

Notice that this process consists in analysing the final
set of constraints with a heuristic based on the information
gathered during the search. This process can be general-
ized to memory and allocation constraints by the use of a
specific search technique [19] even if explicit reasons for
failure on memory or allocation are not kept in memory in
our current approach (contrary to schedulability one).

τi Ci τi Ci τi Ci τi Ci
τ19 6.33 τ13 4.78 τ2 3.22 τ3 2.53
τ14 5.98 τ9 3.95 τ1 2.85 τ16 2.25
τ11 5.98 τ6 3.83 τ10 2.77 τ18 1.97
τ5 5.42 τ7 3.45 τ4 2.65 τ8 1.73
τ12 5.42 τ15 3.32 τ17 2.55 τ0 1.15

Table 6. Constraint criterions computed on
example

7 Conclusion and future work

In this paper, we present an original and complete ap-
proach (CPRTA) to solve a hard real-time allocation prob-
lem. We use a decomposition method which is built
on a logic Benders decomposition scheme. The whole
problem is split into a master problem handling alloca-
tion and resource constraints and a subproblem for timing
constraints. A rich interaction between master and sub-
problems is performed with the computation of minimal
sets of unschedulable tasks and messages. It implements
a kind of learning technique in an effort to combine the
various issues into a solution that satisfies all constraints.

One important specificity of CPRTA is its complete-
ness,i.e., if a problem has no solution, the search algo-
rithm is able to prove it. Moreover it offers good potential
means for building an analysis able to give an aid to the
user in case of failure.

The results produced by our experiments encourage us
to go a step further. Further works concern the inclu-
sion of (task and message) schedulability analysis into the
search process of the CP algorithms in the form of a global
constraint. This should improve efficiency of CPRTA for
hard-schedulability-constrained problems. Another inter-
esting work deals with the explanation of failure. Our aim
is to integrate into the design process an intelligent tool
based on CPRTA ables to return pertinent explanations

justifying the failure. We need to go deeper in that way
and to try it out on some concrete cases.

References

[1] P. Altenbernd and H. Hansson. The slack method: A new
method for static allocation of hard real-time tasks.Real-
Time Systems, 15(2):103–130, 1998.

[2] R. Bart́ak. Constraint programming: In pursuit of the holy
grail. In Proc. of the Week of Doctoral Students (WDS99),
1999.

[3] J. F. Benders. Partitioning procedures for solving mixed-
variables programming problems.Numerische Mathe-
matik, 4:238–252, 1962.

[4] T. Benoist, E. Gaudin, and B. Rottembourg. Constraint
programming contribution to benders decomposition: a
case study.Lecture notes in Computer Science, 2470:603–
617, 2002.

[5] Bosch.CAN Specification version 2.0, 1991.
[6] H. Cambazard and P. Hladik. ŒDIPE. http://oedipe.rts-

software.org/.
[7] C. Ekelin. An Optimization Framework for Scheduling of

Embedded Real-Time Systems. PhD thesis, Chalmers Uni-
versity of Technology, 2004.

[8] P.-E. Hladik and A.-M. D́eplanche. Extension au réseau
can des problèmes de placement. Technical Report 4, IR-
CCyN, 2005.

[9] J. N. Hooker and G. Ottoson. Logic-based benders decom-
position.Mathematical Programming, 96:33–60, 2003.

[10] U. Junker. Quickxplain: Conflict detection for arbitrary
constraint propagation algorithms. InProc. of IJCAI 01,
2001.

[11] N. Jussien. The versatility of using explanations within
constraint programming. Technical Report RR 03-04-
INFO, École des Mines de Nantes, 2003.

[12] N. Jussien, R. Debruyne, and P. Boizumault. Maintaining
arc-consistency within dynamic backtracking. InCP 2000,
number 1894 in Lecture Notes in Computer Science, pages
249–261, Singapore, Sept. 2000. Springer-Verlag.

[13] CHOCO. http://choco.sourceforge.net/.
[14] E. Lawler. Recent results in the theory of machine schedul-

ing. Mathematical Programming: The State of the Art,
1983.

[15] J. P. Lehoczky. Fixed priority scheduling of periodic task
sets with arbitrary deadlines. Inproceedings of the 11th
IEEE Real-Time Systems Symposium (RTSS 1990), pages
201–209, 1990.

[16] Y. Monnier, J.-P. Beauvais, and A.-M. Déplanche. A ge-
netic algorithm for scheduling tasks in a real-time dis-
tributed system. InECRTS’98, 1998.

[17] OSEK Group.OSEK/VDX Communication version 3.0.2.
[18] K. Ramamritham. Allocation and scheduling of complex

periodic tasks. InProc. of ICDCS 1990, 1990.
[19] P. Refalo. Impact-based search strategies for constraint

programming. InProc. of CP 2004, 2004.
[20] R. Szymanek, F. Gruian, and K. Kuchcinski. Digital sys-

tems design using constraint logic programming. InProc.
of PACLP 2000, 2000.

[21] K. W. Tindell, A. Burns, and A. Wellings. Allocating hard
real-time tasks: An np-hard problem made easy.Real-
Time Systems, 4(2):145–165, 1992.

[22] K. W. Tindell, H. Hansson, and A. J. Wellings. Analysis
real-time communications: controller area network (can).
In Proc. of RTSS 1994, pages 259–265, 1994.

140

Schedulability Analysis of Serial Transactions

Karim TRAORE
{karim.traore@ensma.fr}

GROLLEAU Emmanuel
{grolleau@ensma.fr}

COTTET Francis
{cottet@ensma.fr}

LISI/ENSMA

Laboratoire d’Informatique Scientifique et Industrielle
École Nationale de Mécanique et d’Aérotechnique

Téléport 2 – BP 40109 F-86961 Chasseneuil Futuroscope Cedex, France

Abstract
1

 On the basis of a concrete real-time application, we

present in this article a new task model called "serial

transaction". This model is a particular instance of the

task model with offsets defined by Tindell and Palencia

and al.. A serial transaction is typically a task reading

serial information (RS232, CAN,…): several instances

are identical and read a unitary part of a serial packet,

these tasks have the same WCET, offset shifting, priority

and relative deadline. In addition, the last task of a

transaction has to deal with the packet, and is typically

longer, but has a longer relative deadline, and a lower

priority. The need for this task model appeared in a real

application, that couldn’t be validated using known

methods on transactions, so we present a less pessimistic

real-time evaluation method dedicated on to this new

model.

1. Introduction
 Several laboratories of Poitiers (ENSMA and
University) are developing together a mini UAV
(Unmanned Air Vehicle) (see Figure 1). The LISI is in
charge of developing and validating the system
(embedded and ground station). The embedded
processing unit is a microcontroller (Freescale/Motorola
MPC555) connected via serial port to a GPS receiver
and a modem used in order to communicate with the
ground station. The measurement of the attitude of the
UAV is done by an IMU (Inertial Measurement Unit)
connected to the microcontroller via a CAN network.

In the development of a real-time application like this
one, two techniques of scheduling can be used : the on-
line scheduling, with a fixed [LL73, LW82, Aud91] or
variable allocation of priorities of the tasks in the tasks
set [Der74, Lab74, DM89] and off-line techniques which
use a sequence whose correctness was proved [XP92,
Gro99]. The real-time RTOS (Real-Time Operational
System) OSEKTurbo OS/MPC5xx [OSM1, OSM2], in

1 This work was supported by ONERA/DGA

conformity with standard OSEK/VDX [Osek1, Osek2],
selected for this application, allows only fixed priorities.
We thus used an on-line approach with fixed priority
technique.

Figure 1: the AMADO

After the definition of the software architecture and
the temporal parameters of the various tasks, one of the
most important phases is the temporal validation which
consists in proving that whatever happens, all the tasks
meet their temporal constraints. RTA (Response Time
analysis) methods are used to bound the worst case
response time of the tasks of an application. Tindell
[Tin94] proposed a method for calculating an upper
bound of the worst-case response time which is less
pessimistic than classic RTA (considering that a critical
instant consists in a simultaneous release of all the tasks)
in a context of tasks with offsets.

Palencia and Harbour [PG98] extended Tindell’s
work with dynamic offsets, and formalized his work as
transactions. Lastly, [TN04b][MS03] introduced the
concept of “imposed” interference differing from
“released for execution” interference used by Tindell.
However, for now the exact calculation methods used to
determinate the exact worst-case response time rely on
calculating every combination of the tasks of the
transactions; it thus remains exponential in time.

141

In order to validate the control system of the UAV,
we had to deal with tasks with offset which are particular
instances of transactions: these tasks are activated by
peripherals connected on serial and CAN ports. Section
2 presents the case study. Section 3 recalls some general
results about transactions. Section 4 presents some new
results obtained, allowing us to analyse the interference
of a serial transaction in a pseudo polynomial time for a
subset of the tasks of the task system. Section 5 applies
these new results in order to validate our case study.
2. Presentation of the Application

The project, named AMADO, is a UAV with a
wingspread of 55 cm, using a delta shaped wing with
two symmetrical drifts for a total weight (including the
control system) of 930 grams. The main objective is to
create an autonomous plane embedding a camera, and to
be able to follow dynamically defined waypoints. The
UAV is connected to a ground station thanks to a
wireless modem, allowing it to receive high level orders
during a mission. The critical parts of the flight control
are embedded.

2.1 Hardware architecture

Figure 2: main architecture of the AMADO

The Figure 2 shows two parts: the ground station, and
the embedded station. The ground station can
communicate thanks to a half duplex modem with the
embedded system, and the traditional radio emitter is
kept as an emergency control in case of general failure of
the embedded system. The main role of the ground
station is video displaying/recording, flight instruments,
and high level commands (either waypoints flight, or
assisted flight).

The embedded system heart is a Freescale/Motorola
MPC555 [MPC1] connected to the actuators (3 servo-
commands and the speed-variator, refreshed every 20
ms), an IMU [IMU1], a GPS receiver [GPS1], a
traditional radio receiver and a modem. The MPC555 is

a 32 bits PowerPC with a frequency of 40MHZ, 448KB
of flash memory and 26KB of RAM.

Two sensors are used in order to calculate the position
and attitude of the UAV: the GPS receiver and the IMU.
The Inertial Measurement Unit sends information about
angular speed and accelerations, which, once treated,
give the roll and the pitch of the UAV. This IMU is
connected on a CAN port and delivers information at a
frequency of 50Hz and a throughput of 1Mbps. A frame
of the IMU is compound of 3 blocks of 6 bytes. In order
for the system to get a complete frame, since there is no
possible memorisation of the blocks, each block must be
read before the next arrives. Once the system has 3
blocks, it can constitute the frame, and handle it to
calculate the roll and the pitch.

The GPS receiver is used to get the speed (direction
and module) and the absolute 3Dimensional position of
the UAV. The GPS Receiver sends data to the controller
at a frequency of 4Hz and delivers information with a
throughput of 57600bps. As a RS232 communication,
the information is sent byte after byte; the number of
bytes sent during one period (frame) of the GPS can
reach 120 bytes. As in the case of the IMU, the system
must recover each byte and arrange it before the arrival
of the next byte, under penalty of losing the complete
frame.

Finally the modem connected to the microcontroller
on the serial port is bi-directional and communicates
with the microcontroller at a throughput of 115kbps. The
length of the frame transmitted to the microcontroller by
the modem can reach 10 bytes. The requirements are the
same as in the case of the GPS receiver. In the
presentation of this architecture, we omitted voluntarily
the video circuit that does not have any impact on the
real-time aspects of this application.

2.2 Software architecture of the application

We have chosen the real-time executive OSEKTurbo

OS/MPC5xx of Metrowerks for our application. This
RTOS is conforming to the standard OSEK/VDX;
standard defined for applications with limited resources
[OSM3]. The OSEK/VDX executives are light because
they are based on a static description of all the system
using the OIL (OSEK Implementation Language).

Apart the initialisation task, there are 12 tasks in the
control system (see Table 1). The priorities of the tasks
have been assigned following a Deadline Monotonic
policy [LL73]. Note that the value L=120 (resp. L=3,
L=10) corresponds to the number of times the task has to
be activated in order to acquire a frame.

This kind of application can’t be validated easily if
the offsets are not taken into account. Indeed, it appears
clearly that task TreatGPS is released when the whole
GPS frame has been received; it cannot thus be released
at the same time as the task Acq GPS; it is the same case
for task TreatIMU and the task Acq IMU; the same
situation occurs for the task TreatInstruction and the task
Acq Instruction.

µcontroller

Numerical

Modem

RC

transmitter

RS232

Servomoteurs

IMU GPS

RC receiver Numerical

Modem

RS232CAN

µcontroller

Numerical

Modem

RC

transmitter

RS232

Servomoteurs

IMU GPS

RC receiver Numerical

Modem

RS232CAN

Numerical

Modem

RC

transmitter
Numerical

Modem

RC

transmitter

RS232

Servomoteurs

IMU GPS

RC receiver Numerical

Modem

RS232CAN

RS232

Servomoteurs

IMUIMU GPSGPS

RC receiver Numerical

Modem

RS232CAN

142

Tasks Period WCET deadline Priority

 (in microsecond)

Monitoring (1) 200000 60 200000 1

Acq PWM (2) 20000 24 10000 7

Transmit Grd (3) 50000 3360 30000 5

Deliver Cmd (4) 20000 40 10000 6

Navigation (5) 250000 560 140000 2

ReguleAttitude (6) 60000 32400 60000 4

Acq GPS (7) 250000 100 L=120 160 11

Acq IMU (8) 20000 96 L=3 720 10

Acq Instruction(9) 100000 12 L=10 80 12

TreatGPS (10) 250000 3000 5000 9

TreatIMU (11) 20000 900 7500 8

TreatInstruction
(12) 100000 900 70000 3

Table1: task system of the UAV

The Figure 3 presents a model of a serial transaction,

Li instances of the acquisition of a part of a frame are
separated by a duration corresponding to the arrival rate
of the packets (Acq GPS, Acq IMU, Acq Instruction),
and a longer task is used to handle the whole frame
(TreatGPS, TreatIMU, TreatInstruction). In a serial
transaction, the acquisition tasks are usually short,
because they only have to bufferize the packets until the
whole frame is built, while the treatment tasks are longer
since they have to deal with the full frame. Moreover,
the first release of the serial transaction is not known
precisely because serial transaction is activated by an
external peripheral.

Figure 3 : pattern of serial transaction

In order to define a serial transaction as a particular

case of a transaction, let us first give a survey of
definitions and results found in [Tin94][TN04a][PG98].

3. Transactions

The model of tasks with offsets was proposed by
Tindell in order to reduce existing pessimism of the
schedulability analysis when the critical instant for a task
occurs when it is released at the same time as all the

tasks of higher priority. Indeed, certain tasks can for
example have the same period and be bound by relations
of offsets i.e. they can never be released at the same
time. A set of tasks of the same period bounded by offset
is called a transaction. A task system is compound of a
set of transactions [PG98][TN04a]:

Γ := {Γ1, Γ2,… Γk}
 A transaction (see Figure 4) iΓ contains |Γi| tasks

having the same period iT : Γi := <{τi1,…, τi|Γi|},Ti>.

A task is defined by τij := <Cij, Oij, Dij, Jij, Bij, Pij> where

ijC is the worst-case execution time (WCET), Oij is the

offset (minimal time between the release of the
transaction and the release of the task), in order to
simplify the analysis, we will consider a reduced task
offset ijΦ which is always within 0 and Ti: ijΦ = Oij%Ti.

Dij is the relative deadline, Jij the maximum jitter (giving
t0 the release date of an instance of the transaction iΓ ,

then the task ijτ is released between t0+Oij and

t0+Oij+Jij), Bij maximum blocking due to lower priority
tasks, and Pij the priority. Without loss of generality, we
consider that the tasks are ordered by increasing offsets

ijΦ ; in our case, we define the response time as being

the time between the release of the task and the
completion of the task. In the table 3, we have
represented all the transactions of the UAV application.

Let us note also)(uaihp τ the set of indices of the

tasks of iΓ with a priority higher than the priority of a

task uaτ i.e. j∈hpi(τua) if and only if Pij>Pua.

1iΦ

2iΦ

3iΦ

3iD

1T

1iτ 2iτ 3iτ 1iτ 2iτ 3iτ

1T

Figure 4: model of tasks with offsets

The RTA method is to be applied on each task of the
transactions. The task under analysis is usually noted

uaτ . Tindell showed that the critical instant of uaτ is a

particular instant when it is released at the same time as
one task of higher priority in each transaction (its own
transaction being handled separately). The main
difficulty is to determine what is the critical instant
candidate icτ of a transaction iΓ that initiates the

critical instant of uaτ . An exact calculation method

would require to evaluate the response time obtained by

1 Li 2 1 Li 2

Din pi

Ti

Ci Cin

143

Transactions Period tasks WCET Offset deadline Priority
“Release for execution” worst-

case response time

1 200000 11 200000 0 200000 1 56156

2 20000 21 10000 0 10000 7 11332
3 50000 31 30000 0 30000 5 23784

4 20000 41 10000 0 10000 6 11672
5 250000 51 140000 0 140000 2 56096

6 60000 61 60000 0 60000 4 54636

7i(i=1,…,120) 100 160*)1(7 −= iO i 160 11 124
7 250000

7121 3000 120*160 5000 9 3408

81 - 82 - 83 96 0 – 720 - 2*720 720 10 468
8 20000

84 900 3*720 7500 8 10720

9i(i=1..10) 12 80*)1(9 −= iO i 80 12 12
9 100000

911 900 10*80 70000 3 55416

Table 2 : representation of all the tasks of the
configuration using the symbolism of
transaction and values of worst-case response
time with “release for execution” method

carrying out all the possible combinations of the tasks of
priority higher than uaτ in each transaction and to

choose the task icτ in each transaction that leads to the

worst response time. This exhaustive method has an
exponential complexity and is intractable for realistic
task systems; several approximation methods giving an
upper bound of the worst-case response time have been
proposed.

Upper bound method based on the interference

“released for execution”

[Tin94][PG98] Let us note icτ the task of iΓ that

coincides with the critical instant of uaτ . Let us note

 t), (uaicW τ the interference of iΓ on the response time of

uaτ during a time interval of length t.

∑

⋅

=

∈)(i

*

T

t
 t),(

uaihpj
ijuaic

CW
τ

τ

iicijij

ij
*

T mod)O - (O),(

),(

=

−=

ic

ic

phase

phasett

ττ
ττ

*t represents the time during which τij can interfere with
τua.

 t), (max t), , (A note usLet iua uaic
ic
W ττ

Γ∈
=Γ

 The upper bound of the response time is obtained by

iteration : C R ua
0
ua =

).R, , A(C R n
uai

kua

1)(n
ua

i

Γ+= ∑
Γ∈Γ

+ τ

The value of uaR is thus obtained by a classic fix-point

iteration lookup.

The interference that a transaction imposes on a task
can be represented by a periodic and static pattern.
[TN04a] proposed an optimisation of the computation of
the interference. This technique consists in storing in a
table the parameters of the interference function of a
transaction on a task of lower priority. This approach
reduces the computation time but this method does not
reduce the difference between the real worst-case
response time and the upper bound obtained. Therefore,
we couldn’t validate our system with the general method
because the tasks (2), (4) and (11) have a worst-case
response time greater than their relative deadline; while
the real worst-case response time of all the tasks of the
set could in fact be lower than their deadline. (see
Table2).

We thus present a method given in [TN04b] giving a
tighter upper bound.

Upper bound method based on the “imposed”

interference

This method has been proposed in [TN04b]. It
removes the unnecessary overestimation taken into
account in the computation of the interference created by
a task on a lower priority one. This overestimation does
not have any impact in the case of tasks without offset
but has a considerable effect in the approximation of the
worst-case response time when we are in the presence of
tasks with offsets. This method consists in calculating

the interference effectively imposed by a task jτ on a

task uaτ with a lower priority during a time interval of

length t; the idea is that the interference cannot exceed
the interval of time t.

dt

dt

dt

tjncedInterfére
≤

)(

In order to calculate this “imposed” interference,
[TN04b] subtracts a parameter x (see Figure 5) from the
original interference formula:

144

()

≥
=

=
−=

∑ ∗+=
∈

 0for t)T mod t(- C 0,max

0
)(

T mod)O -(O),(

),(

)(x- 1 t),(

*
i

*
ij

iicijij

ij
*

)(
icj

*

tx

phase

phasett

tC
T

t
W

icj

ic

ic

uaihpj
ij

i
uaic

ττ
ττ

τ
τ

)(tx
icj

 corresponds to the part of the task ijτ that

cannot be executed in the time interval of length t; since
this interference is not effectively imposed in this
interval, it is not taken into account.

Example: this transaction has 4 tasks with period 50=iT

Figure 5: “imposed” interference

 3)00()00()34()02()5(,1 =−+−+−+−=uaiW τ

For determining the upper bound of the response-time,
we use this function :

 t),(max),(
)(

uai ic
ua

ihpcua
WtW ττ

τ∈
=

With the value of each),(tW uai τ , the response time

uaR of uaτ can be calculated.

),()1(n
uaua

i

i
n
ua RWCR ua τ∑

Γ∈Γ

+ += . uaR is obtained by fix-

point iteration starting with uaua CR =0 . Let us execute

this method on the example (Figure6)

Figure 6.Example for imposed interference

In the transaction iΓ , we have five tasks. Let us consider

a lower priority task uaτ with 5=uaC . Let us calculate

the response-time. We present at first the details of
iteration number 2:
Iteration 2:

3)00()00()00()12()02()5,(1 =−+−+−+−+−=uaiW τ

3)00()00()12()02()00()5,(2 =−+−+−+−+−=uaiW τ

3)00()12()02()00()00()5,(3 =−+−+−+−+−=uaiW τ

3)34()02()00()00()00()5,(4 =−+−+−+−+−=uaiW τ

4)04()00()00()00()00()5,(5 =−+−+−+−+−=uaiW τ

4)0,(=uaiW τ 9=uaR

We give the values obtained in the different iterations :

Iteration t 1iW

2iW

3iW

4iW

5iW

iW

uaR

1 0 0 0 0 0 0 0 5
2 5 3 3 3 3 4 4 9
3 9 5 5 5 6 5 6 11
4 11 6 6 7 6 6 7 12
5 12 6 6 8 6 6 8 13
6 13 7 7 8 7 7 8 13

Consequently, the value of uaR is equal to 13.

4- Contribution to RTA of transactions

4.1 Transactions without jitters

In this section, we first simplify the way to compute
the interference [PG 98] for general transactions with no
jitter.

according to [PG98] the interference of a transaction for
a task τic candidate to coincide with the critical instant is
given by:

()∑
∈∀

+=
)(

)(21),(

uaihpj

t
Set
ijcI

Set
ijcItuaicW

τ
τ with

ijC
iT

ijcijJSet
ijcI

 Φ+
=1 , ijC

iT

ijct
Set
ijcI

 Φ−
=2 , and

iTicJicOijOiTijc))%((+−+=Φ

By assumption, the jitter is null, so the interference
is written :

 −+−

+

 −+
= ∑

∈∀

ij
i

iiciji

hpj

ij
i

iiciji
uaic

C
T

TOOTt

C
T

TOOT
tW

uai

)%(

)%(
),(

)(τ
τ

By definition, iTiTicOijOiT <−+)%(therefore

∑
−+−

=
∈∀

)(

)%(
),(

uaihpj
ijC

iT

iTicOijOiTt
tuaicW

τ
τ

Which is equivalent to

∑
Φ−Φ+−

=
∈∀

)(

)%(
),(

uaihpj
ijC

iT

iTicijiTt
tuaicW

τ
τ

 Let us note k1, k2,…, k|hpi(τua)| the indices ordered by
offset of hpi(τua) (i.e. p<q => Φikp≤Φikq). Since the offsets
are assumed to be lower than the period, (Ti+Φij-Φic)%Ti
correspond to Φij-Φic if Φic≤Φij and (Ti+Φij-Φic) if
Φij<Φic. Hence, separating the formula between tasks

{ } >=<Γ 50 , ,,, :
4321 iiiii ττττ

>=< 4 , 0 , 0 , 4 , 0 , 2:1iτ
>=< 2 , 0 , 0 , 8 , 4 , 4:2iτ
>=< 3 , 0 , 0 , 5 , 11 , 2:3iτ
>=< 1 , 0 , 0 , 15 , 16 , 4:4iτ

 t)(21 txi

145

released before and after the critical instant candidate
τikp, we have :

∑

∑

≥
∈

<
∈

 Φ−Φ−

+

 Φ−Φ+−
=

pj

uaij

j

pj

pj

uaij

j

pj

p

kk

hpk

ik

i

ikik

kk

hpk

ik

i

ikiki

uaik

C
T

t

C
T

Tt
tW

)(

)(

)(

)(
),(

τ

τ
τ

so ∑
∈

 Φ−Φ−
=

)(

)(
),(1

1

uaij

j

j

hpk

ik

i

ikik

uaik C
T

t
tW

τ
τ

∑
≥
∈

 Φ−Φ−

+

 Φ−Φ+−
=

2

2

1

21

2

)(

)(

)(
),(

kk

hpk

ik

i

ikik

ik

i

ikiki

uaik

j

uaij

j

j

C
T

t

C
T

Tt
tW

τ

τ

And so on. Therefore

∑
≥
∈

 Φ−Φ−
−

 Φ−Φ−

+

 Φ−Φ+−
−

 Φ−Φ−

=−

2

)(

)()(

)()(

),(),(

21

1

2111

21

kjk
uaihpjk

j

jj

ik

i

ikik

i

ikik

ik

i

ikiki

i

ikik

uaikuaik

C
T

t

T

t

C
T

Tt

T

t

tWtW

τ

ττ

Let us analyze now, how we can determine efficiently
the differences between the interference function when
comparing the first task as the critical instant candidate
comparing to another task :

1

21
)(

ik

i

ikiki

i

C
T

Tt

T

t

 Φ−Φ+−
−

is always

equal to 0 or Cik1 because Φij<Ti.
The difference is Cik1 if and only if :

0)(%0%
21

≤Φ−Φ+−> ikikiii TTtandTt ,

equivalently]..0]%
21 ikikii TTt Φ−Φ+∈

For the other tasks interference (i.e. other part of the
sum) :

j

jj

ik

i

ikik

i

ikik
C

T

t

T

t

 Φ−Φ−
−

 Φ−Φ−)()(
21 is

always equal to 0 or -Cikj because Φij<Ti.
The difference is equal to –Cikj if and only if :

0)(%0)(%
21

>Φ−Φ−≤Φ−Φ− ikikiikiki jj
TtandTt

equivalently if :

]..]%
12 ikikikiki jj

Tt Φ−ΦΦ−Φ∈

We can thus calculate),(),(
21

tWtW uaikuaik ττ − testing

|hpi(τua)| intervals.
We will now calculate the difference

),(),(,),(
11 tWtWkkhpk uaikuaikpuaip p

τττ −≠∈∀ :

∑

∑

≥
∈

<
∈

 Φ−Φ−
−

 Φ−Φ−

+

 Φ−Φ+−
−

 Φ−Φ−

=−

pj

uaij

j

pjj

pj

uaij

j

pjj

p

kk

hpk

ik

i

ikik

i

ikik

kk

hpk

ik

i

ikiki

i

ikik

uaikuaik

C
T

t

T

t

C
T

Tt

T

t

tWtW

)(

)(

)()(

)()(

),(),(

1

1

1

τ

τ

ττ

The first sum has a value ≥0 whereas the second has a
value ≤ 0. We have :
Difference of +Cikj for kj<kp if

]..]%
1 pjj ikikiikiki TTt Φ−Φ+Φ−Φ∈ (1)

Difference of -Cikj for kj≥kp if
]..]%

1ikikikiki jpj
Tt Φ−ΦΦ−Φ∈ (2)

Example : transaction of period=19 with 3 tasks (Fig. 7)

Figure 7.calculation with intervals

 i2i1 WW − i3i1 WW −

]]0;13]]0;6]]6;11]]0;8]]6;14]]0;11

If I ∈t 1iC 2iC− 3iC− 1iC 2iC 3iC−

If I ∉t 0 0 0 0 0 0

Evaluation of),(tW uai τ with t=14

0000)14,()14,(21 =++=− uaiuai WW ττ

200)14,()14,(231 =++=− iCWW uaiuai ττ

Thus 9)14,()14,(1 == uaiuai WW ττ

With this method, it is sufficient to evaluate only
one value of),(tW uaic τ

4.2 Serial transaction

Let us introduce the definition of a serial transaction:

Definition1: A serial transaction is a transaction with the
following constraints:
Let ΓI be a serial transaction,
• null jitter: ∀i/τij∈Γi, Jij=0
• regular arrival pattern pi: ∀j∈[1..|Γi|], Φij=(j-1)pi.
• there are two kinds of tasks :

o the Li=|Γi|-1 acquisition tasks such that :
τij,j∈[1..Li] := <Ci, (j-1)pi, pi, 0, Bij, Pi>;

o the treatment task τi|Γi|:=<Cin,Lipi,Din, 0, Bij, Pin>

19=iT

>=< 1,0,0,6,1,41iτ
>=< 2,0,0,5,7,22iτ
>=< 3,0,0,6,12,33iτ

146

• with Cin>Ci, Din>pi, Pin<Pi and

iniiniii
CpCpLT −>+⋅−)(. This means that the

treatment task is longer than the acquisition tasks,
but is provided a longer deadline and a lower
priority.

Example of serial transaction : (Figure 6)

Definition2 : a task uaτ is an intermediate priority task

for a serial transaction iΓ if the priority of uaτ is lower

than acquisition tasks of iΓ but higher than the treatment

task of iΓ .

Definition3 : a task uaτ is a lower priority task for a

serial transaction iΓ if the priority of uaτ is lower than

all the tasks of iΓ .

The next result relies on the intervals defined in

section 4.1, let us define Eikj as the shift between two
successive tasks of higher priority than the task under
analysis (Figure 8). Let)(21 , ,,

uaihp
kkk τ the elements

of)(
uaihp τ . We assume that)(

uaihp τ is ordered by

offsets values increasing i.e
)1(+

Φ≤Φ
jj ikik

 for

)(uaihpj τ<

jj ikikijE Φ−Φ=
+)1(

 for)(uaihpj τ< and

)()(i 1
E

uaihp
ikikihp

T
uai ττ Φ−Φ+=

Figure 8. Illustration of

ijE and theorem 1

Theorem 1 shows that for specific patterns of
transactions without jitters where the WCET of tasks are
decreasing and the shifts between successive offsets are
increasing, the critical instant of a task always coincides
to the first instance of the transaction. The acquisition
tasks of a serial transaction follow this kind of pattern,
therefore the critical instant of a task of an intermediate
priority (lower than acquisition tasks but higher than
treatment task) always coincides with the first
acquisition task.
Theorem 1 : let iΓ be a transaction, uaτ a task under

analysis. If the jitters are null and if the tasks of iΓ are

such that their WCET are decreasing, i.e. Cij≥Cik
∀(j≤k)∈hpi(τua), and offset shifting are increasing i.e.

)1(+≤ jiij EE for)(uaihpj τ< , then the critical instant of

τua coincide with the release of the first task of hpi(τua) .

Proof : the proof is based on the interferences.

According to the definition of ijE , iij TE =∑ . For this

proof, we use the method of calculation presented in
section 4.1. In this section we have shown that the
difference of interference between a candidate kp and the
candidate k1 was obtained for every kj∈hpi(τua) by :
Difference of +Cikj for kj<kp if

]..]%
1 pjj ikikiikiki TTt Φ−Φ+Φ−Φ∈ (1)

Difference -Cikj for kj≥kp if

]..]%
1ikikikiki jpj

Tt Φ−ΦΦ−Φ∈ (2)

Let us analyze these intervals in the context Cij
decreasing and Eij increasing ; let us compare the
candidates k1 and k2 :
kj=k1 Difference +Cik1 for

]..0]%
21 ikikii TTt Φ−Φ+∈

i.e. for]..0]%
1ikii ETTt −∈ ,

let us note Iik2k1 this interval
kj=k2 Difference of –Cik2 for

]..0]%
12 ikikiTt Φ−Φ∈ i.e. for

]..0]%
1iki ETt ∈ ,

let us note Iik2k2 this interval
kj=k3 Difference of –Cik3 for

]..]%
1323 ikikikikiTt Φ−ΦΦ−Φ∈ ,

]..]%
212 ikikiki EEETt +∈ ,

let us note Iik2k3 this interval
kj=kn Difference of –Cikn for

]..]%
12 ikikikiki nn

Tt Φ−ΦΦ−Φ∈ i.e. for

]...

.....]%

1321

132

−

−

++++

+++∈

n

n

ikikikik

ikikiki

EEEE

EEETt
,

let us note Iik2kn this interval
We will prove now that with our constraints, the

intersection of the intervals giving a negative difference
is empty, i.e. there is at most one negative value for any
value of t%Ti; and then if t%Ti is in an interval giving a
negative value, in such a case we are in an interval
giving a positive value. Therefore, we will prove that
either there is not any difference of interference (neither
negative nor positive) or there is at most one negative
value but in this case there is a positive difference that is
greater or equal to the negative difference (since its value
is Cik1). In the proof, an interval I is < (lower) than an
interval J if any value of I is lower than any value of J.
Iik2k2< Iik2k3 because Eik1≤Eik2
Iik2k3<Iik2k4 because Eik1+Eik2≤Eik2+Eik3 because Eik1≤Eik3
…
Iik2kn-1<Iik2kn because
Eik1+Eik2+…+Eikn-2≤ Eik2+Eik3+…+Eikn-1 because
Eik1≤Eikn-1
Consequently, the intersection of the negative intervals is
empty.

Finally, we will prove that if t is in one of the
intervals Iik2kp, p∈2.kn, then it is in the interval Iik2k1 .

 Let us suppose that t%Ti∉ Iik2k1, this means
t%Ti∈]Ti-Eik1..Ti[∪{0}.

1iE 2iE 3iE 4iE

147

If t%Ti=0, then t is not element of any interval
In the case t%Ti∈]Ti-Eik1..Ti[, we will prove that Ti-

Eik1 is greater than any other interval Iik2kj,j=2..kn. It is
sufficient for this proof, since the intervals are
increasing, to prove that Ti-Eik1≥Eik1+Eik2+…+Eikn-1. So,
we have to prove that Ti ≥ 2Eik1+Eik2+…+Eikn-1; since by
definition Ti=Eik1+Eik2+…+Eikn, therefore we have to
prove that Eik1+Eik2+…+Eikn-1+Eikn≥ 2Eik1+Eik2+…+Eikn-

1, this is true because Eikn≥Eik1.
Let us generalize to a task kp of the serial transaction:

kj=k1 Difference +Cik1 for

]..0]%
1 pikikii TTt Φ−Φ+∈ i.e. for

)]...(..0]%
121 −

+++−∈
pikikikii EEETTt

 since Ti=ΣEij
)].....0]%

1 npp ikikiki EEETt +++∈
+

 let us note Iikpk1 this interval
kj=k2 Difference +Cik2 for

]..]%
212 pikikiikiki TTt Φ−Φ+Φ−Φ∈

i.e. for
)]...(..]%

121 −
++−∈

pikikiiki EETETt

since Ti=ΣEij
.....]%

111 npp ikikikikiki EEEEETt ++++∈
+

let us note Iikpk2 this interval
kj=kp Difference of –Cikp for

]..0]%
1ikiki j

Tt Φ−Φ∈ i.e. for

].....0]%
11 −

++∈
pikiki EETt ,

let us note Iikpkp this interval
kj=kp+1 Difference of –Cikp+1 for

]..]%
111 ikikikiki ppp

Tt Φ−ΦΦ−Φ∈ ++

 i.e. for].....]%
1 pp ikikiki EEETt ++∈ ,

let us note Iikpkp+1 this interval
kj=kn Difference of –Cikn for

]..]%
1ikikikiki npn

Tt Φ−ΦΦ−Φ∈

i.e. for

].......

.]%

13211

1

−−

+

+++++

++∈

nn

pp

ikikikikik

ikiki

EEEEE

EETt

,
 let un note Iikpkn this interval

The proof uses the same way as before, except that for
the general case, we show that there are always at least
as many positive interval than negative intervals. Since
the WCET cannot decrease, and since the positive
intervals correspond to the first tasks of the transaction,
the positive difference is always greater or equal than the
negative difference.
• t%Ti∈]0..Eik1] : t%Ti∈Iikpk1 and t%Ti∈Iikpkp, and

∀kq>kp, t%Ti∉Iikpkq because the lower limit of these
intervals is greater than Eikp≥Eik1. So, there is at least
one positive interval (giving a difference of Ci1) and

at most one negative interval (giving a difference of
Cikp) and since Ci1≥Cikp, we obtain Wi1 (τua,
t%Ti∈]0..Eik1])- Wip (τua, t%Ti∈]0..Eik1])≥0

• t%Ti∈]Eik1.. Eik1+Eik2] : t%Ti∈Iikpk2 (positive
intervals), t%Ti∈Iikpkp (negative interval). It is
possible that t%Ti∈ Iikpkp+1 (negative interval), but in
this case, t%Ti∈Iikpk1 (positive interval). On the
contrary, ∀kq>kp+1, t%Ti∉Iikpkq because Eikp+Eikp+1≥
Eik1+Eik2. Since the execution times are
nonincreasing, we have Wi1(τua, t%Ti∈]Eik1..
Eik1+Eik2])- Wip(τua, t%Ti∈]Eik1.. Eik1+Eik2])≥0

• the same reasonning can be lead on the other
possible intervals for t%Ti for every interval of
length Eikj.

5- Validation of the case study

Theroem 1 implies that in order to analyse an
intermediate priority task, it is sufficient to test its
response time when it’s released at the same time as the
first task of the serial transaction to obtain its tight worst-
case response time with a classic response time analysis.
Note that this theorem cannot be applied to a lower
priority task, because the condition “decreasing WCET”
is not satisfied in this case.

Let S be a set of transactions.
Let uaτ be a task of S under analysis with execution

time equal to uaC .

Let us note)(uahp τ the set of serial transactions in S

such as uaτ is a lower priority task. Let us note)(uait τ

the set of indices of serial transactions in S such as uaτ is

an intermediate priority task .
By applying Theorem 1, the interference applied by

the serial transactions whose indices belong to)(uait τ in

a time interval of length t does not need any specific
study related to transactions. It is given (tight upper
bound) by:

jj
j

j

itj

j
j

CL
p

Tt
L

T

t

ua

⋅

+⋅

∑

∈

,
%

min
)(τ

In this formula,

jT

t
 represents the number of

periods jT completed in the time interval of length t ;

and

j

j

j
L

p

Tt
,

%
min represents the number of

acquisition tasks activated in the remaining time(jTt%).

We still need to use the technique defined in [TN04b] in
order to study the interference of the serial transactions
whose indices belong to)(uahp τ , leading to a

pessimistic upper bound, but allowing us to validate the
case study (see Table 3). This application is valid

148

because in the table 3, we can see that for all the tasks,
the worst-case response time is lower than the deadline.

 Tasks Period deadline Priority
Worst-case

response time
1 200000 200000 1 56156

2 20000 10000 7 6532

3 50000 30000 5 15532

4 20000 10000 6 6572

5 250000 140000 2 56096

6 60000 60000 4 54636

7 250000 160 11 124

8 20000 720 10 468

9 100000 80 12 12

10 250000 5000 9 3408

11 20000 7500 8 5620

12 100000 70000 3 55416

Table 3: Worst-case response time
calculated with serial transaction method

6– Conclusion
In this article, we have presented a new task model:

the serial transaction. A serial transaction Γi is
compound with Li short but urgent acquisition tasks
activated each time a serial packet is received, and a less
urgent but longer treatment task activated when a whole
frame is received.

The number of acquisition tasks can be important
(more than 120 in a real case study) and makes the exact
calculation of response time intractable. Moreover,
overestimating the worst-case response time of the
urgent acquisition tasks wouldn’t allow the validation of
a task system.

After simplifying the way to evaluate the interference
of a transaction and finding the critical instant candidate,
we have shown that for tasks of intermediate priority, the
critical instant always coincides with the release of the
first task of the transaction (Theorem 1) . This new result
allows us to calculate an exact worst-case response time
for intermediate priority tasks (usually most tasks of a
system), while we still use the method proposed in
[TN04b] for the tasks of lower priority than a whole
serial transaction. Our future work is generalizing the
theorem 1 to a larger case of transactions called
monotonic transactions. Moreover, an extension of this
theorem taking jitters into account is investigated.

References

[Aud91] N.C. Audsley, Optimal priority assignment and

feasibility of static priority tasks with arbitrary start
times, Tech. Report YCS-164, University of York,
nov. 1991.

[Der74] M.L. Dertouzos, Control robotics : the procedural
control of physical processors,
Proc. of IFIP Congress, 1974, pp. 807-813.

[DM89] M.L. Dertouzos, A.K. Mok, Multiprocessor on-line
scheduling of hard real-time tasks, IEEE Transactions
on Software Engineering 15(12), Déc. 1989, 1497-
1506.

[GPS1] TIM-LC, TIM-LF, TIM-LP System Integration
Manual, http://www.u-blox.com

[Gro99] E. Grolleau, Ordonnancement temps réel hors-ligne
optimal à l'aide de réseaux de pétri en environnement
monoprocesseur et multiprocesseur, thèse, ENSMA -
Université de Poitiers, nov. 1999.

[IMU1] Crista Inertial Measurement Unit (IMU) Interface /
Operation Document, May
2004, http://www.cloudcaptech.com.

 [Lab74] J. Labetoulle, Un algorithme optimal pour la gestion
des processus en temps réel, Revue Française
d'Automatique, Informatique et Recherche
Opérationnelle (Fév.1974), 11-17.

[LL73] C.L. Liu and J.W. Layland, Scheduling algorithms
for mutltiprogramming in real-time environnement,
Journal of the ACM 20(1) (1973), 46-61.

[LW82] J. Leung and J. Whitehead, On the complexity of
fixed-priority scheduling of periodic, real-time tasks,
Performance Evaluation (Netherland) 2(4) (1982),
p.237-250.

[MPC1] MPC555/MPC556 User's Manual October 2000,
http://e-www.motorola.com

[MS03] J. Mäki-Turja and M. Sjödin, Improved Analysis for
Real-Time Tasks With Offsets –Advanced Model.
Technical Report MRTC no. 101, Mälardalen Real-
Time Research Centre(MRTC), May 2003

[Osek1] OSEK/VDX operating system specification 2.2.2
July 2002, http://www.osek-vdx.org.

[Osek2] OSEK/VDX System Generation OIL : Osek
Implementation Langauge version 2.5, Juillet 2004,
http://www.osek-vdx.org.

[OSM1] OSEKturbo OS/MPC5xx v2.2.1 Technical
Reference, Juin 2003, http://www.metrowerks.com.

[OSM2] OSEKturbo OS/MPC5xx User's Manual, Juin 2003,
http://www.metrowerks.com.

[OSM3] OSEKturbo performance information,
http://www.metrowerks.com

[PG98] J.Palencia Gutierrez and M.Gonzalez Harbour.
Schedulability Analysis for Tasks with Static and
Dynamic Offsets. In Proc. 19th IEEE Real-Time
System Symposium (RTSS), December 1998

 [Tin94] K. Tindell, Addind Time-Offsets to Schedulability
Analysis, Technical Report YCS 221, Dept of
Computer Science, University of York, England,
January 1994

[TN04a] J.Mäki-Turja and M.Nolin. Faster Response Time
Analysis of Tasks with Offsets. In Proc. 10th IEEE
Real-Time Technology and Applications Symposium
(RTAS), May 2004

[TN04b] J.Mäki-Turja and M.Nolin. Tighter Response Time
Analysis of Tasks with Offsets. In Proc. 10th
International conference on Real-Time Computing
and Applications (RTCSA’04), August 2004

[XP92] J. Xu and D.L. Parnas, Pre-run-time scheduling of
processes with exclusionrelations on nested or
overlapping critical sections, Phoenix Conference on
Computers and Communications (Phoenix, USA),
Apr. 1992,pp. 6471-6479.

149

The Real-Time MatPLC

Mário de Sousa
Faculdade de Engenharia da Univ. do Porto

Dept. Eng. Electrotecnica e de Computadores
R. Dr. Roberto Frias, 4200-465 Porto

msousa@fe.up.pt

Adriano Carvalho
Faculdade de Engenharia da Univ. do Porto

Dept. Eng. Electrotecnica e de Computadores
R. Dr. Roberto Frias, 4200-465 Porto

asc@fe.up.pt

Abstract

The MatPLC is an open-source industrial control
application, consisting of a core, generic modules, and
tools for creating custom modules. Since many control
and monitoring systems require strict time determinism,
hard real-time capabilities were added to the MatPLC.
The paper includes an outline of the MatPLC's
architecture, and details the design changes required to
add the hard real-time capabilities to the MatPLC
framework. The execution times of the real-time version
of the MatPLC were measured and analysed.

1. Introduction

The technology used in PLCs (Programmable Logical
Controllers) have evolved with the times, to the point
that many modern top of the range PLCs are actually full
fledged computers in disguise, executing modern
operating systems. More importantly, and in order to
take advantage of economies of scale, many PLC
vendors have started to adopt hardware similar to PCs
(Personal Computers).

The MatPLC project was started with the intention of
eliminating the lock the vendors have on the end-users,
by taking advantage of open standards as well as open
source operating systems running on the de facto
standard PC platform. It has currently been successfully
tested on a DIN rail mounted PC platform marketed by
SixnetIO. Most industrial communication networks are
supported (Modbus, Devicenet, Profibus, ASI, etc.),
either directly or through the use of a network interface
card manufactured by Hilscher. Software standards are
also being taken into account. Currently the project
includes a compiler for the IL (Instruction List) and ST
(Structured Text) programming languages defined in IEC
61131-3.

Many industrial control applications require
deterministic behaviour not only from the control
algorithm, but also in the time domain. In order to be
able to support these applications, it becomes necessary
that the MatPLC's framework and the implementation
itself be augmented in order to provide real-time
guarantees. This paper discusses and details the design

changes to the MatPLC framework, and the
implementation effort of porting the MatPLC to a real-
time platform. The small standard demo was run on the
new real-time capable MatPLC in order to evaluate and
validate this new version.

2. MatPLC Overview

The MatPLC [1-3] is an open-source control
application, composed of autonomous but cooperating
modules that execute in separate user-space processes,
and access a common shared state stored in shared
memory. Each of these modules is free to decide whether
or not to execute in a standard PLC scan loop, which
means that the industrial control application may be
developed using either asynchronous programming
common to most PLCs, or synchronous programming
common to most other computer architectures. Both
methods may even be used simultaneously, as long as
they are not mixed within the same MatPLC module. The
application builder may choose to let the modules
execute autonomously, or to synchronize their activities.

Access to all shared resources is made through the
MatPLC library routines which offer PLC-like semantics
for the modules that wish to use them, such as inputs that
only change at the beginning of the logic and outputs that
are only written at the end of the logic. The library is
divided into several sections (Fig. 1):

Figure 1. MatPLC Architecture, showing a
selection of modules in the top part and
the sections of the library in the bottom.

150

• configuration memory manager (cmm) - manages the
shared memory area that stores core configuration
data, guaranteeing that all modules share the same
configuration;

• global memory manager (gmm) - manages the shared
memory area used to store the state of the plc points;

• synch section - handles the synchronization between
modules;

• period section - enforces scan loop timings;
• state section - handles module execution state;
• configuration section - parses the configuration files;
• log section - allows every module to produce log

messages in a consistent manner. These are
timestamped and written to a logging file.

A more detailed explanation of the internal
mechanisms used within the more complex sections
follows.

2.1.The Configuration Memory Manager
The cmm is used by the other sections to store the

current configuration of the PLC. For example, the synch
section stores how the modules should synchronise their
execution amongst themselves, the gmm section stores
the location of named PLC points, while the state section
stores the identification of the synchronisation point
being used to control the PLC run/halt state. The use of a
shared memory location instead of a configuration file
(that may be changed between the launch of two
modules) guarantees that all modules use the same
configuration. Every access to the configuration memory
area is made through the cmm library section.

Several MatPLCs can run simultaneously on the same
system. Each is distinguished by the configuration
memory area it uses, which is identified by a unique
number. When a module is launched, the identity of the
MatPLC to which it should attach is specified as a
command line parameter.

2.2.The Global Memory Map
Since the MatPLC architecture hinges on the

simultaneous execution of several modules, every access
to the global memory map by a specific module must be
made to be atomic with respect to the other modules.
Several modes are available for enforcing this constraint
(Fig. 2), none of which is optimal for all possible
scenarios in which the MatPLC is expected to be used.
The application builder may choose any of the access
modes for each executing module.

For the default 'local' mode, a local copy of the
memory map is created for the module (Fig. 2 - Module
B). When a module accesses a plc point, it is actually
accessing its local memory map. Local and global
memory maps are synchronized by calling the
plc_update() function, which is protected by a
semaphore, providing atomic updates with respect to
other modules.

The second mode, `isolate' (Fig. 2 - Module C),
completely isolates the module from the shared memory
used by the PLC, and is mostly used by untrusted
modules (e.g. still in a debugging stage). It uses sockets
to forward the plc_update() function call from the
module to the proxy, introducing significant overhead.

The third and last mode, `shared' (Fig. 2 - Module A),
assumes that simultaneous access to the shared map will
never occur, and therefore gives the module direct access
to the global memory map with no synchronization
enforced. This may be guaranteed if all modules are
running a scan loop with each loop executing in turn
(possible due to the synch section, described below), or
if the modules access disjoint portions of the global map.

2.3.The Synch Section
The synch section allows the application builder to

specify the sequence of execution of the running

Figure 2. Synchronization of gmm memory
maps (local, isolate and shared)

Figure 3. The synchronization model with
an example Petri Net.

P1

P2

T1

T2

T3

ModuleA beg.

ModuleA end

ModuleB beg.

ModuleB endT4

151

modules. This is achieved by specifying a Petri net,
taking into account that particular synchronization points
in each module (usually beginning and end of scan, but
optionally others) are associated with the firing of a
transition. When such a synchronisation point is
reached during the module's execution, the module
blocks until the transition fires (assuming it cannot fire
immediately). Note that a transition will not fire unless a
module is waiting on it; in this the semantics differ from
those of a standard Petri net.

The synch section leverages the standard SysV
semaphores to simulate the synchronization Petri net,
using a single SysV semaphore set, with a semaphore for
each place. Each transition is implemented by
simultaneously waiting on all the appropriate
semaphores, a functionality of SysV semaphores not
supported by POSIX semaphores.

2.4.The Period Section
This section enforces maximum scan rates for each

module. It uses POSIX timers to set an alarm that goes
off at every multiple of the desired scan period, at which
time an alarm counter is incremented. When a module is
ready to start a new scan it decrements the alarm counter
and continues with the scan. If there are no outstanding
alarms, the scan is delayed until the next alarm goes off.

2.5.The State Section
This section of the library handles RUN/STOP modes

both for the MatPLC as a whole and for each module
individually. A module will only execute a scan if both
the whole MatPLC and the module itself are in RUN
mode.

In order for these modes to work correctly with the
synch library, they are implemented by adding hidden
places to the synch petri net. These places are connected
with arcs to the begin of scan synch transitions in such a
way that the transition will only fire if both the PLC and
the module are in RUN mode, with the tokens being
replaced after firing. A module is thus able to atomically
verify the conditions required by both the state and the
synch sections.

2.6.MatPLC Modules
Currently the MatPLC comes with several modules,

which may be grouped into I/O (Input/Output) modules,
logic modules, and human interface modules.

The I/O modules interface with physical devices
through either local or remote digital and analog I/O.
Modules are provided that allow access to local I/O cards
based on the Intel 8255, a PC's parallel port, and all
cards supported by the comedi [4] library. Support for all
main fieldbus networks (Devicenet, ASI, Profibus, etc.)
is achieved through the use of network cards made by
hilscher [5], besides the three modbus variants that are
also supported directly by a specific MatPLC module.

Logic modules include a DSP (Digital signal
Processing) module that implements PID loops as well as
digital filters, and a compiler that generates modules
from control programs written in the standard text based
PLC programming languages (IEC 61131-3 IL and ST
[6]).

Human interface includes graphical interfaces based
on the gtk and the tcl/tk libraries, as well as a text based
interface module based on the curses library.

3.Real-Time MatPLC

In order to support RT (Real-Time) applications, the
MatPLC framework has been augmented to become
time-deterministic. This is achieved mainly by adding
support for the concept of RT modules through the use of
execution priorities.

In fact, and considering that a real-time control
application is commonly composed of both hard (e.g.
control) and non-hard real-time (e.g. graphical interface)
components, it makes sense to re-use the existing
modularity of the MatPLC to support the modularity of
RT applications. The components of a RT application are
therefore expected to be mapped onto MatPLC modules,
which means that the revised MatPLC framework
therefore must support modules with RT characteristics.
Additionally, the MatPLC's core library routines had to
be revised so that non-RT modules do not cause undue
interference and blocking on the RT modules.

The concept of RT modules was therefore added to
the MatPLC framework. These modules are largely
identical to traditional MatPLC modules, but augmented
to provide deterministic behaviour. This is achieved by
allowing the user to specify a fixed execution priority for
each RT module, as well as by eliminating potential
blocking due to memory page swapping by the operating
system's memory manager. All sections of the MatPLC's
core were also analysed in order to remove any potential
interference and blocking between the RT and non-RT
modules.

Since the MatPLC runs over an operating system, the
above functionality not only requires support from the
operating system, but also assumes that the operating
system itself is time deterministic. The MatPLC was at
first coded on a non real-time version of Linux, therefore
creating a RT version of the MatPLC required that it be
first ported to a RT operating system. In order to
maintain the most portability, it was decided to code the
RT version of the MatPLC to the RT POSIX standard
[7]. As no version of RT Linux was at the time
completely RT POSIX compatible, QNX was chosen as
the first target operating system.

3.1. CMM and GMM Sections
The cmm and gmm sections each use shared memory

during run mode, and a single semaphore each for
controlling access to those memory sections. However,

152

unlike the access to the cmm memory area which is only
made during initialization, access to the gmm memory
area is made during run-time by modules which may be
executing under differing priorities. This introduces the
possibility that unbounded priority inversion may occur.
To work around this a scheduling protocol that bounds
priority inversion (e.g. PCP – Priority Ceiling Protocol
[8]) has to be used.

The original MatPLC implementaion used SysV
sempahores to synchronise the access to the gmm
memory area when using the 'local' access mode.
Unfortunately SysV sempahores do not support priority
inheritance protocols, and neither do POSIX
semaphores. The only available option is to use POSIX
mutexes, which do support PCP and similar scheduling
protocols, but however are not mandated by the POSIX
standard to work between threads residing on seperate
processes. For the MatPLC, with each module running
under a separate process, mutex synchronisation between
processes was a requirement, otherwise a big revamping
of the MatPLC framework would have to be attempted.
Fortunately QNX allows mutexes to be used between
processes, so the revamping of the MatPLC framework
was not required.

Considering that mutexes had to be used for
synchronising RT MatPLC modules, and that the
mutexes with inter-process capability may not be
available under all POSIX compliant operating systems,
to have a truly portable MatPLC it became necessary to
re-implement the gmm synchronisation to use either
POSIX mutexes, as well as POSIX semaphores. Since
the SysV semaphores were already being used, and two
new options were also required, it was decided to
encapsulate the synchronisation mechanism in a
plc_mutex abstraction, which is mapped onto one of the
three available options at compile time. The RT verson
of the MatPLC, currently running on QNX, uses the
POSIX mutex version to synchronise the access to the
gmm shared memory, and configured to use the priority
inheritace protocol.

Both the POSIX semaphore and the POSIX mutex
variants require that the semapore/mutex be placed in
memory that may be accessed simultaneously by all
processes that synchronise to that semaphore/mutex. A
cmm memory block was used to store the
semaphore/mutex since the memory managed by the
cmm is shared between all running MatPLC modules.

In the gmm 'shared' access mode no explicit
synchronisation between the processes accessing the
gmm global memory map is attempted by the gmm
section. The processes are expected to either access
disjoint areas of the memory map, or to never execute
concurrently (which may be enforced by the synch
section). This means that the gmm section does not make
use of any synchronisation mechanism when in 'shared'
access mode, and therefore did not require any changes

to become time deterministic and RT ready when in this
mode.

Another issue stems from the sockets used by the
`isolate' mode of the gmm section, which introduce
additional overhead which is difficult to impossible to
evaluate, and therefore cannot be used in a RT
deterministic setting. For this reason, support for the
'isolate' option under a RT MatPLC has for the moment
been deferred to a later date, but most likely never.

Although it is not strictly necessary to support priority
inheritance in the synchronisation mechanism used to
control access to the cmm (only accessed at start-up of
each module), the cmm itself now also uses the
encapsulated plc_mutex that was created specifically for
the gmm, making it safe to access the cmm after start-up
if it ever becomes necessary. This potential future access
would however not be entirely innocuous due to the
additional bounded blocking that it would introduce to
the RT MatPLC modules.

3.2.Synch Section
Before implementing RT behaviour on the MatPLC,

the synch section had been originally implemented using
SysV semaphores, making extensive use of their richer
semantics; simultaneous and atomic waiting and posting
on the same semaphore, or on different semaphores in
the same semaphore set.

Since no RTOS currently supports SysV semaphores,
this section had to undergo significant changes. As with
the gmm section, it was decided to maintain the SysV
implementation since it has higher execution speed and is
therefore preferable when SysV semaphores are available
and no RT requirements are necessary. Once again the
SysV semaphore version was encapsulated inside a
plc_synchsem abstraction (implemented as a library) that
provides the same semantics as SysV semaphores.

Two new versions of the plc_synchsem were
implemented, one using POSIX semaphores and the
other using POSIX mutexes. The version to be used is
decided at compile time depending on the
synchronisation mechanisms supported by the operating
system being used, as well as the RT requirements.
Special effort was made to eliminate unbounded priority
inversion and blocking in the two POSIX variants,
especially on the POSIX semaphore version since only
the POSIX mutex version provides automatic bounded
blocking through the use of priority inheritance
protocols. This means that the POSIX semaphore variant
may also be used in a RT setting, although it may be a
little slower.

For both POSIX variants a plc_synchsem consists of a
data structure with the following shared data elements:
1. an array with the current value of each emulated

semaphore in the semaphore set,
2. a list of processes currently blocked trying to

synchronise to the semaphore set,

153

3. and a semaphore/mutex to control the access to the
above data structures.
Additionally, each process that will synchronise to a
plc_synchsem also has a private semaphore
(condition variable on the POSIX mutex variant) on
which it will block, waiting to be release by another
process.
The synchronisation algorithm for synchronising with

a plc_synchsem follows the following steps:
1. lock the shared semaphore/mutex of the

plc_synchsem;
2. verify if the conditions the calling process specified

for synchronising are met; if false go to to 3, else go
to 4.

3. add the process to the decreasing priority ordered list
of currently blocked processes, release the
semaphore/mutex locked in step 1, and then block on
the private semaphore (or he condition variable for
the POSIX mutex variant). When this process
becomes unblocked (through the actions of another
process executing step X), simply return.

4. make the required changes to the value of each
semaphore in the plc_synchsem set.

5. Run sequentially through all processes (by decreasing
priority) that are currently blocked and check whether
the new semaphore values allows the process to
become unblocked. As soon as the highest priority
process that may become unblocked is found, then
remove that process from the blocked processes list
and (a: POSIX semaphore variant) add it to a list of
processes to be unblocked later or (b: POSIX mutex
variant) signal the private condition variable on
which the process is blocked, and go to step 4.

6. The current semaphore values do not permit the
unblocking of any further processes, so (a: POSIX
semaphore variant) run through the list of processes
to be unblocked and unblock them in decreasing
priority order by signalling the private semaphore on
which each process is blocked, or (b: POSIX mutex
variant) do nothing.

7. release the semaphore/mutex locked in step 1.
For the POSIX semaphore version the above

algorithm releases the processes in decreasing priority
order so as to eliminate the possibility of priority
inversion and unbounded blocking. If this were not done,
the release of a mid-priority process may create the
conditions to release a higher priority process. If the mid-
priority process is released by a low priority process (i.e.
the process that is synchronising with the plc_synchsem),
then the mid-priority process will pre-empt the low
priority process and therefore delay the unblocking of the
high priority process. This occurrence would lead to
unbounded blocking of the higher priority process, which
is not desirable in RT systems.

For the POSIX mutex version it is no longer necessary
to release the processes in decreasing priority order since
the signalling of the private condition variable does not

immediately release the blocked process. All blocked
processes whose private condition variables were earlier
signalled are only released simultaneously and atomically
at the same time the global shared mutex is released in
step 7, therefore eliminating the possibility of priority
inversion occurring.

3.3.The New RT Section
A new section was added to the MatPLC core library

to add support for the RT specific configuration
parameters – process priority and memory management.

The new RT section basically sets, at module start-up,
the priority of the process running each module to the
priority requested by the user in the MatPLC's
configuration file, and sets the scheduling algorithm to
the POSIX fixed priority SCHED_FIFO. If no explicit
priority is specified by the user, then the default
scheduling algorithm is left unchanged, as is the initial
priority.

Besides the priority, the RT section also configures
the way the memory used by each module is managed by
the underlying operating system. If at least one module is
configured to run under RT priority, then that module, as
well as all the others, are configured by this section to
run with their memory locked to RAM, and with
swapping to disk disabled. Note that it is not sufficient to
lock the RT modules' memory to RAM, as these modules
may experience bounded blocking from the remaining
modules through the mutex used by the gmm. This means
that even non-RT modules may at some intervals execute
under an inherited RT priority, so in order to avoid
undue delays, all modules must have their memory
locked to RAM.

3.4.Log Section
The log section currently writes all logs to a user

configurable file during run time. Since the most
probable is to have the file residing on disk, file access
times are not deterministic. Therefore this section also
needs changing in order to support RT guarantees.
Although no change has yet been attempted, it is
expected that in the future RT version of this section all
logs will be sent to a RT FIFO/message queue, where
they may be later removed by a non real-time logging
process. This process may then send these logs to a file,
to a terminal or even to the UNIX system log.

For the moment RT modules may not produce any
logs during run time so as not to introduce unbounded
delays. Another option is to configure the logging file on
a memory mapped file system where file access times are
more deterministic.

3.5.Modules
Since the bulk of the code in the MatPLC is in the

modules, one would expect that they would require the
bulk of the porting effort. This, however, does not appear

154

to be the case. The majority of modules fall into two
classes: those which are never going to be real-time (file
loggers, graphical user interfaces, etc.) and those which
require no change at all or very little (e.g. DSP module,
modules generated by the IEC 61131 ST/IL compiler).
This stems from the fact that the RT modules only
execute asynchronous logic, with all synchronization
activities residing in the MatPLC library calls that were
already discussed above. However, these modules do
need to be linked to time deterministic versions of the C,
thread and maths libraries.

The only exception to the above broad division are
the I/O modules, which do require significant work. In
order to operate in real-time, such modules may only
make use of time deterministic hardware drivers, besides
being themselves time deterministic.

This means that currently no networked I/O may be
accessed with deterministic time, including the I/O on
fieldbus networks since the the device driver for the
hilscher cards is not available for the QNX operating
system on which the RT MatPLC currently runs.

4.Test and Evaluation

4.1.Experimental Set-up
The resulting RT MatPLC implementation was tested

on a personal computer with a 350 Mhz Pentium II and
320 Mbytes of RAM, running the QNX 6.2.0 operating
system. The basic demonstration set-up was run,
consisting of two modules: a text based human interface
module, and a logic execution module written in C. The
logic module simply switches on one out of four 'lights'
in sequence, while the text mode interface displays the
status of these four 'lights'. Both modules ran
asynchronously and used the 'local' method of accessing
the gmm memory map.

With the above set-up, a measurement was made of
the time elapsed between the beginning of two
consecutive scans of the logic module. This time
differential was measured for 25000 scan cycles of the
logic module, and saved to memory during the
experiment so as not to disturb the measurement itself.
Only at the end of all measurements were the results
stored to a file on disk.

The time itself was measured using the clock counter
present on all Intel compatible CPUs, and read using the
rdtsc assembly instruction. This counter internal to the
CPU counts the number of clock cycles since the CPU
was switched on. On the 350 Mhz CPU this counter
presents a resolution of 2,85 ns.

4.2.Results
The demo was executed twice: the first run with both

modules executing with the default (non RT) execution
priority and scheduling algorithm. The second run had
the logic module running under a higher priority, and

using a fixed priority FIFO scheduling algorithm. The
results are presented in the following figures.

As expected, when running under non-RT priority the
execution period has high variability and suffers from
large jitter, whereas with a high priority the execution
period becomes more periodic.

5.Conclusions

In order to be able to support control applications
with strict time constraints, the MatPLC's framework and
the implementation itself were augmented in order to
provide real-time guarantees.

The MatPLC's modularity meant that the framework
did not require significant changes, merely requiring the
concept of real-time modules. The code itself is also
highly partitioned, with most synchronisation functions
limited to the MatPLC's core library. In this library, the
gmm, cmm and the synch sections required most
attention in order to eliminate any possibility of
unbounded priority inversion. A new RT section was also
added to support the configuration of RT modules.

155

The small standard demo was run on the new real-
time capable MatPLC in order to evaluate and validate
this new version.

Code for the MatPLC can be obtained from the
project's cvs server and on the website, http://mat.sf.net.
The Real-Time version of the MatPLC has been merged
with the main project, and may be obtained from the
same location.

6.Acknowledgements

The authors would like to thank Curt Wuollet for
taking the initiative of starting the MatPLC project. We
also appreciate the contributions of Jiri Baum and Juan
Carlos Orozco to the project.

References

[1] M. de Sousa, A. Carvalho, “MatPLC – the Truly Open
Automation Controller”, Proceedings of the 28th Annual
Conference of IEEE Industrial Electronics, pp. 2278-
2283, 2002

[2] M. de Sousa, A. Carvalho, “An IEC 61131-3 Compiler
for the MatPLC”, Proceedings of the 9th IEEE
International Conference on Emerging Technologies and
Factory Automation, Lisbon-Portugal, 2003

[3] M. de Sousa, A. Carvalho, “Embedding the MatPLC”,
Proceedings of the 10th IEEE International Conference
on Emerging Technologies and Factory Automation,
Catainia-Italy, 2005

[4] D. Chleef, “Comedi: Linux Control and Measurement
Device Interface”, http://www.comedi.org, available in
December 2005

[5] http://www.hilscher.com, available in December 2005
[6] International Electrotechnical Commission, “IEC 61131-

3, 2nd Ed. Programmable Controllers – Programming
Languages” , International Electrotechnical Commission,
Final Draft - 10th December 2001

[7] IEEE and The Open Group, “IEEE Std 1003.1, 2003
Edition”, 2001-2003.

[8] L. Sha, R. Rajkumar, J. P. Lehoczky, “Priority
inheritance protocols: An approach to real-time
synchronization”, IEEE transactions on Computers 39
(9):1175-1185, 1990

156

Worst-case Execution Time

157

Code padding to Improve the WCET Calculability

Christine Rochange
Université Paul Sabatier

IRIT
31 062 Toulouse cedex 9

rochange@irit.fr

Pascal Sainrat
Université Paul Sabatier

IRIT
31 062 Toulouse cedex 9

sainrat@irit.fr

Abstract

The Worst-Case Execution Time of tasks with strict
deadlines must be predictable: it must be possible to
estimate this time both safely and tightly at an
acceptable computing cost. Static WCET analysis is
facilitated if parts of code can be analyzed more or less
independently of one another. This is why it is
desirable to prevent timing interferences between
blocks. In this paper, we show how it is possible to
transform the code to prevent timing effects between
distant basic blocks on an execution path. Our
approach consists in padding the code to space out
basic blocks. Performance results show that the code
size is sensibly increased but that the cost in terms of
WCET degradation is moderate.

1. Introduction

Being able to estimate the Worst-Case Execution
Time (WCET) of tasks is absolutely necessary for hard
real-time systems. Measurement is generally
inadequate because it cannot be guaranteed that all the
possible execution paths have been tested. This is why
academic research has focused on static WCET
analysis.

The WCET estimated by static methods should
obviously be safe since missing deadlines can have
dramatic consequences in some critical systems.
However, it should also be as tight as possible: WCET
overestimation can have undesirable effects like the
impossibility to schedule the tasks. It might also lead to
oversized hardware.

Static methods compute an upper bound of the real
WCET by combining information about the possible
execution paths (produced by a preliminary analysis of
the code) and the execution times of the basic blocks.
These times can be determined by a cycle-level
simulator of the target processor.

However, critical applications follow the general
evolution towards more and more computing
requirements. This is why advanced processor
architectures tend to be used in critical systems [16].

Unfortunately, in a high-performance processor, a
basic block does generally not execute the same way in
the application code as it would do if it was executed
alone. This is due to interferences (data dependencies,
precedence constraints or resource conflicts) with other
blocks on the execution path. To get the worst-case
execution time of a block, these possible interferences
should be taken into account. This is often a very
complex task, as it will be explained in Section 2.

To keep the WCET analysis simple, we have
recently proposed to modify the processor architecture
to eliminate any possible timing effect between basic
blocks [13]. The idea was to space out successive basic
blocks in the pipeline in such a way that they cannot
interfere. The proposed scheme obviously degrades the
performance (in the order of 42% for an 4-way
superscalar out-of-order processor) but the loss could
be acceptable in the name of timing safety. However,
the main problem is that such a processor does not
exist for the moment. This is the reason why we
suggest that the distance between blocks could be
enforced by the compiler instead of the hardware.

Our approach consists in padding the code by
inserting neutral filler-instructions, i.e. instructions that
will not be executed but only fetched and decoded
before being removed from the pipeline (like a true
NOP). The lengths of the padding blocks are computed
so that they eliminate all the possible interferences
between basic blocks.

Note that this work focuses on timing interferences
related to the use of the pipeline and of the internal
processor resources. We do not address here the
question of modeling caches, branch predictors, etc.
This is why we will consider these components as
perfect (i.e. with a very predictable behaviour) in the
evaluation part.

The paper is organized as follows. Section 2 gives
some background information on static WCET analysis
and on the possible timing interferences between
blocks in high-performance processors. It also
overviews related work. We introduce our approach in
Section 3. Performance results are analyzed in
Section 4 and concluding remarks are given in
Section 5.

159

2. Background

2.1. Static WCET estimation

Static analysis techniques add the execution times of

basic blocks on the possible execution paths extracted
either from the syntax tree [8] or from the control flow
graph [6]. For example, the Implicit Path Enumeration
Technique handles the search of the WCET as an
optimization problem where:
- the objective function is the program execution time

expressed as the sum of the basic block execution
times weighted by their respective numbers of
execution. As we will explain it in Section 2.3, it
should also include the possible timing interferences
between basic blocks.

- the constraints are the relations between the unit
execution times. Some of them can be extracted
from the control flow graph, others come from a
preliminary flow analysis and express loop bounds,
infeasible paths, etc.

Evaluating the WCET of the program comes to
determining the numbers of execution of the basic
blocks that maximize the objective function while
meeting the constraints.

2.2. Timing interferences

As mentioned above, the expression of the program

execution time should include inter-block timing
interferences.

For very simple processors, such interferences are
limited to adjacent blocks which overlap in the
pipeline: the execution time of a two-block sequence is
shorter than the sum of their respective execution
times. In that case, all of the timing effects can be
captured by measuring the execution times of blocks
alone and of sequences of two blocks.

However, more advanced architectures make
interferences between distant blocks possible, as it was
shown by Engblom [3]. He has found that a block can
interfere with a distant one, and this kind of
interference is referred to as a long timing effect (LTE).

The execution time of a path can be computed as:

..
0 ...∈ ≤ < < ≤

= + δ∑ ∑i j
i j k n

T t
B

k

where B is the set of blocks (which are numbered
from 0 to n), ti is the execution time of block i and δj..k
is the timing effect associated to the sequence of
blocks Bj…Bk. This is illustrated in Figure 1.

Sources of long timing effects include block
alignment (i.e. the relation between the number of
instructions in the block and the width of the
pipeline) [12], long latency instructions, data
dependencies, out-of-order execution, limited-capacity
queues, etc.

t A

AB

ABC

ABCD

ABCDE

BCDE

BCD CDE

BC CD DE

t B t C t D t E

tA-B

tA-B-C

tA-B-C-D

Figure 1. Engblom’s timing model

Engblom has shown that long timing effects would
span over unlimited block sequences: at the very worst,
the first block of the program can affect the execution
of the last block. Moreover, a long timing effect value
(δi…j) can be negative as well as null or positive. A
negative value should be taken into account to get a
tight WCET estimation, but a positive value must be
accounted for to compute a safe estimation.

2.3. Including timing interferences in WCET
analysis

The original IPET method was developed

considering very simple processor architectures where
only adjacent basic blocks could interfere by
overlapping in the pipeline. The corresponding gain
was seen as the (negative) execution time of the edge
linking the two blocks. Then, the edge execution time
(weighted by the number of executions of the edge)
was taken into account in the expression of the
program execution time. For example, the WCET
model for the control flow graph given in Figure 2
would have been:

max T = x

A
t
A
 + x

B
t

B
 + x

c
t
C
 + x

D
t
D
 + x

E
t
E

 + x
AB
δ
AB
 + x

BC
δ
BC
 + x

CD
δ
CD
 + x

BE
δ
BE
 + x

ED
δ
ED

1 = x

A
 = x

AB
 = x

B
x
B
 = x

BC
+ x

BE

x
BC

x
 = x

C
 = x

CD
 x

BE
 = x

E
 = x

ED

D
 = x

CD
 + x

ED
 = 1

Figure 2. Example Control Flow Graph

Now, advanced processor architectures are often
used for real-time systems and long timing

A

B

C E

D

160

interferences should also be taken into account. We
have found two different approaches in the literature.

The first one, described in [4], extends the original
IPET model to include the long timing effects. For the
example given in Figure 2, the model comes to:

max T = x

A
t

A
 + x

B
t
B
 + x

c
t
C
 + x

D
t

D
 + x

E
t
E

 + x
AB
δ
AB
 + x

BC
δ
BC
 + x

CD
δ
CD
 + x

BE
δ
BE
 + x

ED
δ
ED

 + x
ABC
δ
ABC
 + x

BCD
δ
BCD
 + x

ABE
δ
ABE
 + x

BED
δ
BED

 + x
ABCD

δ
ABCD

 + x
ABED

δ
ABED

1 = x

A
 = x

AB
 = x

B
x

B
 = x

BC
+ x

BE

x
BC
 = x

C
 = x

CD
 x

BE
 = x

E
 = x

ED

x
D
 = x

CD
 + x

ED
 = 1

x
ABC
 ≤ x

AB
x

ABC
 ≤ x

BC
 x

ABC
 • x

AB
 - x

BE

x
ABE
 ≤ x

AB
x

ABE
 ≤ x

BE
 x

ABE
 • x

AB
 - x

BC

x
BCD
 = x

B B

x
C

x
BED
 = x

E

ABCD
 = x

ABC
x

ABED
 = x

ABE

This solution weighs the expression of the objective

function down and adds several constraints for each
possible sequence in the execution path. Since LTEs
can be as long as complete execution paths, the number
of sequences to consider is potentially very high. Then
the optimization problem might be very difficult to
solve. Moreover, a value must be assigned to the LTE
associated to each sequence of blocks: it must be
computed from the execution times of all the sub-
sequences. At the end, evaluating the LTE values
comes to measuring every possible sequence of blocks,
which is very time consuming in the general case.

Another approach consists in including the possible

timing interferences in the execution times of blocks.
When the target architecture can generate long timing
effects, the execution time of a basic block should be
evaluated by considering all the possible prefix paths
and by keeping the highest value. While simulating
numerous prefix paths could be unfeasible, the use of
the abstract interpretation theory can make things more
tractable [15]. The IPET model is then transformed as
follows, where τ

A
 is the execution time of block A

including the possible impact of other basic blocks:

max T = x

A
τ
A
 + x

B
τ
B
 + x

c
τ
C
 + x

D
τ
D
 + x

E
τ
E

1 = x = x = x + x

A B C

x
E

D
 = x

C
 + x

E
 = 1

The algorithm for obtaining the adjusted unit
execution times by abstract interpretation is not much
detailed in papers, but it seems that it necessitates high
computing power [14].

Moreover, including the effects of any possible
prefix path in the execution time of a block leads to
WCET overestimations since: (a) the flow analysis can
find out that some prefix paths are infeasible, and (b)

some prefix paths might not belong to the longest path
and then should not be accounted for in the WCET. In
the preceding example, τ

D
 includes the impact of

block B on block D within the sequence BED (while
δBCD might be null). If the flow analysis determines
that block E is never executed and if δBED is positive,
the WCET will be overestimated. Similarly, if the
execution time of block C is far longer than that of
block E, the longest path is along the path BCD and the
impact of B on D in sequence BED should be ignored.

To sum up, the evaluation of unit execution times is
costly in time for both approaches. The first solution
also makes the IPET model more complex while the
second one introduces some pessimism. These are the
reasons why we are investigating solutions to limit
timing interferences.

2.4. Related work

Li et al. [7] define a model based on dependence

graphs to evaluate the execution time of a basic block
in an out-of-order processor. However, they do not
model superscalar execution and their experiments
consider a very small core. Whether their model would
scale to more realistic processors still has to be further
investigated.

Heckmann et al. [5] use abstract interpretation to
estimate the impact of previously executed blocks on
the execution time of each basic block. This approach
has been implemented in the aiT tool by the AbsInt
company. While their method is an interesting
alternative to exhaustive measurement (which is
generally not affordable), each unit execution time
includes the effects of all the possible prefix paths,
which might result in WCET overestimations as shown
in Section 2.3. Moreover, it seems that some
pessimistic assumptions have sometimes to be taken to
reduce the number of states. They might also lead to
WCET overestimation.

In a recent work [13] we defined a processor
pipeline where non-adjacent blocks cannot have timing
interferences thanks to a fetch gating mechanism that
enforces some distance between basic blocks in the
pipeline. While this architecture makes the WCET
easily computable by adding the execution times of the
basic blocks among the possible execution paths, this
solution does not solve today’s problems since such an
architecture does not exist yet.

 As far as other parts of the processor are concerned
(cache memories, branch predictor), guidelines to make
their behaviour more predictable have also been
proposed as an alternative to build too much complex
models [2][11].

161

3. Code padding

3.1. General principle
The basic idea of the scheme proposed in this paper

is close to the one that was behind our previous
work [13]. To avoid long timing effects, basic blocks
should not enter the pipeline one after the other: a
certain distance should be enforced between them in
such a way that the execution of a block cannot be
disturbed by a previous block still in the pipeline. We
suggest here that this distance could be enforced by the
way of code padding, using neutral filler-instructions
like NOPs. A filler-instruction is not executed and is
removed from the pipeline after decoding. It does not
require any other hardware resource than a slot in the
fetch and decode stages. Some examples of filler-
instructions in real processors will be given in
Section 3.2.

The lengths of the code padding blocks have to be
calculated by analysing the instructions belonging to
basic blocks that might be executed consecutively and
by determining their respective resource requirements.
This analysis can be done by the compiler, and an
algorithm is proposed in Section 3.3.

3.2. Neutral filler-instructions

To implement code padding, we need some

instructions that use the fetch and decode stages to
space out basic blocks, but are not executed (they
should not consume computing resources) and not
processed to the completion stage (otherwise, they
might impact the execution time of the basic blocks).
In this section, our purpose is to show that most
instruction sets feature instructions that meet these
constraints.

Most architectures have a NOP instruction that does
not produce any result. In modern pipelines, NOP
instructions are quashed from the pipeline after
decoding in order to save the occupation of the
functional units and the pipeline bandwidth.

Some processors have other instructions that do not
go to the end of the pipeline. For example, on the
PowerPC 750, fall-through branch instructions are
removed from the instruction stream at dispatch. Then,
an unconditional branch targetting the next instruction
can be considered as a neutral instruction and used as a
filler.

3.3. Code padding

The role of code padding is to avoid any possible

interaction between distant blocks on an execution
path. In the case where no long timing effect can occur,
only the interferences between successive blocks are to
be accounted for. Then the execution time of a
sequence of n blocks can be computed as:

,
0∈ ≤ < ∈

⎛ ⎞
⎜ ⎟= + δ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑ ∑i j
i B j n s j

T t
S

s

where Sj is the set of possible successors of block Bj.

A sufficient condition for this formula to be correct
is that every possible sequence of two blocks executes
exactly as if it was not preceded by other blocks in the
pipeline. In this case, the LTE term — that normally
stands for the distortion of the execution trace of the
sequence by previous instructions — is null. This can
be illustrated by the following example.

Let us consider three blocks A, B and C processing
through a 3-stage pipeline with two non pipelined
functional units, FU1 and FU2, that have a 3-cycle
latency. Blocks A and C use FU1 while B uses FU2.
The execution patterns are shown in Figure 3. The
execution times of the blocks and the timing effects
can be computed from these tables:

tA = tB = tC = 5
tAB = 6 ⇒ δAB = tAB – tA – tB = 6 – 5 – 5 = -4
tBC = 6 ⇒ δBC = tBC – tB – tC = 6 – 5 – 5 = -4
tABC = 8 ⇒ δABC = tABC – tA – tB – tC – δAB - δBC
 = 8 – 5×3 – (-4)×2 = +1

 1 2 3 4 5

FETCH A

FU1 A A A

FU2

COMPLETE A

 1 2 3 4 5

FETCH B

FU1

FU2 B B B

COMPLETE B

 1 2 3 4 5

FETCH C

FU1 C C C

FU2

COMPLETE C

 1 2 3 4 5 6

FETCH A B

FU1 A A A

FU2 B B B

COMPLETE A B

 1 2 3 4 5 6

FETCH B C

FU1 C C C

FU2 B B B

COMPLETE B C

 1 2 3 4 5 6 7 8

FETCH A B C

FU1 A A A C C C

FU2 B B B

COMPLETE A B C

Figure 3. Execution of a 3-block
sequence (example)

162

The positive LTE δABC expresses that the execution
pattern of the sequence B-C is distorted when it is
preceded by block A, due to A and C conflicting for
the use of FU1. This resource is free before the end of
the fetch of B when it is executed alone, but it remains
busy until two cycles after the end of the fetch of B
when it is preceded by A.

Our purpose is to prevent this distortion and to make
the sequence execute as shown in Figure 4. The
approach consists in filling the black cell with a neutral
instruction. Now, δAB =-3 and δABC = 0.

 1 2 3 4 5 6 7 8

FETCH A B C

FU1 A A A C C C

FU2 B B B

COMPLETE A B C

Figure 4. Safe execution of a 3-block
sequence (example cont’d)

Filler-instructions are added before a basic block to
absorb any resource conflict that might occur with a
previous block. As we will see in Section 4, the
fetching of some basic blocks has to be delayed by
several cycles if we want to prevent long timing
effects. This means that these blocks should be
preceded by a large number of neutral instructions,
since a one-cycle delay is enforced by as many filler-
instructions as the pipeline width.

To keep the code size acceptable, it is possible to
group all the required filler-instructions into a common
padding block that has multiple entry points and is
terminated by a return branch (blr). Then every
sequence of filler-instructions required to delay the
fetch of a basic block can be implemented as a linked-
branch (bl) to the appropriate entry point of the
padding block. This is illustrated in Figure 5 where a
2-way pipeline is assumed. Note that the linked branch
and the return branch each enforce a one-cycle delay.

4. Algorithm for code padding

To compute the padding lengths, the compiler first
needs to collect timing information about the execution
of sequences of basic blocks in the pipeline. Such
information can be profiled by a cycle-level simulator
of the processor that simulates blocks and up-to-n-
block sequences (the simulation time is generally
acceptable if n is small). Cycle-level simulation is
required because precise dynamic information is
needed to generate safe results. The simulation can be
done within the compiler (provided it has an exact
knowledge of the hardware) or by calling external
software. Figure 6 gives an algorithm that analyses the
resource needs of blocks and sequences: for each
block B and for each resource R, it computes the time
at which R is needed after B starts to be fetched

(n[R,B]) and the time at which R is released by B
after B has been completely fetched (r[R,B]). Release
times are also derived for sequences: r[R,S] stands
for the time at which resource R is available after
sequence S has been entirely fetched.

Figure 5. Padded basic blocks

foreach block B do {

 ff[B] ← first fetch cycle of B;

 lf[B] ← (last fetch cycle of B) + 1;

 foreach resource R do {

 n[R] ← cycle at which R is needed;

 r[R] ← cycle at which R is released;

 // 0 if R not used by B

 n[R,B] ← n[R] – ff[B];

 r[R,B] ← r[R] – lf[B];

 }

 d[B] ← 0;

}

foreach sequence B
1
-…-B

x
 (x < n) do {

 lf[B
x
] ← (last fetch cycle of B

x
) + 1;

 foreach resource R do {

 r[R] ← cycle at which R is released;

 // 0 if R not used by any B
i

 r[R,B
1
-…-B

x
] ← r[R] – lf[B

x
];

 }

}

Figure 6. Algorithm to analyse the
resource requirements of blocks and
sequences

bl delay4

block i
(requires a

4-cycle delay)

delay4: nop
 nop
delay3: nop
 nop
delay2: blr

…
original

basic
blocks

filler-block

block j
(requires a

3-cycle delay)

 bl delay3

block k
(requires a

1-cycle delay)

 nop
 nop

163

4.1. Depth-1 approach

As stated before, a long timing effect δABC is not

null if block A has an influence on how sequence B-C
executes. On the contrary, δABC is null if C executes
after A-B exactly as after B. A sufficient — but not
necessary — condition for this is that every resource
(register, pipeline stage, functional unit, etc.) is
released after A-B exactly at the same time as after B.

This assertion leads to the algorithm given in Figure
7. It analyses each two-block sequence to find out
whether the first block has an impact on the availability
of resources after the sequence. If so, the algorithm
calls the StrictDelay() function that computes the
distance d to put between the two blocks so that every
resource is available after the sequence as soon as after
the second block executed alone. Note that this
distance is not always equal to the difference between
r[R,A-B] and r[R,B]: it can be smaller but also larger
due to timing anomalies, a phenomenon identified by
Lundqvist [10]. For the moment, the StrictDelay()
function computes the right distance by successive
trials (the distance is upper-bounded by the size of the
instruction window (fetch queue plus reoder buffer). A
more clever algorithm based on execution graphs [7] is
under development.

In the rest of this paper, this first algorithm will be
referred to as the depth-1 strategy.

foreach sequence A-B do {

 foreach resource R do {

 if r[R,A-B] > r[R,B] then {

 d ← StrictDelay(R,A-B);

 if d > d[B] then

 d[B] ← d;

 }

 }

}

Figure 7. Depth-1 algorithm for
computing the padding lengths

4.2. Depth-n strategy

The algorithm proposed in the previous section

guarantees that every resource is available after
sequence A-B exactly at the same time as after block B
executed alone. This caution can be considered as
excessive since the blocks executed after A-B might
not require the resources delayed by A.

A more aggressive approach consists in examining
the requirements of the possible successors of sequence
A-B to determine whether a delay on the availability of
a given resource induced by block A is likely to
generate a long timing effect or not.

In the depth-n algorithm, the effective requirements
of each basic block in every n-block sequence

(B0-B1-…-Bn-1) are analyzed. Two kinds of situations
necessitate that a distance is put between B0 and B1.
The first case is when Bi uses a resource that is (a) not
ready at the time Bi needs it, and (b) available later
after B0-…-Bi-1 than after B1-…-Bi-1. The second case
is when the resource is ready on time for any block
within the sequence but is released later after
B0-…-Bn-1 than after B1-…-Bn-1.

The analysis of the possible conflicts can be further
refined for resources that can handle several
instructions in parallel: they do not necessarily have to
be completely free for blocks that use them but they
should provide enough free slots to fulfil the needs.

In the case where a distance is to be enforced, the
padding length is computed by the MinimumDelay()
function (which implements the same approach as the
StrictDelay() function). Figure 8 details the
depth-4 algorithm that analyses 5-block sequences and
considers the exact requirements of the three last
blocks to determine whether the second one has to be
delayed after the first one.

foreach sequence A-B-C-D-E do {

 foreach resource R do {

 if n[R,C] > 0

 && r[R,A-B] > n[R,C]

 && r[R,A-B] > r[R,B] then {

 d ← MinimumDelay(R,A-B-C);

 if d > d[B] then

 d[B] ← d;

 }

 elsif n[R,D] > 0

 && r[R,A-B-C] > n[R,D]

 && r[R,A-B-C] > r[R,B-C] then {

 d ← MinimumDelay(R,A-B-C-D);

 if d > d[B] then

 d[B] ← d;

 }

 elsif n[R,E] > 0

 && r[R,A-B-C-D] > n[R,E]

 && r[R,A-B-C-D]> r[R,B-C-D] then {

 d ← MinimumDelay (R,A-B-C-D-E);

 if d > d[B] then

 d[B] ← d;

 }

 elsif

 r[R,A-B-C-D-E] > r[R,B-C-D-E] then {

 d ← StrictDelay(R,A-B-C-D-E);

 if d > d[B] then

 d[B] ← d;

 }

 }

}

Figure 8. Depth-4 algorithm for
computing the padding lengths

164

5. Performance results and discussion

5.1. Evaluation methodology

We have developed in SystemC a cycle-level

simulator that models a generic processor architecture
with parameterized features. The configuration we
used for our tests is shown in Figure 9. The cache and
the branch predictor are considered as perfect since
modeling them is outside the scope of this work. The
simulator is able to execute PowerPC code.

Pipeline width 2-way 4-way
fetch queue size 16 32
instruction cache perfect (100% hit rate)
branch predictor perfect
re-order buffer size 16 64
of functional units (latency)
 integer add (1 cycle)
 integer mul/div (6 cycles)
 floating-point add (3 cycles)
 fp mul (6 cycles)
 fp div (15 cycles)
 load/store (2 cycles)

2
1
1
1
1
2

4
1
1
1
1
2

data cache perfect (100% hit rate)

Figure 9. Simulated processor architecture

The results presented below were measured for
several benchmarks commonly used in research on
WCET analysis and presented in Figure 10 They
implement standard algorithms: matrix arithmetic,
signal processing, sorts.

matmul matrix multiplication
ludcmp LU decomposition
jfdctint JPEG integer implementation of the

forward Discrete Cosine Transform
bsort bubble sort
heapsort heap sort
insertsort insert sort

Figure 10. Benchmarks

Figure 11 shows our framework for code padding.
The object code is produced with the standard gcc
compiler, targeted for the PowerPC instruction set. We
have developed a utility that extracts the Control Flow
Graph from the object code. The list of the basic blocks
is used to drive the processor simulator which produces
the execution trace of each block and of each possible
sequence of up-to-5 blocks. The main tool of the chain
is the Interference Analysis script that computes the
padding lengths to eliminate any possible resource
conflict between distant basic blocks. This script gets
timing information from the simulator to compute the

required delays down to the last cycle. Finally, the
Code Padding script inserts the filler-instructions in the
original assembly code.

Figure 11. Code transformation
framework

5.2. Impact of code padding on code size

Figure 12 shows the increase of the code size

(number of static instructions) due to the filler-
instructions added by the depth-1 algorithm. The cost
is undeniably sensible, especially for a 4-way target
pipeline.

As shown in Figure 13, the increase is smaller when
the analysis is done more in depth, i.e. when it takes
into account the real requirements of the basic blocks.
With the depth-4 strategy, the mean increase is 18.28%
for a 2-way pipeline, and 57.01% for a 4-way pipeline.
We acknowledge that the increase is still noticeable but
as we will discuss it in Section 9, we argue that it is the
price of predictability.

object code

CFG Extractor

Cycle-level Simulator

list of basic blocks

Interference
Analysis

execution traces of
 basic blocks sequences

padding lengths

Code
Padding

gas assembler

safe padded
assembly code

assembly code

gcc compiler

C source code

165

 2-way 4-way

matmul 35.24% 76.19%

ludcmp 16.51% 28.20%

jfdctint 11.37% 126.97%

bsort 31.25% 76.25%

heapsort 25.00% 51.47%

insertsort 23.81% 59.52%

MEAN 23.86% 69.77%

Figure 12. Code size increase for the
depth-1 strategy

0%
10%
20%
30%
40%
50%
60%
70%
80%

depth-1 depth-2 depth-3 depth-4

depth of the analysis

in
cr

e
a
se

 o
f

th
e
 c

o
d

e
 s

iz
e 2-way 4-way

Figure 13. Code size increase as a
function of the analysis depth

The cost in code size is higher for larger pipelines
because (a) a single-cycle distance is enforced by as
many NOPs as the pipeline width, and (b) a larger
pipeline augments the overlapping of blocks and then
augments the risks of resource conflicts. Results per
benchmark are given in Figure 15.

Figure 14 gives further insight in how the increase is
broken down into the length of the common padding
block, the number of calls to this block and the number
of NOPs added to implement the 1-cycle delays. The
most severe increases in code size are due to the length
of the padding block. For example, jfdctint requires
a 649-instruction-long padding block while the original
code has 519 instructions. This padding length is due
to a 225-instruction-long basic block that seriously
delays the availability of some resources.

0

200

400

600

800

1000

1200

1400

m
at

m
ul

lu
dc

m
p

jfd
ct
in
t

bs
or

t

he
ap

so
rt

in
se

rt
so

rt

nops

calls to padding

padding blocks

initial code size

Figure 14. Breaking down of the code
size increase (4-way pipeline,
depth-4 policy)

0%

20%

40%

60%

80%

100%

120%

140%

matmul ludcmp jfdctint bsort heapsort insertsort

co
s
t

size WCET

(a) 2-way pipeline

0%

20%

40%

60%

80%

100%

120%

140%

matmul ludcmp jfdctint bsort heapsort insertsort

benchmark

co
st

size WCET

(a) 4-way pipeline

Figure 15. Code size and WCET increase
with the depth-4 analysis

5.3. Impact on the real WCET

As said before, long timing effects can occur for

long sequences of blocks (i.e. the execution of a basic
block can have an impact on the execution of a very
distant block). Measuring them involves analysing the
execution traces of all the possible block sequences of
any length which is very costly both in computing time
and in memory requirements. This cost is generally
unaffordable. However, we have analyzed up-to-6-
block sequences and, for each of the benchmarks, we
have observed some positive long timing effects (some
of them spanning over 6-block sequences). This
justifies the need for a solution to make the execution
time predictable.

We have evaluated the real WCET of each
benchmark code, without and with code padding. We
used the symbolic execution method [9] that simulates
every possible path. To make it possible, we have
limited the size of the data so as to keep the number of
possible paths reasonable. Figure 16 shows the results
obtained with different analysis depths.

As expected, code padding, that enforces some
delay between the execution of successive basic blocks
and then limits the instruction parallelism, is
responsible for an increase of the execution time. Note
that the plotted time is the real WCET, not the
estimated one (since we cannot make WCET
estimations by static analysis when the target
architecture generates long timing effects).
Augmenting the depth of the analysis helps greatly in

166

limiting the cost in performance which comes to about
19% on average for the depth-4 algorithm. This cost
can be considered as moderate if we keep in mind that
the WCET of the padded code can be estimated
quickly, easily, tightly and, above all, safely.

0%

10%

20%

30%

40%

50%

60%

depth-1 depth-2 depth-3 depth-4

depth of the analysis

in
cr

e
a
se

 o
f

th
e
 r

e
a
l
W

C
E
T 2-way 4-way

Figure 16. WCET increase as a function
of the analysis depth

5.4. Discussion

When having to evaluate the WCET for a program

that is to be run on a high-performance architecture,
two strategies might be considered. The first one
consists in using a method that takes into account any
possible long timing effect (of any length and of any
value). As far as we know, the only method doing that
is the one implemented in the aiT tool by the AbsInt
company. Its drawbacks include high computation
times, complexity of the task of modeling the processor
architecture (in the case where a new processor is
targeted) and the use of pessimistic assumptions that
might produce inaccurate WCET estimates.

The second possible strategy, which is the one we
incline towards, aims to make the hardware/ software
pair predictable. In [13], we proposed some
modifications to the processor architecture to eliminate
the possible interferences between distant blocks along
the execution path. These modifications included two
components: the first one prescheduled the instructions
as they enter the reorder buffer; the second one acted as
a gate that delays the fetch of a new basic block until it
cannot be impacted by another block under execution
in the pipeline. This scheme increased the mean
execution time by 21% (2-way) to 42% (4-way).

The approach proposed here clearly has a lower cost
in terms of execution time: it is smaller by one third for
a 2-way processor (19.4% against 21%) and by more
than one half for a 4-way processor (18.5% against
42%). This is because we compute the distance
required between successive basic blocks off-line.
Then we know exactly which instructions belong to the
blocks and we exploit profiling information to identify
the data and resource dependencies that result in timing
interferences. On the contrary, the runtime mechanism
proposed in [9] does not know anything about a block

that is to be fetched. Then, it has to make pessimistic
assumptions and it enforces unnecessarily long
distances between the basic blocks.

Moreover, our solution does not need any particular
hardware and only requires that a free instruction is
available in the instruction set. As mentioned in
Section 3.2, such an instruction exists in most
processors. Then the code padding method can be used
immediately (i.e. without waiting that a processor
manufacturer decides to design a processor compatible
with safe WCET evaluation). The required effort is
moderate since the code transformation is done at the
assembly level.

Code padding has a cost both in code size and in
execution time. However, if we want to keep the
evaluation of the WCET simple, the only alternative is
to use simpler processors (scalar, with in-order
instruction scheduling, etc.) that were proved to be
LTE-free. However, they might not meet the
performance requirements.

6. Conclusion

This paper deals with timing interferences that make
the evaluation of the WCET of a task complicated,
pessimistic and possibly unsafe. This problem has
already been addressed in a previous work where a
processor was designed to prevent timing interferences
between basic blocks while keeping most part of the
performance. However, the proposed solution has not
yet been implemented in a real-life processor. Our
purpose is to show how the prevention of timing
interferences can be done by transforming the source
code, which does not require any specific hardware.

Our approach consists in profiling the execution of
basic blocks and of n-blocks sequences extracted from
the Control Flow Graph of the application. This can be
done using a cycle-level simulator and is much faster
than simulating all the possible execution paths.
Execution profiles are then analyzed to detect data
dependencies and resource conflicts that could generate
interferences between distant blocks. Filler-
instructions, which are discarded from the pipeline as
soon as they have been decoded, are inserted in the
source code to enforce a distance between blocks so
that the interferences are eliminated.

Performance analysis show that, even if the number
of added padding instructions is significant, the impact
on the worst-case execution time is moderate (a mean
slowdown of 19% has been measured).

The increase in the code size and in the real WCET
is sensible but this is the cost to pay for predictability,
and thus for safety. The WCET of padded codes can be
evaluated accurately using simple state-of-the-art
methods.

167

References

[1] A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, F.
Mueller, “Virtual Simple Architecture (VISA):
Exceeding the Complexity Limit in Safe Real-time
Systems”, 30th Int. Symp. on Computer Architecture,
may 2003.

[2] F. Bodin, I. Puaut, “A WCET-oriented static branch
prediction scheme for real-time systems”,
17 Euromicro Conf. on Real-Time Systemsth , july 2005.

[3] J. Engblom, Processor pipelines and static worst-case
execution time analysis, PhD thesis, Uppsala
University, april 2002.

[4] A. Ermedahl, A Modular Tool Architecture for Worst-
Case Execution Time Analysis, PhD thesis, Uppsala
University, june 2003.

[5] R. Heckmann, M. Langenbach, S. Thesing, R.
Wilhelm, “The influence of processor architecture on
the design and the results of WCET tools”,
Proceedings of the IEEE, vol. 91, n°7, july 2003.

[6] Y.-T. Li, S. Malik, “Performance Analysis of
Embedded Software using Implicit Path Enumeration”,
ACM SIGPLAN Notices, vol. 30, n°11, 1995.

[7] X. Li, A. Roychoudhury, T. Mitra, “Modeling Out-Of-
Order Processors for Software Timing Analysis”,
IEEE Real-Time Systems Symposium, december 2004.

[8] S.-S. Lim, S. Min, M. Lee, C. Park, H. Shin, C. S. Kim,
“An Accurate Instruction Cache Analysis Technique
for Real-Time Systems”, Workshop on Architectures
for Real-Time Applications, 1994.

[9] T. Lundqvist, P. Stenström, “An Integrated Path and
Timing Analysis Method based on Cycle-Level
Symbolic Execution”, Real-Time Systems, 17(2), 1999.

[10] T. Lundqvist, P. Stenström, “Timing Anomalies in
Dynamically Scheduled Processors," IEEE Real-Time
System Symposium (RTSS'99), december 1999.

[11] I. Puaut, D. Decotigny, “Low-Complexity Algorithms
for Static Cache Locking in Multitasking Hard Real-
Time Systems”, 23rd Int. Real-Time Systems Symp.,
december 2002.

[12] C. Rochange, P. Sainrat, “Towards Designing WCET-
predictable Processors”, 3rd Workshop on Worst-Case
Execution Time Analysis, june 2003.

[13] C. Rochange, P. Sainrat, “A Time-Predictable
Execution Mode for Superscalar Pipelines with
Instruction Prescheduling”, ACM International
Conference on Computing Frontiers, may 2005.

[14] J. Souyris, E. Le Pavec, G. Himbert, V. Jegu,
G. Borios, R. Heckmann, “Computing the Worst-Case
Execution Time of an Avionics Program by Abstract
Interpretation”, 5th Workshop on WCET Analysis,
july 2005.

[15] H. Theiling, C. Ferdinand”, Combining Abstract
Interpretation and ILP for Microarchitecture Modelling
and Program Path Analysis”, IEEE Real-Time Systems
Symposium, december 1998.

[16] R. Wilhelm, J. Engblom, S. Thesing, D. Whalley,
“Industrial Requirements for WCET Tools”,
3rd Workshop on WCET Analysis, june 2003.

168

A Distributed and Verifiable Loop Bounding Algorithm for WCET
Computation on Constrained Real-Time Embedded Systems

Nadia Bel Hadj Aissa, Gilles Grimaud, David Simplot-Ryl
IRCICA/LIFL, Univ. Lille 1, UMR CNRS 8022

INRIA Futurs, POPS research group∗

{aissa, grimaud, simplot}@lifl.fr

Abstract

Most of classical WCET techniques rely on the fact
that all the system is known during conception phase, i.e.
hardware and software parts. In the context of mobile
code for small devices like smartcards or RFID tags, these
assumptions cannot be true because of heterogeneous
hardware and unknown software environment. On the
other hand, these small devices have not enough compu-
tation power to compute themselves the WCET of loaded
applications. In this paper, we propose a distributed
method which allows to generate a portable WCET pre-
computation, including automatic loop detection, which
is given with the mobile code. This pre-computation –
which is automatic and do not use annotations – is veri-
fied by the mobile host by using a lightweight proof which
is embedded in the mobile in PCC manner. We present ex-
perimental results by applying our method on the kernel
of a smartcard dedicated operating system that proves the
validity of the proposed method.

1. Introduction

The advent of pervasive mobile devices (e.g. smart
phones, smart cards, sensors, RFID tags. . .) emphasized
the necessity for hardware manufacturers to increase the
number of produced units at a constant cost rather than in-
crease their performance. In fact, increasing clock speeds
is not the answer for battery-operated devices where low-
ering memory footprint, power consumption, and cost is a
main issue. It follows that, for these technologies, the con-
straints on memory size and computing power are durably
established facts.

On the other hand, the recent interest for the mo-
bile code paradigm challenges the traditional infrastruc-
ture models and implies the ability for the constrained de-
vices to load code from outside dynamically. Mobile code
can be represented by machine code, allowing maximum

∗This work is partially supported by grants from the CPER Nord-Pas-
de-Calais/FEDER TAC COM’DOM, the European IST-FP6 INSPIRED
project.

execution speed on the target machine but thereby sac-
rificing platform independence. Alternatively, the code
can be written in a portable bytecode fashion (”Write
Once Run Anywhere”), thus offering platform indepen-
dence. The code will be, then, interpreted by a virtual
machine or compiled by a JIT compiler to obtain native
code. Generally, the bytecode is produced on traditional
data-processing supports (i.e. code producer) before be-
ing deployed on the constrained devices (i.e. code con-
sumer). These new features bring considerable flexibility
to the device in order to satisfy customers evolving expec-
tations and needs and make it possible to handle the strin-
gent hardware constraints that characterizes mobile device
technology.

However, the choice of mobile code paradigm raises
major security issues. The code consumer may download
an untrusted program created by a code producer, who is
possibly badly disposed. This mistrust relationship be-
tween the code supplier and the code recipient leads to
the inception of proof-based security approaches, for in-
stance. In these approaches [11, 12], a proof created at
compile time by the code supplier, is packaged with un-
trusted code. By a straightforward inspection of the code
and the certificate [1], the code consumer can verify the
validity of the proof and thus the compliance with a safety
policy.

Indeed, a code consumer should be free to reject code
that may threaten his system and does not adhere to a par-
ticular safety policy. In general, a safety policy needs
to address the concerns of confidentiality, integrity and
availability. The former issues were thoroughly studied.
The availability criterion involving resource-related issues
(e.g. ensuring that the program will not compute for more
than a given amount of time, or that it will not take up an
amount of computing power or memory above a certain
threshold) is often neglected.

In this paper, we address a scenario where the code
consumer needs to ensure the execution of a dynamically
loaded application within strict timing requirements. Pre-
dicting the timing behavior of a mobile code (e.g. the
worst case execution time, WCET) allows allocating cor-
rectly the computational resources between the different

169

competing tasks in the underlying operating system and
makes it possible to prevent availability attacks. Indeed,
by misleading the WCET computation algorithm, mali-
cious programmers could intentionally minimize the pro-
cessor time consumption of their programs to launch a
denial-of-service attack. It also improves the deployment
scheme as the code recipient would rather know in ad-
vance if the downloaded application will definitely run
within the amount of CPU available on the system and
meet its deadline.

The existing timing analysis methods are executed
atomically in one execution site where hardware architec-
ture, runtime environment, and compilation or interpre-
tation strategy are known in advance. In a mobile code
execution scenario, the producer cannot unilaterally de-
termine the CPU needs of a program because it depends
closely on the number of CPU cycles consumed by the
target processor. In addition, the memory and CPU con-
sumptions of existing algorithms quickly increase with the
complexity of the program. This means that it is not realis-
tic to shift the burden of computing the WCET of dynami-
cally loaded application on the consumer (i.e. constrained
device).

Thus, we proposed in [2] to split the WCET compu-
tation process in two phases. The first step is executed
when the source code is compiled on the producer. Then,
the computation process had to be finalized when the code
is deployed on the host system. The challenges are to dis-
tribute the computation efficiently to do the heaviest op-
erations on the producer and to endow the consumer with
the ability to check the safety of the information inferred
by untrusted parties.

As far as worst case execution time computation is con-
cerned, evaluating loop bounds represents a critical issue
and is the major source of timing unpredictability. We
propose in this paper a novel scheme for safely computing
loop bounds on constrained devices by using a PCC based
approach. On the producer side, the intermediate code is
statically analyzed to extract loop bounds that will be used
for timing analysis. We chose to determine loop bounds
by proceeding in a manner that is similar to standard type
derivation. An inference engine scans the instructions and
tracks the values taken by the program variables. Accord-
ing to the transition rules, a variable can be a constant,
an open range of values, or a loop index. This process
is repeated iteratively until a fix-point is reached. Then,
the state types are stored for the entry point to each basic
block which constitutes the proof. The WCET proof is
sent to the consumer with the intermediate code. The tar-
get system needs a single pass to check the consistency of
the loop bounds inferred by the producer with the code.
An on-the-fly compiler produces the native code corre-
sponding to the underlying platform. The WCET com-
putation process is finalized and a global WCET value is
calculated by the target system.

The rest of the paper proceeds as follows. First, we
present some working hypothesis that should define pre-

liminary assumptions for our work. We describe our loop
bounds detection tool, followed by some examples that il-
lustrate how the types are derived statically on the code
producer. The linear verification process is then explained
through the same examples. Some experimental results of
our work on the kernel ofCamille [5] operating system
are presented. Finally, we consider some future work.

2. Preliminaries

Bounding the number of loop iterations is a well-
founded research area. In the general case, it is impossi-
ble for an automatic analysis to determine whether a given
loop will execute a definite number of times. This is one
obvious consequence of the undecidability of theHalting
Problem. Some work has already been achieved to predict
loop bounds automatically by Healy et al. [9]. Their ap-
proach, based on classic control-flow analysis, uses block
dominance and loop frontiers and can give quite tight pre-
dictions of the number of iterations in loops with integer
indexes. Gustafsson [8] used abstract interpretation [4] to
automatically determine loop bounds and false paths.

Note that our work is basically different. Indeed, one of
our goals shall be to detect loops statically on the producer
side. However, the main difference with the approaches
cited previously is that we must provide a way to the con-
sumer to verify the loop bounds inferred by untrusted code
suppliers. The verification overhead should be less impor-
tant than the effort due to detect loop bounds in the first
place. Therefore, the code recipient needs only to trust
its own loop bounds checker. It also should induce, if the
method is to be effective, a linear verification effort much
simpler than the tools required to analyze statically the
code to extract loop bounds.

Since not all the loops have a predictable behavior,
suitable for our analysis, we present, in the following,
some preliminary assumptions on the recognizable loop
patterns. Then, we introduce the precedence relation de-
fined on the basic blocks involved in these patterns. This
relation will be used by our typing algorithm presented in
the following section.

2.1. Recognizable loop patterns
The loops that are candidates for our static analysis fol-

low the execution pattern1 explained below :

1. Initialization step: contains loop initialization code
that should execute unconditionally. The loop
counter variable is explicitly set up to a starting value
that represents the lower bound of the loop execution
count.

2. Counter update step:contains the instructions that
are intended to perform loop control variable updates
(e.g. incrementation).

1An execution pattern defines the sequence of steps taken during the
visit of the loop.

170

3. Condition evaluation step:contains the evaluation
of the loop termination condition. The loop counter
variable is compared to the upper bound of the loop
execution count. If the termination condition is ful-
filled, the loop is stopped, else go to the loop header
and repeat.

Note : We consider only the case where the lower bound,
step and upper bound values are expressed as constants
and can be calculated at analysis time. The loop condition
can also be evaluated at the beginning of the repeating sec-
tion of code. In this case, if the loop condition is true an
iteration is carried out else the loop is terminated.

We are aware that not all the loops fit in this simple
pattern. However, we chose to focus on this kind of loop
constructs based on the observation that many loop con-
structs iterate a fixed number of times and do some simple
work every iteration and have a single target of the loop
exit. In [13], an inspection of industrial code leads to the
following conclusions : 94% of the analysed loops had
a single target of the loop exit and can be syntactically
bound, only a few loops actually depend on outer loops
and should be simple to bound. In addition, The evalu-
ation of the RTEMS operating system source code in [3]
shows that the program constructs were quite simple. No
nested loops, unstructured code or recursion were found.

2.2. Precedence Relation
To detect loop bounds, we need to identify each step

and transition in the execution pattern. Figure 1 sketches
the control flow graphs of a pre-test and a post-test loop
corresponding to the patterns described previously.

5

Exit Block

Counter Update Block

Loop Body Block

Condition Evaluation
Block

Initialization Block1

2

3

4

5

Initialization Block

Loop Body Block

Counter Update Block

Condition Evaluation

Block

Exit Block

1

2

3

4

Figure 1. Pre-test and Post-test loops

The control flow of a given program is usually depicted
as a directed graphG(V,E), whereV is the set of basic
blocks of code and an edge(x, y) ∈ E represents a pos-
sible flow of control fromx to y. We define a precedence
relation≺ between basic blocks denoting their execution
order in the loop traversal. Letx andy be two vertices of

the control flow graph. We havex ≺ y if and only if x al-
ways happens beforey in all execution paths. For the sake
of simplicity and for implementation reasons, we use an
label functionorder which gives a number to each node
such that:∀x, y ∈ V x ≺ y ⇒ order[x] < order[y].
This labeling function can be assimilated to a depth-first
topological order of a graph where the nodes are ordered
sequentially. Indeed, a depth-first traversal of a graph vis-
its all the nodes marking them as they are visited. The
number of the last descendant of each node is also saved,
thus, enabling an efficient test of precedence in the Depth
First Traversal Tree.

In Figure 1, the ordering of the different basic blocks
indicates that in the case of a pre-test loop the identified
steps will execute consecutively as follows : Initialization
Step (1) – Condition evaluation step (2) – Counter update
step (5). On the other hand, for the post-test loop, the
loop execution pattern will be formed in sequence by :
Initialization Step (1) – Counter update step (3) – Condi-
tion evaluation step (4).

3. Loop Bounds Detection on the Code Pro-
ducer

The set of rules that we propose in this work aims at
guaranteeing that the loop bounds inferred statically on
the code producer will be respected at run-time on the
code recipient. Static analysis of compiled-programs pro-
vides information about expected program behavior in or-
der to minimize dynamic checks and so runtime overhead.
Mainly, it is considered necessary in our context to notify,
as soon as possible at the moment of installation of the
downloaded program, any possible run-time error. Tradi-
tionally, static analysis is associated with Abstract Inter-
pretation [4]. Recently, however, much interest has been
shown in the potential of type inference as a means of per-
forming static analysis as well as ensuring program cor-
rectness on compiled code when the application is de-
ployed on the target. Our approach is casted as a type
inference problem where types are used to express loop
bounds. In the following, we describe the formalization
of our type system.

3.1. The Instruction Set
The instruction set, used in the remainder of this paper,

is a finite set of elementary arithmetic operations and basic
control-flow operations as illustrated in Figure 2. A pro-
gramP is a sequence of instructions where each instruc-
tion is referred to with an instruction counter,pp. When
P is a program, we writeDom(P) for the domain ofP
(its set of program counters);P [pp] is defined only for
pp ∈ Dom(P).

Note : We denote byVar the set of the program vari-
ables,Cst, the set of the constants, andLabels, the set of
the instructions targeted by a branch operation.v ranges
over Var, c ranges overCst andLi ranges overLabels.
cmp ranges over{<,≤, >,≥}. The instruction4 in Fig-

171

Instructions I ::= v← c (1)
v← v + c (2)
b← v cmp c (3)
vd← vs op tabArgs (4)
JumpLi (5)
Jumpif v,Li (6)
Return v (7)

Program P ::= PI| I

Figure 2. Instruction Set

ure 2 represents any operation or method invocation onvs
with the list of argumentstabArgs. TheReturninstruction
is used to terminate the instruction flow and to restore the
context of the caller.

3.2. A type system for loop bounds detection
A variable in a given program can have different types

as illustrated in Figure 3. If a variable has an irrelevant
state for loop bounds detection, its type is set to⊤. A
variable can also be a constant value, an open range of
integer values (whereα is the lower bound of the range
andσ is the incrementation step), a conditional (where
var is compared to a constant valueψ using an operator
cmp) or a loop iterator (whereα is the lower bound of the
range,ψ the upper bound andσ the incrementation step).
We consider a distinction between a possible iterator and
a confirmed one. The flags ? and ! indicate a possible
and a confirmed iterator, respectively. A possible iterator
is obtained when a variable is consecutively initialized,
incremented and compared to an upper bound by a sin-
gle execution path. A confirmed iterator is obtained when
the variable is consecutively initialized, incremented and
compared to an upper bound by all the execution paths.

The types are tagged with an order numbere except the
⊤ type. This ordering number makes it possible to figure
out, at which step of the loop execution pattern, the type
has been created. Thus, it becomes possible to be ensured
of the precedence relationship between the specific basic
blocks identified in Figure 1. For this purpose, we define
a functionχ that attributes an ordering number to each
instruction. When a new typeT is created at an instruction
i, the functionχ determines the ordering number of the
basic block to which the instruction belongs(χ(i) = e).
Then, the newly created type is stamped with the resulting
value(Te).

Types T ::= ⊤ Irrelevant
{α}

e
Constant value

[α σ..[
e

Open range
(var, cmp, ψ)

e
Conditional

[α σ.. ψ]
?

e
Possible iterator

[α σ.. ψ]
!

e
Confirmed iterator

Figure 3. Type Syntax

3.3. Operational semantics
We model a state of an execution as a tuple〈pp, T 〉,

where pp is the program counter, T is the current state
of program variables, represented by a total map from
the set of variables to the set of values. The execution
of each instruction except ”return”, changes the state of
execution of the program P from state〈pp, T 〉 to state
〈pp′, T ′〉. The operational semantics, illustrated in Fig-
ure 4, describe how the evaluation of instructions affects
the program state and informally behave as follows:

Rule 1: The evaluated instruction is an assignment to a
constant value. The type ofv is changed on{α}

e
with e

the ordering number of the basic block that includes the
assignment instruction. The next instruction to be evalu-
ated corresponds to the valid program pointpp+ 1.

Rule 2: The instruction at the current program point is
the result of the evaluation of a comparison of a variable
v and a constantψ. The type of the variableb is set to
(var, cmp, ψ)

e
with e the ordering number of the basic

block that includes the comparison instruction. The next
instruction to be evaluated corresponds to the valid pro-
gram pointpp+ 1.

Rule 3: The evaluated instruction corresponds to the in-
crementation of a variablev by a constant stepσ. If the
variablev has been already initialized (i.e. its current type
is {α}

e
), its type is changed to[α σ..[

e′ with e′ the ordering
number of the basic block that includes the incrementation
instruction. The next instruction to be evaluated corre-
sponds to the valid program pointpp+ 1.

Rule 4: If the variablev has been already initialized,
incremented and compared to an upper bound (i.e. its
current type is[α σ.. ψ]

?

e
), the re-evaluation of the incre-

mentation instruction ensures that the variable v is a con-
firmed iterator by this path and its type can be changed
to [α σ.. ψ]

!

e′ . e′ denotes the ordering number of the basic
block that includes the incrementation instruction. The
next instruction to be evaluated corresponds to the valid
program pointpp+ 1.

Rule 5: In the case of a post-test loop pattern, the vari-
ableb contains the evaluation of the comparison between
a variablev of the program and a constant value with the
comparison operator ranging over{<,≤}. The variable
v is an open interval[α σ..[

e′ . The evaluation of the con-
ditional branch instruction induces changes at two points
of the program. The first corresponds to the fulfillment of
the branching condition and can be reached by the given
LabelId. If a variable v was initialized, incremented and
compared to an upper bound, then its type can be changed
to [α σ.. ψ]

?

e′′ with e′′ the ordering number of the basic
block labeled byLabelId. The second program point cor-
responds to the failure of the condition when the program

172

implicitly branches topp + 1. It propagates irrelevant in-
formation for loop bounding and the types of all the vari-
ables is set to⊤ at this program point.

Rule 5’: In the case of a pre-test loop pattern, the vari-
ableb contains the evaluation of the comparison between
a variablev of the program and a constant value with the
comparison operator ranging over{>,≥}. The variable
v is an open interval[α σ..[

e′ . The evaluation of the con-
ditional branch instruction induces changes at two points
of the program. The first corresponds to the fulfillment of
the branching condition and can be reached by the given
LabelId. The variablev exceeds the upper bound of the
loop, the types of all the variables will be set to⊤ at
the basic block labeled byLabelId. The second program
point (pp + 1) corresponds to the failure of the condition
and indicates that the loop iterates one more time. Thus,
the type ofv can be changed to[α σ.. ψ]

?

e′′ with e′′ the or-
dering number of the basic block labeled bypp+ 1.

Rule 6: This rule corresponds to the evaluation of any
method invocation different from those listed previously.
It produces an irrelevant value for our analysis, thus,
changing the type of the destination variable to⊤.

3.4. Unification Rules
Some instructions may have multiple preceding paths

of execution and the types constructed on these paths have
to be merged. This can only occur at the targets of jumps
corresponding to the entries of basic blocks. Therefore, a
set of unification rules must be written and applied when
an unconditional or a conditional branch instruction is
evaluated. In classic typing systems, a hierarchy of types,
represented by a partially ordered set of classes, is often
used for the unification operation. In our type system,
the precedence relation defined between the types raises
new issues. The unification rules must handle the prece-
dence relation that exists between the different types. If
we considerv a variable of our program, the current type
of T [v]a, andT [v]b the new type that is created after the
evaluation of an unconditional or a conditional branch in-
struction. Whena is inferior to b, it means that the type
tagged bya has been created in a step that precedes the
type computed inb. The Table 1 shows the different
unification rules depending on the types that have to be
merged. For lack of space, we do not put the unification
rules that involves the conditional type. If a conditional
type(var, cmp, ψ)

a
is unified with(var, cmp, λ)

b
, the re-

sulting type is(var, cmp,min(ψ, λ))
b
. The unification of

a conditional and any other type gives an irrelevant infor-
mation and the resulting type is therefore set to⊤.

3.5. Examples
To illustrate the type derivation procedure explained

previously, consider the code samples in Figure 5, 6 and
7. Each sample program consists of a sequence of instruc-
tions that belongs to the instructions set, defined in 3.1.

A control flow graph annotated with the precedence order
of each basic block is joined to each fragment of code.

Sample Program 1 Consider the sample program in
Figure 5 that corresponds to a post-test loop pattern. The
programP uses two variablesi and tmp to iterate10
times. As explained in 2.1, the loop pattern should con-
sist of the consecutive execution of an initialization step, a
counter update step, and a condition evaluation step. This
loop pattern will allow us to detect an iterator.

BB pp Label Instruction

0 1 i← 0

1 2 L1 i← i + 1
3 tmp← i ≤ 9
4 jumpif tmp L1

2 5 return i 3

BB0

BB1

BB2

1

2

S pp T[i,tmp] pp’ T’[i,tmp]
0 ∅ ∅ , ∅ 1 ⊤ ,⊤
1 1 ⊤ ,⊤ 2 {0}1 ,⊤
2 2 {0}1 ,⊤ 3

[

0 1..
[

2
,⊤

3 3
[

0 1..
[

2
,⊤ 4

[

0 1..
[

2
, (i,≤, 9)2

4 4
[

0 1..
[

2
, (i,≤, 9)2 2

[

0 1.. 9
]?

2
,⊤

5 ⊤ ,⊤

5 2
[

0 1.. 9
]?

2
,⊤ 3

[

0 1.. 9
]!

2
, (i,≤, 9)2

6 3
[

0 1.. 9
]!

2
, (i,≤, 9)2 4

[

0 1.. 9
]!

2
, (i,≤, 9)2

7 4
[

0 1.. 9
]!

2
, (i,≤, 9)2 2

[

0 1.. 9
]!

2
,⊤

5 ⊤ ,⊤

8 2
[

0 1.. 9
]!

2
,⊤ 3

[

0 1.. 9
]!

2
, (i,≤, 9)2

9 5 ⊤ ,⊤ ∅ ∅ , ∅

Figure 5. Listing of Sample Program 1, CFG
and Execution trace of type inference pro-
cedure

Figure 5 shows the execution trace of the type deriva-
tion algorithm. From left to right, the columns indicate
the analysis step, the current program counter, the current
types of the local variables, the program counter of the
next instruction to be evaluated and finally the types of
the local variables after the evaluation of the current in-
struction.

Execution starts by initializing both the types of vari-
ablesi andtmp to ⊤. At step1, the first instruction as-
signs a constant value to the variablei. The type ofi is
then tagged with the precedence order of the correspond-
ing basic block and becomes{0}

1
. The type oftmp re-

mains unchanged. These new types are transmitted to the
next instruction to be evaluated which is indicated by the
program counter2. At step 2, the incrementation ofi
changes its type from{0}

1
to

[

0 1..
[

2
. At step3, the in-

struction3 is evaluated. The variabletmp contains the
result of the comparison betweeni and a constant value.
Its type is set to a conditional on the variablei.

At step 4, the evaluated instruction is a conditional
branch. According to our typing rules, the types of the

173

P[pp] = v ← α

α ∈ Cst
(pp+1)∈Dom(P)

〈pp, T 〉 7→ 〈pp+ 1, T ′〉 whereT ′[v] = {α}
e

P[pp] = b ← v cmpσ
cmp∈ {<,≤, >,≥}, σ ∈ Cst

(pp+1)∈Dom(P)
〈pp, T 〉 7→ 〈pp+ 1, T ′〉 whereT ′[b] = (var, cmp, ψ)

e

– Rule 1 – – Rule 2 –

P[pp] = v ← v + σ
σ ∈ Cst

T[v] = {α}
e

(pp+1)∈Dom(P)
χ(pp) = e′; e′ ≥ e

〈pp, T 〉 7→ 〈pp+ 1, T ′〉 whereT ′[v] = [α σ..[
e′

P[pp] = v ← v + σ
σ ∈ Cst

T[v] = [α σ.. ψ]?
e

(pp+1)∈Dom(P)
χ(pp) = e′; e′ ≥ e

〈pp, T 〉 7→ 〈pp+ 1, T ′〉 whereT ′[v] = [α σ.. ψ]!
e′

– Rule 3 – – Rule 4 –

P[pp] = Jumpif b, LabelId
T[b] = (var, cmp, ψ)

e
, cmp∈ {<,≤}

T[v] = [α σ..[
e′

(pp+1), LabelId∈Dom(P)
χ(LabelId) = e′′; e′′ ≥ e′ ≥ e

〈pp, T 〉 7→ 〈pp+ 1, T ′〉 where∀ v∈ Var,T ′[v] = ⊤

〈LabelId, T ′〉 whereT ′[v] = [α σ.. ψ]?
e′′

– Rule 5 –

P[pp] = Jumpif b, LabelId
T[b] = (var, cmp, ψ)

e
, cmp∈ {>,≥}

T[v] = [α σ..[
e′

(pp+1), LabelId∈Dom(P)
χ(pp+ 1) = e′′; e′′ ≥ e′ ≥ e

〈pp, T 〉 7→ 〈LabelId, T ′〉 where∀ v∈ Var,T ′[v] = ⊤

〈pp+ 1, T ′〉 whereT ′[v] = [α σ.. ψ]?
e′′

– Rule 5’ –

P[pp] = vd← vs op tabVar
〈pp, T 〉 7→ 〈pp+ 1, T ′〉 whereT ′[vd] = ⊤

– Rule 6 –

Figure 4. Operational Semantics

H
H

H
H

a
b

⊤ {α}b
[

α σ..
[

b

[

α σ.. ψ
]?

b

[

α σ.. ψ
]!

b

⊤ ⊤ ⊤ ⊤ ⊤ ⊤

{β}a ⊤ {min(α, β)}b
[

min(α, β) σ..
[

b

[

α σ.. ψ
]?

b

[

min(α, β) σ.. ψ
]!

b
[

β φ..
[

a
⊤ {α}b

[

min(α, β) min(σ,φ)..

[

b

[

min(α, β) min(σ,φ).. ψ

]?

b

[

min(α, β) min(σ,φ).. ψ

]!

b
[

β φ.. γ
]?

a
⊤ {α}b ⊤

[

min(α, β) min(σ,φ).. max(ψ, γ)

]?

b

[

min(α, β) min(σ,φ).. max(ψ, γ)

]?

b
[

β φ.. γ
]!

a
⊤ ⊤ ⊤ ⊤

[

min(α, β) min(σ,φ).. max(ψ, γ)

]!

b

Table 1. Unification Rules

local variables will be changed on two different program
points. The first branch target corresponds to the fulfill-
ment of the condition and sets the type ofi to a possi-

ble iterator
[

0 1.. 9
]?

2
. Indeed, the identified steps of the

loop pattern (initialization, update, condition evaluation)
has been consecutively executed and we can infer that the
variablei is an iterator at least by one execution path. The
second branch target corresponds to the failure of the con-
dition and sets the types of all the variables to⊤.

At step5, the type information determined at the pre-
vious step has to be merged with the type stored at
the current program point. Thus, a unification had to
be made between the following types:({0}

1
,⊤) and

(
[

0 1.. 9
]?

2
, (i,≤, 9)

2
). According to our unification rules,

the type ofi on labelL1 must be set to
[

0 1.. 9
]?

2
as its

precedence order2 is greater than the precedence order of
{0}

1
. This denotes that the initialization step occurred be-

fore the incrementation one in the loop execution pattern.
At step6, the instruction3 is evaluated.i is incremented
and we can infer that the variablei is an iterator by all the
execution paths. The type ofi is set to a confirmed iterator
[

0 1.. 9
]!

2
.

At steps7 and8, this type is propagated with respect of
the unification rules. The analysis stops at the step8 when
the types of the variablesi andtmp at the program point
3 still unchanged.

At step9, the evaluated instruction is a return instruc-
tion that stops the program flow and does not propagate
any types. This is the last analysis step. The inference
engine reached a fix-point and identified an iterator where
the lower bound is0, the incrementation step is1 and the
upper bound is9.

174

Sample program 2 Consider the sample program in
Figure 6 that corresponds to a pre-test loop pattern. The
programP uses two variablesi and tmp to iterate10
times. As explained in 2.1, this loop pattern should con-
sist of the consecutive execution of an initialization step, a
condition evaluation step and a counter update step. This
loop pattern will allow us to detect an iterator.

BB pp Label Instruction

0 1 i← 0

1 2 L1 tmp← i > 9
3 jumpif tmp L2

2 4 i← i + 1
5 jump L1

3 6 L2 return i
4

1BB0

2BB1

3
BB3 BB2

S pp T[i,tmp] pp’ T’[i,tmp]
0 ∅ ∅ , ∅ 1 ⊤ ,⊤
1 1 ⊤ ,⊤ 2 {0}1 ,⊤
2 2 {0}1 ,⊤ 3 {0}1 , (i, >, 9)2
3 3 {0}1 , (i, >, 9)2 4 {0}1 , (i, >, 9)2

6 ⊤ ,⊤
4 4 {0}1 , (i, >, 9)2 5

[

0 1..
[

4
, (i, >, 9)2

5 5
[

0 1..
[

4
, (i, >, 9)2 2

[

0 1..
[

4
, (i, >, 9)2

6 2
[

0 1..
[

4
,⊤ 3

[

0 1..
[

4
, (i, >, 9)2

7 3
[

0 1..
[

4
, (i, >, 9)2 4

[

0 1.. 9
]?

4
, (i, >, 9)2

6 ⊤ ,⊤

8 4
[

0 1.. 9
]?

4
, (i, >, 9)2 5

[

0 1.. 9
]!

4
, (i, >, 9)2

9 5
[

0 1.. 9
]!

4
, (i, >, 9)2 2

[

0 1.. 9
]!

4
, (i, >, 9)2

10 2
[

0 1.. 9
]!

4
,⊤ 3

[

0 1.. 9
]!

4
, (i, >, 9)2

11 3
[

0 1.. 9
]!

4
, (i, >, 9)2 4

[

0 1.. 9
]!

4
, (i, >, 9)2

6 ⊤ ,⊤

12 4
[

0 1.. 9
]!

4
, (i, >, 9)2 5

[

0 1.. 9
]!

4
, (i, >, 9)2

13 6 ⊤ ,⊤ ∅ ∅ , ∅

Figure 6. Listing of Sample Program 2, CFG
and Execution trace of type inference pro-
cedure

After initializing all the variables of the program to⊤,
our tool begins processing instructions. At step1, the eval-
uation of the assignment instruction changes the type ofi

to {0}
1

for the next step. The step2 evaluates the instruc-
tion 2 which is a comparison between the variablei and
a constant value. The type oftmp had to be changed to
(i, >, 9)

2
. At step3, the evaluated instruction is a con-

ditional branch. In this case, due to the unusable types
of the variables, the conditional branch instruction only
propagates the inferred types to the jump targets. At step
4, the first jump target is evaluated and corresponds to the
implicit branch to the next instruction. Asi is incremented
in this step, its type had to be set to

[

0 1..
[

4
. At step5, the

unconditional branch propagates the types to the label L1.
At step6, as the instruction has been already evaluated, a
unification between the following types had to be made:
{0}

1
and

[

0 1..
[

4
. According to our unification rules, the

type of i on labelL1 must be set to
[

0 1..
[

4
as its order-

ing number4 is greater than the ordering number of{0}
1
.

This denotes that the initialization step occurred before in
the loop execution pattern. As far as the variabletmp is
concerned, its type is changed to⊤ as it is indicated in Ta-
ble 1. At step7, the evaluated instruction is a conditional
branch and all the steps required to create an iterator are
at least validated by on execution path. So the type ofi is
changed to a possible iterator on a jump target and totop

on the other. At step8, i is incremented and its type can be

changed to a confirmed iterator
[

0 1.. 9
]!

4
. In the remain-

ing steps, according to the unification rules, the confirmed
iterator is propagated until we reach a fix-point in step12.

Sample program 3 Consider the sample program in
Figure 7. This example corresponds to a post-test loops.
In Example1, an iterator was detected as the identified
steps were executed consecutively as follows : Initializa-
tion step – Counter update step – Condition evaluation
step. In this example, the code has been modified to force
the program to execute the following pattern : Initializa-
tion step – Counter update step – Initialization step – Con-
dition evaluation step. As an initialization step occurs af-
ter a counter update one, the detection of the iterator is
compromised.

BB pp Label Instruction

0 1 i← 0

1 2 L1 i← i + 1
3 tmp← i op 4
4 jumpif tmp L2

2 5 i← 4

3 6 L2 tmp← i ≤ 9
7 jumpif tmp L1

4 8 return i

BB0 1

BB3

2BB1

BB2

3

4

5BB4

S pp T[i,tmp] pp’ T’[i,tmp]
0 ∅ ∅ , ∅ 1 ⊤ ,⊤
1 1 ⊤ ,⊤ 2 {0}1 ,⊤
2 2 {0}1 ,⊤ 3

[

0 1..
[

2
,⊤

3 3
[

0 1..
[

2
,⊤ 4

[

0 1..
[

2
,⊤

4 4
[

0 1..
[

2
,⊤ 5

[

0 1..
[

2
,⊤

6
[

0 1..
[

2
,⊤

5 5
[

0 1..
[

2
,⊤ 6 {4}3 ,⊤

6 6 {4}3 ,⊤ 7 {4}3 , (i,≤, 9)4
7 7 {4}3 , (i,≤, 9)4 2 {4}3 , (i,≤, 9)4

8 {4}3 , (i,≤, 9)4
8 2 {4}3 ,⊤ 3 {4}3 ,⊤
9 3 {4}3 ,⊤ 3 {4}3 ,⊤
10 4 {4}3 ,⊤ 5 {4}3 ,⊤

6 {4}3 ,⊤
11 5 {4}3 ,⊤ 6 {4}3 ,⊤
12 8 {4}3 , (i,≤, 9)4 3 ∅ , ∅

Figure 7. Listing of Sample Program 3, CFG
and Execution trace of type inference pro-
cedure

Execution starts by setting the types of all the variables
to ⊤. Through the steps1, 2, 3 the variablei is first ini-
tialized then incremented. Its type is changed to

[

0 1..
[

2
.

175

At step4, the evaluated instruction is a conditional branch
that propagates the type information to instruction5 and
6. At step5, the instruction5 assigns a constant value
to i. Thus, the type ofi is changed to{4}

3
. At this

program point, the loop pattern consists of the following
steps : initialization – incrementation – initialization.At
step6, a unification between an open interval stamped by
the precedence order2 (

[

0 1..
[

2
) is replaced by a constant

value stamped by the precedence order3 ({4}
3
) as indi-

cated by the unification rules.tmp is changed to a condi-
tional on the variablei. At step7, the branch instruction
transmits the types to the corresponding jump targets. At
step8, i is a constant stamped with the precedence order
3. i is incremented at a basic block stamped with a prece-
dence order2. The type of i still unchanged as suggested
by the rule 3 in Figure 3.3. The next steps propagate this
type until a fix-point is reached and an iterator is never
detected.

3.6. Proof generation
Before generating the proof that will be packaged with

the code sent to the consumer, an ultimate step will con-
sists of rejecting any program when we can determine off-
line that its behavior is unsafe. An unsafe behavior is de-
tected off-line when the loop bounds detection tool identi-
fies a backedge that is not described by a bounded iterator.
In this case, the timing consumption of the mobile code
cannot be bounded and verified in the code recipient.

Finding backedges relies also on the precedence rela-
tion explained in section 2. Indeed, the depth first traver-
sal of the control flow graph assigns two timing stamps
for each basic block. One time stamp is related to the time
when a basic blockb is first discovered and is noted d[b].
The second accounts for the time when the algorithm fin-
ishes examining the basic block list of successors and is
noted f[v]. An edge(b→ b′) is a backedge ifd[b] < d[b′]
andf [b] > f [b′]. Note that the discovery time stamp was
used for tagging the different types computed by the in-
ference engine.

Determining these time stamps on the consumer repre-
sents an important overhead and implies heavy computa-
tions. Before sending the code to the consumer, we ap-
ply a transformation in order to guarantee the respect of
the precedence order of the basic blocks. This transfor-
mation guarantees that the loop bounds will be verified
on the consumer by a straight forward inspection of code.
However, reordering the code probably affects the runtime
behavior of a method or increases the code size and the
number of local variables slightly as mentioned in [10].

Furthermore, to minimize the workload affected to the
consumer in order to compute the WCET of the mobile
code, we use a parser to flatten the control flow graph of
the program into a tree. This eases the computation of the
WCET by the recipient part of the system, since search-
ing the most costly path is less resource-demanding in a
tree than in a cyclic graph. Conditional statements are
represented by separate branches in the tree. Loops are

replaced by a tag on the node representing the execution
count of the block. In the case of nested loops, the inner
loop is tagged by the product of its execution count and
the outer loop one, as illustrated in [2].

Once the tagged-tree is built, it is sent to the target sys-
tem within the binary containing the code and the estab-
lished proof of type correctness. The embedded compiler
is responsible for searching the most costly branch in the
tagged-tree. The proof consists of an array containing the
types of the program variables at each jumping target and
is sketched in 4.1. A verification step is mandatory as far
as the tagged-tree is concerned but is beyond the scope of
this paper.

4. Verification on the consumer side

A safe mobile code that can be executed by a consumer
must satisfy the following requirements:

1. A basic block has always a precedence order smaller
than those of its successors.

2. The loop bounds should be in the range of values in-
ferred by the static analysis done on the producer.

4.1. Loop bounds verification process
Our loop bounds detection tool performed the iterative

type checking analysis at the code producer’s end. The
proof that will be packaged with the code sent to the con-
sumer consists of annotations added to the intermediate
code. Indeed, at the beginning of each basic block, the
inferred types of the local variables at this program point
are added as an annotation. We now describe how these
annotations are verified at the code consumer end:

• At the beginning of a basic block, set the derived
types of each variable of the program to the anno-
tated types.

• Make one linear pass through the statements of the
block, applying the inference rules explained before
to the derived types.

• At the end of a basic block, check that the derived
types are coherent with the annotated types of all its
successors. If the annotations do not verify this prop-
erty, we reject them.

4.2. Examples
In the following, we illustrate the verification process

explained in 4.1.

Sample program 1 The annotated type table joined to
the code received by the consumer is represented below:

Label i tmp

L1
[

0 1.. 9
]!

2
⊤

176

Table 2 shows the steps of the verification process of the
code sample 1. At step1, according to our operational se-
mantics explained in 3.3, the derived types of the program
variablesi andtmp corresponds to{0}

1
,⊤. At step2, the

evaluated instruction is a jump target. We must check that
the current state indicated by ({0}

1
,⊤) is coherent with

the annotations done on the producer (
[

0 1.. 9
]!

2
,⊤). Infor-

mally, we must verify that the initialization step occurred
before the creation of the iterator type. As the precedence
order of the current state is smaller than the annotated
type, the conformity of the proof is verified and current

state is set to (
[

0 1.. 9
]!

2
,⊤). For the following instructions,

the derived types are computed with regard to the typing
rules that were used by the loop detection tool.

Step pp Instruction Ta[i, tmp] Td[i, tmp]
1 1 i← 0 ∅ {0}1,⊤

2 2 i← i + 1
[

0 1.. 9
]!

2
,⊤

[

0 1.. 9
]!

2
,⊤

3 3 tmp← i ≤ 9 ∅
[

0 1.. 9
]!

2
,⊤

4 4 jumpif tmp L1 ∅
[

0 1.. 9
]!

2
,(i, >, 9)2

5 5 return i ∅
[

0 1.. 9
]!

2
,(i, >, 9)2

Table 2. Verification process on the con-
sumer of the sample program 1

Sample program 2 The annotated type table joined to
the code received by the consumer is represented below:

Label i tmp

L1
[

0 1.. 9
]!

4
⊤

L2 ⊤ ⊤

Table 3 shows the steps of the verification process of the
code sample 2. At step1, according to our operational
semantics explained in 3.3, the derived types of the pro-
gram variablesi andtmp corresponds to{0}

1
,⊤. At step

2, the evaluated instruction is a comparison operation and
corresponds to a jump target. We must check that the cur-
rent state indicated by ({0}

1
,⊤) is coherent with the an-

notations done on the producer (
[

0 1.. 9
]!

4
,⊤). We must

verify that the initialization step occurred before the cre-
ation of the iterator type. As the precedence order of the
current state is smaller than the annotated type, the con-
formity of the proof is verified and current state is set to

(
[

0 1.. 9
]!

4
,⊤). For the following instructions, the derived

types are computed with regard to the typing rules that
were used by the loop detection tool.

Sample program 3 For the sample program 3, our loop
bounds detection tool never detects an iterator. As this
code fragment does not correspond to a recognizable loop
pattern, our tool rejects the program. In the following, we
show that our verification tool rejects the code if a ma-
licious programmer tries to mislead it by sending a false
proof.

Step pp Instruction Ta[i, tmp] Td[i, tmp]
1 1 i← 0 ∅ {0}1,⊤

2 2 tmp← i > 9
[

0 1.. 9
]!

4
,⊤

[

0 1.. 9
]!

4
,⊤

3 3 jumpif tmp L2 ∅
[

0 1.. 9
]!

4
,⊤

4 4 i← i + 1 ∅
[

0 1.. 9
]!

4
,⊤

5 5 jump L1 ∅
[

0 1.. 9
]!

4
,⊤

6 6 return i ∅ ⊤,⊤

Table 3. Verification process on the con-
sumer of the sample program 2

The annotated type table joined to the code received by
the consumer is represented below:

Label i tmp

L1
[

0 1.. 9
]!

2
⊤

L2 ⊤ ⊤

Table 4 shows the steps of the verification process of the
code sample 3. At step1, according to our operational se-
mantics explained in 3.3, the derived types of the program
variablesi andtmp corresponds to{0}

1
,⊤. At step2, the

evaluated instruction corresponds to a jump target. We
must check that the current state indicated by ({0}

1
,⊤)

is coherent with the annotations done on the producer

(
[

0 1.. 9
]!

2
,⊤). We must verify that the initialization step

occurred before the creation of the iterator type. As the
precedence order of the current state is smaller than the
annotated type, the conformity of the proof is verified and

current state is set to (
[

0 1.. 9
]!

2
,⊤). At step3, the proof

continuity is ensured. At step4, a constant value4 is as-
signed toi. This initialization occurs in a basic block that
occurs after the creation of an iterator. The verifier rejects
the code as the proof does not correspond to the mobile
code received by the consumer.

Step pp Instruction Ta[i, tmp] Td[i, tmp]
1 1 i← 0 ∅ {0}1,⊤

2 2 i← i + 1
[

0 1.. 9
]!

2
,⊤

[

0 1.. 9
]!

2
,⊤

3 3 jumpif tmp L2 ∅
[

0 1.. 9
]!

2
,⊤

4 4 i← 4 ∅ Proof Inconsistence
5 5 tmp← i ≤ 9 ∅ Proof Inconsistence
6 6 jumpif tmp L1 ∅ Proof Inconsistence
6 6 return i ∅ ⊤,⊤

Table 4. Verification process on the con-
sumer of the sample program 3

5. Experimental Results

We experimented our loop bounds detection tool within
the Façade framework [7]. This framework is based
on a typed intermediate language designed for resource-
limited devices and mainly smart cards. Thanks to this in-
termediate language, it was possible to devise an extensi-
ble operating system calledCamille[5]. In Camille, appli-
cations and operating system extensions are programmed

177

using a high level language as C or Java for instance, then
translated into an Façade Intermediate language by a code
converter or a dedicated compiler, before they are loaded
in the embedded system.Camille already supports the
Proof Carrying Code model. Indeed, extensions are val-
idated when loaded in the operating system by a verifier,
which ensures their type-correctness.

Our algorithm was applied to theCamille kernel as it
corresponds to our requirements. Indeed,Camille itself
is written using a type-safe subset of the C language and
can be translated inFaçadeusing a customized version of
GCC. Table 5 describes the kernel source code in terms of
footprint, number of lines. More information about the
source can be found in [6].

Kernel C Files Kernel Façade Files
Size (kB) 195 148.5
Number of lines 5962 6606

Table 5. Description of Camille Kernel code

Our off-line tool, first, builds the control flow graph
and determines the precedence order on the 53 compo-
nents constituting the kernel. The analysis is done on the
intermediate code and detects 614 basic blocks. Then, the
tool proceeds by an iterative type checking analysis. The
instruction set used in 3.1 can be considered as a subset
of the The Façade language. It uses the CardInt class with
the methodsAsIsfor assignment,+I for addition, andopI
for arithmetic comparison.

In the kernel written in C language, we accounted 60
For loops and 13While loops. TheFaçadecode cor-
responding to the translation of the kernel files was in-
spected by our loop bounds detection tool concerning
the recognizable loop patterns. It contains 120 methods
covering essentially arithmetical operations and memory
management. The tool allows to bound 70% of the ker-
nel methods. The remaining methods contains infinite
loops or depend closely on the system inputs (e.g. I/O
Stream). Our type analysis took fairly 5 iterations on the
set of classes to reach a fixed-point.

6. Conclusion and Future Work

We presented in this paper the scheme we propose to
safely compute WCET in a resource-constrained operat-
ing system. By distributing the computation between the
producer side running on a powerful workstation and the
consumer side specific to the hardware included in the
mobile device, we are able to circumvent the very strict
memory and CPU limitation of the device. We guarantee
the safety of our scheme by establishing a proof of loop
bounds at compilation time on the producer and by veri-
fying its correctness at installation time on the consumer.

In this paper, we focused on determining the upper
bound on the number of iteration in loops in order to con-
trol CPU usage in the worst case. The proposed approach
can also benefit from an integration with live memory
analysis which aims at determining an upper bound on the

amount of the memory actually referenced by a program.
It can also be used to control the system resource usage by
accounting the number allocation and deallocation in loop
constructs.

References

[1] E. Albert, G. Puebla, and M. Hermenegildo. An
abstract interpretation-based approach to mobile code
safety.Electronic Notes in Theoretical Computer Science,
132(1):113–129, 2005.

[2] N. Bel Hadj Aissa, C. Rippert, and G. Grimaud. Distribut-
ing the WCET Computation for Embedded Operating Sys-
tems. InProc. of the 25th IEEE International Real-Time
Systems Symposium, Work In Progress Session, Lisbon,
Portugal, December 2004.

[3] A. Colin and I. Puaut. Worst-case execution time analysis
of the RTEMS real-time operating system. InProc. of the
13th Euromicro Conference on Real-Time Systems, pages
191–198, Delft, The Netherlands, june 2001.

[4] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. InConference Record
of the 4th Symposium on Principles of Programming Lan-
guages (POPL), pages 238–252, 1977.

[5] D. Deville, A. Galland, G. Grimaud, and S. Jean. Smart
Card Operating Systems: Past, Present and Future. In
Proc. of the 5th NORDU/USENIX Conference, February
2003.

[6] D. Deville, Y. Hodique, and S.-R. I. Safe collaboration in
extensible operating systems: A study on real time exten-
sions. Special Issue on System and Networking for Smart
Objects – International Journal of Computers and Appli-
cations (IJCA), January 2005.

[7] G. Grimaud, J.-L. Lanet, and J.-J. Vandewalle. FaÇade: A
typed intermediate language dedicated to smart cards. In
Software Engineering — ESEC/FSE, number 1687, pages
476–493. Springer-Verlag, 1999.

[8] J. Gustafsson. Analyzing Execution-Time of Object-
Oriented Programs Using Abstract Interpretation. PhD
thesis, Department of Computer Systems, Uppsala Uni-
versity, may 2000.

[9] C. Healy, M. Sjodin, V. Rustagi, D. Whalley, and R. van
Engelen. Supporting timing analysis by automatic bound-
ing of loop iterations. Real-Time Systems, 18(2/3):129–
156, may 2000.

[10] X. Leroy. Bytecode verification on java smart cards.Soft-
ware, Practice and Experience, 32(4):319–340, 2002.

[11] G. Necula. Proof-carrying code. InProc. of the 24th ACM
Symposium on Principles of Programming Languages,
January 1997.

[12] E. Rose and K. H. Rose. Lightweight bytecode verifica-
tion. In Proc. of the OOPSLA’98 Workshop on Formal
Underpinnings of Java, Vancouver, BC, Canada, Novem-
ber 1998.

[13] C. Sandberg. Inspection of industrial code for syntacti-
cal loop analysis. InProc. of the 4th International Work-
shop on Worst-Case Execution Time Analysis, in associa-
tion with the 16th ECRTS conference, Catania, Italy, June
2004.

178

Dynamic Instruction Cache Locking
in Hard Real-Time Systems

Alexis Arnaud Isabelle Puaut
IRISA, Campus universitaire de Beaulieu,

35042 Rennes Cédex, France
Email: {aarnaud/puaut}@irisa.fr

Abstract

Cache memories have been widely used in order
to bridge the gap between high speed processors
and relatively slower main memories, and thus to
improve the overall performance of systems. How-
ever in the context of hard real-time systems, they
are a source of predictability problems. A lot of
progress has been achieved to model caches to
statically determine safe and precise bounds on the
worst-case execution times (WCETs) estimates of
tasks on architectures with caches. Nonetheless
cache-aware WCET analysis techniques may not
always be applicable or may be too pessimistic,
because some memory accesses are unknown stati-
cally. Another reason may come from a poorly doc-
umented or non-deterministic cache line replace-
ment policy. An alternative approach is to lock
cache lines so as to make memory access times en-
tirely predictable.

In this paper, we consider an instruction cache
and a task. We propose a an algorithm which par-
titions the task into a set of regions. Each region
owns statically a locked cache contents determined
offline.

A set of tasks is used to experimentally analyze
the effects of the algorithm on the worst-case cache
miss rate (WCCMR). A sharp improvement is ob-
served, as compared with a system without any
cache. Furthermore it is observed that the results
obtained on WCCMRs compare to the results ob-
tained from static analysis of a cache whose pol-
icy is to replace least recently used (LRU) cache
lines. Contrary to cache analysis techniques, our
algorithm depends neither on the scheduling pol-
icy, nor on the cache line replacement policy. As a
further property, it works at the machine language
level, and thus does not require any source code.

Keywords : hard real-time systems, cache
memories, worst-case execution time

1 Introduction

1.1 Cache memories and real-time issues
Caches are small buffer memories with low la-

tency which are inserted between the CPU and the
main memory. They benefit from the spatial and
temporal locality often found in instruction and/or
data streams in order to store, at any time, mem-
ory references which are likely to be addressed in a
near future. They operate transparently. Therefore
no change is required in the memory addressing
scheme. They bring an improvement of the overall
performance of computer systems. However two
phenomena make it hard to know statically mem-
ory access in the worst case:

• Intra-task interferences which occur when a
task overrides its own cache lines, mainly
because of the relatively small size of the
cache as compared with the task’s memory
demands.

• In preemptive multitasking systems, preemp-
tions cause inter-task interferences. Namely
when the execution is switched from a task A
towards a task B, some cache blocks used by
A may be evicted by B.

In the industry, there is a growing demand of
hard real-time systems with improved performance
and cheaper hardware. Thus the challenge here
is to accomodate the performance goal of cache
memories with predictability requirements of hard
real-time systems.

1.2 Cache memories in hard real-time systems
There are at the present time two categories of

approaches for safely incorporating cache memo-
ries in hard real-time systems. In the first one,
cache analysis, caches operate without any re-
striction. Static analysis techniques (cache-aware
WCET analysis [9, 7] and schedulability analysis

179

[6]) predict their worst-case impact on the system
schedulability. They assume that the cache line re-
placement policy is known.

The second category of approaches consists in
using caches in a restricted or customized manner
in order to adapt them to the needs of hard real-
time systems and schedulability analysis.

Cache-partitioning techniques assign portions
of a cache to some specified tasks in order the
guarantee that for each task its most recently used
code or data will remain in the cache while the
processor executes another task. The partitioning
can be made at the hardware [5] or software level
[8]. Since the dynamic behavior of the cache is
isolated within each partition, inter-task interfer-
ences are eliminated. The counterpart is that the
per-task available amount of memory is reduced,
hence decreased performance. Furthermore static
cache analysis is still required to tackle intra-task
interferences.

An alternative is to use cache locking tech-
niques. Locking a cache line consists in loading
some contents in a cache and inhibiting the cache
line replacement policy. If all the cache lines are
locked, we say that the state of the cache is a locked
cache state. Predictability is strictly ensured if
contents is chosen offline. This feature is available
on several commercial processors (among others:
Motorola ColdFire MCF5249, Motorola PowerPC
603e, ARM 940T).

Given a task, its code is subdivided into one or
more zones. Each such zone has a locked cache
state. Consequently, executions of the task are sub-
divided into temporal windows, in each of which
the cache is locked. When there is more than one
zone, the locking scheme is said to be dynamic,
whereas for only one zone, it is static [11, 2].

If the locking method is global, at every instant,
each task owns a portion of the cache space. No
cache reload is needed when a task is preempted.
In the case of a local locking method (see for ex-
ample [10, 3]), each task owns the entire cache. To
ensure this, the cache is reloaded each time a pre-
emption occurs.

1.3 Paper contents and contributions
This paper explores the use of local dynamic

locking of instruction caches in hard real-time sys-
tems. Dynamic cache locking is attractive from
several points of views. First of all, it improves
the worst and average-case performance of tasks,
as compared with the case where the same tasks do
not use any cache at all.

When using dynamic instruction cache locking
techniques, the interactions between the dynamic

properties of caches and other architectural compo-
nents such as pipelines or branch predictors are less
complex, making easier the analysis of these com-
ponents in validation tools of hard real-time sys-
tems. Dynamic instruction cache locking can also
be used when no cache analysis method can apply
accurately, due for instance to non-deterministic or
poorly documented cache replacement strategies.

It may be also suitable for designing mixed sys-
tems providing both tasks with hard real-time con-
straints and tasks with soft real-time constraints
which may use unrestricted caches.

In this paper, we propose algorithms for find-
ing a partition of the machine code of a given task
into regions, and to determine a locked state of the
instruction cache for each such region. It is per-
formed in a non-blind manner by using memory
access patterns obtained by profiling the task. The
goal is to improve the worst-case performance as
compared with a system with no cache, in such
a way that this performance be comparable with
results obtained from static analysis of the same
cache whose replacement policy is the least re-
cently used (LRU).

1.4 Paper organization
The remainder of the paper is organized as fol-

lows. Section 2 gives an overview of the proposed
local dynamic instruction cache locking strategy.
Then we detail the experimental setup and perfor-
mance measurements used for validating our ap-
proach in Section 3. In Section 4, we give an
overview of other studies related to our work. Fi-
nally we conclude in Section 5 with a summary of
the paper contributions.

2 A dynamic instruction cache locking
technique

In this section we describe our method which
supports dynamic instruction cache locking. After
introducing the assumptions and notations (§2.1)
and giving a first glance at the method (§2.2), the
central objects of this work, namely regions, are
studied in paragraph 2.3. Then we detail how to
associate a locked cache state to a region of a pro-
gram in order to improve the worst-case perfor-
mance of this program (§2.4). Finally, an algo-
rithm for partitioning a program into such regions
is described in the paragraph 2.5.

2.1 Assumptions
2.1.1 Architecture and program model

In our model, we consider a CPU provided with
a one-level set-associative instruction cache.

180

We will consider a progamm presented in bi-
nary form. Each subroutine owns a unique re-
turn point. Indirect jumps are excluded. Moreover
the program is assumed to execute within a finite
amount of time.

Throughout this paper, for any program, we
will associate to each of its subroutines a control
flow graph (CFG). A control flow graph is an ab-
stract representation of a subroutine. Each node in
the graph represents a basic block, i.e. a sequen-
tial piece of code with a unique entry point and a
unique exit point. Directed edges are used to rep-
resent jumps in the control flow.

2.1.2 Reloading and locking operation

Reloading and locking the cache may be done
by inserting instructions calling a special subrou-
tine. However, in this work, this operation is as-
sumed to be done without modifying the program.
We use debug registers which raise an exception at
specified values of the program counter. An excep-
tion handler does the job of reloading and locking
the cache. The benefit is that the program’s mem-
ory map is left unchanged.

2.2 Overview
We propose to apply a local dynamic cache

locking strategy which aims to improve the WCET
of a program as compared with the case of a system
with no cache. The main issue is to avoid perform-
ing an exhaustive search of all the possible subdivi-
sions of the program and of all possible cache con-
tents for each subdivision, as this would result in
a combinatorial explosion. The proposed method
consists in the following two steps :

1. Profiling.
We determine, from executions of the pro-
gram with various entry data sets, a collec-
tion of execution paths along with their ex-
ecution frequencies. These paths must ver-
ify the following two conditions: (i) as many
basic blocks as possible are reached; (ii) no
path can be deduced from other paths with
set operations, so that the number of paths
is minimal. From this profiling information,
we compute for each basic block an execution
frequency.

2. Program partitioning
A greedy algorithm is applied on the set of
basic blocks. At the initial state, the program
is presented as the set of basic blocks of its
control flow graph. Each such basic block is
a region. At each step of the algorithm, re-
gions are aggregated into new regions. Each

region has a locked cache state. Two basic op-
erations, merging and inlining, allow to create
new regions from existing ones. The goal of
the algorithm is to determine a set of regions
minimizing the WCET estimation of the pro-
gram.

2.3 Regions

The notion of region is central in this work.
Given a subroutine whose CFG is known, a re-
gion R is a connected part of this CFG. Namely,
between any couple B1, B2 of basic blocks of R,
there exists at least one non-directed path between
them. R may be of one of two types :

• R is a simple region if it has a locked cache
state which is known statically. This state is
computed with an algorithm described in sec-
tion 2.4. The addresses through which other
regions of the program may enter R are cache
reload points. When one of them is reached,
the cache is reloaded with the locked cache
state of R.

• Suppose R spans all the basic blocks of its
subroutine. If there is a significant benefit
from avoiding cache reloads when entering
and exiting from this subroutine, R may be
inlined. In this case, R inherits the cache
state of any region in which the subroutine
was called.

2.4 Computation of a locked cache state for a
simple region

Consider a simple region R in a program. We
provide it with a locked cache state. Namely, for
each cache line, we select from this region the
memory line such that: (i) it can be loaded in that
cache line; (ii) its execution frequency is the high-
est; (iii) the gain obtained from having this mem-
ory line in the cache is more important than the cost
of loading and locking it in the cache.

The last condition is true if the execution fre-
quency of this memory line exceeds a constant pro-
portional to the average number of times a cache
reload occurs when entering R.

This locked cache state is chosen so as to min-
imize, among all possible choices, an heuristic
which is the approximate time spent, during any
execution of the program, in the basic blocks of R
plus the average time spent reloading the locked
cache state of R. The proof of this property
vaguely follows the lines of the main proof pre-
sented in [11], so we will not detail it here.

181

2.5 The Region Merging and Inlining algo-
rithm

In this Section, first we define two basic op-
erations on regions, namely merging and inlining
(§2.5.1). Then, in order to improve the WCET of a
program, an algorithm (§2.5.2) partitions the pro-
gram into regions using these two operations.

2.5.1 Basic operations on regions

Merging Let R1 and R2 be two simple regions
that are connected. Merging these two regions into
a new simple region R means that:

• R aggregates the blocks of R1 and R2

• The locked cache state of R is computed by
the algorithm presented in the paragraph 2.4.

We will use the notation R = R1 ⊕ R2 to ex-
press the fact that the region R is obtained as the
result of merging R1 with R2.

Inlining Suppose a subroutine contains only a
simple region R. There may be a potential benefit
by avoiding cache reloads when calling and exiting
this subroutine. The general idea for the inlining
operation is to allow the this subroutine to inherit
the locked cache state from the subroutine which
has just called it.

We now define a calling region CR of R the
following way (cf. figure 1):

• CR is a simple region.

• There exists at least one chain (f0, . . . , fm−1)
of subroutine calls leading from CR to R: (i)
the call towards f0 lies in CR; (ii) if m ≥ 2,
each f0, . . . fm−2 represent an inlined region;
(iii) fm−1 calls towards the subroutine repre-
senting R.

Now let CRi (1 ≤ i ≤ n) be the calling regions
of R. Then inlining R means that, for each CRi:

• For each memory line of R, its frequency is
assumed to be scaled up by the proportion,
among all the calling regions, of calls from
CRi towards R.

• Its locked cache state is computed (§2.4) of-
fline from the knowledge of the memory lines
of both CRi and R.

From now on, the locked cache state of R is
inherited from the locked cache state of the last ac-
cessed calling region during runtime (cf. figure 1).

R

CR1 CR2

CR4 CR5CR3

simple region

inlined region
subroutine call

memory lines of R sent in each
of its calling regions

Figure 1. A region R and its calling re-
gions CRi. Inlining operation on R.

2.5.2 Description of the algorithm

In this subsection, we give a description of an
algorithm which determines a partition of a pro-
gram P into regions in order to to minimize the
WCET of P. We propose a sub-optimal strategy,
the RMI (Region Merging and Inlining) greedy al-
gorithm. RMI takes as an input the partition of P
in basic blocks, which are initial regions. At each
iteration, a pair of regions is chosen and merged
once for all, thus giving a new partition choice.
RMI keeps also track of the current best partition.
Inlining operations are involved when updating the
best partition. When completed, RMI returns the
best found partition of the program.

Quality of an operation. Let Ωpre be a partition
of P, and Ωpost the partition resulting from an opera-
tion (merging or inlining) on Ωpre. The quality cri-
terion of this operation is based on the difference,
noted δ, between the WCETs of P with the locked
cache states from respectively Ωpost and Ωpre. The
best operation gives the lowest value of δ, noted
δmin. It represents on the WCET of P its best im-
provement if δmin < 0, and its least deterioration
otherwise.

In order to choose among some possible oper-
ations on Ωpre the best one, the EvalOp algorithm
(cf. algorithm 1) must be called each time such an
operation was attempted on Ωpre. Given an opera-
tion, the WCET of the resulting partition Ωpost and
its quality criterion δ are computed (�. 1-2). Then
EvalOp updates the information on the partition re-
sulting from the best operation on Ωpre if needed (�.
3).

182

Algorithm 1 EvalOp algorithm
Require: P: program; Ωpre: partition of P; Ωpost:

partition after an operation; δmin: best quality
criterion

Ensure: Ωmin: partition resulting from the best
operation; δmin

1: WCET(Ωpost)←WCET of P with Ωpost;
2: δ←WCET(Ωpost) - WCET(Ωpre);
3: if δ ≤ δmin then Ωmin ← Ωpost; δmin ← δ;

Description of the RMI algorithm. First note
that a partition Ω of P into regions gives rise to
a search space. Namely this search space contains
all the partitions that can be deduced from Ω by
operations (merging and inlining) on its regions.

Algorithm 2 RMI algorithm
Require: P: program, Ωinit: initial partition of P,

Smax: max size of a set of locked cache states
Ensure: Ωbest: best found partition

1: Ωcur ← Ωinit; Ωbest ← ∅;
2: WCET(Ωcur)←WCET of P with Ωcur;
3: WCET(Ωbest)←WCET of P (no cache);
4: while a subroutine has more than 1 simple re-

gion in Ωcur do
5: Ωcur ← TryMerge(P, Ωcur);
6: if WCET(Ωcur) ≤ WCET(Ωbest) and

Size(Ωcur) ≤ Smax then Ωbest ← Ωcur;
7: Ωinlined ← Ωcur;
8: while there are inlineable regions in Ωinlined

do
9: Ωinlined ← TryInline(P, Ωinlined);

10: if WCET(Ωinlined) ≤ WCET(Ωbest) and
Size(Ωcur) ≤ Smax then Ωbest ← Ωinlined;

11: end while
12: end while

The RMI algorithm (cf. algorithm 2) starts from
the initial solution search space corresponding to
the basic blocks of P stored in the current partition
choice Ωcur (�. 1). At each iteration, RMI searches
for the best merging between a pair of regions (�.
5) by calling the TryMerge algorithm (cf. algo-
rithm 3), thus updating Ωcur, and equivalently re-
ducing the solution search space. It then updates
the information on the best partition (�. 6-11). The
whole process is iterated until no merging opera-
tion is possible in the solution search space, which
means that, in Ωcur, only one simple region remains
in each subroutine (�. 5). When choosing the
best partition Ωbest of P, RMI first compares Ωbest

against Ωcur (�. 6), and updates it if needed. Then,
starting from Ωcur, a greedy algorithm is used to
choose a sequence of inlining operations (�. 8-11)

by calling the TryInline algorithm (cf. algorithm
4). At each step, the current choice is stored in
Ωinlined. After a choice was made, Ωbest is updated
if needed.

Description of the TryMerge algorithm. Given
a partition Ω of the program P, for each pair of
mergeable regions, the TryMerge algorithm tries
to merge them and builds a test partition Ωtest (�.
3). If the EvalOp algorithm decides that Ωtest re-
sults from the current best merging operation, it is
stored in Ωmin (�. 4). After completion, Ω is up-
dated with the partition stored in Ωmin representing
the best merging operation (�. 6).

Algorithm 3 TryMerge algorithm
Require: P: program, Ω: partition of P
Ensure: Ω

1: δmin ← δmax;
2: for each connected pair of simple regions

(R1, R2) ∈ Ω do
3: Ωtest ← (Ω\{R1, R2}) ∪ {R1 ⊕R2};
4: (Ωmin, δmin)← EvalOp(P, Ω, Ωtest, δmin);
5: end for
6: Ω← Ωmin;

Description of the TryInline algorithm. Given
a partition Ω of P, for each subroutine which con-
tains only one simple region R, the TryInline al-
gorithm builds a test partition Ωtest in which R is
inlined (�. 3-7). As for TryMerge, the EvalOp al-
gorithm is used to choose the current best inlining
operation (�. 8) whose corresponding partition is
stored in Ωmin. After completion, Ω contains the
partition corresponding to the best inlining opera-
tion (�. 10).

Algorithm 4 TryInline algorithm
Require: P: program, Ω: partition of P
Ensure: Ω

1: δmin ← δmax;
2: for each inlineable region R ∈ Ω do
3: CR: set of calling regions of R in Ω;
4: R′← R; CR′← CR;
5: Ωtest ← Ω\{R, CR};
6: Inline R′ in CR′;
7: Ωtest ← Ωtest ∪ {R′, CR′};
8: (Ωmin, δmin)← EvalOp(P, Ω, Ωtest, δmin);
9: end for

10: Ω← Ωmin;

As regards the worst-case complexity of the
RMI algorithm in terms of the basic operations in-
volved, merging and inlining, it is quadratic in the

183

number of basic blocks of the considered program.
This property is shown in the annex A.

3 Experimental results

This section deals with an experimentation de-
signed to validate the approach adopted in this
work. In the paragraph §3.1, the experimental pro-
tocol and the assumptions are detailed. Then in the
following paragraph (§3.2), we evaluate the impact
of our method on the worst-case performance.

3.1 Experimental setup
Hardware and timing model. As the worst-case
performance with regards to an instruction cache is
our only concern, we assume an executive support
from a 32 bit MIPS R3000 processor at instruction
level only. In our model, this processor provides
only one architectural component, namely an in-
struction cache. Its cache line replacement policy
is the LRU policy. Moreover we suppose that this
cache can be totally locked.

The size of the cache ranges from 512 bytes to
4 kilobytes, and its associativity is equal to 1 (thus
it is direct-mapped). The application performance
with respect to the cache is our only concern in this
study. Therefore the timing model for the proces-
sor is very simple. The worst case performance
of a task under a given configuration of the cache
is measured in worst case cache miss rate (WC-
CMR).

When the cache is dynamically locked, a spe-
cial routine of the underlying operating system is
assumed to manage the reloading and the locking
of the cache. As the performance of this routine
is highly critical, it is assumed to be stored into a
scratch-pad memory [12]. As we focus on cache
misses, only operations loading memory lines into
the cache are taken into account. Thus, given a
locked cache state S, the worst number of cache
misses of this routine is assumed to be equal to |S|,
i.e. the number of cache lines in S.

Generation of execution traces. In order to pro-
file programs, a MIPS R3000 processor emulator
at instruction level is used to generate execution
traces.

Estimation of worst case miss rates. The WC-
CMRs of programs, presented in binary form, are
computed with the Heptane 1 static WCET anal-
ysis tool [4]. Within the context of this work, it
uses a technique based on abstract syntaxic trees.

1Heptane is an open-source software available at
http://www.irisa.fr/aces/software/software.html

In such a tree, the leaves are basic blocks, while
the other nodes are sequences, if-then-else con-
trol structures, or loop structures. The WCET and
the WCCMR are computed bottom-up by formu-
lae which establish for each node a partial WCET
(resp. WCCMR) depending on its children nodes.
The WCET (resp. WCCMR) of the root node is
then the WCET (resp. WCCMR) of the analyzed
program.

Heptane includes hardware modeling capabili-
ties to estimate safely but precisely the numbers
of hits and misses in the worst case on architec-
tures with instruction caches, pipelines and simple
branch predictors. In the present study, Heptane’s
pipeline and branch prediction modeling modules
were switched off since our focus is on instruction
caches only. In addition of a cache analysis mod-
ule, Heptane was incorporated a module that takes
into account the presence of a dynamically locked
instruction cache. This new module uses a file de-
scribing the set of cache states and cache reload
points of the program to be analyzed. It classifies
instructions into two categories : miss and hit. An
instruction is classified a a hit if it is locked in the
instruction cache, and is classified as a miss other-
wise.

Experimentation process. Given a program and
a parametrization of the instruction cache, the ex-
periment proceeds in two steps (see figure 2). First,
the set of cache states and cache reload points is
computed by the RMI algorithm. For this purpose,
execution traces are generated with Nachos.
The second step is the performance evaluation it-
self. The WCCMR is computed with Heptane.
Two cases are considered: (i) a system with a dy-
namic instruction cache (i.e. operating in its nor-
mal behavior); (ii) a system with a dynamically
locked instruction cache.

profiling
partition into

regions

execution
traces

program

WCCMR
estimation

locked cache
states

Figure 2. Experimental protocol

The experiments were conducted on three
benchmark tasks, whose features are summarized

184

in figure 3. The third column gives, for each task,
the code size in bytes.

Name Description Size
minver matrix inversion 4584
matmult matrix product 1328
jfdctint integer DCT transformation 3424

Figure 3. Characteristics of tasks

3.2 Performance of dynamic instruction cache
locking

In this paragraph, we interpret the results ob-
tained from the experimentation. First, we ex-
amine the worst-case performance improvement
obtained with our approach (§3.2.1). Then we
study some properties of the RMI algorithm itself
(§3.2.2).

3.2.1 Worst-case performance

We compare the worst-case performance of the
tasks in two situations: (i) the cache is dynamically
locked; (ii) the cache is dynamic wih a LRU pol-
icy. The figures 4, 5, and 6 describe the results of
the experiments. In the locked case, the WCCMR
comprises the cache misses due to the task itself,
and the cache misses arising from cache reloading
operations.

Impact of the cache size. As seen on figures
4, 5, and 6, in both locked and LRU cases, the
worst-case performance is far better than without
any cache (in this situation, the WCCMR would
be equal to 100%).

In the dynamic case, the WCCMR sharply de-
creases when increasing the cache size, as the
cache conflict probability decreases.

In the locked case, when increasing the cache
size, we observe a general tendency towards the
decrease of the part of the WCCMR which rep-
resents the reload overhead, . But for a notable
exception in the case of the task jfdctint with a 1
KB cache, a similar tendency applies as regards the
part of the WCCMR from the task itself.

Now we compare the worst-case performance
between the locked cache and the dynamic case.
In this aim, we compute, for each task and each
cache size, a ratio between the total WCCMR in
the locked case and the WCCMR in the dynamic
case. With the exception of two results (jfdctint
with a 1 KB cache, and minver with a 4 KB cache),
the average ratio is equal to 1 for jfdctint, 1.44 for
minver and 0.83 for matmult. Thus the results are
in the same order of magnitude in the locked and
dynamic situations.

8,4%

3,3% 3,4%
4,7%

4,7%

4,9%
2,5%

2,6%

8,6%
6,4%

3,9% 2,9%
0%

2%

4%

6%

8%

10%

12%

14%

512 B 512 B 1 KB 1 KB 2 KB 2 KB 4 KB 4 KB

Cache size

W
C

C
M

R

Locked cache Reload overhead Dynamic cache

Figure 4. WCCMR results for minver.

0,7%

23,2%

15,5%

1,8%

2,5% 2,3%

17,8%

13,0%

2,5% 2,5%0%

5%

10%

15%

20%

25%

30%

512 B 512 B 1 KB 1 KB 2 KB 2 KB 4 KB 4 KB

Cache size

W
C

C
M

R

Locked cache Reload overhead Dynamic cache

Figure 5. WCCMR results for jdctint.

0,05% 0,05% 0,05% 0,05%
0,06% 0,06% 0,06% 0,06%

0,00%

0,01%

0,02%

0,03%

0,04%

0,05%

0,06%

0,07%

512 B 512 B 1 KB 1 KB 2 KB 2 KB 4 KB 4 KB

Cache size

W
C

C
M

R

Locked cache Reload overhead Dynamic cache

Figure 6. WCCMR results for matmult.

185

Impact of the associativity degree. On the fig-
ure 7, we consider the task minver and a 1 KB
cache. The impact of the associativity degree is
illustrated both in the locked and LRU cases.

We observe that the worst-case performance of
the locked cache scales well when increasing the
associativity degree. This can be explained by the
fact that, for a given cache size, a cache contents
computed by the Lock-MP algorithm for a spec-
ified associativity degree remains valid for other
associativity degrees. This confers to the RMI al-
gorithm a low sensitivity to the variations of this
parameter.

3,3%
1,7% 1,7%

4,9%

5,4% 5,4%

0,0%

1,0%

2,0%

3,0%

4,0%

5,0%

6,0%

7,0%

8,0%

9,0%

1 2 4

Associativity degree

W
C

C
M

R

Locked cache Reload overhead

Figure 7. Compared impact of the as-
sociativity degree of a 1 KB cache for
the task minver.

3.2.2 Properties of the RMI algorithm

Performance. As noticed before, the worst-case
complexity of the RMI is quadratic in the number
of basic operations, merging or inlining, on the ini-
tial set of basic blocks of a task. The figure 8 in-
dicates, among others, for each task and for each
cache parametrization, the number IB of initial ba-
sic blocks and the time T it took to compute a set
of locked cache states. The study of the quantity
T/IB2 shows that the computation time T in sec-
onds follows the approximate law T = 0.5IB2.

Locked cache states. As regards the number of
locked cache states determined by the RMI al-
gorithm, the figure 8 shows that this number de-
creases when the size of the cache increases. This
is is essentially due to the fact that the cache con-
tents selection algorithm Lock-MP accepts a more
important number of useful memory lines in a less
important number of locked cache states.

A notable fact is that, even when the size of a
task is inferior or approximately equal to the size

of the cache, the RMI algorithm may determine
more than one locked cache state. It can be seen
in the figure 8 in the case of the task minver for a
4 KB cache, and in the case of the task matmult
for most of the cache sizes. A reason for rejection
of valuable memory lines by the Lock-MP algo-
rithm is the existence of conflicts due to placement
constraints in a set-associative cache. The RMI al-
gorithm may address this issue by creating more
locked cache states when there is a benefit from
considering those rejected memory lines.

Task Cache
size

Nb of ba-
sic blocks

Computation
time

Nb of
cache
states

minver

512 B 135 3h 6min 49s 10
1 KB 135 2h 30min 52s 6
2 KB 135 2h 35min 13s 4
4 KB 135 2h 42min 12s 3

jfdctint

512 B 23 5min 22s 12
1 KB 21 4min 32s 3
2 KB 19 3min 12s 3
4 KB 19 3min 13s 1

matmult

512 B 23 2min 48s 2
1 KB 23 2min 48s 2
2 KB 22 2min 50s 2
4 KB 23 3min 2

Figure 8. Results characteristics

4 Related work

Studies have been performed for static instruc-
tion cache locking in multitasking hard real-time
systems. In [2], a global approach is proposed.
The cache state minimizing the cache-aware re-
sponse time (CRTA) [1] of each task is chosen. It
is achieved with a genetic algorithm. The fitness
function is a weighted mean of the response time
of each task. The same authors explored a local
approach in [3] with the same algorithm for cache
contents selection.

In [11], two greedy algorithms have been de-
signed for a global locking scheme. Both have a
pseudo-polynomial complexity. From task periods
and access statistics of instruction blocks along the
worst-case execution path of each task, each al-
gorithm selects a cache state so as to minimize a
well chosen cache-aware metric, and thus to im-
prove the task set schedulability. A local variant is
proposed in [10].

As explained in [10], static cache locking lacks
some scalability. If the ratio between the size of the
task set and the size of the cache memory is very
high, only a very small fraction of the task set will
benefit from the cache. Our work is applied on a
per-task basis, and thus is a local approach. It is de-
signed to overcome the scalability problem by al-

186

lowing the locked state of the cache to be reloaded
at some addresses of a program.

The work [13] is a combination of dynamic data
cache locking and static cache analysis. Given
a task, at compile time, an algorithm computes
the regions in the code where one cannot accu-
rately determine all possible cache contents re-
quired for analyzing the state of the data cache, be-
cause of memory references which cannot be stati-
cally known. Such regions are enclosed with a pair
of statements so that the cache is locked in them.
A locality analysis based on the study of reuse vec-
tors selects the data to be loaded in the cache. In or-
der to address the multitasking issues, it is assumed
that the data cache is partitioned among the tasks
of the system. Also the knowledge of the cache
replacement policy is required.

As compared with this work, our approach pro-
poses a scheme in which the instruction cache is al-
ways locked. Thus our method does not depend on
the cache line replacement policy, and may be used
in cases when static cache analysis fails. More-
over our work does not depend on any partition of
the cache. Therefore it does not require addition-
nal partitioning techniques, and it can be easily ap-
plied in situations in which the number of tasks of
the system may vary.

Finally, scratch-pad memories [12] are an alter-
native to instruction or data caches. These are on-
chip static memories with low latencies. As a con-
sequence they may reconcile performance and pre-
dictability. They generally provide lower capaci-
ties than caches and consume far less power. Be-
cause of the addressing scheme, the code of tasks
must be explicitly modified in order to benefit from
scratch-pad memories. Thus, as compared with our
scheme, this approach requires more compiler sup-
port. We believe that the addressing transparency
provided by instruction caches is a key advantage,
because it alleviates the need for code transforma-
tions.

5 Conclusion

The key benefit of instruction cache locking is
to make the memory access times entirely pre-
dictable and to be a technique that eliminates intra-
task conflicts. It can be applied in situations
where static cache analysis cannot be used (e.g.
when the cache has a non deterministic or undocu-
mented cache line replacement policy). Moreover,
it may make easier the analysis of other architec-
tural components. In this work, we have proposed
a local dynamic cache locking strategy and an al-
gorithm for determining a finite number of cache

configurations for a given task. Its additional fea-
tures are independence from any scheduling pol-
icy (it is a per-task strategy), unnecessity to access
the source code of programs, scalability with re-
gards to cache associativity. With regard to per-
formance evaluation against a system without any
instruction cache, a sharp improvement is observed
on the miss rates in the worst case. Moreover for
many cache parametrizations, the worst-case per-
formance is in the same order of magnitude as re-
sults from static LRU cache analysis.

As a further work, it would be interesting to ex-
plore the transposition of the RMI algorithm (i.e.
we keep the basic merging and inlining operations)
from a greedy algorithm towards a genetic algo-
rithm. The main reason is that a genetic algorithm
exhibits a better exploration of a solution space and
thus might find sets of locked cache states which
would lead to better improvements on worst-case
performances. Another direction would be to adapt
this work in other situations. It could be easily
achieved for multi-level instruction caches. Fi-
nally, the adaptation to data caches should be in-
vestigated.

A Worst-case complexity of the RMI
algorithm

As regards the worst-case complexity of the
RMI algorithm, we now show that it is quadratic
in terms of involved operations (merging and in-
lining). First we detail a worst-case scenario.
Suppose our program comprises NS subroutines
F0 . . . FN , each with NR basic blocks assimilated
to simple regions. In each Fk, the NR regions
are consecutive. We consider the following call-
ing hierarchy: for each k, Fk calls the subroutines
Fk+1 . . . FNS−1. For the sake of simplicity, we as-
sume here that the main subroutine may be inlined.
Starting from the value k = 0, RMI repeats the fol-
lowing steps until only one simple region remains
in each subroutine: (i) choose a pair of regions of
Fk, then merge them; (ii) in the remaining subrou-
tines Fk+1, . . . , FNS−1, no pair of regions is cho-
sen for merging; (iii) if only one simple region re-
mains in Fk, then increment k; (iv) try to inline
each of the subroutines F0, . . . , Fk−1, but never
choose one.

Given a value of k, each of the subroutines
F0, . . . , Fk−1 contain only one region simple. At
a given stage, assume the subroutine Fk has NR −
i + 1 regions. Then NR − i mergings are tried
before making a choice. As each of the remain-
ing NS − k− 1 subroutines Fk+1, . . . , FNS−1 has
NR simple regions, overall (NS −k− 1)(NR− 1)

187

mergings are tried without any choice being made.
As regards the subroutines F0, . . . , Fk−1, k inlin-
ing operations are tried without any success. Thus,
at a given stage, (NR− i)+(NS−k−1)(NR−1)
operations are done. As the number of regions of
Fk can vary from 2 to NR for mergings, i ranges
from 1 to NR − 1. Now summing over the NS

subroutines, we obtain the following number of
operations:

∑NS−1
k=0

∑NR−1
i=1 [(NR − i) + (NS −

k − 1)(NR − 1) + k]. The computation of this
sum yields 1

2N2
SNR(NR − 1) operations. Thus

this value is in O((NSNR)2). As NSNR is the
number of basic blocks of the program, the worst-
case complexity of the RMI algorithm in number
of operations is quadratic with the number of basic
blocks.

References

[1] J. V. Busquets-Mataix, J. J. Serrano, R. Ors,
P. Gil, and A. Wellings. Adding instruction
cache effect to schedulability analysis of pre-
emptive real-time systems. In Proceedings of
the 1996 Real-Time technology and Applica-
tions Symposium (RTAS ’96), pages 204–212.
IEEE Computer Society, June 1996.

[2] A. Marti Campoy, A. P. Ivars, and J. V. Bus-
quets Mataix. Static use of locking caches
in multitask preemptive real-time systems. In
Proceedings of the IEEE/IEE Real-Time Em-
bedded Systems Workshop (RTES’01), 2001.

[3] A. Marti Campoy, A. P. Ivars, F. Rodriguez,
and J. V. Busquets Mataix. Static use of lock-
ing caches vs. dynamic use of locking caches
for real-time systems. In IEEE Canadian
Conference on Electrical and Computer En-
gineering, Montreal, Canada, May 2003.

[4] A. Colin and I. Puaut. A modular retar-
getable framework for tree-based wcet anal-
ysis. In Proceedings of the 13th Euromicro
Conference on Real-Time Systems, pages 37–
44, The Netherlands, June 2001.

[5] D. B. Kirk. Smart (strategic memory allo-
cation for real-time) cache design. In Pro-
ceedings of the 10th IEEE Real-Time Sys-
tems Symposium (RTSS ’89), pages 229–237,
Santa Monica, CA, USA, December 1989.

[6] C. Lee, J. Hahn, Y. Seo, S. Min, R. Ha,
S. Hong, C. Park, M. Lee, and C. S.
Kim. Analysis of cache-related preemption
delay in fixed-priority preemptive schedul-
ing. IEEE Transactions on Computers,
47(6):700–713, June 1998.

[7] T. Lundqvist and P. Stenström. An integrated
path and timing analysis method based on
cycle-level symbolic execution. Real-Time
Systems, 17(2-3):183–207, 1999.

[8] F. Mueller. Compiler support for software-
based cache partitioning. In LCTES ’95: Pro-
ceedings of the ACM SIGPLAN 1995 work-
shop on Languages, compilers, & tools for
real-time systems, pages 125–133, New York,
NY, USA, 1995. ACM Press.

[9] F. Mueller. Timing analysis for instruction
caches. Real-time systems, 18(2):217–247,
May 2000.

[10] I. Puaut, A. Arnaud, and D. Decotigny. Anal-
yse de performance de méthodes de verrouil-
lage statique de caches dans les systèmes
temps-réel strict. In Proc. of the 12th Inter-
national Conference on Real-Time Systems
(RTS’04), March 2004.

[11] I. Puaut and D. Decotigny. Low-complexity
algorithms for static cache locking in multi-
tasking hard real-time systems. In Proceed-
ings of the 23rd IEEE International Real-
Time Systems Symposium (RTSS ’02), Austin,
TX, USA, December 2002.

[12] S. Steinke, N. Grunwald, L. Wehmeyer,
R. Banakar, M. Balakrishnan, and P. Mar-
wedel. Reducing energy consumption by dy-
namic copying of instructions onto onchip
memory. In ISSS ’02: Proceedings of the
15th international symposium on System Syn-
thesis, pages 213–218, New York, NY, USA,
2002. ACM Press.

[13] X.Vera, B. Lisper, and J.Xue. Data caches in
multitasking hard real-time systems. In 24th
IEEE International Real-Time Systems Sym-
posium (RTSS ’03), Cancun, Mexico, 2003.
IEEE Computer Society Press.

188

Uniprocessor Scheduling II

189

Polynomial Time Approximate Schedulability Tests for Fixed-Priority
Real-Time Tasks: some numerical experimentations

Pascal Richard
Laboratoire d’Informatique Scientifique et Industrielle

ENSMA
1, avenue Cl´ement Ader
Téléport 2 - BP 40109

86961 Futuroscope Cedex (France)
pascal.richard@univ-poitiers.fr

Abstract

Efficient schedulability tests are required for analyz-
ing large task systems or for designing on-line admission
controllers. We next focus on periodic fixed-priority tasks.
For fixed-priority tasks with constrained deadlines (i.e.,
deadlines are less than or equal to periods), no exact poly-
nomial time feasibility test is known. We propose several
polynomial time algorithms with performance guarantees
(with an ijnput accuracy parameter) and compare them
with known exact feasibility tests (running in pseudo-
polynomial time) and a fully polynomial time approxima-
tion scheme (FPTAS). Our main objective is to define the
capabilities of such algorithms according to the system
workload and an accuracy parameter defining the quality
of results to compute.

1 Introduction

Large real-time systems are emerging in many ap-
plications, including industrial automation, defense and
telecommunication. For these systems, the exact work-
load cannot be predicted and there are significant runtime
uncertainties due to the controlled environment or system
resources states. In many case, best effort strategies are
required to admit or reject works. After the admission
control, all admitted tasks must meet their timing require-
ments. Many admission controllers are dedicated to im-
prove some Quality of Service (QoS) metrics or a bene-
fit function. They are usually based on two on-line algo-
rithms: an admission controller that checks if a new task
can be accepted without any consequence on already ad-
mitted tasks and a scheduler that chooses the next task to
run among uncompleted admitted tasks. In many systems,
tasks are assumed to be periodic, but their first release time
is not predictable (i.e., tasks are released over time) and
can be killed due to system mode changes. Due to such
a dynamic arrival of works, these real-time systems must

cope with temporary overloaded conditions (using an ad-
mission controller to regulate admitted workload while
ensuring that task deadlines will be met). Polynomial time
schedulability tests are necessary to define efficient admis-
sion controllers.

Checking the feasibility of a task system is usually
a hard computational problem, that cannot be solved in
polynomial time in the number of tasks. Exact feasibility
tests are known for periodic fixed-priority tasks [10, 11]
and run in pseudo-polynomial time. Furthermore, their
execution times can vary from one execution to another
according to the task parameters [13, 6]. Nevertheless,
there are two ways for defining efficient schedulability
tests that consists on:

� improving initial values of an exact feasibility test
as in [13] or [6]. But, the worst-case computational
complexity of such tests is still pseudo-polynomial,

� defining an approximate schedulability test running
in polynomial time as in [7, 1, 9].

Next, we focus on the second promising way. Approx-
imation algorithms perform a compromise between com-
putational effort to decide the feasibility of task systems
and the quality of taken decisions. If the approximate al-
gorithm concludes that a task system is feasible, then it
will be true at run-time for all possible behaviors of these
tasks. But, if the answer is negative, then we cannot con-
clude that the task system will be infeasible at run-time.

The paper is organized as follows: Section 2 presents
the task model considered in the remaining of the paper.
Section 3 presents known exact feasibility tests and ap-
proximate feasibility tests for periodic fixed-priority tasks.
Section 4 presents some computational complexity results
and new polynomial time feasibility tests for fixed-priority
real-time tasks. Section 5 presents experimental results
based on numerical simulations.

191

2 The task model

We consider uniprocessor real-time systems running
periodic tasks. A periodic task�� defines a set of jobs.
Every periodic task is known and implemented in the soft-
ware architecture. Thus, job parameters are always known
before starting the system. Every task�� is defined by
three parameters and denoted������ ��� ���. �� is the
worst-case execution requirement of��, �� its the rela-
tive deadline (the time window between its release and
its completion), and�� its period between two succes-
sive releases. We assume that deadlines are constrained:
�� � ��� � � � � �, where� is the number of tasks in
the system.

Every job generated by a periodic task is scheduled us-
ing a fixed-priority. At any time, the highest priority job
is run among available ones. According to such a basic
dispatching policy, the optimal priority assignment can be
performed off-line using the Deadline Monotonic [2] pri-
ority ordering. We assume that task priorities are known
before starting the system (i.e. priority assignment is done
off-line) and tasks are indexed using the priority ordering,
thus�� is the highest priority task.

3 Review of feasibility tests for preemptive
fixed-priority task systems

Three main approaches are used to define schedula-
bility tests: analyzing the system utilization factor (i.e.,��

��� �����), analyzing the processor demand or analyz-
ing worst-case response times of tasks. For fixed-priority
tasks, tests are known for checking a sufficient schedula-
bility condition of tasks having deadlines equal to peri-
ods such as [12]. A necessary and sufficient schedulabil-
ity condition can be computed in pseudo-polynomial time
for systems having constrained-deadlines using a proces-
sor demand analysis or by computing worst-case response
times of tasks. But, no polynomial time algorithm nor
NP-hardness result are currently known for the feasibility
problem related to the studied task model. Next, we only
present results and schedulability tests that will be used in
the remainder of the paper.

3.1 Exact algorithms
For a given task��, the scenario leading to its worst-

case response time�� is achieved when task�� is released
at a critical instant (i.e., simultaneously with all higher
priority tasks) [12]. The processor demand analysis is
based on the total execution time required by a task� � and
can be expressed as of function of time. In a periodic syn-
chronous task system, the total execution time requested
by task�� is (request bound function):

	
����� �

�
�

��

�
�� (1)

Thecumulative request bound function allows to com-

pute the worst-case response time of task��:

���� � �� �
����
���

	
����� (2)

For task��, its exact worst-case response time��� is the
minimal solution to the equation:

���
�

� � � ��� (3)

Joseph and Pandya [10] proposed a recursive algorithm
to solve the previous equation. But an iterative algo-
rithm can be defined using successive approximation of
response times in order to reach the smallest fixed-point
of Equation 3 (this lead to simple recursion formula). The
feasibility test consists on: first, computing worst-case
response times of all tasks, and second, checking that
��� � ��� � � � � �. The corresponding algorithm
is pseudo-polynomial and the number of iterations before
reaching the smallest fixed-point widely varies from one
task system to another and is highly dependent on task
parameters [13, 6].

Lehoczkyet al. [11] provided a processor demand
analysis for checking task feasibility that will lead in prac-
tice to a different feasibility test. Their main result is
stated hereafter:

Theorem 1 [11] In a synchronous task system, task �� is
feasible if, and only if, there exists a time � � ��� ��� such
that ���� � �.

Such a result defines an alternative way to check fea-
sibility of a task system, without explicitly computing
worst-case response times. The cumulative request bound
function (defined in Equation 2) only changes for a finite
set of values (i.e., when tasks are released). Thus, the
number of time instants to check the feasibility of task� �
in Theorem 1 is defined by the following testing set (for
constrained-deadline task systems):

�� � �
�� �� � � � � � ��
 � � � � � �������� � ���� (4)

Thus, checking task�� feasibility requires to verify if:

��	
����

�
����

�

�
� � (5)

As a consequence if one instant� � �� satisfies
���� � � then �� is feasible and no more time instant
has to be checked to decide the feasibility of� �. Accord-
ing to Theorem 1, a practical implementation of such a
test usually requires to check only a subset of� �. But,
the computational complexity of this algorithm depends
on the ratio: ����� . As a consequence, the algorithm
runs in pseudo-polynomial time. In [5], an improvement
of this test is presented, but this algorithm is still running
in pseudo-polynomial time.

192

In practice, the algorithms proposed by [10] and [11]
can lead to a quite different number of iterations. But,
their pseudo-polynomial complexities are not acceptable
to define an on-line admission controller and furthermore,
the numbers of iterations are too dependent on task pa-
rameters.

3.2 Approximation algorithms
An approximation algorithm is a polynomial time al-

gorithm that is used to solve efficiently NP-hard (opti-
mization) problems. There exist several ways to define a
solution in polynomial time with performance guarantees
in comparison with an exact algorithm (always comput-
ing the optimal value of an optimized function). Let�
be an approximation algorithm and��� be an exact al-
gorithm. For any instance, vales returned by� or ���
for a given instance� are respectively denoted���� and
��� ���. The (relative) performance guarantee of the al-
gorithm� is defined by aratio �������� ��� while con-
sidering any possible instance� of a given optimization
problem. The competitive ratio of� is thus defined by:
	� � �	
���� �������� ���, where� is a instance of the
considered problem. Thus, the ratio defines the worst-case
performance guarantee while considering all possible in-
stances of the optimization problem. An approximation
algorithm is a polynomial time algorithm having a ratio
bounded by a constant. Note that an algorithm� is op-
timal (i.e., always leads to the optimal value of the opti-
mized objective function) if, and only if,	� � �.

A approximation scheme is a parametric approxima-
tion algorithm (thus running in polynomial time) that
takes an input problem instance and an error bound� �
� � �. The error bound defines anaccuracy input pa-
rameter. The ratio of an approximation scheme must be
defined as follows:	� � � � �. A Polynomial-Time Ap-
proximation Scheme (PTAS) is an algorithm that runs in
polynomial time in the length of the input. A fully poly-
nomial time algorithm (FPTAS) is a PTAS that satisfies an
additional condition: it is also polynomial in���. That is
the best result that can be achieved to solve an NP-hard
problem. Only few optimization problems admit FPTAS.

Since few years, approximation algorithms gain a great
interest in the real-time research community. To the best
of our knowledge, no approximation algorithm has been
proposed to calculate approximate response times of tasks
with performance guarantees (we shall provide such a re-
sult in the next section). Nevertheless, checking feasibility
is not an optimization problem, but only adecision prob-
lem. As a consequence, approximation algorithm prin-
ciples cannot be exploited without revisiting their defini-
tion. In fact, several frameworks have been proposed to
reuse approximation algorithm concepts and thus defining
several approaches to performapproximate schedulability
analysis:

� Chakrabortyet al. [7] proposed approximation
scheme that always provide the good answer if the

task system is not schedulable, but can give a wrong
answer in the other case with a bounded error� (i.e.,
it returns not schedulable whereas the task system is
feasible).

� Based on the results obtained by [1] for EDF, Fisher
and Baruah [9] proposed another definition: if a task
system is stated as infeasible then it is really not fea-
sible on a slower processor (with speed�	 �).

Even if these two frameworks are different, the per-
formance guarantee of an approximation algorithm is ob-
tained by bounding the error on the exact value of the
function 	
���� and its approximate version. We only
present the function proposed in [9] that is directly linked
(and will be reused) to the problem we cope with in this
paper.

The function	
����� is a non-decreasing step function.
The number of steps is not bounded by any polynomial
function in the size of task parameters. One way to define
an polynomial-time approximation scheme is to consider
a limited number� of steps (polynomially bounded in the
number of tasks in the system) and then to use a linear
function to define an upper bound of	
� ����. The num-
ber of steps that will be considered while computing the
approximate request bound function is defined as follow:

� �
���� 	 � (6)

Then, the approximate demand bound function	
� ���� is
defined by considering the first� steps of	
�����:

	
� ���� � 	
����� if � � �� 	 ����

� �� � �
��

��
otherwise

Then, theapproximate cumulative request bound func-
tion is defined by:

 ���� � �� �

����
���

	
� ���� (7)

To complete the test, Fisher and Baruah use exactly
the same principle than those proposed by Lehoczky et
al. [11] but defining a testing set, but having a polynomial
number of entries according to the input task system size
and the accuracy parameter (�):

�� � �
�� �� � � � � � �	 ��
 � � � � � �� � ���� (8)

where� is defined in Equation 6. A basic implementa-
tion of this approximate schedulability test leads to an
������� algorithm [9]. Clearly, if� is closed to 0, then
the number of iterations performed by the algorithm is
quite huge and should not be acceptable into an on-line
admission controller (even if it is a polynomial time al-
gorithm from a theoretical point of view). Thus, numer-
ical experimentations are necessarily required according

193

to the application in order to define agood value for� for
the considered task systems. Note that such an approx-
imation scheme has been extended to task systems with
arbitrary deadlines in [8] (i.e., periods and deadlines are
not related).

4 New Algorithms

We first present some computation complexity results,
and then, we propose three new polynomial time algo-
rithms for checking the feasibility of fixed-priority tasks
with constrained-deadlines.

4.1 Computational complexity of feasibility prob-
lems

The computation complexity theory classifies decision
problems according to their internal complexity. Check-
ing feasibility of a task system is obviously a decision
problem. Nevertheless, no computational complexity re-
sult is known for the feasibility problem related to the
studied task model. This decision problem is not known
�-hard, nor belonging to�. Before defining approx-
imation algorithms, we first state a computational com-
plexity result for fixed-priority tasks, then we recall that
verifying that tasks scheduled under EDF (Earliest Dead-
line First) leads to a very different class of problems in the
computational complexity theory, unless equals�.

Theorem 2 Checking deadlines for synchronous fixed-
priority tasks having constrained-deadlines is a decision
problem belonging to �.

Proof: In order to show the problem to be in�, we
have to prove that a task set can be decided feasible us-
ing a polynomial time non-deterministic algorithm. If the
non-deterministic part of such an algorithm ”guesses” a
scheduling point� in the testing set defined in Equation
4 for checking the feasibility of a task��, then a neces-
sary and sufficient condition according to Theorem 1 is:
���� � �. Such a test is done in polynomial time since
the Equation 2 is computable in linear time. Repeating
this principle for every task leads to a polynomial time
test (using a non deterministic algorithm). Thus, the con-
sidered feasibility problem belongs to�.�

Note that the same feasibility problem will be in co-�
if we consider an EDF scheduler (thus, one can checked
in polynomial time for a given date� that a task system
is infeasible, but checking that a task system is feasible
requires more than a polynomial amount of time [3]).

Theorem 3 [3] Checking deadlines for synchronous
tasks having constrained deadlines, to be scheduled un-
der EDF, is a decision problem belonging to co-�.

Proof: In order to show the problem to be in�, we
have to prove that a task set can be decided infeasible
using a polynomial time non-deterministic algorithm. If
one ”guesses” a time instant�, then for checking that

Algorithm 1: Linear Time Approximation Algorithm

Data : �� ���� � � � � ���
��� � ��;
	 � � � �;
for i=2..n do

	 � 	 � ���������;
� � �� ����;
��� � ��� ������	 	�;

end
return � ���� � � � � ���� ;

task �� is not schedulable, it is necessary and sufficient
to check there exist a time instant� such that :�
���� � �
(see [3] for the definition of the demand bound function
�
����). This is done in polynomial time since�
����
is computable in linear time. Thus, a non-deterministic
algorithm can check the infeasibility of a task system in
polynomial time. Thus, the considered feasibility prob-
lem belongs to co-�.�

Next, we present several polynomial time algorithms
to check the feasibility of fixed-priority tasks with con-
strained deadlines.

4.2 A linear time approximation
Consider the workload function stated in Equation 2

and let��� be the exact worst-case response time of��. In
order compute an approximate worst-case response time
(i.e., an upper bound), one can relax the integral values
of ���� while computing the interference of any higher
priority task�� . That is to say:

��� � �� �
����
���

�
� �

���
��

�
��

For obtaining a lower bound of the worst-case response
time of��:

��� � �� �

����
���

���
��

��

Using the two previous inequations, we obtain:

��

�	
����

���
	�

�

� ��� �

��
��� ��

�	
����

���
	�

�

(9)

We use such an upper bound to approximate the worst-
case response time of��. Then, these upper bounds of
tasks can be used to define a linear time feasibility algo-
rithm (i.e., running in����, where� is the number of
tasks) that computes response time upper bounds��� as
presented in Algorithm 1.

We first establish a negative result concerning the
performance guarantees of Algorithm 1 while consider-
ing any possible task systems with constrained-deadline.
Then, we shall show that under a simple assumption that
Algorithm 1 has a bounded performance guarantee.

194

Theorem 4 Let ��� be the exact worst-case response of ��
and ��� be the upper bound computed by Algorithm 1, then
the ratio ����

�

� is not bounded (i.e., Algorithm 1 has no
performance guarantee).

Proof : Consider the following task system with two
tasks: ���� 	 �� �� �� and ����������, where� satis-
fies� � � � � and� is an arbitrary integer number such
that� � �. Note that periods are proportional, thus a
necessary and sufficient condition for the task system to
be schedulable under the Rate Monotonic scheduling rule
is����� � ����� � �. The utilization factor is:

� �
��

��
�

��

��
� ��	 �� �

��

�
� �

Thus, the task system is schedulable under Rate Mono-
tonic and the exact worst-case response times and those
obtained by Algorithm 1 are:

��
�

� �� � �	 �

��
�

� � �� �
� � �� 	 ���

�

Thus, the worst-case performance guarantee of Algorithm
1 is obtained while considering��:

���
���

��

��
�

� ���
���

�

��
�

�� 	 ��

�
� ���

���

�

�
��

�

A similar result can be achieved for the performance
guarantee of the lower bound��� that is defined by:
���������

�

�

��
.

Theorem 5 Let ��� be the exact worst-case response of ��
and ��� be the lower bound computed in Equation 9, then
the ratio ��� �

��� is not bounded (i.e., the lower bound has
no performance guarantee).

Proof : Consider the following task system with two
tasks: ����� ��� ��� and����� ��� ���, where� satis-
fies: � � � � � and� is an arbitrary number such that
� � �. Note that periods are equal. Thus, it is quite easy
to see that the Rate Monotonic scheduling algorithm leads
to a feasible schedule.

The exact worst-case response time for task�� is��
�
�

� � �. And the lower bound defined by Equation 9 is:

��� �
�

�	 �
��

� ��

As a consequence, we verify:

���
���

���
���

� ���
���

� � �

��
� �

As a consequence, such a lower bound has no perfor-
mance guarantee.�

We now prove that if task parameters satisfy a sim-
ple condition, then Algorithm 1 is an approximation al-
gorithm.

Theorem 6 If we assume that there exists a constant �
such that � �

�
��������	� �� for any task system,

then Algorithm 1 has a performance guarantee not greater
than �.

Proof: Starting from equation 9:

��

�	
����

���
	�

�

� ��� �

��
��� ��

�	
����

���
	�

�

Thus,

��

���
�

��
��� ��

��

� �

Thus, under the assumption, Algorithm 1 is a�-
approximation.�

Thus, one can hope that Algorithm 1 is quite interesting
for evaluating task systems having small tasks with sim-
ilar worst-case execution times. For such systems, Algo-
rithm 1 provides an efficient����-time approximation al-
gorithm for computing worst-case response times of tasks.
But, when there are high variations on task lengths, then
the algorithm cannot be efficient, since the constant� can
be a huge number.

Using a similar argument, we define an assumption
such that the lower bound defined in Equation 9 has a per-
formance guarantee in comparison with exact worst-case
response times of tasks.

Theorem 7 If we assume that there exists a constant �
such that � �

�
��������	� �� for any task system, the

lower bound of the worst-case response time defined in
Equation 9 has a performance guarantee not greater than
�.

Proof: As in the previous proof, starting from equation 9
we directly obtain:

���
���

�

��
��� ��

��

� �

�

We investigate next sections, two new approximation
algorithms requiring more computational efforts (i.e., that
are not running in linear time).

4.3 A deterministic approximation algorithm
The algorithm proposed by Joseph and Pandya [10] is

based on computing the smallest fixed-point of Equation
3. The algorithm runs in pseudo-polynomial time since
the number of iterations is not known to be bounded by a
polynomial number in the task system size.

A simple way to achieve a bounded number of itera-
tions is to stop computations at most after� iterations. If
the smallest fixed-point is reached before� iterations then
the algorithm returns the exact worst-case response times.

195

Algorithm 2: Deterministic Approximation Algo-
rithm

Data : �� ���� � � � � ���, �

���� � � � � ���=Algorithm1��� ���� � � � � ���;
� �

�
�

�

�
	 �;

	 � � � �;
for i=2..n do

� � �;
� � ��;
while (� � ���� and � � � and � � ��) do

� � � � �;
� � ����;

end
if � � ���� then

�� � �;
end

end
return ���� � � � � ��� ;

Otherwise, it returns the upper bound presented in the pre-
vious section (i.e., using Algorithm 1):

�� �

��
��� ��

�	
����

���
	�

�

The number� is a parameter that must be based on an
accuracy constant:�� � � � � �. As Fisher and Baruah,
we define it as follows1:

� �

�
�

�

�
	 �

Algorithm 2 presents the pseudo-code of the determin-
istic approximation algorithm. In order to improve the al-
gorithm efficiency, we first run Algorithm 1 that defines
initial values of approximate worst-case response times.
The algorithm runs in�� �

�

�
� since the workload���� is

computed in����.
As a direct consequence of the result presented in The-

orem 4, we can establish that Algorithm 2 is an approxi-
mation algorithm under the following condition: there is a
constant� such that� �

�
��������	� �� for any task

system.

Theorem 8 If we assume that there exists a constant �
such that � �

�
��������	� �� for any task system,

then Algorithm 2 has a performance guarantee not greater
than �.

4.4 A randomized approximation scheme
The last proposed algorithm is based on the Lehoczky,

Sha and Ding’s feasibility test. This algorithm checks the
processor demand using a testing set�� for any task��.
The size of such a set is not known to have a polynomial

1We same the same definition of� in order to allow comparisons of
algorithms in the Section dedicated to numerical experimentations.

Algorithm 3: Randomized Approximation Scheme

Data : �� ���� � � � � ���, �

� �
�
�

�

�
	 �;

�� ��
��=True;
� � �;
while � � � and �� ��
�� do

��=False;
� � �;
while � � � and not �� do

Choose randomly a time� � ��;
if ���� � � then

��=True;

end
� � � � �;

end
� � �� �;
�� ��
�� � ��;

end
return Feasible ;

number of items. The feasibility test enumerates the test-
ing set and stops when a time� that verifies������ � �.
The worst-case behavior of such a test is achieved when
all items in the testing set have been checked. The number

of iterations for analyzing task�� is at most
��

���

�
��

�

	
.

From the implementation point of view, the order in which
items in��’s are enumerated is not important.

A simple way to define an approximation scheme based
on the Lehoczky, Sha and Ding’s exact feasibility test is
to limit the size�� while checking the feasibility of task
��. Once again, we fix such a number using an accuracy
constant�� � � � � � as follows:� �
 �

�
� 	 �.

In order to ensure the algorithm to be an approxima-
tion scheme we also have to use the approximate work-
load ���� (i.e., Equation 7) rather than the exact work-
load ���� (i.e., Equation 2). If such a function is not
used, we cannot ensure that the algorithm has competitive
ratio bounded by a constant (i.e., to ensure that is an ap-
proximation algorithm). As a consequence, Algorithm 3
is a simple randomized version of the algorithm proposed
in [9].

We define a randomized approximation scheme by
enumerating randomly at most� items in each� � with
the same probability (i.e., a uniform law). While consid-
ering such items if no of them leads to a positive answer,
then we state the task system to be infeasible. The cor-
responding algorithm has a computational complexity of
���

�

�
�. If � tends to 0, then the randomized approxima-

tion scheme has the same behavior than Lehoczky, Sha
and Ding’s exact feasibility test.

196

Algorithm Names Authors
LSD89 Lehoczky, Sha and Ding, 1989
JP86 Joseph and Pandya, 1986
FB05 Fisher and Baruah, 2005
UB Section 4.2
DET Section 4.3

RAND Section 4.4
Table 1. Algorithm name abbreviations used
in the paper

5 Numerical results

We first describe the simulation environment and then
numerical results.

5.1 Experimentation environment
We compared all presented methods (see Table 1 for

the complete list). Task systems are randomly generated
in order to achieved a given processor workload. The
maximum worst-case execution time is fixed to 100 units
of time and deadlines are constrained for all tasks (i.e.,
�� � ��� � � � � �). The simulator parameters are:

� the processor workload are 0.5 and 0.9,

� the number of tasks are between 2 and 50 tasks in
every task systems,

� considered epsilon values are from 0.01 to 0.46 with
a step 0.05 (Note that if� � ���, then� �
 �

�
�	 � is

always equal to 1).

For every value of these parameters, 25 task systems
have been randomly generated and all methods have been
run and compared. In the following, algorithms will be
denoted as indicated in Table 1.

We only focus on two output parameters:

� the number of validated task systems,

� the number of iterations performed by the algo-
rithms, which indicate the number of times that the
workload function is computed during the test (i.e.,
Equation 2).

We are aware that simulation environment can have
biasing effects on results [4], nevertheless every simula-
tion results is always valid only within the confine of the
stochastic model defined in the simulator. We note that
results presented in the next section are valid for our sim-
ulation environment, and only for it.

5.2 Simulation Results
Figures 1 and 2 present numerical results for task sys-

tems having a processor utilization equal to 0.5. Fig-
ure 1 gives the number of validated task systems (i.e.,
the output status of the test isfeasible). The algorithm

Number of Validated Task Systems
(Workload = 0.5)

94%

95%

96%

97%

98%

99%

100%

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

epsilon

LSD89

FB05

UB

DET

RAND

Figure 1. Number of validated task systems:
all methods achieved good performances
(Workload 0.5)

Average Iteration Numbers
(Workload = 0.5)

0

50

100

150

200

250

300

350

400

450

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

epsilon

JP86

FB05

DET

RAND

Figure 2. Iteration numbers according to ep-
silon values (Workload 0.5)

LSD89 is used as a reference. As we can see, all meth-
ods achieved good performances. More precisely, Figure
1 shows that LSD89, FB05 and DET have equivalent re-
sults. The randomized algorithm has lower performances
in comparison with DET. The linear time approximation
algorithm (based on the upper bound presented in Section
4.2) leads to acceptable results since in more than 94 per-
cent it achieves a positive result (i.e., the same result than
an exact feasibility test).

The average iteration number of JP86 remains constant
for every epsilon value, because epsilon is not an input
parameter for that algorithm. One can note that algorithm
FB05 requires more iterations than JP86 for task sets when
small epsilon values are considered. But, when epsilon is
up to 0.25, then FB05 needs the same average iteration
numbers than the other approximation algorithms and fur-
thermore achieves better results.

Figures 3 and 4 present the same kink of results for a
processor workload equal to 0.9. Clearly from Figure 3,

197

Number of Validated Task Systems
(Workload = 0.9)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

epsilon

LSD89

FB05

UB

DET

RAND

Figure 3. Number of validated task systems:
all methods achieved good performances
(Workload 0.9)

Average Iteration numbers
(Workload = 0.9)

10

110

210

310

410

510

610

710

810

910

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50

epsilon

JP86

FB05

DET

RAND

Figure 4. Iteration numbers according to ep-
silon values (Workload 0.9)

FB05 is more competitive in comparison to other approx-
imation algorithms. But, when epsilon is up to 0.25 then
its performance against an exact feasibility test decreases
drastically to 30 percent of positive results. One can note
that the linear approximation algorithm is not competitive
enough when the processor utilization is high.

According to Figure 4, the average iteration numbers
have slopes in comparison with numerical results achieved
for a processor utilization equal to 0.5. Once again, FB05
becomes interesting for values around 0.25 since it re-
quires the same average number of iterations and achieves
better results.

As a conclusion, we must say that FB05 is better than
the proposed polynomial time approximation algorithms
for epsilon values near to 0.25. For optimizing the proces-
sor utilization, we conclude that FB05 is the better algo-
rithm among those proposed here, but the accuracy param-
eter�must be carefully chosen in order to control the qual-
ity of results. When the processor utilization is not high,
then admission control can be efficiently done using the
linear time approximation algorithm (denoted UB), that

has been presented in Section 4.2.

6 Conclusion

Efficient feasibility tests are required for implementing
an admission controller for large real-time systems. We
focused on feasibility tests with a polynomial time com-
plexity for defining efficient admission controllers. We
presented computational complexity results and compared
several approximate feasibility tests. We shown the check-
ing the feasibility of tasks with constrained-deadlines be-
longs to� when tasks have fixed-priorities, whereas the
same problem with EDF belongs to co-�. We proposed
three simple approximate algorithms and compared them
with exact feasibility tests [10, 11] and one existing poly-
nomial time approximation scheme [9].

Numerical results shown that if the processor utiliza-
tion is not high, then admission control can be efficiently
done in linear time. When the processor utilization in-
creases, then we can use the Fisher and Baruah’s fully
polynomial time approximation scheme. According to our
results, it could also interesting to evaluate exact feasibil-
ity tests since in many situations they can be as powerful
than polynomial time approximation schemes even if their
worst-case computational complexities lead to pseudo-
polynomial time algorithms. But, there is still a small
gap between polynomial time admission control and ex-
act tests based pseudo-polynomial time algorithms.

The fully polynomial-time approximation scheme pro-
posed in [9] is to decide if a given task system is feasi-
ble on a unit speed processor. But, it is not the case then
the test ensures that the task system is infeasible upon a
slower processor (the slowdown is related to the accuracy
parameter). Thus, we want to use such techniques in or-
der to define an efficient scheduling algorithm for tasks to
be run upon a variable speed processor for power aware
computer systems.

We must also conclude that the existence of approxi-
mation algorithms (or better approximation schemes) for
computing worst-case response times of tasks is still an
important open issue. Most of known papers do not cope
with any performance guarantee in comparison with exact
values of worst-case response time. Thus, we think that
for most real-world systems validated with such schedu-
lability tests lead to oversizing the real-time system fea-
tures.

References

[1] K. Albers and F. Slomka. An event stream driven approxi-
mation for the analysis of real-time systems.proc. Euromi-
cro Int. Conf. on Real-Time Systems (ECRTS’04), pages
187–195, 2004.

[2] N. Audsley, A. Burns, M. Richardson, and A. Wellings.
Hard real-time scheduling: the deadline monotonic ap-
proach.proc. 8th IEEE Workshop on Real-Time Operating
Systems and Software, Atlanta, pages 127–132, 1991.

198

[3] S. K. Baruah, R. R. Howell, and L. E. Rosier. Algorithms
and complexity concerning the preemptive scheduing of
periodic, real-time tasks on one processor.Real-Time Sys-
tems, 2:301–324, 1990.

[4] E. Bini and G. Buttazzo. Biasing effects in schedulabil-
ity measures.Euromicro Int. Conf. on Real-Time Systems
(ECRTS’04), 2004.

[5] E. Bini and G. Buttazzo. Schedulability analysis of peri-
odic fixed-priority systems.IEEE Transactions on Com-
puters, 53(11):1462–1473, November 2004.

[6] R. Bril, W. Verhaege, and E. Pol. Initial values for on-line
response time calculations.proc. Int Euromicro Conf. on
Real-Time Systems (ECRTS’03), Porto, 2003.

[7] S. Chakraborty, S. Kunzli, and L. Thiele. Approximate
schedulability analysis. proc. 23rd Int. Symposium on
Real-Time Systems (RTSS’02), 2002.

[8] N. Fisher and S. Baruah. A fully polynomial-time approx-
imation scheme for feasibility analysis in static-priority
systems with arbitrary relative deadlines.proc. Euromi-
cro Int. Conf. on Real-Time Systems (ECRTS’05), pages
117–126, July 2005.

[9] N. Fisher and S. Baruah. A polynomial-time approxima-
tion scheme for feasibility analysis in static priority sys-
tems with bounded relative deadlines.proc. Real-Time and
Embedded Systems (RTS’05), Paris, 2005.

[10] M. Joseph and P. Pandya. Finding response times in a
real-time systems.The Computer Journal, 29(5):390–395,
1986.

[11] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: exact characterization and aver-
age case behavior.proc. Real-Time System Symposium
(RTSS’98), pages 166–171, 1989.

[12] J. C. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in hard real-time environment.Journal
of the ACM, 20(1):46–61, 1973.

[13] M. Sjodin and H. Hansson. Improved response time anal-
ysis calculations.proc. IEEE Int Symposium on Real-Time
Systems (RTSS’98), 1998.

199

Feasibility Conditions with Kernel Overheads for Periodic Tasks with
Fixed Priority Scheduling on an Event Driven OSEK System

Franck Bimbard
Cedric/CNAM

292 Rue St Martin FR-75141
75007 Paris Cedex 03

bimbard@ece.fr

Laurent George
ECE, LACSC

53, rue de Grenelle
75007 Paris

lgeorge@ieee.org

Abstract

In this paper we show how to extend classical real-
time feasibility conditions for preemptive fixed pri-
ority scheduling of periodic tasks to consider ker-
nel overheads. The kernel considered in this pa-
per is the event driven OSEK kernel. We identify
the sources of overhead that influence the response
time of the tasks. In such a system the overheads
are due to the context switching and the mecha-
nisms used to activates/terminates and reschedules
tasks and to the granularity of the periodic timer
used to implement the periodic task model. We
show how to take into account those overheads in
the classical feasibility conditions. We compare the
theoretical modified feasibility conditions with ker-
nel overhead to the results obtained on a real im-
plementation. We show that the kernel overheads
cannot be neglected and that the theoretical results
are valid and can be used for a real-time dimen-
sioning of an OSEK system.

1 Introduction

Fixed priority scheduling in real-rime systems has
been extensively studied in the last thirty years.
The task model considered in this paper is the peri-
odic model. The problem is to schedule a periodic
task set τ = {τ1, ..., τn} with a preemptive fixed
priority scheduling. A periodic task τi is defined
by:

• Ci : The worst case execution time (WCET).

• Ti : The period of the task.

• Di : The deadline constraint (a task released
at time t must be executed by t + Di).

• Pi : The fixed priority (priority 0 is the lowest
priority).

The starting point for preemptive fixed priority
scheduling is in [7] that proposed a simple poly-
nomial time sufficient feasibility condition for the
Rate Monotonic (RM)algorithm. The Feasibility
Conditions (FC) have then been extended by [4] in
the case where ∀i,Di ≤ Ti and by [8], [3] for tasks
with no obvious relation between Di and Ti valid
for all the tasks. The feasibility conditions are
based on the worst case response time computation
for any periodic task. The scheduling model used
in the FC is the event driven model. The FC are
pseudo-polynomial but do not consider kernel
overheads. The preemption cost is considered
either null or is included as an extra duration in the
WCET of the tasks, leading to imprecise FC.

In the time driven model, [8] showed how to take
into account the cost of the scheduler. The sched-
uler behaves as periodic tasks with a preemption
cost that can be taken into account in the feasibil-
ity conditions.
Yet, in the event driven model, the solution to
increase the durations of the tasks to take into
account kernel overheads can be very pessimistic
[5] as it always considers a worst case maximum
number of preemptions for a task.

In this paper, we consider an event driven im-
plementation of OSEK. OSEK standard has been
initiated in 1993 by several german companies
like BMW, Bosch, Daimler-Benz, Opel, and
Siemens. The objectives were to save money,
with a standard OS and to increase the software
compatibility between manufacturers by using
standard interfaces for all processors and network
protocols. The OSEK operating system offers the
necessary functionality to support event driven
control. Yet, the current approach used for system
dimensioning leads to overestimate the overhead
of the operating system, without a precise analysis

200

of the operating system leading to a pessimistic
dimensioning. e.g. developers generally limit the
CPU of the tasks to allocate the rest of the CPU
to the operating system without a good charac-
terization of the OS. In this paper, we propose to
characterize the overheads of an OSEK kernel to
propose a deterministic system dimensioning.

We study the sources of kernel overheads for the
fixed priority scheduling of preemptive periodic
tasks in the case where ∀i,Di ≤ Ti. We show
how to integrate the overheads of the kernel in
the classical theoretical feasibility conditions and
show that this extension is valid for a real-time di-
mensioning. In section 2, we recall the principles
of an OSEK kernel. We then describe in section
3 the environment used and the sources of kernel
overhead. We identify different sources of over-
head i.e. the time granularity chosen for the peri-
odic timer used for the periodic model implemen-
tation may introduce a variation in the actual pe-
riod chosen OSEK. We then focus on the task acti-
vation/termination and on the context switch over-
heads. In section 4, we show how to integrate the
identified kernel overheads in classical theoretical
real-time analysis. In section 5, we propose to
compare the theoretical worst case response times
to kernel overhead with the experimental results
obtained with a real OSEK implementation show-
ing that our analysis is relevant for system dimen-
sioning. Finally, we conclude.

2 OSEK characteristics

In subsection 2.1, task management is exposed.
The scheduling policy is detailed in subsection 2.2.
Then, the alarm mechanism, used to implement the
periodic task model is described in subsection 2.3.

2.1 Task management

Two different task concepts are provided by the
OSEK operating system: basic tasks, and extended
tasks. Extended tasks are distinguished from ba-
sic tasks by being allowed to wait for events for
communications between tasks and resources man-
agement. The OSEK operating system is responsi-
ble for saving and restoring task context in con-
junction with task state transitions whenever nec-
essary. We are interested in this paper in the over-
heads due to the switching task mechanism and to
the alarms treatment used to implement the peri-
odic task model. We therefore focus on basic tasks
which have three possible states:

• Running : In the running state, the CPU is as-
signed to the running task, so that its instruc-
tions can be executed. Only one task can be
in this state at any time, while all the other
states can be adopted simultaneously by sev-
eral tasks.

• Ready : All functional prerequisites for a
transition into the running state exist, and the
task only waits for election of the processor.

• Suspended: In the suspended state the task is
passive and can be activated.

Figure 1. Basic task state model

We now describe the transitions between the states
exposed in figure 1:

Transi-
tion

Former
state

New
state

Description

Acti-
vate

Susp-
ended

Ready A new task is set into
the ready state by the
service ActivateTask.

Start Ready Run-
ning

A ready task selected
by the scheduler is ex-
ecuted.

Preempt Run-
ning

Ready The scheduler decides
to start another task.
The running task is put
in the ready state.

Termi-
nate

Run-
ning

Susp-
ended

The running task
completes and self-
suspends by the service
TerminateTask.

Table 1. States and status transitions
for basic tasks

In the OSEK operating system, a task can termi-
nate by calling the service TerminateTask. Ending
the task without a call to TerminateTask is strictly
forbidden and causes undefined behavior. Task ac-
tivation is performed using the operating system
service ActivateTask. After activation the task is
ready to execute from the first statement. The fol-
lowing figure illustrates the interactions between
two tasks suspended at time 0 and the evolution of
their states with time. Task τ1 is set to the running
state and is later preempted by a task τ2, of higher
priority.

201

Figure 2. Evolution of the states of
two basic tasks

2.2 Scheduling policy

In the OSEK operating system, there are three dif-
ferent scheduling policies: full preemptive, non
preemptive, and mixed preemptive. In the latter
case, a system is composed of both preemptive
and non-preemptive tasks. In this paper, we con-
sider Full preemptive scheduling as it maximizes
the kernel overheads. Full preemptive scheduling
means that a task which is presently running may
be put into the ready state, as soon as a higher prior-
ity task has got ready. The preempted task context
is saved so that it can be resumed at the location
where it was preempted.

2.3 Alarm mechanism

The alarm mechanism allows implementing the pe-
riodic task model. Each alarm has two parameters:
the time where it starts for the first time, and its
period. Each time an alarm occurs, it activates its
associated task. This mechanism uses the OSEK
time base to count the time which is different from
the CPU time (clock cycle). This OSEK time base
is also called ”Tick Time”.
The OSEK time base has a time granularity of pe-
riod Ttick, multiple of the clock cycle. The use of a
timer permits to the processor to create a periodical
interruption. The CPU load due to this interruption
is discussed in subsection 3.2.

3 Kernel overheads

Because several OSEK versions exist we have
to describe our development environment. Our
OSEK operating system is based on the OSEK-
OS-specification version 2.2 [2] and is provided by
Vector Corp. Our target device is a dsPIC30F6014
which is provided by Microchip Corp. and excited
by a quartz at 7,3728 MHz. The integrated Phase
Lock Loop multiplies this frequency by 16. Ac-
cording to the structure of dsPIC, the internal cycle
time is equal to: Tcycle = 4

16×7372800 = 33, 91ns.
We propose different measurements to validate our
tests and experimentations and measure the over-

heads due to OSEK. In subsection 3.1, we explain
our measurement methods. Then, we describe the
OSEK’s overheads in subsection 3.2. After which
the overheads measurements are shown in subsec-
tion 3.3.

3.1 Measurements methods

We have done two kinds of measurements. We first
determine the influence of the Tick Time on both
the worst case response times and the actual val-
ues of the periods chosen by the kernel. Then we
study the influence of the kernel on the worst case
response times of the tasks.
The worst case response times of the tasks depends
on the WCET of the tasks. To reduce the uncer-
tainty of the WCET determination, each task is
only composed of a simple empty loop which cor-
responds to ”for(i = 0; i < EndLoop; i + +);”.
We use a standard simulation tool MPLab, which is
also provided by Microchip Corp., to determine the
WCET, depending on the value of the ”EndLoop”
constant. Thus, no uncertainty is introduced in the
execution times of the tasks (we only want to mea-
sure the kernel overheads, not the WCET uncer-
tainty).
We have integrated, in our OSEK’s source code, a
software which automatically measures the worst
case response times of several activations for each
task in the worst case scenario corresponding to
lemma 2. This software uses a 16-bit timer for its
measurements which are stored in RAM. Once all
measurements are made, these results are transmit-
ted via a serial port at 115200 bauds. Thus, the
transmission does not influence the obtained re-
sults.

3.2 OSEK’s overheads

Like any operating system, OSEK needs to gener-
ate its own time base, called the Tick Time, hav-
ing a period Ttick. As described in subsection 2.3,
this Tick Time is used to manage the alarms in
charge of implementing the periodic task model.
Under certain conditions, this management can add
a CPU load which cannot be neglected. In para-
graph 3.2.1, an experiment is done to show how
this Tick Time influences the execution time of a
single task. This experiment also illustrates the
impact of this Tick Time actual value, chosen by
OSEK, of the period of a task. In addition, because
the switching task mechanism creates another CPU
load, it can also affect the tasks when it is too fre-
quent. In Paragraph 3.2.2, an experiment is done
to show how this mechanism can also influence the
duration of a task.

202

3.2.1 Tick Time

To illustrate the Tick Time influence, we consider
the following example where a single task is run by
the system. This task has a period equal to 100ms
and a duration equal to 50ms. We present its re-
sponse time (r) for a given Tick Time period Ttick:

Figure 3. Comparison between the
WCET (dotted curve) to the measured
response time (continuous curve) of
the task

The overhead of the OSEK operating system
increases when Ttick decreases. Consequently,
the task response time increases in the same way.
As we can see on figure 3, the response time is
multiplied by at least 2 or more when the Tick
Time is below 295 cycles. The response time is
strongly increased when the Tick Time is equal to
147 cycles.

We now, examine the maximum absolute error ob-
tained on the considered periodic task for a given
value of Ttick. As explained in subsection 2.3, the
periodic model is based on an alarm mechanism
which depends on the Tick Time. That is why, the
period is more precise when Tick Time is multiple
of it. The period of the task is rounded to the near-
est multiple of Ttick. The actual period, denoted
T ∗i for a task τi chosen by OSEK kernel is as fol-
lows:

T ∗i =
(

1 + �Ti − Ttick/2
Ttick

�
)

Ttick

We can notice that its error never exceeds the du-
ration Ttick/2. Our OSEK implementation uses a
16-bit timer to generate the Tick Time. Hence Ttick

cannot exceed 2222μs (65535×33, 91ns). Finally,
in this interval, the Tick Time should be the great-
est value multiple of the greatest common divisor
between all periods of the tasks to cancel the im-
precision Ttick/2.

3.2.2 Switching task mechanism

We now consider a preemptable task of WCET
50ms. This task is interrupted by a higher priority
task which is empty. The Tick Time is constant and
equal to 2949 cycles. Consequently, the Tick Time

constantly increases the response time of 3, 5ms.
Thus, when the period of the higher priority task
decreases, we observe the deviation which is only
due to the switching task mechanism on figure 4.

Figure 4. WCET (dotted curve) vs
measured response time (continuous
curve) of the task

We can see that the difference between theoreti-
cal and real durations increases when the period of
the higher priority task decreases. In other words,
switching task mechanism is non-negligible. We
show how to take it into account in section 4.

3.3 Overheads measurements

Now that the overheads are identified, the objec-
tive is to measure them in order to integrate them
into the feasibility conditions. In subsection 3.3.1,
we begin with an illustration of the measured du-
rations. Then, the durations of the overheads are
given in subsection 3.3.2.

3.3.1 Illustration of the measured events

In this subsection, we determine the durations of
the overheads previously exposed. Each time a
Tick Time occurs, there are three possible scenar-
ios:

The Tick Time only manages
the alarms but no task must be
activated

The Tick Time manages the
alarms and N tasks must be ac-
tivated

The Tick Time manages the
alarms, N tasks must be acti-
vated and one of them must be
set to the running state (poten-
tially stopping the execution of
a running task)

The two last scenarios illustrate the cases where
alarms occur and activate their associated task.

203

3.3.2 Measurements

The following table gives the notations used for
each overheads:

Symbol Description
Ctick The execution time of the alarms manage-

ment that occurs every Ttick.
Cact The execution time required to activate a

task. The state of an activated task is set
to ready.

Csched The execution time required to schedule the
task (if any) that has just been activated and
that has the highest priority among all the
tasks in the ready state.

Cterm The execution time to terminate the task and
reschedule.

Table 2. Notations of the measure-
ments

The following table gives the results of our mea-
surements:

Symbol WCET
(cycles)

Ctick 179
Cact 393
Csched 166
Cterm 300

Table 3. Execution times of kernel
overheads

4 Real-Time analysis with kernel
overheads

We consider in this paper, that for any task τi,
Di ≤ Ti. We now recall classical results in the
uniprocessor context for real-time scheduling.

• A task is said to be non-concrete if its first re-
lease time is not known in advance. In this
paper, we only consider non concrete first re-
quest times, as the activation request times are
supposed to be unpredictable.

For any task τi,

• hp(i) denotes the set of tasks having a higher
or equal priority than τi except τi.

• lp(i) denotes the set of tasks having a strictly
lower priority than τi.

• Time is assumed to be discrete (task arrivals
occur and task executions begin and termi-
nate at clock cycles; the parameters used are

expressed as multiples of the clock cycles);
in [1] it is shown that there is no loss of
generality with respect to feasibility results
through restricting the schedules to being dis-
crete, once the task parameters are assumed
to be integers (multiples of the clock cycles)
i.e. a discrete schedule exists, if and only if a
continuous schedule exists.

• An idle time of level τi is defined as a time
t, such that there are no tasks in hp(i) ∪ τi

released before time t pending at time t. An
interval of successive idle times of level τi is
called an idle period of level τi.

• A level τi busy period is defined as a time in-
terval [a, b), such that there is no idle time of
level τi in [a, b) and such that both a and b are
idle times of level τi.

• The worst case busy period of level τi is the
first busy period resulting from the scenario
where all tasks τj in τ are first requested at
time 0, and are periodic from 0.

Notice that this definition of the worst case level τi

busy period is slightly different from the one pro-
posed by [6] where only tasks in hp(i) ∪ τi where
considered. With kernel overhead, we show in the-
orem 1 that a task in lp(i) can also have an influ-
ence on the worst case response time of a task τi.

• FP denotes any arbitrary Fixed Priority
scheduling with Highest Priority First used
on-line.

• Uno =
n∑

i=1

Ci

Ti
is the processor utilization fac-

tor, i.e., the fraction of processor time spent in
the execution of the task set [7] without kernel
overhead. An obvious necessary condition for
the feasibility of any task set is Uno ≤ 1 (this
is assumed in the sequel).

Lemma 1 [4] The worst-case response time ri

of a non-concrete periodic task τi (with Di ≤
Ti,∀i ∈ [1, n]) scheduled FP is found in the worst
case busy period of level τi and ri is the solution of
the following equation:
ri = Ci +

∑
j∈hp(i)

� ri

Tj
	

Proof: The worst case busy period of level τi pro-
posed in this paper is the same as the one proposed
in [4] when we consider that all the execution times
of the overheads are null. The equation of ri is the
one proposed in [4].

204

Lemma 2 The worst case response time of a pe-
riodic task with kernel overheads is found in the
worst case busy period of level τi.

Proof: For a task τi, the kernel overheads are max-
imized when the number of activations of tasks in
hp(i) and lp(i) are maximized. Leading to the
same worst case scenario for tasks in hp(i) as in
[4]. Notice that for tasks in lp(i), we only have
to consider the overheads of the tasks activations
(achieved by the ActivateTask) whose number is
maximized when tasks in lp(i) are released as de-
scribed in the worst case busy period of level τi.

Theorem 1 The worst case response time ri of a
periodic task τi with the OSEK kernel overheads is
the solution of the following equation: ri = Cact+
Ci +Cterm +

∑
j∈hp(i)

� ri

T∗
j
	(Cact + Cj + Cterm)+

∑
j∈lp(i)

� ri

T∗
j
	Cact +max(

∑
τj∈hp(i)

� ri

T∗
j
	, 1)Csched +

� ri

Ttick
	Ctick.

Proof: We consider a task τi released in its worst
case busy period of level τi. The worst case re-
sponse time of τi is composed of three terms:

• The first term is equal to: Cact+Ci+Cterm+∑
j∈hp(i)

� ri

T∗
j
	(Cact + Cj + Cterm). For any

request of a task in hp(i)∪ τi, the kernel must
activate, run and terminate the task. The equa-
tion of lemma1 is updated accordingly.

• The second term is equal to:
∑

j∈lp(i)

� ri

T∗
j
	Cact.

For any task in lp(i), the scheduler must at
least activate the tasks according to their re-
quest times and put it in the ready state. The
second part corresponds to the maximum du-
ration required to activate the tasks in lp(i).

• The third term is equal to:
max(

∑
τj∈hp(i)

� ri

T∗
j
	, 1)Csched + � ri

Ttick
	Ctick.

The scheduler is called to save/restore the
context of task τi every time a task with
a priority higher to τi is run. If hp(i) is
empty then the scheduler is called once for
τi. The maximum number of scheduler calls
is bounded by: max(

∑
τj∈hp(i)

� ri

T∗
j
	, 1)Csched.

We must also take into account the alarm
overhead. By assumption, all the alarms are
managed by a periodic timer of period Ttick

of duration Ctick. Leading to an overhead
equals to: � ri

Ttick
	Ctick.

We now propose a sufficient feasibility condition
for the dimensioning of our OSEK system.

Theorem 2 A sufficient feasibility condition for
the scheduling of periodic tasks scheduled with
preemptive FP with the OSEK kernel overheads is
(where Tα is the period of task with the maximum
priority):

∀τi ∈ τ, ri ≤ Di (1)

Uno +
∑
τj∈τ

Cact + Cterm + Csched

T ∗j
≤ 1 (2)

Proof: Equation (1) is straightforward. Equation
(2) is clearly necessary as the kernel overheads add
a duration Cact + Cterm to every tasks and the
scheduler may be called for each task activation.

5 Experimentation

In this section, we experiment the previous theoret-
ical results on a given task set. This task set is com-
posed of five preemptive periodic tasks described
in table 4.

Task Ci (cycles) Di (cycles) Ti (cycles) Pi

τ5 15920 55720 87560 4
τ4 55720 318400 796000 3
τ3 71640 636800 1273600 2
τ2 398000 2547200 2308400 1
τ1 796000 5094400 4855600 0

Table 4. Task Set

Note that the Ttick parameter has been chosen to
be the small in order to increase the CPU load
due to the Tick Time. This CPU load is, in worst
case, equal to Ctick/Ttick = 0, 22. Task τ1 has
the lowest priority and will be often preempted by
higher-priority tasks which should largely increase
its execution time.

We now compare for any task τi the theoretical
response time without overhead r0

i , the theoreti-
cal response time with kernel overheads r1

i and the
measured response time r2

i in a real OSEK system.
We now determine two significant ratios in table
6 for each task to characterize the performance of
our theoretical worst case response time with ker-
nel overheads.
The first column of results provides the percentage
of deviation between the theoretical response time
with kernel overheads and the real response time

205

Task r0
i (cycles) r1

i (cycles) r2
i (cycles)

τ5 15920 23721 20997
τ4 71640 117642 112309
τ3 159200 232303 223926
τ2 652720 1014316 961556
τ1 1838760 3611823 3461052

Table 5. Comparison between the dif-
ferent response times

Task (1− r2
i

r1
i
)× 100 (1− r0

i

r1
i
)× 100

τ5 11,48% 32,89%
τ4 4,53% 39,10%
τ3 3,61% 31,47%
τ2 5,20% 35,65%
τ1 4,17% 49,09%

Table 6. Performance theoretical
worst case response time with kernel
overheads

obtained with our OSEK system. The deviation is
higher for the task τ5 as it has the smallest exe-
cution time. The overheads are accordingly more
important. The deviations obtained for the tasks τ4,
and τ3 decrease as their execution times increase.
The tasks τ2, and τ1 are more influenced by the
context switching mechanism in OSEK.
In all cases, the deviations are small and enable
to use the theoretical approach for a real-time
dimensioning.

The second column of results shows the deviation
between the theoretical approach with and without
kernel overheads showing that the deviation ranges
from 31,47% to 49,09%. Hence, the kernel over-
heads cannot be neglected and influences signifi-
cantly the worst case response times of the tasks.

6 Conclusion

In this paper we have studied the impact of ker-
nel overheads in the theoretical feasibility condi-
tions of preemptive fixed priority scheduling of pe-
riodic tasks. We have considered an event driven
OSEK system proposed by Vector Corp. We have
identified the sources of kernel overheads and have
shown how to integrate them in the worst case re-
sponse times of the tasks, used by the feasibility
conditions. We have shown in our experiments that
the overestimation of the theoretical worst case re-
sponse times does not exceed 11,48% and that the
feasibility condition without kernel overhead are
not valid.

References

[1] S. Baruah, R. Howell, and L. Rosier. Algorithms
and complexity concerning the preemptive schedul-
ing of periodic real-time tasks on one processor.
Real-Time Systems, Vol. 2, pp. 301-324, 1990.

[2] V. Corp. Osek/vdx operating system v. 2.2.3 speci-
fication.

[3] L. George, N. Rivierre, and M. Spuri. Preemptive
and non-preemptive scheduling real-time unipro-
cessor scheduling. INRIA Research Report, No.
2966, September 1996.

[4] M. Joseph and P. Pandya. Finding response times
in a real-time system. BCS Comp. Jour., 29(5), pp.
390-395,, 1986.

[5] D. Katcher, H. Arakawa, and J. Strosnider. En-
gineering and analysis of fixed-priority schedulers.
IEEE Trans. on Soft. Eng., 19, pp920-934, 1993.

[6] J. Lehoczky. Fixed priority scheduling of periodic
task sets with arbitrary deadlines. Proceedings 11th
IEEE Real-Time Systems Symposium, pp 201-209,
Dec. Lake Buena Vista, FL, USA, 1990.

[7] L. C. Liu and W. Layland. Scheduling algorithms
for multi-programming in a hard real time environ-
ment. Journal of ACM, Vol. 20, No 1, pp. 46-61,
January 1973.

[8] K. Tindell, A. Burns, and A. J. Wellings. An
extendible Approach For Analysing Fixed Priority
Hard Real-Time Tasks. Real-Time Systems 6(2)v,
1994.

206

Index

Aguilar-Soto A., 25
Arnaud A., 179

Baker T., 119
Baruah S.K., 11, 99
Bel Hadj Aissa N., 169
Benet G., 65
Bernat G., 25
Bimbard F. , 200
Blanes F., 65
Bouazizi E., 87

Cambazard H., 131
Carvalho A., 150
Coronel J.O, 65
Cottet F., 141
Crespo A., 65

Deplanche A-M., 131
Duvallet C., 87

Ermont J., 45

Fisher N., 99
Fraboul C., 45

George L. , 200
Goossens J., 35
Grenier M., 35
Grolleau E., 141

Hladik P.E., 131

Jensen E.D., 77
Jussien N., 131

Leulseged A., 109
Li J., 55
Li P., 77

Navet N., 35
Nissanke N., 109

Pérez P., 65
Puaut I., 179

Ravindran B., 77
Richard P., 15, 191
Ridouard F., 15
Rochange C., 159

Sadeg B., 87
Sainrat P., 159
Scharbarg J-L., 45
Simó J.E., 65
Song Y.Q., 55
Souza M., 150
Symplo-Ryl D., 169

Traore K., 141

207

