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PREFACE

This is the fourtheenth in the series of conferences on Real Time Systems. The aim of these
conferences is to provide a forum for the presentation, by academic researchers and practitioners,
of original works which cover the technological and scientific topics in the area of the distributed
real time systems: design process (th@etlent phases between the requirement specification till the
implementation) and operational life.

The first thirdteens (from 1993 to 2005) were held in the environment of the "Real Time Systems"
Exhibition in Paris (at first, Palais des Congrés Porte Maillot, and then Paris Expo-Porte de Versailles).
In 2005, in Paris, it was decided, at first, to make a conference independent of the Exhibition and more
academic oriented, second, to emphasize the role of Systems on Networks (hence the transformation
of the name from RTS to RTNS) and, then, to organize the 2006 conference in Poitiers.

In response to the call for papers, 29 papers were submitted and 18 were selected by the Program
Committee, which has permitted to organize seven sessions (2 on "Uniprocessor scheduling”, 1 on
"Networks", 2 on "Resources and Data management" and 1 on "Worst Case Execution Time"). In
addition, we have been very fortunate to secure the service of the excellent international speaker
Professor S.K.Baruah (North Carolina University at Chapel Hill, USA) who will be giving an invited
paper titled "Multiprocessor Real-time Scheduling Theory: Questions (many) and answers (a few)".
These 19 presentations will provide an interesting snapshot of research results and directions covering
conference topics.

The quality of the program is due to the authors who submitted papers and to the members of the
program Committee and extra referees who have given their time to provide excellent reviews (three
for each paper). We are sincerely grateful to all of them.

We would like to thank the local organization committee, the conference secretary Claudine Rault,
Frédéric Ridouard for the conference web site and Michaél Richard for the proceedings. Many thanks
to six students from the Business and Administration Management Department of the University In-
stitute of Technology (University of Poitiers) for their major activities in the organization committee.
Special thanks to Nicolas Navet who organized the previous edition and provided lot of useful infor-
mation, and also to Frangoise Simonot-Lion for her helpful contacts for finding the scientific support
of the CNRS. Finally, we are grateful to the institutions and people that helped to prepare and organize
the event.

Guy Juanole and Pascal Richard
Program Co-chairs



PREFACE

C’est la quatorziéme édition de la série de conférences sur les systémes temps réel. L'objectif de
ces conférences est d'établir un forum de présentations de chercheurs et d’industriels sur des travaux
originaux qui couvrent les sujets scientifiques et techniques dans le domaine des systémes temps réel
distribués : méthodes de conception (leB&lentes phases entre les spécifications a la mise en ceuvre)
et leur vie opérationnelle.

Les éditions précédentes (entre 1993 et 2005) se sont déroulées dans le cadre du salon "systémes
temps réel" a Paris (Palais des Congrés Porte Maillot, puis ensuite Paris Expo-Porte de Versailles).
En 2005, a Paris, il a été décidé, premiérement, de rendre la conférence indépendante du salon et de
I'orienter vers un public plus académique, et deuxiemement, de prendre en compte le role des réseaux
dans ces systémes (d’'ou la transformation de I'acronyme de la conférence de RTS a RTNS) et, enfin,
d’organiser I'édition 2006 a Poitiers.

En réponse de I'appel & communications, 29 articles ont été soumis et 18 ont été sélectionnés par
le comité de programme, qui ont permis d’organiser 7 sessions (2 sur "I'ordonnancement monopro-
cesseur”, 1 sur les "réseaux”, 2 sur "la gestion des ressources et des données" et 1 sur "le calcul des
pires temps d’exécution”). En supplément, nous avons I'honneur d’accueillir e professeur S.K.Baruah
(North Carolina University a Chapel Hill, USA) qui présentera un exposé invité intitulé "Théorie de
I'ordonnancement temps réel multiprocesseur : questions (beaucoup) et réponses (quelques-unes)”.
Ces 19 présentations fournissent une vue intéressante des résultats de recherche et des themes de
recherche couvrant les thémes de la conférence.

La qualité du programme est due aux soumissions des auteurs ainsi gu’aux membres du comité de
programme et aux relecteurs extérieurs qui ont prodigués d’excellentes révisions des articles (trois par
article). Nous sommes sincérement reconnaissants envers chacun d’entre eux pour le travail accompli.

Nous tenons a remercier tous les membres du comité local d'organisation et Claudine Rault, la
secrétaire de la conférence, Frédéric Ridouard pour le site web de la conférence, ainsi que Michaél
Richard pour les actes du congrés. Nous remercions aussi les six étudiants du département "Gestion
des Entreprises et Administrations" de I'Institut Universitaire de Technologie de Poitiers pour leurs
importantes activités au sein du comité d’organisation. Nous tenons tout spécialement a remercier
Nicolas Navet, qui a organisé la précédente édition de la conférence, pour I'ensemble des informations
gu'’il nous a transmis, ainsi que Frangoise Simonot-Lion pour ses contacts qui ont permis d’'avoir le
soutien scientifique du CNRS. Enfin, nous sommes trés reconnaissants aux institutions et personnes
qui ont permis de préparer et organiser cet événement.

Guy Juanole et Pascal Richard
Présidents du comité de programme
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Multiprocessor Real-time Scheduling Theory:
guestions (many) and answers (a few)

Sanjoy K. Baruah
University of North Carolina at Chapel Hill, USA.

Abstract:

Due to various inherent advantages of multiprocessor platforms, real-time application systems are increas-
ingly coming to be implemented upon such platforms. However, theoretical developments have not kept pace:
currently, our formal understanding of the behavior of such multiprocessor systems is approximately where our
knowledge of uniprocessor systems was in the early 1970's. There is consequently a need for developing a
theory of multiprocessor real-time scheduling that is as complete and sophisticated as uniprocessor real-time
scheduling theory currently is, and that will prove as useful to the designers of real-time systems as uniprocessor
real-time theory does today. In this presentation, | will propose a research agenda for multiprocessor real-time
scheduling theory that aims to address this need. | will also briefly outline the progress that has been made thus
far towards achieving the goals in this agenda.
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Uniprocessor Scheduling |
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Worst-case analysis of feasibility tests for self-suspending tasks

Frécéric Ridouard, Pascal Richard
LISI-ENSMA
Av C. Ader, Teleport 2 BP 40109
86961 Futuroscope Cedex, France
{frederic.ridouard,pascal.richgr@ensma.fr

Abstract with an execution requirement equalsd@ A job must
complete its execution before the next reledBeufits of
In most real-time systems, tasks invoke external opera-time later). Tasks are assumed to be independent.

tions processed upon dedicated processors. External opera-

tions introduce self-suspension delays in the task behaviorsMost of real-time systems contain tasks with self-

In such task systems, checking that deadlines will be meekuspension. A task with a self-suspension is a task that

at run-time isA’P-Hard in the strong sense. For that rea- during its execution prepares specifics computations (e.g.

son, known response time analysis (RTA) only compute upin/Out operations oFFT on a digital signal processor).

per bounds of worst-case response times. These pessimistithe task is self-suspended to execute the specifics com-

estimations lead in practice the designers of a real-time sys-putations upon external dedicated processors. External

tem to oversize the computer features. The aim of this papeloperations introduce self-suspension delays in the behavior

is to quantify the pessimism used in known RTA methodsof tasks. The task waits until the completion of the external

We propose an exact exponential time feasibility test and de-operations to finish its execution. Generally, the execution

fine upper bounds of competitive ratio of three known RTA requirement of external operations can be integrated in the

techniques. execution requirement of the task. But, if self-suspension
delays are large, then such an approach cannot be used to

Keywords: Real-time, On-line scheduling, self-suspension, achieve a schedulable system. Thus self-suspension must

Maximum response time. be explicitely considered in the task model.

1 Introduction We have already proved [13] that the feasibility problem
of scheduling task systems i&P-Hard in the strong
A real-time system is a system in which the correctness ofsense. We have also shown the presence of scheduling
the system depends not only on correctness of computaanomalies undeEDF for scheduling independent tasks
tions, but also on the time at which the results are producedwith self-suspension upon an uniprocessor platform when
(if a result is late, it is a fault). A real-time system can preemption is allowed. We have proved [14] that classical
be seen as a task system where each task must respect ig-line scheduling algorithms are not better tizaoom-
constraints. A task meets its deadline if it completes its petitive to minimize the maximum response time. In this
execution before its deadline otherwise the task misses itspaper, we show that on-line and deterministic scheduling
deadline. There exists a feasible schedule for a task systen@lgorithms are not optimal to schedule tasks with self-
if all deadlines are met. suspension. The Response Time Analy&i34) can only
compute upper bounds of worst-case response times in a
Several models of recurring real-time tasks have been defe€asonable amount of time. These pessimistic estimations
fined. The simplest but also the most fundamental model islead in practice to oversize the computer features. The aim
provided by theperiodic task modedf Liu and Layland [8]. ~ of this paper is to quantify the pessimism used in three
In this model, a periodic task has only two characteristics knownRTAmethods based on fixed-priority task systems.
7 = (C,T): Cis the worst-case execution requirement of
task T and T its period between two successive releases. Several feasibility tests are presented and defined for
Consequently, an instance of the periodic tadfa job) is analysing tasks allowed to self-suspend. For fixed-priority
generated and released in the system &ftenits of times task systems, there exist tests based on the computation of

15



worst-case response time: Kiet al. [7], Jane W. S. Liu  The utilization factor of a periodic task, is the ratio of

[9] and Palencieet al. [11, 12]. The latter approach can its execution requirement to its periodi(r;) = C;/T;.

be used folEDF scheduling [12]. There exists also a test The utilization factor of a task systemis the sum of the

based on the utilization factor of the processor [4]. But, utilization factors of all taskst/ (7) = """, U(7).

no study concerning the quality of these tests are known to

exhibit relative merits of these methods. Consequently, ourThe maximum response timg; of a taskr; is equal to

approach is to analyze the relevance and quality of thesethe difference between the completion time and the release

tests. date. To minimize the maximum response time of a task set
is to minimizemax R;.

We next analyse the feasibility tests of Kiat al. [7] and

Liu [9] to schedule tasks with self-suspension. Before, we A task set is saifieasibleif there exists a schedule such that

define the task model (Section 2). In Section 3, the fea- all tasks are completed by their deadlines at run-time.

sibility tests of Kim and Liu are presented. In Section 4,

we present the main technique to evaluate the on-line al-3  Presentation of feasibility tests

gorithms. In Section 5, we show that it is impossible to

define an optimal on-line algorithm to schedule tasks sys-

tems when tasks are allowed to self-suspend. Lastly, the

feasibility tests are analyzed to determine their pessimism. o Kim et al. [7]: To define their feasibility tests, they use

the works of Wellings [16] and Minegt al. [10]. They

define two tests based on the same principle : to con-

sider a task with a self-suspension in two independent

tasks without any suspension delay.

In the following section,we present three feasibility tests:

2 Task model

We consider that task systems are based on a collection

of periodic and independent tasks. Liebe a task system e Jane W. S. Liu [9]: This feasibility test determines
of n tasks. Every occurrence of a task is called a job. the blocking time due to self-suspension and higher-
Every taskr; (1 < i < n) arrives in the system at time priority tasks.

0, its relative deadline is denotdd; and its periodl;. If

its relative deadline is equal to the period, the task has a3.1 Feasibility tests of Kimet al. [7]

implicit deadline else if jusD; < T; constrained deadline.

The maximum execution requirement of a tagks C;. Wellings et al. [16] studied the tasks with self-suspension
but with C; ; = 0. The self-suspension is called release

In the system, preemption of tasks is allowed. Conse-jitter [3, 16]. A release jitter for a task is the difference of

quently, a job can be suspended at any time to allow thetime between arrival and release time. Consequently, they
execution of others jobs and later on will be resume to Use task setin which each task has a release jitter. To deter-

continue its execution. mine the response time of a task they use the following
recurrence relation:

To simplify our results , we consider that tasks are allowed
to self-suspend at most once. The Figure 1 presents this
model. Every task; (1 < i < n) has two subtasks (with a Rr+ X

maximum execution requirement; ,, 1 < k < 2) sep- R?H =Ci+ Z [;w Cj (2)
arated by a maximum self-suspension deldy between J=1 !

the completion of the first subtask and the start of the sec-
ond subtask. Such delays change from one execution to
another since they model execution requirements of ex-
ternal operations. Consequently every tasks denoted:

T ¢ (Ci717Xi, 02'727 Dz)

RY =C;

The recurrence stops B! = R?. And the worst-case
response time of; is R} + X;. To prove that the task; is
schedulableR} + X; must be less than or equal i#.

Ming et al (cf [10]) have modified the recurrence relation
of Wellings (1) to take into account any task with a self-

4« L suspension:
T Ciz
| B | wcex
‘ TR X
R =Gt X+ { i 1 5@
Figure 1. Task model j=1

16



However, Minget al. consider the suspension delay as a

part of execution requirement. But external operations are

scheduled upon dedicated processors. Consequently, su

?.P
an approach can increase unnecessarily the worst-case re-

sponse times of tasks. Kiet al. (cf [7]) define two new
feasibility tests to compute worst-case response times o
tasks with self-suspensions.

3.1.1 Method A of Kim

They consider thab, < T; for all i and tasks can be pre-
empted. This first method subdivide each taslwith self-
suspension in two independent tasks without suspension :

e 7,1, released at time; without release jitter and with
a processing requirement 6§ ;.

e T, 2, released at time;, its jitter J; ; equalsX; and a
processing requirement equaldg .

The two generated tasks inherit the period and the deadline

of 7;.

To prove the schedulability of task, we must transform

7; Into 7; 1 and; 2, and we then calculate the worst-case
response time of the generated tasks. has a release jitter
equal to0 andr; » has one equal t&;. The worst-case of
7;,1 andr; o are calculated independently. To calculate the
worst-case response time®f;, the Wellings's formula (1)

is used:

R =Cin +

+

Computations stop for the smallest positive integer
satisfiesR;f{rl = R}, and the worst-case response time
Ry, of 71 is equal toR},. If RY; < D; thenr;; is
schedulable. Otherwise, we cannot conclude thatis
schedulable.

The worst-case response timemp is calculated with the
following recurrent formula:

R?,
RI'=Cia + [W Cia
) ot Tj
i—1
R+ X
+ { ’QT, ﬂoﬂ
j=1 J

The worst-case response tinf¥ , of 7; 5 is calculated. To
finish, if (R}, + X; + R,) < D;, thenT; is schedulable,
otherwise we cannot conclude.

3.1.2 Method B of Kim

his approach is an improvement of Ming's methad. (
ormula 2). This method consider the suspension delays
as part of processing requirement of tasks. But without this
fassumption, during the interval of tim¥;, other tasks can

be scheduled. To calculate the worst-case response time of a
task, X; can be reduced and furthermore the worst-case re-
sponse time of; can be shortened. Consequently, to calcu-
late the worst-case response time of a taskhe following
recurrent formula is used:

i—1

— [ R}
R =Ci + M+ {TfWCj,l
g=1 177
il rpn oy x.
- S
=1 !
i-1 | x;
WhereM,; = X, — ijl {TjJ C;

If R?“ = R andR} < D; thent; is schedulable. Other-
wise, we cannot conclude if it is schedulable or not.

Remark 1 SinceM; < X;, if 7; is schedulable with the
Ming’s method (cf. Formula 2), then the task is schedulable
with the method B of kim.

3.2 The Liu's method [9]

To take into account the extra delay suffered by a task
7; due to its own self-suspension and the suspension of
higher-priority tasks, Liu [9] considers this delay as a factor

of blocking time ofr;, denoted; (ss).

The blocking time of a task due to its own suspension is
not more thanX;. To determine the blocking time due to a
higher-priority taskr;, we must study two cases:

e 75, cannot delayr; during more tharC}, units of time
since the task; can be scheduled (or partially sched-
uled) during the suspensionnfbecause the processor
is idle.

e Moreover, if X;, < Cj then the blocking time cannot
be more thanX, units of time.

Consequently, the blocking factor due to each higher-
priority tasks, 7, is never more than the suspension delay
of 7., and never more thafy;,.

Finally, the blocking time; (ss) is equal to:

i—1
bl(SS) =X, + Zmin(Ck,Xk)
k=1

17



Note that Liu’s method is not expected to performaswell e The oblivious adversary defines the task system in ad-
as the Kim’s methods, since it does not specify where the vance based on the characteristics of the on-line algo-
suspension occurs within the task. rithm, and serves it optimally.

e The adaptive on-line adversary defines the next request
of tasks according to the decision taken by the on-line
algorithm, but serves it immediately.

4 Validation of on-line algorithms

4.1 Introduction

An algorithm that minimizes a measure of performance, is
This paper is interested by the validation of on-line algo- c-competitive if the performance obtained by the on-line
rithms. For any objective function, we wish to know the algorithm is less than or equal totimes the value of the
quality of the solution obtained with an on-line scheduling optimal algorithm. More formally, given an on-line algo-
algorithm (hereafter referred to as the performance guaran+ithm A and a task system, the performance obtained by
tee of the algorithm). This quality will not be better than the on-line algorithm4 (Respthe adversary) in scheduling
the quality obtained by an optimal off-line algorithm. Two T is denoteds4(I) (Resp. o*(I)). ConsequentlyA is
commonly used methods to evaluate the performance of arc-competitive if there exists a task systdnand a constant
on-line algorithm are known: csothatos(I) < co*(I).

e The simulation : The on-line scheduling algorithms are

. . . The competitive ratia:4 of an on-line algorithmA is the
compared and evaluated in the confine of a stochastic . . S .
model. worst-case ratio while considering any instaiice

e The competitive analysis : The on-line algorithm is Definition 1 The competitive ratia; 4, of the on-line algo-
compared with an optimal off-line algorithm for the rithm A to minimize a performance criterion while consid-
same problem so that the on-line algorithm achieves 1N any instancd is:
its worst-case results.

. . _ oal)

4.2 The simulation €A = Sub —o

toutl O ( )

The simulation allows to compare the on-line algorithms.

To evaluate the performance of an on-line algorithm, this
method defines a stochastic model by assuming a certairi hi . d hat th . i

probabilistic distribution to compute task features. With this n this section, we demonstrate that there exists no on-line

model, a task system is generated and it is submitted to eV_optimal algorithm to schedule task systems when tasks are

ery on-line algorithm. allowed to self-suspend upon uniprocessor systems.

However, the on-line algorithm is then evaluated within the 1.0 .0 1 No on-line deterministic algorithms are opti-

_co_nflne qf the St.oﬁh:St'C n_10de|. Mor?ovelr_, th'sl appLoach mal to schedule tasks systems when tasks are allowed to
is inconsistent with the environments of on-line algorithms. self-suspend upon a uniprocessor system.

Because the probabilistic distribution model based on past
observations will always model the future arrivals of jobs. prgof :

But, as pointed out by Karp [6], this assumption is inconsis- To prove this theorem, we use the competitive analysis with
tent with the nature of on-line algorithms unless the future an adaptative adversary (cf. Section 4.3). Hence, we define

5 On-line algorithms are not optimal

resemble to the past. a task system and according to the scheduling decision of
N ) any on-line and deterministic algorithm, the adversary de-
4.3 The competitive analysis fines the next request of tasks so that the on-line algorithm

misses a deadline and the adversary serves it optimally. We
The first results of this approach are the results obtained bydefine a task systerh and we show that no on-line deter-

Sleator and Tarjar{15] in 1985. This approach compares ministic algorithm can schedule optimally We consider
the on-line algorithm to an optimal clairvoyant algorithm that at time0 two tasks are available:

in the worst-case. The optimal off-line algorithm (s#ie

adversary defines the instances of problem to comparethe 7:C11=1,X;=7,Ci2=1,D; =10,1; =10
two algorithms. But a good adversary defines instances of . Co1=1,X0=4,Co0=1,Dy=9,T; =10
problem so that the on-line algorithm achieves its worst-

case performance. To analyse deterministic algorithms, twoLet A be an on-line algorithm. At timé, to make its
equivalent adversaries can be used: scheduling decision4 has two choices:
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1. The on-line algorithmA does not schedule at time0
(this schedule is presented Figure 2.a). Either it sched-
ulest; or it lefts the machine idle. In the two cases,

and completed at tim&. Finally, 7; is completed at
time9 andr, attime10. Figure 3 presents the schedul-
ing of I obtained by the adversary.

it schedulesr, at timet, with 0 < ¢ < 3 to respect
the deadline of~ (For the Figure 2.a; = 2). But at

time 3, an other task with a period equals ta0 is . B H |
released: 5 : a 5 5 10
k. | -/ /,--1—1- m
73:011=1,X1=2,C12=3,D1=9 ! r T ! T o

n - ™

At time 3, the on-line algorithmA schedulesrs;
since it has not laxity. Bu#d has not enough time to
completer, and 73 before their common deadline at
time 9. Consequentlyd has done a bad choice and
hence, the scheduling éfunderA is not feasible.

Figure 3. The on-line algorithm A schedules
5 attime 0

Consequently, there exits no optimal on-line and determin-
istic algorithm to schedule task systems upon uniprocessor
system when tasks are allowed to self-suspend.

The optimal off-line algorithnschedules at time,
and at timel, r;. At time 3, 73 is released and imme-
diately run. At time5, 7 is resumed from its self-
suspension and completed at tirbe Finally, 73 is

completed at timed and r; at time 10. Figure 2.b O
presents the scheduling 6funder an optimal off-line
algorithm. 6 Analysis of feasibility tests

6.1 Introduction

o e
Q Z 4 a8 g 10
|
b _ I«—-WI -/ s N In this section, the feasibility tests presented in the Sec-
a z 4 g g

18 tion 3 are analyzed. We use the two validation techniques

n . ™ presented in Section 4. These feasibility tests compute the
upper bound of the maximum response time of every task.
Figure 2. The on-line algorithm A does not At first time, we establish the pessimism of these estima-

schedule 7, attime 0 butattime ¢ =2 tions. To determine this pessimism, we use the approach
presented by Epstein and Rob Van Stee in [5]. They pro-
Consequently, we show that if an on-line and deter- vided lower bounds for on-line deterministic (or random-

ministic algorithm chooses to not rus at timeso, it ized) algorithms for several optimization criteria. They

is not optimal since there exits a feasible schedule of studied problems in term of competitive analysis. They au-
I tomatically generated a huge number of synthetic task sets.

For each task set, they computed the competitive ratio for
the on-line algorithm studied. Finally, they kept the task set
with the worst competitive ratio. In our work, the optimal-
ity criteria is the minimization of the maximum response
time. We use the same method: we generate, with a brute
force generation (as done in [1] for non-preemptive system),

. ) ) a huge number of task sets and for each feasibility test we
A schedulesr, at time 2 (to respect its deadline) |eep the task set leading to the worst competitive ratio. To
and at time6, 7, is resumed from its self-suspension ¢qompjete this analysis, we define a stochastic model to gen-
and scheduled. But between tifieand 10, A must  grate 3 Jot of task systems. With these task systems, statis-
completer; andr,, hence it is impossibleA cannot tics are defined to compare these tests.

schedule the task system Figure 3.a presents the  The feasibility tests presented in this paper are based on
scheduling off underA. fixed-priority task systems. Consequently, to use the com-
petitive analysisgf. Section 4.3), we don’t use an optimal
off-line algorithm as adversary but we use the fixed priority
algorithm RM).

2. When A schedulesr, at time 0, at time 1, it must
scheduler; to respect its deadline. At tim2 arrives
74 With implicit deadline [y = D,):

T4 - Cl,l = 47X1 - 3,01’2 = 1,T1 - ].0

The optimal off-line algorithm schedules at tifery ,
attimel, =, and at time2, 74. Attime 6, 7 is resumed
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6.2 Simulation environment period, the period of the task previously generated, is mul-
tiplied until the utilization factor (of the task system) is less
The first constraint is to obtain schedulable task systems.than0.7.
The utilization factor of generated task systems is boundedFinally, we consider tasks with implicit deadlines. More-
by 0.7. Decreasing the utilization factor is an important over, the generated task systems contain only two or three
parameter for generating feasible task systems. tasks to firstly limit time while computing exact response
times, and secondly to exhibit task systems leading to
The presence of anomalies for scheduling tasks with worst-case performance guarantees.
self-suspension in fixed-priority task system [13, 14] in-
creases the costs of computations since reducing processing.3 Lower bounds
requirement can lead to worst-case response times of tasks.
6.3.1 Introduction

The feasibility tests are based on the fixed-priority schedul- ] ) )
ing algorithmRM. But, we proved [13, 14] that schedul- Next subsections detail task sets automatically generated by

ing anomalies can occur while scheduling tasks with self- OUr simulator leading to the worst-case performance of the
suspension undeRM. Consequently, if the execution re- three considered feasibility tests.

quirement of a task is decreased of one unit of time, the

response time can increase and a deadline can be misse6.3.2 Method A of Kim

Hence, to determine the exact worst-case response time O{ower bound 1 The lower bound of the competitive ratio
task systems where tasks are allowed to self-suspend, Weor the feasibility test of the method A of Kim to minimize

”.‘“St test all possible processing requirements (and suspent-he maximum response time while scheduling tasks allowed
sion delays) for each job of each task.

to self-suspend at most once2i9H1667.

Remark 2 C; (resp.X;) is the upper limit to its processing ]
: . Proof:
requirement (resp. worst-case suspension delay) oftask

Consequently, we consider that the execution requirementl‘et T4 be the following task system containing three tasks:

(resp. suspension delay) of a task can vary betwieand 701 =3.X,=2Clo=3T =12
C; (resp. X;) since all parameters are integers. Moreover, ' ’ o ’
C;.1, X; andC; 5 belong to the interva]l, 4]. T2:021=3,X=1,C2=1T5 =196

T3 0371 = 1,X3 = 1,0372 = 1,T3 = 96
We define two rules to reduce the hyperperiod length:
o _ The upper bound of the maximum response time obtained
e To minimize the length of the hyper period, the tasks ith the method A of Kim denoted for each taskr; of
are synchronous. I4is:

e To minimize the computations and the length of the

A A A
) . ) : =8 1: =17,73:05 =35
hyper period, tasks have harmonic periods (Definition e 72072 73793

2).
Definition 2 Letl : (11, 72,...,7,) be atask systerd.has ! | |
harmonic periods if and only if the two following properties o : 4 5 8 10 1z
are respected: m - ™
< <---<T, Figure 4. The exact maximum response time
Vi,i € {2,...,n},T; mod T;—1 =0 obtained by RM while scheduling 14.

Remark 3 We assume that tasks are indexed in increas-

ing order of periods. The second property limits the length Figure 4 presents the exact maximum response time ob-

of the feasibility interval and the number of jobs within it. tained with the fixed-priority scheduling algorithiRM.

Consequently the task with the smallest priority,is Since There are no scheduling anomalies and for that reason, tasks

we use the fixed priority scheduling algorithm, has the are scheduled with their worst-case execution requirements

longest period. and suspension delays. At tinte RM schedulesr; and
during its suspension it schedules partiatly At time 7,

To generate a task: first, the executive requirements and the, is scheduled. At timé, 7, is suspended ang, sched-

suspension delays are computed. Finally, to determine theuled. Finally at timel 1, =, finishes its execution angd, at
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time 12. Hence, the exact maximum responses time of tasksConsequently, the competitive competitive ratio for the sec-

(denotedr M) are: ond method of Kim is:
oM =8 1y oM = 11,75 : o FM =12 BM op(l) > o5(Is)

anyl OrM(I) — orm(IB)

Consequently, the worst-case competitive ratiolfes:; o of  oF
= max ( RM*® _RM® R]\/[)
oal) _ oa(la) oM oM o
M = sup > o 22
anyl OrM (1) — orn(1a) > Z-="=27
A A A 05 8
g g g
> 1 2 3
= max (U{%M’ GBI O.é%]\/[) 0
A
= oM T 12 2.91667 6.3.4 Jane W. S. Liu’s method
O Lower bound 3 The competitive ratio on RM obtained
with the method of Liu ig, 875 to minimize the maximum
response time for tasks are allowed to self-suspend at most
6.3.3 Method B of Kim once.

Lower bound 2 The lower bound to minimize the maxi- pygof:

mum response time for the method B of Kim is equal to we yse the instanch; defined in the Theorem 2. The upper

2,75. bound of maximum response time obtained with the method
of Liu for each task; of Iz and denotediL are:

Proof:

Let Iz be the following task system: ol =510k =23, 150k =47
1:Ci1=1,X1=1,C12=3T1=6 Figure 5 presents the exact maximum response time ob-
Ty Coy=1,Xy =3,Chn =2,Ty = 270 tained withRM while scheduling/ . These results are:
T3t C(3,1 =3,X3= 2a03,2 =3,T3 =810 T J{%Jw =95,T: O'QRM =8, 73 : U?)RM =24

The upper bound obtained with the second method of Kim Hence, the competitive ratio obtained for the method of Liu

for each task; of I and denoted [ is equal to: to minimize the maximum response time is equal to:
B B B
TLiop =b,Ta:08 =22,73:05 =35 M gup or(l) - or(Ip)

anyl OrM(I) — orm(IB)

max
[P — RM*» _RM’ _RM
| I : I B o™ oM oy
z 4 & g L 23
n - ™ > 92 _ 29 575
- oM 8
Figure 5. The exact maximum response time |

obtained by RM while scheduling 5.
6.3.5 Comparison of feasibility tests

Figure 5 presents the exact maximum response time of taskrhese results show that the method BKarn obtained the

2. At time 0, RM schedulesr; since it has the highest pest results. But, we cannot conclude that the best feasibil-
priority. Attime 1, 71 is suspended ang; scheduled. At jty test is the method B. Because, the only possible conclu-
time 2, 5 is suspended and is completed. At time3, 73 sion is that these feasibility tests are not comparable. We
is scheduled during the suspensionref Attime 6, 71 IS cannot conclude since it is possible for each feasibility test
released and at time, , is completed. Consequently, we g determine tasks sets where the feasibility test is the best

obtain the following exact response times: test but it is the worst for another. Kiet al. have already
L RM _ s RM _g . . RM _ oy proved that their two methods are not comparable [7]. Now
1-01 1722 O3 173 - 03 to prove that all the tests are not comparable, we show that
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the method A oKim and the method dfiu are not compa-

rable:
Let I be the following task set: miop =510 = 6,131 05M =14
m:Ci1=2X1=3C.=1T =7 The Table 1 presents for each task, the competitive ratio
Y 02’1 LX,=3 02’2 9T, =56 obtained with each feasibility test.
73: 051 =3,X3=1,C32=2,T35 =392 Tasks Method A | Method B | Method of
» . . of Kim of Kim Liu
The competitive ratio obtained for the three tests:
T 1.00 1.00 1.00
oBM(I) =1.47 Ty 2.17 2.17 2.33

oM (1) =1.80

. ) ) ) Table 1. Competitive ratio for each task of I
The ratio obtained with the method A Kim is better than

the ratio obtained with the method bil. Consequently, the competitive competitive ratis,, for

this method is:
Let I’ be the following task set:

CRM apsi(l) o or(lc)
T1 0171 = 27X1 = 3,0172 = ]_7T1 =9 Bst anyl URM(I) = UR]\/[([C)
m2i 0o =2, X2 =302 =3, T2 =45 > sup {inf{c{" (), " (), i () }}
T3:C31 =2,X3=2,C32=1,T3 =90 1<i<3

> 2.16667
The ratios orRM are:

oBM(I') = 1.69
oBM (') = 1.06 6.4 Simulation results
oM (1) = 1.56
6.4.1 Introduction
But with this task set, the method bfu is better than the
method A of Kim. To conclude all tests are not comparable.
Consequently, we can define a last test: the best method.

In this section, we present numerical results obtained during
the brute force generation described in Section 6.2. All tests
(upper bounds and the exact test) have been applied to every
generated task set. We are aware that such a simulation en-
6.3.6 The Best Method vironment is not sufficientof. [2]) to exhibit relative merits

This method consist in applying favery task all tests of the considered feasibility tests that they are only valid in
and to store the smallest computed response time. Such #e confine of our stochastic model (see Section 6.2).
method can help to decrease the competitive ratio (but we

have no formal proof of that fact). 6.4.2 Results

Lower bound 4 The competitive competitive ratio ob- TO obtain relevant results from a statistical point of view,
tained while considering for each task system the best fea-we generated one million of tasks sets. The tasks sets are
sibility test is2, 16667 to minimize the maximum response generated with the procedure defined in Section 6.2. The

time for tasks allowed to self-suspend at most once. Table 2 presents statistical results obtained by the simulator
for the feasibility tests.
Proof: The first row of the Table 2 presents the percentage of times
Let I be the following task system: where every feasibility test has been the best one (while
scheduling task sets). The method BKifm leads to the
n:C0=1LX1=10C,=3T1=9 best results.
To: 01 =1,X0=3,Co0=1Ty =72 The average competitive ratios in r@wof the Table 2 al-
73: 051 =3, X3 =2,Cs9 =1,T5 = 648 lows us to remark that the method BKim is the feasibility

test arriving in first position. But even if the percentage of
The exact maximum response time obtained with the algo-the method otLiu is equal to zero, this feasibility test has a
rithm RM are: average less than the average of the method Kirof
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With the standard deviations (row 3 of the Table 2), the References

feasibility test with the smallest standard deviation is the

method A ofKim.
Feasibility | Method | Method | Method
tests Aof Kim | Bof Kim | of Liu
Best 3.64% 99.8% ~~
method 0.00%
Averagera-| 1.65 1.21 1.50
tios
Standard 0.18 0.20 0.22
deviations
of ratios

Table 2. Results of simulation for the feasibil-
ity tests for task systems with 2 or 3 tasks

7 Conclusion

In this paper, we have presented some results on tasks
For such task [g]
systems there exists no on-line optimal algorithm. We also
presented the performances of three different feasibility
For these tests, our aim was to compute their
pessimisms since they compute an upper bound of the

allowed to self-suspend at most once.

tests.
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Abstract During the design phase, real-time system can be struc-
tured as a set of concurrent, preemptive tasks with hard
In the context of fixed priority scheduling on hard real- and/or soft deadlines. A single task provides sdreeefit
time systems, we investigate the scheduling problem wherdo the system when it achieves all or part of one or more
timing and QoS requirements have to be optimized. Therequirements. The tasks share some scarce computer re-
QoS is expressed in terms of relative importance relation- sources that must be allocated wisely in order to obtain the
ships. Thus, the problem is formulated as finding an opti- greater benefit possible. This is a scheduling problem that
mal priority ordering that maximises the importance cri- can be solved by scheduling approaches such as the Fixed
terion. Optimality in this context means that there is not Priority Scheduling EPS scheme.
other feasible schedule with higher importance. The main  FPS is considered an industry standard providing good
contribution is an algorithm that finds such optimal prior- performance, predictability and flexibility. On FPS, the
ity assignment it ((n2 +n)/2) wheren is the number of ~ assignment of priorities and the feasibility analysis aee t
tasks. We indicate that if any QoS requirement can be cor-two main areas of work. The former establishes the or-
related with the importance concept, our algorithm can der at which the tasks will be executed and the last checks
find a good solution for problems with such QoS require- whether the timing constraints will be fulfilled. When the
ments. We exemplify this by applying the algorithm to the benefit is measured only with regard to the timing require-
problem of minimizing the total number of preemptions. ments, FPS allows solving problems with complex tasks
models [6]. However, when the benefit includes other QoS
measures, FPS exhibits some weaknesses.
1 Introduction For instance, FPS normally assigns high priorities to
tasks with either shorter periods (Rate Monotonic [15])
or shorter relative deadlines (Deadline Monotonic [16]).

_ Hard real-time systems must simultaneously handle qever, important tasks may not have short periods or
timing and Quality of ServiceQo3 requirements. While  yoajlines. It is true that, for such tasks, the priorities ca

classical scheduling policies cope satisfactorily onlywi  pe aiseqd cutting the tasks down into smaller ones with
the timing ones, dealing simultaneously with both require- g qrter periods, but it increases the run-time overhead and
ments is still an issue. introduces artificial constraints to the problem [25].

During the specification of requirements, QoS require- |, b4 real-time systems, when the benefit is measured
ments (e.g._ safety, reliability, pe_rf(_)rman_ce) are defined. with respect to the timing requirements, “meet all hard
These requirements form a multidimensional set of req- yeaqijines” is a criterion usually defined. How to measure

uisites interrelated that must be conveyed throughout all y,q penefit with respect to QoS requirements is still motive
stages of the cycle development. Normally, conflicts ¢ jiscussion and research.

among requirements exist and then, tradeoffs have to be In the context of EPS. we deal with tHicriteria

d_ef|r_1ed to help the designers V\."th their _deC|S|ons. A_S' scheduling problerwhere hard timing requirements have
signing importances to the requirements is a mechamsm,[0 be met and the QoS should be maximized

to specify such tradeoffs. In effect, typically the require
ments are not equally important; some may be essential _

while others may be desirable, and therefore each require-1-1  Measuring the QoS

ment should be rated by importance and/or stability to  In order to include QoS requirements in a scheduling

make these differences clear and explicit [9]. problem, a QoS metric has to be defined. A QoS re-
quirement can be either quantitative or qualitative, and
*Supported by CONACYT grant No. 61146 testable for presence in their implementation. If quanti-
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tative, quantifiable in at least one scale of measure [8]. 1.2 The Bicriteria problem

The literature shows that the QoS can be expressed Assuming that the QoS is conveyed as importance rela-
with artifacts such as time-value functions and then, met- tionships, the bicriteria scheduling problem can be formu-
rics such as “the value accrued” during a window time are lated adinding a feasible priority ordering that maximises
utilised. Including timeliness and value into the schedul- the importance Two challenges can be devised:
ing decisions is sought by the value-based schemes.

In the the value-based (or reward-based) schemes, the
value is represented as utility functions that describe the e How to solve the bicriteria scheduling problem.
utility obtained when a task completes [10]; this utility
can remain static or can vary with the time. Value-based
schemes use the utility as either a priority or a admission
policy. These schemes have several drawbacks namely:

e How to define the importance metric.

Solving problems with multiple criteria is not simple;
optimizing one criterion could decrease the value of the
other criteria in the problem and hence, a number of so-
lutions are possible. However, when the commitments
1. They are heuristics. among criteria are specified, optimal solutions can be de-
fined. In hard real time systems, the commitment is with
the timeliness; the deadlines must be satisfied and the im-
3. There is not a methodology for the design of utility portance is only a secondary objective. We observe that if

functions [13]. the tasks set is feasible under FPS, then there exist a sub-

) o ] ) . set of priority orderings that are feasible. The aim is to
4. Itis assumed, a priori, that arithmetic operations can inq the feasible priority ordering that maximises its im-
be performed with the the utility functions, which it portance.

is not necessarily true [18]. Note that by labeling a set 6f tasks according to im-

Drawbacks (1) and (2) have relegated value-basedPortance, the set a¥! orderings of tasks in lexicograph-
scheduling into the domain of soft dynamic-priority real ical order is also ordered according to importance. For
time systems. Points (3) and (4) are related with the mean-example, forN' = 3 tasks{a, b, c} wherea is the most
ing of value. Prasad et al. [18] have shown that the as-important anct the lower, thes! orderings ar@bc ach
signment and the use of values are not separated issueBac bca cab cba If we assign priorities according to
but linked. Any assignment of values must conform to a Positionxy zsuch thaix has the highest anylthe lowest
scaleof measurements and the scheduling scheme must bériority, only a subset of these orderings may be feasible.
cognizant of the scale utilized to perform only meaningful The aim is to find the feasible ordering, which is higher
operations. (or lower) in lexicographical order of importance. If in

The above drawbacks discourage us for using time- OUr caseébac cabandcbaare feasible, thebacis the
value functions to express the QoS in the bicriteria OPtimal priority ordering; i.e it is the closest onedd c
scheduling problem. Instead we observe the problem in N general, this problem can be solved by generating

a slightly different way by defining qualitative importance theN! priority orderings in lexicographical order and test-
relationships to measure the QoS. ing them for feasibility. The first one that is schedulable is

the optimal one. This is computationally intractable even
for small N. We show how a pseudo-polynomial algo-
rithm can find the optimal in the section 6.
Time-value functions are a powerful tool for representing  The rest of the paper is organized as follow: Section 2
and reasoning about QoS preferences. However, they casummarizes some related work. Section 3 establishes the
be very difficult to both derive and measure. process model. Section 4 illustrates an example. Section 5
An alternative form of expressing QoS requirements is defines the problem and Section 6 presents the solution.
using a class of preferential statements of the form “it is Finally, Sections 7 and 8 presents an evaluation and our
more important to me that the value of X be higher than conclusions respectively.
the value of Y”. These statements are caltelhtive im-
portance statemen{d]. Such statements do not require 2 Related work
complex quantitative assessment. A complete framework
for expressing the relative importances is found in [4]. To the best of our knowledge no algorithm for solv-
By rewriting the above statement as “X is more impor- ing this problem has been reported in the literature. How-
tant than Y”, we can define thask importances a pref- ever, algorithms for finding feasible priority assignments
erence for executing a task with regard to the other tasksthat optimize other additional QoS criteria have been de-
in the system. For example, assuming that in a real-timescribed. For instance: in [14] a priority assignment al-
database system a taskimplements a critical transaction  gorithm improves system fault resilience in fault-toldran
and a tasky;, implements something else, safety and relia- hard real-time systems. Approaches to reduce the num-
bility will be comprised ifr, is interrupted frequently; the  ber of preemptions in FPS have been published but such
statement ¥, is more important tham,” expresses thisas  solutions introduce additional problems such as requir-
a QoS requirement. ing non-standard runtime support [24], or multiplying the

2. They do not guarantee the timing constraints.

1.1.1 Importance Relationships
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number of tasks to be scheduled by at least a factor of (abc ... z) is an ordering on se§ = {a,b,c,...,z}.
two [7]. In the energy consumption problem, the use of Note that the ordering can be specified implicitly by the
energy must be bounded to guarantee stability and/or ex-(abc ... z) notation without requiring the< operator.
tended the lifetime of a system. In this case, the system in-For instance, given the order relati@+"has a shorter
cludes specialized hardware (e.g. Dynamic Voltage Scal-deadline than; and a task sefa, b, ¢} with D, > D; >

ing processor [19] or I/O Device Power States [11]) and D., its ordering under this relation ° = (cba). Note
the solutions are pairfpriority,power-state)such that at  that we usg } to denote a set and) to denote an order-
run-time both the priority and the power-state are applied. ing. Following this convention:

A number of papers related to this problem have been
published and some solutions can be found in [22] and
[3]. On Real-Time Databases Systems, transactions must
satisfy timing constraints and consistency constraints of 4 For a given tasks sef, we denoteS the set of all
the database [20]. In [12] periodic transactions that ac- possibleN! orderings ofS.

cess main memory resident data via read/write locks are )

scheduled using rate monotonic. On the other hand, the ® Any two orderings inS can be compared according

e The ordering defines a priority assignment over the
tasks such as, if < bthenP, > P,.

vast literature on value-based scheduling is primordially their importance as follow: let, 3 € S, we say that
related to soft real-time systems. In this paper we present a is most important tharg if comparing each ele-
a more general approach. ment «[k] with 3[k], starting from the leftmost to
the rightmost, the first difference is in thé" task
3  Process model and the importance ef[k| is greater than the impor-

tance of3[k]. Note that it is similar to comparing
two strings. Furthermore, note that becausk] is
more important thars[k] thena[k] is lexicographi-
cally smaller tharg[k]; therefore, we can say that if
the orderingx is most important than the orderirity
thena is lexicographically smaller tha; we de-

We consider an extension of the traditional process
model, where a set aWV computer tasks must be sched-
uled on a single processor systemiask setis a collec-
tion of tasks and anrderingis a totally ordered task set.

31 Tasks note it a.Sa <1ez 8. The operator;.,. also applies
The tuple(C,T, D, P, B, J,I) characterises a task totasks; €.97i <iex 7;-

whereC is the worst case computation tinmg,is the pe- e Any ordering{(abc ...jk ... zyz) can be repre-

riod or the minimal inter-arrival time between two con- sented agp w) where the prefixpis (abc ... j) and

secutive releases, depending whether it is periodic or spo- the suffixw is (k ...z y z). The meta-orderingy =)

radic; D is the deadline of the task relative to the actual denotes all the orderings i starting with prefixp.

release (i.e. ifr is invoked at timet, it should have fin- . _ _ _

ished byt + D); P is the priority of the task where is Lets define some interesting orderingssin

the highest andv is the lowest priority; without loss of e ForanyA C S, 5(A) is an ordering with priorities

generality we assume that two tasks do not share the same  4gsjgned according the Deadline Monotonic Priority

priority. The blocking factorB is the maximum interfer- Ordering (DMPO) [5] where the functiohordersA

ence that a task may suffer from lower priority tasks due to according the relatiothas a shorter deadline than”

a share resource protocol [21]. The release jiftés the

maximum elapsed time between the programmed initial ® S* is the ordering by DMPO; i.e5” = §(5).
release time and the real ready-to-run time, which usually
is zero for periodic tasks.

The importanced is an unique natural number repre-
senting the importance of the task with regard to the other
tasks in the system, wheteis the highest one. Note that Finally, the following functions are defined:
this imply that if7; is most important that; thenl; < I,
for any twor;, 7;. The comparison between importance
will be called alexicographiccomparison as follow, if
7; IS most important than; thenr; is lexicographically

smaller than;. Finally, the tasks are preemptive, they are o Due toS can be ordered lexicographically, for all or-
released at time zero and they do not suspend themselves.  derings ing, its lexicographic order defines

¢ ST is the ordering with priorities assigned according
the relation”is more important than’. NoteAthatSf
is the lexicographically smallest orderings$h

e Fora € §, the functionF'(«) returnstrue whene is
feasible, i.e. the ordering passes the FPS test [1];
otherwise returnfalse

3.2 Task Set IZS_)[Ovlv"'v(N!_l)]
Let S be a set ofN tasks andS™ = (r1 72 ... 7n)
an ordering ort with relation< (“precede to”) such that
Tj < Tj+1, Vj=1,2,...,N — 1. To simplify the nota-
tion we will usea, b, ¢, . .. z to denote tasks and therefore a=<p & Ia)<I(B)

which is a function thag indexes each elemenfin
such that for anyy, 5 € S
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T| T D | C| R | I | QoScode ST = (abcde)is a priority assignment by importance;
e|100| 80 | 13| 13 | 5| 321 unfortunatelyS’ is unfeasible (undes’, R, is 229). We
d|240|240| 37| 50 | 4| 3,12 will show later that an assignmeft = (beadc) is opti-

¢ | 330|330 55| 1183 2,31 mal in the sense that both, it is feasible and it is the closer
b | 350|350 |56 |174| 2 2,1,3 one toS”.

a | 480|400| 682921 1,2,3

5 Deadline vs Importance: The Scheduling

Table 1. Set S5 with QoS codes where 1=Safety, 2=Re- Problem

liability, and 3=Performance.

In real-time systems meeting the timing constraints is
fundamental while any other QoS requirement can be con-
therefore, the lexicographic distance between any or- sidered as a soft requirement. Consequently, maximizing

dering can be determined. Note tHa57) = 0. the importance is a requirement that can be relaxed as for
example, defining different levels of satisfaction with re-
4 Motivational Example spect to the level of importance; while closer to the most

important ordering, greater the satisfaction. We can for-

In order to illustrate the problem, let us consider an hy- Mulate the problem &inding a feasible priority ordering
pothetical system with several QoS requirements, which f[hat minimises the distance to the most important order-
must be implemented in a fixed-priority real-time operat- ing. More formally:

ing system. The requirements are (in order of criticality) Problem 5.1 (BiCriteria Schedulin :
L . g Problem)Given a
Safety (S=1), Reliability (R=2) and Performance (P=3). set of tasks and a orderirfff , find S* which is an assign-

The tasks have |nd|y|dua! QoS requirements that can bement of fixed-priorities that meets their deadlines and is
coded according a string with elements S,R,P. For exam-y - closest tas!

ple, a task with high-safety, medium-reliability and low-

performance requirements is coded as (1,2,3), i.e. (S,R,P) In section 6.2 we present an algorithm which finds an
The tasks are as follows:, implements a control al-  ordering that solves the scheduling problem stated above.

gorithm which is essential for the stability of the system We affirm that, if all tasks are feasible under the deadline

and then the designer assigns the code (1,2,3kads in- monotonic priority ordering, then there exist a subset of

puts from sensors and store them in a database. The codpossible feasible orderings where the importance objec-

(2,1,3) is assigned because the database represents the ettve can be achieved. Our algorithm looks at this subset

ternal environment and then, the data freshness is edsentiaand finds the one which is the closest$b6, the ideal so-

for reliability. Similar reasoning can be given to the other lution.

tasks. Their codes are shown in the table 1. Our algorithm is based on the traditional scheduling
Observing the codes: in terms of safety, ‘is more theory on real-time systems [5] and on the multi-criteria
important thanr,”; in terms of reliability “r, is more im- scheduling theory developed on the operational research

portant thanr,”; in terms of performance, is equally area [23]. The next section introduces some concepts on
important thanr,”. It is easy to conclude that in terms multi-criteria scheduling and defines some metrics. These

of the overall QoS, #, is more important tham,”. Simi- metrics provide the clues to show our solution.
lar reasons can be given to specify the rest of importance
values but for the sake of simplicity, we omit them. 5.1 Multicriteria Scheduling Problems

Note that this assignment of QoS codes provides a par- T'kindt and Billaut [23] define themulticriteria
tial order (e.g. X is equally important than Y). However, scheduling problenas “the problem which consists of
the designers can always use a tie-break rule using theifcomputing a pareto-optimal schedule for several conflict-
knowledge specific to the application. This methodology ing criteria”. A simple definition of pareto-optimal sched-
is only a simple example of how the importances can be ule is given by Pinedo [17] in the context of minimization
assigned. A complete framework is found in [4]. problems: “A schedule is callgohreto-optimalf it is not

Our objective is to guarantee that all activities meet possible to decrease the value of one objective without in-
their deadlines and fulfil their importance requirements. creasing the value of the other”. When only two criteria
The tasks have deadlines less than or equal to their periodsre involved in the problem (as in our case), all pareto-
and hence, the ordering under DMPCSI8 = (edcba). optimal solutions can be represented in a cartesian plane

Table 1 shows the tasks set with their respective worst- such that, all tradeoffs between criteria can be shown.
case response timég;, computed with the response time Graphical representation of the problems assists both,
analysis equation [1]. The ordering” is feasible and  to illustrate the problem and to identify clues to solve it.
hence, from the point of view of the timing constraints, it Figure 1 represents the space of solutions of a task set
is satisfactory. However, it would be bettenifindb have measured by one pair of metrics such that the optimums
higher priorities to meet their importance requirements. tends to zero. Note that the point that minimises simulta-
These two task are the most important. neously both criteria does not exist.
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Figure 1. A Bicriteria Solution Space. A dot represents Figure 2. Plotting all priority orderings of Sh. ST is not
a possible solutionanda X marks a pareto-optimal so- feasible. ST is feasible but has low importance metric.
lution The optimal bicriteria  S* is (beadc)
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we are able to define: Figure 3. Similar to figure 2 but the priority orderings

are connected according their lexicographic order

Definition 5.2. An orderingsS’ is feasible iffZp (S") < 1
where R
— J
Zp(9') = Vied {D]} 1) we will defineZ;, the metric which describes the distance
from any ordering t&5” as follow.
Note that, ifZp < 1 the orderingS’ is feasible; other-

wise it is qnfea;ible. Furthermore, WhZ'I’Lb. = 1 or very Z1(8") = I(8") 2)
close tol, it indicates at least one task finishes very close
to its deadline. This metric give us more expressiveness
that a simple yes/no answer.

This metric defines the second objective. We will show
how to applyZp andZ; using our example.

5.4 Portraying the problem

Figure 2 shows alb! = 120 priority orderings ofSs
(from table 1) plotted with both metrics.

For example, the response times f&” are
{13,50,118,174,292}; it is feasible but it has low im-
portance because its index is 119. On the other hand
the response times fag! are {68,124, 179,216, 229}
and therefore it is not schedulable. The optinsél is
(beadc)with response time§56, 69, 150, 187,292} and
index 44. Note that:

5.3 Importance (Z;)

The second objective is with regard to the tasks impor-
tance. In our model the importance only requires fulfill-
ing the properties of a totally ordered set such that any
a,b € S can be compared.

As defined in section 3, ang’ € S can be indexed
by a function. The most important ordering§$, which
is lexicographically smaller and henééS?) = 0. In the
lexicographic order, any two consecutive orderings differ
only by a pair, and the most important of them is always
the lexicographically smaller. Consequently, the distanc e With respect toZp, there are 32 feasible orderings
from any orderingS’ to ST is simply I(S’). Therefore, (Zp(Ss) < 1);
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e With respect to bott¥Z, and Z;, the best solutions Consider an ordering’ = (abcd) and an ordering
tend to zero. This example is an extreme case whereS? = (dcba). Suppose that we apply the FPS tesfto
ST is completely opposite t6°. and we find thatS! is feasible. The optimality of DMPO
indicates that it is no necessary to apply the tesstb
Clearly, the problem is how to determir#&" without  pecause if5” is feasible thers® is also feasible; but the
having to enumerate all the orderings. We can figure out contrary is not true, ifS? is feasible we cannot assure
a solution looking at figure 3 carefully; it contains the anything about the feasibility ¢f’ or any other combina-
same data but the points are connected successively suchon. However we can affirm that 82 is unfeasible then
as they would be generated (in lexicographic order). Note any ordering of these four tasks will also be unfeasible.
that there are local minimums (Ieft-side peaks) distridute Now, consider that we exters® with an arbitrary task
around the indexes 23, 47, 71, 95 and 119. In addition such that we have an Orderimgdcba> (remember that
note on the left side, which orderings correspond to such (4 ¢pa) is ordered by DMPO) and we apply the FPS test.
points. The Index 23 corresponds(ioe d c b) where(a) If (zdcba) is feasible, then there are some orderings in
is the most important task plus a suffixd cb) ordered by (1 «) that are feasible. However, {f d ¢ b a) is unfeasible
DMPO. The Index 47 igb e d ca) where(b) is the second e can affirm that no ordering ifx x) is feasible.
most important task plus a suffix ordered by DMPO. The | ets define us any vertexpw) with w ordered by
rest have the same pattern. Our algorithm uses this patterrpmpPO as follow.

to reduce the search space.
Definition 6.1 (entry-point) An entry-pointto a subtree

6 Solving The Deadline and Importance (¢ *) is a vertex withv ordered by DMPOQ; i.e.

Problem entry point= (¢ §(w))

This section is divided in two parts:

1. We show how a sef can be organized in a tree, and The next theorem resume the above observations.
how whole subtrees can be skipped by identifying

some local minimums called entry-points. Theorem 6.2. If the entry-point(¢ é(w)) is unfeasible

then any ordering i{¢ *) is also unfeasible.

2. We present the algorithm D&I, which performs & proof, By contradiction, suppose that there exist a feasi-
branch and bound search into the tree defined. In thep|e ordering in(¢ *) sayS’ = (¢ w). On the other hand
worst-case it performs—-* steps to find the solu- g6 — (4 §(w)) is an unfeasible ordering. Both orderings
tion. The algorithm is described and its optimality is  ghare the same and differ only by the order on.

proved. Note that ifw has less than 2 tasks, théh = S and
this contradiction proves the theorem. Otherwise, the fea-
6.1 Organizing the Search Space sibility of S” andS? depends only ow; all tasks ing are

The search space consists on the$etdered lexico-  not affected by any change in
graphically and organized as a tree. For the sake of sim- The proof of optimality of the DMPO assignment [5]
plicity and without loss of generality, we will defing/ as shows us that, becauséis feasible, exchanging any pair

{(abc ...z) wherez is the N*" task. of tasks (inw) non-ordered by shorter deadline give us a
The root of the tree iSabc ...z). The immediate feasible orderings”. Following the same process we ob-
sons of this three are th&¥ subtreesa *), (b *), {c *), tain orderingsS”’, S"" ..., S™ which are also feasible.
..., (z ) ordered lexicographically. Each one of these The last one isS" with its w ordered by DMPO.S™ is
subtrees had’ — 1 sub-subtrees where each one has 2 identical toS° and therefores? is feasible. This contra-
ones and so on. For examplg, *) has(ab x), (ac *), dicts the hypothesis and concludes the proof.
(ad*),...,{az*). Therefore, any subtree can be repre- O

sented as¢ *). A vertexis represented ag w).

The reason for organizing the space into subtrees with
this configuration comes from an interesting property re-
lated with the optimality of DMPO and the generality of
the FPS test:

Note that wheny is empty, the entry point is” and
hence, ifS” is unfeasible then all orderings &fare un-
feasible. In addition, the theorem gives us a useful corol-
lary. Consider a subtrel@ *) and a feasible verte(o w).
The proof of 6.2 shows that orderingby deadlines will

e First, DMPO is optimal in the sense that if a set give us another feasible ordering and hence:

is schedulable by any fixed-priority ordering then it Corollary 6.3. If an ordering (¢ w) is feasible then
also is schedulable under DMPO. (¢ 5(w)) is also feasible.

e Second, the FPS test is necessary and sufficient and The Theorem 6.2 will be used to examine the search
it is independent of the assignment of priorities. space. Testing a vertefo 6(w)) allows us to decide
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Algorithm 1 D & | (Deadline and Importange
Require: SP feasible,S! unfeasible

1: Setp =0, w<= 8T, ws =8P k=0

2: while SizeOf(v) > 1do

3 letr < wlk]

4:  letws_; < delete(ws, )
5. build S}, < (¢ T ws—;)
6: if F'(S},,,)then

7: S* < Sf.st

8: o= (o)

o: w <= delete(w, T)

10: W <= Ws—j

11: k<0

12  else

13: k<k+1

14:  end if

15: end while

whether the subtregp ) can be skipped or whether we
need to look inside it. This process is applied recursively

tested ¢$tep § and if it is feasible, it is saved as a partial
solution S*, 7 is deleted from bothu and ws, ¢ is up-
dated and the indek is reset §teps 7-1); otherwise,k

is advanced to the next D&l stops when there are not
more subtrees to visit has length one). Note that the
worst-case is when the only solution§®’ and its order is
contrary toS”. In this case, the entry-point of the firat
subtrees will be tested and thé'" will be S}, = S”;
afterward, the next level aV — 1 subtrees will be tested
and the(N — 1) will be againS;.,, = SP and so on.
Thus, in the worst-case, the solution will always$y8. It

is also easy to show that the algorithm will always stop.

6.2.1 Complexity

The worst-case occurs when the only solutios s and

its order is contrary t&5”. In such case the loop is exe-
cutedN times andw is reduced taV — 1 elements; after-
ward the loop is executedy — 1 times andw is reduced

to N — 2 elements and so on. Therefore the loop exe-

cutesN + (N — 1) + (N —2) +... + 1 = 24N times,

to each subtree performing, in this way, a branch and At each iteration, a feasibility test of complexiByis per-

bound search. The corollary will be used to prove the op-
timality of the algorithm proposed.

6.2 The Algorithm D&l

The algorithm D&l (Deadline & Importance) examines
the entry-point of the subtrees in lexicographic order from
the closest ta&57 to the remotest one and from the top to
the bottom. There are two preconditions which must be
fulfilled:

e SP must be feasible; otherwise no feasible solution
exists.

¢ ST must be unfeasible; otherwise we do not need to
perform a search becau§é is the solution.

The next variables are used:
e ¢ is the prefix to the actual subtree indexed.

e w is the complement of; i.e. S = ¢ Uw and() =
¢ Nw.

ws is §(w).

7 is the k" task ofw acquired orderly from left to
right.

ws_+ ISws Without 7.

St is the entry-point to be tested.

Let S be a tasks set with orderingd’ andS’, feasible
and unfeasible respectively. The algorithm builds keys to
index each subtree in lexicographic order. A key is built
by appending tap a taskr (step 3) fromw. The lexi-
cographical order is achieved following the sequence in
w which is S. The key indexes the subtrée r +) and
hence we build its entry-poirt}.,, (steps 4-5).5}. ., is

€
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formed and therefore the complexity of the algorithm D&
is O(E x 224Ny In other words, the algorithm finds

the solution in a polynomial number of steps but the total
complexity is pseudo-polynomial due to the FPS test.
6.2.2 D&l proof

Theorem 6.4. The algorithmD&I yields an optimal so-
lution for the problem 5.1 of guaranteeing all deadlines
and minimizing the distance 8/

Proof. By contradiction. Suppose that at the iteration,
there exists an ordering° that is both, feasible and lexi-
cographically closest t67. D&I finds S* and hence we
need to prove that either:

1. S* is unfeasible
2. S* is not the closest t&8”.

Note the next facts abot® and.S*:

e S is lexicographically smaller thaf* (i.e S° <.
S*).

e They are lexicographically different but before a task
j they are identical; i.e. they share the same prefix
¢ = {(abc ... j)and differ on their suffix.

S° = (pw?) wherew’ = (k...1...)

S* = (pw*) wherew* = (I...k...)
Consequently <., [.

e S?andS* share the same entry poifit ws) where

ws = 6(w’) = 6(w*)
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Figure 4. D&I applied to S5 showing the sequence of
operations.

e S°isfeasible and thereforg J(w°)) is also feasible
(corollary 6.3).

S° and S* share the same feasible entry-point and

Avg. Index of S° R S™ and S* for Sets of 7 Tasks
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Figure 5. For high utilisations, the number of feasible
tasks sets decreases and therefore, the distance be-
tween ST and S* gets smaller. The distance between
S4 and S* increases slightly.

then (b) is appended t@ and(b) is deleted from bottu
andw;. The next three orderings teste® (4),(®) are un-
feasible, and therefore only the indexs updated. After-
wards, (bedca) and (beadc) are tested successively and

hence,(¢ ws) has been tested and saved (step 7) as thesaved (6),(?); the next ordering fails@®) and the next

nt? partial solutionS*. The next iterations will give
— S — S§*. All will be feasible

* *
SnJrl - Sn+2"' n+m

one passes the teg9)]. w has length 1 and D&I stops.

because the step 7 accepts only feasible ones. Therefor§ Evaluation

S* is feasible andt contradicts the first hypothesis

Consequently, it is necessary to prove that although
feasible,S* is not better thart° which is the closest fea-
sible solution taS”.

D&l builds and tests new orderings joining the ac-
tual ¢ with a taskT and ordering the rest of the tasks
by DMPO (steps 3-6). Because <., [, the ordering
(pko(...1...))istested before thafwp I §(... k. ..)).

The ordering tested is

Se. = (pkd(..1..)

Two cases occur:

o If Sp. ., is feasible, D&l will accept it and never will
find S* because they both are in different paths. This

is not possible becaus# is found by D&l.

o If 57, is unfeasible thes is also unfeasible (The-

orem 6.2) whickcontradicts the hypothesis 2

This concludes the proof.

6.2.3 Anexample

Applying the algorithm D&l to the tasks s&;, it finds
the orderingS* in nine steps (figure 4).

At the beginning,¢ is empty andw is (abede). The
first element is acquired to create a k& to test the
entry-point{a edcb) (D in the graph); the test fails and
then the subtreéu ) is skipped. The next element in
is obtained andb edca) is tested ); it is feasible and
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This section is divided in two: The first one presents
some results on the performance evaluation of the D&
algorithm. The second part shows how the algorithm can
be used to reduce the total number of preemptions.

For the experiments we have generated random task
sets of NV tasks with utilisations from 0.5 to 0.95 and
N = 4,5,6,7,8 tasks. Each task set is created by ran-
domly chosen task’s computation times between 2 and 50
time units, and then randomly chosen the periods to ap-
proximate the utilisation desired. Without loss of gener-
ality, we assign the deadlines equal to the periods. The
importance is varied according each experiment. In addi-
tion, it is guaranteed that all task sets are feasible under
deadline monotonic scheduling.

7.1 Performance evaluation

The first experiment quantifies how good (or bad) is
using the DMPO assignment and the swapping priority
assignment defined in [2] against D&I for the bicriteria
problem. The swapping priority algorithm receives an un-
feasible ordering and finds a feasible one (if it exists) by
swapping pairs of task priorities. In this context, the swap
ping algorithm will receive an unfeasible ordering by im-
portance and will produce a feasible one.

Lets S be a task set with importances randomly chosen
and with priority orderingss’ (by importance),S” (by
DMPO), 54 (by swapping algorithm) and* (by D&l al-
gorithm); the goodness of the orderings is given by the
index metricZ;. For each set, we compute both their or-
derings and their indexes. A point in figure 5 represents
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Figure 7. Minimizing the total number of preemptions.

maximum. Thus, the normalized number of preemptions
for any possible priority assignment is recorded. This ta-
ble allows us to find the optimal orderir8+OPTfor the
single criteria problem of minimizing the number of pre-

decreases, and hence the difference between DMPO ang&mptions (no considering deadlines), which is the min-

D&l is reduced. On the other hand, the difference against
54 growths slightly. Note that by the optimality of D&,
itis never the case that the index®? or 54 can be lower
thanS™.

The graphics for task sets witN equal to 4, 5, 6 and
8 are not depicted because they are similar to figure 5.
More interesting is to show how fast the solutia$8 or
S4 move away fromS*. Consider the data in figure 5;
computing the distanceg; (SP) — Z;(S*) andZ; (S4) —
Z1(S*) for their respective utilisations and calculating its
average give us the average distafige&s”) and ¥'(S4)
respectively. Computing these distances for differdhnt
give us figure 6; this is the variation of the distancesto
with respect the number of tasks per set. Note how fast
they move away fron$™.

7.2 Minimizing the number of preemptions

This experiment quantifies the impact that using the
D&l algorithm has on an overall system metric. For illus-
trative purposes we consider the problem of meeting the
deadlines and reducing the total number of preemptions.

We note that in a fixed priority system, a task is pre-
empted only by high priority tasks. In addition, if the
task remains active during less time (e.g. shoftgrthe
high priority tasks will have less chance of interrupting
it. Therefore, we can conjecture that tasks with shatter
should have lower priorities (i.e. they are less important)
to reduce the possibility of being preempted, or recipro-
cally: “r; is more important tham; if C; > C;". We ver-
ify this conjecture by performing extensive simulations as
follow:

A particular set ofV tasks is simulatedV! times, once
per different priority ordering, during a time window of
10000 ticks. Its number of preemptions is computed and
stored in a tabldordering , preemptionsjand then the
preemptions are normalized according their minimum and
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imum in the table. We tested different priority assign-
ments such as the shortest computation time firs€{,

the largest computation time firdt€), the largest period
firstand other simple rules and we found that none of them
achieveds-OPT, among these rule&C was the best.

Based on this, for each one of the task sets analysed we
assign importances based on th@ criteria: the largest
the computation time, the higher the importanéée then
use the D&l algorithm to find a feasible schedule which is
closer to the_C ordering (D&I(LC)). To compare the per-
formance, we also display other indicative priority assign
ments, namely deadline monotonibNl), largest com-
putation time first LC), and the Earliest Deadline First
scheduling policy EDF). In addition we find, by force
brute, the optimal bicriteria solutioB(-OPT) examining
the N'! elements in the table.

Figure 7 shows the results of this experiment for sets
of 7 tasks. The graphics for sets of 4, 5 and 6 tasks are
similar (no showed). We do not compute the task sets of 8
tasks because it is computationally expensilex( 1000
simulations). Th&-OPTsolution is zero antdC is signif-
icantly close to it (6.7% distant on average); however both
them miss deadlines. The optimal solution for this bicrite-
ria problem isBI-OPT. Note that for high utilisations, the
number of feasible tasks sets decreases and therefore, the
BI-OPT moves away froni.C. The performance dEDF
is better tharbM but it is still poor compared thBI-OPT.
Finally, our solution D&I(LC) is substantially closer togh
optimum (11.9% distant on average) and much better than
EDF andDM for all utilisations excepting 0.95. Naturally,
being the ruld_C a heuristic, our solution will also be nec-
essarily a heuristic. However, the results indicate that th
D&l algorithm provides a remarkable improvement over
other approaches. Comparison with other on-line heuris-
tics are not really possible as they do not guarantee dead-
lines, and only provide best effort figures.
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Abstract It may be noticed, that considering only the synchronous

case is very pessimistic, since the synchronous case is the

In this paper, we study the problem of the fixed pri- worst case, in the sense that, if the system is schedulable
ority preemptive scheduling of hard real-time tasks. We in the synchronous case it follows that this is also the case
consider independent tasks, which are characterized by ain all asynchronous situations (see [3], for instance). Our
period, a hard deadline, a computation time, and an off- scheduling problem is the following, given the task char-
set (the time at which the first request is issued) where theacteristicsl;'s, C;’s, andD;’s, determine a feasible offset
latter can be chosen by the scheduling algorithm. (if any) and fixed priority assignment.

Considering only the synchronous case is very pes-
simistic for offset free systems, since the synchronos cas Rejated work. In [5], the concepts ofoncreteandnon-
is the worst case in terms of schedulability. In this pa- concretetask sets are introduced. Mon-concretéask set
per, we propose a new technique, based on the Audsley'§s g set for which the offsets are not determinechiacrete
priority assignment, that reduces significantly the search \qrsion of such a task set can be obtained by considering
space of the combinatorial problem consisting in choos- 5 particular offset configuration. Hence, a non-concrete
ing the offsets. In addition, we propose new offset assign-t5sk setgeneratesa collection of concrete task sets. A
ment heuristics and show the improvement of combining non-concrete task set is schedulable [5], if all the cor-

the new technique and the new heuristics. responding concrete sets are schedulable. While an offset
free system is schedulable if at least one concrete task is
schedulable.

1. Introduction Well-known results concern the optimality for asyn-

chronous (and synchronous) task sets. But first a def-

Problem definition. This study deals with the fixed pri- inition, a priority assignment rule is optimal for asyn-
ority preemptive scheduling of tasks in a real-time systems chronous (resp. synchronous) systems if, when a schedu-
with hard constraintsi.e., systems in which the respect of lable priority assignment exists for some asynchronous
time constraints is mandatory. More specifically, we con- task set (resp. for the synchronous case), the priority as-
sideroffset free systemeghere the offsets can be chosen by signment given by the rule is also schedulable. In [7],
the scheduling algorithm. The activities of the system are the non-optimality of the Deadline Monotonic (i.e., lower
modeled by independeperiodic tasksr; as introduced the deadline, higher the priority) is proven, and an optimal
in [8]. The model of the system is defined by a task set priority assignment rule is suggested by consideringithe
A of cardinalityn, A = {71, 79, ..., 7»}. A periodic task different priority assignments. In [1, 2] Audsley proposed
7; IS characterized by a quadruple,(T;, D;, O;) where an optimal priority assignment algorithm, which examines
each request of;, called instance, has an execution time at mostn? priority assignments, this algorithm is often re-
of C;, a relative deadlind;. T; time units separate two ferred as the Audsley’s algorithm in the literature.
consecutive instances of (henceT; is the period of the More recent results concern the optimality for offset
task). The first instance of occurs at timeD; (the task free systems. In [4, 3], the authors show the interest of
offset in the following). The system is said schedulable if offset free systems and in [4] the non-optimality of rate-
each instance finishes before its deadline. monotonic assignments when offset free systems are con-

Three differentkinds of periodic task sets can be distin- sidered. Although there is an infinite humber of asyn-
guished:ssynchronousets, where all offsets are equabto ~ chronous cases for a task set, the problem is restricted [3]
asynchronousets, in which the constraints of the system by considering only non-equivalent offset assignments
determine the offsets, and finalbffset freesets. Inoffset with an optimal offset assignment rule. Since, the number
free systems, there is no constraint on offsets, hence theyof combinations remains exponential, an efficient heuris-
may be chosen beforehand by the scheduling algorithm.tic with a lower complexity is proposed, nameidsimilar
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offset assignment Definition 2 An assignment offset rul@ is optimal un-
Well-known results concern the schedulability analy- der a priority allocation ruleP, if when a schedulable
sis for synchronous systems [6, 10]. For asynchronousoffset assignment exists with O provides a schedulable
systems as well, schedulability analysis has been studiedasynchronous situation with the very same priority assign-
Due to space limitation, we shall not give details here. We mentP.
know for instance (see [7]) th#lt, Omax + 2P) whereP
is the LCM of the periods an@max = max;(0,), is a
feasibility interval.

The optimal offset assignment considered in [3] is sum-
marized in this section. The main idea is to test the
schedulability of all the non-equivalent asynchronous sit
o ) uations of a task set.

Contributions. In this paper, we show how to use the || offset combinations may be found by restricting the
Audsley’s algorithm to reduce the complexityaffset as- offsets such a®); = 0 and¥i € [2,n] | O; € [0,T)).

signmeniy decreasing the number of tasks examined in ¢,nsequently number of combinations is upper bounded
the assignment. The optimal offset assignment cannot al-by [T, T: = O(Maxe< j<nT;)" 1)
=2 -t sJjsn—+j .

ways be used due to its exponential complexity. Then, we
propose new assignment heuristics that improve signifi- ; g possible to consider only offset assignments lead-
cantly upon the one presented in [3] as it will be shown in g t5 non-equivalent asynchronous situations. Two asyn-
the experiments. chronous situations are defined to éguivalent if they

have the same periodic behavior. Indeed, the schedule be-
Organization. ~Section 2 recalls the results from [3] that comes periodic with a period aP = lcm{T}, .., T},}).
are useful for the understanding of our contribution. Sec- This periodic behavior only depends on the relative
tion 3 shows how the Audsley’s algorithm can be used phasing of the task instances, i.e., on the tugly
to decrease the complexity of the offset assignment al- (mod 7), O, (mod T3),...,0, (mod T})). This tu-
gorithm. New heuristics are then proposed in Section 4, ple characterizes the relative time shift between the in-
whose efficiency are assessed in Section 5. stances of various tasks [4].

For two tasksr; and s, two choices Q2 = O; + vy

2. Known offset assignments andO; = O, + v,) are said equivalent if they define the

same relative phasing:

In this section, we summarize known results on the

scheduling of offset free systems. In particular, we sum- Jk1, ke €N : (O + 01 + k1 - To) mod Ty
marize the approach developed in [3]. _

To further reduce the number of offset assignments,

= 1)
(O1 4 va + ko - To) modT

2.1. Scheduling of offset free systems L .
which is equivalent to:

The topic of this study is the fixed (and preemptive)
scheduling of offset free systems. In these systems, the vy = va(mod gcd 71, To}). (2)
offset of the tasks can be chosen by the scheduling algo-

rithm. Consequently, we have to choose (off-line): From Equations 1 and 2 it follows that only the values

0,1,...,9cd{Ty,T>} — 1 must be considered and are non-

— the task priorities, and equivalent choices faP; andOs.
The optimal offset assignment algorithm, in order
— the task offsets. to explore all possible non-equivalent asynchronous sit-
uations for the task set, constructs iteratively the sit-
2.2. Optimal offset assignment uations. First, it sets the non-equivalent choices for

Let us assume that the priorities of the tasks are alreadyO, (the offsetO; is arbitrarily fixed to0) by consid-
fixed, and we consider the specific priority assignni@nt  ering for O, all integer values in thé0,gcd{T1,T>})
which could be for instance the Deadline Monotonic. We interval.  Next, by assuming at each step that the
considerfixed priority scheduler, hence at each time in- offsets O, 0,,...0;,_; are set, consider for the off-
stant, the scheduling policy assigns the CPU to the in-set O; the interval [0, gcdT;, lem(T4, ..., T;—1)}) (in-
stance of task with the highest priority (if any). Suppose stances of task sub-sét, ..., 7;_1} having a period of
that the system is not schedulable in the synchronous casécm(T7, ..., T;-1)).
with P, we would like to find an asynchronous situation
for which the system is schedulable. In the following, we 2.3. Dissimilar offset assignment
shall distinguish between two kinds of optimality: The method of [3], presented in Section 2.2, reduces

the non-equivalent offset assignment frai’_, 7; to
Definition 1 A priority assignment ruleP is optimal in - LL_e ™' " pespite this significant reduction, the number of
the asynchronous case, if when a schedulable priority as-offsets considered by the optimal algorithm remains ex-
signment existsP provides a schedulable system in the ponential. In [3], the author defines then a heuristic that
very same asynchronous situation. provides a single offset assignment for a task set.
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The basic idea of the heuristic is to shift away, as far 3.1. Audsley’s algorithm
as possible, the offsets of the tasks for which some in-  The Audsley’s algorithm [1] performs an optimal static
stances would be most probably in conflict for the use of priority assignment for asynchronous systems (according
the CPU. Precisely, the offset of tasks having instances re-to Definition 1).
leased in small periods of time, and thus being close to the A priority assignment is defined by:
“synchronous” case, will be shift away as far as possible.
Hence, a measure is introduced to estimate the proximity v:4{1,2,..n} — {71, 72..T0n },
of an offset assignment with the synchronous case. The
dissimilar offset assignment algorithm allocates the off- Where the assignment functiorti) gives the tasky, as-
sets of the periodic tasks to maximize this measure, whichsigned to the priority level using the convention: lower
is defined as the length of the shortest interval that con-the priority level, higher the priority.
tains at least one instance of each task. The Audsley’s algorithm considers at m@3(»?) dis-
The technique considers first the (minimal) distance tinct priority assignments. First, it attempts to finébav-
between two instances of tasksandr; in the periodic €St priority viabletaskr; in A, i.e., tries to assign the pri-
part of the schedule. The computation of this distance is Ority leveln.

performed according to Theorem 1.
Definition 3 Taskr; is lowest priority viable when; is

Theorem 1 ([3]) Letr € [0, ged{T;, T5}). If O; = O; + assigned the lowest priority of any taskAnand:
r (or O; = O; + ), the minimum distance between an in-

stance of; and an instance of; is min{r, ged{T}, T} } — — The remaining tasks il\ are assigned priorities in
rh. any arbitrary order, the sole restriction being that all
these priorities be higher than the priority assigned
It follows from Theorem 1 that the minimum distance to 7.

between an instance of and; is upper bounded by

{gcd{?,T,-}J and corresponds to the offset assignment During run-time scheduling, the semantics is weak-

ened as follows: instances generated by tasks other

0; =0;+ {WJ (orO; = 0; + {%QTJ}J) In than7; may miss their deadlines (if they do so, they

of e T} | o [eed{Te T} continue execution until completion); however, in-
2 2 )

this caser is equal t stances generated by may not miss any deadlines.

The dissimilar offset assignment algorithm fixes the
offsets of the periodic tasks. The algorithm sorts the cou-  Next, the algorithm recursively determines a lowest
ples of taskgr;, 7;) in decreasing value of g¢d;, 7} }, priority viable task in the sub-seX\{r;} of n — 1 tasks
in order to maximize the measure defined above. Next, it (i.e., assigning priority leveh — 1). The Audsley’s
sets iteratively the offsebd; andO; of the sorted couples  pseudo-algorithm is given in Algorithm 1.

of tasks(7;,T;) to obtain the highest minimum distance Input : task set\ = {71, 7o..., T
(e, r — MJ) During this assignment, three Result task set with no assigned priority
cases may occur: procedureaudsl| ey( A) ;
. if A =0 then
1. whenO; and O, are not yet set, a random offset is priority assignnment succeed:
chosen foi0; andO; = O; + {MJ retun A;
end
2. whenO; (resp. Oy) is fixed andO; (resp. O;) is if no task is lowest priority viabléhen
not, 0; = O; + {gcd{?,TJ}J (resp. O; = O, + priority assignnment failed:
eed {17 return A;
\;%J), else o )
let ; a lowest priority viable task;
3. whenO; andO; are already chosen, there is nothing assign |owest priority to =
to do. Y(|A]) = 7i;
return audsl ey( A\{r:});

The maximal time complexity of this algorithm for as-

signing the offsets i€©(n? - (log T™ + log n?) where end
max def maxi << (T3) Algorithm 1: Audsley’s algorithm.

7_ - ) After executing the Audsley’s algorithm, two cases
3. Complexity reduction may occur:

In this section we propose a technique, based on the 1. The priority assignment of the Audsley’s algorithm
Audsley’s priority assignment, to reduce significantly the leads to a schedulable system (i.e., priority assign-
search space. But first, we shall present the Audsley’s al- ment succeed): the set of tadkis schedulable with
gorithm [1] itself. the priority assignment given by function
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2. Otherwise, the Audsley’s algorithm fails to assign the
priority of level i wherei € [1,n] (i.e., priority as-
signment failed). However, instances of the set of
tasks{y(i + 1), v(i + 2), ..., 7(n)} meet their dead-
line. Indeed, the schedulability of a task at a priority
level, with a fixed scheduling preemptive policy, de-
pends only on the set of higher priority tasks, what-
ever the assignment of priority among this set [1, 2].

Task set A

Task set A
schedulable

, Step 2:
A" = audsley(A ul
(synchronous)

(synchronous case%

The non-optimality of the Audsley’s priority assign- o
ment for offset free systems vr; €AY setO,

with the cfllosen offset assilgnment

We shall see that while the Audsley’s priority assignment
is optimal for asynchronous systems it is not the case for
offset free systems. But first a definition.

Step 4:
A" = audsley(A’)
(asynchronous case)

Task set A
scheHulable
(asynchronous)

Definition 4 ([4]) A priority assignment rule is optimal

for offset free systems if when a schedulable priority as-
signmentP) and offset assignmendj exist for some off-

set free task set, there is a schedulable offset assignment
(O’ for the priority assignment given by the rule.

Task set A
unschedulable
ith the chosen

offset assignment

Algorithm 2 : Offset and priority allocation algorithm.
The priority assignment of the Audsley’s algorithm de-

pends on the offset assignment actually Audsley con-

siderasynchronous systenfthe offsets must be already With this method the number of tasks to consider for
fixed). Thus, Definition 4 is not applicable in the case the offset assignment is much lower as it will shown in
of the Audsley’s priority assignment and consequently the the experiments of Section 5.2. Since the time complexity
Audsley’s priority assignment is not optimal for offsetdre  of the offset assignment depends on the number of tasks
systems. and their periods, the time complexity is, thus, reduced.

3.2. Reducing the search space using the Audsley’s al-
gorithm

_I_n thlsdsictlo;, we shall;explg_m hov; to assign trk]leflerl— In this section, we propose several assignment heuris-
oritiesandthe offsets together. Figure 2 presents the flow ;.o \hich provide alternative offset allocations whee th

pflgu.r approach in a pseudo-algonthmw for”.‘- F|rst, WE dissimilar offset assignment fails to produce a schedalabl
initialize the offsets to consider tlsynchronousituation. asynchronous situation

Then, the Audsley's algorithm is used _to assign prioriti_es The functioning scheme of these new heuristics is very
(in th_e synchronous Cas‘?)' more precisely t_he (recurswe)sim”ar to the one of the dissimilar offset assignment: cou-
function gudsl gy_(AIgonthm 1) is uged. If it success- ples of tasks are ordered according to a criteria, then the
_fuIIy assigns pr!orltles (case 1, Section 3.1), the S.yStemtask offsets are chosen from the top of the resulting or-
N schequlable n the _sypchronous case. Otherwise, ey ist to its bottom. The new heuristics provide dif-
Auds_,leys algorithm fails in the synchronous_case (case 2, erent offset allocations than the dissimilar offset stggt
Section 3.1), a schedulable asynchronous situation shoul ince they do not only consider the minimal distance be-

bel I?Okid for. thConf?eqtuenftly t\’r\]’e fIert utsef ?t T'S sttep 41ween tasks. For instance, some try to “separate” tasks
rule to choose e ofiSetS—ior the SUbSEL oTtasks retumeq, iy, he highest utilization rate (i.eg—:). We propose

. A def . . i
bygmtl:]dsltr(]ey. A ? A\{W 4t-h1),A7(34|r 2),’ i 7(7%1} ‘ 4 new offset assignment heuristics that take into account
andthentne priorities using the AUAsIey's algortinm 1or ip o - -haracteristics of the task set than the minimal dis-

' ; .
the second timebut on the subsen” (not pn the or|g| tance between tasks. Our 4 heuristics consider the couples
nal task set). Indeed, the sub-set of tagk& + 1), v(i + (74, ;) by decreasing values of:

2),...,7(n)} respects their timing constraints in the syn-
chronous situation without considering the offsets and the
priorities among the set of higher priority tasks. Thus, the 1 (
tasks in{y(i + 1),v(i + 2),...,7(n)} are lowest prior-

ity viable in the synchronous case. Since the synchronous 2. max(%:, %) -gcd Ty, T;)
case is the worst case, these tasks remain lowest priority

viable in an asynchronous situation. That is why, in the 3, % + %

following, the offset assignment scheme can safely take t '

into account only the tasks in the s&t. 4. —gcd Ty, T;)

4. Near-optimal offset assignment heuristics

% + %) -gC(XTk.,Ti)
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The heuristics 1,2 and 3 sort the couples of tasks by — * T Audeiey's ST SUCESSTUly G59GTS T ORESL DY -
considering their utilization rate. Different ways of iotr % i
ducing the utilization rate in the ordering provide several
asynchronous situations, which may lead to a schedula-
ble asynchronous situation. In heuristic 1 (resp. 2), the
utilization rate of the couples of tasks (resp. the maxi-
mal utilization rate) is taken into account balanced byrthei “
gcd. Rule 3 arranges they, 7;) according to decreasing 2
utilization rate. " e

Heuristic 4 first focuses on the couples of tagks 7;) e D cadnaiyortskses (oac0s) 1
for which the minimal length between instances is small.

The (m,7;) are thus ordered according to decreasing
value of—gcd T}, T;) to set the offset of the couples with Figure 1. Percentage of unschedulable task
the less choices in the offset assignment. sets in the synchronous case, which in-

These new assignment heuristics are considered to- cludes at least one lowest priority viable
gether. The combined used of these heuristics, in our taskin the synchronous case.
experiments (Section 5.5), provides a “near-optimal” off-
set assignment. The complexity of these new heuristics

is identical as the one of the dissimilar offset assignment, . . sets, the Audsley’s algorithm (step 2, Algo-

i 2 max 2 i
'EIHZ'.[,}:()Qe(r?or.rrElsotth assJirgLOri :n t))i,s t?[ﬁga;;riéheeflge%rt'tfgr:]therithm 2) allows to reduce the number of ta§ks in the off-
ordering of the couples of tasks ' set assignment. One can also note from Figure 1 that the
' percentage decreases with the number of tasks. This phe-
] nomenon is probably related to our task generation algo-
5. Experimental results rithm. Indeed, in order to keep the lcm of the tasks within
bounds that still allow to assess the feasibility by simula-

In this section, we present our experimental results. We tion, restrictions are imposed on the task set characteris-

—
70

60

% of task sets

50

S

make use of the Algorithm 2 defined in Section 3.2. tics. When the number of tasks becomes large, the tasks
tend to have the same characteristics and they tend thus to
5.1. Experimental setup behave in a rather similar manner. Hence, when a task is

In the experiments, the global loagiis chosen for each not Iowes_t prior?ty viable, _the probability to find another
setA of n tasks. Since the sets have to be unschedu- OWest priority viable task is rather low. _
lable in the synchronous case, the ldadhas to be suffi- In Figure 2, we consider only task sets which have at
ciently high. The utilization rate%) of each taskr, is least one lowest priority viable task. The curve in p_lal_n
uniformally distributed in the[% 09, % . 1.1} interval. style shows the percentage of tasks being lowest priority

The computation timé’;, of each task;, is randomly cho- V'?ble after step 2, Algorithm 2 (i.e., tasks in the set,
) ) ) ) A’). The dotted curve represents the percentage of tasks

sen with an uniform law in thgmin, cmay interval, the rel- “which are not (i.e., tasks in the s&f)
ative deadlineD, is uniformally chosen in thglmin, dimax] i o :
interval , and the period}, is upper bounded b#fax.

In the following, we make use of the tuple ’ T — ]
(nv U, cmin, €max, dmin, dmax, tmax) to denote the actual pa- [ A R [ S
rameters used in our task sets random generation. *

55

tasks with an assigned priority ———

% of tasks in the task set

5.2. Complexity reduction using the Audsley’s algo- * B
rithm N
In this section, the actual reduction of the search space I S——
using the Audsley’s algorithm is studied. The improve- %
ment is evaluated with task sets randomly generated ac- * 6 8 10 12 1 16
cording to the tuple(n,0.8,2,30,Tx — 0.9 x (T} — cordnally oftesk sets (o209

Ck), Tk + 0.9 x (T}, — Cy ), 200) with n being the number
of tasks in the[5, 17] interval. We made approximately
13000 simulations for each graph (13 points per graph).

In Figure 1, the curve in plain style presents the per-
centage of task sets unschedulable in the synchronous case
which have at least one lowest priority viable task in the  As can be seen from the plot of Figure 2, at least 30 %
synchronous situation. One can observe that at least 38 %of tasks are lowest priority viable (in the synchronous
of the task sets include a lowest priority viable task. For case). Thus, less than 70 % of the tasks have actually to

Figure 2. Proportion of lowest priority viable
tasks.

39



be considered for the offset assignment. R s
In order to accurately evaluate the complexity reduc- s e
tion obtained with the Audsley’s algorithm, we study the a0
actual reduction of the search space brought by the use of
the Audsley’s algorithm. In Figure 3, we consider again
only task sets with at least one lowest priority viable task.
The curve shows the percentage of search space reduction

60

50

oftask sets

%

40

60

30

59
20

/‘/’ : L
58 Pt \
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57

0.75 0.8 0.85 0.9 0.95
56 Load

% of complexity reduction

55

s Figure 4. Percentage of systems un-
53 : : - - " - schedulable in the synchronous case (dot-
Cardinaliy of task sets (load=0.8) ted curve) and systems only schedulable

with an asynchronous configuration (plain

Figure 3. Search space reduction using the gus;\S/e). The cpu load ranges from 0.7 to

Audsley’s algorithm.

From the simulation results, presented in Figure 3, the (dotted curve), and the percentage of systems schedulable
search space reduction is always greater than 53 %. only in an asynchronous case (plotted style curve). From

The conclusion that can be drawn from these exper- Figure 4, one can observe that the percentage of task sets
iments is that for a very significant number of systems unschedulable in the synchronous case increases with the
(more than 38 % in our experiments), at least 30 % of load, which confirm the intuition that it is harder to find a
the tasks can be allocated a priority by the Audsley’s al- schedulable system when the load is high. Moreover, the
gorithm (i.e., are lowest priority viable). This allows to percentage of task sets schedulable in an asynchronous sit-
reduce the search space of the offset assignment schemeation increases with the load (up to 18 %) until the load

by at least 53 %. reached).87, then it starts to decrease. Intuitively, it is
clear that task sets tend to be unschedulable, whatever the
5.3. Offset free for increasing feasibility offset allocations, when the load becomes too high.

This subsection aims to show the interest of offset free
systems for schedulability, by using the optimal offset as- 5.4 Combined use of the heuristics: efficiency com-
signment. pared to the optimal allocation

Task sets are randomly generated according to the tu- Figure 5 shows the percentage of task sets schedula-
ple(5,U,2,30, T — Tkgck , Tk, 30) with U choseninthe  ble in a particular asynchronous situation (non-equivalen
[0.73,0.95] interval. We made approximate)00 sim- to the synchronous situation) which remains schedulable
ulations for each graph (6 points per graph). It should with the dissimilar offset assignment rule (dashed curve)
be noticed that the time complexity of the optimal assign- and with at least one of our new heuristics (curve in plain
ment rule, that is used in these experiments, is high, andstyle).
checking if a system is schedulable or not may require a As can be seen on Figure 5, the assignment heuristics
very long computation time (since we have to consider— find a schedulable asynchronous situation for at least 51 %
in the worst case—all non-equivalent offset assignments).and up to 95 % of the task sets in which such a situation
For this reason, we have strongly limited the number of exists. The chance of finding a schedulable assignment
tasksn and the maximum value of the periods in our sim- logically decreases with the load.
ulations to reduce the number of non-equivalent offsetas-  The combined used of the heuristics enables us to find
signment and thus diminish the complexity of the schedu- an important percentage of the schedulable asynchronous
lability. situations. From Figure 5, it is obvious that the combina-

We now evaluate the percentage of systems unschedution of our new heuristics outperforms the dissimilar dffse
lable in the synchronous case which becomes schedulaassignment.
ble in an asynchronous case (i.e., we use the optimal off-
set assignment). Once again, we use Algorithm 2 to de-5.5. Relative performances of the heuristics
termine these percentages. Figure 4 represents the per- In this section, the improvement brought by the new
centage of systems unschedulable in the synchronous caskeuristics is discussed more precisely. Task sets are ran-
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Figure 5. Dissimilar offset assignment vs.
our new heuristics.

domly generated according to the tule U, 2, 30, T}, —
Le—Cr T3,,30) with U chosen in thg0.8,0.9} set andr
in the[5, 11] interval. We made approximatei)00 sim-
ulations for each graph (7 points per graph).

The offsets and priorities assignment are performed ac-

cording to Algorithm 2 of Section 3.2. At step 4, the asyn-
chronous situations correspond to the offset assignment
produced by the dissimilar offset assignment and by the
new heuristics.
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Figure 6. Percentage of the task sets un-
schedulable in the synchronous case that
becomes schedulable with the different off-
set assignment heuristics (80 % CPU load).
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Figure 7. Percentage of the task sets un-
schedulable in the synchronous case that
becomes schedulable with the different off-
set assignment heuristics (90 % CPU load).

synchronous case. For instance, in Figure 6, the percent-
age of task sets schedulable with an asynchronous situa-
tion produced by the heuristics is at least 40.5 % and up to
7 %. The improvement steadily increases with the num-
er of tasks: for instance, in Figure 6, the percentage of
schedulable task sets in an asynchronous situation is equal
to 71 % for 7 tasks, while it is 88.9 % fartasks. This
can be intuitively explained by the fact that the higher the
number of tasks, the higher the freedom degree to set the
offsets, and thus, the farther from the synchronous case
the system can be.

One also observes that, very logically, the percent-
age of systems schedulable in an asynchronous situation
strongly decreases when the load is high. For instance,
the percentage of schedulable systems for segstasks
is 83.1 % for a load 06.8 of 32 % for a load 0f).9 (Fig-
ure 7).

The different heuristics can be compared using Fig-
ure 6 and 7. We observe that the dissimilar offset as-
signment performs very well, usually better than the new
heuristics. However, using all heuristics together (irg.,
the offset assignment returned by each of the heuristics)
allows to clearly outperform the dissimilar offset assign-
ment alone. The heuristics (including the dissimilar dffse
assignment) are in some way very complementary. For
instance, 37.9 % of the task sets are schedulable with at
least one of our heuristics for 9 tasks (Figure 7) while only
26.3 % are schedulable with the dissimilar offset assign-

Figure 6 and 7 display the percentage of tasks sets unment. It is worth noting that the complexity of each of the

schedulable in the synchronous situation which becomenew heuristics is the same as the dissimilar offset assign-
schedulable in the asynchronous situation produced byment and, in practice, the computing time does not raise
each of the heuristics. The experiments are done with aproblem whatever the cardinality of the task set.

global load 0f0.8 in Figure 6 and 00.9 in Figure 7. From In conclusion, our experiments show that the combined
these Figures, one sees that the offset assignment heurigised of all the heuristics lead to a near near-optimal off-
tics significantly increase the schedulability compared th set assignment, which allows to increase considerably the
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percentage of systems schedulable compared to the sol&®keferences

asynchronous situation.

6. Conclusion

In this paper, we have studied the problem of the static
preemptive scheduling of offset free systems. First, we
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Abstract The goal of the study presented in this paper is to build
an heterogeneous architecture obtained by interconnect-

Embedded systems have specific real-time require-ing existing CAN data busses on a switched Ethernet.
ments that led to the development of dedicated communidn this context, we aim at comparing, on the one hand,
cation protocols. Such systems often face increasing com-event-triggered systems using native CAN MAC and an
munication needs and the integration of switched Ether- event-triggered strategy for transmitting CAN frames on
net architecture. But moving from existing dedicated field- Switched Ethernet, on the other hand a system with a
busses architectures to new Ethernet based architecturegime-triggered behavior (TTCAN like [17]) on the whole
is not always easily feasible, due to industrial constraints. network.

In this paper, we evaluate a solution for integrating The proposed evaluation is based on timed automata.
existing data busses (such as CAN, which is an impor-It aims at determining worst-case end-to-end delays and
tant standard in automotive context) on a global archi- jitters on CAN frames.
tecture that respects increasing bandwidth requirements.  Section 2 presents briefly TTCAN and switched
We consider both event-triggered and time-triggered so- Ethernet technologies and defines the heterogeneous
lutions, incorporating the scheduling on CAN and the CAN/Switched Ethernet architecture studied in this paper.
CAN/Ethernet bridging strategy. The evaluation is per- Section 3 presents the application traffic over the network
formed using timed automata and UPPAAL, and aims at and proposes event-triggered and time-triggered strategies
bounding end-to-end delays and jitter. to schedule the traffic. Section 4 describes the modelling

of the application and the network with timed automata.

Section 5 shows how worst-case delays on CAN frames
1. Introduction can be calculated. Section 6 concludes the paper and

presents points we are presently studying and some ideas

Fieldbusses , e.g., CAN [16], WorldFIP [29], Profibus for future work.

[29] have been developed in the context of real-time appli-
cations (distributed computer control systems) that have2 Network architecture
specific communication requirements such as:

e bounded end-to-end transmission delays in order to  The network architecture will comprise the two com-

guarantee respects of deadlines, munication technologies CAN and switched Ethernet. In
. o ] this section, we present briefly those two technologies.
» the bounded and small jitter for periodic traffic. Then, we describe the network architecture that we will

However, the amount of information that are nowadays consider in the remaining of the paper.

exchanged in such systems have been increasing steadily

and is now reaching the limits of traditional fieldbusses, 2.1. CAN

especially in terms of bandwidth [12]. CAN (Controller Area Network) [16] is a serial com-
Switching from dedicated fieldbusses to Ethernet is a munication protocol suited for networking sensors, actua-

classical trend in embedded systems due to the wide actors and other nodes in real-time systems. The CAN spec-

ceptance of the Ethernet standard and its evolution towardification defines several versions of the protocol for the

a more predictable switched architecture. physical and the data link layer. In this paper, we shortly
However, successful experience with introduction of a present CAN 2.0 A. Several application layer protocols

switched Ethernet in avionic systems (AFDX, [4, 15]) is have been proposed (CANOpen, CAN Kingdom).

mainly due to the preservation of the applications commu-  The CAN addressing system is based on message iden-

nication model (periodic schemes) and the respect of thetifiers: a frame does not have a destination nor a source

expected real time properties (bounded delay). 4%1ddress. Frames are broadcasted on the bus. Stations get



the frames they are interested in by a filtering process of This scheduling is memorized in a table, the matrix cy-
the identifiers. cle, which is known by all the stations. This schedul-
ing comprises in particular exclusive, arbitration and free

! 1 b4 0"64/ e 2 7 3 windows. Each exclusive window is dedicated to exactly

1= <z ) e . o . . .
& (gentifier | & 2o/ pLC| Data CcrRC | & | FOF | 2 one frame identifier while an arb|trgt|on window is ;hared
2 ~ , < = Free windows allow some evolution of the application.

The stations are resynchronized with a trigger message
broadcasted periodically by the master station. Figure 2
gives an example of a matrix cycle. Each line of the table
The frame format is depicted in Figure 1. The details s called a micro-cycle and has a duratiby,.. The num-
of each field will not be presented. The relevant fields for per of micro-cycles in the table is a power of 2. All the
the remainder of the paper are the following: windows in a given column of the table have the same du-
ration. The reference message can be easily recognized by
its identifier. With TTCAN's level 1, the reference mes-
sage only holds some control information in one byte. In
extension level 2, the reference message holds additional
control information (e.g., the global time information of
the master) and covers four bytes.

Figure 1. CAN frame (sizes in bits)

o the identifier field, which as mentioned earlier iden-
tifies the data contained in the frame,

e the DLC field which gives the length (in bytes) of the
data field,

¢ the data field which is the payload of the frame.

LlReflMllMZ [Free | Arb | M5 [ M4 [ M1 H
Bit-stuffing is used to avoid the transmission of long se-
quences of bits with identical value [23]. As soon as 5 L|Ref| Mi[Arb [M4 | Arb [M5 [ M2 | Arb h
bits of identical value are transmitted, a bit of opposite
value is automatically inserted. This mechanism is valid L|Ref| M1 [ M3 [Arb | Free | M5 [M4 | M1 h

for the whole frame, except IFS, EOF, ACK and the last
bit of CRC. L|Ref| Mi[Arb [M4 [ Arb [ M5 [ Free| Arb
The medium access method (MAC) is CSMA/CR Figure 2. Example of a matrix cycle

(Carrier Sense Multiple Access / Collision Resolution):

the starting of frame transmissions on the bus are syn- |n the remaining of the paper, we will consider both
chronous. When two or more stations start a transmissionnative CAN MAC and TTCAN.

simultaneously, the one with the highest priority identi-

fier (lowest value) wins and the others stop their transmis- 2.2, Full Duplex Switched Ethernet

sion. This is implemented by a collision detection on a  Fyll Duplex Switched Ethernet is an enhancement of
bit by bit basis. When a station transmits 1 (recessive bit) Ethernet. The Ethernet link layer [13] is designed for
and detects 0 (dominant bit), it knows that a frame with computer local networks where high bandwidth and low
a higher priority is being transmitted and, consequently, cost hardware is more important than guaranteed dead-
itimmediately stops transmission. This mechanism guar- jines and/or jitter.
anties strict priority order on identifiers, provided identi- The Ethernet addressing system is based on MAC ad-
fiers are unique. It implies limitations of the bandwidth dresses: each Ethernet entity has a unique MAC address.
and the maximal length of the bus (e.g., 1 Mbs for 40 me- |n each frame, the destination (unicast, broadcast or multi-
ters). cast) and source addresses are inserted. Frames are broad-
Some drawbacks of the CAN native MAC have been casted on the physical layer. Entities get the frames there
identified. First, it is event-triggered: when a station has are interested in by a filtering process.
a frame to transmit, it tries to. It will succeed as soon  The FEthernet native medium access method is
as no frame with a higher priority is being transmitted. CSMA/CD (Carrier Sense Multiple Access / Collision
This mechanism can induce large jitter on periodic frames. Detection): the collision resolution mechanism is non de-
Second, identifiers are associated with frames statically.terministic and leads to unbounded transmission delays.
This imposes a scheduling algorithm using static priori-  Full Duplex Switched Ethernet is a way to bypass the
ties, e.g., rate monotonic [22] when periodic traffic is con- medium access strategy of Ethernet: each station is di-
sidered. It is well known that higher utilization of the rectly connected to an Ethernet switch with a full duplex
medium is obtained with a scheduling algorithm using dy- link. Then, the medium is always free. Consequently
namic priorities, e.g., Earliest Deadline First [22]. guaranteed performances are strongly connected to poli-
Solutions have been proposed to solve those draw-cies of the switch. Many literature has been devoted to
backs. Most of them add a protocol over CAN native the subject (see for instance [30] concerning service dis-
MAC (e.g., [11, 24]). ciplines in packet-switching networks). In this paper, we
Time triggered CAN (TTCAN) [14, 17] is a well- consider a very basic switch with a First-In First-Out pol-
known solution. It imposes a static scheduling on CAN.4ié:y on each output port.



2.3. Heterogeneous CAN / Switched Ethernet architec- bus) and consumed by stations among which at least

tures one is on a CAN data bué with d # s (all those
Our goal is to interconnect several CAN busses with a d busses are called the distant busses of the global
full duplex switched Ethernet network, in order to bypass CAN frame); consequently, those frames have to be
CAN limitations while keeping the widely existing CAN transmitted on switched Ethernet,

technology. Such an architecture is depicted in figure 3. It
includes four CAN busses and an Ethernet switch. There
is a bridge station between each CAN bus and the switch.
The switch has four receive ports and four queued transmit
ports. When a frame arrives at the switch, the control logic
determines the transmit port and tries to transmit the frame
immediately. If the port is busy because another frame is

already being sent, the frame is stored in the first-in first- c AN traffic (local and global) is composed of messages.
out transmit port queue. The memory to store pending gach messag@/; consists in the periodic production of
frames is obtained from a shared memory pool. If no more 5 frame with a givenDLC. MessageM; period is de-

memory is available, the received frame is dropped. notedP;. Each frame of\/; has a relative deadline equal

to the periodP;. We impose that all periods are harmonic

in order to simplify the TTCAN implementation of the ap-
switch
fabric

plication. We don’t consider aperiodic nor sporadic CAN

non-CAN Ethernet traffic: all the frames of this traf-
fic are produced by a station on the switched Eth-
ernet network and consumed by stations all on
the switched Ethernet network; consequently, those
frames don't have to be transmitted on any CAN data
bus.

traffic. A global message is not transferred on a CAN bus
which is neither its home bus nor one of its distant busses.
Non-CAN Ethernet traffic is composed of a set of
flows. Each flow is a sequence of frames with a fixed
length and an exponential inter-arrival law.
Concerning the scheduling of frames on CAN data
busses, we consider the two following solutions:

Figure 3. Network architecture CAN native MAC is considered and identifiers are allo-
cated to CAN messages following a rate monotonic
More generally, the architecture includéé. CAN policy (messages with the smallest period get the
busses and the switch has receive ports and/. queued higher priority [22]),
transmit ports. Network architectures with more than one
sic cycle) equal to half the smallest peri®dlamong
3. Application traffic over the network CAN messages and the duration of the matrix cycle

equal to the biggest peridgl among CAN messages
(this implies that each CAN message is scheduled at
most every two basic cycle). As an example, if there
are three CAN messagéd;, M, and M3 with pe-
riods 2, 4 and 4ns, we haveD,. = 1 ms and a
matrix cycle of4 ms.

All the traffic is transmitted on CAN data busses or/and
Switched Ethernet network. First, we detail the main char-
acteristics of each kind of traffic. Second, we summarize
interesting bridging strategies for CAN traffic that has to
be transmitted over Switched Ethernet. Then, we describe
more precisely a strategy that is intended to allow an end- o . i
to-end time-triggered behavior. Finally, we summarize the 3-2- Bridging strategies for global CAN traffic
purpose of the evaluation of the network architecture with ~ AS global CAN traffic has to be transmitted on the

the given application traffic. switched Ethernet network, it is necessary to define a
bridging strategy between CAN and switched Ethernet.
3.1. Kinds of traffic As explained in [26], the very different CAN and Ether-
The traffic on the whole network can be divided in three N€t characteristics make an encapsulating policy the best

kinds: choice. The encapsulation consists in putting the Identi-
fier, DLC and Data fields of CAN frames in the Data field
local CAN traffic: all the frames of this traffic are pro- of the Ethernet frame (the other fields of CAN frames can
duced by a station on a CAN data besand con- be easily reconstructed). This means that a CAN frame
sumed by stations all on the same CAN data lus  occupies at most 10 bytes of the Data field of an Ethernet
consequently, those frames don't have to be transmit-frame. The following strategies will be considered:

ted on switched Ethernet, o )
the one for one strategy: it is the most straightforward

global CAN traffic: all the frames of this traffic are pro- strategy, since each CAN frame is put in a separate
duced by a station on a CAN data bugheir home 47 Ethernet frame and transmitted as soon as possible,



the n for one strategy: it consists in frame bunching ReX V17
with exactlyn CAN frames in an Ethernet frame, im- [Ref] [2] Ref Ref| X|Y1Z
plying that each global CAN frame has to wait until CAN1
there isn pending CAN frames in the bridge station, Ref[X| [Z]T] Ry Ref] [v]

the timed n for one strategy: it consists in frame bunch- CAN2 7
ing with a bounding of the delay a global CAN frame 3 Ref] [v] ‘R_efl [1]
has to wait before being transmitted over Ethernet, CAN 3

the time-triggered strategy: it consists in applying a . . . )
TTCAN like strategy over the whole network (CAN Figure 4. Time-triggered over switched Eth-
and Ethernet) for global CAN frames; more details ~ €™Met
will be given later on.

The three first strategies have been compared by simulae ynderlined. The duration of the micro-cydde, is 10
tion in [27], considering CAN native MAC. The results g for the three tables (half the smallest period). Local

show that tha@imed n for one strategy gives the best ra- messages are not considered in this example.
tio of CAN frames meeting their deadlines, whatever non-

CAN Ethernet load is. Concerning thefor one strat- CAN1 CAN2 CAN3
egy, greater values of are better when non-CAN Ether- Ref]X[Y[z] |

net load increases, while the percentage of CAN frames Ref] ReflX| [Z]T| [Ref] [Y]
missing their deadline increases witlor low non-CAN Ref] |Y Ref] [T

Ethernet loads (see [27] for details).

Those three strategies can be applied using TTCAN for
the scheduling of frames on CAN data busses. However,
they won't keep the time-triggered behavior of TTCAN.
Consequently, they won't be studied.

Figure 5. TTCAN tables

A master is defined among bridges stations - here, the
bridge of CAN bus 1 is chosen. Its role is to synchro-
) ! X . nize the CAN busses at initialization time. Following syn-
The time-triggered strategy is proposed in the context chronizations do not require a master. At the beginning

of TTCAN for the scheduling .Of frame; on CA.N data of the application, the first TTCAN micro-cycle executes
busses. It has been presented in [25]. It is described mMore) "~AN bus 1. At the end of this cycle, the bridge of
precisely in the next paragraph. CAN bus 1 broadcasts to bridges of CAN busses 2 and
3 an Ethernet frame encapsulating global CAN frafhe
. . . , This Ethernet frame synchronizes the three CAN busses.
_ It is based on the following prlnC|pIe. Each bridge sta- Then, the second TTCAN micro-cycle executes on CAN
tion is the TTCAN master of its CAN bus. In order to s 1 \yhile the first one executes on CAN busses 2 and
obtain a time-triggered behavior on the whole network, 3. At the end of the TTCAN micro-cycle, each bridge
all global frames ready on a bridge are encapsulated in a5 4casts an Ethernet frame encapsulating ready global
single Ethernet frame and broadcasted via the switch atcAN frames (& andT for CAN bus 2,Y for CAN bus 3).
predefined instants. The following problems have to be 11,,se Ethernet frames synchronize the three CAN busses,
solved: which then execute the next TTCAN micro-cycle.

e the choice of transmission instants, The main characteristics of this solution are:

3.3. The time-triggered strategy

e the synchronization between the different CAN  1- the transmission instants correspond to the ends of

busses, when initializing the system and to compen- micro-cycles,
sate clock drifts, 2. the synchronization of different CAN busses is done
e the coordination of the different TTCAN tables. at the end of each micro-cycle, via Ethernet frames
exchanges,

A possible solution to those problems is depicted in figure )
4 with the four CAN data busses architecture of figure 3. 3- the TTCAN tables are built so that, when a global

On this example, Global messages imply three CAN ~ frame is sent on its source bus during a micro-cycle,
busses (all the messages of CAN bus 4 are local and bus ~ itiS senton its destination bus during the next micro-
4 will be ignored) : X is produced on CAN bus 2 and cycle (see for example framié€ in figure 4),

consumed on CAN bus %/ is produced on CAN bus 3
and consumed on CAN busses 1 and4s produced on
CAN bus 1 and consumed on CAN busRjs produced

on CAN bus 2 and consumed on CAN bus 3. The period
of message«, Y, Z andT is 20 ms. TTCAN tables are  The time triggered behavior is obtained on each individual
given on figure 5. Windows where messages are produce4c§3:AN bus by the construction of the TTCAN table.

4. aglobal CAN frame stands in the same column in all
TTCAN tables (e.g., fram& is always in column 2
on figure 4).



Native CAN | TTCAN the CAN/switched Ethernet and TTCAN/switched Ether-
One for one strategy * net architecture with timed automata. In these modellings,
n for one strategy * no non-CAN Ethernet traffic will be considered.
Timed n for one strategy *
Time-triggered strategy * 4.1 Modelling with timed automata
Table 1. Allowed configurations Timed automata have been first proposed by Alur and

Dill [3] to describe systems behavior with time. A timed
automaton is a finite automaton with a set of clodkes,

As mentioned earlier, a global CAN frame has con- a4 and positive variables increasing uniformly with time.
sumers in different CAN busses including the one where it 15 nsitions labels are:

is produced. Characteristics 3 and 4 above imply there is a
delay of one micro-cycle between the transmission of the e a guardj.e. a condition on clock values,
message on its home bus and the transmission on its dis- )

tant busses. This delay has to be taken into account when ® actions,

designing the application. It includes the synchronization
delay which depends on the transmission delays on Ether-

!’]et |inkS, the delay induced by the switch and the de|ayS Composition of timed automata is obtained by syn-
induced by the drift between bridges clocks. Those delayschronous product. Each actiarexecuted by a first timed

e updates, which assign new value to clocks.

have to be bounded precisely. automaton corresponds to an action with the same name
_ a executed in parallel by a second timed automaton. In
3.4. Purpose of the evaluation other words, a transition which executes actiaran only

As stated earlier, two important communication re- be done if another transition labelads possible. The two
quirements of real time applications are bounded end-to-transitions are performed simultaneously. So communica-
end transmission delays and bounded and small jitter fortion use rendez-vous mechanism.
periodic traffic. As a consequence, the evaluation of the  Performing transitions requires no times. Conversely,
different configurations of our network architecture espe- time can run in nodes. Each node is labeled by an invari-
cially addresses the two following points: ant, that is a boolean condition on clocks. Node occupa-
tion is dependent of the invariant. The node is occupied if
the invariant is true.

Timed automata have been extended. One extension is
committed nodes. The goal of these nodes is to ensure

« bound the jitter for each periodic CAN message. a_\tomicity between consecutive _execution of discrete ac-

tions [20]. As an example, consider the three automata of
The allowed configurations are summarized in table 1. In the figure 6.
the next section, we will propose both a modelling of the

e calculate a bound on the end-to-end delay of each
CAN frame, so that we can guaranty that no missed
deadline arise on CAN traffic,

one for one strategy that can be easily extended to the AL »@L@ﬁ,@
two other event-triggered strategies and a modelling of the
time-triggered strategy. A2 @ m1 ( )
4. Modelling the network architecture with A @ m2 C
timed automata

Figure 6. Example of committed nodes

Several approaches can be used to evaluate the behav-
ior of a given application on a network architecture. In Al performs m1 and simultaneously A2 performs m1.
[26, 25], we developed a simulation model to compare dif- Then Al performs m2 and simultaneously A3 performs
ferent CAN / Ethernet bridging strategies. Such a model is m2. As s2 of Al is committed, the two transitions m1 and
inefficient to determine a worst-case end-to-end delay onm2 are performed simultaneously without time evolution.
CAN messages. The Network Calculus ([9, 10]) has beenSo, this extension allows to model broadcast communica-
applied in the AFDX network system for Airbus embed- tion mechanism through timed automata.
ded networks [4, 15]. However, it is often difficult to eval- Another extension is timed automata with shared inte-
uate the quality of the obtained worst-case end-to-end de-ger variables. In timed automata with shared integer vari-
lay (is it possible to approach or reach this delay?). Here, ables, a set of variables is shared by timed automata. In
we use timed automata. We have already applied them insuch a way, these values can be consulted and updated by
the contexts of a production cell [21] and avionics systems any timed automata [20, 7].
[6]. A system modelled with timed automata can be veri-

In this section, we first give a short overview of timed fied using model-checking. The reachability analysis is
automata. Then, we successively present the modelling %fgerformed by model-checking. It consists in encoding the



property in terms of reachability of a given node of one of

the automata. So, the property is verified by the reacha-

bility of node if and only if the node is reachable from an
initial configuration. Reachability is decidable and algo-
rithms exist [20]. Unfortunately, reachability analysis is

undecidable on timed automata with shared integer vari-

ables, but some semi-algorithms exist.

In the following subsections, we model the CAN
/ Switched Ethernet architecture and the TTCAN /
Switched Ethernet architecture presented in section 3 us

ing timed automata with shared integer variables. Proper-

ties will be verified using UPPAAL model-checker [1].

4.2 Modelling the CAN/ Switched Ethernet architec-
ture
In this subsection, we model the CAN / Switched Eth-

ernet architecture of section 3. The structure of the model

is depicted in figure 7. It is composed of four kinds of
timed automata:

¢ afunction automaton models periodic real-time func-
tions,

t_period=period[msgld]
sendM sg[msgl d][busld]
t_period:=0

Figure 8. Function automaton

t_period is equal toperiod[msgld]. The message is
then sent to the corresponding CAN buia the action
sendM sg[msgld][busId).

4.2.2 The transceiver automaton

The transceiver automaton is the first part of the medium
access layer. Figure 9 depicts its behavior.

sendMsg[msT][bu%
endTransmit[msgId][busi\dNO
arbreg[msgld][busld]:=0

Figure 9. Transceiver automaton

transmit[busld]
arbreg[msgld][busld]:=1

transmitM sg[msgl d][busl d]

This automaton is first idle, waiting for the signal

e a transceiver automaton represents a part of thesendMsg[msgld][busId], which is the sending request

medium access layer,
e an arbiter automaton implements the CAN arbiter,

e a switch automaton models an output port of the Eth-
ernet switch.

‘ Function ‘ ‘ Function ‘ ‘ Function ‘ ‘ Function ‘ ‘ Function ‘ ‘ Function ‘

i
I I
! ‘ . . I
i ‘Transcaver‘ ‘Transosver‘ ‘Transoewe(‘ '
I I
I I

bt

1 ‘ Arbiter ‘ 1

————— Fowt——F—

e
I
1‘Transce1ver ‘Transceva ‘Trans:aver |
I
I

R

i ‘ Arbiter ‘ i
I I

Figure 7. The CAN / Switch Ethernet model

The presented model only considers thee for one

encapsulation strategy. It can be easily extended to the

n for one andtimed n for one strategies by the adding
of bridge automata between CAN and the switch. Such
automata will be described in the TTCAN context.

4.2.1 The function automaton

As all CAN messages are periodic in our context, each
function of the system sends a frame periodically. The
automaton is depicted in Figure 8.

msgld corresponds to the identifier field in CAN
frame. The function automaton waits the duration of
period|msgld]. It leaves the node when the clock

from an upper layer. When it receives this signal, it
immediately send the signalransmit[busId]. This
signal requests access to the bus identifiedbty! d.
The shared integer variablerbreq(msgld][busId] al-
lows to identify the message which requests the
bus.  When the transmitter wins the bus, it re-
ceives the signainsgTransmitimsgld][busld]. When

the message is completely transmitted, the signal
endTransmitimsgld][busld] is received and the vari-
ablearbreqimsgld][busld] is reset.

4.2.3 The arbiter automaton

As explained in section 2.1, the bitwise arbiter of a CAN
bus consists in choosing the lowest identifier, which corre-
sponds to the highest priority, of the set of pending frames.
Modelling of such an arbiter is proposed in [18]. It imple-
ments the following loop:

for i in 0 to max_identifier_value do
if arbreq[i]=1 then

begin

transmit message i;

wait end of transmission;

end
end for;

We have adapted this solution to our context. Figure 10
shows the resulting timed automaton.

The nodeh < 0 models the loop. When the identifier
is selected, the automaton simulates the transmission by
waiting for a delaytransmission_delay. Then it sends
a signalendT'ransmit[msgld][busId] to the transmitter
and simultaneously a signgbrwardTransmit[msgld]

to the switch.
50



4.3 Modelling the TTCAN/ Switched Ethernet archi-

@ tecture

transmit[busld] We consider the model depicted Figure 12 which con-
h:=0, §:=0 sists in the following components:

h=0 & i<max_identifier_value
i 1= . . . .
& arbreqli][busla]t=1 e afunction automaton transmits a time-triggered mes-

h=0 & i<max_identifier_value Sage;
. & arbreq[i][busld]=
msgTransmit[i][budId]

h:=0 e a bridge TTCAN/Ethernet automaton encapsulates
h<=transmission_delay CAN frames in Ethernet frames,

h=0 & i=max_identifier_value

h=0
transmit[bu;I
i:=

forwardTransmit][j
i:=(

h=transmission_delay
endTransmit[i][busId]

transmit[busId]

e abridge Ethernet/TTCAN automaton transmits CAN
frames encapsulated in Ethernet frames to the
destination CAN bus following the time-triggered
schema,

Figure 10. Arbiter automaton

4.2.4 The switch automaton e a switch automaton,

As explained in section 2.2, the switch uses FIFO policy ¢ and two Ethernet links.

on each queued transmit port. Each node of the automaton

models a location in the queue. Consequently, the number ‘ Fumﬁon‘ ‘ Fumion‘ ‘ Fumtion‘
of nodes of the automaton equals the size of the queue. ¢ ¢ ¢
Figure 11 shows a switch automaton for a transmit port ‘

with queue sizen. Each transition from a nod®; to Bridge TTCAN/Ethernet
a nodeP;; of the automaton models the arrival of one Y
frame at the transmit port. The identifier of the frame is ‘ Ethernet link ‘

the parameter of thgorwardTransmit event. delay is

the transmission time of the frame. In a first approach,

we consider it is the same for every frame, meaning that ‘
frame length is constant. ¢

f

Switch ‘

‘ Ethernet link ‘

f

‘ Bridge TTCAN/Ethernet ‘

forwardTransmit[m] forwardTransmit[m]
msg2:=m

forwardTransmit[1] forwardTransmit[1]

=0, msgl:=1 msg2:=1
forwardTransmit[0] forwardTransmit[0]
R OGN O

Figure 12. The TTCAN/Switch model

O

h=delay h<=delay h=delay h<=dday =~ h<=delay
sendmsglmegt] o <0 4.3.1 The function automaton
Figure 11. Switch automaton This function sends a signakndM sg[msgld][idCan]
corresponding to the messagesgl/d at the instant
sendTime[msgld] (in order to respect the time-triggered
schema) and then waits the beginning of the sending cycle
4.2.5 The global system (Figure 13).
First, we model the transmission on one by compos- hesendTimelmsglc]
ing functions, transceivers and arbiter: he=sendTimeimegla) MMl dlldCan (o oy
Bus; = ((Function; o||Transceiver;o)||.. .|| =
(Function; ,,||Transceiver; ,,))
|| Arbiter; Figure 13. The function in time-triggered

strategy
where Function; ; is a function sending a message with
an identifier of valug, T'ransceiver; ; is the correspond-
ing transceiver.
Finally, the global system is the composition of n bus 4-3-2 The bridge TTCAN/Ethernet automaton

and the switch: The bridge TTCAN/Ethernet automaton constructs the

_ Ethernet frame by encapsulating CAN frames. The model
System = (Buso||Busi|| ... |[Bus,)||Switch 5ils depicted in Figure 14.



?:n?ﬁ?;fl‘:ndcm station | message bus | priority | period | trans.
h:=0, number_of_frames:=i, i:=0 time
(ms) | (ms)
sl m1l bus1 0 4 0.135
?;ﬁﬁgﬁnsgmu[husm] s2 m2 bus2 1 4 0.115
fi=i+l s3 m3 bus3 2 10 0.095
— s4 m4 bus4 3 10 | 0.075
_cycle N
sendMsglmsgldZ][busid] s5 m5 bus5 4 12 | 0.135
B s6 mé | bus5| 5 12 | 0.115
h<tt_cycle
sendMsgimsgldn][bosid] Table 2. Configuration of CAN / Switched

Ethernet case study
Figure 14. Model of the bridge CAN/Ethernet

4.3.4 The Ethernet links automata

During the cycle duration, each time the bridge re- The Ethernet link between the TTCAN/Ethernet bridge
ceives the signatendM sg[msgld,][idCan] which cor- and the switch is modelled in Figure 16. It consists in
responds to a CAN frame, it encapsulates the frame intoadding a delay between the signabd Frame[idCan)
the pending Ethernet frame. When the cycle duration sent by the bridge andorwardTransmit[idCan] re-
elapses, the bridge sends this Ethernet frame to the switctteived by the switch.
using the signakendFrame[idCan]. The shared inte-

sendFrame[msglId]

ger variablenumber_of_frames[idCan] indicates how h:=0 heetrans del

. =trans_dela
many frames have been encapsulated into the Ethernet @ -
frame. h=trans_delay

forwardTransmit[msgld]

Figure 16. Model of an Ethernet link
433 The bridge Ethemet/TTCAN automaton The automaton modelling the Ethernet link between
the switch and the Ethernet/TTCAN bridge is similar to

The bri Ethernet/TTCAN maton transmi AN . . i
e bridge EthernetTTCAN automaton transmits C the switch automaton depicted in Figure 11.

frames of the received Ethernet frame to the destination
CAN respecting the time-triggered schema. Figure 15

represents its behaviour. 5. Worst-case delay calculation

In this section, we show how worst-case end-to-end de-

i<number_of_frames[idFrame]

sendM sg[msgi dn][idCan] lay can be obtained from the models of section 4 Con-

=i+l

sider the case study depicted in Figure 17 composed of
eleven stations communicating on five CAN buses inter-
connected by an Ethernet switch. Six stations sends a
message periodically. The configuration is given in table
2. The switch imply a transmission delay of 0.080ms. We

I
i<number_of_frames[idFrame]
sendM sg[msgl d1][idCan]
=i+l

Fail

@

ransmitMsglidFrame] i<number_of frames{idFrame] won't consider any delay within CAN/Ethernet bridges.
i:=0 transmitMsfidFrame) This case study is modelled as described in section 4.
Figure 15. Model of the bridge Ethernet/CAN

}‘ —S‘.N:It}:E::—::/% buss

The automaton receives theinsmit M sg[id Frame]
from the switch automatonidFrame identifies the in- bus3
put CAN. The transmission of each frame is modelled
by the reception ofumber_of_frames[idFrame] sig- bus4 -
nals namedsendM sglidMes,|[idCan] from functions

of same type as previously described. An error can be Figure 17. The CAN/Switch model
detected, which leads to thBail node in the Figure,
whentransmit M sg[id Frame] is received before all the Model-checking is used to determine the global trans-

CAN frames have been transmitted, i.e. when the numbermission delay of each message in the system. The method
of transmitted frames is lower than the number of CAN consists in verifying that a message is received before a
frames in the Ethernet frame. 5%Iobal transmission delay. In other words, the property to



Message GIobaI(E;}exSr;s. delay bust —
mi 0.595 bus2 e R
m2 0.460 Siteh >3 b e
bus3 - T
m3 0.345 b3p~" .-
m4 0.670 bust ol
Table 3. Worst-case de|ays Figure 19. The TTCAN/Switch model
Message| Bus | Trans.
verify is “given a message:;, the global transmission de- Instant
lay of the message:;, notedd(m;) must be lower than (ms)
a bounded delay; : d(m;) < d;". The test automata mi busl| 0.200
method can be used to help the verification process. This m2 busl!| 0.600
method is described in [7, 5] and consists in constructing m3 bus? | 0.500
a test automaton which encodes the considered property. ma bus?2| 0.700
Then, the model-checking consists in calculating if a re-
ject node is reachable or not. The test automaton of our Table 4. TTCAN Configuration

property is depicted in Figure 18.
sertTransmisionimegl el To bound the jitter, the Ethernet link transmission delay
is increased until the Fail node is reached in the bridge
sdelay{megia Ethernet / CAN. The proper_ty i§ then “fail node should
4’ not be reached”. Given a switching delay of 0.020ms, the
endTransmission[msgld] maximum valid value for the Ethernet link transmission
delay is 0.060ms.
Computing the worst case delay on the two case studies
using a Pentium IV with 2Go of memory takes less than
5s on UPPAAL 3.4.11.

startTrans1"|1i§6)n[msgl d]

endTransmission[msgl d]

Figure 18. The test automaton

First, it waits for startTransmission[msgld] sig- )
nal which is immediately transmitted (using a com- 6. Conclusion and future works
mitted node) aftersendM sg[msgld] in each automa-
ton function. If h > delay|msgld], i.e. no In this paper, we mainly focused on two types of com-
signal endTransmission[msgld] is detected before  munication technologies:
delay|msglId], the reject node, represented by the node
with an unhappy face, is reached and the property is false.
So, we compute, for each message, the lower value of the
global transmission delay using the model-checker UP-
PAAL. Results are given in table 3 and show that the
worst-case occurs when aII. th.e messages are sent at th_e e Switched Ethernet, which is a popular non real-time
same time. Due to transmission delays, messages posi-  communication system.
tions in the switch are: Iin4, 2: m3, 3: m2, 4: m1. m4
takes 0.075+0.080=0.155ms to access to bus5. During thisThe aim of the paper was to study the use of switched
time, m5 is completely transmitted on bus5 and is in Ethernet in conjunction with CAN for communications
transmission since 0.020msu4 is delayed. At 0.235ms, in a real-time system. More precisely, the challenge was
m3 try to access to bus5. When transmissionmdf is to define and evaluate event-triggered and time-triggered
finished at 0.250ms, the priority @3 is higher than the  mechanisms on a mixed CAN / switched Ethernet archi-
one ofm4 and then is transmitted to bus5. In accordance tecture.

e the Controller Area Network (CAN), with both the
native CAN MAC and the time-triggered version
(TTCAN), which is a good example of determinis-
tic real-time communication system,

with messages priorities, transmissione? can starts at The event-triggered behaviour is obtained by the native
0.345ms and transmission ofl at 0.460ms.n4 is then CAN MAC and an event-triggered encapsulation strat-
sent at 0.595ms. egy. The time-triggered strategy extends TTCAN over the

Consider now the system of Figure 19 composed of whole network (exchanges between CAN data busses take
three CAN busses. It illustrates the worst-case delay cal-place at the end of each TTCAN micro-cycles).
culation on the TTCAN/Switched Ethernet model. It in- We have proposed an evaluation method for the differ-
cludes two function on each input bus and four functions ent proposed solutions using timed automata modelling
on the output bus, two CAN / Ethernet bridges and two and UPPAAL. With our models, we are able to determine
Ethernet / CAN bridges. Configuration is given in table 4. worst-case end-to-end delays for CAN frames. We still
The micro-cycle is 1ms. 5gave to validate this calculation on more significant case



studies. In this context, it will probably be necessary to [12] D. Dietrich and T. Sauter. Evolution potentials for fieldbus
simplify CAN modelling in order to overcome combina-
torial explosion.

Moreover, our models have to be expanded, especially

in the following ways:

e the introduction of jitters between the different CAN

busses,

e the introduction of non-CAN Ethernet traffic,

This will probably imply the use of probabilistic timed au-
tomata [28, 19]. Moreover, the introduction of non-CAN
traffic will imply the use of a more sophisticated Ethernet
switch, in order to be able to differentiate traffics.

Among other points that should be studied, there is
the use of other time-triggered strategies on CAN, such [18]
as FTTCAN [2] and an architecture with a more global
Ethernet including several switches.

Finally, it would be valuable to compare the approach
proposed in this paper, based on timed automata, with [19]
other approaches such as the one based on network calcu-
lus. A preliminary similar comparison has been conducted
in the AFDX context [8].
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Abstract

This paper presents a new real-time Quality of Service
(QoS) guarantee scheme called Relaxed (m,k)-firm denoted
by R-(m,k)-firm. The problem we deal with is that for a set
of streams (e.g. sources which generate packets) sharing a
common resource, deterministic (m,k)-firm guarantee of
each stream can lead to an arbitrarily low resource
utilization, making (m,k)-firm useless for QoS guarantee in
a network. The goal of the proposed constraint relaxation is
to achieve a higher resource utilization while still
deterministically guarantee the (m,k)-firm constraint. As
with (m,k)-firm guarantee, R-(m,k)-firm provides the
guarantee on the transmission delay of at least m out of any
k consecutive packets (m=<k). Instead of imposing a
transmission delay constraint per packet (i.e. deadline), R-
(m,k)-firm only considers a global transmission delay
constraint on a group of any k consecutive packets. This
constraint relaxation may be acceptable for a large class of
soft real-time applications such as multimedia flow
transmissions in the networks for which occasional packet
drops can be tolerated.

One of the possible implementations of the R-(m,k)-firm
scheme is also provided with the development of a new
traffic control mechanism, called Double-Leaks Bucket
(DLB). DLB selectively drops a proportion of packets of a
flow or an aggregated-flows in case of the network
congestion while still guaranteeing the R-(m,k)-firm
constraint. The sufficient condition for this guarantee is
given for configuring the DLB parameters.

Finally a comprehensive discussion on the existing
constraint relaxation strategies is developed showing the
generality of the R-(m,k)-firm scheme.

1. Introduction and Motivations

1.1 Why using (m,k)-firm for QoS control

Internet nowadays supports more and more real-time and
business-critical applications. However, for providing them
with transmission delay guarantee, neither Intserv nor
Diffserv consists in an efficient solution [1]. In fact, for
providing a bounded transmission delay to a flow (Intserv) or

a class of flows (Diffserv), as a flow often generates bursty
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traffic (case of most VBR applications and aggregated
Diffserv class of flows), a bandwidth reservation policy
according to the peak rate of the flow is an over-provisioning
one. This leads to low resource utilization in average case.
Another problem we should deal with in providing real-time
QoS is the network congestion because of the router
overload. This can occur when a path includes one or several
routers which do not support Diffserv. As it may lead to
packet drop, although occasional packet drops could be
tolerated, long consecutive packet drops must be avoided
since it can drastically decease the QoS for applications such
as audio/video diffusion. Unfortunately, existing queue
management schemes such as TD (Tail-Drop) do not address
the consecutive packet drop problem. RED (Random Early
Detection) [2] has been proposed to deal with the problem
with random dropping. However, it does not give any
guarantee on non-consecutive packet drops.

The key idea we exploit here is to take the advantage of
the “natural” packet loss tolerance of a large class of real-
time applications to reduce the sufficient bandwidth
reservation. In fact, if we consider applications such as
video-on-demand, IP telephony, Internet radio, etc., many of
them can tolerate packet losses to some extent. Let us take
the example of the packetized voice transmission of the IP
telephony service. Instead to guarantee the reliable
transmission of all the packets with a large delay, it is
preferable to drop a voice packet if it cannot be transmitted
in time (typically 400ms for IP telephony). The (m,k)-firm
model introduced by Hamdaoui and Ramanathan [3] can be
used to specify such kind of tolerance by introducing the
graceful QoS degradation between satisfying all packets’
deadlines (i.e. (kk)-firm guarantee) and (m,k)-firm
guarantee. QoS management according to the (m,k)-firm
model has several advantages: (1) during network
congestion, packets are dropped according to the (m,k)
model rather than non-deterministically as the case of TD
and RED. Thus undesirable long consecutive packet drops
can be avoided; (2) the fact to aim at only (m,k)-firm
guarantee instead of (kk)-firm may require less resource
reservation since the average workload is reduced by a factor
of m/k for providing the minimum QoS level. This last point
is interesting when congestion occurs or when the peak rate
reservation (i.e., over-provisioning) cannot be provided at
admission control.



1.2 What are the problems when using (m,k)-firm
model for QoS control

At first glance, the (m,k)-firm model [3] seems to be an
interesting one for resolving both of the problems of the
resource over-provisioning and long consecutive packet
drops. The (m,k)-firm model says that the deadlines of at
least m out of any consecutive & packets must be met.
Moreover packets whose deadline cannot be met are not
transmitted (i.e. dropped), this is why we use the term “firm
real-time” instead of “soft real-time”. Notice that the term
“any consecutive k packets” implies a sliding window
guarantee for a flow. Some work exists in applying (m,k)-
firm to QoS management. In [4], it proposed to use (m,k)-
firm model instead of RED for congestion control and
experimentally showed its interest. However nothing is
provided concerning the transmission delay guarantee. [5]
proposed an integration of the existing (m,k)-firm scheduling
algorithms into the Diffserv architecture for providing
average performance improvement.

Intuitively, reserving resources according to (m,k)
requirement rather than (k,k) should reduce the necessary
resource reservation. This is true for example for the case
when flows are served by a WFQ server [6] or when only
statistic (m,k)-firm guarantee is required. Unfortunately, it
has been proven that in general, for achieving deterministic
(m,k)-firm guarantee, one has to reserve resources according

to (k,k)-firm since the worst case must be considered [7, 8, 9].

Moreover, the problem of non pre-emptive scheduling of N
(m;,k)-firm constrained flows (i =1, ..., N) on a single
resource (processor or network link) has been proved NP-
hard in strong sense, such that no optimal scheduling can be
expected under such model. This problem seriously
compromises the practical interest of using the (m,k)-firm
model for network resource management.

Faced to this low utilization problem (due to NP-hard),
three research directions are possible. The first one is to
look for the sub-optimal scheduling using heuristic methods.
This is generally not suitable for on-line QoS control
because of the long computing time. The second one is to
specialize the stream set. For instance, in [10], by
specializing the stream model such that the packets of all the
streams must have the same transmission time and the same
period, the utilization factor is improved. However this so
particular stream model cannot be directly applied to the
multimedia transmission in which each stream could have
its different packet length and period. The third way is to
extend the (m,k)-firm one. In [11], the deadlines of packets
are relaxed to reduce the resource requirement.

1.3 What is our proposal

In this paper we follow the third research direction and
propose to modify the concept of (m,k)-firm. Instead of
considering the traditional guarantee of the individual packet
deadline, we define a global deadline for any group of &
consecutive packets. Formally, in an interval [s, 7], the source
has sent k packets to the network, then the destination should
be assured to receive at least m among them (delivered in
order or not) before time t+A, where A is the maximum
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tolerable transmission delay caused by the network for any
group of k consecutive packets.

With this novel definition, it is obvious that the QoS
requirement is given from per flow or per aggregated-flow
point of view instead of the per packet deadline (m,k)-firm
constraint. So we call this Relaxed (m,k)-firm guarantee and
shortened by R-(m,k)-firm.

14 DLB: one of possible implementations of R-
(m,k)-firm scheme

For implementing R-(m,k)-firm scheme, we also designed
a new mechanism, called Double Leaks Bucket (DLB) for
dropping a proportion of packets of a flow or a class of flows
in case of network congestion while still guaranteeing the R-
(m,k)-firm constraint of (r, b)-bounded [12] flows. Where r
stands for the average arrival rate while b the burst. In [15] it
has been shown that (r, b)-bounded can include periodic and
sporadic flows (with or without jitters).

1.5 How the R-(m,k)-firm scheme is positioned

The R-(m,k)-firm scheme can be considered as one of the
real-time constraint relaxation strategies similar to the
Pinwheel model [13], frame-based model [14] and Virtual
window constrained model [11]. We will show that R-(m,k)-
firm is a general model which can include the previous ones.

1.6 Organization of the paper

The rest of this paper is organized as following. Section 2
describes in more detail the R-(m,k)-firm scheme. The DLB
mechanism is presented in section 3. In section 4 we discuss
on the existing constraint relaxation strategies and show the
generality of the R-(m,k)-firm scheme. Section 5 summarizes
our contributions.

2. R-(m,k)-firm scheme
2.1 Motivation of R-(m,k)-firm

Let us consider a traditional periodic or sporadic task' set
described as I"=(7;,... 7). A task is described by 7 = (¢, p;
d, m, k), where c¢; stands for the execution time of an
instance, p; stands for the period or minimum inter-arrival
time of instances, d; is the relative deadline before which the
instance must be completed, otherwise the instance will
miss its deadline and in firm real-time, it is dropped directly
without execution, and m,, k; describe that the deadline of at
least m; out of any consecutive &; instances must be met.

The practical advantage of (m,k)-firm constraint is to
increase at much as possible the utilization factor of a task

n
set which is given in terms of Zﬁi Obviously, this
i=1 " Dj
utilization cannot be higher than 100%, such that the gain of
a system is to improve the utilisation factor to 100% at
most.

" Here we use the term task for keeping close to the real-time scheduling
terminology. However, it should understand that a task is a general term
which can stand for a source generating packets in the context of networks



As mentioned in the previous section, until now, there is
not a non pre-emptive scheduling system which can get an
interesting gain for a general task set under (m,k)-firm
constraint. So that we will propose a relaxed (m,k)-firm
real-time constraint to resolve this low utilization problem.

2.2 Definition of R-(m,k)-firm QoS constraint
An R-(3,5)-firm constraint is shown in Fig. 1.

Submitted work

\OO0O, .

Executed work

s .
A time

Fig. 1: R-(3,5)-firm constraint

Definition of R-(m,k)-firm constraint:

In any time interval [s, ¢] (with t-s /), a task submits & units
of workload to a server. The server should finish the
execution of at least m among them (in order or not) before
time A, where A is the maximum tolerable delay caused
by the server for the group of & units.

The following points help to understand this definition.

1) Any time interval means a sliding window, which can
start from any time point, denoted by s.

2) A task 7 can either be modelled by a periodic or
sporadic source (¢, p;, m; k;) or by a (r;,b;)-bounded
source under (m;k;)-firm constraint but with A as the
deadline of any group of k consecutive instances
starting at time s.

3) The constraint is given for each task: every task can
require its own constraint without considering other
tasks. The system should guarantee R-(m,k)-firm
constraint individually for each task.

4) The real-time constraint includes two factors: (m,k)
factor and delay factor.

5) (m,k) factor of constraint: at least m among k& instances
should be executed within the delay constraint A. In
general case, (m,k) factor applies to the sliding window.
However it can also applies to the no-overlapping fixed
windows.

6) Delay factor A: this factor assures that (m,k) factor
must be realised before a maximum delay after the end
of the release of the k" instance starting from time s.
For the sliding window requirement, it requires that
from no matter when one task generates k instances in
time length not smaller than /, such that the system
assures the execution of at least m instances before /+4.
No-overlapping window just requires that after the
release of a task, at least m instances are executed
among the first & instances, as well as the m among
(k+1)™ to 2k™ instances, and so on.
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23 Application in network

After the comprehension of R-(m,k)-firm constraint, we
give an example in networks, as shown in Fig. 2. The source
has a virtual stack, and it sends the packets from its stack
head through the network. The destination has also a
corresponding stack, and adds the received packets to the
stack tail. Supposing in the time interval [s, 7], k& packets
have been sent to the destination, the QoS provided by the
network must assure the destination to receive at least m
packets among the & for adding into its stack before +A4.
There are k-m discardable packets in k consecutive ones.

Fig. 2: Per Flow QoS

Actually, R-(m,k)-firm constraint replaces the
conventional real-time constraint on the individual packet
deadline.

24 Demonstration of R-(m,k)-firm advantages by
Virtual scheduling pattern

Fig.3 shows the advantage of our R-(m,k)-firm constraint
in contrast with conventional per packet deadline constraint.
Each block stands for a packet.

(1] [2] (3] [a] [5] [6] (7] 8] [o] [id [l [12] [13] 4] i3] 1] [17 (1] [19] bl

T T Y

& [l . [d 17 [1g

(R T B Ty Ll oo I

[ [e] Ll I (4
\-r

A

Fig. 3: Example of a virtual scheduling pattern under (3,5)-
firm and R-(3,5)-firm constraint

The fist scenario (first line) shows a periodic packet
stream that sends a packet at each beginning of period of P
seconds. The second scenario (2nd line) shows a scheduling
under (3,5)-firm constraint. In the second scenario, the
server is obliged to serve all grey blocks. Otherwise, the
system falls into failure state, such as the 15™ block. Once
the system falls into failure state (i.e. the (m,k)-firm
constraint is violated), the server is still obliged to serve the
next 3 packets (16", 17", 18"™) to restore system. Note that
this obliged service of packets, scheduled with other
streams, will cause high resource requirement (or reduced
utilization) forming the so-called interference point [7],
[16]. The well distributed interference points could reduce



the resource requirement [16]. However, the optimal
distribution of those interference points is an NP-hard
problem in strong sense, making it impossible to always
reduce the over-provisioning problem. The third scenario
shows a sequence under R-(3,5)-firm constraint, whose
window size is configured according to R-(3,5) constraint
with SP+A. Readers can verify by sliding the window or by
positioning the no-overlapping windows, and will find there
are always at least 3 packets in the window no matter which
beginning of period it is slide to. Although there are a lot of
deadline misses, the sequence can still be accepted by R-
(3,5)-firm.

2.5 R-(m,k)-firm is flexible and adaptive

It is obvious that our R-(m,k)-firm pattern is more
flexible than the (m,k)-firm one. Although there are some
deadline misses, it can be acceptable for a real-time
multimedia communication such as VoIP, VoD, as well as
some networked control systems where over-sampled data
are transmitted by a network.

In previous section, we only showed a simple example
scenario under R-(3,5)-firm and (3,5)-firm constraints, but it
is not to say that all transmissions could tolerate the loss-
rate of 40%. After all, m and & of R-(mk)-firm constraint
can be configured as any natural number. The
configurations should be done according to the specified
communication requirement.

The R-(m,k)-firm scheme being specified, we propose in
the next section a traffic control mechanism for
deterministically guaranteeing R-(m,k)-firm constraint with
high utilization factor. In fact satisfying R-(m,k)-firm
constraint is not a trivial problem since the (m,k) factor and
the delay factor are two antagonist factors for a given server.
On the one hand, serving more instances (or packets)
favours the (m,k) factor but leads to more delay. On the
other hand, dropping more instances (or packets) may
reduce the delay factor but risk to jeopardize the (m,k)
factor.

3. DLB (Double-Leaks Bucket)

According to R-(m,k)-firm constraint, we develop one
novel mechanism termed as DLB from the traditional leaky
bucket [12]. DLB has two leaks named Serving Leak (SL)
and Discarding Leak (DL) as depicted in Fig. 4.

3.1 Liquid model of DLB mechanism

Firstly, to simplify the problem, we start the analysis
with a liquid model, whose workload is in terms of ‘water’
that can be split infinitesimally. The network should
guarantee the ‘water’ that travels through SL, whilst the DL
controlled by one switch gives the capacity to throw out the
water from the bucket. With the service guarantee for SL,
R-(m,k)-firm constraint could be satisfied. The water going
through the DL is discarded, and can be treated with
whatever method never jeopardizing the network QoS.
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‘(r,b) bounded flow

Discarding Leak

LI

Serving Leak

Fig. 4: Double-Leaks Bucket (Liquid Model)

Let C; and C, denote respectively the capacities of SL
and DL. The control switch of DL works according to the
quantity of the workload (represented by the height of the
water in the bucket and denoted by q). This function is
called as double threshold control function (DTC function),
as shown in Fig. 5, where 1 stands for the opened state of
the DL switch (or water gate) and O stands for the closed
state.

qi 2 ™

Fig. 5: Double Thresholds Control Function of the Switch

3.2
stream.

We take the (r,b)-bounded arrival stream as a general
source model. This is to say that the cumulative arrival
curve is upper bounded by (7,b) [12], where r is the average
arrival rate, and b is the burst. Denoting by Fj(t) the function
of the arrival curve, the workload arrived at any interval /s,
t] is upper bounded by:

Service curve under (r,b)-bounded arrival

Ft)-Fi(s)<b +n(t—s) Y0<s<t

This (r,b)-bounded source generates k units of workload
in a time length no smaller than /= (@j [12].

Assuming that the workload arrival bound is under the R-
(m,k)-firm constraint. During the increment of the water
height, the switch of Fig.4 remains closed until the height
increases to ¢g,. Once it is opened at ¢,, it remains opened
state until the height reduces to ¢;. When the switch is
opened (control function’s value is 1), the Discarding Leak
throws out the water from the bucket, so that the water
height will be effectively reduced to assure delay factor.
During this procedure, it is obvious that no more than



C2/(C1+C2) quantity of water can pass through DL, such
that this attribute will be used to guarantee the (m,k) factor.

Upper bound of
A arrival curve

\A
r
V\i'\
1 Service curve

q1l

b 92

N N R >
D T R { E P Gt T time

Fig. 6: Service curve evolution of DLB

Fig. 6 shows the evolution of the service curve under the
critical cumulative arrival curve. Notice that SL is always
on service unless the bucket is empty.

33 Sufficient condition for liquid model of DLB

After understanding the mechanism and its attribute to
gurantee (m,k) factor and delay factor, we will propose the
sufficient condition to configure DLB in order that
deterministic guarantee can be achieved.

As shown in Fig.6, R-(m,k)-firm constraint is proposed
in condition of congestion or overload, such that it is
obvious that C1 <r. So the height of water grows higher and
higher in the interval t;,, as the DL switch is closed initially.
Once the height reaches g2, DL switch is opened due to the
double threshold control function (Fig.5). In addition, we
give C1+C2>r, so that the height of water goes lower and
lower until the height decreases to ql (in the interval tl).
This procedure is iterated on until all arrival water has
passed through either SL or DL.

Theorem 1:

If the liquid model of DLB is configured under follow
condition, then the R-(m,k)-firm constraint will be
deterministically guaranteed.

Condition (1):  C,+C>r; % >_m
2

.. . b—
Condition (2): if b>qp, then max (C1+C2

D=9 | % qz)<A

G+C, G ¢

else
max( Cl 5 Cl

Proof:
Condition (1) ensures the (m,k) factor.

As the liquid model, water is an infinitesimal material
(the unit could be atom, molecule, gram or ton, etc.). We

C
configure C;, and C, as C—l > ki . Let Qg(t) represent the
2 —m
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throughput quantity through SL during ]0,t], and Qpp(t)
represent the throughput quantity through DL. It can be

Os1.(1) > G > " , since SL is always on
Op,() G k-m
service unless the bucket is empty, while DL is only on
service during the switch is open. Thus in any k units of
water passed through SL and DL, there are at least m units
passing through SL.

Condition (2) ensures the transmission delay factor of R-
(m,k)-firm : when k units of water is affused into the DLB at

ensured that

time f,= (k,;bj . We calculate the maximum delay of a
packet serviced by either SL or DL.

One case is when the switch of DL is open, and this case
is further divided into two sub-cases: b>q, and b<qp,

If b>q,, the burst causes the maximum bucket load, then
SL and DL service the workload together until the height
decreases to q;. Thereafter, SL service alone until the burst
is finished. We know that results in the delay of the service
for the burst is given by:

e ()
a+C, ¢

In this case, if b<q,, the height must decrease once the
switch is open, so the maximum delay can be given by:

D9 + ﬂ (2)
G+C, G

Another case is that the height is so near to q,, but the
switch is still closed. SL will service alone the workload
until empty the bucket. This case results in the delay of
service, given by:

q
?21 3

It must assure that in any case the maximum delay is no
more than A, so that we give the condition (2).

End of proof.

In a concrete system, the source has its attributes of
arrival curve upper bounded by (7,6) and R-(m,k)-firm
requirement, so in the analysis, these parameters are
regarded as the known parameters. Moreover, we can get
the available bandwidth, so C; should be configured under
the available bandwidth. Based on these known parameters
we should constitute one DLB (configure C», ¢;, ¢») to cope
with this flow for providing the deterministic R-(m,k)-firm
guarantee.



34 Numeric application of liquid DLB

To show the numerical application, audio-CBR streams’
parameters are considered. For example, given one flow, it
generates 2Mbps of average arrival rate with 6kbit of burst.
Such that the flow is bounded by (r,b)=(2Mbps, 6kbit). As
an example, we assume that such a stream is under R-(3,5)-

firm constraint and with A=20ms as the per-flow deadline.

Assuming that at admission control, only 1.6Mbps
bandwidth is available. Obviously, it is not possible to
guarantee the deadline of all the packets, as congestions are
unavoidable. We set C;+C, = 1.25r = 2.5Mbps, so that the
queue length can be effectively reduced in case of
congestion. Then, DLB is implemented and configured as

C=1.5Mbit/s; and C,=1Mbit/s according to C, :kLC2 ;
—m

moreover, ¢; and q, are configured as that q;=6kbit,
q>=12kbit. With this configured DLB, the maximum delay
can be calculated by formula (2) as 8ms. So we can

guarantee 4., <8ms<A=20ms. While, for guaranteeing all

packets under delay of 20ms, it requires r+b/tz~
2.3Mbit/s of bandwidth [12]. With DLB, it guarantees R-
(m,k)-firm constraint in providing 8ms delay, but it requires
only 1.5Mbit/s of bandwidth. Intuitively, in this example,
DLB can still work under smaller bandwidth, so DLB is
robust under smaller bandwidth.

3.5 Packet model of Double-Leaks Bucket

In the packet switching network the information are
encapsulated as packets, and the non-preemption is widely
employed. So we now develop the DLB model according to
the granularity of the packets and under the discrete time.
Afterwards, the given R-(m,k)-firm is oriented the number
of packets. Fig.7 depicts the mechanism. Two new parts are
added, named temporary vessel buckets (TVB) for DL and
SL, respectively. They take an entire packet from the DLB
after the service of the current packet in themselves. TVB of
the DL can only get the next during the switch is still in
opened state.

02

VB VB

DiscardingLeal
Fig. 7: Packet Model of DLB

Bervingleak

The switch here is also controlled by the DTC function.
Afterwards, for the packet model, the values of g; and ¢, are
no longer the quantity of the water, but the number of
packets; to represent the quantity of workload we use ¢;S or
q,S, where S denotes the size of the packet (in unit of bit or

byte).

3.6 Sufficient condition of DLB in packet model

Due to the packet granularity, the sufficient condition will
be more complex than that of the DLB liquid model, which
is given in the following theorem.

Theorem 2:
The sufficient condition for guaranteeing R-(m,k)-firm
constraint of the packet model can be given as following:

Cl m
>y M
M h =0 % kem
(2) If b<q,
max 42—1& D=0 9N |g|< A
(@] G+C, G

else

max qz_lS, b=, +2 g | <A
G G+C, G

Proof:
Condition (1) ensures the (m,k) factor.
As mentioned in the liquid model, it should be provided that

C . .
! Tm as in the liquid model. Furthermore, we must take

into account the granularity of the packet. In case that TVB
of DL has just taken one packet when the bucket height is
q:+1, then the switch will be closed. Therefore, the service

time of TVB of DL will continue Ci’ and SL will be on
2

service at least %S . The service process should be that SL
1

. . . 1 .
is always on service during DL does, then % > This
1 2

deduces that ¢, > —L>_"_ We set q; as the minimum

value such as: ¢, = [kl—" and it is clear that ¢,>¢;. So we
—m

can choose one suitable value for q,, which is neither too

much big nor causes the switch rotate too frequently.
Condition (2) is derived with the same stragety as that for

liquid model to guarantee delay factor.

End of proof.

3.7 Numeric application of packet DLB model

Let’s consider the same concrete example as in the liquid
model, the packet size is S=6kbit, then we can configure this
DLB as C;=1.44Mbit/s, C,=0.96Mbit/s, q,=2, q,=5. With




this configured DLB, R-(m,k)-firm is guaranteed
Dl _ _
<=—85=1 SA=2 .

Ldelay G § =10ms <A = 20ms

4. Comparison with other real-time

constraint relaxation strategies

The R-(m,k)-firm scheme is a strategy to relax the too tight
(and unnecessary) hard real-time constraint. Similarly,
Pinwheel model [13], frame-based model [14] and Virtual
window constrained model [11] can also be considered as
other constraint relaxation strategies. In what follows we
will discuss on those models and show that R-(m,k)-firm is
a general model which can include the other ones.
4.1 Limitation of  utilization gain  when
deterministic (m,k)-firm guarantee is required

The initial motivation of (m,k)-firm constraint is that the
deadlines of at least m out of any k£ consecutive packets must
be guaranteed. Similar to (m,k)-firm constraint, Dynamic
Window-Constraint Scheduling (DWCS) [10] can accept a
certain deadline misses such that x is the maximum
acceptable packet loss in a fixed given window y packets.

(m,k)-firm and DWCS constraints just take into account
the quantity of the deadline met or miss, whereas a stream is
defined with several other parameters, such as transmission
time, period and dropping rate. This unilateralism of
analysis results in bad utilisation of resource, and this poor
utilization factor causes the considerable over-provisioning
of the system. Again, this over-provisioning causes the
(m,k)-firm or its similar systems (e.g. DWCS) to loss their
practical interest. Those facts have been shown in [7, 8, 9].

In [8], one theorem is proposed to show the utilization
factor of a steam set serviced by multiprocessor under
window-constraint. The result is very pessimistic, such that
the system falls into failure state (no schedulable) even in
arbitrary low utilization. The theorem is given as follows:

For an arbitrary non-negative real number « and a natural
number g, there exists a unit-size Window-Constrained
stream set 7/, such that the aggregate utilization rate of 7is
less than or equal to u, and /”is not schedulable by DWCS
[10] on g processors.

In fact, such a theorem has also been given for (m,k)-firm
constraint in [9]. Such as that:

Under an arbitrary low utilisation, there is always a
stream set 7, which causes the system violate the (m,k)-firm
constraint.

As mentioned above, providing deterministic (m,k)-firm
guarantee can oblige resource reservation according to (k,k)-
firm. This is to say that (m,k)-firm losses its practical interest
for reducing the necessary resource reservation.

4.2 Complexity fatality
More general, in [7, 8], it has been proven that:
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The schedulablity of a stream set under (m,k)-firm or
DWCS is a problem of NP-hard in strong sense.

4.3 Other relaxed constraint model

In fact, the deadline of instance is not the holy grail of
real-time communication, and there have been a lot of work
that try to relax the deadlines to gain higher utilization
factor, such as frame-based model [14], Pin-wheel
scheduling [13] and virtual deadline window scheduling
[11], etc.

The frame-based model defines a set of tasks, which is to
execute within each frame (time window) and is to complete
before the end of frame. The problem is to schedule the task
set in a single frame with deadline D.

Frame-based model assumes that all task instances are
stored in a single queue at the beginning of the frame (i.e.
released at the same time at the beginning of the time
window). In this case, the utilization of processor can reach
100%. Clearly, if the total tasks’ instances size is inferior or
equal to the frame size, any no-idle scheduling can treat
with them without any constraint violation. The scheduling
in a frame can be repeated to do with infinite task instances.

Note that frame-based model removes the deadlines of
instances to provide a scheduling in the same frame size for
all tasks. However, for current diverse applications, tasks
demand different frame size, which makes the frame-based
model little interest for practical use in the QoS control in
networks.

In our opinion, Pinwheel model is more interesting to
reserve different quantity of time in different frame size for
each task. The generalized pinwheel scheduling problem is
an offline scheduling for satellite-based communication as
follows: Given a multiset {(a;, b;), (a,, by), ..., (a,, b,)} of
ordered pairs of positive integers, determine an infinite
sequence over the symbols {1, 2, 3, ..., n} such that, for
each i, /< i <n, any subsequence of b; consecutive symbols
contains at least a; times of i,. Differing from frame-based
model, Pinwheel guarantees the execution time in a sliding
frame.

Together, Pinwheel model and frame-based model can
find optimal scheduling scheme, and their utilization factor
can arrive to 100%. However, as mentioned, frame-based
model constraint all tasks in a unique frame, on the other
hand, Pinwheel is designed for satellite-based
communication model which only concerns unit size
execution time. They cannot service current diverse
multimedia applications.

Similar to R-(m,k)-firm constraint, Zhang and West [11]
proposed a relaxed window constraint to gain utilisation. It
allows task instances to be serviced after their deadlines, as
long as it can guarantee a minimum fraction of service to a
task in a fixed window. Its scheduling mechanism lengthens
the instances’ deadlines, and the deadlines are modified
according to the execution time. Moreover, as like as
DWCS, virtual deadline scheduling requires specially that
the tasks should have the unit size execution time and their
period must be the multiple of the execution time. Notice




that this model can be regarded as a special version of R-
(m,k)-firm constraint in case that R-(m,k)-firm schem
requires (m,k) factor in no-overlapping window (fixed
window) with delay factor A=0.

In one word, R-(m,k)-firm synthesized all the above
mentioned relaxation strategies to define a more general

deterministically guarantee using DLB under the sufficient
condition (theorem 1 and 2) proposed in section 3.

In the next subsection, we will shown the advantage
gained by R-(m,k)-firm scheme. Simultaneously, it must be
noticed that R-(m,k)-firm constraint can be well guaranteed
even with the traditional simple scheduling policy, such as

scheme for general task set. This scheme can be Rate Monotonic policy.
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Fig.8: Scheduling trace of Table 1.

4.4 Comparison by simulation

In this subsection, we give a scenario to show that R-
(m,k)-firm constraint can significantly gain the utilisation
factor compared with (m,k)-firm constraint and DWCS
constraint.
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The scenario consists in four tasks, each of which has R-
(m;,k;)-firm constraint. We will simulate for a strict delay
factor (i.e., A=0) to show the high gain of utilisation.

The task set is scheduled under non pre-emptive fixed
priority scheduling, and the priority is indicated by the
index. Then, the schedule trace is shown in Fig.8.

Notice that R-(m,k)-firm constraints are well guaranteed
for either sliding window or no-overlapping window with



zero delay (A=0). Such that, for any task, in any window of
size kp;, there are at least m; instances executed. Dashed
window is marked in Fig. 8, which can help the readers to
verify this.

Period Execution time
(ms) (ms) R-(m,k)-firm
7 8 1 (1,2)
- 10 8 (2,4)
7 16 4 2,3)
T 20 7 (5,7)
Utilisation 88% with A=0

Table 1: R-(m,k)-firm simulation scenario

It is also easy to discover that a lot of missed deadlines
exist during the scheduling trace for 7; and 7,; caused by
this, all deadline schemes (DWCS and (m,k)-firm
constraint) will be violated. However, R-(m,k)-firm
constraint replaced the per-instance deadline by the delay of
group of instances, such that a high utilisation is gained
(88%). Note that more gain of utilisation can be achieved
with the no-zero delay factor.

Moreover, this scenario dealt with the periodic task set,
which makes it different from the numerical applications
given in section 3. The numerical applications given in
section 3 are applications of DLB for the tasks upper
bounded by (r;b), while periodic task has less burst. Again,
none of the other deadline schemes can achieve the same
gain in case of either this scenario or the numerical
applications in section 3.

5. Conclusion

Since the current networks often falls into congestion
caused by the overload or the over-provisioning is not
always possible, graceful degradation of Quality of Service
in networks is necessary for efficiently supporting the
packet loss tolerant real-time applications such as VolP,
VoD, etc. Selectively discarding packets according to the
(m,k)-firm model during overload periods is the key issue of
our approach.

In this paper, two main contributions can be found. One
is that we proposed a novel real-time QoS constraint, named
as Relaxed (m,k)-firm constraint. Under this R-(m,k)-firm
constraint, long consecutive loss of packets can be avoided,
such that it is suitable for divers multimedia applications.
This novel real-time constraint replaces deadlines for each
packet by a delay factor of a packet group, moreover, it
orients to the more general (b,r)-bounded streams, including
periodic and sporadic ones. Another contribution is that one
dynamic mechanism, called Double Leaks Bucket, has been
proposed to deterministically guarantee the R-(m,k)-firm
constraint.

The comparison with other schemes showed the
generality of R-(m,k)-firm constraint in contrast with
DWCS, Frame-based Model, Pinwheel Model, and Virtual
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Deadline Scheduling model. Furthermore, Simulation
scenarios showed how R-(m,k)-firm constraint increases the
resource utilization by replacing deadlines of packets with
the delay of group of packets.
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Abstract

This paper describes a communication protocol, called
SCoCAN (for Shared Channels on CAN). This protocol is
based on a hybrid communication scheme combining time
triggered (TT) and event triggered (ET) paradigms with
temporal isolation. Both traffic types are handled by time
slots dedicated to each one. SCoOCAN has been primarily
projected as a communication infrastructure for
distributed control applications. Its main goal is to
provide determinism in the communication, but without
wasting the bus bandwidth. This is achieved by means of a
dynamic bandwidth recovery method, based on the
recycling of the unused time slots.

1. Introduction'

Nowadays, distributed embedded systems are more
and more used in complex control architectures with
high degree of autonomy. It is common to find them in
flight controllers, cars, robots, industrial control, and so
on, where fieldbus-based communication systems are

frequently found.
Embedded systems generally operate as closed-loop
control systems: they sample sensors, calculate

appropriate control responses and send those responses
to actuators. Hence, to achieve a correct operation of
control loops and an appropriate integration of
information - both spatial and temporal - real time
performance is strongly required. And therefore, the
computational resources of each node as well as the
temporal characteristics of the communication fieldbus
must be taken into account at designing time [9].

Fieldbus designers are typically concerned about the
capacity to deliver both time triggered (TT) and event
triggered (ET) communication services under timing
constraints. Therefore, an adequate scheme seems to be a
combination of both TT and ET services, trying to share
their respective advantages. This is the approach used in
the SCoCAN protocol.

Although there is a great variety of real time buses,
CANJ[4] (Controler Area Network) is one of the
preferred solutions to communicate distributed systems
into reduced spaces, such as in mobile robots [17]. But
the native CAN protocol does not guarantee a minimum
jitter nor the exact moment of transmission due to the

" This work is being developed under the FEDER-CICYT grant
n° DP12002-04434-C04-03.
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high variability of response times in CAN messages,
produced by error conditions in the channel and by the
traffic overload [18]. This can produce missing deadlines
in some control applications. As demonstrated in [15],
communication jitter have an adverse effect into many
distributed control systems. To avoid these problems,
some modifications to the native CAN protocol have
been made, leading to new hybrid protocols to appear,
such as TTCAN [7], FTTCAN [1] and SCoCAN (our
case). These protocols will be introduced in a
forthcoming section.

In the next section 2 the main characteristics of the ET
and TT communication paradigms have been
highlighted, as well as the hybrid ET-TT approach,
emphasizing some characteristics such as bandwidth
efficient utilization and jitter. Afterwards, in section 3 is
presented the SCoCAN protocol, describing its main
temporal characteristics, the different slot types and
latency specifications. Next, in section 4, several existing
protocols on CAN, are compared with SCoCAN. Finally,
in section 5 the implementation of SCoCAN in the YAIR
robot is used as a case study to test the performance of
the protocol.

2. Communication Paradigms

Two different communication approaches for the
design of communication infrastructures in distributed
applications are mainly used: Event-Triggered (ET) and
Time-Triggered(TT) [13], [11]. In the event-triggered
(ET) paradigm the system activities, such as the sending
of a message, are triggered by the occurrences of events
in the environment, whereas in the time-triggered (TT)
paradigm the activities are triggered by the progression
of the global time. This section will compare those two
paradigms, whose emphasis is related to requirements of
predictability, resource utilization and efficiency.

2.1 Event-Triggered Paradigm.

In Event Triggered communication systems the
temporal control is external to the communication
system. That is, only the sender node has knowledge
about the point in time when a message has to be
transmitted. Therefore, the required amount of resources
(i.e.., network bandwidth) for the worst-case
communication can become higher when one considers
the situation in which all nodes attempt to communicate
simultaneously. However, ET paradigm is efficient



concerning average resource utilization, since the nodes
generate messages only in response to significant state
changes in the environment.

In addition, the ET communication does not explicitly
require a global notion of time, and consequently neither

synchronization = methods.  Moreover, the ET
communication can  support different  system
configurations that change over time, thus the

communication infrastructure is supplied of flexibility
[12]. However, the temporal uncertainty of the ET
communication protocols can be large and have an
adverse effect on control systems [15].

Typically, the ET communication is used to convey
alarm conditions, asynchronous non real-time traffic, or
sporadic and large data blocks.

2.2 Time-Triggered Paradigm.

In TT communication systems, temporal control
resides within the communication system, and is
independent of the application in the nodes. All
communication occurs at predetermined instants in the
time at a rate determined by the dynamics of the
environment under control. This allows a relative phase
control among the streams of messages to be transmitted
over the communication bus, and consequently, a
reduction on the number of nodes that attempt to
transmit simultaneously. Besides, this feature leads to
composability with respect to the temporal behaviour,
one of the most important properties of TT
communication as is emphasized by Kopetz[12]. On the
other hand this paradigm allows an efficient management
of resources utilization in communication peak loads.
However, if the load condition is low or average, then
the resources utilization will be worse than those
obtained with a comparable ET approach.

In TT communication, the clocks of all nodes must be
synchronized to form a global notion of time. Hence,
they require system-wide synchronization mechanisms
that can increase the complexity of system management.
However, as previously described, the TT approach
allows the phase control over the communication, and
therefore is possible to eliminate or bound the
communication jitter.

Usually, the TT communication is adequate for control
applications that require regular transmission (e.g. engine
control, motion control, robots control) and it is used to
convey data with critical timing, periodic and with long
deadlines.

2.3 Joining E-T and T-T paradigms.

Previously, the characteristics of ET and TT paradigms
were separately described. However, many practical
applications of distributed embedded control, such as
automotive systems and robots, require the exchange of
information of both sporadic and periodic nature. This
last is associated with control loops and the first with
alarms, management or code delegation between nodes.
Even though these two types of traffic can be conveyed
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over totally ET systems (as CAN[4] based systems), or
totally TT systems (such as TTP[19]), the network
efficiency suggests to join both paradigms, sharing their
particular advantages, such as intermediate level of
flexibility due to the ET part (any node can attempt to
transmit) and a predictable temporal behaviour due to the
TT part. However, the combination must implement
temporal isolation of both types of traffic, to prevent that
asynchronous ET traffic can ruin the advantages of the
TT paradigm due to mutual interference. A way to
achieve this isolation is allocating bandwidth exclusively
to each type of traffic.

However, this hybrid scheme is not recent, e.g. in [14]
two consecutive phases dedicated to one type of traffic
each are defined. Consequently, the bus time turn into an
alternate sequence of TT and ET phases. Another typical
examples of protocols that using this hybrid scheme are
FTTCAN [1], FlexRay[3] and TTCAN[7], moreover, the
first and third protocols are one example of a hybrid
scheme over fully ET native bus, and the second is one
example of transmission over fully TT native bus.

3. Existing Protocols

Nowadays there is a great variety of fieldbus protocols
and their election must be made in agreement with the
application’s requirements and with some relevant

characteristics, such as ease of implementation,
flexibility, fault tolerance, commercial availability,
temporal constraints, required bandwidth, type of

transmitted data, etc. For their relevance and interest,
some existing protocols will be described in this section,
highlighting their main characteristics.

WorldFIP [8] fieldbus uses a centralized MAC
protocol (master—slave), first, the master has to poll the
nodes for the existence of aperiodic requests to be
served, and this is normally carried out using the periodic
traffic assigned to each node. Then, when a node
indicates that it has pending aperiodic requests, the
master has to poll the node for the identification of the
individual requests and finally process them one at a
time. Therefore, into this protocol the handling of ET
traffic is relatively inefficient, requiring a considerable
amount of bandwidth to allow the master node to stay
alert for aperiodic requests.

Foundation Fieldbus-H1[8] has one communication
scheme comparable to WorldFIP. A Link Active
Scheduler (LAS) is used for scheduling transmissions of
TT messages and authorizing the exchange of data
between Link Masters (LMs) devices. Furthermore, this
scheduling allows the transmission of event-triggered
messages only during precise time windows that do not
extend beyond of the time used by the time-triggered
messages. The LAS organizes the communication
passing a virtual token ring to put order in the access to
the network. This token-based method is also relatively
inefficient because the token itself consumes bandwidth,
and the nodes with pending aperiodic communication
requests have to wait for the token even if the remaining
nodes in the ring list have no requests.



TTP (Time Triggered Protocol) [19] is based on a pure
TDMA (time-division multiple access) approach, with
exclusive slots and with static scheduling. The support of
time-triggered traffic is obvious whereas the event-
triggered traffic can only be supported by pre-allocating
a number of slots for the transmission of eventually
pending event-triggered messages. However, these slots
are dedicated and, at a given instance, if there is not any
transmission request for the respective message, the slot
remains unused. This time-based polling mechanism for
each event-triggered message produces high efficiency
under worst case requirements and low efficiency under
average-case requirements. Although TTP supports
addition of nodes by booking enough time in the TDMA
round, this causes extra bandwidth to be allocated,
constituting an inefficient bandwidth management.

FlexRay [3] combines a time-triggered along with an
event-triggered system. Based on an extended TDMA
media access strategy, it has a communication cycle
divided into a mandatory static segment, and an optional
dynamic segment. In the static segment, requirements
such as latency and jitter are handled by means of
deterministic communication timing. Into this segment
the time slots are equally sized and the point of time
when a frame is transmitted on the channel is exactly
known. The slot assignment is done off-line during
system planning. The dynamic segment consists of one
slot of fixed duration and subdivided into mini-slots. A
prioritization scheme enables variable bandwidth
distribution during runtime. Each sending controller has
a mini-slot assigned to a transmit-frame. However, this
latter is equivalent to assigning different wait time to
asynchronous messages according to their priority. This
mechanism can result in substantial bus idle time when
there are ready-to-send, yet low-priority messages.
Moreover, if a high-priority ET message is generated just
later of its assigned mini-slot, this message must wait
until next communication cycle, whereas other low-
priority messages can be transmitted.

Flexible Time Triggered CAN (FTTCAN)[1] is an
extension of CAN, based on a dynamic scheduling
TDMA. FTTCAN has a basic cycle divided into two
windows, one asynchronous used to transmit ET
messages and whose access to the bus is determined by
the conventional CAN protocol. The second window is
synchronous, being in this window where the TT
messages are transmitted. In this window the traffic is
dynamically scheduled by a master central node. This
feature enables the online admission control of dynamic
requests for periodic communication because the
respective requirements are held centralised into one
local table. In this protocol the handling of ET traffic and
network utilization is efficient, and also, it has a flexible
handling of TT traffic supporting online admission of
change requests for this traffic. However, into
synchronous window (TT traffic), lowered and bounded
communication jitter might appear due to that within this
windows the access to the bus is determined by the
conventional CAN protocol.
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Time Triggered CAN (TTCAN) [7] is another
extension of CAN, based on static schedule TDMA.
TTCAN uses a reference message to indicate the
beginning of each basic cycle. A basic cycle is divided
into three different types of windows: private windows,
used to transmit one specific message only, arbitration
windows, where the nodes compete by the access to the
bus as in a conventional communication of CAN, and
free windows, used for future extensions. In this protocol
the basic cycles are not always the same. The complete
pattern of TTCAN traffic is integrated by a consecutive
number of basic cycles that form a matrix. However,
there are several practical constraints that must be
observed when building the table. For example, all the
windows in the same column must be of equal width and
type. Moreover, the exclusive windows are dedicated to
the transmission of a single time-triggered message.
However, the fact that there is a CSMA-based MAC
protocol that resolves collisions at bus access during the
arbitration windows greatly simplifies the handling of
event-triggered traffic.

4. Introduction to SCoCAN.

A first approach for the proposed SCoCAN protocol
was presented in [6]. SCoCAN (Shared Channel on
Controller Area Network) is a higher layer protocol on
top of the CAN data link layer, and follows a hybrid
communication scheme, combining time triggered (TT)
and event triggered (ET) traffic, but with temporal
isolation (achieved by exclusive allocation of bandwidth
to each type of traffic in successive time slots). The main
goal of SCoCAN is to remove or reduce the jitter, also
exploiting the maximum physical bandwidth of the bus.
The former is achieved by triggering the time slots
sequence, supplying determinism to the communication
bus; whereas the latter is achieved by means of dynamic
bandwidth recovery by recycling unused time slots. The
adoption of CAN bus for SCoOCAN protocol has several
advantages. It simplifies and makes efficient the
handling of event-triggered traffic due to the CAN
collision resolution mechanism which utilizes an access
method CSMA/CR [4]. Moreover, CAN network
controllers and their cabling are relatively inexpensive
and the relatively robust physical layer with respect to
error detection and tolerance of physical faults enables
SCoCAN-based systems operate in harsh environments.
And additionally, the CAN controllers have great
commercial availability and can be found embedded into
several microcontrollers as well as in microprocessors.

The nomenclature used in our protocol follows. The
SCoCAN bus time is organized as a sequence of variable
duration time-slots. This sequence is called Basic Cycle
(BC), and the slots size, distribution and assignments are
defined at pre-runtime. The BC is organized as a static
time table and is distributed to all nodes on network at
start-up. In addition, changes between pre-defined and
post-defined operational modes are also allowed. The
nodes are synchronized by a strictly periodic reference
message named Sync Message (SM), which marks the



starting of each basic cycle. This message is sent by a
master node.

Within each BC are defined several successive time-
slots used to convey different types of traffic: Private
slots are used to convey time-triggered traffic, and are
called private because in each of these slots only a node
can transmit data. Shared slots are used to convey
exclusively event-triggered traffic, and are called shared
because all nodes may try to transmit using the native
CAN arbitration mechanism. And finally, the Recycled
slots are the result of a dynamic transformation (at
runtime) of private slots into shared slots when these
first remain unused. This transformation achieves high-
bandwidth efficiency by means of an active bandwidth
recovery and avoiding a waste of bus bandwidth.

To reinforce the temporal isolation between time-
triggered and event-triggered traffic and to maintain the
temporal properties of TT traffic, such as composability,
the transmissions that could not be completed within the
shared slots must be removed from the network
controller transmission buffer, keeping them in the
transmission queue. Thus, a short idle time will be
defined at the end of each shared slot when this is
followed by a private slot or Sync Message.

4.1. The Basic Cycle and their time slots

The time between two synchronization frames
constitutes a Basic Cycle (BC) (see Figure 1). And this is
formed by adding successive time slots of wvariable
duration, whose length will depend on the transmitted
data characteristics. The duration of the whole BC sets
the temporal resolution of the communication system.
Therefore, the transmission periods of the time-triggered
traffic are integer multiples of the BC duration.

As previously described, the time slots of a BC can be
used to convey messages with TT or ET characteristics,
and any message to be sent has the CAN data format and
utilizes a standard CAN message. Moreover, a table that
determines the rank of CAN identifiers for each message
(depending on traffic type and its priority) must be also
defined.

In SCoCAN network, all the nodes will use a
transmission time-table to define the BC of protocol,
which is previously defined and saved in all nodes
during bus start-up routine. Additionally, several
operational modes (transmission tables) can be
predefined into nodes or dynamically distributed on the
network (at runtime).

I Basik Cycle ————]
Shared | Private | Shared Recyckd [Share
Slat Slat Slot st Slak

Time § kot foxr messages

Figure 1. A Basic Cycle (BC) in SCoCAN.
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The Figure 1 shows an example of basic cycle, with
the synchronization message followed by private slots
and shared slots. (In the figure, one Private Slot has been
recycled to Shared).

4.1.1 The Synchronization Message

The synchronization of the modules within the
network is done via a periodic Sync Message (SM)
which is clocked by one primary or secondary master
node. All nodes of the SCoCAN network identify the
reference message by its identifier (generally this
message has the highest priority). The receipt of SM
causes a new reconfiguration of local timers and restarts
the cycle time in each node. Additionally, this message
may hold additional control information, such as time
information or operational modes.

Depending on implementation, the synchronization
process may get delays because of differences in SM
message reception time in each node (see Figure 2). The
synchronization accuracy depends on the physical signal
propagation on the bus line and on the processing time of
the message. This small delay will cause differences on
the starting point of the time slots which must be taken
into account. In the Figure 2, nodes 0 and 1 have sensed
the reference message in different instants of time, and
consequently, in the synchronization process an
uncertainty interval may be found.

Slot 0

— —_—
Synchronization
A Uncertainty
-—
MASTER [+ S‘ar;d
essage End
duration

Synchronization
Range

>

4 Delay of 4

T | Slot 1
| ——]

Delay of A
T Slot 1

NobE 0

NobDE 1 /

Arrival of
message ™ |

Figure 2. Delays produced during synchronization.

4.1.2 Private Slots.

These slots are used for messages with hard real time
constraints, synchronization messages or configuration
messages, (i.e., for time-triggered traffic).

In these slots, only one of the nodes is allowed to
transmit data (proprietary node) avoiding eventual
collisions on bus access. Thus, the communication jitter
can be eliminated or bounded. Each node checks when it
is allowed to transmit by scanning a local time table
containing the identification of the message, type of slot,
duration and proprietary node.

The assignation of messages to private time-slots is
off-line scheduled, and moreover, to provide flexibility



to scheduling, the same message identifier may be
assigned to several time slots into the same BC.

To provide reliable communication, the automatic
retransmission  caused by  transmission  errors,
(characteristic of the original CAN protocol) is allowed
into these slots, but the total retransmission duration is
limited to the length of the slot where it takes place.

4.1.3 Shared Slots.

These slots are intended for messages with non-critical
timing (soft real time constraints), alarms or messages
with large blocks of data, (i.e. for event-triggered traffic).

These slots have not any proprietary. Thus, the nodes
use the native priority-based distributed arbitration
mechanism of the original CAN protocol and
consequently, inheriting its efficiency in handling event-
triggered traffic. The scheduling policy is priority driven,
with fixed priorities expressed as message identifiers.
The automatic retransmission caused by transmission
errors of original CAN protocol is also allowed in these
slots. But, to maintain a strict temporal isolation between
both types of traffic (Time-Triggered and Event
Triggered), the private slots must be protected from
interference of ET traffic. This is achieved by adding a
short idle time to the end of each shared slot (see Figure
3) when this is followed by a private slot and to the
ending of a BC. All transmission activity is suspended in
this idle time, including retransmissions and the nodes
with pending ET transmission requests are kept on hold
until the next shared slot.

Shared slot
A
<« Start End —|
<«——— Several messages > < >
Idle
Time

Shared messages

Figure 3. Shared Slot.

4.1.4 Recycled Slots.

An important characteristic of our protocol is that the
private slots (for TT traffic) can be transformed into
shared slots, when in the private slots there are no data
to be transmitted. This transformation is dynamic (during
runtime) providing a dynamic bandwidth recovery and
avoiding a waste of bus resources.

When inactivity on the bus is detected during an
interval of time (inactive time) after the starting point of
a private slot, other nodes with ET traffic queue, are
allowed to start to send their messages (see Figure 4).
This inactivity may be discovered directly by sampling
the CAN bus for the type A nodes, or by a particular
message reception (called Syncl) in the case of type B
nodes. The wait time to detect inactivity is named
recycling time.
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Recycled slot

A Recycling : A
Time Recycling of slot

e > «—— NodetypeA 5

< Start Shared End
Recycling of slot
*— NodetypeB —>
Private SYNC Shared
particual message

Figure 4. Detection of inactivity in Private Slots.
Recycled Slots.

In protocols such as TTCAN or TTP, when a private
slot is allocated to a node and for any reason this node is
turned off, (e.g. HW fault or maintenance), it can cause
a waste of bus bandwidth; because these time slots
remain allocated and unused. However, in the case of
SCoCAN, its recycling mechanism enables private slots
to be transformed into shared slots for ET traffic, thus
recovering the bus bandwidth.

4.2 Node types in SCoCAN.

Primary Master Node: its job is to synchronize all
nodes on network with high timing accuracy. This node
sends SM’s to mark the starting of basic cycle. Also, the
master node must be capable to detect inactivity via
hardware in private slots and must indicate the
unoccupied condition of the slot by sending a particular
message (Sync 1). This last feature can be also delegated
to other node.

Secondary Master Node: a pre-defined set of nodes
(named as Secondary Master Nodes) in the network
constantly monitors the activity of the primary master
node. If the primary master node fails, any secondary
master node immediately handles the synchronization
task. Similar criteria as in [10] would be used for the
selection of the secondary master node.

Node Type A: Node with an intelligent board, capable
of sampling the CAN bus lines, and detect inactivity via
hardware. This feature allows these nodes to quickly
transmit when there is inactivity during the private slots.

Node Type B: Node without capacity of bus sampling.
This type of nodes can not recycle the empty private
slots unless other specialised node (Master node) sends a
short message (Syncl), signalling the unoccupied
condition of the private slots.

4.3 Latency Specifications

In this section we present the analysis for the worst-
case latency of non-critical messages over shared slots
on SCoCAN protocol. The analysis has similarities with
the analysis described in [17][18], used for computation
of maximum transmission latencies on classical CAN
networks. The main difference is that the test described
in this paper mixes the transmission of TT critical
messages on private slots with the transmission of non-



critical messages on shared slots in a schema equivalent
to classical CAN.
Timing analysis makes the following simple
assumptions about the characteristics of a message m:
e  Message m has a bounded size,
e Transmission periods 7, are known and
constant,
e  Jitters to first shared slot JS,, are also known,
o The length and identifier of all messages are
known.
Timing analysis makes also the following simple
assumptions about protocol features:
e The distribution of the shared and private slots
on each basic cycle is static.
e The private slots transformation into shared
slots feature is not applied.
e The exploitation of private messages is not
included.
e  The transmission is free of errors.

The longest time R, from task activation until message
m gains control of the bus can be calculated using the
following extended schedulability test Eq. (1).

R,=JS, +w,+C, (1)

Where JS,, is the blocking time due to private slots,
from the BC start time until the first shared slot and it
depends on the system configuration. These parameters
is used in a similar way with the blocking factor B, due
to messages of lower priority in the equation described in
[18] used for computation of maximum transmission
latencies on classical CAN networks.

The C, factor is the longest time taken to physical
transmission of message m defined by:

4
C = (F;gsJ +47+8s, }’””

Where sm is the number of bytes in the data field of
message m, and f; is the time taken to transmit a bit on
bus. The term w, (Eq 3) represents the worst-case
queuing delay message m. It is similar to longest time
between placing the message in CAN controller registers
to start of transmission of the message m on a shared slot
and it is presented in the recursive equation 3:

@)

wi'' =B, +IHP! + ISP! 3)

Where the term B,, is the worst-case blocking time of
message m due to lower priority messages.

B, = max C,;

Jelp(m)

“)

The Lip () is the delay due to interference between
transmission of message m and the set of higher priority
messages. This is a recursive relation where the factor n
defines iteration on the computation. Generally, the
initial value is zero, which permits a fast convergence.
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n o_ W:1
IHR, = 3, ’7T—‘Cj
jempom | 1

Where hp(m) is the set of messages with higher
priority than message .

©)

1Py = > (1sPul” + 1S Prt)
k=0
KTy <R
R,<¢,

(6)

The [ ;7 (eq. 6) is a blocking time on the message m

due to private slots and it is divided to two factors which
depend to allocation of slot into basic cycle. Where @,
is signal threshold quality of message m. Tcp is the rate
of basic cycle. k is the amount of basic cycle until the
message is transmitted.

ISPn *" = min L AT, -8 +18 7
m HWJ }(cs I 0) @)

The equation 7 shows the interference produced by
private slots at the end of the BC.

positior

The meaning of the terms T,;,,m followS: position

indicates the (s)tarting point or the (e)nding point of the
slot, respectively; whereas slot.num denotes the order
number of the slot into the set of shared slots Wss : {0, *-,
h, -+,I}. Thus, 2‘5 refers to the time corresponding to the
starting of the first sloz.

R!

min H‘WJJ}'(TL] - T;) (8)

This equation show the interference produced by the
private slots into basic cycle, but the interference defined
by the equation 7 is not included.

ISP r,y" =

2

heW AT, <R[

5. CAN protocols comparison

In this section the behaviour of four protocols
(TTCAN, FTTCAN, SCoCAN and native CAN) are
compared using discrete simulation of several sets of
messages by means of a java application tool developed
ad-hoc.

The set of messages are generated automatically by
the application and clustered in two groups: HRT and
SRT (hard real time and soft real time). The HRT are
messages with high priority identifier, (in this
simulation, any message with an identifier under 1024)
and the SRT are the rest of messages (SRT identifiers
range between 1024 and 2047). The bus bandwidth
reserved by the compared protocols each group is: 60%
for SRT and 40% for HRT. (Note that in CAN there are
not differences for both traffic types). In FTTCAN,



asynchronous and synchronous windows have reserved
the 60% and 40% size of basic cycle respectively. And
finally, TTCAN and SCoCAN have defined the 40% of
the slots as private slots.

To observe the behaviour of each protocol for SRT
traffic, the application applies a workload of 100% of
bus bandwidth for SRT messages and then simulates this
scenario for different levels of HRT messages workload.

The next figures 5, 6 and 7, depict the results of
simulations using 0%, 50% and 99% HRT workload
levels for reserved private slots and show the maximum
latencies in microseconds versus the message identifiers.
It must be also noted the logarithmic scale for latencies.
Finally, in the figure 8 the latencies corresponding to the
HRT messages when a 99% of HRT bandwidth is used
are shown. (This is the same case as in the previous
figure 7).

10°
10*t
>
=
>
[&]
C
g
[v]
8 3
107 - o~ FTTCAN |’
——=—— SCoCAN
—— TTCAN
—o- CAN
102 L L L
1000 1200 1400 1600 1800

Identifier

Figure 5. Latencies of SRT messages without HRT
workload.
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Figure 6. Latencies of SRT messages when a 50% of
HRT bandwidth is used.
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Figure 7. Latencies of SRT messages when a 99% of
HRT bandwidth is used.
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Figure 8. Latencies of HRT messages when a 99% of
HRT bandwidth is used.

Examining figures 5 to 7, for each HRT workload, it
can be observed that the latencies of SRT messages on
TTCAN and FTTCAN are not modified by the variation
of the HRT workload percentage. This is a consequence
of the complete isolation properties of both traffic types.
In the case of TTCAN (see fig.8), the jitter for HRT
messages are minimal, whereas in the case of FTTCAN
the jitter depends on HRT workload, having a maximum
bounded by the length of the synchronous window.

In contrast, the maximum latencies on CAN and
SCoCAN depend on the workload of HRT messages.
This behaviour is natural on CAN and it follows the
Tindell formula [18]. Note that in SCoCAN, for lower
HRT workloads, SRT latencies are similar to the CAN
case, but for higher HRT workloads, the SRT latencies
are similar to those of TTCAN case. This effect is due to
the reuse of the available HRT bandwidth.



6. Case study

The SCoCAN protocol has been implemented on the
YAIR? autonomous mobile robot, whose distributed
architecture,  temporal  sensors and  actuators
characteristics, and message frames are defined in [5]
and [16]. Several field tests and several data acquisition
and analysis tools have been implemented, to validate
the performance of the protocol. These will be described
next.

6.1 Basic Characteristics of the test

The YAIR robot [2] is a distributed system with
embedded intelligent modular nodes which manage
different subsystems, such as sensors, actuators and
control devices. Each node also handles the SCoCAN
communication protocol. The nodes involved in the
present test are: infrared node: it reads a ring with 16 IR
sensors; motor node: it is used to control the robot's
motors and to send speed, acceleration and odometer
messages; odometer node: it generates high-resolution
position data; ultrasonar node: it sends for each reading
the digitised envelope of an ultrasonic echo; central
node: it is the main processor of robot. A more detailed
description of each node can be read in [5] and [17].

Given the YAIR’s architecture and the temporal
characteristics of the devices into their distributed system
[S1[15][16], some basic parameters of the test have been
selected: the first one, a basic cycle of 10ms and divided
into 20 slots of 500 microseconds each has been defined
(see Figure 9), (although in the implementation the
neighbouring shared slots are joined). And second,
transmission features of CAN messages such as such as
CAN identifier, data size, assigned slot into the BC, slot
type, rate and number of CAN messages sent each period
are defined in the table 1.

Other SCoCAN features are also defined as follows:
o  The idle time used is 10us

e The recycled time used is 20us.

e And the CAN transmission rate is established in

1Mbps.
¢ 0ms ———H
y 3 A
t 500us -
A A A
SYNC P.1 P.2 oo S.19
Va4 1
Private Shared

Figure 9. SCoCAN basic cycle for the YAIR robot

In these tests, three basic type of traffic can be found:

2 YAIR stand for Yet Another Intelligent Robot and is

currently developed in our laboratory.
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e TT traffic: this is produced by central, infrared,
odometer and motor nodes.

o  Continuous ET traffic: this is generated by ultra
sonar node.

o Sporadic ET traffic: this is produced by all the nodes
on the network, and this traffic is formed by some
alarms and data file transfer. This latter is used to
code delegation and distributed file system.

Table 1. Features of the messages used in the
SCoCAN tests on YAIR robot.

Size

ecification

Data Rate D_f NO l?f SCoCAN | Type of Identifier

Message(nsjj (byte) generation| msj. slot message

20ms 10,19, ) 100 —
Infrared 8 (ring) 4 1316 Private 0103
Maotor-Alarm 1 by evant 1 = Shared 0x010
Motor-Control Generated
Mode 1 by PC 1 - Shared 0300
Motor-odometer | 8 10 ms 1 4 Frivate Ox10A

Generated Frivate

Motor-Speed 4 by PC 1 T 0x10B
Extra Odometer | 8 10ms 1 3 Private | 0x10C

200us/ 0310 -
IUltra sonar 8 S0 32 Shared %218

6.2 Data acquisition and analysis tools

To store the transmission and reception time of
messages for further analysis and to handle the SCoOCAN
protocol, a real time communication driver together with
a real time CAN monitor were implemented.
Additionally, several data analysis tools were developed
to obtain the main features of communication process,
such as utilization factor of CAN bus, message latencies,
jitter, amount of recycled slots and accuracy of data
transmission into the private slots.

6.3 Working modes used in the test

Two working modes of the SCoCAN protocol have
been implemented (see Figure 10) on YAIR robot:

e SCoCANvl1: only one message can be conveyed into
private slots. The retransmission by error is disabled
which will permit a physical replication of buses. An
example of this test is shown at the top of Figure 10.

e SCoCANV2: The automatic retransmission by error
is enabled on all the slots. Moreover, several shared
messages (ET messages) can be conveyed into the
end of each private slot even though a TT message
is transmitted. However, this transmission of ET
messages is possible only when there are not errors
on the transmission of the previous TT message.
(See Figure 10).

In both tests, the fundamental characteristics of
SCoCAN protocol are implemented, such as the
recycling of the slots.
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Figure 10. Working modes used in the tests.

6.4 Results of the SCoCAN test

Using the analysis tools, the simulation time was
established in 100 basic cycles. In the Table 2, the main
results of SCOCANVI test are showed. In this test, the
maximum utilization factor (UF) of CAN bus versus
basic cycles (BC) was 64.23%, while the minimum UF
was 53.83%. Moreover, 35.7% of private slots were
recycled and hence the bus bandwidth was not wasted.

Table 2: Main features of the SCoCANv1 test
SCoCANv1 TEST

Simulation time 100 basic cycles
Maximum UF/BC 64.23%
Minimum UF/BC 53.83%
Average UF/sec 58.38%

] ] Deviation | Deviation | Deviation
anamission tme | ousl | <tusl | <jus
deviation <[x| ps 100% | 98.1% | 71.0%
Recycled slots 250 recycled / 700 private

On the other hand, the features of SCOCANV2 test are
presented in the Table 3. In this test, the maximum
utilization of CAN bus by cycle was 82.56%, whereas
the minimum UF was of 59.03% and the amount of

private slots that were recycled is similar to the
SCoCANV1 test.

Table 3: Main features of the SCoCANv2 test

SCoCANv2 TEST
Simulation time 100 basic cycles
Maximum UF/BC 82.56%
Minimum UF/BC 59.03%
Average UF/sec 66.85%

] ] Deviation | Deviation | Deviation
anamission tme | 9usl | <usl | <f2usi
deviation <[x| ps 100% 96.1% | 77.7%
Recycled slots 250 recycled / 700 private
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In the Figure 11, the temporal evolution of the UF
parameter is shown. In this figure some maximum
transmission peaks which correspond with the start of the
transmission of data files together with echo data and
other TT messages can be distinguished. As expected, in
the SCoCANvV2 test, UF is higher than obtained in
SCoCANVl1, since in this latter, the transmission ET
messages at the ending of each private slot is not
allowed.

In both tests, the maximum transmission time
deviation (that is, the difference between the instant of
transmission of a private message and the real starting
time of its slot), produced in messages allocated to
private slots was always less than 6pus. (This includes the
synchronisation uncertainty and clock drifts). Moreover,
in more than 70% of the private slots, this transmission
time deviation is less than 2 ps.
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Figure 11. Utilization factor of CAN using SCoCAN
protocol in the two tests carried out.

7 Conclusions

In this paper we have discussed the advantages and
disadvantages of event-triggered and time-triggered
paradigms in fieldbus communication systems as well as
of several existing fieldbus protocols. Afterwards, we
propose a new protocol, SCoCAN, which is intended as
a communication infrastructure for distributed control
applications. The main feature of this protocol is that it
supports a combination of TT and ET traffic, with
temporal isolation between them. And additionally the
jitter of messages into the private slot is eliminated and
the management of network bandwidth and of ET traffic
is improved due in part to the dynamic recovery of the
private slots when these are idle. To appreciate the effect
of dynamic BW recovery, a simulation-based
comparison between three CAN-based protocols and
SCoCAN were carried out with positive results.

The SCoCAN protocol has been implemented and
analyzed on the YAIR mobile robot. The analysis of
transmitted messages shows a good response that agrees
well with our expectations.
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Abstract

We present a class of utility accrual resource access pro-
tocols for real-time embedded systems. The protocols con-
sider application activities that are subject to time/utility
function time constraints, and mutual exclusion constraints
for concurrently sharing non-CPU resources. We consider
the timeliness optimality criteria of probabilistically satisfy-
ing individual activity utility lower bounds and maximizing
total accrued utility. The protocols allocate CPU bandwidth
to satisfy utility lower bounds; activity instances are sched-
uled to maximize total utility. We establish the conditions
under which utility lower bounds are satisfied.

1. Introduction

Many emerging real-time embedded systems such as
robotic systems in the space domain (e.g., NASA’s Mars
Rover [5]) and control systems in the defense domain (e.g.,
phased array radars [6]) operate in environments with dy-
namically uncertain properties. These uncertainties include
transient and sustained resource overloads (due to context-
dependent, activity execution times) and arbitrary, activity
arrival patterns. Nevertheless, such systems desire assur-
ances on activity timeliness behavior, whenever possible.

The most distinguishing property of such systems, is that
they are subject to “soft” time constraints (besides hard).
The time constraints are soft in the sense that completing an
activity at any time will result in some (positive or negative)
utility to the system, and that utility depends on the activ-
ity’s completion time. Such soft time-constrained activities
are often subject to optimality criteria such as completing
all activities as close as possible to their optimal comple-
tion times—so as to yield maximal collective utility.

Time/utility functions [7] (TUFs) allow the semantics
of soft time constraints to be precisely specified. A TUF,
which generalizes the deadline constraint, specifies the util-
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ity to the system resulting from the completion of an ac-
tivity as a function of its completion time. A TUF’s utility
values are derived from application-level QoS metrics. Fig-
ures 1(a)-1(b) show some TUF time constraints of two de-
fense applications (see [4] and references therein for appli-
cation details). Classical deadline is a binary-valued, down-
ward “step” shaped TUF; 1(c) shows examples.

Utility Utility 4 Utility 4

Track

Association Plot Correlation
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)
Track Maintensnce
0
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0 Time O Time O

(a)

Time
(b) ©

Figure 1. Example TUF Time Constraints. (a):
AWACS association [4]; (b): Air Defense corre-
lation & maintenance [4] ; (c): Step TUFs.

When activity time constraints are expressed with TUFs,
the timeliness optimality criteria are often based on accrued
activity utility, such as maximizing sum of the activities’
attained utilities or satisfying lower bounds on activities’
maximal utilities. Such criteria are called Utility Accrual
(or UA) criteria, and scheduling algorithms that consider
UA criteria are called UA scheduling algorithms.

UA criteria directly facilitate adaptive behavior during
overloads, when (optimally or sub-optimally) completing
more important activities, irrespective of activity urgency, is
often desirable. UA algorithms that maximize summed util-
ity under downward step TUFs (or deadlines), meet all ac-
tivity deadlines during under-loads (see algorithms in [9]).
When overloads occur, they favor activities that are more
important (since more utility can be attained from them), ir-
respective of urgency. Thus, deadline scheduling’s optimal
timeliness behavior is a special-case of UA scheduling.



1.1. Contributions

Many embedded real-time systems involve mutually ex-
clusive, concurrent access to shared, non-CPU resources,
resulting in contention for the resources. Resolution of the
contention directly affects the system’s timeliness behavior.

UA algorithms that allow concurrent resource sharing
exist (see [9]), but they do not provide any assurances on
individual activity timeliness behavior—e.g., assured util-
ity lower bounds for each activity. UA algorithms that pro-
vide assurances on individual activity timeliness behavior
exist [8], but they do not allow concurrent resource shar-
ing. No UA algorithms exist that provide individual activity
timeliness assurances under concurrent resource sharing.

We solve this exact problem in this paper. We consider
repeatedly occurring application activities that are subject
to TUF time constraints. Activities may concurrently, but
mutually exclusively, share non-CPU resources. To better
account for non-determinism in task execution and inter-
arrival times, we stochastically describe those properties.
We consider the dual optimality criteria of: (1) probabilis-
tically satisfying lower bounds on each activity’s accrued
utility, and (2) maximizing total accrued utility, while re-
specting all mutual exclusion resource constraints.

We present a class of lock-based resource access proto-
cols that optimize this UA criteria. The protocols use the
approach in [8] that include off-line CPU bandwidth allo-
cation and run-time scheduling. While bandwidth alloca-
tion allocates CPU bandwidth share to tasks, scheduling or-
ders task execution on the CPU. The protocols resolve con-
tention among tasks (at run-time) for accessing shared re-
sources, and bound the time needed for accessing resources.

We present three protocols, which differ in the type of
resource sharing that they allow (e.g., direct, nested). We
analytically establish upper bounds on the resource access
times under the protocols, and establish the conditions for
satisfying utility lower bounds.

Thus, the paper’s contribution is the class of resource
access protocols that we present. We are not aware of any
other resource access protocols that solve the UA criteria
that are solved by our protocols.

The rest of the paper is organized as follows: Section 2
describes our models. In Section 3, we summarize the band-
width allocation and scheduling approach in [8] for com-
pleteness. Section 4 introduces resource sharing in this ap-
proach, and Sections 5, 6, and 7 present the protocols. In
Section 8, we show a formal comparison of lock-based ver-
sus lock-free resource access protocols. We demonstrate
that neither is always better than the other. We conclude in
Section 9.
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2. Models and Objectives

Tasks and Jobs. We consider the application to consist
of a set of tasks, denoted as T = {T},T5,---,T,}. Each in-
stance of a task 7; is called a job, denoted as J; ;, j > 1. Jobs
are assumed to be preemptible at arbitrary times.

We describe task arrivals using the Probabilistic
Unimodal Arrival Model (or PUAM) [8]. A PUAM spec-
ification is a tuple (p(k),w),Vk > 0, where p(k) is the prob-
ability of k arrivals during any time interval w. Note that
Y op(k) = 1. Poisson distributions P(A) and Binomial
distributions B(n,0) are commonly used arrival distribu-
tions. Most traditional arrival models (e.g., frames, peri-
odic, sporadic, unimodal) are PUAM’s special cases [8].

We describe task execution times using non-negative
random variables—e.g., gamma distributions.

A job’s time constraint is specified using a TUF (jobs
of a task have the same TUF). A task 7;’s TUF is denoted
as Uj(t); thus job J; ;’s completion at a time ¢ will yield an
utility U; (t). We focus on non-increasing TUFs, as they
encompass the majority of time constraints in applications
of interest to us (e.g., Figure 1).

Resource Model. Jobs can access non-CPU resources
(e.g., disks, NICs, locks), which are serially reusable and
are subject to mutual exclusion constraints. Similar to re-
source access protocols for fixed-priority algorithms [10]
and for UA algorithms [9], we consider a single-unit re-
source model. Thus, only a single instance of a resource is
present and a job explicitly specifies the desired resource.
The requested time intervals for holding resources may be
nested, overlapped or disjoint. Jobs are assumed to explic-
itly release all granted resources before the end of their ex-
ecution.

Optimality Criteria. We define a statistical timeliness
requirement for tasks. For a task T;, this is expressed as
(AU;,AP;), which means that 7; must accrue at least AU;
percentage of its maximum utility with the probability AP;.
This is also the requirement for each job of 7;. For e.g., if
{AU;,AP;} = {0.7,0.93}, then T; must accrue at least 70%
of its maximum utility with a probability no less than 93%.
For a task 7; with a step TUF, AU; is either O or 1.

We consider a two-fold optimality criteria: (1) satisfy all
(AU;,AP), if possible, and (2) maximize the sum of utili-
ties accrued by all tasks. The first criterion is binary in the
sense that it is either satisfied or not. The second criterion
demands as much accrued utility as possible. Our algorithm
first tries to satisfy criterion (1).

3. Bandwidth Allocation and Scheduling

For non-increasing TUFs, satisfying a designated AU, re-
quires that the task’s sojourn time is upper bounded by a
“critical time”, CT;. Given a desired utility lower bound



AU;, V1 < CT[,UI‘(I]) > AU; and Vi, > CT,‘,U,'(lz) < AU;
holds. To bound task sojourn time by C7;, we conduct
a probabilistic feasibility analysis using the processor de-
mand approach [3]. The key to using the processor demand
approach here is allocating a portion of processor band-
width to each task. We first define processor bandwidth:

Definition 3.1. If a task has a processor bandwidth p, then
it receives at least pL processor time during any time inter-
val of length L.

Once a task is allocated a processor bandwidth, the band-
width share can be realized and enforced by a proportional
share (or PS) algorithm (e.g., [11]). A PS algorithm can re-
alize and enforce a desired bandwidth p; for a task T; with a
bounded allocation error, called maximal lag, Q, as follows:
T; will receive at least (p;L — Q) processor time during any
time interval L. Under a PS scheme, jobs of a task execute
on a “virtual CPU” that is not affected by other task behav-
iors. We focus on bandwidth allocation at an abstract level
— using any PS algorithm with a lag Q — hereafter.

Theorem 3.1. Suppose there are at most k arrivals of a
task T during any time window of length w and all jobs
of T have identical relative critical time D. Then, all job
critical times can be satisfied if the underlying PS algo-
rithm provides T with at least a processor bandwidth of
p = max{(C+Q)/D,C/w}, where C is the total execution
time of k jobs released by T in a time window of w, and Q
is the maximal lag of the PS algorithm. O

Proof. Let C,(0,L) be the processor demand and S,(0,L)
be the available processor time for task 7; on a time interval
of [0,L], respectively. The necessary and sufficient condi-
tion for satisfying job critical times is:

$,(0,L) > C,(0,L),YL >0 3.1)

Let p be the processor bandwidth allocated to 7. Thus,
S,(0,L) = pL — Q. Further, the total amount of processor
time demand on [0,L] is C,,(0,L) = ({(L—D)/WJ + 1) C.
Therefore, Equation 3.1 can be rewritten as:

m-QgQ@—mﬁ4+QQW>o

Since ((L—D)/w+1) > (|%2]+1), it is sufficient to
have pL — Q > (52 +1)C,VL > 0 so that Equation 3.2
is satisfied. This leads to:

(3.2)

pZC+1<C+Q—CD>,VL>0 (3.3)
w L w

It is easy to see that p is a monotone of L. For a positive
cC+0-C %, the maximal p occurs when L = D, which
yields p = (C+ Q) /D. For anegative C+Q—C2, the max-
imal p occurs when L = . Combining these two cases, the
theorem follows. O
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For simplicity, we only consider the case p > (C+Q) /D,
which implies D < w. Note that critical sections in a PS
algorithm can be handled by setting Q as the longest criti-
cal section of all tasks. Let N; be the random variable for
the number of arrivals during a time window w;. Then, the
processor demand of task 7; during a time window w; is
Ci = Zl}il ¢i,j, where ¢; j is the execution time of job J; ;.
By Theorem 3.1, p; > (C; + Q)/CT,-, where CT; is T;’s criti-

cal time. To satisfy the assurance probability, we require:

> AP (3.4)

J=1

Ni
Pr lz ¢ij < piCTi—Q

The above condition is the fundamental bandwidth re-
quirement for satisfying a task’s critical time. If N; = k, the
total processor time demand during a time window becomes
):];:1 c; j. Therefore, Equation 3.4 can be rewritten as a sum
of conditional probabilities:

=)

)

k=0

k
(Pi(k)xPr[ ¢ij < piCTi— Q ) >AP (3.5
=1

J

3.1. Bandwidth Solutions

Equation 3.4 can be rewritten as:

1—Pr[C; > piCT; — Q] > AP, (3.6)

By Markov’s Inequality, Pr[X > 1] < E(X)/t for any non-
negative random variable. Therefore,1 — Pr[C; > p,CT; —
0] > 1—E(C;)/(piCT; — Q). If we can determine a p; so
that 1 —E(C;) /(piCT; — Q) > AP, PrC; < piCT; — Q] > AP,
is also satisfied. This becomes:

pi >

E(G)
= CT,(1-AP)

Lo

CT, 3.7

Note that V; in Equation 3.4 is a random variable and fol-
lows a distribution specified by p;(a). By Wald’s Equation,

E(C)=E (lev':1 Ci7j) = E(¢;)E(N;). Thus,

. E(c)EN)
"= CT,(1-AP)

0

T, (3.8)

This solution is applicable for any distributions of ¢; and
N;, and only requires the average number of arrivals and the
average execution time.

With minimal assumption regarding task arrivals and ex-
ecution times, the solution given by Equation 3.8 may be
pessimistic for some distributions. Thus, an algorithm that
demands and utilizes the information of full distributions
for task arrivals and execution times is also presented in [8].

For job scheduling, [8] presents a scheduling algorithm
called UJSsched that uses the Highest Utility Density



First heuristic. UJSsched has the property that if all job
critical times can be satisfied by EDF, then UJSsched is
also able to do so and accrues at least the same utility as
EDF does. Further, if not all job critical times can be satis-
fied, then UJSsched accrues as much utility as possible.

4. Resource Sharing With Locks

Proportional share uses large time quanta to ensure mu-
tual exclusion. This works well for short critical sections.
However, we conjecture that for some cases, a small time
quantum combined with lock-based, resource access proto-
cols may yield lower bandwidth requirement. When time
quanta are smaller than the length of critical sections, pre-
emptions of a task while it is inside a critical section may
happen. Thus, we use locks to ensure mutual exclusion.
With locks, three types of blocking can occur:

Direct Blocking. If a job J; ,, requests a resource R that
is currently held by another job J; i, we say that job J; , is
directly blocked by job J; ;. Job J; is called the blocking
job. Because processor bandwidth is allocated on a per task
basis, we also say that task 7; is blocked by task Tj.

Transitive Blocking. If a job J, is blocked by job J,
which in turn is blocked by job J., we say that job J, is
transitively blocked by J..

Queue Blocking. Let a set of tasks 78 =
{Tp1,Tp2,- -+ , Tpx } be simultaneously blocked on a resource
R, held by task T;,. When T, releases R, one of the blocked
tasks, e.g., task 7j,,, will acquire R and continue execution.
Thus, another task T, will suffer additional blocking due to
Tym, besides the blocking due to 7,. We call such an addi-
tional blocking queue blocking, as it is caused by a queue of
blocked tasks. This definition can be expanded to the case
of multiple tasks in 7B being granted R before Tj,,.

The objective of resource access protocols is to effec-
tively bound or reduce task blocking times. We present
three protocols, called the Bandwidth Inheritance Protocol
(BIP), Resource Level Policy (RLP) and the Early Blocking
Protocol (EBP). BIP speeds up the execution of a blocking
task and thus reduces direct blocking times. It is inspired
by the Priority Inheritance Protocol (PIP) [10] in priority
scheduling. RLP bounds the queue blocking time suffered
by a task. However, BIP and RLP allows transitive blocking
and deadlocks. EBP avoids deadlocks and bounds transitive
blocking times.

Recall that UJSsched [8] is used to resolve competition
among jobs of the same task. Thus, resource blocking can
occur among jobs, which complicates the analysis of the
job scheduling algorithm. Note that assurance requirements
are at the task level. Thus, we simply disallow preemptions
while a job holds a resource. From the perspective of the
virtual processor, UJSsched is invoked when a new job
arrives and when the currently executing job completes.
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Transitive blocking and deadlocks can occur only in the
presence of nested critical sections; Lemma 4.1 states this
observation. Thus, BIP and RLP disallow nested sections.

Lemma 4.1. Transitive blocking can occur only in the
presence of nested critical sections. That is, if a job J, is
transitively blocked by another job J., there must be a job
Jp that is currently inside a nested critical section. O

Proof. By the definition of transitive blocking, there exists
a job J, that blocks J, and is blocked by J.. Since J, is
blocked by Jj,, J, must hold a resource, e.g., Ry. Further, the
fact that Jj, is blocked by J. implies that J;, requests another
resource, e.g., Rp, which is currently held by J.. Thus, J,
must be inside a nested critical section. O

Besides the property of no transitive blocking, lack of
nested critical sections also prevents deadlocks, since hold-
and-wait — a necessary condition for deadlocks — is disal-
lowed. We now introduce a few notations and assumptions:

® 7 j’h critical section of task T;;

e d; j: duration of critical section z; ; on a dedicated pro-
cessor without processor contention;

® R; j: resource associated with critical section z; j;

e d/: duration of task 7;’s critical section that accesses
resource R;;

® 7k C Zim: Zik 1s entirely contained in z; ,;

o All critical sections are “properly” nested, i.e., for any
pair of z;x and z; ,, either z;x C zim, OF Zjm C Zik, OF
Zikzim = 0;

e All critical sections are guarded by binary semaphores.

5. Bandwidth Inheritance Protocol

BIP’s key idea is to speed up the execution time of a
blocking task 7', by transferring all bandwidth of tasks that
are blocked by 7. Thus, the blocked tasks loose their band-
width and become stalled. We define BIP as a set of rules:

1. If a task 7; is blocked on a resource R that is currently
held by a task Tj, the processor bandwidth of task 7; is
inherited by task T;. That is, the processor bandwidth
of task Tj is temporarily increased to p; + p; until 7}
releases resource R. In the meanwhile, the bandwidth
of task 7; becomes zero. Thus, 7; is stalled even if some
jobs of T; are eligible for execution.

2. Bandwidth inheritance is transitive. That is, if a task
T, is blocked by T}, which in turn is blocked by task T,
then the bandwidth of T, is also transferred to 7.

3. Bandwidth inheritance is additive. Suppose a task 7,
holds a resource R, and a set of tasks 7B = {T;,Vi =
1,...,k} are all blocked on R. Then, the bandwidth of
T, is increased to p, + Zf-;l pi.

BIP’s three rules indicate how the bandwidth of blocked
tasks can be transferred to the blocking task for the three



types of blocking. By doing so, we reduce the duration of
the blocking task’s critical section. Task bandwidth can be
transferred through dynamic task join and leave operations
— EEVDF [11] allows this while maintaining a constant
lag.

5.1. Blocking Time under BIP

We now upper bound a blocking task’s duration of criti-
cal section. Assume that the blocking task has a total band-
width of p, possibly through bandwidth inheritance. Then,
the duration of the critical section is d;/p. Therefore, the
key to bound the duration is to lower bound the processor
bandwidth allocated to a blocking task. An arbitrarily small
bandwidth essentially yields an unbounded blocking time.

Section 3 presented methods to determine the minimal
bandwidth needed to satisfy task utility bounds, without re-
source blocking. We now establish the relationship between
the bandwidth requirements with and without blocking.

Theorem 5.1. In Theorem 3.1°s task model, if a task is
blocked on resource access, the minimal required band-
width isp = (B+C+ Q)/D, where B is the total blocking
time of jobs of the task during a time window W. O

Proof. The proof is similar to that of Theorem 3.1 [8]. To
satisfy job critical times, the available processor time during
any time interval [0, L], excluding the blocking time, should
be greater than or equal to job processor demand:

L

5,(0.L)—0— QI;DJ + 1) B> QL‘;DJ + 1) c(,z?;o

This leads to:
pL> QL‘;DJ + 1) (B+C)—Q,YL>0  (5.2)

By the same argument as in the proof of Theorem 3.1, we
have p > (B+C+Q) /D. O

Thus, if pf”i” (Ci + Q)/D,- is T;’s processor band-
width by assuming no resource blocking, it is safe to
use " as the lower bound on 7;’s bandwidth even in
the presence of resource blocking. Also, observe that if
T; is a blocking task, it must inherit the bandwidth of
at least one blocked task. Let 7R be the set of tasks
that may be blocked by 7;. T;’s total bandwidth while
it is inside the critical section (of using resource R) is
at least p"" + min{p;f’i”|j #iA\T; € TR}. The direct
blocking time caused by T; is upper bounded by (d; +
Q)/ (plmi” —|—min{p§””|j #i,Tj € ‘T?{}), where d; is the
duration of 7;’s critical section for R. This blocking time

calculation is repeated for all critical sections of a task, and
for all jobs of a task in a time window.
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5.2. Bandwidth Allocation under BIP

Let each task T; access n; resources, denoted R; j,j =
l,...,n;. Let dg,; denote the maximal length of the
critical section for accessing resource R;;, and pﬁif’j? de-
note the smallest p”™” among all tasks that may access
R; ;. T;’s direct blocking time for accessing R; ; is BRI.‘J. =

dR,.J/ (pﬁ’ii’; + p;’””). A job of T;’s direct blocking time is:

n; ni de‘“ _|_ Q
Bp = Z BRtﬁ,j = Z min]_*_ min ’ (53)
j=1 j=1PRr;; TP

where n; is the number of critical sections of 7;. By The-
orem 5.1, we require that the probability of satisfying task
critical time is at least AP;. This leads to:

Y pi(k)Pr[B+C+Q < p,CT;| > AP, =
k=0

o nidp +Q
Z Di (k) Pr k Z pmiriﬁg_pmin
k=0 ]:l Ri‘j i

k
+ AZlCi,j‘f‘Q <piCTi| = AR,
j=
5.4
For all tasks, we first calculate the minimal bandwidth
requirements without resource blocking, i.e., p;"’"‘, using the
techniques in Section 3. The direct blocking time for each
job of T;, namely Bp is then calculated. Observe that the net
effect of resource blocking is an increase in task execution
time. In the case of direct blocking, the execution time of
a job is increased by Bp, which has been calculated. Once
the blocking time is calculated, the bandwidth requirement
under BIP can be computed from Equation 5.4. Solutions
in Section 3 can be applied to solve Equation 5.4 for p;.

6. Resource Level Policy

RLP’s idea is to associate a static numerical value with
each task, called a task’s Resource Level (or RL). A task’s
RL is static in the sense that it is assigned when the task is
created, is maintained intact during the task’s life time, and
is the same for all jobs of the task. By using static RLs, we
aim to produce a predictable order for accessing a shared
resource, in case a queue of tasks are blocked on the same
resource. Thus, queue blocking times can be bounded.

If there are n tasks in a system, the RLs of tasks are in-
tegers from 1 to n. We assume that a larger numeric value
means higher RL. There are different ways for assigning
static RLs. In general, static RLs must be assigned reflect-
ing our objective of maximizing summed utility. Here, we
propose several alternatives for assigning static RLs:

(1) Maximal Height of TUF. For any pair of tasks, if
maxU; > maxUj, then RL; > RL;. maxU; is the max-
imal height of a TUF, i.e., maxU = {U;(t)|I; <t < X;}.
I; and X; are the first and last time instances on which



U;(¢) is defined. The approach is easy to implement and
works well for step TUFs. However, it ignores task ex-
ecution time information. Further, for non-step TUFs,
the maximal TUF height may be much higher than task
accrued utility.
Pseudo Slope. For a task 7;, this is defined as:
pSlope; = U;(I;) /(X; — I;). Pseudo Slope seeks to cap-
ture a TUF’s shape, but it ignores task execution times.
(3) Pseudo Utility Density. For a task T;, this measures the
utility that can be accrued, by average, per unit execu-
tion time: pUD; = Ui(p!""E(c;)) / I (c;).

Using static RLs, the task with the highest RL will be
granted a resource R if there is a queue of tasks blocked on
R. Thus, when calculating the queue blocking time for task
T;, we only need to consider tasks with RLs higher than that
of T—e.g., if RL; = i, then T; only suffers queue blocking
due to tasks T}, j =i+ 1,...,n.

@

[ Normal execution
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O Resource release
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Figure 2. An Example of Using Static Re-
source Levels

Unfortunately, this scheme of using static RLs may yield
unbounded queue blocking times for low RL tasks. Figure 2
shows an example. In Figure 2, task 7, is blocked on a
resource request and is later starved.

To overcome the difficulty with static RLs, we introduce
the concept of Effective Resource Level (or ERL). Besides
RL, each task is associated with an ERL, which may in-
crease over time. The idea is to use ERL to prevent a
few high RL tasks from dominating the usage of shared re-
sources. With ERLs, RLP works as follows:

1. If a task is not blocked on any resource, its ERL is the
same as its static RL.

2. Whenever a resource R is released, the ERL’s of all
tasks that are currently blocked on R are increased by
n, where n is the number of tasks in the system.

3. When a resource R becomes free, one of the blocked
tasks with the highest ERL is granted resource access.
If a tie among the highest ERL tasks occurs, the task
with the longest blocking time wins.

4. When a task acquires the resource on which it was
blocked, its ERL returns to its static RL.

Theorem 6.1. Under RLP, a task T}, can be queue blocked
on a resource R for at most (m — 2) critical sections, where
m is the number of tasks that may access R. U
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Proof. Consider a set of tasks 7B, including task 7j, that
are blocked on a resource R. Obviously, |7 B| < m— 1,
because one task must be holding the resource. At time
instant o, let R be released by the current blocking task.
Thus T;’s ERL is increased to RL; + n, which is higher than
RL;,Vi. This high ERL effectively ensures that no tasks that
are blocked on R after #y can queue block 7. Therefore,
T;, can only suffer additional queue blocking from existing
blocked tasks, which are at most (m — 3) critical sections.
Note that at #y, one of the tasks from 7B namely task 7}, is
granted resource R. Therefore, the number of the remaining
blocked tasks, excluding Ti, is |[Z7B —Ti| — 1 < (m — 3).
The theorem follows by summing up queue blocking times
before and after instant 79, i.e., | + (m—3)=(m—2). O

Theorem6.1 leads to the following corollary:

Corollary 6.2. The ERL of a task T; is within the range
of [RL;, (m — 1)n+ RL;], where m is defined in Theorem 6.1
and n is the number of tasks in the system. O

Proof. By Theorem 6.1, a task can suffer a queue block-
ing time of at most (m — 2) critical sections. In addition, it
suffers one direct blocking. Upon releasing a shared re-
source, these blocking tasks increase the ERL of a task
(m—2)4+1=m—1 times. Since each increase is n, the
ERL of 7; is bounded by (m — 1)n+ RL;. O

Theorem 6.3. Let Iz be the set of tasks that may access
resource R. Theorem 6.1’s queue blocking time bound is
tight for any T; € ‘Ig, except the highest RL task in Tz. O

Proof. Without loss of generality, let Tz = {1}, D>, ..., T}
and RL; = i. We prove this theorem by showing that there
always exists a resource access pattern so that any task 7; €
Tr,i < m suffers a queue blocking time of (m — 2) critical
sections. The resource access pattern can be constructed as
follows: Let #; be a time stamp and satisfies ;.1 > #;. Now:

e ty: Task 7T;; is holding resource R and tasks 7B =

{Ti|T; € Tr,k # i\k # i+ 1} are blocked on R.
|TB|=(m-2).

e t1: Task T;;| releases R. A task in 7B, say T, is

granted resource R. ERL’s of remaining tasks in 7B
are increased by n.

e 1r: Task T;1| requests R and is blocked on R.

e 13: Task 7; requests R and is blocked on R.

Now, at time 3, the ERL of task 7; is lower than those
of all other tasks in the blocked task queue, which includes
(m —2) tasks. Therefore, T; will suffer a queue blocking
time of (m — 2) critical sections. O

We now revisit the example in Figure 2. In Figure 3, we
show the behavior of tasks by using the dynamic resource
level adjustment rules. Note that the numbers on each time-
line of a task indicates the ERL of that task. In this case,



T1 Q

D Normal execution

D Critical section
T2

O Resource reguest
O Resource release

T3

Ta

Figure 3. Dynamic Resource Levels

m = 4. Thus, task queue blocking times should be bounded
by m — 2 = 2 critical sections, which is consistent with Fig-
ure 3. Observe that task 75 is queue blocked for exactly two
critical sections (of 73 and Ty, respectively). On the other
hand, task 73 suffers one critical section of queue blocking
for its resource requests; task 7 only incurs one critical sec-
tion of queue blocking during its second resource request.

We consider a task 7, along with a queue of k tasks, that
are blocked by a task 7. Figure 4 shows this scenario.

O (/1 [

Ta % ktasks—»\ To

Figure 4. An Example of Queueing Blocking

To determine 7},’s queue blocking time, we examine the
blocking time due to each task in the k — rask queue. Ob-
serve that the ¢i'" task in the k — rask queue executes with

a CPU bandwidth of at least p’”’" + ( it PZ?”) +pipin =

( =i p;’f;”) + pZ’”” due to bandwidth inheritance. Thus, the
total queue blocking time resulting from the k tasks is:

0-y

i=1

dqi+Q

(Z pm’") +pp"

Let dq = max{dqiﬁ = 1 ,m — 2} and pmm _
min{py"|j=1,....m—2}. Then BQ[k} is bounded by:

6.1)

k d,+0
Z q
i=1 (Z pmm> mm
k d, ko4
o +0 Y e

l:l k—i+ 1 pmm +pmzn i lpf]'”" + pzu'n

We need to determine a k such that Bj[k] achieves its
maximal value and thus bounds 7;’s queue blocking time.
We show that the maximal queue blocking time occurs with

maximal number of tasks in the queue, i.e., k = (m —2).
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Lemma 6.4. The Bj[k] function defined in Equation 6.2
monotonically increases with k. O
Proof. We define two auxiliary functions B[] and Bg [k].
B, [k] is the amount of blocking time that may be reduced

if a (k4 1)" blocked task is added into the existing k —task
queue. BE [k] is the additional queue blocking time due to
k

the (k+ 1) blocked task. That is, ByK=Yx % _
=1 Pg" TP
k
dq +0 + dg+0 n
i=1 (i+1)pgnn+pg1m an Q[ ] pgqm_;,_pzun 0

Now, the relationship between Bfj[k + 1] and Bf[k| can
be derived as: Bjj[k + 1] = Bp[k] qLBJQr — By, [k]. It follows

k k
that Q (k) /(dq + Q) igl l‘p[rinm+p;’mn jgl (i+1>p[rinm+p;’mn

s 1 1
igl l‘p;ninijin;in - (i+1)p2nin+pznin
1 1

= . — — - — 4+ - 1 — — . 1 —
prqanrp};mn 2p|“]n|n+pZmI1 zpanlnsznln Sp(r]mn+plzmn
1 1 o+ kpznin+pii:1in - (k+1)pq‘“i“+pg‘i"
= pglin+prbnin - (k+1>pmin+p21in
- 1 kpm]n
- p;nin+p;7nin (k+1)pm2i:pglin
_ 1 kpg 1
- pgj:n+prbnin kp21in+p2nin+p;]nin p21in+p21in
= BQ/ (dg+0Q)

Therefore, Bjj[k + 1] = Bp[k| —l—BE — B, [k] > By [k]. O

By Lemma 6.4, a task 7;’s queue blocking time is Bgp =
YL By [m ;—2], where By, [mj — 2] is the maximal queue
blockmg time for accessing resource R; j. Now,

mj—2

mi=2 = Y ((dg+0)/ (10" +p1™))  (63)

=1

Byl

Using a technique similar to that in Equation 5.4, the band-
width requirement under RLP is:

 ngk

k

0

pi(k)Pr[Bp +Bg+C+Q < p,CT] > AP,
n; RlJ —+ Q
Z p?”’l _"_pmln

éZp,
k=1

k Z Bg,(
j=1
7. The Early Blocking Protocol

We design EBP to deal with nested critical sections.
Nested sections may create deadlocks and transitive block-
ing. EBP’s basic idea is to block an “unsafe” resource re-
quest even if the requested resource is free. An unsafe re-
source request is one that may cause deadlocks. Meanwhile,
a safe request is granted. [2, 10] uses a similar scheme.



Let a task T invoke nest_req_res(R',RV) to enter a nested
critical section. In their order of access, RV, called a “re-
source vector,” is a list of resources that 7 may access while
it is inside nested critical sections. R’ is RV ’s first element.

For single-unit resources, a deadlock occurs if and only
if there is a cycle in the resource graph. A cycle can only
be formed by at least two tasks inside nested critical sec-
tions. Further, there must be at least one resource R that is
requested by one task 7; and which is held by another task
T;, both of which are inside nested critical sections—i.e.,
the resource vectors of 7; and 7; overlap. Thus, EBP com-
pares the resource vector of a requesting task with those of
the existing tasks. If any resource vectors overlap, there is a
deadlock possibility, and the requesting task is blocked.

We formulate EBP as follows: Let a task T invoke
nest_req_res(R',RV).

1. If R is held by another task, then T is blocked.
2. If R is free, then nest_req_res(R',RV) may or may not
be granted, per the following:

(a) Let 7.4 be the set of tasks that are currently in-
side nested sections. For any task 7; € 7.y, let
RV; be T;’s current resource vector.

(b) If for any task 7; € T, RV(RV; = 0, then
nest_req_res(R',RV) is granted; the request is
blocked otherwise.

3. When a task exits a nested critical section, RLP checks
if granting any pending nest_req_res(R',RV) is safe.
If more than one pending nest_req_res(R',RV) is safe,
then RLP is invoked.

We now establish that EBP is deadlock-free and can
bound transitive blocking times.

Lemma 7.1. Under EBP, for any pair of tasks that are cur-
rently inside nested critical sections, their resource vectors
do not have common elements. O

Proof. Let tasks T and T; enter nested critical sections at
instants t] < tp, respectively. If RV| RV, # 0, then T; can-
not enter its nested section. Thus, the resource vectors of 7}

and 7> do not have common elements. O
Lemma 7.1 leads to Theorem 7.2 and Corollary 7.3:
Theorem 7.2. EBP avoids deadlock. O

Corollary 7.3. Under EBP, if a task T is blocked by a task
T» while T; is inside nested critical sections, then T, is not
inside nested critical sections. O

Proof. Suppose T is inside nested critical sections. If 77 is
blocked by 75, then 77 needs a resource R that is currently
held by 7>. Thus, R is a common element in 77 and 75’s
resource vectors. This violates Lemma 7.1. O

Theorem 7.4. Under EBP, a chain of transitive blocking
includes three tasks. O
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Proof. We use T; — R; to denote that task 7; needs resource
R;. Similarly, R; — T; means that resource R; is currently
held by task 7;. Thus, a chain of transitive blocking has the
formTi - Ry — T, —» Ry — T3 — ... — T,. Since there is a
chain of transitive blocking, n > 3. It is easy to see that any
task T;,i # 1 A\ i # n must be inside nested critical sections.
By Corollary 7.3, if 75 is inside nested critical sections, 73
cannot be inside nested critical sections. Therefore, 75 must
be at the end of the chain. Thus, n = 3. O

Theorem 7.5. Let a task T requests resource R;. Let
T, j be the set of tasks that have a resource vector RV =
{..\Ri,...,Rj,...} and let T; be the set of tasks that may
access resource Rj. T’s transitive blocking time for R;

is bounded by (dnax+ Q) /(P + i + pt"). p"" is
T’s minimal bandwidth, dyg = max{d,{|Tk € 7}, p}f‘lf?

min{p{""|T; € T; ;}, and p%j" = min{p""|T} € T;}.

O

T1|

\

Ri

\/

\/

Figure 5. lllustration of Transitive Blocking

Proof. Consider a chain of transitive blocking as in Fig-
ure 5. Task Tj is transitively blocked by task 73 when it
requests resource R;. By Theorem 7.4, the scenario illus-
trated in Figure 5 is the only possible scenario.

Further, task 73 has a bandwidth of at least p7"" -+ p/" +
pg”i” due to bandwidth inheritance. We consider the worst
case where the most pessimistic bounds are assumed. That
is, pain pglf;f = min{p{""|T; € T ;} and py" = p%f{" —
min{p?"|T; € T;}. The theorem follows. O

8. Lock-Based versus Lock-Free

As discussed earlier, our conjecture is that for some
cases, our lock-based, resource access protocols may work
well. For other cases, the lock-free scheme—i.e., setting
quantum size as the longest critical section in the system [1],
may perform better. We now explore the conditions under
which resource access protocols may be beneficial, and the
reverse conditions as well.

The discussion focuses on two aspects: (1) bandwidth
requirement for a given task; and (2) feasibility of a task
set. Given a set of n tasks and their allocated bandwidth,



it Y7, pi <1, we say that the task set is feasible for the
particular bandwidth allocation. Otherwise, the task set is
said infeasible for the particular allocation.

We first introduce some notations:

e p?: bandwidth requirement of task 7; under lock-based
resource access protocols;

e p;”: bandwidth requirement of task 7; under the lock-
free scheme (also called non-preemptive scheme as
there will be at most one preemption while a task tries
to access a resource [1]);

e (O, quantum size under the lock-based resource ac-
cess protocols

e (,,: quantum size under the lock-free scheme.

Lemma 8.1. Suppose Q,, equals to the length of a critical
section of task T,, (accessing resource Ry,). If a task T; may
be blocked on Ry, then p¥ > p'?.

Proof. Let dr = QO be the length of the critical section. If
task 7; may be blocked on R, it suffers at least one direct
blocking due to access to R. The direct blocking time is
calculated as:

i dR,-,j + Qp

Bp =k . > >
Eio ot

dR + Qp
pgirz +pmin
i

>dR+Qp>dR

8.1
The total blocking time is B = Bp + Bg + Br > Bp > dg.
Given the total execution time of C during a time window,
we have:

B+C+Q0p>dp+C+Q0p=0up+C+Q0p > 0pp+C
8.2)
Recall that the fundamental bandwidth requirement under
resource access protocols is:

Y pi(k)Pr[Bi+Ci+Q, < pP'CT;] > AP, (8.3)
k=0

and under the lock-free scheme is:
Y pi(k)Pr[Ci+Qnp <p/’CT;] > AP, (8.4)
k=0

where Cy is the sum of k job execution times, By is the total
blocking time of k jobs. Since Cy + Q,,, < By +Ci+Q), Vk,
pi” <pf. D

Lemma 8.2. Suppose Q,, equals to the length of a critical
section of task Ty, (accessing resource Ry,). If a task T; may
not be blocked on Ry, then p¥ can be smaller than p;".

Proof. We prove this lemma by considering an extreme
case where resource R, is only accessed by task 7, and
another task 7;. All other tasks in the system do not use
any shared resources. For any task that does not use any
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shared resource, its blocking time is zero. Further, Q) can
be smaller than Q,,. Therefore,

B+C+Q,=C+Q,<C+0Qyp (8.5)

If that is the case, p” is smaller than p}”. O

Theorem 8.3. If a task set is feasible under the lock-free
scheme, it can be infeasible under resource access proto-
cols, and vice versa.

Proof. We prove this theorem by examples.

1. A task set is feasible under the lock-free scheme, but
infeasible using resource access protocols.

Suppose all tasks access a single resource R in a system.
By Lemma 8.1, p;” < p?,Vi=1,...,n. Thus,

n n
g pi’ < Zl P/
i= i=

(8.6)

n
Also assume Y pi” =1 for this particular task set. Then,
i=1

n
Y. p? > 1, and hence the task set if infeasible under re-
i=1
source access protocols.

2. A task set is feasible under resource access protocols,
but infeasible under the lock-free scheme.

Consider a system where only two tasks, 77 and 75 need
to access a resource R. Other tasks do not need to access
any shared resources. Let:

Up=Y p! = (p7 +p5)+ XL p/
l:}l n n n l:3 n n (8.7)
Unp = 'gl pl.p = (plp —|—p2p) + _;3 Pip

By Lemma 8.1, p;” < p?,i=1,2. However, if p} +p} is
small enough, we have:

~
~

~s

p

1

UP
(8.8)
U, i

P;

~
~

'M:&Mm

4

i=3

By Lemma 8.2, pf < p?”,i =3,...,n. Therefore, U, < Uy.
If U, =1 for this particular task set, then the task set if
infeasible under the lock-free scheme. O

Through Lemmas 8.1 and 8.2 and Theorem 8.3, we
demonstrate that neither the lock-free scheme, nor the re-
source access protocols are always better than the other.
Specifically, if only a small number of tasks share a few re-
sources, then using resource access protocols is beneficial.
If resources are shared by most of the tasks in the system,
then the lock-free scheme is more suitable in terms of band-
width requirement.



Another hybrid case is that tasks can be partitioned into
logical groups. Tasks in each logic group closely interact
with each other and share resources. In addition, resource
sharing across group boundaries is rare. For example, in
a networked computer, device drivers may share the pro-
tocol input/output queues with the network protocol stack.
On the contrary, a word processor is very unlikely to ac-
cess the protocol queues. For this hybrid case, if the critical
sections in a logic group are considerably longer than those
in other groups, resource access protocols may still help to
reduce bandwidth requirement. If all critical sections are
on the same magnitude, little can be gained by using re-
source access protocols. Resource access protocols may
even adversely affect system performance, because smaller
time quanta result in higher overhead.

9. Conclusions

We present three UA resource access protocols. The pro-
tocols consider activities that are subject to TUF time con-
straints, and mutual exclusion constraints on sharing non-
CPU resources. We consider the timeliness objective of
probabilistically satisfying lower bounds on the utility ac-
crued by each activity, and maximizing the total accrued
utility. The protocols allocate CPU bandwidth to activities
to satisfy utility lower bounds, while activity instances are
scheduled to maximize total utility. We analytically estab-
lish the conditions under which utility bounds are satisfied.

The protocols presented here have been folded into a tim-
ing analysis software tool, in corporation with an industrial
vendor. The tool is currently being used in US DoD pro-
grams. Future work includes studying the sensitivity of the
protocols to the accuracy of the required scheduling param-
eters, and extending them to multiprocessors.
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Abstract

In current research toward the design of
more powerful behavior of RTDBS under un-
predictable workloads, different research groups
focus their work on QoS (Quality of Service)
guarantee. Their research is often based on
feedback control real-time scheduling theory.
However, due to the high service demand, and
even with guarantee, some transactions may
miss their deadlines. In this paper, we pro-
pose a technique which allows to execute trans-
actions on time using fresh and precise data
while taking into account the global size of the
database. We have extended the feedback-based
miss ratio control by both using multi-versions
data, and proposing a data management policy
combining (1) limitation of the versions num-
ber and (2) dynamic adjustment of this limit
according to a mazrimum database size para-
meter. Simulation results have shown that the
proposed approach successfully provides tight
miss ratio guarantees and hight quality of data
freshness.

1 Introduction

In previous years, a lot of work has been
done on RTDBSs [12][13], which are systems
designed to manage applications where it is
desirable to execute transactions timely using
fresh and precise data [1]. Since the work-
load in this systems is unpredictable, the sys-
tem may become quickly overloaded, leading
to the decrease of the well-known RTDBS per-
formance criterion: the number of transactions
that complete before their deadlines.

To support these applications, some tech-
niques based on Quality of Service (QoS) guar-
antee have been proposed to control the tran-
sient overshoot. They are often based on

*Real-Time Database Systems
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feedback control real-time scheduling theory
[10][11]. Up to now, the major drawback is
that in case of conflicts between transactions,
some transactions are blocked, or aborted and
restarted. This may lead transactions to miss
deadlines. To address this problem, we have
extended the feedback-based miss ratio con-
trol by using a multi-versions data architec-
ture. This limits data access conflicts between
transactions, enhancing then the concurrency
and limits the deadline miss ratio.

The main objective of our approach is to
maximize the number of transactions which
meet their deadlines. In addition, our work
aims to support a certain freshness for the data
accessed by time-constrained transactions un-
der a condition: the fixed maximum size of the
database. To this purpose, we merge two previ-
ously approaches proposed in [6] and [7]. In the
new mixed approach, the number of versions is
dynamically adjusted, but does not have to ex-
ceed a threshold which consists in a maximum
data versions number, and also does not have
to exceed a fixed threshold which consists in
the maximum database size.

The remaining of the paper is organized
as follows. Section 2 describes the real-time
database model. In Section 3, our proposed
model is described. Some simulation results
are given and commented in Section 4. In Sec-
tion 5, we conclude the paper and give some
perspectives.

2 Real-Time Database model

We consider firm RTDBS model, in which
late transactions are aborted because they are
useless after their deadline, and we consider a
main memory database model.

This work on QoS guarantees is guided by
the following premises:

1. Transactions are executed according to



their priority and they are classified into
two categories: update transactions and
user transactions (see section 2.2).

2. We keep different versions for each data
item. These versions are dynamically ad-
justed by verifying the data freshness and
considering the Data Error (DE). Data Er-
ror is computed by comparing the data
version stored in the database with the
corresponding value of the data in the real
world. DE must respect an upper bound
given by the Maximum Data Error (MDE)
[2]. In our real-time database, validity in-
tervals are used to maintain the temporal
consistency between the real world and the
sensor data stored in the database [12]. A
data version d; is considered temporally
inconsistent (not fresh or stale) if the cur-
rent time is later than the timestamp of
d; followed by its absolute validity inter-
val (denoted AV'I;), i.e CurrentTime >
Timestamp; + AV I; (see section 2.3).

2.1 Data model

Data objects are classified into either real-
time or non real-time data. A non real-time
data is a classical data found in conventional
databases, whereas a real-time data has a va-
lidity interval beyond which it becomes useless.
These data may change continuously to reflect
the real world state (for example, the current
temperature value). Each real-time data has
a timestamp indicating the last observation of
the real world state. In our model, we consider
only real-time data.

Many versions of a real-time data item may
be stored in the database and the number of
versions considered may be either fixed or dy-
namically adjusted. To store a version, data
freshness and the MDE parameters are taken
into account.

2.2 Transaction model

Transactions are classified into two classes:
update transactions and user transactions. Up-
date transactions are used to update the values
of real-time data in order to reflect the state of
real world. Update transactions are executed
periodically and have only to write sensor data.
User transactions, representing user requests,
arrive aperiodically and may read real-time
data, and read or write non real-time data.
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2.3 Performance metrics

Three main performance metrics are con-
sidered: MissRatio (MR), DataFreshness
(DF), and DataError (DE) [3].

1. MissRatio: the transactions miss ratio is
defined as follows:

#Late

MR=100 X —————
x #Terminated

(%) (1)

where # Late denotes the number of trans-
actions that have missed their deadline,
and #Terminated is the number of ter-
minated transactions.

2. DataFreshness: in RTDBS, data can be-
come outdated. To measure the freshness
of a data item d; in an RTDB, the no-
tion of absolute validity interval (AVI) is
used. A data version is related to a times-
tamp indicating the latest observation of
this data item in the real world. d; is con-
sidered temporally consistent (or fresh)
if (CurrentTime — Timestamp(d;) <
AVI(d;)). The database freshness can
also be measured. It represents the ratio
between fresh data and all the data in the
database.

3. DataError: it represents the deviation
between the current data value (CV(d;))
and the updated value (UV(d;)) when d;
# 0. The upper bound of the error is
given by the maximum data error (de-
noted MDE). DE of data version d; is de-
fined as:

CV(d;) —UV(d;)

DE; = 100
T OV (dy)

(%) (2)

We note that the quality of data (QoD) de-
pends on its freshness and on DE, whereas the
quality of transaction (QoT) depends on the
Miss Ratio.

3 Multi-Versions Data-Feedback
Control Scheduling Architec-
ture

3.1 Introduction

It is well known that feedback control is very
effective in management of QoS in RTDBS, un-
der unpredictable workloads [4]. The goal is to
control the system performances, defined by a
set of controlled variables in order to satisfy a
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Figure 1. A Feedback Control Scheduling Architecture (FCSA

given QoS specification. The general outline
of the feedback control scheduling architecture
is given in Figure 1. An RTDBS consists of
several components. In our study, the compo-
nent we are interested in are: the admission
controller, the ready queue, the blocked queue,
and the transaction handler.

For the QoS management, a monitor, a miss
ratio controller, an utilization controller and
a QoD manager are added to the system in
order to adjust its performances and to con-
trol the information flows. An Admission Con-
troller (AC) is used to avoid system overload
by rejecting some user transactions. Transac-
tions handler provides a platform for managing
transactions. It consists of a Concurrency Con-
troller (CC), a Freshness Manager (FM) and a
basic scheduler (BS). Transactions are sched-
uled by a Basic Scheduler in the ready queue
using, for example, the EDF scheduling pol-
icy [9]. The FM checks the freshness before
a transaction accesses a data item. It blocks a
user transaction if the target data item is stale.
Based on the two phase locking protocol, the
CC ensures the concurrent transactions serial-
izability. In case of conflict between transac-
tions, when a higher priority transaction uses
the data item, transactions with lower priority
will be blocked. At each sampling period, the
monitor samples the system performance data
from the transaction manager and sends them
to the controller. The miss ratio and utiliza-
tion controller generates signals based on the
sampled miss ratio and utilization data.

Feedback control has been proven to be very
effective in supporting a required performance
specification [3].

The base of our work are the articles of
Amirijoo et al. [2][5]. We have extended the
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) [2].

FCS architecture by exploiting several versions
of real-time data, and then proposed the Multi-
Versions Data-Feedback Control Scheduling
(MVD-FCS) approach [6][7]. In this section,
we present a new approach which enhances
MVD-FCSA depicted in Figure 2 where the
solid arrows represent the transaction flows and
the dotted arrows represent the real-time data
flows.

3.2 Motivation for MVD-FCSA

In RTDBS, an update transaction always
writes a real-time data item while a user trans-
action reads real-time data items. In general,
only update transactions modify the real-time
data. Most conflict cases come from incompati-
ble access patterns when an update transaction
wants to modify a data item that is accessed
by user transactions. One of these transac-
tions must be aborted and restarted accord-
ing to the used concurrency control protocol.
Furthermore, when the accessed data item are
stale, the FM blocks the user transaction. This
increases the risk that transactions miss their
deadline. MVD notion is used to alleviate this
risk. When an update transaction wants to
modify a real-time data, a new data version is
created. We consider all data values that cor-
respond to different versions of the same data
item.

To summarize, in the FCSA, two actions are
considered important for improving the MVD-
FCSA service:

e In case of conflict between transactions,
when a higher priority transaction uses the
data item, transactions with lower priority
will be blocked.
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e FM blocks user transactions if the acceded
data are stale.

To enhance this protocol and to minimize
the transaction miss ratio, we have proposed
the MVD-FCSA, which consists of the creation
of data versions as soon as conflicts (read-
write) occur between transactions. This ap-
proach limits the data access conflicts between
transactions, and then enhances the concur-
rency. When an update transaction wants to
modify a real-time data, a new data version is
created.

3.3 MVD-FCSA components

The majority of MVD-FCSA components
exist in the classical feedback control schedul-
ing architecture [2], but they are adapted as
follows.

3.3.1 Real-time transactions Scheduler

Transactions are scheduled according to their
priority. The priority of a transaction depends
on both its deadline and its type (update or
user transaction). Hence, we merge EDF pol-
icy with respect to transaction type and prior-
ity. A lower priority transaction can be sched-
uled if there are no ready transactions with
higher priority to schedule.

3.3.2 Deadline Controller

To control transaction validity [9][8], the Dead-
line Controller (denoted DC) uses three con-
trolled variables: transaction deadline, current
time and minimal execution time. If the cur-
rent time is greater than transaction deadline,
the transaction will be aborted. Otherwise, DC
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makes a second test, where a transaction is ac-
cepted only if the sum of its minimal execution
time and the current time is lower than trans-
action deadline. Otherwise the transaction will
be aborted. If the two verifications steps suc-
ceed, then the transaction is transferred to the
data Freshness Manager (FM).

3.3.3 Freshness Manager

The Freshness Manager checks if transactions
issued from the deadline controller access fresh
data. Freshness Manager (FM) is used to pro-
vide better QoS in RTDBS where several trans-
actions access to the same fresh data. It checks
the freshness of acceded data just before a
transaction commits. This way, the data ac-
cessed by committed transactions are always
fresh at commit time. If the accessed data is
fresh, transactions can be executed and then
sent to the transactions handler. Otherwise, if
the accessed data item is currently stale or if
its validity is estimated to be expired before the
deadline of the transaction, then FM blocks the
user transaction. The blocked transaction will
be transferred from the blocked queue to the
ready queue as soon as the corresponding up-
date has committed. In our architecture, the
FM checks the freshness of accessed data, i.e.,
AVT is not reached and data remains fresh until
the end of the transaction execution. There-
fore, we verify that AVI of accessed data is
greater than the transaction deadline. To this
purpose, we use MVD. So, the freshness condi-
tion must be considered by checking the fresh-
ness of the most recent data version that is not
write-locked by other transaction(s).



3.3.4 Real-Time Data Manager

The main objective of this component is to
guarantee the data freshness and to enhance
the deadline miss ratio even in the presence of
conflicts and unpredictable workloads.

To achieve this goals, in [7] we have used
a MVD with a fixed number of data versions.
This number is fixed in advance by the DBA
according to QoS requirement level, and it
is the same for each real-time data. In [6],
we have enhanced this approach by allowing
the dynamic adjustment of the version num-
ber. For each data, we have a version queue.
The queue is continuously updated in order to
limit the number of data versions by supress-
ing/adding versions, based on both the data
freshness and MDE criterion. The size of each
version queue, denoted SVQ, is dynamically
adjusted according to the following formula:

AV I;

V@i = L period;

3)

where Period; is the period of transaction;,
and AV I is the absolute validity interval of d;.

RTDBSs usually monitor the current real-
world state using periodic updates. In this
paper, we investigate several important prob-
lems to guarantee the desirable quality of real-
time data services in terms of timeliness, fresh-
ness, precision, the decreasing of transaction
miss deadline and the database size constraint.
In a recent paper [6], we have shown that
MVD-FCSA is a good solution to alleviate
the risk that transactions miss their dead-
lines compared to the classical feedback control
scheduling approaches. However, in [6] the pro-
posed approach does not take into account the
database size.

In this paper, we have extended the last
approach (MVD-FCSA with dynamically ad-
justed number of data versions) by taking
into account the database size constraint. We
merge the two approaches described in [7] and
[6], i.e. the number of data versions is dynami-
cally adjusted and does not have to exceed the
fixed threshold representing the number of data
versions, and we have considered in the same
time a threshold representing the database size.
In this new approach, a data item will be ac-
cessed only if its version number is lower than
the maximum database size. This way, RTDB
size constraints are respected. The respect of
the threshold of the RTDB size is a practical
factor for RTDBS specification.
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3.3.5 Concurrency Control with MVD

One of the most important issues in the design
of RTDBS is the concurrency control compo-
nent. Its objectives are (i) to control the inter-
action between concurrently transactions and
(ii) to maintain the database consistency. In
this paper, we focus on the interaction between
update and user transactions.

The database consistency can be maintained
using concurrency control protocols. We use
2PL-HP (Two Phase Locking-High Priority
Protocol) where lower priority transactions will
be blocked or aborted if a higher priority trans-
action accesses a data item. Otherwise, the
transaction is aborted and restarted. Conse-
quently, the 2PL-HP may increase the execu-
tion time of transactions. This leads transac-
tions to miss their deadlines. To address this
problem, i.e. to alleviate this risk, we propose
(1) the MVD technique that allows user trans-
actions to not wait for the last version if data
is current updating, and (2) an adapted 2PL-
HP when the maximum number of versions
is reached. The priority is applied on trans-
actions group that accessed to the same data
version [6]. The priority of transactions group
corresponds to the highest transaction priority
among all transactions in this group.

4 Simulations and results
4.1 Simulations

We have studied and evaluated the behavior
of an RTDBS according to a set of performance
metrics. The performance evaluation is under-
taken by a set of simulation experiments, where
a set of parameters have been varied. Table 1
summarizes these parameters.

The simulated workload consists of update
and user transactions. Update transactions
occupy approximately 50% of the workload.
The period of update transaction (Period;)
is uniformly distributed and estimated exe-
cution time is given by: FExecutionTime; =
NbO fOperation; x OpExeclime, where
NbO fOperation; and the OpEzxecTime rep-
resent respectively the number of operations
in the transaction 7T; and the execution time
of an operation.

The model consists of eight components.
We have used two transaction generators: an
update transaction generator (UpdateTrans-
Gen) which generates update transactions and
an user transaction generator (UserTransGen)



Parameter Meaning Value

NbO fOperations | Number of opera- | [1, 5]
tions in an wuser
transaction

OpExecTime Execution time of | 1s
an operation

Period; Periodicity of up- | [1000ms,
date transaction 5000ms)|

Table 1. Parameters of Simulation.

which generates user transactions. The work-
load model characterizes transaction in terms
of the number of read/write operations. Up-
date transactions can only write one data.
Transactions are scheduled by a scheduler
(Scheduler) in ready queue according to their
priority.  The priority assignment formula
is given by P(T;)= 1/deadline (7;). Dead-
line controller (DC) uses three controlled vari-
ables: transaction deadline (deadline), cur-
rent time (StartTime) and minimal execu-
tion time (ExecutionTime). The deadline for-
mula is calculated as follows: deadline(T;) =
StartTime+ ExecutionTime x (14 SlakTime)
where SlakTime is a constant that provides
control over tightness/slackness of transaction
deadlines. To check the freshness of accessed
data, the freshness manager uses the AVI pa-
rameter. Transactions handler controls the
execution of transactions. Concurrency con-
troller use the adapted 2PL-HP protocol to
control the interaction between transactions
[6]. The real-time data management (RTDM)
is the most important component of our model.
In the sets of experiments, we have varied the
database size and the maximum number of
data versions for each data item. The database
size represents the number of versions.

4.2 Results

Since in our approach we have only ex-
tended the transactions flows of the classical
FCSA, the performance metric in our experi-
ments is the success ratio. The graphical re-
sults show the miss ratio of transactions when
using MVD-FCSA. We have evaluated the be-
havior of the system by varying a set of param-
eters:

1. The threshold of data versions number
2. The threshold of database size

3. The number of transactions
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4.2.1 Experiment 1: Results of MVD-
FCSA

As shown in Figure 3, when we use the classi-
cal FCSA (with one version), the MVD-FCSA
with two versions and the MVD-FCSA with
four versions, the resulting success ratio in-
creases as soon as the number of versions in-
creases.
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Figure 3. Simulation results for the
MVD-FCSA.

Compared to the effect of using MVD-FCSA
with a fixed number of versions, using MVD-
FCSA with dynamically adjusted number of
data versions shows a relatively high success
ratio, as shown in Figure 3.

4.2.2 Experiment 2: Varying the
threshold of database size using
the mixed approach of MYVD-
FCSA

We use our mixed approach (dynamic adjust-
ment of data versions with maximum fixed



number). In Figure 4, we have fixed a threshold
of data versions number (equal to 4 versions)
and we have varied the database size (500, 750,
1000). In Figure 5, we have also varied the
database size, while the threshold of data ver-
sions number is equal to 6.

Figures 4 et 5 show the effect of varying
the database size. The resulting success ra-
tio increases according to the increase of the
database size.
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Figure 4. Simulation results when us-
ing the mixed approach of MVD-FCSA
(maximum number of versions = 4)
and varying the threshold of database
size.

4.2.3 Experiment 3: Varying the
threshold of data versions num-

ber

We have also used the mixed approach of
MVD-FCSA. We have fixed the database size
and we have varied the threshold of data ver-
sions number. Compared to the effect of using
a maximum of six versions, the use of four ver-
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Figure 5. Simulation results when us-
ing the mixed approach of MVD-FCSA
(maximum number of versions = 6)
and varying the threshold of database
size.

sions shows a relatively high success ratio, as
shown in Figures 6 and 7. This may be ex-
plained by the complexity of the versions man-
agement.

4.3 Summary of results and discussions

We have compared the system perfor-
mances, in terms of miss ratio, by varying the
database size and by varying the maximum
number of data versions. All experiments sim-
ulation show that:

1. MVD-FCSA  minimizes  transactions
miss deadline (compared to the classical

FCSA).

2. Generaly, the success ratio increases ac-
cording to the increase of the number of
versions.



100

%
80 T,
.
S,
~.
il )
g 6or 2y
[%2]
1%
Q
8
a 40 2
——+— Four versions
----x--- Six versions
20
0 : , ‘ : ‘
20 10 60 80 100
Number of update transactions
(a) For update transactions
100
80
e
o
3 60 - .
P
P ¥
o3
8
(/3) 40
----+--- Four versions
-~ Six versions
20 +
0 ‘ , : ‘ ‘

20 40 60 80 100
Number of user transactions

(b) For user transactions

Figure 6. Simulation results of using
the mixed approach of MVD-FCSA:
varying the number of versions and
the threshold of database size 500.

3. The success ratio increases according to
the increase of the database size.

4. When the size of the database is fixed, the
performances are not enhanced beyond a
certain threshold which represents a max-
imum number of versions for each data.

5 Conclusion and future work

In this paper, we have presented the multi-
versions data-feedback control scheduling ar-
chitecture for quality of service management.
We have used multi-versions data with dynami-
cally adjusted number of versions while taking
into account the RTDB size constraint. This
improvement consists in minimizing the num-
ber of conflicts by minimizing the number of
aborted transactions when using an adapted
2PL-HP concurrency control protocol.

Simulation results show that MVD-FCSA
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Figure 7. Simulation results of using
the mixed approach of MVD-FCSA:
varying the number of versions and
the threshold of database size 1000.

with dynamically adjusted number of data ver-
sions may be applied efficiently in RTDBS,; i.e
more transactions meet their deadlines. We
note that the respect of the threshold of the
RTDB size might be a practical factor for RT-
DBS specification.

We plan to extend this work in several ways.
We will take into account the data importance.
Indeed, in case of a small threshold of the
RTDB size, all data beyond the threshold value
are not accessed whatever their importance.
The importance of the data item may be mod-
eled by assigning to each data item a weight
according to its importance. Further, we also
plan to extend our work to manage derived
data and to consider other aspects to study
different components of the feedback control
scheduling architecture for quality of service
management in RTDBS. Among them, we will
deal with imprecise computing [2], applied to
video contents.
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The Partitioned Multiprocessor Scheduling of Non-preemptive Sporadic Task
Systems

Nathan Fisher Sanjoy Baruah
The University of North Carolina at Chapel Hill

Abstract execution it executes continuously on the processor until
its completion. Non-preemptive scheduling for these sys-
We consider polynomial-time algorithms for partitioning tems can reduce scheduling overhead, and have the fol-
a collection of non-preemptive or restricted-preemption tasks lowing additional benefits [12]: elimination of the need
among the processors of an identical multiprocessor platform. for complex resource sharing protocols for resources or
Since the problem of partitioning tasks among processors (evencritical sections that are local to a processor; reduction in
with unlimited preemption) is NP-hard in the strong sense, these the implementation complexity of scheduling protocols;
algorithms are unlikely to be optimal. For task systems where the and estimates of worst-case execution time for tasks may
ratio between the largest execution time and the smallest relative be more accurate in the non-preemptive model.
deadline is small, we provide a sufficient condition for feasibility. In addition to pure non-preemptive tasks, it is
The application of this algorithm to preemptive quantum-based sometimes useful to model both preemptive and non-
systems is also discussed. For all other task systems, we experipreemptive behavior in the same system. The
mentally evaluate different variants of our heuristic over sets of restricted-preemption modallows tasks to execute non-
randomly generated tasks. preemptively in short intervals, and be preempted in-
between the non-preemptive intervals. Each task speci-
fies anon-preemption parametarhich indicates the max-

1 Introduction imum length of time a task may non-preemptively exe-
cute. Notice that a non-preemptive system can be rep-
In many real-time systems, compledepriori knowl- resented in the restricted preemption model by setting the

edge of job release times is either impractical or impos- non-preemption parameter for each task equal to its execu-
sible. Thesporadic task model[16] provides a charac-  tionrequirement. A preemptive system can be represented
terization of real-time computation of such task systems by setting the non-preemption parameter for each task to
by allowing time between the release of successive jobszero. The restricted-preemption model is also useful for
of a task to vary. For a sporadic task aminimum inter- characterizing the behavior giiantum-basedcheduling
arrival separationparameter (historically called thege- systems.
riod) describes the minimum time interval between suc-  An important endeavor in real-time scheduling theory
cessive jobs of a task. A collection of jobs generated by is determining whether a task systenféasibleon a given
the sporadic task system is callegyal if the minimum processing platform. A task system is feasible if there
inter-arrival separation is respected for each taskelA exists, for each legal collection of job releases, a sched-
ative deadlingparameter identifies the time interval from ule on the processing platform in which no task misses a
a job’s release time to its absolute deadline during which deadline. For non-preemptive and restricted-preemption
execution of the job must complete. A collection of spo- systems, a more restrictive notion of feasibility can be de-
radic tasks is called sporadic task system. fined: feasibility without inserted idle times (IITA task

The advantage of preemptive scheduling on uniproces-system is feasible without IIT if there exists a schedule for
sors has been known since Lui and Layland [14] showed every legal collection of jobs in which a processor is never
that total utilization of a uniprocessor is achievable under idle while there are jobs awaiting execution. A scheduling
preemptiveEDF scheduling. In preemptive scheduling, a algorithm isoptimalin this model if it can schedule every
job may be halted before the completion of its execution task system that is feasible without IIT.
and resumed at a later time. However, in many systems,Uniprocessor Scheduling.The non-preemptive real-time
preemption is impractical or undesirable due to the high scheduling of sporadic tasks has been studied extensively
overhead involved in context switching between different for uniprocessor platforms. For sporadic task systems
tasks. Innon-preemptive schedulingnce a job begins  where each task’s relative deadline is equal to its period,

*This research has been supported in part by the National Sci- Jeffay et al. [12] proved that the non-preempthar-

ence Foundation (Grant Nos. ITR-0082866, CCR-0204312, and CCR- l1€St Deadline Firstalgorithm €DF) [14] is optimal on
0309825). uniprocessors with respect to scheduling without IIT, and
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they provided necessary and sufficient conditionEfor- on the non-preemptive and restricted-preemption sporadic
schedulability. Non-preemptiveDF schedules at each task model. We also discuss uniprocessor feasibility tests
idle instant the job with the nearest deadline (from the set for restricted-preemption sporadic tasks. In Section 3,
of jobs awaiting execution). George et al. removed the we design a simple algorithm for partitioning restricted-
restriction on a task’s relative deadline, showed &t preemption systems, and evaluate this algorithm theoret-
is optimal without IIT [10], and provided modified neces- ically. The application of this algorithm to preemptive
sary and sufficient conditions ferFschedulability [11]. quantum-based systems is explored as well. In Section 4,
Researchers have also focused different techniques andve consider some more pragmatic heuristics for partition-
models [2, 9, 6] for limiting preemptions in an attempt to ing and evaluate their performance empirically. In Sec-
obtain the benefits of both preemptive and non-preemptivetion 5, we draw together the conclusions of this paper.
scheduling.
Multiprocessor Scheduling. For the multiprocessor 2 Task and machine model
scheduling of non-preemptive and restricted-preemption
sporadic tasks, two alternative paradigms exigobal A restricted-preemption sporadic tasfg] ©; =
and partitioned scheduling.  For restricted-preemption (¢;, ¢;,d;, p;, ) is characterized by worst-case execution
and non-preemptive global scheduling, a job executing arequiremente;, a non-preemption parametey;, a (rela-
non-preemptive code section will execute continuously on tive) deadlined;, and aminimum inter-arrival separation
the same processor; a job executing a preemptive codey,. In general, a restricted-preemption sporadic task is
section can be halted and can resume execution on a difsubject to the trivial constraints that < e;, e; < p;, and
ferent processor. For non-preemptive partitioned schedul-¢; < 4,. The utilization of taskr; represents the amount
ing, a task is assigned to a processor, and all jobs of thecomputational capacity required byon a single proces-
task are always executed on that processor. sor and is denoted by; £ ¢;/p;. The non-preemption
Non-preemptive and restricted-preemption multipro- parameterg; specifies the maximum length of time at
cessor scheduling of sporadic tasks has received muchyhich r, may execute non-preemptively on a single pro-
less attention. Baruah [5] considered the non-preemptivecessor. Observe that this parameter specifies only the in-
global scheduling of periodic and sporadic tasks on an terval length during which; executes non-preemptively,
identical multiprocessor platform. To the best of our notthe start and end times of the non-preemptive interval.
knowledge, there has been no work done on the parti-|n our model,7; may execute non-preemptively for up to
tioned scheduling of non-preemptive sporadic task sys-¢, time units starting at any point in time, and may do
tems. so arbitrarily often (subject to the constraints of the other
This research. We consider the non-preemptive and task parameters). We may model a pure non-preemptive
restricted-preemption multiprocessor scheduling of spo- sporadic task by setting = e;.
radic task systems under the partitioned paradigm. Since \We will assume that we are given a multiproces-
partitioning tasks among processors reduces the multipro-sor 11 comprised of m identical processorsII =
cessor scheduling algorithm to a series of uniprocessor{r, r,,... 7,,}. Let 7 be a system of restricted-
scheduling problems (one to each processor), the optimal-preemption sporadic tasks where = {m1,72,...,Tn}
ity (without IIT) of non-preemptiveeDF [12, 10] makes  andr; = (es,di, pi,q;) foralli, 1 <i <n.
EDF a reasonable algorithm to use as the run-time sched- e may categorize sporadic task systems based on
uler on each processor. Therefore, we henceforth makethe relationship between the valuesppfandd; for each

the assumption that each processor, and the tasks assigned « . For the purposes of this paper, we consider three
to it by the partitioning algorithm, are scheduled during g pclasses based on this relationship:

runtime according to non-preemptiedF and focus on
the partitioning algorithm.

Recently, Albers and Slomka [1] developed a fully
polynomial-time approximation scheme for determining . Con;trained: Each sporadic task; € 7 satisfies the con-
the feasibility of preemptive sporadic task systems on a  Straintthad; < p;.
uniprocessor. Their results also extend to non-preemptive ® Arbitrary : There is no restriction placed on the relation-
sporadic task systems. In [7], we non-trivially applied the ship between/; andp;.
results of Albers and Slomka to obtain a polynomial-time
partitioning algorithm for preemptive sporadic task sys- 2-1 The Demand-Bound Function
tems. In this paper, we extend and generalize the results For any sporadic task and any real number> 0, the
in [7] to be applicable for non-preemptive and restricted- demand bound functionsF(r;, ?) is the largest cumula-
preemption systems. To address some of the drawbackdiVé €xecution requirement of all jobs that can be gener-
of the simple restricted-preemption partitioning algorithm ated byr; to have both their arrival times and their dead-

that we derive. we also consider a familv of heuristics lines within a contiguous interval of length It has been
. ' . y shown [8] that the cumulative execution requirement of
which we evaluate experimentally.

M ) jobs ofr; over an intervalt,, t, + t) is maximized if one
Organization. In Section 2, we present background jop arrives at the start of the interval — i.e., at time-instant

¢ Implicit-deadline: Each sporadic task; € 7 satisfies the
constraint thatl; = p;.
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t, —and subsequent jobs arrive as rapidly as permitted —

i.e., atinstants, + p;, t, + 2p;, to + 3p;, . -
below follows directly [8]:

DBF(7;, 1) & max <0, ({%J + 1) x 62‘) (1)

. Equation (1)

3 A Partitioning Algorithm

Given a system of sporadic tasks, the problem of deter-
mining whether it is possible for the task system to always
satisfy all timing constraints is callddasibility-analysis
In this paper, we are interested in partitioned feasibility-

Albers and Slomka [1] have proposed a technique for analysis. Even for implicit-deadline sporadic task sys-

approximatingthe DBF; the following approximation to
DBF is obtained by applying their technique:

. B 0, if t <d;
DBF"(7;,t) = { e; +u; X (t —d;), otherwise (2)

tems under the preemptive model, partitioned feasibility-
analysis is NP-hard in the strong sense (by transforma-
tion from the bin-packing problem [13]). Unfortunately,
the complexity results extend to partitioned feasibility-
analysis of all restricted-preemption (or non-preemptive)

As stated earlier, it has been shown that the cumula-sporadic task systems.

tive execution requirement of jobs ef over an interval is
maximized if one job arrives at the start of the interval, and

subsequent jobs arrive as rapidly as permitted. Intuitively,

approximatiorbBF* (Equation 2 above) models this job-
arrival sequence by requiring that the first job’s deadline
be met explicitly by being assigned units of execution
between its arrival-time and its deadline, and thdie as-
signedu, x A t of execution over time-intervad, t+ A t),
for all instantst after the deadline of the first job, and for
arbitrarily small positiveA ¢.

Observe that the following inequalities hold for &]l

and for allt > 0:
DBF(7;,t) < DBF*(7,t) < 2 - DBF(7;,t) .

3)

2.2 Uniprocessor Feasibility

It has been shown [12] that the response time of a task

7; (i.e. the time from a job’s release to its completion)
is maximized in the following scenario: Lef, (k > i)

be the task with the largest non-preemptive execution re-

quirement. The worst-case sequence is if a joh,aé re-
leased just prior to the release of a jobrgfand all other
tasks7; (j # i, k) release jobs simultaneously witt;

in addition, successive jobs of are released as soon as
legally possible. Any feasibility test for non-preemptive

For the preemptive model, several bin-packing heuris-
tics have been studied [15]. Typically, each of the bin-
packing heuristics adheres to the following pattern:

1. Tasks of the task system are sorted by some criteria.

2. Tasks are assigned (in order) to a processor upon which
they “fit” according to a sufficient (and sometimes neces-
sary) condition.

In Section 3.1, we describe such a partitioning al-
gorithm. Section 3.2 derives sufficient conditions for
schedulability of a restricted-preemption task system us-
ing this algorithm. The algorithm and the derivation of the
sufficient conditions generalizes work done for partition-
ing of preemptive sporadic task systems in [7]. Section 3.3
describes an application of this algorithm for preemptive
quantum-based scheduling.

3.1 Algorithm NP-PARTITION

We now describe a simple partitioning algorithm
called NP-PRTITION. Given a restricted-preemption
sporadic task system comprised ofn sporadic tasks
T1,T2,---,Tn, and a processing platformril com-
prised of m unit-capacity processors,ms,. .., Tm,
NP-RRTITION will attempt to partitionr among the pro-
cessors ofl. The NP-FARTITION algorithm is a variant

sporadic systems must determine whether a deadline mis®f a bin-packing heuristic known &#st-fit-decreasing

will occur in this scenario. The feasibility test we use for

For this section, we will assume the taskspére indexed

non-preemptive and restricted-preemptions uniprocessolin non-decreasing order of their relative deadline (i.e.

systems is from [6]:

Theorem 1 (from [6]) A restricted-preemption sporadic
task systemr = {m,...,7,} is feasible (without IIT) if
and only if

Vt:0<t:) DBF(T,t) <t

(4)
i=1
and for all7; = (ej,q;,d;,p;) wherel <j <n
Vt:0<t<d;j:q+» DBF(ri,t)<t  (5)
i=1
7]

Throughout the remainder of this paper, we will
adopt the convention that “feasibility” is with respect to
restricted-preemption model without IIT.

di < diq1,forl <i < n). Letgmax(T) « max?_{q:}
denote the maximum non-preemption parameter of any
task int.

The NP-RARTITION algorithm considers the tasks
in increasing index order (i.e.7,72,...). We will
now describe how to assign task assuming that tasks
T1, T2, ..., Ti—1 have already successfully been allocated
among then processors. Let(w,) denote the set of tasks
already assigned to processgrwherel < ¢ < m. Con-
sidering the processors,, ms, ..., T, in any order, we
will assign taskr; to the first processory, 1 < k < m,
that satisfies the following two conditions:

d; — Z DBF* (7’j7 dl) >e + qmax(T) (6)

T;E€T(T))
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and By Theorem 1, either

1= Z uj | 2 s () DBF(Ti,tf)+ Y DBF(Tj,t5) >ty 9)
T E€T(7k) ;€T ()
If no suchm, exists, then AlgorithhrNP-PARTITION re- or there existsy € 7(m,) U {r;} such that
turnSPARTITIONING FAILED: itis unable to conclude that
sporadic task system is feasible upon then-processor qe + Z DBF(7;,ts) > ty. (10)
platform. OtherwiseNP-PARTITION returnsPARTITION- ryer(my)U{m}
ING SUCCEEDED i#t
If 7 is a constrained, sporadic task system, then it suf-  We will show that if either Equation 9 or 10 is true,

fices to check only Equation 6: then a contradiction is reached. Assume that Equation 9

) , is true. Then, sinceBF* is an upper bound oDBF,
Lemma 1 For constrained sporadic task systems, any

7; and 7, satisfying Equation 6 during execution of the

NP-RRTITION algorithm will also satisfy Equation 7 DBF*(7;,tf) + Z DBF*(7j,tf) >t (112)
T;€T(T))

Proof: Observe that for any constrained task Equa- )

tion 2 implies that for alt > d;, Since tasks are considered in order of non-decreasing

relative deadline, it must be the case that all tasks
7(m) haved; < d,. We therefore have, for eaa) €
DBF*(Ti7t):uiX (t+pl—dz) > u; X t. T(ﬂ'k),

Hence, Equation 6 DBF*(7j,tf) = e; +uj(ty —d;) (By definition)
= 6j+UJ(di_dj)+Uj<tf—di)
= DBF (7, di) +u;(ty —d;)  (12)

(di - Z”'J‘GT('M) DBF"(7;, di) = e; + qmaX(T)>

Furthermore,
= di =321 er(my (W5 X di) 2 € + qmax(T) >
- DBF (7s,tf) + DBF (75,tf)

= 1_ZTj€T(7Tk,) u.j Z %1+ diT T €T ()
= 1= crm U > Ui+ %%xi(f) (8) = (ei+uwi(ty —di))+ (ByEquation 12 above)

The last inequality implies Equation Bl Z DBF*(7j,di) + u;(ty — di)

We must now show that by assigning taskto pro- T €T (mK)
cessorm, we have not adversely affected the feasibility
of tasksty, 7o, ...,7;_1 previously assigned to the pro- = e; + Z DBF*(7},d;)
cessors. The next lemma shows that the system remains rieT(mg)
eEDF-feasible if we assign tasks according to Equations 6
and 7. +(tr —di) (ui + Y w)

T, €T(7L)

Lemma?2 If the tasks previously assigned to ) ,
each processor wereeDF-feasible (with respect to fé:"(z)r\)ise.quently, Inequality 11 above can be rewritten as

restricted-preemption) on that processor and Algorithm
NP-PARTITION assigns task; to processorry, then the (q + 3 DBF*(Tj’di)> i
tasks assigned to each processor (including procesgpr i E€7(mh)
remaineDF-feasible on that processor.
. . (tf—dz) (uz—i— Z Uj) > (tf—di)+di (23)

Proof: Observe that assigning to processorr;, does rier(m)
not affect the tasks previously assigned to other proces- However by Condition 6, (e +
sors. Therefore, we focus our attention onlygn and w( 7 o 3.
show that ifr(;,) waseDpFfeasible prior to the addition 2orer(r PBF(Ty, di)) < di — qmax(T) < di);
of 7;, and Equation 6 and 7 are satisfied, thén;, ) U{~;}
remainseDF-feasible after the addition of.

For the sake of contradiction, assume that;,) andr; (ty —di) | wi+ Z uj | > (ty —d;)
satisfies Equation 6 and 7 BfP-PARTITION, but thateDF T E€T(Tk)
misses a deadline when scheduling the tagks) U {7;}
on processorr;. Let ¢ be the time that processar,
misses a deadline. Observe that> d; sincer(my) is (u; + Z uj) > 1
EDF-feasible before the addition ef. rier(mi)

Inequality 13 therefore implies

which in turn implies that
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which contradicts Condition 7. be useful in proving the main results of Theorems 3, 4,
Now, assume that Equation 10 is true. Similar to Equa- and 5.

tion 11, we obtain . . : .
Lemma 3 Given a restricted-preemption sporadic task

systemr and anm unit-capacity processor systei,
Gmax(T)+ > DBF(7j,tg) >t;.  (14)  NP-PARTITION has the following properties:
€7 (m)U{Ti}

AL P1: If usym(7) < 1, Equation 7 is always satisfied.
Following similar logical steps of Equations 12 pp: |f 6y, () < 1—/2)<r), then Equation 6 is always sat-
through 13, we would obtain from Equation 14: isfied.
(ui + Z uj) > 1. P3: Let 7 be an implicit-deadline system. If
’ usum(7) < 1 — p(7), then both Equations 6

T, €ET(TR)ULT: S
' (j;é% tr and 7 are always satisfied.

which also contradicts Equation 7.
Since both Equations 9 and 10 lead to a contradiction
our supposition that processay, missed a deadline at

Proof: P1 is trivially true, since violating Equation 7
‘requires thatu; + > . () u;) exceed 1.

timet; is false. Thusy(my) U {r;} will always meet all To see P2, observe thégm(r) < =27 implies that
deadlines on processoy,. B >r,er DBF(T),t0) < M for all t > 0. By In-
The correctness of AlgorithiNP-PRTITION follows, equality 3, this in turn implies that

by repeated applications of Lemma 2: .
> DBF(75,t0) < to(1— p(T)) (15)

Theorem 2 If Algorithm NP-PARTITION returnsPARTI-

TIONING SUCCEEDEDON task system, then the resulting ' .

partitioning is EDFfeasible. for_all ty > .0; specifically att = d; whgn eval-
uating Equation 6 forr;. Evaluating Equation 15 at

Run-time complexity. In attempting to map task;, ob- to = d; implies thate; + Z;;ll DBF*(15,d;) < d; —

serve that AlgorithmNP-PRTITION essentially evalu- ¢ (7). Sincer(m;) C {T1,72,...,7i_1} When at-

ates, in Equations 6 and 7, the workload generated by thetempting to addr; to processorr;, in NP-PARTITION,

previously-mappedi — 1) tasks on each of the: pro- €i+zqef(m DBF* (7}, d;) < di—Gmax (). This implies

cessors. SinceBF*(7;,t) can be evaluated in constant Equation 6.

time (see Equation 2), a straightforward computation of 7o see P3, observe that

this workload would requir (i + m) time. Hence the

runtime of the algorithm in mapping atltasks is no more Usum(T) < 1 —p(7) (16)
than""" | O(i + m), which isO(n?) under the reason-

' trivially implies Equation 7. It remains to show that Equa-
able assumption that < n.

tion 6 is satisfied. In an implicit-deadline system, it fol-

. . lows from Equation 2 thabBF* can be rewritten as:
3.2 Theoretical Evaluation

In this section, we derive a set of sufficient conditions . /o, if t <d;
for the success diIP-PARTITION. In particular, for each DBF(73,t) = u;t, otherwise
subclass of restricted-preemption sporadic tasks we derive
a different sufficient condition: Theorem 3 corresponds

17)

By multiplying both sides of Equation 16 hy;, we

to implicit-deadline systems, Theorem 4 for constrained obtain
systems, and Theorem 5 for arbitrary systems. Z?:l ujd; < di — Gmax(T)
Given a task system, the following notation and ter- = &+ Z?:; ujd; < di — qmax(T)
minology will be useful for our analysis. S et Zixﬁ DBF* (15, d:) < d; — Gunax ()
denin() £ min™_, {d;} i,
o(T) & gmax (7)/dmin (T) (max. blocking rati = &+ Z]’:l DBF” (Tja di) < di — qmax(T)-
def .- .
umax(T) = mi"?ﬂ{“i} (max. utiization Sincer(my) C {1, 72, ..., 7._1} when attempting to add
usum(T) = 3oy Ui (system utilization 7; to processorr;, in NP-PRTITION, the last inequality
% ei/ds (task load ratiq implies Equation 6l
Smax(T) = max?, {;} (max. load ratig
Ssum(™)  Emaxiso (W) (system loay Corollary 1
The following lemma describes subcases where either 1. Any restricted-preemption Spo-
Equation 6 or 7 is trivially satisfied. The corollary imme- radic task system T satisfying
diately following shows that certain combination of sub- (usum(7) < 1A dsum(7) < %(”) is success-
cases imply that is trivially restricted-preemption feasi- fully partitioned on any number of processors 1
ble on a single processor. The lemma and corollary will by NP-PARTITION.
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2. Any constrained, restricted-preemption In the next lemmas, we describe the necessary condi-

sporadic task system T satisfying tions for algorithmNP-PARTITION failing to assignr; to
(bsum(T) < 1—%(7)) is successfully partitioned on  aprocessor ifl. If 7; was not assigned to a processor then
any number of processors 1 by NP-PARTITION. either Equation 6 or 7 evaluated to false for eaghe II.

o . _ _ Lemma 4 quantifies the maximum number of processors
3. Any implicit-deadline, restricted-preemption Spo- for which Equation 6 is false; Lemma 5 quantifies the

radic task system satisfying(usum(7) < 1—p(7)) is maximum number of processors for which Equation 7 is
successfully partitioned on any number of processors ¢5|se.

> 1 by NP-PARTITION.

Lemma 4 Letm; denote the number of processobs<
my < m, on which Equation 6 fails when the partitioning
algorithm is attempting to map. Assuming thap(r) <

Proof: Part 1 and 3 follow directly from Lemma 3, Equa-
tions 6 and 7 oNP-PRTITION will always evaluate to

‘true” ) 1 — é;,it must be the case that
Part 2 follows directly from Lemmas 3 and 1. By
Lemma 1, we need only determine that Equation 6 is sat- 26sum(T) — 8;
isfied. By Property P2 of Lemma 3, this is ensured by mi < 1—p(r)—6; (20)

havingdsum(r) < =20,
m Proof: LetII; be the set ofn; processor for which Equa-
tion 6 evaluates to false when attempting to add task

Then, for eachr, € 11,

Z DBF* (ij dv) > d7 —€; — QInax(T)
Theorem 3 Any implicit-deadline restricted-preemption 75 €7 (k)

sporadic task system where p(7) < 1 — usum(7) is
successfully scheduled HBYyP-PARTITION on m unit-
capacity processors, for any

We are now prepared to prove sufficient conditions
for NP-PARTITION successfully partitioning an implicit-
deadline, restricted-preemption sporadic task system.

Summing over allm, € 1II;, and noting that
kaenl 7(m,) C 7, we obtain

> Usum(T) — quaX(T) (18) Z DBF* (Tj, dz) > (dz — €; — Qmax (T))ml +€;
1 —p(7) — Umax(T) Jj=1
Proof Sketch: The proof is by contradiction. Assume  ~ . (by Inequality 3
that Equation 18 is true, bMP-PARTITION fails to par- 232521 DBF(75,di) > (di — €i — gmax (7)) + e

j=1DBF(7;,d;)

tition 7. Then there exists a task € r such that when = e

attempting to add; to each processar, € II, either Bv definii (5
Equation 6 or 7 is violated. Corollary 1 implies for each y definition of dsum(
me €11 " DBF(1;,d;
wsunlT(m) U{r}) > 1=p(r)  (29) Lzt P8P
because otherwise when attempting to assjda proces- o N )
sory,, NP-PARTITION would be able to “fit’r () and Chaining Inequalities 21 and 22, and observing that

> (1 - g — ey 4 on (1)

< dsum(T)- (22)

7, on the same processor. p(T) > qm“di"(ﬂ we obtain

Summing Inequality 19 over alt; € II, and noting
that the tasks on these processors is a subsetwé ob- (L =6 — p(7)) + 547 < Gsum(T)
tain = my < %

which is claimed by the lemm#
Usum(T) + (m — Du; > m(1 — p(71))

= m(l—p(1) — ;) < usum(T) — u; Lemma5 Letm, denote the number of processobs<
= m< % meo < m, on which Equation 7 fails when the partitioning

algorithm is attempting to map. It must be the case that
Observe thatisym(7) > 1 — p(7); otherwise,r would
be trivially feasible according to Corollary 1. Therefore, My < Usum(T) — Ui (23)
the left-hand side of the above inequality is maximized 1—wu

whenu; is as large as possible. This implies, Proof: LetIl, be the set ofn, processor for which Equa-

Usum(T) — Umax (T) tion 7 evaluates to false when attempting to add tgsk

m < Then, for eachr;, € II,
1= p(7) = tmax(7) g °

which contradicts our assumption, thereby proving the 11—y < Z uj
lemma.l T ET(Tk)
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Summing over allm, €
U, em, 7(mk) € 7, we obtain

I, and noting that

(1 —wi)mg +u; < 30 u
= Mmoo < 7usurl’n£7'u)i—ui
which is asserted by the lemnill.
We are now prepared to prove sufficient conditions for
success oNP-RARTITION on constrained and arbitrary
task systems.

Theorem 4 Any constrainedrestricted-preemption spo-
radic task system wherep(7) < 1 — d;ax(7) IS SUCCESS-
fully scheduled byNP-FARTITION on m unit-capacity
processors, for any

25sum(7) - 6max (T)
1 p(T) - 5maX(T)

Proof: The proof is by contradiction. Assume that task
systemr and platformII satisfy Inequality 24, but that
NP-RRTITION fails to assign some task € 7 to any
processor. By Lemma 1, it must be the case that Equa-
tion 6 fails for taskr; on each of then processors (i.e.

m equalsm; from Lemma 4). Consequently, Lemma 4
implies

(24)

265um(7_) — 61

1—p(1) =0
By the second part of Corollary &sym(7) > —5-; oth-
erwise,r can trivially be partitioned byNP-PARTITION.

In this case, the right-hand side of the above inequality is
maximized when; is as large as possible. Thus,

255um(7') - 6max(7—)
1- ,0(7') - 5max(7—)

which contradicts Inequality 248

1—p(7)

Theorem 5 Any restricted-preemption sporadic task sys-
temr wherep(7) < 1—dmax(7) is successfully scheduled
by NP-RPARTITION onm unit-capacity processors, for any

20sum(T)
p(T) —

- 5max(7—)
Omax(T)

Proof Sketch: The proof is by contradiction. Assume
that task systemr and platformlII satisfy Inequality 25,
but thatNP-PRTITION fails to assign some task € =
to any processor. Ldfl; be the set ofn; processor on
which Equation 6 evaluates to false while attempting to
assignr;. Let I, be the remainingn, processors (i.e.
mo Em — m1) on which Equation 7 evaluates to false.
According to Part 1 of Corollary 1(usym(t) > 1)
or (dsum(T) > 1_%(T)); otherwise NP-PARTITION could
trivially partition 7 on a single processor. We will consider
three separate cases and show that in each case a contr
diction will arise. Due to space requirements we only fully
show the first case.

Usum(T) — Umax (T)

1 — Umax(T) (25)

Case(i): Psum(t) > =27 and usym(r) > 1).: In this
case, bothm; andms are non-zero. Summing Inequali-
ties 20 and 23 of Lemmas 4 and 5 (respectively), we obtain

253um(7_) — 51
= o) =4,

m=mj+mo <

Becausedsum(T) > 21), (usym(7) > 1), and p(r) <

1 — dmax (7)), the right-hand side of the above inequality
is maximized when both; andu; are as large as possible.
Therefore,

20sum(T) — Omax (T)
1_P(T) (SmaX(T)

which contradicts Inequality 25.

Case(ii): Gsum(7) > 2 and ugym(7) < 1). Similar
to Case (i) via a simple application of Lemma 4.
Case(ii): (Fsum(7) < 227 and ugym(r) > 1). Similar
to Case (i) via a simple application of Lemma 5.

|

Usuml(T) — Umax (T)
1 — Upmax(T)

m <

3.3 Quantum-based Preemptive Scheduling

A quantum-basedcheduler allocates a processor to
tasks in “blocks” of time callegquantumsDuring a quan-
tum a task may execute non-preemptively until the earliest
of the following two events occurs: the task completes ex-
ecution or its quantum expires. In the event of task com-
pletion, the scheduler is invoked, and the next available
task (according to the scheduling algorithm) with remain-
ing execution is assigned the newly idle processor. If the
quantum expires prior to the completion of the task, the
task is preempted and the scheduling algorithm makes a
decision about what task to execute in the next quantum
(possibly the same task). In this model, a job of a task
can be “blocked” by a lower-priority (assuming a priority-
based scheduling algorithm) only if it arrives in the mid-
dle of a quantum. Therefore, the maximum blocking time
for any task in the system is equal to one quantum. We
will make the following simplifying assumptions about
the system:

1. The scheduler is invoked only at the completion of the ex-
ecution of a job, or at the end of the quantum.

2. The scheduler’s execution requirement is negligible.

3. The quantum-size is less than the execution requirement of
each task in the system.

4. The quantum sizes are fixed and identical on each proces-
sor.

NP-RRTITION is a highly applicable partitioning al-
gorithm for these quantum-based systems. We can model
a quantum-based system by setting, for each task 7,
¢; equal to the quantum-size. SinBEP-FARTITION re-
servesymax(7) units of “slack” at every instance of time
on each processor, this guarantees that each task assigned
to a processor can still meet its deadline despite being
blocked for a quantum’s duration of time. In fact, even
an optimal partitioning algorithm for a multiprocessor
gquantum-based must ensure that a job can be delayed
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for one quantum. Therefore, we can evaluate the per- Assume that we are given arbitrary task systefea-

formance ofNP-PARTITION in quantum-based systems sible (without IIT) onm processors each of speédit

using a technigue know assource augmentatioflL7]. follows from Lemma 6 that must satisfy the following
Resource algorithm compares a given algorithm againstproperties:

a hypothetical optimal algorithm and determines the fac-

tor by which we augment the processing platform for the Osum(T) <m0 - & usum(T) <M - &

given algorithm to match the performance of the optimal. Omax(T) < € Umax(T) < €

For the purpose of this paper, the resource augmentatiorsuppose that- is successfully scheduled om unit-

technique is as follows: given a task system that is known capacity processor b)P-PARTITION. By substituting

to be feasible upon a particular platform (with respect to (e jnequalities above in Equation 25 of Theorem 5, we
guantum-based scheduling), we determine the multiplica-get

tive factor of speed by which we must augment our plat-

form in order forNP-PARTITION t0 returnPARTITIONING m > ijul)"(](:))_*é‘gmax((:f + “SU;“ETJ*“IF;)X(T>
SUCCEEDED(shown in Theorem 6). e m > dme—g y ome-t
. . : I-p(r)—¢ T 1-¢
First, we need a technical lemma that characterizes the e m> 2mEsE | mé=¢
necessary conditions for feasibility. In [7], Baruah and ml(*lfi(;()*’)f 1=p(r)—¢
Fisher showed for preemptive systems that the larger of = (< s
Omax(7) @andumax (7) represents the maximum computa- = % > 14—_pr§)

tional demand of any task, and the largerdgfn(7) and

usum(7) represents the maximum computational demand Which is claimed in the third part of the theorel.
of a preemptive sporadic task systemThis result triv-

ially extends to restricted-preemption systems. 4 Heuristics

Lemma 6 (from [7]) If task systenr is feasible (under Though NP-PARTITION is useful for theoretically
either the partitioned or the global paradigm) on an iden-  evaluating preemptive quantum-based systems, it pes-
tical multiprocessor platform comprised of processors  simistically assumes that any task in the system could

of computing capacity each, it must be the case that potentially blocked forg,,.x (1) time units (Equation 6).
Therefore, the algorithm is impractical for all but small
€ 2 max(Jmax; Umax) values ofp(7) and entirely unusable fgs(7) > 1. In a
and general restricted-preemption system, we may not need

assume the same maximum non-preemption parameter
each processor. In this section, we will consider a fam-

Theorem 6 Given an identical multiprocessor platform [y of polynomial-time heuristics based on the first-fit-

11 with m processors and a restricted-preemption spo- decreasing bin-packing heuristic. Section 4.1 will de-
radic task systemr feasible onTl without IIT, the scribe each of the heuristics we consider. Section 4.2 will
NP-PARTITION algorithm has the following performance present our empirical-evaluation methodology and results.

guarantees for a quantum-based system with quantum-We will also discuss potential theoretic justifications for

size equal t@max (.. p(1) = di?:(i)): the experimental results.

m - 5 Z max(5sum, Usum) .

1.if 7 is an implicit-deadline system, then 4.1 Heuristic Descriptions

NP-PARTITION will successfully partition 7 As mentioned in the beginning of Section 3, typical

upon a platform comprised of processors that are  partitioning heuristics will first sort the tasks according
each(f_‘T(%)) times as fast as the processordbf to some cr_iteria, and t_h_en assign_ _the task:_; _to a proces-

sor according to a sufficient condition for “fitting”. The

2. if 7 is a constrained system, thé¥iP-PARTITION NP-RRTITION algorithm matches this heuristic pattern
will successfully partitionr upon a platform com- by sorting tasks in (non-decreasing) order of relative dead-
prised ofm processors that are eac(h%) times  line and adding tasks to processors (in order) according to

Equations 6 and 7. In this section, we consider a family
of algorithms that each sorts tasks in non-increasing order
3. if 7 is an arbitrary system, theNP-PARTITION will according to different criteria and assigns a task to the first
successfully partitiorr upon a platform comprised  processor upon which it fits (each algorithm is a variant
of m processors that are eac(hf_‘p (%T )) times as fast  Of ﬁrst]:fit-decrhez;:sing).t ‘The chr1ditigns fdor fitting are thet.
same for each heuristic considered and are a more opti-
as the processors af. mistic sufficient conditions than used fNP-PARTITION

Proof Sketch: Due to space considerations, we will only (I-€. @ task is more likely to be assigned to a processor).
show the proof of the third claim. The other claims can be The following are the eleven different sorting criterig:

def e;

- 1
proven similarly. (same adNP-PARTITION), 500 i Qi Ui A = AL

as fast as the processorslaf
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~  def qi def qi

0iy 2 N & ot 6, & %, andrandomorder.
Each heuristic is denoted tB¥D-NP-(sorting-criteria).
For each the above heuristics, we will attempt to add A partition of thesem + 1 tasks is randomly gen-
tasks7; € T to processors ofl in the order specified.  erated such that each task is preemptively feasible.
Since we have potentially changed the order that tasks arer (%) is the set of tasks from the initial task set as-
assigned, Lemma 2 is not necessarily valid. Therefore,signed to processory, the condition of feasibility is
every time we assign a taskto a processorr;,, we must rer(my) DBFT(75,1) < tforallt > 0. After deter-
check that each task in(7;,) meets its deadline after the mining an initial partition, we compute a maximum non-
addition ofr;. We will add a task; to processotr, only if preemption parametéy for each task in this partition, and
it does not affect theprfeasibility of the tasks of (7).~ assign tay; a value chosen from the exponential distribu-
Equations 6 and 7 of thidP-PARTITION algorithm en- tion with range[0, min(e;, §;)]. To generate subsequent

sured that Equations 4 and 5 of Theorem 1 are not vio- task sets, we add a randomly generated task to the current

lated, by leaving enough slack on a processor to fit the job o s
with theylarges?non-p?eemption parpameter. We can Cfm_partltlon and attempt to fit it on any processor. If the task

sider a more optimistic test by making the following ob- fits on the processor, we add the resulting task set to our

is an integer value chosen from the uniform distribution
with rangele;, 2p;].

If

servation:since we are consideringbF-schedulability, a
taskr; on a processor may only be blocked (i.e. a priority
inversion occurs) if a task with a larger relative deadline
is executing when a job af; arrives. Therefore, when
checking if taskr; fits on a processor;, we need only
check if all tasksr; € 7(m) with d; < d; have enough
slack to accommodate being blocked hyfor ¢; time

sample; otherwise, we start over with a newly generated
set ofm + 1 tasks.

We generated several different sets of task systems ac-
cording to the methodology described. However, due to
space consideration, we discuss only one set of 1,000,000
randomly generated task systems. Each of the task sys-

units. We must also ensure that the added demand placegems generated are feasible on a four processor platform.

onm, by 7; after timed; does not affect the slack neces-
sary to accommodate jobs of € 7(my) with d; > d;.
Therefore, we replace Equation 6 with the following con-
ditions: for eachry € {7} U 7(my),

de= 3 OB (mde) [ et max g} (26)
T4 T TTI')C
g "

It turns out that if Equations 26 and 7 are true, then
we can safely ade; to processorr;. The full proof of
correctness is omitted due to space considerations.
Run-time Complexity. For eachr;, € II, let i, be the
number of tasks assigned to processprat the time we
are attempting to assign task For eachr, € {7} U
7(my), it takesO(iy) time to evaluate th®  DBF*(7;, d¢)
term andO(1) time to evaluatenax{q;} term in Equa-
tion 26. Therefore, the time complexity for testingrif
fits on processorr is O(i2). This implies the overall
time-complexity of each of the heuristicsdy(n?).

4.2 Empirical Evaluation
Methodology. For empirically evaluating each of the

Figure 1 shows the distribution of generated task systems
with respect to a task systenmdgm value ([4] gives justi-
fication for usingdsym as metric of comparison).

Results and Discussion.The results of running each of
the eleven heuristics over the sample set are shown in Fig-
ure 2. The values are shown fég,, > 2.5 only, as

the smallergynrvalued task systems are partitionable by
all heuristics. The major trend we have observed from
this experiment and other experiments (omitted for space)
are that heuristics that have the non-preemption parame-
ter ¢; in the sorting criteria (i.e.FFD-NP-¢;, FFD-NP-;,
FFD-NP-/)\\,L-, and FFD-NP-@) dominate heuristics that ex-
clude g; for dgum < 3.8. Indeed,FFD-NP-g; dominates

all heuristics forégym < 3.8. A potential reason for the
domination of the heuristics using is that by assigning
tasks with larger non-preemption parameter first, we more
effectively utilize the slack on each processor. If we ig-
nored they; parameter in ordering tasks, we may not leave
enough room for future tasks with large However, ac-
cording to Figure 2, heuristics based on the task load or
density €FD-NP-); and FFD-NP-§;) may be more effec-
tive than ¢;-based heuristics for task systems with high

heuristics, we generated a set of pseudo-random tasks setium values. Not surprisinglyrF-NP-RANDOM does the

generate a partition of. + 1 preemptive tasks. That NoOt exploit any information about the task system.

is, each processor is assigned a set of randomly gener-

ated tasks which are preemptively feasible on the pro-5 Conclusions

cessor, and the total number of tasks in this initial set

is m + 1. The method of generating an individual task Non-preemptive scheduling of tasks has the advantage
7. = (ei,qi,d;, pi) is as follows: we generate a random of decreasing system complexity and scheduling over-
utilization parameteu; for the task according to the expo- heads. However, little work has been done on study-
nential distribution with mean individual task utilization ing non-preemption for partitioned multiprocessor sys-

of 0.25. We then randomly generate the penigdrom a tems. In this paper, we considered the parititoned mul-
uniform distribution with values ranging from 1 to 1000. tiprocessor scheduling of restricted-preemption and non-
The execution requirement is computed from the task  preemptive sporadic task systems. We introduced a sim-
utilization and period. The relative deadlide of a task ple partitioning algorithmNP-PARTITION for which we
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Figure 2. Comparison of partitioning heuristics

derived sufficient conditions for success (Theorems 3, 4, [7] S. Baruah and N. Fisher. The partitioned multiprocessor

and 5).

NP-PARTITION can be applied to partition-

ing preemptive sporadic tasks in a multiprocessor sys-

tem that uses quantum-based scheduling. For quantum-
based systems, we were able to characterize the effective-

ness ofNP-PARTITION in terms of resource augmentation
bounds (Theorem 6).

To address the drawbacks of the pessimistic behavior of
NP-PRTITION, we considered eleven different partition-
ing heuristics for restricted-preemption sporadic task sys-
tems. We characterized the performance of these heuris-
tics empirically over a set of randomly generated task

systems, and observed that heuristics which use the non;; g

preemption or load information of the task system outper-
form heuristics that ignore this information. In the future,

we would like to obtain better theoretical bounds for the
heuristics presented in Section 4.
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Probabilistic QoS Assessment of Tasks with Uncertain Parameters in
Preemptive Multi-Processor Scheduling

Amare Leulseged and Nimal Nissanke
Institute for Computuing Research, Faculty of BCIM
London South Bank University, London, UK

Abstract admitted. The work by Manolache et al. [11] deals with
performance analysis of periodic non—preemptable tasks
This paper presents a probabilistic approach for Qual- with the uncertainties in their execution times specified in
ity of Service (QoS) assessment of periodic tasks withthe form of a continuous probability distribution function.
uncertainties in computation times and deadlines in A motivation for the latter is to avoid the complexity asso-
priority—driven multi—-processor execution environments. ciated with discrete states, though an important source of
The approach is a generally applicable one but is aimed at the efficiency of this technique appears to lie in the anal-
novel non—critical real-time applications (e.g. multime- ysis conducted alongside the construction of the underly-
dia). Uncertainties bear a truly random character at task ing stochastic process. Based on Markov process mod-
request times, though in between arrival times they can beelling and sharing the same aspirations as this paper, the
worked out by tracing the execution process in time. Con- work [5] proposes a stochastic approach to fixed priority
sidering each task in turn, its possible execution scenariosand dynamic scheduling of periodic tasks with uncertain-
are systematically worked out in relation to other tasks in ties in their computation times. However, the approach
the system. This permits the computation of the probabil- is limited to uni—processor scheduling. Gardner [7] pro-
ity of task execution at each instant of time and, hence, poses Stochastic Time Demand Analysis for determining
the probability distribution of each task in the next instant the lower bound on execution rates in uni—processor fixed
in time, leading in turn to the determination of QoS indi- priority context. This is based on an extension of the pe-
cators such as success rate, expectation of response timeiodic task model to include both a guaranteed execution
latency and jitter between consecutive task instances in atime ranging from zero to the maximum execution time
straightforward manner. A stochastic simulation demon- and a guaranteed inter—release time above the required

strates the validity of the approach. minimum inter—release time, depending on the real-time
_ nature of the tasks concerned. Zhou et al. [14] propose
1 Introduction a modified rate monotonic schedulability analysis, incor-

The objective of this paper is to develop a sufficiently porating two experimentally determined parameters to ac-
general probabilistic framework for the analysis of multi- count for uncertainties in operating system overheads: a
processor schedulability of tasks with uncertain parame-constant representing the CPU utilisation of operating sys-
ters. Though no specific assumptions are made to that eftem activities and a worst—case timer delay factor. Edgar
fect, the approach is considered particularly suitable for €t al. [6] propose the use of Gumbel distribution for esti-
assessing the Quality of Service (QoS) indicators of indi- mating the worst—case execution time as an extreme value.
vidual tasks with uncertainties in their resource require- Another important contribution is the Real-Time Queue-
ments. As is well known, QoS criteria are becoming im- ing Theory [9], though it is yet to demonstrate its applica-
perative in the design of non—critical real-time applica- tion in relation to any practically significant problems.
tions such as video conferencing and other multimedia Based on a discrete time model, our work deals with
applications, where traditional techniques based on worstdynamic multi-processor real-time scheduling [8, 10, 13]
case execution times invariably result in highly conserva- and with static and dynamic uni-processor real-time
tive uneconomic designs. scheduling [12]. Though the discrete time model gen-

Among the works devoted to uncertainties in real-time erally raises the complexity of computations involved, it
tasks and their implications on scheduling is the Statistical offers the capability to analyse, in principle, problems of
Rate Monotonic Scheduling approach [1, 2] dealing with any arbitrary nature and not necessarily those which fit in
periodic tasks with variable execution times expressedwith standard mathematical models. The work [13] deals
through a probability density function and a QoS measure with a probabilistic analysis of dynamic multi—-processor
defined in terms of the failure probability of tasks. An scheduling with emphasis on the overall performance of
important part of its strategy, however, is a job admission the scheduling environment as a whole. However, lacking
controller intended to safeguard the QoS of tasks alreadythe means to identify individual tasks, the latter could not
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address the QoS performance of individual tasks exceptenvisaged values of the computation time and the laxity.
in a limited sense. In contrast, the works [8, 10, 12] shift A convenient visualisation of tasks with particular val-
the focus to scheduling of individual tasks, though the ap- ues of | and c is to view them as points on a two—
proaches taken in [8, 10] for multi-processor case and [12] dimensional orthogonal (discrete) coordinate system with
for uni-processor case are completely different. The ap-| (horizontal) anct (vertical) as its axes; see Figure 1(a).
proach in [12] uses ‘timed sequences of probabilities’ for This system is referred to as thec space. The area en-
working out the execution patterns and termination times closed within0 < | < Inaxand1l < ¢ < Cnax is referred
of tasks, allowing the calculation of a range of QoS indi- to as thescheduling domaimand is denoted b$. By in-
cators. Demonstrative examples in [5] and [7] being lim- cludingl = -1 in this representation, we use the tegrit
ited to uni-processor scheduling, it is easier to compare,domain and the symbdk, to refer to the points oh= -1,
amongst our work, [12] against [5, 7]. In this respect, the or onc = 0, but excluding the point (-1, 0). Given a task
results in [12] are broadly in line with the simulation in at a particular poinfl, c), if it were to be executed at time
[7] and the analytical results in [5], as well as our own t, its position at timgt + 1) would be af(l,c — 1), other-
simulation results. wise at(l — 1,c). In the case of tasks which have exited
This paper and the thesis [8], [10] being a prelimi- the system, any tasks located loa- -1 are failed tasks,
nary version of the same, propose a new framework for while those orc = 0 are successfully executed ones. The
probabilistic analysis of tasks with uncertainties in multi— scheduling and exit domains together are referred to as
processor scheduling and, hence, their QoS issues on athetask domairand is denoted b§. Uncertainties in task
individual basis. Uncertainties concern only computation parameters are taken into account in a general form by
times and deadlines expressed indirectly through laxitiestreatinglL; andC; as jointly discrete random variables with
(a measure of urgency). These are represented in terms joint probability mass functiorrF) py, ¢ (I, ¢) or, for
of probability mass functionsef1F) and are of truly ran-  brevity, bypi(l, c).
dom nature at the request times of tasks. The essence of (| ¢) = PLcl{(,d):V=1.d =c}] (D)
the approach is in how to work out theimrs in between . .
: . .. As a function of two random variables, the above denotes
request times as the tasks are executed using any priority—, - ) . .
driven scheduling algorithm, including algorithms such as the probab|||ty of7 h'avmg a laxityl an_d computation
2 . . . time ¢ at the time ofr’s arrival or, referring to the two—
the Least Laxity FirstiLF) and the Earliest Deadline First dimensional representation, the probabilityrprriving
(EDF). This forms the basis for arriving at several QoS in- '

. o at a point(l, c). Thus, referring to the illustration in Fig-
dicators of practical interest, e.g. rate of successful execu-ure 1(a),r has a probability of 0.6 having a laxity 1 and
tion, response time latency, jitter and so forth. Extending 72 P y ' 9 y

the work [10], this paper deals with several important is- a computation time 2.

sues, in particular, a verification of the approach using a IA?; pid(tlavnccztg]s(tlrzeke?(E)bsacbhil?tngol??]:\I/I;[: t'tmhg' tgﬁ g?fgtll_on
stochastic simulation, an assessment of the complexity ofpi( ,©) : tp y o1 having the p

the approach as presented here, a more accurate way o es(l, c) at timet. pi(l, ¢) acquires its random value only

calculating jitter and a study of the effect of tie—breaking _at times wher, is freshly r_equetsted; L& Whe".'md ¥
o - is equal to zero. At other timeg;(l, c) is determined by
on probabilistic predictions. '

t—1 ; ;
Section 2 presents the core ideas of the proposedpi (1, ¢) and the manner in which has been executed at

; . : time (t — 1). In essence, the determinationpfl, c) for
framework. Section 3 examines practically useful perfor- . .

o ! . each task; and for each time valueover the scheduling
mance and QoS indicators. Section 4 sets out the relation-

. ) S ) ) domain lies at the heart of the given scheduling problem.
ship of the above with a stochastic simulation. Section 5 22 Scheduling Algorithms and Task Execution

illustrates the use of the approach and demonstrates its va- T heduli del . f i
lidity using a stochastic simulation. Section 6 concludes € scheduing mode consists of a multi-processor
the paper with a summary of achievements. system withM identical processors, such that any task can
. e executed on any processor, and with no explicit consid-
2 Analytical Framework b ted d with it d
yu w eration of preemption and task migration costs. Given an

2.1 Representation of Tasks arbitrary priority—driven scheduling algorithg a func-
Considering a sef? of ntasksr, i = 1,2,---,n, let tion f, (1, ) returns the priority level assigned yto any

each taskn arrive at fixed time intervals separated by a task located aftl, c) as a natural numbé¢ ranging from

periodT; but with an unpredictable computation tirfie Kmin 10 Kmax. Priorities are assumed to decrease with in-

For generality, as justified in [8], the deadlinemfs also creasingK. For example, irebr f,(l, ¢) returns(l + c)
considered unpredictable and is specified in terms of lax- (i.e. relative deadline) a and inLLF justl (i.e. laxity).

ity (urgency)L;, that is, the length of time from the current At any particular instant in time, associated with any given
time to the deadline minus the computation time. Thus, valueK, K = f,(l, c) for some(l, c), are three subsets of
and C; are both treated as random variables at the time the sef() of n tasks. These are:

of ni's each arrival. Their sampling spaces are the sets of 1) QK(l,c) — The set of all tasks having a non—zero

integers0 Imaxand1 .. Crmax respectively, .the nqtation probability of being at a pointx,y) in S such that
X ..y denoting the set of integers frorto y inclusively, fo(x,y) < K; i.e. of being of a higher priority than
andcmax andlmax representing, respectively, the maximum any task atl, c).
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Figure 1. a) Distributions p; for each 7,i = 1,2,3 and b) task sets Qy, k= 1,2, 3, in the task domain

2) OX(I,c) — The set of all tasks having a non-zero but, in general, appears Mﬁ number onjK sets. In the
probability of being at a pointx,y) in Ssuch that  case ofr, howeverN$! = 1 sincer; is considered to be
fs(x,y) = K; i.e. of being of an identical priority to  only inw,. (2) can be proven by mathematical induction.
any task atl, c). The execution probability of a particular tagkin QK

3) QK(l,c) — The set of all tasks having a non-zero depends on two factors: firstly, on the realisation of its
probability of being at a poinfx,y) in Ssuch that  possible execution scenarios and, secondly, on its choice

fo(X,y) > K or of being in the exit domaift; i.e. for execution by the scheduling algorithm concerned, both
of being of a lower priority than any task ét c) or expressed in probabilistic terms. In connection with the
having exited the system. first, given thatr € R, let P; , denote the probability of

The above sets are not necessarily pairwise disjoint,the realisation of a particular scenarioFurthermore, for
since a task may belong to more than one set at the sam@ny scenario = (w,ws,ws) and anyr € w, k= 1,2,3,
time. For brevity, from now on we use the simpler nota- let p-(wx) denote the sum of probabilities of a taske-

tion QK, j = 1,2,3, for referring to the above sets. Fig- ing anywher(_e in the region covered by the corresponding
ure 1(b) shows the task se®},j = 1,2, 3, for the set set(g. Obviously,p-(wi) can be determined knowing
of tasks comprising;,i = 1,2,3, given in Figure 1(a), p.(I,c), introduced in Section 2.1. Note that considera-

undereoF scheduling at a relative deadline of 3 units of tion of O as a whole in working oup, (wx) helps us to
time; i.e. with¢ = EDFin f,(x,y) andK = 3. Thus, in avoid point-wise enumeration of task scenarios inltee

Figure 1(0)Q23 = {1, 7} andQ3 = Q3 = {r, 70, 73}. space. This could resultin some reduction in the complex-
Considering a particular task in QK for scheduling, ity — an issue dealt with in Section 2.3 latd®; ; can be
let us now select three sets, for j = 1,23, with p; determined as the product of the probabilities of each of
elements in each, such thate w, and the tasks participating in the scenarioThat is
a) wj C O (i.e., eachy; is a subset of the correspond- P.o= ] (II pr(wo) 3)
ing QK) Asaresultd <pj <| Q ] Turning to the sé?:%)?ld fggtgr there are two possibili-
b) w1 Uws Uws =€, Q bemg the set of alltasksinthe ties that need to be taken into consideration, namely, that,
task domain (in the system). given that the scenariois realised, the task under con-
c) wiNwe=0forj,k=1,2,3andj # k(i.e., they are  sideration,r, is definitely executed (whem, + p, < M,
pairwise mutually disjoint). M being the number of available processors), or may en-
Note thatp; + p2 + ps = n. A 3-tuple of the form counter a tie with other tasks at the same priority level
(w1, we, ws) represents a particulacheduling scenariof (whenp; < M A p; +p2 > M). In the latter case,

7i. Note that each task appears exactly in one, but somethere are basically two different ways of breaking the tie,
wj. All tasks inw; enjoy higher priority tham;, those in namely, completely non—deterministically, that is, with a
wy enjoy the same priority ag, and those inv3 enjoy uniform probability among the tasks involved in the tie,
lower priority thanr. For example, in Figure 1(b), when or according to some secondary priority criterion. The
schedulingr, at (1,2) underepr, two possible scenar- former suits better the level of abstraction maintained in
ios are: ({71}, {m, ms},{}) and ({1}, {m=},{ms}) with this work and, hence, has already been considered in our
T2 € wy. LetR¥ denote the set of all such possible sce- previous work [10]. However, a simulation used for the
narios. The size oR for a given tasks is necessary in  verification of the approach (to be discussed in Section 5)
the assessment of complexity of the approach as presentetias revealed that the manner of tie breaking could have
here; see Section 2.3. Obviously, it depends on how thea noticeable effect on the results. Any simulation being
tasks are spread over the task domain and can be found agn implementation, often involving some specific design

IR |= HNQ @ choices, verification of theoretical predictions by simula-

i tion invariably requires consideration of how the ties are

WhereNQk denotes the numfer of se!ﬂ$<,j =1,2,3, of broken in the simulation. This explains the reason for con-
which 7 is an element, taking values 1, 2 or 3 only. In sidering in this work both the above approaches to the res-
other words, each appears at least in one of tfé sets olution of ties.
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Scenario Deadline (Probabilityp-, (wk)) P; r - prob. of scenario | p2,(1,2) | Par X par

r=(wi,w2,ws) T1 T2 T3 realisation; eg. (3) eq. (4) see eq. (6)
{1}, {m, =} {}) | 2(0.2) | 3(0.6) 3(0.8) 0.2 x 0.6 x 0.8 =0.096 % 0.048
{}, {m2,m3},{m1}) | 4(0.5) | 3(0.6) 3(0.8) 0.5 x 0.6 x 0.8=0.24 % =1 0.24
{} {r1, 72}, {ms}) | 3(0.3) | 3(0.6) 4(0.2) 0.3 x 0.6 x 0.2=0.09 % =1 0.048

Table 1. Calculations in (6) illustrated

Let p; r be the probability of execution of by any one depends on the probability af having been executed at
of the availableM processors in scenario Pursuing the  (I,c+ 1) at timet and the probability of; having missed
non-—deterministic option to tie—breaking firgt, can be execution afl + 1, c) at timet. This results in
found as

1 if p1+p2 <M pitt(l,c) = eX(l,c+ 1) + mg(1 + 1,¢) if (I,c) € S (9)
=4 MoB ifpr <M—1ApP +p2>M _ .
0 otherwise assuming that each of the functioeé(l, c) andmg(l, c)

4) returns zero for anyl, ¢) ¢ S. However, if at timet 7; lies
The second condition of the above has a non-zero proba-on the linec = 1, or on the lind = 0, then it has a proba-
bility only if at least one of theM processors can effec-  bility of exiting the system by successfully completing, or
tively be reserved for tasks operating at the same prior- by failing to meet its deadline, respectively. Therefore
ity level as7i. These conditions constrain the manner in . . .
which the setsy, k = 1,2, 3, can be chosen for execution P (1,¢) = pi(l,¢) +ex(l,c+1)if I > 0 Ac=0 (10)
and, thus, limits the number of scenarios eligible for exe- .
cution. Turning now to the second option to tie—breaking, pitﬂ,(,l’ €)= pit(l_’ c)J.rms‘,(|+1., c)if | - -1 ‘/\ c>0 (11?
whereby a tie is always broken in one way or another ac- requiring _the points in the e>_<|_t domain to ‘accumulate’ the
cording to some secondary priority (or preference) crite- probabilities of any task meng the sys_tem successfu_lly,
rion, leteligible be a predicate expressing such a criterion. O unsuccessfully. Equations (9)~(11) in effect describe
In this respect, leeligible(r) be true if and only ifr is how to compute the probability of any task in the schedul-

eligible for execution according to the secondary priority ing dolmain.at timet finding i.tself, in general, in the task
criterion. In this case domain at time(t + 1). Obviously, this process of com-

putation can be performed for alltasks in thd—c space

L if (pr+p2 <M)V o and for all time values of interest. This results in a com-
pir = (P SM—1Ap;+p2>MAeligible(r))  plete characterisation of the evolutiongfl, c) over time
0 otherwise which, as was suggested at the outset in Section 2.1, forms

In computingrs overall conditional probability oﬁgx_ the_ basis of subsequent computation QoS indicators of in-
ecution over the pointdl, c) such thaf,(l,c) = K, thatis ~ dividual tasks.
Vi, all possible scenarios iR* (1, c) must be taken into 2.3 Computational Issues
consideration. That is Implicit in the analytical framework introduced above

Vik = Pir X pir (6) is a way to compute the distribution of tasks over the

space. Its focus has been to gain an insight into the prob-
lem of probabilistic scheduling rather than an efficient
way to computing. Nevertheless, an assessment of the al-
gorithmic complexity is necessary and it requires making

rer?
As an illustration, considering, for scheduling in the
context depicted in Figure 1(b), Table 1 shows how to
calculate the terms in the summation (6) for three spe-

cific scenarios. [Note that in order to reduce the clutter gy pjicit the computations involved in some detail. This is
we have deliberately omitted writing the temporal index {he nurpose of the algorithexecutegiven below. It is a
t in various quantities introduced above, though they are .o rsive algorithm with respect to time and, each ttme

really functions of time. As is done below, it is time 10 ro1rng the taskMmFs in the form of a three dimensional
restore the temporal indexation witl) Having obtained 1 4+rix resulti, 1, | (lines 2 and 29). Indiceis|, c of result

the conditional probability]  of 7, asvik in (6), it is signify respectively the task indices, the laxities and the
possible to derive the actual execution probability;cdit computation times and ranges 1..n,1 € -1 .. Imaxand
all the points(l, c) wheref, (I, c) = K at timet as c € 0. . Cmax(line 2). The matrixp![i, 1, ¢] (line 2) is of an
et(l,¢) = pi(l,¢) x Vi @) identic_al form toresultbut, .with its additional inde>_< (su-
o N ' _ _ perscript)t, stands essentially fqt (1, c). The matrixp
as the joint probability of the event captured in (6) in con- consists of the taskmFs as applicable at time whereas
junction with the event that; is actually at(l,c). The resultconsists of the taskMFs computed by the algorithm
corresponding probability of; missing execution (non-  to be used at time+ 1 in the case of tasks not requested
execution) afl, c) at timet follows from the above as at timet + 1.
The iteration in lines 4—7 over the tasks{innitialises
ms(l,c) = pi(l,c) — eX(l,c 8 . . :
s(.0) =pi(l.c) —ex(l.c) ® the matrixpi(l, c), assuming any of its elements initially
Consequently, for pointd, c) in the task domain the prob-  unspecified to be zero. The case of freshly requested tasks
ability of 7 being at(l, c) at the next time uni{t + 1) at timet is dealt with in line 5. The matrip™[i, 1, c] (line
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5) is identical in form tgp' and consists of the taskvrs Turning to the complexity of the above algorithm, it is
to be used at each request time of the tasks concernedsufficient here to focus on the running time of the segment
The iteration between lines 8-22 compue¥|, c) and of statements between lines 8-23, bearing in mind the
ms(l, c) of (7)—(8), represented here respectively as matri- smaller additive contribution of the remaining segments
ceseXi, |, c] andmdi, I, c] (lines 19 and 20), foK varying of the algorithm. The running time is estimated per ev-
from Kpin to Kmax. The functiorcomps2 (line 9) first com- ery time unit of scheduling und&pF, scheduling under
putes the se@j'(,j =1,2,3. Inlines 10-22 is an iteration  LLF being only marginally different. Omitting the deriva-
over each task if2k. The functioncompR¥ (line 11) tion here for reasons of space, the cost of executing the
computes all possible execution scenarios. In lines 13-17 statements concerned is found beQgh?3"~1). Despite

the algorithm computes the conditional probability of ex- the reduction in complexity achieved earlier by avoid-
ecution of the task concerned assuming it to be there withing point-wise enumeration of task scenarios, this reflects
the relevant priority. In lines 18-21, the algorithm calcu- the inherently combinatorial nature of the scenario space.
lates the actual probability of execution, as well as that of Though it is manageable for moderately sized problems,
missing execution, of each task at points having the samethis is an issue that requires further research.

K yalu_e. The prob_ability_ of .each task bging at spec_ific 3 Quality of Service Indicators

points in task domain, which is to be used in the next time
unit, is calculated in lines 24-28 following a literal trans-
lation of (9)—(11). In line 29executéreturns the matrix
resulti, |, c] which is to be used in the next time unit.

Knowing the time history of taskMmFs, that isp!(l, c)
for nj,i € 1..n and for all points in the task domain
and all time values of interest, it is possible to compute

various Quality of Service (QoS) indicators of individual

1. algorithm executé . L
2 Va% résum |Xc]upt[i 1,0, exi, 1, ¢, mdi, 1, ¢], - local variables tasks. These include the rates (probabilities) of successful
QK QK OK R Py r, iy, Vik; execution or failure of each task, latency in response time,
3. begifn g jitter (irregularity in termination times between successive
4, oriel..ndo ; : ;
iy it mod T — 0 then plfi, 1, = p"™[i.1.c] for (1,c) € & task ms.tgnceﬁ), Iiatc. Fcc:)r the tlml\(; \llglLljes ofljnt?rﬁst, let
6. else pifi, |, ] := executt1; us consider the Least Common Mu tlp_ec¢\/|) of the
— initialises or updates the PMFs periods of tasks under consideration, ilecm of T; for
7. end for i € 1..n. All tasks are assumed to arrive initially at time
g' for K( g,?mg',fmgf)’ 'fj’agodrgpg' zero and thereafter each tagkto arrive at everyl; time
' ~ finction for computing2K for  from 1 to 3 units. The request time for thjéh instance of;, denoted
10. fori € 0K do asr; j, coincides with the end of the period Gf— 1)th in-
— for each task on the line stance and, as a consequence,jthénstance terminates
11 R” :=compR®; _ only from next time unit onward since it must last at least
— function for computing all scenarios of tagk one time unit
12. Vik :=0.0 ; : . .
—initialisev; k to zero Turning to QoS indicators, 1§ ; (orF;;),j = 1..L/T;,
13. foreachr € R¥ do . denote the overall probability of successful execution (or
" ‘forp_eac_rlsgsrrr‘gg’ containing failure) of r; ; anywhere within its period. It follows from
. i,r = i,rs X
—function for computing®; r; eqn (3) (7) and (8) that iTi I max
15. pis = COMppi 5 Sio= Y, ([ Doetn
— function for computing; r; eqns (4) or (5) k=(—1)Ti+1 \I=0
16. Vik == Vik + Pir X pir; i .
— conditional prob. ofy; eqn (6) i max
17. end for Fi, = Z Z ms(0, c) (12)
18. for (I, ¢) such that f4(l,¢) = K do K=(i—1)Ti+1 \c=1
1 _fore;";‘clh SC.TzE"Tngi't i” liig (1, c) = K The expressions within parentheses in the above, denoted
. )1y Ea IR LKy Kk .
— prob. ofn, being executed d, ¢); eqn (7) below byS_fj andF, represent the prqbablllty of success-
20. mdi, 1, d := p[i, !, c] — exi, I, d; ful execution and the probability of failure af; at thekth
’1 - P(ﬁb- ofn missing execution &, ¢); eqn (8) time unit. LetR j represents theuccess response tiré
ey endfor 7, the probability of it successfully terminating within
23, end for the firstd; time units of its periodp < di < T;, can be
24. forie1..ndo found as d )Tk
25. for (I,c) € Sdo —eqns (9)-(11) PR <d) = =T 13
26. resulffi, I, c] := exi,l,c+ 1] + mdi,| + 1, ¢]; (R"] = ) kZ; ] ( )
, ifces ) Jitter can be defined in several ways, for example, as a
resulfi, I, c] := p'[i,1,¢] + mdi,| + 1,c]; y P
T 'if_(f):’_’l) and (¢>0) measure of irregularity, relative to task periods, of time be-
resulfi, |, ¢ := pi[i, |, c] + exi, |, c+ 1]; tween termination times of consecutive task instances, or
if (I >0) and (c = 0) that between the start and completion times of individual
27. end for task instances. The latter gives input/output jitter as appli-
28 end for
29, return result cable to control problems and can be dealt with by making
30. end algorithm excecute use ofR j in (13). Dealing only with the former, |&5; be a
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instance arrivals successfully completed instances

a) one possibility b) another possibility

Figure 2. Jitter relative to successfully completed instances
u.+1

random variable giving the length of time between the ter- Z P@ (16)
mination times of two consecutive instancesroénd let = Ij;next =
us define the regularity jitter of asJ; =| G; —Ti |, J; be- The probability of successful execution of a task, or

ing a random variable ranging over . Ti. As ameasure, g set of tasks, in a given environment is another impor-
jitter can be obtained in a variety of forms: as a proba- tant QoS attribute guaranteeing a required level of service.
bility P(J = g) of n experiencing a particular value of |f §(m,n) denotes the probability of successful execu-
regularity jitterg, or as an expectation. tion of taskn in an environment witm processors and
Dealing with the so-calleduccess regularity jittelet  tasks, then an increaserimis generally expected to raise
us useJ; j next to refer to the regularity jitter between the  §(m, n), while an increase im to lower it. Though the
successfully executed instaneg and7i's next success-  interplay of these effects, as well as that of other factors
fully executed instance. As shown in Figure 2, there are such as individual task parameters, has not been a subject
two possibilities: Figure 2(a) showing the case of consec- addressed here, an example in [10] illustrates the effect of
utive instances successfully completing, and Figure 2(b) the number of processors on successful task executions.
the case of there being intervening failures between suc-4  \/erification by Stochastic Simulation
cessfully completed instances. Thus, the probability of  This section presents the formulae to be used in the

Jij.next taking a valuey can be defined as stochastic simulation, presented in Section 5, for verifying
- T the probabilistic approach described above. The stochas-
Plijrea=0 = Y  S;Wi+Wo) (14 i simulation is based on a large sample of instances of
=(1-1)Ti+1 each task; generated according to itavF p;(l, c) used
whereW,; andW, are given by at request times, introduced in Section 2.1, with a suf-
) ficiently closely matching relative frequency distribution
S. fjTi<a (histogram). Letting_ denote theLcm of task periods,
Wy = 0 otherwise the simulation period is assumed to cogercm cycles,
or gL time units in total. Thus, each taskis requested
o Q=09gx = number of times over the whole simulation
S],,B H Fix #]j+1<p period. Based on the results of the stochastic simulation,
W = k=i+1 e (15) various QoS indicators such as probability of successful
ﬁbﬁ i)+ 1.: Ara<b execution, probability of failure and response time latency
0 otherwise

can be obtained and compared against analogous results
andS denotes, as defined earlier, the probabilityrgf established by the probabilistic analysis.

successfully completlng at thih time unita= (t+ T, — When dealing with various quantities encountered in
0),b=0t+T+09),a=[(a/T)] ands = [(b/Ti)]; simulation, let us distinguish them notationally from their
[x] denoting the ceiling ok. Based on the definition of  equivalent counterparts in the probabilistic analysis by the
regularity jitter in [3], termination of an instance of atask use of an overbar. Thusk represents thgh instance of

g time units before, or after, its period, as counted from 7 in the kth simulation cycle fok € 1..qandS; and

the time of its last termination, has the same effect. In this Fi; be the rates of successful execution and failure of the
respectW; in (14) represents the probability of the next jth instances of; respectively, foj = 1,2,..L/T;. The
instance, that is7; j;.1, successfully terminating; — g latter are defined as the ratios of total number of successful

time units afterr ; see Figure 2(a)W, in (14), however,  executions, and likewise failures, gt to the total number
represents the probability of the next successful instancegt cycles In other words

following 7i; successfully terminating + T; time units a T

aftern j; see Figures 2(a) and 2(b). This allows for poten- ZZYM and Fij=1-§;  (17)
tial failures of one or more instances nffollowing the =
successful termination of ;. 1 if 7 is executed successfully
Let J; represents the success regularity jlttEﬁOWlth WhereYikJ?I B at time t within its perlod
u = +, the probability of}; having a valugy is defined as ’ 0 otherwise
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1 T2 T3 T4 T5
(ley P Hist (I,e)y P Hist (l,ey P Hist (l,ey P Hist (l,ey P Hist
(02) 02 0202 (01) 0.3 0.302] (0,3) 0.4 0404 (1,2) 0.2 0202] (1,2) 01 0.101
1,2 03 0299 (1,2) 06 0599| (1,2) 03 0.300| (2,1) 0.1 0.100| (2,2) 0.2 0.201
12,3 05 0498 | (2,3) 01 0.099| (2,1) 0.1 0.100| (2,20 0.3 0.300| (2,3) 0.2 0.199
(2,2) 02 0196/ (23) 0.2 0.202| (3,2) 0.2 0.202
(32 0.2 019 (3,3) 0.3 0.296
Table 2. Comparison between the frequencies of the generated data and the probability values
Sched.| Task 1 2 3
regime | Task Set 1 2 3 1 2 3 1 2 3
EDF Mean | 0.9738 0.9048 0.8060 0.9935 0.9650 0.9306 0.9570 0.8972 0.8057
St. Dev. | 0.0608 0.1018 0.1162 0.0115 0.0294 0.0324 0.0615 0.0624 0.0545
LLF Mean | 0.9917 0.9918 0.8062 0.9876 0.9389 0.8412 0.9897 0.9417 0.788d
St. Dev. | 0.0181 0.0501 0.0717 0.0212 0.0515 0.0523 0.0198 0.0554 0.0647
Table 3. Mean and Standard Deviation forthe  §; of 7, 5 and 73 in Task Sets 1, 2 and 3.

Using the probabilistic notions for comparative pur-
poses, the probability ofi; having asuccess response
time tis defined as the ratio of the total numberTﬂSfln-
stances successfully executed at tim&thin their penods
to the total number of cycles. Lettirg; denote the suc-
cess response time of instancé]s fort =1,2,..T;, the
probabilities ofr"Js successfully terminating at tinbeand
the probabilities of them successfully terminating within
time units in the|r periods, can be deflned respectlvely as

PR Z ZZYK.;S (18)

k—l s=1
with Ykt andYk S rema|n|ng as defined in (17).
Con5|der|ngsuccess regularity jitteof tasks, letJ; 4
represents the total count of measuremanisbserved
over the simulation time in relation tg, whereg =
| y— T | andy is the length of time between termination

th

’]_t i

to as Task Sets 1, 2 and 3 respectively. The latter two
are intended to show the adverse effect of the increased
workload due tor, andrs on scheduling the tasks in Set

1. ThepmFrvaluesp(l, c) of individual tasks at their re-
guest times, used in probabilistic analysis, are shown in
Figure 3. Interpretation of these data is such that, accord-
ing to Figure 3(a)7; has a probability of 0.3 arriving with

a laxity 1 and a computation time 2 and a probability of
0.5 arriving with the same laxity but a computation time
3. Task periods are 4, 6, 5, 5 and 6 respectively. (N.B.
these values are not related to any particular application.)
The above tasks are scheduled using and EDF algo-
rithms on two processors. The data used in the stochastic
simulation have been generated randomly from the data in
Figure 3 covering a simulation period consisting of 1000
LCM cycles. Table 2 compares theiF-values (undei)

used in probabilistic analysis and the relative frequency

times of two consecutive successfully executed instanceshistograms (undetlist) of the dada used in simulation.

of . The probability ofr; having a success regularity
jitter g is defined as the ratio of total count to the total
number of instances

J Jig

P (JI = g) Q

5 An lllustrative Example
Our previous work [10] illustrates in some detail the

(19)

Turning to the results, Table 3 presents the cumulative
probabilities of successful execution of tasksm and
73 for all three Task Sets in theDF andLLF regimes over
their respective periods over them in terms of the mean
and the standard deviation. The table shows the adverse
effect of the increased workload due#tpon its own (in
Task Set 2), and, and 75 together (in Task Set 3) on

kind of results that can be obtained using the proposed ap-the execution of, » andrs (Task Set 1). It also shows

proach, in particular, a comparison of the probability of
successful execution of individual task instances over the
LcMm of task periods undeebrF andLLF scheduling, the

how different tasks tend to benefit differently from the two
scheduling algorithms;; andr; favourably fromLLF and
7o from EDF. Despite their inadequacy for drawing any

same on average as a function of the number of availablegeneral conclusions, these examples tend to suggest a link

processors and a measure of jitter experienced by individ-
ual tasks. These can be important indicators of perfor-
mance of individual tasks and the system as a whole. In
this paper, we extend this example to include other as-
pects, in particular, a verification of the approach by a

between the algorithms and the more dominant task char-
acteristic on the probability of successful execution.
Figure 4 presents the probability of successful exe-
cution of individual task instances over them due to
both probabilistic predictions and simulation outcomes.

stochastic simulation (described in Section 4), the effect Though in the case of tasks andr, the results due to
of tie—breaking on scheduling (described in Section 2.2) two approaches are fairly close to each other, there is a

and additional QoS indicators (described in Section 3).
The illustration consists of three related examples

involving three separate sets of tasksfm, 7,73},

{71,72, 73,74 } @Nd{ 11, 72, 73, T4, 75 }; these are referred
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marked difference in the caseaf underebpF scheduling,
probabilistic results even indicating a better performance
undereDF than undeiLLF and, to an extent, a reversal of
performance in the simulation. In this respect, it is worth
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Figure 6. Probability of success regularity jitter experienced by tasks T1—74 in Task Set 3.

noting that the above set of results in Figure 4 is based onconcerned, Figure 6 shows a close correlation between
non—deterministic tie-breaking strategy discussed in Sec-the probabilistic predictions and the simulation results for
tion 2.2. tasksm—74 in Task Set 3 under non—deterministic tie—

In contrast, Figure 5 shows analogous results using aPreaking. Figure 7 makes a similar comparison of the ex-
highest-indexed-task-first strategy to tie breaking, con-Pectation of (average) response times of the same tasks but
sistently offering greatest advantagertaand least advan- ~ Under highest-indexed—taskfirst approach to tie break-
tage tor;. It has also been observed thetF exhibited ing. In this case too there appears to be a close correlation
less number of ties compared toF. As a result, tasks between the probabilistic predictions and the simulation
such asr; andr, which are relatively less advantaged, results, but except fors.
are less affected by this strategy und@err in compari- 6 Conclusions

son toLLF. In the case ofr3, with reference to the ob- This paper presents an analytical approach for com-
servation made above on non—deterministic tie-breaking,puting QoS indicators of tasks with uncertainties exe-
not only has there been an improvement in its perfor- cyted by a multi-processor system. Tasks are periodic but
mance but also an apparent narrowing down of the gapare characterised by uncertainties in computation times
between probabilistic and simulation results under.  and deadlines (expressed indirectly through laxity, or ur-
Enjoying higher priority over other tasks whenever a tie gency), described in terms of jointly discrete probability
is encounteredr; and; exhibit a high performance un-  mass functions. At the request times, task computation
der both algorithms, both tasks showing a probability of {imes and laxities are truly random in character, though
1.0 in successful execution inF and 7, a probability  sypsequently their variation is dependent on the manner
of over 0.8 in successful execution #EDF. An analo- of execution. Though onlgDF andLLF algorithms are
gous analysis has been conducted for tie-breaking basedgnsidered here, the approach is applicable to the study
on lowest—indexed-task-first strategy. Though the resultsyf execution under any priority driven algorithm. By ex-
of this analysis are not given here for reasons of space,gmining possible computation times and laxities of each
the outcome s a reversal of the above, lettingenjoy  task in turn, a systematic approach is developed for enu-
the best performance ang the worst. In this caser, merating its execution scenarios involving other compet-
and, achieve a probability of 1.0 in successful execu- ing tasks. Knowing the probability of realisation of each
tion in LLF in both probabilistic analysis and simulation. gcenario and the manner in which the task under consid-
The probability of successful execution of under both  eratjon is treated in the face of competition by other tasks
highest—indexed-task—first and lowest-indexed—task—firsty the same priority level, its execution probability is com-
strategies is higher than that under non—deterministic tie'puted for each time value. Essentially, this allows a way
breaking strategy. to work out the probability distribution of each task at ev-
lllustrating the effect of the scheduling algorithmsF ery instant of time from the probability distributions of
andLLF on success regularity jitter, i.e. the jitter expe- all tasks in the previous time instant. These probability
rienced by successive successful instances of the taskslistributions form the basis of QoS assessment of indi-
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Figure 7. Expectation of response times of tasks T1—74 in Task Set 3.
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In addition to providing a general solution, an important  eters.9th International Conference on Real-Time Embedded
contribution of this work is the comprehensive insight it~ Computing Systems and Applicatiofiaiwan, R.O.C. 2003.
has given to understanding various computational aspectd!1] S. Manolache, P. Eles and Z. Peng. Memory and Time—
of probabilistic scheduling. The result is a sound founda- ef'f|C|en't Sch_edulablllty AnaIy_S|s of Task Sets with Stochr?\stlc
tion for undertaking research into more efficient schedul- Execution Time. 13th Euromicro Conference on Real-Time

. . . . . Systems2001, Pages 19-26.

ing algorithms, possibly, employing heuristic means to re-

- ; N [12] N. Nissanke, L. David and F. Cottet. Probabilistic Preemp-
duce the complexity. Another important issue that needs " e schedulability Analysis. Int. Workshop on Probabilistic

addressing is the establishment of the validity of the ap-  analysis Techniques for Real Time and Embedded Systems

proach using a more comprehensive range of simulations  (PARTES 2004), Pisa, September 2004.

and, if possible, the bounds of this validity. [13] N. Nissanke, A. Leulseged and S. Chillara. Probabilistic
Performance Analysis in Multiprocessor Schedulingom-
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Abstract has been shown to guarantee worst-case schedulability up
to the same processor utilization level as partitioned EDF
This paper compares the performance of several vari- scheduling.
ations on EDF-based global and partitioned multiproces- Global scheduling remains controversial. There are
sor scheduling algorithms, together with their associated individuals who believe strongly that global scheduling
feasibility tests, on a variety of pseudo-randomly chosenis impractical, because of the overhead of synchronizing
sets of sporadic tasks. A new hybrid EDF-based scheme isschedulers between processors and the lost performance
shown to perform better than previously studied priority- due to translation look-aside buffer and memory cache
based global scheduling schemes, though not as well asmisses following the migration of a tasks between pro-
EDF-based first-fit partitioned scheduling. cessors. On the other hand, the concept of global schedul-
ing is appealing, especially in systems where average as
well as worst-case response time is important. It is a
1 Introduction well-known result of queueing theory that single-queue
scheduling produces better average response times than
Recent trends in microprocessor design have drawn in-queue-per-processor scheduling [15].
terest to multi-core and multiprocessor designs for high  This paper attempts to compare the present state of the
performance embedded real-time systems. The predomart for global EDF scheduling against the state of the art
inant approach to scheduling multiprocessor hard-real-for partitioned EDF scheduling. Because the worst-case
time systems has been partitioned, in which each task isperformance of both approaches has been shown to be the
assigned statically (more or less) to one processor. Partisame, at least for the case where deadline equals period,
tioned scheduling has the virtue of permitting schedulabil- the comparison is of empirical performance. That is, what
ity to be verified using well-understood single-processor are the odds that a randomly chosen set of periodic or spo-
analysis techniques. radic tasks can be guaranteed schedulable by a given com-
The alternative to partitioned scheduling is global bination of scheduling policy and feasibility test? As a
scheduling, in which there is a single job queue from further contribution, the paper introduces a previously un-
which jobs are dispatched to any available processor ac-studied hybrid global scheduling algorithm, called EDF-
cording to a global priority scheme. Until recently, it was M.
believed that global scheduling policies with fixed job pri-
oritiesl, such as Rate Monotonic and EarIiest—Deg.dIine- 2 Prior Work
First (EDF), could not even guarantee schedulability for
systems of hard-deadline tasks whose total processor de- For the review of prior work, some terminology is
mand exceeded the capacity of a single processor. How- '
ever, there have been several recent improvements in theneeded.
worst-case analysis of global hard-deadline multiproces- .
sor scheduling [1, 5, 12, 13, 2, 8, 9, 11, 4]. Among other 2-1 Términology
developments, the EDF-US[1/2] scheduling policy[18],in A task setr is a collection of sporadic tasks
which a few high-utilization tasks are scheduled at top pri- {71 72,---,7»}. Each task generates a potentially in-
ority and other tasks are scheduled according to deadlinesfinite sequence ofobs, and is characterized by a triple
; — S , 7. = (¢, d;, T;). The parametet; is theworst-case ex-
‘ Here, flxedfob-prl_ontyschedulmg is d_|st|ngU|she_d fr(_)m fixadsk ecution time requiremerdf each job ofr; andd; is the
priority, where a task is as a sequence of jobs. That is, with EDF schedul- . . . . .
ing the priority of each task varies from one job to another, but the prior- d€adlineof each job relative to its release time. If the
ity of each job is fixed at the time the job is released. task isperiodig T; is the separation between the release
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times of the jobs, and called tiperiod of the task. If the <A > A

task issporadic T; is interpreted instead as just theni- d <T | & 1Z+ T,—d; <i(] _i_zﬂ —\4
mum separatiometween the release times of the jobs. It —— " 7. L )| 7l - i) 7
follows that aperiodic task seis a restricted form o$po- di > T; T; i(l + ﬁ)

radic task set

The utilization of a taskr; is denoted byu; « ¢i/Ts,
def

and thedensityof 7; is denoted by\; = ¢;/min(d;, T;).

Table 1. Definition of (G (4).

2.4 Global Scheduling

Goossens, Funk, and Baruah [13] showed that a sys-
2.2 General Limitation tem of independent periodic tasks can be scheduled suc-

Andersson, Baruah, and Jonsson [1] showed that thecessfully onm processors by EDF scheduling if the total
utilization guarantee for EDF or any other fixed-job- utilization is at mosin(1 — tmax) + Umax, Whereun,y is
priority multiprocessor scheduling algorithm — whether the maximum utilization of any individual task. They also
partitioned or global — cannot be higher th@an + 1)/2 showed that this utiIizationAbound is tight, in the sense that
on anm-processor platform. This result holds for inde- there is no utilization bountd > (1 —tmax) +Umax +€,
pendent periodic task sets with deadline equal to period,wheree > 0, for whichU < U guarantees EDF schedu-
and generalizes directly to the sporadic case. Iability. Srinivasan and Baruah [18] also examined the

global EDF scheduling of periodic tasks on multiproces-

2.3 Partitioned Scheduling sors, and showed that any system of independent periodic

The optimai partitioning of tasks among processors is tasks for which the utilization of every individual task is
reducible to the bin packing and integer partition prob- atmostm/(2m — 1) can be scheduled successfully.n
lems, which are known to be NP complete. Therefore, Processors if the total utilization is at most /(2m — 1).
research on partitioned multiprocessor scheduling has fo- 1N 2002, Srinivasan and Baruah [18] proposed a
cused on the analysis of heuristic algorithms for the as- méthod for dealing with a few heavy tasks, usirigyarid
signment of tasks to processors, and on bounding howscheduling policy. Their idea is to give highest (fixed)
badly they can do compared to an optimal algorithm. priority to to tasks of utilization greater than some con-
Some of this research has looked at average-case perforStant¢, and schedule the other tasks according to the ba-
mance. Other research has attempted to find tight boundsic EDF algorithm. This algorithm is called EDF-U$[
on the worst-case performance of heuristic partitioning al- Algorithm EDF-USn/(2m — 2)] was shown to correctly
gorithms. schedule onn processors any periodic task system with

Lopezet al. [16] showed that it is possible to schedule total utilizationU' < m?/(2m — 2). _
on m processors any system afindependent periodic In 2003, Goossens, Funk and Barush [13] introduced
tasks with maximum individual utilizatios= ., and another hybrid method, called PriD, for periodic task sys-
total utilization< 222+ whereSpppr = |1/tmax]- tems. The idea is to choose thetasks ) < k < m)

> PBepr+l max . . e . .
For the unrestricted case, whetg,, = 1 andBgpr = with h_|gr_1est ut|I|zat|o_n _1(“) and give those special tasks
1, this says the guaranteed utilization boun¢his+1) /2. top priority; the remaining: — k tasks are scheduled ac-
It follows from Andersson, Baruah, and Jonsson [1] that cording to the EDF policy. The valuk is chosen to be
this result is tight. the minimum such that the remaining- k tasks satisfy a

Baruah and Fisher [4] studied a partitioning algorithm utilization-based schedulability test for — k processors.
that assigns tasks to processors by a first-fit algorithm in ~ Baker [2, 3] derived several sufficient feasibility tests
deadline-monotonic order (that is, sorted by increasing for m-processor preemptive EDF scheduling of sets of pe-
deadline). The single-processor test for fit is based analy-fiodic and sporadic tasks with arbitrary deadlines, includ-

sis of a demand-bound function, as follows:

Theorem 1 (BF) A set of independent sporadic tasks
T1,.. ., IS EDF schedulable on one processor if both of
the following hold for each task:

d; =Y DBF*(j,d;) > ¢; @
j=1
1- Zuj > u; (2)
j=1

whereu; = ¢;/T; and

0,
¢ + (t — di)u,,

|ft<dz

DBF*(i,t) = { otherwise

ing the following.

Theorem 2 (BAK) A set of independent sporadic tasks
T,...,T, IS EDF-schedulable om identical processors
if, for every taskr, there exists a positive valye< m —

(m — 1)\ such that

N
Zmln(ﬁk(l)v 1) S 14

where) = ==& and (i) is as defined in Table 1.

Baker also showed that the optimal value;ah EDF-
US[¢] with respect to maximizing the worst-case guaran-
teed schedulable utilization ¢s= 1/2, for which the uti-
lization bound is(m + 1)/2. It follows from the argu-
ment in [1] that this bound is tight, and it is identical to
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the worst-case utilization bound for EDF-based first-fit- 3 Empirical Comparisons
decreasing (FFD) partitioned scheduling.

Bertogna, Cirinei and Lipari [8] made further improve-  To evaluate the overall efficacy of the known schedu-
ments in global EDF schedulability tests. First, they ob- |ability tests for global EDF scheduling, and to compare
served that the proof of the utilization bound test of [13] the efficacy of globalersuspartitioned scheduling, a se-
extends naturally to cover pre-period deadlines if the uti- ries of experiments were conducted on pseudo-randomly
lization u; = ¢;/T; is replaced byc;/d;. As observed  generated sets of periodic tasks.
by Sanjoy Baruah the same proof extends to the case  Of course, the usual disclaimers for such simulations
of post-period deadlines i;/d; is replaced by density  apply. The performance of a scheduling policy and
(A\i = ¢i/ min(d;, T3)). schedulability test on generated task sets is only sugges-

tive of the performance that can be expected in practice.
Theorem 3 (GFB) A set of independent sporadic tasks The schedulability tests do not take implementation over-
T1,....Tn IS EDF schedulable om: identical processors  heads into account. The distribution of test cases consid-

if ered in any such experiment may bias the outcome. In
i fact, it can be argued that for each specific application the
Z Ai <M = Amax(m — 1) consideration of any more cases than the one task set at

=1 hand should be biased, since the only important question
where ., = max{\;Ji = 1,...,n}. is whether that one task set can be successfully scheduled.

Perhaps as the system evolves the task set may change and
Bertognaet al. also developed the following new the question will be asked again, but for each application
schedulability test. one is still interested a very small and very specific collec-
tion of task sets.

Theorem 4 (BCL) A set of independent sporadic tasks S0, what good are simulation results, such as those re-
T1.... m With constraintd; < T; is EDF schedulable on  Ported below? Ideally, for each application one should

m identical processors if for each task one of the fol-  €xperiment with different scheduling policies and tests on
lowing is true: the specific task set of interest, and perhaps also with a
range of variations that anticipate future evolution of the
Zmin{ﬁiv 1=} <m(1— ) A3) system. quever,_vyhen one has alarg(_a.numberof choices
s of scheduling policies and schedulability tests, each of
which could work better on some cases, such exhaustive
Z#k min{f;, 1 — A} =m(1 — ) and experimentation is not be practical for every application.
Ep ;é L0 < B <1— A (4) How does one narrow the range of ch_()lces?_ The same
- need for narrowing the range of scheduling policy choices
where arises when one is deciding which policies too support in
] a generic real-time operating system kernel. In this con-
B = Nici + min{c;, max{0, dy — NiT;}} text, the statistical trends over large numbers of task sets
dy, should be a better predictor of comparative performance

than pure intuition.
dy, — d; For these experiments, 48 different datasets were con-
N; = L lJ +1 sidered, each containing 1,000,000 task sets. The datasets
were generated in several different ways, with the hope of
discovering some correlation between the way the tasks

Bertognaet al. demonstrated that the BCL, GFB, and . o .
BAK tests are generally incomparable, but observed that Ve'€ generated and which combination of scheduling pol-
: icy and schedulability test did better. However, the trends

the BCL test seemed to do better than the rest on task set& . . -
with a few “heavy” (high utilization) tasks. They reported across all the _ex.penments were quite similar, and the
simulations on collections of such pseudo-randomly gen- space.here IS I|.m|ted, so only the results of a few repre-
erated tasks sets, for which the BCL was able to discoversematlve experiments are reported.

significantly more schedulable task sets than either of the )

other two tests. However, they did not compare these re-3-1 Task Set Generation Methodology

sults against the EDF-UG] hybrid method of handling These methods by which the datasets were generated
heavy tasks, or any other hybrid method. Since such hy-were based on the following goals:

brid methods are much better at handling a few heavy ) )
tasks than pure EDF scheduling, it is more important how 1 FOCUS_ on cases where Schgdullng performance is
a schedulability test for such task systems performsinthe ~ Most likely to matter, excluding task sets that are

and

hybrid environment than in the pure EDF environment. clearly so easy that it does not matter how they are
scheduled (trivially schedulable), or that are clearly
2personal communication impossible to schedule by any method (infeasible).
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2. For each model, generate as large a sample of tasknown to this author has worst-case execution time of the

sets as is practical. orderO(mn - II_; T;¢;). The author implemented and
3. Cover arange of multiprocessor sizes. tested that algorithm, but running it on datasets of the size
4. Cover a variety of deadline models. considered here was not practical. Reporting the perfor-

mance of the efficient sufficient tests of feasibility against
one another on large numbers of tasks sets seemed more
useful than comparing them against a perfect but compu-
tationally impractical test on a much smaller number of
task sets, with smaller periods.

Note that [8] implies that “simulation of the schedule

Task periodsT; were chosen pseudo-randomly from up to the hyper-period checking for missed deadlines” is
the integer interva]l, 1000]. Task utilization factors (and, a necessary and sufficient test for schedulability. This au-
implicitly, the compute times) were chosen according to thor is not aware of any proof that such a simulation is a
the following distributions, truncated to bound the indi- sufficient test for feasibility of sporadic task sets, or even

5. Cover a variety of distributions of task utilizations,
including for comparison the bimodal kind of distri-
bution of Bertogna, Cirinei, and Lipari [8].

6. Keep the number of cases small enough to allow run-
ning a complete battery of tests in less than a day.

vidual task utilizations between 0.001 and 0.999: of periodic tasks sets with arbitrary initial release time off-
) sets. Even under the assumption of strictly periodic tasks
1. uniformly chosen fronil /T;, 1] and simultaneous start times, if periods can exceed dead-
2. bimodal distribution: heavy tasks uniformly cho- |ines simulation to the hyper-period is not sufficient.
sen from(0.5, 1]; light tasks uniformly chosen from The results of the experiments are displayed as his-
[1/T;,0.5]; probability of being heavy = 1/3 tograms. For example, see Figure For all the his-
3. exponential distribution with mean 0.25 tograms in this papethe horizontal axis represents values
4. exponential distribution with mean 0.50 of a task set’s total density, and each bucket corresponds

to a range of value§ - 0.01, (¢ + 1) - 0.01). The verti-
cal axis indicates a number of task sets. The plotted lines
with datapoint symbols (“X”, asterisk, squaedc) show
how many task sets were verifiably schedulable according
to one pair of a scheduling algorithm and a schedulabil-
. . ity test. The legend shows the meaning of each datapoint
. superperiod: d; uniformly chosen from ; . . : o
(T, 2T}, 3T, AT} symbol. There is also a solid upper line, with Iege_znd N”,
TTmETY which shows the total number of task sets of the given den-

Datasets were generated for three different numbers 0fS|ty in the dataset, inClUding both feasible and infeasible
processorsiy = 2,4,8), as follows: An initial set of  task sets.
m + 1 tasks was generated, and tested. Then another task
was generated and added to the previous set, and all th&.2 Representative of Global EDF
schedulability tests were run on the new set. This pro- To choose a representative for global EDF scheduling,
cess of adding tasks was repeated until the total processosimulations were run comparing the performance of sev-
utilization exceededn. The whole procedure was then eral schedulability tests, for both pure EDF scheduling
repeated, starting with a new initial set:af+ 1 tasks. and some hybrids. The following sufficient tests for feasi-
Note that the above method of generating task sets al-bility under pure global EDF scheduling were considered:
ready eliminates tasks sets that can be trivially scheduled )
by assigning one task per processor, or that are clearlyBAK Baker's test as stated in Theqrem 2 above.
infeasible because they have utilization greater than ~CFB Goossens, Funk and Baruah's test, extended to ar-
Additional screening was performed, to remove task sets  Pitrary deadlines by Bertogna, Cirinei and Lipari, as
with total density>"""_, \; < 1.0 (schedulable by EDF on stated Theorem 3 above. _
one processor) or total loalym > m (infeasible onn BCL Bertogna, Cirinei, and Lipari’s test, as stated in
processors) [4, 10]. The load-bound function is defined by Theorem 4 above.

The deadlines were chosen in several different ways:

. period:d; = T;
. constrainedd; uniformly chosen fronic;, T;].
. unconstrained; uniformly chosen fronic;, 4T;]

A OWN P

Figures 1-2 compare the performance of these tests on two

Ssum= Z M datasets, with pure global EDF scheduling. Figure 1 is for

i—1 t one of the datasets were the BCL test excelled. Figure 2 is

for one of the datasets where the GFB excelled. Through a

and detailed analysis of specific cases one can verify that each
ol t—d; of the three tests is able to verify schedulability for some

DBF(7;,t) = max(0, (| . ]+ 1e;). task sets that are not verifiable by the other tests. How-

ever, the histograms show some clear global patterns: (1)
Many infeasible task sets were still included in the ex- the overall performances of the generalized GFB test and

periments, because the only necessary and sufficient tesBAK test are similar, with the GFB test generally taking

for global EDF schedulability of, tasks onmn processors  the lead; (2) as reported in [8], BCL does better for task
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14000 . . . . . lematic tasks@{ < k& < m) for the given schedulability

oap oo test are chosen to receive top priority; the rest of the tasks
12000 »BCIE e . are scheduled according to the EDF policy. Fhepecial

tasks will certainly meet their deadlines. Schedulability
1 of the n — k remaining tasks can be verified using the
pure global EDF schedulability test under the (very con-
8000 1 servative) assumption that they need to run orvthe k
remaining processors. Successively larger valudsarg
tried, until one is found for which the system is schedu-
lable, or until allm — 1 values have been tried without

10000

T

6000 - 1

4000 1

success.
2000 L A The performance of the following hybrids of EDF and
o highest—utilizatiorj—first scheduling were tested, along with
0 : “o0n0celsmsesecsaooneassiniiiD several other variations:
100 150 200 250 300 350 400
_ 1. EDF-US[1/2]: give special priority to all the tasks of
Figure 1. Constrained deadlines, bimodal utilization utilization greater than 1/2;
distribution, four processors 2. EDF-LM3: give special priority to the: tasks with

highest density valueX{), wherek is the smallest
value between 0 anah for which the system can be
verified as schedulable by some test for global EDF
(e.g, GFB, BCL, BAK).

12000

10000

Note that EDF-LM is actually a family of algorithms,
since the choice of is dependent on which global schedu-
lability test is applied. Figure 3 shows the results of ap-
plying these two hybrid EDF scheduling policies, for both
the GFB and the BCL tests, on the same datasets reported
in Figure 1 and Figure 2. The performance of the two
tests with pure global EDF scheduling is also included,
for comparison. These results are typical of what was ob-
served on all of the datasetise.,, The EDF-LM hybrid
schemes clearly find a much higher number of verifiably
schedulable task sets at every total utilization level than
the GFB test alone.

These figures also show the comparative effectiveness
of the GFB and BCL tests in the hybrid context. It can be
sets with a few heavy tasks; (3) none of the tests is ableseen that the GFB performs consistently better. Observe
to show that very many of the task sets are schedulable that Figure 1 is the same dataset, with a few heavy tasks,
Lacking a practical necessary and sufficient test of global for which BCL seemed to have an advantage in Figure 1.
EDF schedulability, one cannot say for certain whether Over all the tests run, the EDF-LM hybrid scheduling with
the low rate of success is a property of the global EDF the GFB test was able to verifiably schedule significantly
scheduling policy or of the schedulability tests. How- more task sets than any of the other combinations.
ever, the much better performance of the hybrid schedul-
ing policies reported below (using the same schedulability 3.4 Representative of Partitioned EDF
tests) gives some evidence that the main weakness is with To select a representative for partitioned scheduling,

8000
6000
4000

2000 4,

200 250 300 350 400

Figure 2. Constrained deadlines, exponential utiliza-
tions with mean 0.25, two processors

the pure EDF policy. several EDF-based partitioning schemes were evaluated.
In each case the tasks were assigned to processors accord-
3.3 Hybrid Global Schemes ing to the first-fit algorithm in order of some metric, such

As mentioned in Section 2.4, the performance of global as relative deadlineif) or density ;). Two tests for fit
scheduling for systems with a few heavy tasks can be im-were evaluated: (BF) the sufficient test of [4]; (BHR) the
proved by giving special treatment to the heavy tasks. As hecessary and sufficient test of Baruethal. [7]. The
the EDF-US{] algorithm was originally proposed in [18], ~ strength of the BF test is its low complexity, which is
the heaviness criterion wag > ¢. However, this idea ~ O(n). In contrast, the worst-case upper bound on the
can be generalized to other schedulability tests and thecomplexity of the BHR test is the LCM of the task pe-
need for a fixed cut-off valué can be eliminated. The riods.
fundamental idea is a generalization of the PriD scheme  31ne .\ in EDF-LM stands for “lambda-monotonic”, since the
of Goossens, Funk and Barush [13]: themost prob- tasks are considered in increasing ordehpf
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Figure 3. Purevs. hybrid scheduling with GFB and Figure 5. Performance of ordering heuristics compared,

BCL tests, constrained deadline, bimodal utilization, 4 constrained deadline, bimodal utilization, 4 CPUs
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Figure 6. Performance of BHR vs BF tests compared,

Figure 4. Purevs. hybrid scheduling with GFB and constrained deadline, bimodal utilization, 4 CPUs
BCL tests, constrained deadline, exponential utilization
with mean 0.25, 2 processors to be the underdog, it was given every advantage: (1) be-

sides pure global EDF, EDF-LM (the EDF hybrid based
Figure 5 compares the success rates of the first-fit-on giving extra priority to a few high-density tasks) was
decreasing algorithm with three different ordering heuris- included in the comparison; (2) instead of applying just
tics: decreasing utilization (FFD-U); decreasing density one schedulability test, if a task set failed the GFB test
(FFD-L); increasing relative deadline (FFD-D). With this the BCL test was applied, and if it failed both of those
and other datasets, the performances of FFD-L and FFD-the BAK test was applied; (3) for the partitioned approach
U were very close. On some datases FFD-L dominatedthe FFD-L (first-fit in order of decreasing density) was ap-
by a small margin, and and others the results were indis-plied using the BF test for single-processor schedulability.
tinguishable. Figure 6 compares the success rates of therhe results for several datasets are shown Figures 7-8. The
FFD-L algorithm with the BHR (exact) and the BF (ap- pattern exhibited in these examples persisted over all of
proximate) tests for single-processor EDF schedulability. the datasets tested. In all cases the hybrid global schedul-
The BF FFD-L scheme does not do quite as well as theing scheme improved the success rate significantly over
BHR FFD-L scheme, but itis more efficiently computable pure EDF, but it still fell short of the success rate with
and provides performance that is fairly close to the exact partitioned scheduling.

test. The GFB, BAK, and BCL family of tests all seem to
have an inherent limitation of density, = m, because
3.5 Partitioned versusGlobal they are conceptually based on bounding density. This

The final set of experiments compared the performancelimitation is especially apparent for the case= 2, where
of global EDF-based scheduling against partitioned EDF the drop-off is very sudden. It is clear that the parti-
scheduling. Since the global approach already appearedioned methods do not have this limitation. What is not
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clear is whether the limitation is a property of global EDF
scheduling or just a limitation of the current generation of 12000
global schedulability tests (which seems more likely).
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Figure 9. Constrained deadline, exponential utilization
w/mean 0.25, 2 CPUs

Figure 7. Constrained deadline, bimodal utilization, 2
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The experiments reported here indicate that the avail-

able schedulability tests for global EDF scheduling have 000 |
improved significantly. However, the global approach has g
not yet pulled ahead. Partitioned scheduling still appears
to have an advantage over the best feasibility tests for ®**
global scheduling, with respect to the statistical chance 4000
of being able to schedule an arbitrary hard-deadline task
set. If one also takes into consideration the fact that static
task assignment has lower runtime overhead, partitioned ©
scheduling looks even stronger.

This is not the end of the globas. partitioned schedul- Figure 11. Unconstrained deadline, bimodal utiliza-
ing question. Further progress in the analysis of global  tjon 4 cpus
EDF scheduling appear possible. Even if global EDF
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Figure 15. Constrained deadline, exponential utiliza-
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does not ultimately prove to be competitive with parti-
tioned EDF scheduling, there are other global scheduling
schemes to be considered. Some of these can even guaran-
tee worst-case schedulability at higher processor utiliza-
tion levels than thém + 1) /2 bound for job-static priority
scheduling.

There are several variants of the PFAIR concept.
Baruah, Cohen, Plaxton and Varvel [6] showed that
PFAIR scheduling is optimal for scheduling periodic tasks
on a multiprocessor, has a linear-time necessary and suf-
ficient schedulability test, and for sufficiently small quan-
tum size can guarantee schedulability at processor utiliza-
tion levels arbitrarily close te. Srinivasan and Anderson
showed that the PFAIR approach is also optimal for mul-
tiprocessor scheduling of sporadic and rate-based tasks
[17], and there have been many more variations and ex-
tensions to the PFAIR theory made since that. The main
problem with PFAIR scheduling is the need to slice time
into small quanta, and the consequently high implementa-
tion overhead. In this regard, the fixed-job-priority algo-
rithms, like those considered in this paper have an advan-
tage, whether applied globally or partitioned.

Is there another algorithm that can break thet+ 1) /2
bound but does not require such frequent time slicing as
the PFAIR approach? One possibility is suggested by the
work on “throw-forward” scheduling, shown by Johnson
and Maddison [14] to be optimal for scheduling batches
of independent jobs on a multiprocessor system. It will
be interesting to see whether the idea of throw-forward
scheduling (which is to combine consideration of deadline
and laxity) can be extended to periodic and sporadic tasks
systems and a sufficient test for schedulability found.

Of course there are also some remaining questions
about the comparative implementation overhead of the
global vs. partitioned approaches. Global scheduling
can have higher overhead in at least two respects: the
contention delay and the synchronization overhead for a
single dispatching queue is higher than for per-processor
gueues; the cost of resuming a task may be higherifitis on
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a different processor (due to interprocessor interrupt han- [9] M. Bertogna, M. Cirinei, and G. Lipari. New schedula-

dling and cache reloading) than on the processor where it
last executed. The latter cost can be quite variable, since
it depends on the actual portion of a task’s memory that
remains in cache when the task resumes execution, an
how much of that remnant will be referenced again be-
fore it is overwritten. These issues are discussed at some

length by Srinivasamt al. in [19], which includes some

simulation results comparing the overhead of global EDF
andPD? scheduling, a PFAIR variant. It seems that only
experimentation with actual implementations can make a
conclusive case as to how serious are these overheads, and
how they balance against any advantages global schedul{12]
ing may have for on-time completion of tasks in real ap-

plications.
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Abstract (has a feasible allocation been found?: yes and here it

is, or no, and that's all) which is usually returned by the
In this paper, we present an original approach (CPRTA search algorithm is not satisfactory in failure situations.
for "Constraint Programming for solving Real-Time Al- The designer would expect some explanations justifying
location”) based on constraint programming to solve an the failure and enabling him to revisit his design. There-
allocation problem of hard real-time tasks in the context fore, more sophisticated search techniques that would be
of fixed priority preemptive scheduling. CPRTA is built on able to collect some knowledge about the problem they
dynamic constraint programming together with a learning solve are required. Here are the general objectives of the
method to find a feasible processor allocation under con- work we are conducting.

straints. It is a new approach which produce in its cur- More precisely, the problem we are concerned with
rent version as acceptable performances as classical al- consists in assigning a set of periodic, preemptive tasks
gorithms do. Some experimental results are given to showto distributed processors in the context of fixed prior-
it. Moreover, CPRTA shows very interesting properties. It jty scheduling, to respect schedulability but also to ac-
is complete —i.e., if a problem has no solution, the algo- count for requirements related to memory capacity, co-
rithm is able to prove it—, and it is non-parametric —i.e., residence, redundancy, and so on. We assume that the
it does not require specific initializations—. Thanks to its characteristics of tasks (execution time, priority, etc.) and
capacity to explain failures, it offers attractive perspec- the ones of the physical architecture (processors and net-

tives for guiding the architectural design process. work) are all known a priori —Only static real-time sys-
tems are here considered—.
1. Introduction Assigning a set of hard preemptive real-time tasks in

a distributed system under allocation and resource con-

Real-time systems have applications in many indus- Straints is known to be an NP-Hard problem [14]. Up to
trial areas: telecommunication systems, automotive, air-NOW; it has been massively tackled with heuristic meth-
craft, robotics, etc. Today's applications are becoming ©ds [18], simulated annealing [21] and genetic algorithms
more and more complex, as much in their software part [16]- Recently, Szymanek et al. [20] and especially Ekelin
(an increasing number of concurrent tasks with various in- [7] have used constraint programming to produce an as-
teraction schemes), as in their execution platform (many Signment and a pre-runtime scheduling of distributed sys-
distributed processing units interconnected through spe-tems under optimization criteria. Even if their context is
cialized network(s)), and in their numerous functional and different from ours, their results have shown the ability of
non-functional requirements too (timing, resource, power, SUch an innovative approach to solve an allocation prob-
etc. constraints). One of the main issues in the archi- Iem for embedded systems and have encouraged us to go
tectural design of such complex distributed applications further.
is to define an allocation of tasks onto processors so as Like numerous hybridation schemes [9, 4], the way
to meet all the specified requirements. In general, it is we are investigating uses the complementary strengths of
a difficult constraint satisfaction problem. Even if it has constraint programming and optimization methods from
to be solved off-line most of the time, it needs efficient operational research. In this paper, we present its prin-
and adaptable search techniques which are able to be in€iple and study its performances. It is a decomposition-
tegrated into a more global design process. Furthermore based method (related to logic Benders-based decompo-
it is desirable that those techniques return relevant infor- sition [9]) which separates the allocation problem from
mation intended to help the designer who is faced with the scheduling one: the allocation problem is solved by
architectural choices. The "binary” result, in particular,13rrieans oflynamic constraint programmirtgols, whereas



the scheduling problem is treated with specific real-time ~ CAN (Controller Area Network) [5] is both a protocol
schedulability analysis. The main idea is to "learn” and physical network. CAN works as a broadcast bus
from the schedulability analysis to re-model the allocation meaning that all connected nodes will be able to read all
problem so as to reduce the search space. In that sense, waessages sent on the bus. Each message has a unique
can compare this approach to a formexdrning from mis- identifier which is also used as the message priority. On
takes Lastly we underline that a fundamental property of each node waiting messages are queued. The bus makes
this method is the completeness : when a problem has nosure that when a new message gets selected to transfer,
solution, it is able to prove it (contrary to heuristic meth- the message with the highest priority, waiting on any
ods that are unable to decide). connected node, will get transmitted first. When at least
The remainder of this paper is organized as follows. In one bit of a message has started to be transfered it can’t
section 2, we describe the problem. Section 3 is dedicatedget preempted even though higher priority messages
to the description of the master- and sub-problems, andarrive. As a result, the CAN'’s behaviour will be seen
the relations between them. The logical Benders decom-subsequently as the one of a non preemptive fixed priority
position scheme is briefly introduced and the links with message scheduling.
our approach are put forward. In Section 4 the method is
applied to a case study. Some experimental results are pre- The software architecturés modeled as a valued, ori-
sented in Section 5. Section 6 shows how it is possible toented and acyclic grapfZ,C). The set of node§ =
set up a failure analysis able to aid the designer to review {r, 7 1 represents the tasks. A task in turn is a set
his plans. Itis a first attempt that proves its feasibility and of instructions which must be executed sequentially in the
will need to go deeper. The paper ends with concluding same processor. The set of edges 7 x 7T refers to the
remarks in Section 7. data sent between tasks.

A task; is defined through timing characteristics and
resource needs: its peridh (as a task is periodically
activated ; the date of its first activation is free), its

21 The real-t|m_e system arch|tectur_e worst-case execution time without preempti©nand its
The hard real-time system we consider can be modeledmemory needs;. A priority prio; is given to each task.

by a software architecture: the set of tasks, and a hard-r,q) -

X . ; has priority overr; if and only if prio; < prio;.
ware architecture: the execution platform for the tasks, aSEdgeSc- — (r;,7;) € C are weighted with its tramission
represented in Fig. 1. + P

time C;; (the time it takes to transfer the message on
the bus) together with a priority value-io;; (useful in
the CAN context). Task priorities are assumed to be

2 The problem description

[ P ml] [ P2 mQ] different. The same assumption is made on message
I S— @056 priorities. In this model, we assume that communicating

| bandwidh s | tasks have the same activation period. However, we don't

@ consider any precedence constraint between them : they

P m3 P 7+ (T3, Ci, prioi, pi) are periodically activated in an independent way, and they

cij : (dij, prioi;) read input data and write output data at the beginning and

the end of their execution.

Figure 1. An example of hardware (left) and

software (right) architecture. The underlying communication model is inspired from

OSEK-COM specifications [17]. OSEK-COM is an uni-

By hardware architecturewe mean a setP = form communication environment for automotive control
{p1,.--,Dk,-.-,pm} Of m processors with fixed memory unit application software. It defines common software
capacitymy, and identical processing speed. Each pro- communication interface and behaviour for internal com-
cessor schedules tasks assigned to it with a fixed prioritymunications (within an electronic control unit) and exter-
strategy. It is a simple rule : a static priority is given to nal ones (between networked vehicle nodes) which is in-
each task and at run-time, the ready task with the highestdependent of the communication protocol used. It is the
priority is put in the running state, preempting eventually a following. Tasks that are located on the same processor
lower priority task. Those processors are fully connected communicate through local memory sharing. Such a lo-
through a communication medium with a bandwidthn cal communication cost is assumed to be zero. On the
this paper, we look at a communication medium called other hand, when two communicating tasks are assigned
a CAN buswhich is currently used in a wide spectrum to two distinct processors, the data exchange needs the
of real-time embedded systems. However any other com-transmission of a message on the network. Here we are
munication network could be considered as far as its tim- interested with th@eriodic transmission modsf OSEK-
ing behaviour (including its protocol rules) is predictable. COM. In this mode data production and message trans-
Thus the first experiments we have conducted addressed anission aren't synchronised : a producer task writes its

token ring network. 1??Zutput data into a local unqueued buffer from where a pe-



. they have to be consistent with the given expressions—:

ij
@ @ e Memory capacity: The memory use of a processor
pir cannot not exceed its capacity.f):
: : ] [ Vk =1..m, Z i < my (2)
(a) tasks are allocated on the (b) tasks are allocated on A(T)=pr
same processor different processors

e Utilization factor : The utilization factor of a proces-

Figure 2. Depending of the task allocation, sor cannot exceed its processing capacity. The fol-
a message exists, or not. lowing inequality is a necessary schedulability con-
dition :
Vk=1 G <1 (3)
riodic protocol service reads it and sends it into a mes- - T, —

sage. The building of protocol data units considered here
is very simple : each data that has to be sent from a pro-
ducer task-; to a consumer task; in a distant way gives
rise to its proper messagd;;. Moreover in this paper,
for a sake of simplicity, theasynchronous receiving mode

e Network use To avoid overload, the messages car-
ried along the network per unit of time cannot exceed
the network capacity:

is preferred. It means that the release of a consumer task C..
7; is strictly periodic and unrelated with the;; message Z T-] <1 (4)
arrival : when a node receives a message from the bus, its = (74, 75) !

protocol records its data into a local unqueued buffer from A(”) 7 Alr)

where it can be read by the task In [8] an extension of
this work to asynchronous receiving modeproposed in - ajjocation constraints. Allocation constraints are due

which a message reception notification activates the con-; the system architecture. We distinguish three kinds of
sumer task. constraints.

As a result, depending on the task allocation, an edge
Cij of the software architecture may give rise to two differ- e Residence a task may need a Speciﬁc hardware or

ent equivalent schemes as illustrated in Fig. 2. In Fig. 2(b), software resource which is only available on specific

M;; inherits its periodl’; from 7; and its priorityprio;; processorse.g. a task monitoring a sensor has to

fromc;;. run on a processor connected to the input peripheral).
Therefore from a scheduling point of view, messages This constraint is expressed as a couplea) where

on the bus are very similar to tasks on a processor. Like for 7; € T isatask and C P is the set of available host

tasks, each messagé;; is "activated” everyl; units of processors for the task. A given allocatidnmust

time; its (bus) priority isprio;;; and it has a transmission respect:

time Ci;. A(mi) € @ (5)

2.2 The allocation problem e Co-residence This constraint enforces several tasks
An allocation is a mappingl : 7 — P such that: to be assigned to the same processor (they share a

common resource). Such a constraint is defined by a

7i = A(Ti) = pr @ set of taskgg C 7 and any allocationt has to fulfil;

The allocation problem consists in finding the mappihg )

which respects the whole set of constraints described in V(i 75) € 57, A(mi) = A7) (6)

the immediate below.

e Exclusion: Some tasks may be replicated for some
fault-tolerance objectives and therefore cannot be as-
signed to the same processor. It corresponds to a set
~ C T of tasks which cannot be placed together. An
allocationA must satisfy:

Timing constraints. They are expressed by the means
of relative deadlines for the tasks. A timing constraint en-
forces the duration between the activation date of any in-
stance of the task and its completion time to be bounded
by its relative deadliné;. Depending on the task alloca-
tion, such timing constraints may concern the instanciated Y(ri,7) € 42, Ar) # A(r) @)
messages too. For tasks as well as messages, their rela-
tive deadline is hereafter assumed equal to their activation

. An allocationA is said to bevalid if it satisfies alloca-
period.

tion and resource constraints. Itdshedulablef it satis-
Resource constraints. Three kinds of constraints are fies timing constraints. Finally, a solution to our problem
considered —precise units aren’t specified but obviousli/?i’%a valid and schedulable allocation of the tasks.



3 Solving the problem

Master problem
nogoods > (constraint programming)

Constraint programming (CP) techniques have been ., /i?;::;ﬁf:;:;?ﬁ;
widely used to solve a large range of combinatorial prob- § - wali T aliocation
lems. They have proved quite effective in a wide range of 3 unschedulable ( <
applications (from planning and scheduling to finance — Subproblem
portfolio optimization — through biology) thanks to main (schedulability analysis)
advantages: declarativity (the variables, domains, con- - Timing constraints J
straints description), genericity (it is not a problem de- ¥ schedulable allocation
pendent technique) and adaptability (to unexpected side
constraints). Figure 3. Logic-based Benders decomposi-

A constraint satisfaction probleffCSP) consists of a tion to solve an allocation problem

setV of variables defined by a corresponding getof
possible values (the so-callddmair) and a seC of con-
straints. A solution to the problem is an assignment of a 3.2 Master problem
value in D to each variable i such that all constraints
are satisfied. This mechanism coupled with a backtrack-
ing scheme allows the search space to be explored in
complete way For a deeper introduction to CP, we refer
to [2].

As the master problem is solved using constraint pro-
gramming techniques, we need first to translate our prob-
4em into CSP. The model is based on a redundant formu-

lation using three kinds of variables; y, w.

Let us first considen integer-valued variableswhich
are decision variables and correspond to each task, repre-
senting the processor selected to process the tésk
{1.n}, z; € {1,...,m}. Then, boolean variableg
indicate the presence of a task on a processor: €

Due to space limitation, we only give the basic princi- {1..n},Vp € {l.m}, v;, € {0,1}. Finally, boolean
ples of this technique. Our approach is based on an extenvariablesw are introduced to express whether a pair of
sion of a Benders scheme. A Benders decomposition [3]tasks exchanging data are located on the same processor
is a solving strategy of linear problems that uses a parti- or not: V¢;; = (7;,7;) € C, w;; € {0,1}. Integrity
tion of the problem among its variables; y. A master constraints are used to enforce the consistency of the re-
problem considers only, whereas a subproblem tries to dundant model.
complete the assignment grand produces a Benders cut One of the main objectives of the master problem is to
added to the master. This cut is the central element of thesolve efficiently the assignment part. It handles two kinds
technique, it is usually a linear constraint eimferred by of constraints: allocation and resource.
the dual of the subproblem. Benders decomposition can

therefore be seen as a formle&ning from mistakes e Residence:(cf. Eqg. (5)) it consists of forbidden val-
ues forz. A constraint is added for each forbidden

processop of 7;: x; # p

3.1 Solving strategy : Logic-based Benders decom-
position in CP

For a discrete satisfaction problem, the resolution of
the dual consists in computing the infeasibility proof of
the subproblem (in this case, the dual is callethéerence e Co-residence:(cf. Eq. (6))V(7i,7;) € 5%, z; = x;
dual) and determining under what conditions the proof re-
mains valid to infer valid cuts. The Benders cut can be
seen in this context as an explanation of failure which
is learnt by the master. We refer here to a more general
Benders scheme callddgic Benders decompositidf]
where any kind of subproblems can be used as long as the
inference dual of the subproblem can be solved.

We propose an approach inspired from methods used to @ Utilization factor: (cf. Eq. (3)) Letlem(T') be the

e Exclusion: (cf. Eq. (7))AlDifferent(x;|7; € 7). An
AlIDifferentconstraint on a sét of variables ensures
that all variables amony are different.

e Memory capacity: (cf. Eq. 2) vp €
{1..m}, Zie{l..n} Yipli < Hp

integrate constraint programming into a logic-based Ben- ~ 1€ast common multiple of periods of the tasks —
ders decomposition [4]. The allocation and resource con-  Utilization factor and network use are reformulated
straints are considered on one side, and schedulability on ~ With thelem of task periods because our constraint
the other (see Fig. 3). The master problem solved with solver cannot currently handle constraints with both
constraint programming yields a valid allocation. The real coefficients and integer va.r|ables—. The con-
subproblem checks the schedulability of this allocation, straint can be written as follows:
eventually finds out why it is unschedulable and designs a Yip lem(T)C;

. . P (3
set of constraints, nametbgoodswhich rules out all the Vp € {1..m}, Z T <lem(T')

assignments which are unschedulable for the same reas%\r:\;.4 ie{l..n}



e Network use: (cf. Eg. (4)) The network capacity is
bound bys. Therefore, the size of the set of messages
carried on the network cannot exceed this limit:

Z w;; lem(T')Cy; < lem(T)

ie{l.n}je{l..n} i Deadline miss Deadline miss

3.3 Subproblem

The subproblem we consider here is to check whether a
valid solution produced by the master problem is schedu-
lable or not. A widely chosen approach for the schedu-
lability analysis of a task sef is based on the following
necessary and sufficient condition [15%:is schedulable
if and only if, for each task of, its worst-case response
time is less or equal to its relative deadline. Thus the sub-
problem solving leads us to compute worst-case responsevhere hp;;(A) (respectivelylp;;(A)) is the set of mes-
times for tasks on processors and for messages on the busages derived from the allocatiehwith a priority higher
According to the features of the considered task and mes-(respectively lower) thaprio;; ; 7+ is the transmission
sage models, as well as the processor and bus schedulingime for one bit {;; is in relation with the bus bandwidth
algorithms, a "classical” computation can be used and its §, 7,;; = 1/6) ; C’ is the worst-case transmission time for

Figure 4. lllustration of a schedulability
analysis. The task 7, does not meet its
deadline. The subset {7, 7,74} is identified
to explain the unschedulability of the sys-
tem.

main results are given in the immediate following. the messagé/’.
Task worst-case response time. For independent and iterHag\r;I?S well the computation of Eq. (10) can be solved

periodic tasks with a preemptive fixed priority scheduling

algorithm, it has been proven that the worst execution sce-
nario for a task; happens when it is released simultane- .
ously with all the tasks which have a priority higher than 3-4 Cooperation between master and subproblem(s)

prio;. WhenD; is (less or) equal td7, the worst-case We now consider a valid allocation (as the one the con-
response time for; is given by [15]: straint programming solver may propose) in which some
tasks are not schedulable. Our purpose is to explain why
R, =C; + Z [RTW C; (8) this allocation is unschedulable, and to translate this into

j a new constraint for the master problem.

Tj€hpi (A)

wherehp; (A) is the set of tasks with a priority higher than Tasks. The explanation for the unschedulability of a
prio; and located on the processéfr;) for a given allo- taskr; is the presence of tasks with higher priority on the
cationA, and[z] calculates the smallest integerz. The ~ Same processor that interfere with For any other allo-
summation gives us the number of times tasks with higher cation withr; andhp;(A) on the same processor, itis sure
priority will execute before—i has Comp|eted_ The worst- tha’[n will still be detected unschedulable. Therefore, the
case response time; can be easily solved by looking for master problem must be constrained so that all solutions
the fix-point of Eq. (8) in an iterative way. wherer; andhp;(A) are together are not considered any

] ) further. This constraint corresponds tdNatAllEqualon
Message worst-case response timeAs mentioned ear- . __ a NotAllIEqualon a sefl/ of variables ensures that at
lier, message scheduling on the CAN bus can be viewed ag a5t two variables amorig take distinct values—:

a non-preemptive fixed priority scheduling strategy. Thus

when doing a worst-case response time equation for a NotAllEqual(z;|7; € Si(A) = hp;(A) U{r})
message, Eq. (8) has to be reused with some modifica-

tions. First it has to be changed so that a message only |t is worth noticing that this constraint could be ex-
can be preempted during its first transmitted bit instead of pressed as a linear combination of variabjesHowever,

its whole execution time. Second a blocking time, i.e. the NotAllEqual@;,z3,24) excludes the solutions that contain
largest time the message might be blocked by a lower pri- the tasksr, 73, 74 gathered omnyprocessor.

ority message, must be added. The resulting worst-case |t js easy to see that this constraint is not totally rele-

response time equation for the CAN messagg is [22]: vant. For example, in Fig. 4 that shares a processor
with 71,75 and 73 misses its deadline. Actually the set
Rij = Cij + L (9)  S4(A) ={r1, 7, 73,74} explains the unschedulability but
with it is not minimal in the sense that if we remove one task
Liitm from it, the set is still unschedulable. Here, the SgtA)’
Lij = Z [”I“ﬂ C'+ max {C'—7y} = {m, 2,74} is sufficient to justify the unschedulability.
T M’€lp;;(A)

In order to derive more precise explanations (to achieve

(20) 13a5more relevant learning), a conflict detection algorithm,

Mlehpij (A)



namelyQuickXplain[10] (see algorithm 1), has been used
to determine a minimal{r.t. inclusion) set of involved
tasksS;(A)’. A new function is definedR;(X), as the
worst-case response timexfas if it was scheduled with
those tasks belonging to the s€tthat have priority over

It:
u

>

Ti€hp; (A)NX

w ¢ (1))

Algorithm 1 Minimal task set
QUICKXPLAIN TASK(T;, A, D;)
X:=0
O1, ..y Ohp,(A) 1@N €numeration ofip;(A). The enu-
meration order ofip;(A) may have an effect on the
content of the returned minimal task ket
k=0
Y =X
while R;(Y) < D; k < #hp;(A) do
k=k+1
Y := Y U {0k} {according to the enumeration
order
end while
X:=XU {O'k}
end while
return X U {r;}

Messages. The reasoning is quite similar. If a message

M;; is found unschedulable, it is because of the messages

in hp;;(A) and the longest messagdin; (A). We denote
M, ;(A) their union together wit{ M;;}. The translation
of this information in term of constraint yields to:

>

Map€M;j(A)

Wap < #Mzg (A)

where#X stands for the cardinality oX.
It is equivalent to aNotAllEqualconstraint on a set of

messages since to be met it requires that at least one mes

sage of)M;;(A) "disappear” (v, = 0).

Like for tasks, so as to reduce the set of involved
messages, QCKXPLAIN has been implemented, using
a similar adaptation of Eq. (9) and (10). It returns a min-
imal set of messagel;;(A)’.

Integration of nogoods in constraint programming
solver. Dynamic integration of nogoods at any step of
the search performed by the MAC (Maintaining arc con-
sistency) algorithm of the constraint solver is based on the
use of explanations. Explanations consist of a set of con-
straints and record enough information to justify any de-
cision of the solver such as a reduction of domain or a
contradiction. Dynamic addition/retraction of constraints
are possible when explanations are maintained [12].

For example, the addition of a constraint at a leaf of

the tree search will not lead to a standard backtrackinf3

from that leaf (which could be very inefficient as a wrong
choice may exist at the beginning of the search because
the constraint was not known at that time). Instead, the
solver will jump (MAC-CBJ for conflict directed back-
jumping) to a node appearing in the explanation and there-
fore responsible for the contradiction raised by the new
constraint. More complex and more efficient techniques
such as MAC-DBT (for dynamic backtracking) exist to
perform intelligent repair of the solution after the addition
or retraction of a constraint.

4 Applying the method to an example

An example to illustrate the theory is developed here-
after. It will show how the cooperation between master-
and sub-problems is performed. Table 1 shows the char-
acteristics of the considered hardware architecture (with
4 processors) and Table 2 those of the software architec-
ture (with 20 tasks). The entryr]y — j” for the task;
indicates an edge;; with C;; = x andprio;; = y.

Di
m;

Do
102001

b1
280295

D2
360241

b3
41617

Table 1. Processor characteristics

T T; C; i prio; | Message
79 | 36000 | 2190 21243 1 600,1— 13
1 2000 563 5855 6 500,3— 8
To 3000 207 2152 15 600,7— 7
> 13 | 8000 | 2187 | 21213 3
T4 | 72000 | 17690 | 168055 7 300,4— 9
Ts 4000 667 6670 8 800,5— 19
76 | 12000 | 3662 36253 14
T7 3000 269 2743 16
T8 2000 231 2263 12 100,6— 18
T9 | 72000 | 6161 59761 9
T10 | 12000 846 8206 4 200,2— 15
711 | 36000 | 5836 60694 20
s-712 | 9000 2103 20399 10
713 | 36000 | 5535 54243 13
T14 | 18000 | 3905 41002 18
715 | 12000 | 1412 14402 5
716 | 6000 1416 14301 17 700,8— 17
717 | 6000 752 7369 19
718 | 2000 538 5487 11
Ti9 | 4000 | 1281 | 12425 2

Table 2. Task and message characteristics

The problem is constrained by :
e residence constraints:

— CC1 : 7o must be allocated tp, or p; or ps.
— CC5 : 116 must be allocated tp; or p-.

5 — CCj3: 717 must be allocated tpy or ps.



e co-residence constraint: Third step: explaining why this allocation is not
schedulable. The unschedulability of; is due to the in-
— CCy: 77, 717 andryy must be on the same pro-  terference of higher priority tasks on the same processor:
cessor. hps = {TQ, T7,78, T9, 7'17}. By applylng QUICKXPLAIN -
TAsSK (see algorithm 1) witthps ordered by increasing
index, we findSs(A)" = {75, 79} as minimal set. Conse-
— CCs : 73, 711 andr» must be on different pro-  auently, the explanation of the unschedulability is trans-
Cessors. lated into the new constraint:

e exclusion constraints:

To start the resolution process, the solver for the mas- CCs : NotAllEquaKzs, zo}
ter problem finds a valid solution in accordance witt;
CCy, CC3, CCy andCC5. How the constraint program-
ming solver finds such a solution is here out of our pur- e for 715: CC; : NotAllEqual zg, 12, 713},
pose. The valid solution it returns is:

In the same way, by applying @QCK XPLAIN TASK:

o for T16- CCg : NOtA”Equal{le,I’lﬁ},

e ProCesSOpPo: T, Ts, T7, Tss To, T17, T19-
P Po: T21 T5: 772 T8 79, T17 T19 o for 7y9: CCy : NotAllEqualzg, 19}

® Processop;: 74, Te, T12; T13- For M, g, we have:
® Processops: 7o, Ti1, T4, T15, T16- M,y g(A) = {Mo,13, M1 g, My g, Mg 18, Mi6,17}-

® Processops: 7i, T3, Ti0, T18- QUICKXPLAIN returns{My 13, My g, My, M1617} as

, o 0 )
One deduces that messagesiig.s, M, s, My, Ms.1s, M, s(A)" the minimal set. An other constraint is created:

Mio,15, and Mg 17.

! . ) . _ CCho w13 +wig +wag +wieir < 4
It is easy to check it is a valid solution by considering

allocation and resource constraints: These new constraint€'Cs, CC7, CCs, CCy and
CCy are added to the master problem. They define a
o pio+ pis + pur + pg + po + pa7 + pig = 93383 < my; new problem for which it has to search for a valid solution
and so on.
. q = < : . .
® Hatpo+ ph2 + g = 278950 < mag After 20 iterations between the master problem and the
o Lo+ pin + pia + piis + ping = 151642 < mo; subproblem, this allocation problem is proven without so-
lution. This results from 78 constraints learnt all along
® 1+ p3 + pio + pig = 40761 < mg; the solving process. This example has been solved using
oo o e oo o EDIPE (see Section 5). On a computer with a G4 proces-
e mtmtEtE T tar e =0972< 1 sor (800MHz), its computing time was 10.3 seconds.

C C C Cis __ . .
st tm tay =098 5 Experimental results

C (O] Cis 4 Cis | Ci6 .
* Tt tTosthr toe =094 We have developed a dedicated tool namenl €E [6]

that implements our solving approach (CPRTA). It is

G4 Cs y Cio 4 Cis
*ntm T e =08 L based on the @oco[13] constraint programming system

T1o

Cois |, Cis |, Cao |, Csis |, Cioas | Ciear and LM [11], an explanation-based constraint program-
* 7, T T ot tm, the T .
0454 <1.' ! s 10 o ming system.

For the allocation problem, no specific benchmarks are

The subproblem checks now the schedulability of the @vailable as a point of reference in the real-time commu-

valid solution. The schedulability analysis proceeds in Nity. Experiments are usually done on didactic examples
three steps. [21, 1] or randomly generated configurations [18, 16]. We

opted for this last solution. Our generator takes several
First step: analysing the schedulability of tasks. The parameters into account:
worst-case response time for each task is obtained by ap-
plication of Eq. (8) and it is compared with its relative ~ ® " ™ mes: the number of tasks, processors (exper-

deadline. Heres, 712, 716 andro are found unschedula- iments have been done on fixed sizes= 40 and
ble. m = 7) and edges;

Second step: analysing the schedulability of messages.  ® 7oglobat’ the global utilization factor of processors;
The worst—casg response time for each message .is.ob— o %mem: the memory over-capacitye. the amount
tained by application of Eq. (9) and Eq. (10) and it is
compared with its relative deadline. Heké, s is found
unschedulable.

of additionnal memory available on processors with
respect to the memory needs of all tasks;



Mem. | Yomem || AllOC. | Yores  Yoco—res  Yoewe || SChed.| Ygiobar || MeS. | mes/n Yomsize
1 60 1 0 0 0 1 40 1 0 0
2 30 2 15 15 15 2 60 2 0.5 70
3 10 3 33 33 33 3 90 3 0.875 150

Table 3. Details on difficulty classes

%res: the percentage of tasks included in residence because they are easily solved and they don not exhibit
constraints; a specific behaviour. fgs gives the number of prob-
_ ) lem instances successfully solved (a schedulable solution
e Yoco—res: the percentage of tasks included in co- hag peen found or it has been proven that none exists)
residence constraints; within the time limit of 10 minutes per instance. &
gives the percentage of schedulable solutions found (thus
%res — %vaL gives the percentage of inconsistent prob-
lems). ITER is the number of iterations between the mas-
o %msize . the size of a data is evaluated as a percent- ter problem and the subproblem. CPU is the mean com-
age of the period of the tasks exchanging it. putation time in seconds. NOG is the number of hogoods
inferred from the subproblem. The data are obtained in
Task periods and priorities are randomly generated. average (on instances solved within the required time) on
Worst-case execution times are initially randomly chosen 100 instances (40 tasks, 7 processors) per class of diffi-

and evaluated again so as:. ; C;/T; = m%giobai- culty with a Pentium 4 (3 GHz).
The memory need of a task is proportional to its

worst-case execution time. Memory capacities are ran- ; : L . : :
domly generated while satisfying>™" , my, = (1 + CPRTA S.tl|| remains very efficient in spite of its seeming
k=1 complexity. Moreover as measured by ITER and NOG,

Yomenm) Zi:l i For asake of simplicity, (_)nly linear data .the cooperation between master and sub-problems is quite
communications between tasks are considered and the pri-

ority of an edge is inherited from the task producing it. significant and the learning is of some importance.

The number of tasks involved in allocation constraints ~ The lines 1 to 5 in Table 4 show results for high diffi-
is given by the parametefs, .., %co_res, %exc. Tasks culty classes without communications between tasks. The
are randomly chosen and their number (involved in co- results in lines 1 to 3 are very good. They illustrate the
residence and exclusion constraints) can be set througHasic ability of constraint programming to consider mem-
specific levels. Several classes of problems have been de0ry and allocation constraints. Lines 4 and 5 display some
fined depending on the difficulty of both allocation and Performances that are going down when the schedulability
schedulability problems. The difficulty of schedulabil- difficulty increases. Indeed, the schedulability constraints
ity is evaluated using the global utilization factt;epa set is empty at the beginning of the search. Therefore, all
which varies from 40 to 90 %. Allocation difficulty ~the knowledge dealing with schedulability has to be learnt
is based on the number of tasks included in residence,from the subproblem. Furthermore, learning is only ef-
co-residence and exclusion constrairité.{s, %co_res, fective when a valid solution is produced by the master
%.zc). Moreover, the memory over-capacit,,c., has problem solver and as a consequence it is not really inte-
a significant impact (a very low capacity can lead to solve grated into the constraint programming algorithm. To im-
a packing problem, sometimes very difficult). The pres- Prove CPRTA performances from this point of view, a new
ence of data exchanges impacts on both problems and th@pproach is now being developed that integrates schedula-
difficulty has been characterized by the ratioss/n and  bility analysis into the constraint programming algorithm
Tomsize. Tomsize EXpresses the impact of data exchanges SO as not "to delay” its taking into account —it is not a

on schedulability analysis by linking periods and message Benders decompostion, it is a new constraint defined from
sizes. schedulability properties—.

Table 3 describes the parameters of each basic diffi-  The lines 6 to 8 deal with allocation problems where
culty class. By combining them, categories of problems tasks may communicate. Once more, one can notice
can be specified. For instance, a W-X-Y-Z category corre- that when data exchanges increase (and thus message ex-
sponds to problems with a memory difficulty in class W, changes on the bus too), the CPRTA performances de-
an allocation difficulty in class X, a schedulability diffi- crease. Reasons are the same as those of task schedula-

e %..c. the percentage of tasks included in exclusion
constraints;

First, by examining the CPU column, we notice that

culty in class Y and a network difficulty in class Z. bility: the more the messages are on the bus, the more
their scheduling becomes difficult. Moreover, we have ob-
5.1 Results served that nogoods inferred from message unschedulabil-

Table 4 summarizes some of the results of experimentsity are usually "weaker” (the search space cut is smaller)
with CPRTA. We do not give the results for all the inter- than the ones inferred from task unschedulability. Learn-
mediate classes of problems (like 1-1-1-1, 2-1-1-1, etcf?i’rég is then less efficient for this kind of problems. As for



tasks, we hope to improve CPRTA by integrating the net- 6  EXxplanations

work schedulability as a global constraint into the master

problem. In comparison with other search methods, using a con-
straint solver may help "intrinsically” to answer some
classical queries when a problem is proven without so-

cat. Yores | YovaL ITER CPU | NOG

1-2-2-3| 66.0 | 43.0 | 188.3| 70.5 | 110.7 straint approach we use, those relevant constraints, which
2-2-2-3| 47.0 | 30.0 | 137.7| 66.8 | 117.2 explain the failure, are made available in addition [11].
Thus in the case of an allocation problem for which
no solution has been found, we analyse the set of con-
straints that is returned to explain the problem inconsis-
tency. There can be many reasons to explain inconsis-
tency. At the design level, we would like to be able to
5.2 Comparison with simulated annealing incriminate high level characteristics of the system such
As to get comparative performances for CPRTA, a sim- as : allocation constraints, schedulability requirements of
ulated annealing (SA) algorithm, inspired from [21], has tasks, processors or network limitation. However, two
been implemented. In [21] the energy function takes into points of view, based on the software or hardware archi-
account residence, exclusion and memory constraints asecture, can be adopted. We will first focus on the char-
well as task deadline constraints. To be consistent with acteristics of the software architecture by analysing how
the CPRTA model, the schedulability of messages on theeach task is "responsible” for the failure. We will give
CAN bus and co-residence constraints have been inte-there some insight on the way a critical task from the
grated too. The implementation has been optimized soschedulability point of view can be identified. Each fail-
as to reduce computation times of this energy function.  ure of the search process due to schedulability is analysed
SA is a heuristic method. As a consequence, in our and transformed into a constraint criterion that encapsul-
case, it can only conclude on problems with a solution. tates an accurate reason for this failure. The study of those
Therefore, in Table 5 only CPRTA results for such prob- criteria may lead to the guilty tasks. The rationale of this
lems are compared to SA. As seen on Table 5, exceptevaluation is based on the following remarks:
for problems for which CPRTA must be improved (see
Section 5.1), CPRTA produces as satisfactory results as e The more a task appears within a nogood, the more
SA does, but with better computation times. Introduction this task has an impact on the schedulability incon-
of schedulability as a constraint into the master problem sistency.
should improve CPRTA, and certainly increases its effi-
ciency in a significant manner. Moreover, it should be  ® The level of propagation performed by a nogood (ei-

1]2-2-2-1) 1000) 56.0 | 13.5) 16 | 952 lution such as: why does my problem have no solution

2]3221] 980 570 | 310 | 104 | 133.2 ? Usually, when the domain of a variable of a CSP be-

3]1232-1| 990 | 19.0 | 66 1.4 43.5 comes empty (no value exists that will respect all the con-
4]11-3-1] 740 | 740 | 957 | 115.7| 471.6 straints on that variable), basic constraint programming
5|2-2-31| 670 | 120 | 83 | 332 | 59.7 systems notify the user that there is no solution. Neverthe-
? 2-2-2-2| 980 | 69.0 | 211 | 7.5 | 69.9 less, thanks to the versatility of the explanation-based con-
8

Table 4. Average results on 100 instances
randomly generated into classes of prob-
lems

pointed out that even if CPRTA is sometimes less efficient ther NotAllEqualz;) or Y Jw;; < B), i.e its impact
than SA, CPRTA solves on average more problems than ~ Within the proof is strongly related to its size (the
SA does if we take into account problems without solu- number of tasks it involves). "SmallNotAllEqual
tion. have stronger impact.
SA CPRTA In its general form, a constraint (learnt from a nogood)
cat. | %y | CPU | %y | CPU is defined byNotAllEqualz;) or >~ w;; < B (see Sec-
2-2-2-1| 56.0 | 4.7 560 | 24 tion 3.4). We denotdNAE the set of constraints in the
3-2-2-1| 53.0 | 50.8 | 57.0 | 174 NotAllEqual form and SUMthe set of constraints in the
2-3-2-1| 16.0 | 35,5 | 19.0 4.1 second form. For a task a constraint criteriod; is eval-
1-1-3-1| 99.0 3.2 74.0 | 115.7 uated:
2-2-3-1| 20.0 | 113.9| 12.0 | 60.82 1 1
2-2-2-2| 68.0 | 18.1 | 69.0 | 10.0 C; = Z — + Z —
1-2-2-3| 64.0 | 52.0 | 43.0 | 27.4 cenae T ¢ € SUM e
2-2-2-3| 62.0 | 59.1 | 30.0 | 58.6 zi€e 3j wig € eVwji €c
Table 5. Comparison between CPRTA and This criterion considers the presence of a task in each con-
SA straint and its impact. Biggéet; is, bigger the impact of

7; IS on the inconsistency. By studying tasks with high
13a9nd understanding why they have such an impact on the



inconsistency€.g. low priority allocation, too large pro-

justifying the failure. We need to go deeper in that way

cessor utilization), it is possible to change some require- and to try it out on some concrete cases.

ments €.g. by adapting priorities, or choosing a different

version for a task with an other period) and so to obtain a References

solution for the problem.
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Abstract!

On the basis of a concrete real-time application, we
present in this article a new task model called "serial
transaction”. This model is a particular instance of the
task model with offsets defined by Tindell and Palencia
and al.. A serial transaction is typically a task reading
serial information (RS232, CAN,...): several instances
are identical and read a unitary part of a serial packet,
these tasks have the same WCET, offset shifting, priority
and relative deadline. In addition, the last task of a
transaction has to deal with the packet, and is typically
longer, but has a longer relative deadline, and a lower
priority. The need for this task model appeared in a real
application, that couldn’t be validated using known
methods on transactions, so we present a less pessimistic
real-time evaluation method dedicated on to this new
model.

1. Introduction

Several laboratories of Poitiers (ENSMA and
University) are developing together a mini UAV
(Unmanned Air Vehicle) (see Figure 1). The LISI is in
charge of developing and validating the system
(embedded and ground station). The embedded
processing unit is a microcontroller (Freescale/Motorola
MPC555) connected via serial port to a GPS receiver
and a modem used in order to communicate with the
ground station. The measurement of the attitude of the
UAYV is done by an IMU (Inertial Measurement Unit)
connected to the microcontroller via a CAN network.

In the development of a real-time application like this
one, two techniques of scheduling can be used : the on-
line scheduling, with a fixed [LL73, LW82, Aud91] or
variable allocation of priorities of the tasks in the tasks
set [Der74, Lab74, DM89] and off-line techniques which
use a sequence whose correctness was proved [XP92,
Gro99]. The real-time RTOS (Real-Time Operational
System) OSEKTurbo OS/MPC5xx [OSM1, OSM2], in

' This work was supported by ONERA/DGA
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conformity with standard OSEK/VDX [Osekl, Osek?],
selected for this application, allows only fixed priorities.
We thus used an on-line approach with fixed priority
technique.

Figure 1: the AMADO
After the definition of the software architecture and

the temporal parameters of the various tasks, one of the
most important phases is the temporal validation which
consists in proving that whatever happens, all the tasks
meet their temporal constraints. RTA (Response Time
analysis) methods are used to bound the worst case
response time of the tasks of an application. Tindell
[Tin94] proposed a method for calculating an upper
bound of the worst-case response time which is less
pessimistic than classic RTA (considering that a critical
instant consists in a simultaneous release of all the tasks)
in a context of tasks with offsets.

Palencia and Harbour [PG98] extended Tindell’s
work with dynamic offsets, and formalized his work as
transactions. Lastly, [TNO04b][MSO03] introduced the
concept of “imposed” interference differing from
“released for execution” interference used by Tindell.
However, for now the exact calculation methods used to
determinate the exact worst-case response time rely on
calculating every combination of the tasks of the
transactions; it thus remains exponential in time.



In order to validate the control system of the UAV,
we had to deal with tasks with offset which are particular
instances of transactions: these tasks are activated by
peripherals connected on serial and CAN ports. Section
2 presents the case study. Section 3 recalls some general
results about transactions. Section 4 presents some new
results obtained, allowing us to analyse the interference
of a serial transaction in a pseudo polynomial time for a
subset of the tasks of the task system. Section 5 applies
these new results in order to validate our case study.

2. Presentation of the Application

The project, named AMADO, is a UAV with a
wingspread of 55 cm, using a delta shaped wing with
two symmetrical drifts for a total weight (including the
control system) of 930 grams. The main objective is to
create an autonomous plane embedding a camera, and to
be able to follow dynamically defined waypoints. The
UAYV is connected to a ground station thanks to a
wireless modem, allowing it to receive high level orders
during a mission. The critical parts of the flight control
are embedded.

2.1 Hardware architecture

c»s
CAN v RS232

> | RC receiver ——»

A 4

Numerical
pcontroller Modem I

RS232

Servomoteurs

RC
trans mitter |

Numerical
Modem <+

Figure 2: main architecture of the AMADO

The Figure 2 shows two parts: the ground station, and
the embedded station. The ground station can
communicate thanks to a half duplex modem with the
embedded system, and the traditional radio emitter is
kept as an emergency control in case of general failure of
the embedded system. The main role of the ground
station is video displaying/recording, flight instruments,
and high level commands (either waypoints flight, or
assisted flight).

The embedded system heart is a Freescale/Motorola
MPC555 [MPC1] connected to the actuators (3 servo-
commands and the speed-variator, refreshed every 20
ms), an IMU [IMU1], a GPS receiver [GPS1], a
traditional radio receiver and a modem. The MPC555 is
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a 32 bits PowerPC with a frequency of 40MHZ, 448KB
of flash memory and 26KB of RAM.

Two sensors are used in order to calculate the position
and attitude of the UAV: the GPS receiver and the IMU.
The Inertial Measurement Unit sends information about
angular speed and accelerations, which, once treated,
give the roll and the pitch of the UAV. This IMU is
connected on a CAN port and delivers information at a
frequency of 50Hz and a throughput of 1Mbps. A frame
of the IMU is compound of 3 blocks of 6 bytes. In order
for the system to get a complete frame, since there is no
possible memorisation of the blocks, each block must be
read before the next arrives. Once the system has 3
blocks, it can constitute the frame, and handle it to
calculate the roll and the pitch.

The GPS receiver is used to get the speed (direction
and module) and the absolute 3Dimensional position of
the UAV. The GPS Receiver sends data to the controller
at a frequency of 4Hz and delivers information with a
throughput of 57600bps. As a RS232 communication,
the information is sent byte after byte; the number of
bytes sent during one period (frame) of the GPS can
reach 120 bytes. As in the case of the IMU, the system
must recover each byte and arrange it before the arrival
of the next byte, under penalty of losing the complete
frame.

Finally the modem connected to the microcontroller
on the serial port is bi-directional and communicates
with the microcontroller at a throughput of 115kbps. The
length of the frame transmitted to the microcontroller by
the modem can reach 10 bytes. The requirements are the
same as in the case of the GPS receiver. In the
presentation of this architecture, we omitted voluntarily
the video circuit that does not have any impact on the
real-time aspects of this application.

2.2 Software architecture of the application

We have chosen the real-time executive OSEKTurbo
OS/MPC5xx of Metrowerks for our application. This
RTOS is conforming to the standard OSEK/VDX;
standard defined for applications with limited resources
[OSM3]. The OSEK/VDX executives are light because
they are based on a static description of all the system
using the OIL (OSEK Implementation Language).

Apart the initialisation task, there are 12 tasks in the
control system (see Table 1). The priorities of the tasks
have been assigned following a Deadline Monotonic
policy [LL73]. Note that the value L=120 (resp. L=3,
L=10) corresponds to the number of times the task has to
be activated in order to acquire a frame.

This kind of application can’t be validated easily if
the offsets are not taken into account. Indeed, it appears
clearly that task TreatGPS is released when the whole
GPS frame has been received; it cannot thus be released
at the same time as the task Acq GPS; it is the same case
for task TreatIMU and the task Acq IMU; the same
situation occurs for the task TreatInstruction and the task
Acq Instruction.



Tasks Period WCET deadline | Priority
(in microsecond)

Monitoring (1) |200000| 60 200000 1
Acq PWM (2) | 20000 | 24 10000 7
Transmit Grd (3) | 50000 | 3360 30000 5
Deliver Cmd (4) | 20000 40 10000 6
Navigation (5) |250000| 560 140000 2
ReguleAttitude (6)| 60000 | 32400 60000 4
Acq GPS (7) 250000| 100 |L=120 160 11
Acq IMU (8) 20000 96 L=3 720 10
Acq Instruction(9) | 100000| 12 L=10 80 12
TreatGPS (10) |250000 | 3000 5000 9
TreatiIMU (11) | 20000 900 7500 8
Treatl?lsguction 100000 | 900 70000 3

Tablel: task system of the UAV

The Figure 3 presents a model of a serial transaction,
L; instances of the acquisition of a part of a frame are
separated by a duration corresponding to the arrival rate
of the packets (Acq GPS, Acq IMU, Acq Instruction),
and a longer task is used to handle the whole frame
(TreatGPS, TreatIMU, Treatlnstruction). In a serial
transaction, the acquisition tasks are usually short,
because they only have to bufferize the packets until the
whole frame is built, while the treatment tasks are longer
since they have to deal with the full frame. Moreover,
the first release of the serial transaction is not known
precisely because serial transaction is activated by an
external peripheral.

; D
A Pi P in ||
< >

l‘lz_ ............. ]II?|_| _
< |T_, >

\ 4

Figure 3 : pattern of serial transaction

In order to define a serial transaction as a particular
case of a transaction, let us first give a survey of
definitions and results found in [Tin94][TN04a][PG98].

3. Transactions

The model of tasks with offsets was proposed by
Tindell in order to reduce existing pessimism of the
schedulability analysis when the critical instant for a task
occurs when it is released at the same time as all the
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tasks of higher priority. Indeed, certain tasks can for
example have the same period and be bound by relations
of offsets i.e. they can never be released at the same
time. A set of tasks of the same period bounded by offset
is called a transaction. A task system is compound of a
set of transactions [PG98][TN04a]:

M={r,Mo... T}

A transaction (see Figure 4) ['; contains || tasks

having the same period 7} : I :== <{Tj,..., Tyry}, T>.

A task is defined by Tij = <Cij) Oijn Dij; Jij; Bij) Pij> where
C;; is the worst-case execution time (WCET), O; is the

y

offset (minimal time between the release of the
transaction and the release of the task), in order to
simplify the analysis, we will consider a reduced task

offset (Dij which is always within 0 and Ti: @ i~ O;%T;.

D;j is the relative deadline, J;; the maximum jitter (giving
ty the release date of an instance of the transaction [,

then the task Tij

to+Oj+];), Bij maximum blocking due to lower priority
tasks, and Pj the priority. Without loss of generality, we
consider that the tasks are ordered by increasing offsets

(Dij; in our case, we define the response time as being

the time between the release of the task and the

completion of the task. In the table 3, we have

represented all the transactions of the UAV application.
Let us note also hp;(7,,) the set of indices of the

is released between t;+O; and

tasks of I'; with a priority higher than the priority of a
task 7,, i.e.j0hpi(Ty,) if and only if P;>P,.

A A
A I T
< N
Tiy ) U Ty Tiy Ti3
T_‘ A A T_‘ i
v 1y v v [y R
il <€ Di3 Iq
<
?,
D

Figure 4: model of tasks with offsets

The RTA method is to be applied on each task of the
transactions. The task under analysis is usually noted
T, - Tindell showed that the critical instant of 7,, isa
particular instant when it is released at the same time as
one task of higher priority in each transaction (its own
transaction being handled separately). The main
difficulty is to determine what is the critical instant
candidate 7,, of a transaction [; that initiates the

critical instant of 7,,. An exact calculation method
would require to evaluate the response time obtained by



Transactions Period tasks WCET Offset deadline| Priority Release for execution ” wors-
Case response time
1 200000 11 200000 0 200000 1 56156
2 20000 21 10000 0 10000 7 11332
3 50000 31 30000 0 30000 5 23784
4 20000 41 10000 0 10000 6 11672
5 250000 51 140000 0 140000 2 56096
6 60000 61 60000 0 60000 4 54636
7i(i=1,...,120) | 100 | O; =@ —-1)*160| 160 11 124
7 250000
7121 3000 120160 5000 9 3408
1-82- - 720 - 2¥72 2 1 468
o 20000 81 -82- 83| 96 [0— 720 720 720 0
84 900 3%720 7500 8 10720
9i(i=1..10 12 | Oy =(-1)*80 80 12 12
9 100000 iG=1-10) b =D
911 900 10*80 70000 3 55416

Table 2 : representation of all the tasks of the
configuration using the symbolism of
transaction and values of worst-case response
time with “release for execution” method

carrying out all the possible combinations of the tasks of
priority higher than 7,, in each transaction and to
choose the task 7,.in each transaction that leads to the

worst response time. This exhaustive method has an
exponential complexity and is intractable for realistic
task systems; several approximation methods giving an
upper bound of the worst-case response time have been
proposed.

Upper bound method based on the interference
“released for execution”

[Tin94][PGY8] Let us note 7, the task of I'; that
coincides with the critical instant of 7,,. Let us note
W,.(t,,,t) the interference of I'; on the response time of
Ty during a time interval of length t.

t*
— Eij
7 )\ | T

W (1= %

{ =t - phase (T, Tie)
phase (T, T;.) = (Oj; - O;; ) mod T;
£ represents the time during which T; can interfere with

Tua
Letus note A (7, ,l;,t)=maxW (1, ,1)
cr;

ua >

The upper bound of the response time is obtained by
iteration : R%, =C .
ROV =Ct Y AG TR

ror
The value of R, is thus obtained by a classic fix-point
iteration lookup.
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The interference that a transaction imposes on a task
can be represented by a periodic and static pattern.
[TNO4a] proposed an optimisation of the computation of
the interference. This technique consists in storing in a
table the parameters of the interference function of a
transaction on a task of lower priority. This approach
reduces the computation time but this method does not
reduce the difference between the real worst-case
response time and the upper bound obtained. Therefore,
we couldn’t validate our system with the general method
because the tasks (2), (4) and (11) have a worst-case
response time greater than their relative deadline; while
the real worst-case response time of all the tasks of the
set could in fact be lower than their deadline. (see
Table2).

We thus present a method given in [TN04b] giving a
tighter upper bound.

Upper bound method based on the “imposed”
interference

This method has been proposed in [TNO04b]. It
removes the unnecessary overestimation taken into
account in the computation of the interference created by
a task on a lower priority one. This overestimation does
not have any impact in the case of tasks without offset
but has a considerable effect in the approximation of the
worst-case response time when we are in the presence of
tasks with offsets. This method consists in calculating

the interference effectively imposed by a task 7; on a

task 1, with a lower priority during a time interval of
length t; the idea is that the interference cannot exceed
the interval of time t.

dInterférence b 3) . dt

dt dt
In order to calculate this “imposed” interference,
[TNO4b] subtracts a parameter x (see Figure 5) from the
original interference formula:




Wiﬂ (TMH’ t) = Z

t*
—[+1|0C, -x._ (¢
/thl«rm,)[ﬂ];J J Y 'CJ( )J

t" =t - phase (T, T,.)
phase (t;,7,)=(0;-0,)) mod T,
x (= {0 . .
icj max (0, C;-(t" mod Ti)) fort =20
xl,cj(t) corresponds to the part of the task 7, that

cannot be executed in the time interval of length t; since
this interference is not effectively imposed in this
interval, it is not taken into account.

Example: this transaction has 4 tasks with period T; =50

0], 0

P
Figure 5: “imposed” interference

bttt

i ::<{Til’ri2’ri3’ri4}’50 >
T,:=<2,0,4,0,0,4>
T.,:=<4,4,8,0,0,2>
T,:=<2,11,5,0,0,3>
r;4:=<4,16,15,0,0,1>

l

Wil(T,5)=2-0)+(4-3)+(0-0)+(0-0)=3
For determining the upper bound of the response-time,
we use this function :

W(r ,t)= max W (1,,,t
l( ua ) CDhPi(T ) lC( ua )
ua

With the value of each W;(r,,.?), the response time
calculated.

R =Cpy+ Y W10 Rl) - Ryq s obtained by fix-
r;ar

R, ofT,, can be

point iteration starting with R° =C, . Let us execute
this method on the example (Figure6)

Figure 6.Example for imposed interference

In the transaction I';, we have five tasks. Let us consider
a lower priority task 7, with C,, =5. Let us calculate
the response-time. We present at first the details of
iteration number 2:

Iteration 2:

Wi(Tye-3) =(2-0)+(2-D+(0-0)+(0-0)+(0-0)=3
Wir(Tyq:5) =(0-0)+(2-0)+2-1)+(0-0)+(0-0)=3
Wiz(T,4,5)=(0-0)+(0-0)+(2-0)+(2-1)+(0-0)=3
Wis(Tyq>5) =(0-0)+(0-0)+(0-0)+(2-0)+(4-3)=3
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Wis(Tyq>5)=(0=0)+(0-0)+(0-0)+(0-0)+(4-0) =4
Wi(Tyq,0) = 4 Ry =9
We give the values obtained in the different iterations :

Tteration 't |\ Wyy| Wiy Wiy Wig Wig W;| Ry
1 0 |0 |0 |O |O |0 |O |5

2 5 13 13 |13 |3 |4 1419

3 9 |5 |5 |5 |6 |5 |6 |11
4 1116 |6 |7 |6 |6 |7 |12
5 1216 |6 |8 |6 |6 |8 |13
6 1317 |7 |8 |7 |7 |8 |13
Consequently, the value of R, is equal to 13.

4- Contribution to RTA of transactions

4.1 Transactions without jitters

In this section, we first simplify the way to compute
the interference [PG 98] for general transactions with no
jitter.

according to [PG98] the interference of a transaction for
a task T;, candidate to coincide with the critical instant is
given by:

Wi (Tya ) = Z (]lfjsgﬂ +7 55’2 (t)) with
Qj0hp (T, )
7Setl Jij +¢ijc C... 15er2 & C::, and
ije ~ T y> tye  — T v’
; i

®Pjjc =(T; +0jj =(Ojc +Jic )N T;

By assumption, the jitter is null, so the interference

is written :
(T} +05 = 0% T
Wie(Tyart) = Z [ / T G+
Djljhpi(rua) - !
1=+ —@a%ﬂcy
T;

By definition, (7; + Oij = 0;.)%T; <T; therefore

t=(T; + 0y = 0; )% T
VVic(Tuaat) =

Y Ohp; (Tya) T, y

Which is equivalent to

(= (L +P; —®, )% T;
B ij ic i
VVic (Tua s t) -

00D, (Tua ) T, g

Let us note ky, ky,..., Kppicuay the indices ordered by
offset of hpi(Ty,) (i.e. p<q => Py, <®Pj,). Since the offsets
are assumed to be lower than the period, (Ti+®;-®;)%T;
correspond to @;-®; if P<®; and (Ti+Py-d;) if
®;<®;.. Hence, separating the formula between tasks




released before and after the critical instant candidate

Tixp, We have :

t_(Ti +cDik- _q)ik )

VV"kp (T”“’t) - Z |V T / I Cik,r +
k;Ohp;(T,q) i

k. <

J P

Z t_(q)ik/ _cbikp)
kjOhpi(T,q)

T ik,
t=(®d, -®,)
s0 VVik] (T”a’t) = Z k]]" . ik;
k;Ohp;(7,,) i
t—-(T.+P, -0
VVikz (Tua,t) :|7 ( 1 lk[ lkz )—‘Cl_k] +
Tl.
t_(q)ikj _cbikz)
Cik.
T J
k;Ohp;(7,,4) i

2k
And so on. Therefore

Vl{kl (Tum t) _WkQ (Tua’ t) =

t_(q)ikl _q)ikl) _ t_(7;+q)ikl _q)qu) c o+
T T iky

1 l

t_(cbikj _(le]) _ t_(cbikj _(Dzkz) c

ik,
KDy (tua) T T ’
k jzkz
Let us analyze now, how we can determine efficiently
the differences between the interference function when
comparing the first task as the critical instant candidate
comparing to another task :

t—(T,+P, -,
{L—‘_{ (7; ik, zkz)—l C, s always

T T

equal to 0 or Cyy; because P;<T;.

The difference is Cy, if and only if :

t%T, >0 and t%T, = (T, + P, -®, )<0,
equivalently %7, (J]0..7, + ch_kl - ch_kz]

For the other tasks interference (i.e. other part of the
sum) :

[|Vt_(q)ikj _(Dik])—‘ _|7t _(q)[k,. _(DikZ)—UC[k s
I I /

always equal to 0 or -Cj because ®;<T;.

The difference is equal to —Cj if and only if :

t%T, —(qukj —®, )<0and t%T, —(qukj -®,)>0
equivalently if':

AT O®, ~®, .0, B, ]
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We can thus calculate Wi (Tyq,1) =Wy, (T4, 1) testing

|hpi(T,.)| intervals.
We will now calculate the difference
ka Ohp;i (T, k ;tkl’VVikl (Tua>1) _Wikp (Tyq»1)

% (Z;Aa’ t) _Wkp (Z;uv t) =

K —(P, _(Dilq)_ 1 —(+®, —D, )
J — J P ' +
e 7 ’
Z 1 _(ch,. _(Dilq)_ __t _(q)ikj _q),kp)
(T, A A §
k2,

The first sum has a value =0 whereas the second has a
value <0. We have :

Difference of +Cij for ki<k, if
t%Ti D]cbik, - cDikl Tz + cDik, - cDikp ] ey
Difference of -Cig for ki=k,, if
t%]; D]cbik/ - (Dikl, "q)ik/ - q)ikl] (2)
Example : transaction of period=19 with 3 tasks (Fig. 7)
T A A 7y =<4,1,6,0,0,1 >
< q T, =<2,7,5,0,0,2 >

- . . I 3,12,6,0,0,3 >
Figure 7.calculation with intervals

Wi - Wj Wi - Wy
10;13] [ os6] [le:1] | Jos8] | Je:14] | Jos11]
If :01 | Gy —Cn | =Cs | Gy Co —Cs
If 01 | O 0 0 0 0 0

Evaluation of Ww(z,,,t) with t=14

Wi (Tyas14) =Win (14,14) = 0+0+0=0

Wit(Tug 14) = Wiz(T,q,14) =0+ C, +0 =2

Thus W;(7y4,14) =W (7,4,14) =9

With this method, it is sufficient to evaluate only
one value of W,.(7,,.t)

4.2 Serial transaction
Let us introduce the definition of a serial transaction:

Definition1: A serial transaction is a transaction with the
following constraints:
Let I'; be a serial transaction,
. nulljitter: Di/TijDri, Jij=0
»  regular arrival pattern p;: LjO[1..|75]], ®;=(-1)p;.
e there are two kinds of tasks :
0 the L=-1 acquisition tasks such that
Tijjon.u == <Ci, G-Dpi, pi» 0, Byj, Pi>;
0 the treatment task Tyry:=<Ci,,Lip;,Din, 0, B

ij» Pin>



o with Cm>ci, Dm>pi, Pm<Pi and
Ti —(Li Epi +Cin) >p, —Cm. This means that the
treatment task is longer than the acquisition tasks,
but is provided a longer deadline and a lower
priority.

Example of serial transaction : (Figure 6)

Definition2 : a task 7, is an intermediate priority task
for a serial transaction [7; if the priority of 7, is lower
than acquisition tasks of I'; but higher than the treatment
task of ;.

Definition3
serial transaction [; if the priority of 7, is lower than
all the tasks of T;.

: atask 1, is a lower priority task for a

The next result relies on the intervals defined in
section 4.1, let us define Ej; as the shift between two
successive tasks of higher priority than the task under
analysis (Figure 8). Let k,k,,....... s k‘ oy (10| the elements

of hpi(rua). We assume that hpl-(rua) is ordered by

offsets values increasing ie &, < Pk, for
J JH
j <‘hpi(rua)‘
Ey=®,  ~® for J <|hpi(r,)| and
E. =T +®, -0,
1‘ hp; (T, )‘ i ik, lk‘ i (Tua )‘

A

R

Theorem 1 shows that for specific patterns of
transactions without jitters where the WCET of tasks are
decreasing and the shifts between successive offsets are
increasing, the critical instant of a task always coincides
to the first instance of the transaction. The acquisition
tasks of a serial transaction follow this kind of pattern,
therefore the critical instant of a task of an intermediate
priority (lower than acquisition tasks but higher than
treatment task) always coincides with the first
acquisition task.

Theorem 1 : let I'; be a transaction, 7,, a task under

Figure 8. [llustration of E; and theorem 1

analysis. If the jitters are null and if the tasks of I'; are
such that their WCET are decreasing, ie. C;=Cj
0@<k)Uhpi(ty,), and offset shifting are increasing i.e.

E; < Ej 4y for j<|hp(z,,)|, then the critical instant of

Tua coincide with the release of the first task of hpi(Ty,) -

Proof: the proof is based on the interferences.
According to the definition of Ej;, Z Ej; =T;. For this
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proof, we use the method of calculation presented in
section 4.1. In this section we have shown that the
difference of interference between a candidate k,, and the
candidate k; was obtained for every k;lhpi(T,,) by :

Difference of +Ciyj for ki<k, if

1%, D]q)[k/ _q)ikl"T[ + q)ikj - q)[k”] )
Difference -Cig for ki=k, if
(%L, 00, ~®, .0, ~®, ] @)

Let us analyze these intervals in the context Cj
decreasing and Ej increasing ; let us compare the
candidates k; and k5 :

ki=k; | Difference +Ci for

%I 1J0..T; + cDik, - (Dikz]

ie. for t%T; LN|0..T; — Ey. 1,

let us note Iy, this interval

ki=k, | Difference of —C;, for

t%T, D]O..q)ikz - (Dik] ] ie. for
t%T; El]O..El-k1 1,

let us note Iy this interval

ki=k; | Difference of —Cj; for

1%T, D](Dik3 - (Dikz "cDik3 _cDik] I,

1%T; OBy, - Ej, + Ei, 1,

let us note I3 this interval

ki=k, | Difference of —Cj, for

%0 0P, -, &, P, ]ie. for
1%T; UEy, tEj, to tEy -

1

Elkl + Elkz + Elk3 Tt Eikn_l ]

let us note Iy, this interval
We will prove now that with our constraints, the
intersection of the intervals giving a negative difference
is empty, i.e. there is at most one negative value for any
value of t%T;; and then if t%T; is in an interval giving a
negative value, in such a case we are in an interval
giving a positive value. Therefore, we will prove that
either there is not any difference of interference (neither
negative nor positive) or there is at most one negative
value but in this case there is a positive difference that is
greater or equal to the negative difference (since its value
is Cix1). In the proof, an interval I is < (lower) than an
interval J if any value of I is lower than any value of J.
Liaio< Liaxs because Ei<Eio
Iik2k3<1ik2k4 because Eik1+Eik2SEik2+Eik3 because EikISEild

Liokn-1<Likown because

Eik1+Eik2+- . ~+Eikn-2s Eik2+Eik3+~ . -+Eikn—1 because
Eii=Ein-1

Consequently, the intersection of the negative intervals is
empty.

Finally, we will prove that if t is in one of the
intervals Tixi, pron, then it is in the interval Loy .

Let us suppose that t%T;0 Ijox, this means
t%Ti0]Ti-Ey T;[0 {0}



If t%T=0, then t is not element of any interval

In the case t%T;U]T;-E; T;[, we will prove that T;-
Eiq is greater than any other interval Iioijj-s k. It is
sufficient for this proof, since the intervals are
increasing, to prove that T;-E;2E+Eio+...7Ein1- So,
we have to prove that T; = 2E;+E;o+...7Ej, 1; since by
definition T=Ei+Eix*...tEy,, therefore we have to
prove that Eik1+Eik2+--~+Eikn-l+Eikn2 2Eik1+Eik2+--~+Eikn-
1, this is true because Ey,=Ey.
Let us generalize to a task k;, of the serial transaction:

ki=k, Difference +Cy, for
t%T, 0)0.T, + &, - (Dl.kp lie.  for
t%T; LN0..T; = (Ejg, * Ejg, * o+ Eyge )]
since T=ZEj

t%T; D]O..Eikp + Eikp+1 to At Ey )]

let us note I, this interval

ki=k Difference +C;, for

1%, D]cbikz _cbik] T +cDik2 _cbik ]

P

i.e. for
t%T; UlEj - T; = (Ejgey + ..+ Ejg )]

since TiZZEij
t%T; Ol Ejy - Eig + Eyge, + Eig ot Ejg
let us note Iy, this interval
ki=k, Difference of —Cj, for
t%T, 1]0.®, —P, ]ie. for
J
1%T; 0. Ey, +... +Eikp_1 1,

let us note Ly, this interval
Difference of —Ci,+ for

%7, D]q)ikpﬂ _q)ikp"q)ikpﬂ _q)ikl]
i.e. for [%Ti D]Eikp "Eikl +"'+Eikp ] ,

k_] :kp+ 1

let us note Ly, this interval

ki=k, Difference of —C;, for

(%7, O, —®, .0, —O, ]

ie. for
t%T; OlEj, + B, +-

+ Eik,

L Eg ¥ Eg +Ep 4o+ Ey ]

let un note Liyy, this interval
The proof uses the same way as before, except that for
the general case, we show that there are always at least
as many positive interval than negative intervals. Since
the WCET cannot decrease, and since the positive
intervals correspond to the first tasks of the transaction,
the positive difference is always greater or equal than the
negative difference.

b t%TiD]O..Eikl] . t%TiDIikpkl and t%TiDIikpkpp and
Okg>kp, t%Ti0lipkq because the lower limit of these
intervals is greater than Ej,>Ey;. So, there is at least
one positive interval (giving a difference of C;;) and
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at most one negative interval (giving a difference of
Cip) and since  C;;2Cy,, we obtain Wi (Ty,
t%TiD]O..Eile- Wip (Tua) t%TiD]O..Eikl])ZO

® t%TiD]Eild" Eik1+Eik2] . t%TiDIikka (positive
intervals), t%T;OLyg., (negative interval). It is
possible that t%T;0 Ly, (negative interval), but in
this case, t%TillpL (positive interval). On the
contrary, Uk >kyy1, t%Ti0lpkq because EjptEigi=
EiqtEi;. Since the execution times are
nonincreasing, we have W;j(Ty, t%T;0]Ey..
EiitEia])- Wip(Tus, t%Ti0]Ei .. B tEi:])20

e the same reasonning can be lead on the other
possible intervals for t%T; for every interval of
length Eikj,

O

5- Validation of the case study

Theroem 1 implies that in order to analyse an
intermediate priority task, it is sufficient to test its
response time when it’s released at the same time as the
first task of the serial transaction to obtain its tight worst-
case response time with a classic response time analysis.
Note that this theorem cannot be applied to a lower
priority task, because the condition “decreasing WCET”
is not satisfied in this case.

Let S be a set of transactions.

Let 7,, be a task of S under analysis with execution

time equal to C,, .

Let us note Ap(T,, )the set of serial transactions in S
such as7,, is a lower priority task. Let us note it(7,,)
the set of indices of serial transactions in S such as 7, is

an intermediate priority task .

By applying Theorem 1, the interference applied by
the serial transactions whose indices belong to i#(7,,,) in
a time interval of length t does not need any specific
study related to transactions. It is given (tight upper
bound) by:

t . t%T]-
z — E/‘ +min ,L/- BC]-
T pj '

JOit(T,,) J

. t
In this formula, {F‘ represents the number of
J

periods 7, completed in the time interval of length t;
1%T;
pj
acquisition tasks activated in the remaining time( %7, ).

We still need to use the technique defined in [TN04b] in
order to study the interference of the serial transactions
whose indices belong to /Ap(7r,,), leading to a

and minlr ],L ;| represents the number of

pessimistic upper bound, but allowing us to validate the
case study (see Table 3). This application is valid



because in the table 3, we can see that for all the tasks,
the worst-case response time is lower than the deadline.

Worst-case
Tasks| Period (deadline | Priority response time
1 200000 | 200000 1 56156
2 20000 10000 7 6532
3 50000 30000 5 15532
4 20000 10000 6 6572
5 250000 | 140000 2 56096
6 60000 60000 4 54636
7 250000 160 11 124
8 20000 720 10 468
9 100000 80 12 12
10 250000 5000 9 3408
11 20000 7500 8 5620
12 100000 70000 3 55416
Table 3: Worst-case response time

calculated with serial transaction method

6— Conclusion

In this article, we have presented a new task model:
the serial transaction. A serial transaction [; is
compound with L; short but urgent acquisition tasks
activated each time a serial packet is received, and a less
urgent but longer treatment task activated when a whole
frame is received.

The number of acquisition tasks can be important
(more than 120 in a real case study) and makes the exact
calculation of response time intractable. Moreover,
overestimating the worst-case response time of the
urgent acquisition tasks wouldn’t allow the validation of
a task system.

After simplifying the way to evaluate the interference
of a transaction and finding the critical instant candidate,
we have shown that for tasks of intermediate priority, the
critical instant always coincides with the release of the
first task of the transaction (Theorem 1) . This new result
allows us to calculate an exact worst-case response time
for intermediate priority tasks (usually most tasks of a
system), while we still use the method proposed in
[TNO4b] for the tasks of lower priority than a whole
serial transaction. Our future work is generalizing the
theorem 1 to a larger case of transactions called
monotonic transactions. Moreover, an extension of this
theorem taking jitters into account is investigated.
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Abstract

The MatPLC is an open-source industrial control
application, consisting of a core, generic modules, and
tools for creating custom modules. Since many control
and monitoring systems require strict time determinism,
hard real-time capabilities were added to the MatPLC.
The paper includes an outline of the MatPLC's
architecture, and details the design changes required to
add the hard real-time capabilities to the MatPLC
framework. The execution times of the real-time version
of the MatPLC were measured and analysed.

1. Introduction

The technology used in PLCs (Programmable Logical
Controllers) have evolved with the times, to the point
that many modern top of the range PLCs are actually full
fledged computers in disguise, executing modern
operating systems. More importantly, and in order to
take advantage of economies of scale, many PLC
vendors have started to adopt hardware similar to PCs
(Personal Computers).

The MatPLC project was started with the intention of
eliminating the lock the vendors have on the end-users,
by taking advantage of open standards as well as open
source operating systems running on the de facto
standard PC platform. It has currently been successfully
tested on a DIN rail mounted PC platform marketed by
SixnetlO. Most industrial communication networks are
supported (Modbus, Devicenet, Profibus, ASI, etc.),
either directly or through the use of a network interface
card manufactured by Hilscher. Software standards are
also being taken into account. Currently the project
includes a compiler for the IL (Instruction List) and ST
(Structured Text) programming languages defined in IEC
61131-3.

Many industrial control applications require
deterministic behaviour not only from the control
algorithm, but also in the time domain. In order to be
able to support these applications, it becomes necessary
that the MatPLC's framework and the implementation
itself be augmented in order to provide real-time
guarantees. This paper discusses and details the design
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changes to the MatPLC framework, and the
implementation effort of porting the MatPLC to a real-
time platform. The small standard demo was run on the
new real-time capable MatPLC in order to evaluate and
validate this new version.

2. MatPLC Overview

The MatPLC [1-3] is an open-source control
application, composed of autonomous but cooperating
modules that execute in separate user-space processes,
and access a common shared state stored in shared
memory. Each of these modules is free to decide whether
or not to execute in a standard PLC scan loop, which
means that the industrial control application may be
developed wusing either asynchronous programming
common to most PLCs, or synchronous programming
common to most other computer architectures. Both
methods may even be used simultaneously, as long as
they are not mixed within the same MatPLC module. The
application builder may choose to let the modules
execute autonomously, or to synchronize their activities.

Access to all shared resources is made through the
MatPLC library routines which offer PLC-like semantics
for the modules that wish to use them, such as inputs that
only change at the beginning of the logic and outputs that
are only written at the end of the logic. The library is
divided into several sections (Fig. 1):
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Figure 1. MatPLC Architecture, showing a
selection of modules in the top part and
the sections of the library in the bottom.



+ configuration memory manager (cmm) - manages the
shared memory area that stores core configuration
data, guaranteeing that all modules share the same
configuration;

+ global memory manager (gmm) - manages the shared
memory area used to store the state of the plc points;

+ synch section - handles the synchronization between
modules;

+ period section - enforces scan loop timings;

» state section - handles module execution state;

+ configuration section - parses the configuration files;

+ log section - allows every module to produce log
messages in a consistent manner. These are
timestamped and written to a logging file.

A more detailed explanation of the internal
mechanisms used within the more complex sections
follows.

2.1.The Configuration Memory Manager

The cmm is used by the other sections to store the
current configuration of the PLC. For example, the synch
section stores how the modules should synchronise their
execution amongst themselves, the gmm section stores
the location of named PLC points, while the state section
stores the identification of the synchronisation point
being used to control the PLC run/halt state. The use of a
shared memory location instead of a configuration file
(that may be changed between the launch of two
modules) guarantees that all modules use the same
configuration. Every access to the configuration memory
area is made through the cmm library section.

Several MatPLCs can run simultaneously on the same
system. Each is distinguished by the configuration
memory area it uses, which is identified by a unique
number. When a module is launched, the identity of the
MatPLC to which it should attach is specified as a
command line parameter.

2.2.The Global Memory Map

Since the MatPLC architecture hinges on the
simultaneous execution of several modules, every access
to the global memory map by a specific module must be
made to be atomic with respect to the other modules.
Several modes are available for enforcing this constraint
(Fig. 2), none of which is optimal for all possible
scenarios in which the MatPLC is expected to be used.
The application builder may choose any of the access
modes for each executing module.

For the default 'local' mode, a local copy of the
memory map is created for the module (Fig. 2 - Module
B). When a module accesses a plc point, it is actually
accessing its local memory map. Local and global
memory maps are synchronized by calling the
plc update() function, which is protected by a
semaphore, providing atomic updates with respect to
other modules.
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Figure 2. Synchronization of gmm memory
maps (local, isolate and shared)

The second mode, ‘isolate' (Fig. 2 - Module C),
completely isolates the module from the shared memory
used by the PLC, and is mostly used by untrusted
modules (e.g. still in a debugging stage). It uses sockets
to forward the plc update() function call from the
module to the proxy, introducing significant overhead.

The third and last mode, “shared' (Fig. 2 - Module A),
assumes that simultaneous access to the shared map will
never occur, and therefore gives the module direct access
to the global memory map with no synchronization
enforced. This may be guaranteed if all modules are
running a scan loop with each loop executing in turn
(possible due to the synch section, described below), or
if the modules access disjoint portions of the global map.

2.3.The Synch Section
The synch section allows the application builder to
specify the sequence of execution of the running

P1

T1 —» Mod:%leA beg.

2 4— ModuleA end

7
—— T3 —» Mod leB beg.

J T4 €4— ModuleB end

Figure 3. The synchronization model with
an example Petri Net.



modules. This is achieved by specifying a Petri net,
taking into account that particular synchronization points
in each module (usually beginning and end of scan, but
optionally others) are associated with the firing of a
transition. When such a  synchronisation point is
reached during the module's execution, the module
blocks until the transition fires (assuming it cannot fire
immediately). Note that a transition will not fire unless a
module is waiting on it; in this the semantics differ from
those of a standard Petri net.

The synch section leverages the standard SysV
semaphores to simulate the synchronization Petri net,
using a single SysV semaphore set, with a semaphore for
each place. Each transition is implemented by
simultaneously ~ waiting on all the appropriate
semaphores, a functionality of SysV semaphores not
supported by POSIX semaphores.

2.4.The Period Section

This section enforces maximum scan rates for each
module. It uses POSIX timers to set an alarm that goes
off at every multiple of the desired scan period, at which
time an alarm counter is incremented. When a module is
ready to start a new scan it decrements the alarm counter
and continues with the scan. If there are no outstanding
alarms, the scan is delayed until the next alarm goes off.

2.5.The State Section

This section of the library handles RUN/STOP modes
both for the MatPLC as a whole and for each module
individually. A module will only execute a scan if both
the whole MatPLC and the module itself are in RUN
mode.

In order for these modes to work correctly with the
synch library, they are implemented by adding hidden
places to the synch petri net. These places are connected
with arcs to the begin of scan synch transitions in such a
way that the transition will only fire if both the PLC and
the module are in RUN mode, with the tokens being
replaced after firing. A module is thus able to atomically
verify the conditions required by both the state and the
synch sections.

2.6.MatPLC Modules

Currently the MatPLC comes with several modules,
which may be grouped into I/O (Input/Output) modules,
logic modules, and human interface modules.

The I/O modules interface with physical devices
through either local or remote digital and analog 1/O.
Modules are provided that allow access to local I/O cards
based on the Intel 8255, a PC's parallel port, and all
cards supported by the comedi [4] library. Support for all
main fieldbus networks (Devicenet, ASI, Profibus, etc.)
is achieved through the use of network cards made by
hilscher [5], besides the three modbus variants that are
also supported directly by a specific MatPLC module.
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Logic modules include a DSP (Digital signal
Processing) module that implements PID loops as well as
digital filters, and a compiler that generates modules
from control programs written in the standard text based
PLC programming languages (IEC 61131-3 IL and ST
[6D).

Human interface includes graphical interfaces based
on the gtk and the tcl/tk libraries, as well as a text based
interface module based on the curses library.

3.Real-Time MatPLC

In order to support RT (Real-Time) applications, the
MatPLC framework has been augmented to become
time-deterministic. This is achieved mainly by adding
support for the concept of RT modules through the use of
execution priorities.

In fact, and considering that a real-time control
application is commonly composed of both hard (e.g.
control) and non-hard real-time (e.g. graphical interface)
components, it makes sense to re-use the existing
modularity of the MatPLC to support the modularity of
RT applications. The components of a RT application are
therefore expected to be mapped onto MatPLC modules,
which means that the revised MatPLC framework
therefore must support modules with RT characteristics.
Additionally, the MatPLC's core library routines had to
be revised so that non-RT modules do not cause undue
interference and blocking on the RT modules.

The concept of RT modules was therefore added to
the MatPLC framework. These modules are largely
identical to traditional MatPLC modules, but augmented
to provide deterministic behaviour. This is achieved by
allowing the user to specify a fixed execution priority for
each RT module, as well as by eliminating potential
blocking due to memory page swapping by the operating
system's memory manager. All sections of the MatPLC's
core were also analysed in order to remove any potential
interference and blocking between the RT and non-RT
modules.

Since the MatPLC runs over an operating system, the
above functionality not only requires support from the
operating system, but also assumes that the operating
system itself is time deterministic. The MatPLC was at
first coded on a non real-time version of Linux, therefore
creating a RT version of the MatPLC required that it be
first ported to a RT operating system. In order to
maintain the most portability, it was decided to code the
RT version of the MatPLC to the RT POSIX standard
[7]. As no version of RT Linux was at the time
completely RT POSIX compatible, QNX was chosen as
the first target operating system.

3.1. CMM and GMM Sections

The cmm and gmm sections each use shared memory
during run mode, and a single semaphore each for
controlling access to those memory sections. However,



unlike the access to the cmm memory area which is only
made during initialization, access to the gmm memory
area is made during run-time by modules which may be
executing under differing priorities. This introduces the
possibility that unbounded priority inversion may occur.
To work around this a scheduling protocol that bounds
priority inversion (e.g. PCP — Priority Ceiling Protocol
[8]) has to be used.

The original MatPLC implementaion used SysV
sempahores to synchronise the access to the gmm
memory area when using the 'local' access mode.
Unfortunately SysV sempahores do not support priority
inheritance  protocols, and neither do POSIX
semaphores. The only available option is to use POSIX
mutexes, which do support PCP and similar scheduling
protocols, but however are not mandated by the POSIX
standard to work between threads residing on seperate
processes. For the MatPLC, with each module running
under a separate process, mutex synchronisation between
processes was a requirement, otherwise a big revamping
of the MatPLC framework would have to be attempted.
Fortunately QNX allows mutexes to be used between
processes, so the revamping of the MatPLC framework
was not required.

Considering that mutexes had to be wused for
synchronising RT MatPLC modules, and that the
mutexes with inter-process capability may not be
available under all POSIX compliant operating systems,
to have a truly portable MatPLC it became necessary to
re-implement the gmm synchronisation to use either
POSIX mutexes, as well as POSIX semaphores. Since
the SysV semaphores were already being used, and two
new options were also required, it was decided to
encapsulate the synchronisation mechanism in a
plc_mutex abstraction, which is mapped onto one of the
three available options at compile time. The RT verson
of the MatPLC, currently running on QNX, uses the
POSIX mutex version to synchronise the access to the
gmm shared memory, and configured to use the priority
inheritace protocol.

Both the POSIX semaphore and the POSIX mutex
variants require that the semapore/mutex be placed in
memory that may be accessed simultaneously by all
processes that synchronise to that semaphore/mutex. A
cmm memory block was wused to store the
semaphore/mutex since the memory managed by the
cmm is shared between all running MatPLC modules.

In the gmm ‘'shared" access mode no explicit
synchronisation between the processes accessing the
gmm global memory map is attempted by the gmm
section. The processes are expected to either access
disjoint areas of the memory map, or to never execute
concurrently (which may be enforced by the synch
section). This means that the gmm section does not make
use of any synchronisation mechanism when in 'shared'
access mode, and therefore did not require any changes
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to become time deterministic and RT ready when in this
mode.

Another issue stems from the sockets used by the
‘isolate’ mode of the gmm section, which introduce
additional overhead which is difficult to impossible to
evaluate, and therefore cannot be used in a RT
deterministic setting. For this reason, support for the
'isolate' option under a RT MatPLC has for the moment
been deferred to a later date, but most likely never.

Although it is not strictly necessary to support priority
inheritance in the synchronisation mechanism used to
control access to the cmm (only accessed at start-up of
each module), the cmm itself now also uses the
encapsulated plc_mutex that was created specifically for
the gmm, making it safe to access the cmm after start-up
if it ever becomes necessary. This potential future access
would however not be entirely innocuous due to the
additional bounded blocking that it would introduce to
the RT MatPLC modules.

3.2.Synch Section

Before implementing RT behaviour on the MatPLC,
the synch section had been originally implemented using
SysV semaphores, making extensive use of their richer
semantics; simultaneous and atomic waiting and posting
on the same semaphore, or on different semaphores in
the same semaphore set.

Since no RTOS currently supports SysV semaphores,
this section had to undergo significant changes. As with
the gmm section, it was decided to maintain the SysV
implementation since it has higher execution speed and is
therefore preferable when SysV semaphores are available
and no RT requirements are necessary. Once again the
SysV semaphore version was encapsulated inside a
plc_synchsem abstraction (implemented as a library) that
provides the same semantics as SysV semaphores.

Two new versions of the plc synchsem were
implemented, one using POSIX semaphores and the
other using POSIX mutexes. The version to be used is
decided at compile time depending on the
synchronisation mechanisms supported by the operating
system being used, as well as the RT requirements.
Special effort was made to eliminate unbounded priority
inversion and blocking in the two POSIX variants,
especially on the POSIX semaphore version since only
the POSIX mutex version provides automatic bounded
blocking through the wuse of priority inheritance
protocols. This means that the POSIX semaphore variant
may also be used in a RT setting, although it may be a
little slower.

For both POSIX variants a plc_synchsem consists of a
data structure with the following shared data elements:

1. an array with the current value of each emulated
semaphore in the semaphore set,

2. a list of processes currently blocked trying to
synchronise to the semaphore set,



3. and a semaphore/mutex to control the access to the
above data structures.

Additionally, each process that will synchronise to a

plc_synchsem also has a private semaphore

(condition variable on the POSIX mutex variant) on
which it will block, waiting to be release by another
process.

The synchronisation algorithm for synchronising with
a plc_synchsem follows the following steps:

1. lock the shared semaphore/mutex of the
plc_synchsem;

2. verify if the conditions the calling process specified
for synchronising are met; if false go to to 3, else go
to 4.

3. add the process to the decreasing priority ordered list
of currently blocked processes, release the
semaphore/mutex locked in step 1, and then block on
the private semaphore (or he condition variable for
the POSIX mutex variant). When this process
becomes unblocked (through the actions of another
process executing step X), simply return.

4. make the required changes to the value of each
semaphore in the plc_synchsem set.

5. Run sequentially through all processes (by decreasing
priority) that are currently blocked and check whether
the new semaphore values allows the process to
become unblocked. As soon as the highest priority
process that may become unblocked is found, then
remove that process from the blocked processes list
and (a: POSIX semaphore variant) add it to a list of
processes to be unblocked later or (b: POSIX mutex
variant) signal the private condition variable on
which the process is blocked, and go to step 4.

6. The current semaphore values do not permit the
unblocking of any further processes, so (a: POSIX
semaphore variant) run through the list of processes
to be unblocked and unblock them in decreasing
priority order by signalling the private semaphore on
which each process is blocked, or (b: POSIX mutex
variant) do nothing.

7. release the semaphore/mutex locked in step 1.

For the POSIX semaphore version the above
algorithm releases the processes in decreasing priority
order so as to eliminate the possibility of priority
inversion and unbounded blocking. If this were not done,
the release of a mid-priority process may create the
conditions to release a higher priority process. If the mid-
priority process is released by a low priority process (i.e.
the process that is synchronising with the plc_synchsem),
then the mid-priority process will pre-empt the low
priority process and therefore delay the unblocking of the
high priority process. This occurrence would lead to
unbounded blocking of the higher priority process, which
is not desirable in RT systems.

For the POSIX mutex version it is no longer necessary
to release the processes in decreasing priority order since
the signalling of the private condition variable does not
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immediately release the blocked process. All blocked
processes whose private condition variables were earlier
signalled are only released simultaneously and atomically
at the same time the global shared mutex is released in
step 7, therefore eliminating the possibility of priority
inversion occurring.

3.3.The New RT Section

A new section was added to the MatPLC core library
to add support for the RT specific configuration
parameters — process priority and memory management.

The new RT section basically sets, at module start-up,
the priority of the process running each module to the
priority requested by the wuser in the MatPLC's
configuration file, and sets the scheduling algorithm to
the POSIX fixed priority SCHED FIFO. If no explicit
priority is specified by the user, then the default
scheduling algorithm is left unchanged, as is the initial
priority.

Besides the priority, the RT section also configures
the way the memory used by each module is managed by
the underlying operating system. If at least one module is
configured to run under RT priority, then that module, as
well as all the others, are configured by this section to
run with their memory locked to RAM, and with
swapping to disk disabled. Note that it is not sufficient to
lock the RT modules' memory to RAM, as these modules
may experience bounded blocking from the remaining
modules through the mutex used by the gmm. This means
that even non-RT modules may at some intervals execute
under an inherited RT priority, so in order to avoid
undue delays, all modules must have their memory
locked to RAM.

3.4.Log Section

The log section currently writes all logs to a user
configurable file during run time. Since the most
probable is to have the file residing on disk, file access
times are not deterministic. Therefore this section also
needs changing in order to support RT guarantees.
Although no change has yet been attempted, it is
expected that in the future RT version of this section all
logs will be sent to a RT FIFO/message queue, where
they may be later removed by a non real-time logging
process. This process may then send these logs to a file,
to a terminal or even to the UNIX system log.

For the moment RT modules may not produce any
logs during run time so as not to introduce unbounded
delays. Another option is to configure the logging file on
a memory mapped file system where file access times are
more deterministic.

3.5.Modules

Since the bulk of the code in the MatPLC is in the
modules, one would expect that they would require the
bulk of the porting effort. This, however, does not appear



to be the case. The majority of modules fall into two
classes: those which are never going to be real-time (file
loggers, graphical user interfaces, etc.) and those which
require no change at all or very little (e.g. DSP module,
modules generated by the IEC 61131 ST/IL compiler).
This stems from the fact that the RT modules only
execute asynchronous logic, with all synchronization
activities residing in the MatPLC library calls that were
already discussed above. However, these modules do
need to be linked to time deterministic versions of the C,
thread and maths libraries.

The only exception to the above broad division are
the I/O modules, which do require significant work. In
order to operate in real-time, such modules may only
make use of time deterministic hardware drivers, besides
being themselves time deterministic.

This means that currently no networked I/O may be
accessed with deterministic time, including the I/O on
fieldbus networks since the the device driver for the
hilscher cards is not available for the QNX operating
system on which the RT MatPLC currently runs.

4. Test and Evaluation

4.1.Experimental Set-up

The resulting RT MatPLC implementation was tested
on a personal computer with a 350 Mhz Pentium II and
320 Mbytes of RAM, running the QNX 6.2.0 operating
system. The basic demonstration set-up was run,
consisting of two modules: a text based human interface
module, and a logic execution module written in C. The
logic module simply switches on one out of four 'lights'
in sequence, while the text mode interface displays the
status of these four 'lights'. Both modules ran
asynchronously and used the 'local' method of accessing
the gmm memory map.

With the above set-up, a measurement was made of
the time elapsed between the beginning of two
consecutive scans of the logic module. This time
differential was measured for 25000 scan cycles of the
logic module, and saved to memory during the
experiment so as not to disturb the measurement itself.
Only at the end of all measurements were the results
stored to a file on disk.

The time itself was measured using the clock counter
present on all Intel compatible CPUs, and read using the
rdtsc assembly instruction. This counter internal to the
CPU counts the number of clock cycles since the CPU
was switched on. On the 350 Mhz CPU this counter
presents a resolution of 2,85 ns.

4.2.Results

The demo was executed twice: the first run with both
modules executing with the default (non RT) execution
priority and scheduling algorithm. The second run had
the logic module running under a higher priority, and
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using a fixed priority FIFO scheduling algorithm. The
results are presented in the following figures.

As expected, when running under non-RT priority the
execution period has high variability and suffers from
large jitter, whereas with a high priority the execution
period becomes more periodic.
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Figure 4. Execution times when running
under non real-time priority
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Figure 5. Execution times when running
under high real-time priority.

5.Conclusions

In order to be able to support control applications
with strict time constraints, the MatPLC's framework and
the implementation itself were augmented in order to
provide real-time guarantees.

The MatPLC's modularity meant that the framework
did not require significant changes, merely requiring the
concept of real-time modules. The code itself is also
highly partitioned, with most synchronisation functions
limited to the MatPLC's core library. In this library, the
gmm, cmm and the synch sections required most
attention in order to eliminate any possibility of
unbounded priority inversion. A new RT section was also
added to support the configuration of RT modules.



The small standard demo was run on the new real-
time capable MatPLC in order to evaluate and validate
this new version.

Code for the MatPLC can be obtained from the
project's cvs server and on the website, http://mat.sf.net.
The Real-Time version of the MatPLC has been merged
with the main project, and may be obtained from the
same location.
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Abstract

The Worst-Case Execution Time of tasks with strict
deadlines must be predictable: it must be possible to
estimate this time both safely and tightly at an
acceptable computing cost. Static WCET analysis is
facilitated if parts of code can be analyzed more or less
independently of one another. This is why it is
desirable to prevent timing interferences between
blocks. In this paper, we show how it is possible to
transform the code to prevent timing effects between
distant basic blocks on an execution path. Our
approach consists in padding the code to space out
basic blocks. Performance results show that the code
size is sensibly increased but that the cost in terms of
WCET degradation is moderate.

1. Introduction

Being able to estimate the Worst-Case Execution
Time (WCET) of tasks is absolutely necessary for hard
real-time  systems. Measurement is  generally
inadequate because it cannot be guaranteed that all the
possible execution paths have been tested. This is why
academic research has focused on static WCET
analysis.

The WCET estimated by static methods should
obviously be safe since missing deadlines can have
dramatic consequences in some critical systems.
However, it should also be as tight as possible: WCET
overestimation can have undesirable effects like the
impossibility to schedule the tasks. It might also lead to
oversized hardware.

Static methods compute an upper bound of the real
WCET by combining information about the possible
execution paths (produced by a preliminary analysis of
the code) and the execution times of the basic blocks.
These times can be determined by a cycle-level
simulator of the target processor.

However, critical applications follow the general
evolution towards more and more computing
requirements. This is why advanced processor
architectures tend to be used in critical systems [16].
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Unfortunately, in a high-performance processor, a
basic block does generally not execute the same way in
the application code as it would do if it was executed
alone. This is due to interferences (data dependencies,
precedence constraints or resource conflicts) with other
blocks on the execution path. To get the worst-case
execution time of a block, these possible interferences
should be taken into account. This is often a very
complex task, as it will be explained in Section 2.

To keep the WCET analysis simple, we have
recently proposed to modify the processor architecture
to eliminate any possible timing effect between basic
blocks [13]. The idea was to space out successive basic
blocks in the pipeline in such a way that they cannot
interfere. The proposed scheme obviously degrades the
performance (in the order of 42% for an 4-way
superscalar out-of-order processor) but the loss could
be acceptable in the name of timing safety. However,
the main problem is that such a processor does not
exist for the moment. This is the reason why we
suggest that the distance between blocks could be
enforced by the compiler instead of the hardware.

Our approach consists in padding the code by
inserting neutral filler-instructions, i.e. instructions that
will not be executed but only fetched and decoded
before being removed from the pipeline (like a true
NOP). The lengths of the padding blocks are computed
so that they eliminate all the possible interferences
between basic blocks.

Note that this work focuses on timing interferences
related to the use of the pipeline and of the internal
processor resources. We do not address here the
question of modeling caches, branch predictors, etc.
This is why we will consider these components as
perfect (i.e. with a very predictable behaviour) in the
evaluation part.

The paper is organized as follows. Section 2 gives
some background information on static WCET analysis
and on the possible timing interferences between
blocks in high-performance processors. It also
overviews related work. We introduce our approach in
Section 3. Performance results are analyzed in
Section4 and concluding remarks are given in
Section 5.



2. Background
2.1. Static WCET estimation

Static analysis techniques add the execution times of
basic blocks on the possible execution paths extracted
either from the syntax tree [8] or from the control flow
graph [6]. For example, the Implicit Path Enumeration
Technique handles the search of the WCET as an
optimization problem where:

- the objective function is the program execution time
expressed as the sum of the basic block execution
times weighted by their respective numbers of
execution. As we will explain it in Section 2.3, it
should also include the possible timing interferences
between basic blocks.

- the constraints are the relations between the unit
execution times. Some of them can be extracted
from the control flow graph, others come from a
preliminary flow analysis and express loop bounds,
infeasible paths, etc.

Evaluating the WCET of the program comes to

determining the numbers of execution of the basic

blocks that maximize the objective function while
meeting the constraints.

2.2. Timing interferences

As mentioned above, the expression of the program
execution time should include inter-block timing
interferences.

For very simple processors, such interferences are
limited to adjacent blocks which overlap in the
pipeline: the execution time of a two-block sequence is
shorter than the sum of their respective execution
times. In that case, all of the timing effects can be
captured by measuring the execution times of blocks
alone and of sequences of two blocks.

However, more advanced architectures make
interferences between distant blocks possible, as it was
shown by Engblom [3]. He has found that a block can
interfere with a distant one, and this kind of
interference is referred to as a long timing effect (LTE).

The execution time of a path can be computed as:

T= Z ti + Z 6]k
ic?B 0<j<.<k<n
where & is the set of blocks (which are numbered
from 0 to n), t; is the execution time of block i and & «
is the timing effect associated to the sequence of
blocks B;...By. This is illustrated in Figure 1.

Sources of long timing effects include block
alignment (i.e. the relation between the number of
instructions in the block and the width of the
pipeline) [12], long latency instructions, data
dependencies, out-of-order execution, limited-capacity
queues, etc.
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Figure 1. Engblom’s timing model

Engblom has shown that long timing effects would
span over unlimited block sequences: at the very worst,
the first block of the program can affect the execution
of the last block. Moreover, a long timing effect value
(&.5) can be negative as well as null or positive. A
negative value should be taken into account to get a
tight WCET estimation, but a positive value must be
accounted for to compute a safe estimation.

2.3. Including timing interferences in WCET
analysis
The original IPET method was developed

considering very simple processor architectures where
only adjacent basic blocks could interfere by
overlapping in the pipeline. The corresponding gain
was seen as the (negative) execution time of the edge
linking the two blocks. Then, the edge execution time
(weighted by the number of executions of the edge)
was taken into account in the expression of the
program execution time. For example, the WCET
model for the control flow graph given in Figure 2
would have been:

max T = xt, + xt, + xt,. + xt + xt,
+ XAEBAB + XECSEC + XCDBCD + XEESEE + XEDBED

1 = Xl—\ = XAE = XE XE = XEC + XEE

XBC = XC = XCD XBE = XE = XED

X, =X, +x, =1

&

Figure 2. Example Control Flow Graph

Now, advanced processor architectures are often
used for real-time systems and long timing




interferences should also be taken into account. We
have found two different approaches in the literature.
The first one, described in [4], extends the original
IPET model to include the long timing effects. For the
example given in Figure 2, the model comes to:

max T = xt, + xt, + xt + xt + xt,
+ XAESAE + XECSEC + XCDSCD + XBESEE + XEDSED
+ XAECBAEC + XBCDBBCD + XABEBAEE + XBEDBBED
+ XAECDSAECD + XABEDSABED
l = XA = XAB = XE XE = XBC + XBE
XBC = XC = XCD XBE = XE = XED
X, = X, + %X, =1
XABC S XAE XABC S XBC XABC ® XAE - XEE
XABE S XAE XABE S XBE XABE ® XAE - XEC
XECD = XEC XEED = XEE
XAECD = XABC XAEED = XABE

This solution weighs the expression of the objective
function down and adds several constraints for each
possible sequence in the execution path. Since LTES
can be as long as complete execution paths, the number
of sequences to consider is potentially very high. Then
the optimization problem might be very difficult to
solve. Moreover, a value must be assigned to the LTE
associated to each sequence of blocks: it must be
computed from the execution times of all the sub-
sequences. At the end, evaluating the LTE values
comes to measuring every possible sequence of blocks,
which is very time consuming in the general case.

Another approach consists in including the possible
timing interferences in the execution times of blocks.
When the target architecture can generate long timing
effects, the execution time of a basic block should be
evaluated by considering all the possible prefix paths
and by keeping the highest value. While simulating
numerous prefix paths could be unfeasible, the use of
the abstract interpretation theory can make things more
tractable [15]. The IPET model is then transformed as
follows, where =, is the execution time of block A
including the possible impact of other basic blocks:

max T = X1, + X7, + X T, + XT + X[T,
1 =x =X =X+ X
X, =X, +x, =1

The algorithm for obtaining the adjusted unit
execution times by abstract interpretation is not much
detailed in papers, but it seems that it necessitates high
computing power [14].

Moreover, including the effects of any possible
prefix path in the execution time of a block leads to
WCET overestimations since: (a) the flow analysis can
find out that some prefix paths are infeasible, and (b)
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some prefix paths might not belong to the longest path
and then should not be accounted for in the WCET. In
the preceding example, < includes the impact of
block B on block D within the sequence BED (while
dgcp Might be null). If the flow analysis determines
that block E is never executed and if dggp is positive,
the WCET will be overestimated. Similarly, if the
execution time of block C is far longer than that of
block E, the longest path is along the path BCD and the
impact of B on D in sequence BED should be ignored.

To sum up, the evaluation of unit execution times is
costly in time for both approaches. The first solution
also makes the IPET model more complex while the
second one introduces some pessimism. These are the
reasons why we are investigating solutions to limit
timing interferences.

2.4, Related work

Li et al. [7] define a model based on dependence
graphs to evaluate the execution time of a basic block
in an out-of-order processor. However, they do not
model superscalar execution and their experiments
consider a very small core. Whether their model would
scale to more realistic processors still has to be further
investigated.

Heckmann et al. [5] use abstract interpretation to
estimate the impact of previously executed blocks on
the execution time of each basic block. This approach
has been implemented in the aiT tool by the Absint
company. While their method is an interesting
alternative to exhaustive measurement (which is
generally not affordable), each unit execution time
includes the effects of all the possible prefix paths,
which might result in WCET overestimations as shown
in Section 2.3. Moreover, it seems that some
pessimistic assumptions have sometimes to be taken to
reduce the number of states. They might also lead to
WCET overestimation.

In a recent work [13] we defined a processor
pipeline where non-adjacent blocks cannot have timing
interferences thanks to a fetch gating mechanism that
enforces some distance between basic blocks in the
pipeline. While this architecture makes the WCET
easily computable by adding the execution times of the
basic blocks among the possible execution paths, this
solution does not solve today’s problems since such an
architecture does not exist yet.

As far as other parts of the processor are concerned
(cache memories, branch predictor), guidelines to make
their behaviour more predictable have also been
proposed as an alternative to build too much complex
models [2][11].



3. Code padding

3.1. General principle

The basic idea of the scheme proposed in this paper
is close to the one that was behind our previous
work [13]. To avoid long timing effects, basic blocks
should not enter the pipeline one after the other: a
certain distance should be enforced between them in
such a way that the execution of a block cannot be
disturbed by a previous block still in the pipeline. We
suggest here that this distance could be enforced by the
way of code padding, using neutral filler-instructions
like Nops. A filler-instruction is not executed and is
removed from the pipeline after decoding. It does not
require any other hardware resource than a slot in the
fetch and decode stages. Some examples of filler-
instructions in real processors will be given in
Section 3.2.

The lengths of the code padding blocks have to be
calculated by analysing the instructions belonging to
basic blocks that might be executed consecutively and
by determining their respective resource requirements.
This analysis can be done by the compiler, and an
algorithm is proposed in Section 3.3.

3.2. Neutral filler-instructions

To implement code padding, we need some
instructions that use the fetch and decode stages to
space out basic blocks, but are not executed (they
should not consume computing resources) and not
processed to the completion stage (otherwise, they
might impact the execution time of the basic blocks).
In this section, our purpose is to show that most
instruction sets feature instructions that meet these
constraints.

Most architectures have a NoOP instruction that does
not produce any result. In modern pipelines, NopP
instructions are quashed from the pipeline after
decoding in order to save the occupation of the
functional units and the pipeline bandwidth.

Some processors have other instructions that do not
go to the end of the pipeline. For example, on the
PowerPC 750, fall-through branch instructions are
removed from the instruction stream at dispatch. Then,
an unconditional branch targetting the next instruction
can be considered as a neutral instruction and used as a
filler.

3.3. Code padding

The role of code padding is to avoid any possible
interaction between distant blocks on an execution
path. In the case where no long timing effect can occur,
only the interferences between successive blocks are to
be accounted for. Then the execution time of a
sequence of n blocks can be computed as:
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where . is the set of possible successors of block B;.

A sufficient condition for this formula to be correct
is that every possible sequence of two blocks executes
exactly as if it was not preceded by other blocks in the
pipeline. In this case, the LTE term — that normally
stands for the distortion of the execution trace of the
sequence by previous instructions — is null. This can
be illustrated by the following example.

Let us consider three blocks A, B and C processing
through a 3-stage pipeline with two non pipelined
functional units, FU1 and FU2, that have a 3-cycle
latency. Blocks A and C use FU1 while B uses FU2.
The execution patterns are shown in Figure 3. The
execution times of the blocks and the timing effects
can be computed from these tables:

tA = tB = tC =5
tAB:6 = SAB:tAB—tA—tB:6—5—5=-4
tBCZG = Sgcztgc—tg—tc:6—5—5=-4
tasc =8 = dpc =tac—ta—ts—tc—0ap - dBc
=8-5x3-(-4)x2 =+1
1 2 3 4 5
FETCH A
FU1 A A A
FU2
COMPLETE
1 2 3 4 5
FETCH
FU1
FU2 B B B
COMPLETE B
1 2 3 4 5
FETCH
FU1 C C C
FU2
COMPLETE C
1 2 3 4 5 6
FETCH B
FU1 A
FU2 B B B
COMPLETE A B
1 2 3 4 5 6
FETCH B ©
FU1 © © @
FU2 B
COMPLETE B @
1 3 4 6 7 8
FETCH A B ©
FU1 A c|lc|c
FU2 B B B
COMPLETE A B ©
Figure 3. Execution of a 3-block

sequence (example)



The positive LTE 8agc expresses that the execution
pattern of the sequence B-C is distorted when it is
preceded by block A, due to A and C conflicting for
the use of FUL. This resource is free before the end of
the fetch of B when it is executed alone, but it remains
busy until two cycles after the end of the fetch of B
when it is preceded by A.

Our purpose is to prevent this distortion and to make
the sequence execute as shown in Figure 4. The
approach consists in filling the black cell with a neutral
instruction. Now, 8,5 =-3 and dagc = O.

1 2 3 4 5 6 7 8
FETCH N BB
FU1 AlAalalc c
FU2 B B B
COMPLETE A B | c

Figure 4. Safe execution of a 3-block
sequence (example cont’d)

Filler-instructions are added before a basic block to
absorb any resource conflict that might occur with a
previous block. As we will see in Section 4, the
fetching of some basic blocks has to be delayed by
several cycles if we want to prevent long timing
effects. This means that these blocks should be
preceded by a large number of neutral instructions,
since a one-cycle delay is enforced by as many filler-
instructions as the pipeline width.

To keep the code size acceptable, it is possible to
group all the required filler-instructions into a common
padding block that has multiple entry points and is
terminated by a return branch (blr). Then every
sequence of filler-instructions required to delay the
fetch of a basic block can be implemented as a linked-
branch (b1) to the appropriate entry point of the
padding block. This is illustrated in Figure 5 where a
2-way pipeline is assumed. Note that the linked branch
and the return branch each enforce a one-cycle delay.

4. Algorithm for code padding

To compute the padding lengths, the compiler first
needs to collect timing information about the execution
of sequences of basic blocks in the pipeline. Such
information can be profiled by a cycle-level simulator
of the processor that simulates blocks and up-to-n-
block sequences (the simulation time is generally
acceptable if n is small). Cycle-level simulation is
required because precise dynamic information is
needed to generate safe results. The simulation can be
done within the compiler (provided it has an exact
knowledge of the hardware) or by calling external
software. Figure 6 gives an algorithm that analyses the
resource needs of blocks and sequences: for each
block B and for each resource R, it computes the time
at which R is needed after B starts to be fetched
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(n[r,B]) and the time at which R is released by B
after B has been completely fetched (r [R, B]). Release
times are also derived for sequences: r [R, S] stands
for the time at which resource R is available after
sequence S has been entirely fetched.

bl delay4

block i
(requires a
4-cycle delay)

bl delay3

original
<4—— Dbasic
blocks

block j
(requires a
3-cycle delay)

nop
nop

block k
(requires a
1-cycle delay)

delay4: nop filler-block
nop /

delay3: nop
nop

delay2: blr

Figure 5. Padded basic blocks

foreach block B do {

ff[B] €« first fetch cycle of B;
1f[B] €« (last fetch cycle of B) + 1;
foreach resource R do {
n[R] < cycle at which R is needed;
r[R] € cycle at which R is released;
// 0 if R not used by B
n[R,B] <« n[R] - f£f[B];
r[R,B] « r[R] - 1f[B];
}
d[B] < 0;

}
foreach sequence B -..-B_ (x < n) do {
1£[B] < (last fetch cycle of B ) + 1;
foreach resource R do {
r[R] € cycle at which R is released;
// 0 if R not used by any B,
r[R,B-..-B,] « r[R] - 1f[B];

}

Algorithm to analyse the
requirements of blocks and

Figure 6.
resource
sequences




4.1. Depth-1 approach

As stated before, a long timing effect 6apc is not
null if block A has an influence on how sequence B-C
executes. On the contrary, dagc is null if C executes
after A-B exactly as after B. A sufficient — but not
necessary — condition for this is that every resource
(register, pipeline stage, functional unit, etc.) is
released after A-B exactly at the same time as after B.

This assertion leads to the algorithm given in Figure
7. It analyses each two-block sequence to find out
whether the first block has an impact on the availability
of resources after the sequence. If so, the algorithm
calls the StrictDelay() function that computes the
distance d to put between the two blocks so that every
resource is available after the sequence as soon as after
the second block executed alone. Note that this
distance is not always equal to the difference between
r[R,A-B] and r[R,B]: it can be smaller but also larger
due to timing anomalies, a phenomenon identified by
Lundgvist [10]. For the moment, the StrictDelay()
function computes the right distance by successive
trials (the distance is upper-bounded by the size of the
instruction window (fetch queue plus reoder buffer). A
more clever algorithm based on execution graphs [7] is
under development.

In the rest of this paper, this first algorithm will be
referred to as the depth-1 strategy.

foreach sequence A-B do {

foreach resource R do {

if r[R,A-B] > r[R,B] then {
d € StrictDelay(R,A-B);
if d > d[B] then
d[B] < d;
}
}
}
Figure 7. Depth-1 algorithm for

computing the padding lengths
4.2. Depth-n strategy

The algorithm proposed in the previous section
guarantees that every resource is available after
sequence A-B exactly at the same time as after block B
executed alone. This caution can be considered as
excessive since the blocks executed after A-B might
not require the resources delayed by A.

A more aggressive approach consists in examining
the requirements of the possible successors of sequence
A-B to determine whether a delay on the availability of
a given resource induced by block A is likely to
generate a long timing effect or not.

In the depth-n algorithm, the effective requirements
of each basic block in every n-block sequence
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(Bg-B;-...-By.1) are analyzed. Two kinds of situations
necessitate that a distance is put between By and B;.
The first case is when B; uses a resource that is (a) not
ready at the time B; needs it, and (b) available later
after Bo-...-B;.; than after B;-...-Bj.;. The second case
is when the resource is ready on time for any block
within the sequence but is released later after
Bo-...-By.1 than after B;-...-By.1.

The analysis of the possible conflicts can be further
refined for resources that can handle several
instructions in parallel: they do not necessarily have to
be completely free for blocks that use them but they
should provide enough free slots to fulfil the needs.

In the case where a distance is to be enforced, the
padding length is computed by the MinimumDelay()
function (which implements the same approach as the
StrictDelay() function). Figure8 details the
depth-4 algorithm that analyses 5-block sequences and
considers the exact requirements of the three last
blocks to determine whether the second one has to be
delayed after the first one.

foreach sequence A-B-C-D-E do {
foreach resource R do {
if n[R,C] > O
&& r[R,A-B] > n[R,C]
&& r[R,A-B] > r[R,B] then {
d €— MinimumDelay (R,A-B-C);
if d > d[B] then
d[B] < d;
}
elsif n[R,D] > 0
&& r[R,A-B-C] > n[R,D]
&& r[R,A-B-C] > r[R,B-C] then {
d €— MinimumDelay (R,A-B-C-D);
if d > d[B] then
d[B] < d;
}
elsif n[R,E] > 0
&& r[R,A-B-C-D] > n[R,E]
&& r[R,A-B-C-D]> r[R,B-C-D] then {
d € MinimumDelay (R,A-B-C-D-E);
if d > d[B] then
d[B] < d;
}
elsif
r[R,A-B-C-D-E] > r[R,B-C-D-E] then {
d € StrictDelay(R,A-B-C-D-E);

if d > d[B] then
4Bl <« d;
}
}
}
Figure 8. Depth-4 algorithm for

computing the padding lengths




5. Performance results and discussion
5.1. Evaluation methodology

We have developed in SystemC a cycle-level
simulator that models a generic processor architecture
with parameterized features. The configuration we
used for our tests is shown in Figure 9. The cache and
the branch predictor are considered as perfect since
modeling them is outside the scope of this work. The
simulator is able to execute PowerPC code.

Pipeline width 2-way 4-way
fetch queue size 16 32
instruction cache perfect (100% hit rate)
branch predictor perfect

re-order buffer size 16 64

# of functional units (latency)
integer add (1 cycle)
integer mul/div (6 cycles)
floating-point add (3 cycles)
fp mul (6 cycles)
fp div (15 cycles)
load/store (2 cycles) 2

N S Lt
I I e e N = S

data cache perfect (100% hit rate)

Figure 9. Simulated processor architecture

The results presented below were measured for
several benchmarks commonly used in research on
WCET analysis and presented in Figure 10 They
implement standard algorithms: matrix arithmetic,
signal processing, sorts.

matmul matrix multiplication

ludcmp LU decomposition

jfdctint JPEG integer implementation of the
forward Discrete Cosine Transform

bsort bubble sort

heapsort heap sort

insertsort | insertsort

Figure 10. Benchmarks

Figure 11 shows our framework for code padding.
The object code is produced with the standard gcc
compiler, targeted for the PowerPC instruction set. We
have developed a utility that extracts the Control Flow
Graph from the object code. The list of the basic blocks
is used to drive the processor simulator which produces
the execution trace of each block and of each possible
sequence of up-to-5 blocks. The main tool of the chain
is the Interference Analysis script that computes the
padding lengths to eliminate any possible resource
conflict between distant basic blocks. This script gets
timing information from the simulator to compute the
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required delays down to the last cycle. Finally, the
Code Padding script inserts the filler-instructions in the
original assembly code.

C source code

v

gcc compiler

v

| assembly code

v

| gas assembler |

v

object code

v

CFG Extractor

l list of basic blocks

Cycle-level Simulator <

execution traces of
basic blocks sequences

Interference
Analysis

l padding lengths

Code
Padding

v

safe padded
assembly code

Figure 11. Code transformation

framework

5.2. Impact of code padding on code size

Figure 12 shows the increase of the code size
(number of static instructions) due to the filler-
instructions added by the depth-1 algorithm. The cost
is undeniably sensible, especially for a 4-way target
pipeline.

As shown in Figure 13, the increase is smaller when
the analysis is done more in depth, i.e. when it takes
into account the real requirements of the basic blocks.
With the depth-4 strategy, the mean increase is 18.28%
for a 2-way pipeline, and 57.01% for a 4-way pipeline.
We acknowledge that the increase is still noticeable but
as we will discuss it in Section 9, we argue that it is the
price of predictability.



2-way 4-way
matmul 35.24% | 76.19%
ludemp 16.51% | 28.20%
jfdctint 11.37% | 126.97%
bsort 31.25% | 76.25%
heapsort 25.00% | 51.47%
insertsort 23.81% | 59.52%
MEAN 23.86% | 69.77%

Figure 12. Code size increase for the

depth-1 strategy

—e— 2-way —=— 4-way

80%
70%
60%
50%
40%
30%
20%
10%

0% -

increase of the code size

depth-1 depth-2 depth-3

depth of the analysis

depth-4

Figure 13. Code size increase as a
function of the analysis depth

The cost in code size is higher for larger pipelines
because (a) a single-cycle distance is enforced by as
many Nops as the pipeline width, and (b) a larger
pipeline augments the overlapping of blocks and then
augments the risks of resource conflicts. Results per
benchmark are given in Figure 15.

Figure 14 gives further insight in how the increase is
broken down into the length of the common padding
block, the number of calls to this block and the number
of Nops added to implement the 1-cycle delays. The
most severe increases in code size are due to the length
of the padding block. For example, jfdctint requires
a 649-instruction-long padding block while the original
code has 519 instructions. This padding length is due
to a 225-instruction-long basic block that seriously
delays the availability of some resources.

1400

1200

H nops

M calls to padding
padding blocks

O initial code size

1000 1

800 1

600 -

400 -

200 1

Figure 14. Breaking down of the code
size increase (4-way pipeline,
depth-4 policy)
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—+—size —=— WCET

140%
120%
100%

w

matmul ludecmp jfdctint bsort heapsort insertsort

(a) 2-way pipeline

—e—size —=—WCET

140%
120%
100%
80%
60%
40%
20%

cost

0% +

matmul ludemp jfdctint bsort heapsort insertsort

benchmark

(a) 4-way pipeline

Figure 15. Code size and WCET increase
with the depth-4 analysis

5.3. Impact on the real WCET

As said before, long timing effects can occur for
long sequences of blocks (i.e. the execution of a basic
block can have an impact on the execution of a very
distant block). Measuring them involves analysing the
execution traces of all the possible block sequences of
any length which is very costly both in computing time
and in memory requirements. This cost is generally
unaffordable. However, we have analyzed up-to-6-
block sequences and, for each of the benchmarks, we
have observed some positive long timing effects (some
of them spanning over 6-block sequences). This
justifies the need for a solution to make the execution
time predictable.

We have evaluated the real WCET of each
benchmark code, without and with code padding. We
used the symbolic execution method [9] that simulates
every possible path. To make it possible, we have
limited the size of the data so as to keep the number of
possible paths reasonable. Figure 16 shows the results
obtained with different analysis depths.

As expected, code padding, that enforces some
delay between the execution of successive basic blocks
and then limits the instruction parallelism, is
responsible for an increase of the execution time. Note
that the plotted time is the real WCET, not the
estimated one (since we cannot make WCET
estimations by static analysis when the target
architecture  generates long timing  effects).
Augmenting the depth of the analysis helps greatly in



limiting the cost in performance which comes to about
19% on average for the depth-4 algorithm. This cost
can be considered as moderate if we keep in mind that
the WCET of the padded code can be estimated
quickly, easily, tightly and, above all, safely.

i ——2-way —=— 4-way

O 60%

2

Z 50%

[

£ a0%

o

£ 30%

s

O 20%

o)

2 10%

2

g 0% -+

- depth-1 depth-2 depth-3 depth-4
depth of the analysis

Figure 16. WCET increase as a function
of the analysis depth

5.4. Discussion

When having to evaluate the WCET for a program
that is to be run on a high-performance architecture,
two strategies might be considered. The first one
consists in using a method that takes into account any
possible long timing effect (of any length and of any
value). As far as we know, the only method doing that
is the one implemented in the aiT tool by the Absint
company. Its drawbacks include high computation
times, complexity of the task of modeling the processor
architecture (in the case where a new processor is
targeted) and the use of pessimistic assumptions that
might produce inaccurate WCET estimates.

The second possible strategy, which is the one we
incline towards, aims to make the hardware/ software
pair predictable. In [13], we proposed some
modifications to the processor architecture to eliminate
the possible interferences between distant blocks along
the execution path. These modifications included two
components: the first one prescheduled the instructions
as they enter the reorder buffer; the second one acted as
a gate that delays the fetch of a new basic block until it
cannot be impacted by another block under execution
in the pipeline. This scheme increased the mean
execution time by 21% (2-way) to 42% (4-way).

The approach proposed here clearly has a lower cost
in terms of execution time: it is smaller by one third for
a 2-way processor (19.4% against 21%) and by more
than one half for a 4-way processor (18.5% against
42%). This is because we compute the distance
required between successive basic blocks off-line.
Then we know exactly which instructions belong to the
blocks and we exploit profiling information to identify
the data and resource dependencies that result in timing
interferences. On the contrary, the runtime mechanism
proposed in [9] does not know anything about a block
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that is to be fetched. Then, it has to make pessimistic
assumptions and it enforces unnecessarily long
distances between the basic blocks.

Moreover, our solution does not need any particular
hardware and only requires that a free instruction is
available in the instruction set. As mentioned in
Section 3.2, such an instruction exists in most
processors. Then the code padding method can be used
immediately (i.e. without waiting that a processor
manufacturer decides to design a processor compatible
with safe WCET evaluation). The required effort is
moderate since the code transformation is done at the
assembly level.

Code padding has a cost both in code size and in
execution time. However, if we want to keep the
evaluation of the WCET simple, the only alternative is
to use simpler processors (scalar, with in-order
instruction scheduling, etc.) that were proved to be
LTE-free. However, they might not meet the
performance requirements.

6. Conclusion

This paper deals with timing interferences that make
the evaluation of the WCET of a task complicated,
pessimistic and possibly unsafe. This problem has
already been addressed in a previous work where a
processor was designed to prevent timing interferences
between basic blocks while keeping most part of the
performance. However, the proposed solution has not
yet been implemented in a real-life processor. Our
purpose is to show how the prevention of timing
interferences can be done by transforming the source
code, which does not require any specific hardware.

Our approach consists in profiling the execution of
basic blocks and of n-blocks sequences extracted from
the Control Flow Graph of the application. This can be
done using a cycle-level simulator and is much faster
than simulating all the possible execution paths.
Execution profiles are then analyzed to detect data
dependencies and resource conflicts that could generate
interferences  between  distant  blocks.  Filler-
instructions, which are discarded from the pipeline as
soon as they have been decoded, are inserted in the
source code to enforce a distance between blocks so
that the interferences are eliminated.

Performance analysis show that, even if the number
of added padding instructions is significant, the impact
on the worst-case execution time is moderate (a mean
slowdown of 19% has been measured).

The increase in the code size and in the real WCET
is sensible but this is the cost to pay for predictability,
and thus for safety. The WCET of padded codes can be
evaluated accurately using simple state-of-the-art
methods.
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Abstract execution speed on the target machine but thereby sac-
rificing platform independence. Alternatively, the code
Most of classical WCET techniques rely on the fact can be written in a portable bytecode fashidiViite
that all the system is known during conception phase, i.e.Once Run Anywher@; thus offering platform indepen-
hardware and software parts. In the context of mobile dence. The code will be, then, interpreted by a virtual
code for small devices like smartcards or RFID tags, these machine or compiled by a JIT compiler to obtain native
assumptions cannot be true because of heterogeneousode. Generally, the bytecode is produced on traditional
hardware and unknown software environment. On the data-processing supportise( code producer) before be-
other hand, these small devices have not enough compuing deployed on the constrained devices. (code con-
tation power to compute themselves the WCET of loadedsumer). These new features bring considerable flexibility
applications. In this paper, we propose a distributed to the device in order to satisfy customers evolving expec-
method which allows to generate a portable WCET pre- tations and needs and make it possible to handle the strin-
computation, including automatic loop detection, which gent hardware constraints that characterizes mobile éevic
is given with the mobile code. This pre-computation — technology.
which is automatic and do not use annotations —is veri-  However, the choice of mobile code paradigm raises
fied by the mobile host by using a lightweight proof which major security issues. The code consumer may download
is embedded in the mobile in PCC manner. We present eX-4n untrusted program created by a code producer, who is
perimental results by applying our method on the kernel possiply badly disposed. This mistrust relationship be-
of a smartcard dedicated operating system that proves theyyeen the code supplier and the code recipient leads to
validity of the proposed method. the inception of proof-based security approaches, for in-
stance. In these approaches [11, 12], a proof created at
compile time by the code supplier, is packaged with un-
1. Introduction trusted code. By a straightforward inspection of the code
and the certificate [1], the code consumer can verify the
The advent of pervasive mobile devicesg( smart vali_dity of the proof and thus the compliance with a safety
phones, smart cards, sensors, RFID tags...) emphasizeB0licy.
the necessity for hardware manufacturers to increase the Indeed, a code consumer should be free to reject code
number of produced units at a constant cost rather than in-that may threaten his system and does not adhere to a par-
crease their performance. In fact, increasing clock speedsicular safety policy. In general, a safety policy needs
is not the answer for battery-operated devices where low-to address the concerns of confidentiality, integrity and
ering memory footprint, power consumption, and cost is a availability. The former issues were thoroughly studied.
main issue. It follows that, for these technologies, the con The availability criterion involving resource-relatedigs
straints on memory size and computing power are durably (e.g. ensuring that the program will not compute for more
established facts. than a given amount of time, or that it will not take up an
On the other hand, the recent interest for the mo- amount of computing power or memory above a certain
bile code paradigm challenges the traditional infrastruc- threshold) is often neglected.

ture models and implies the ability for the constrained de- | this paper, we address a scenario where the code
vices to load code from outside dynamically. Mobile code ¢onsumer needs to ensure the execution of a dynamically
can be represented by machine code, allowing maximumqded application within strict timing requirements. Pre

*This work is partially supported by grants from the CPER NBes- dicting the timing .beh.aVIOI‘ of a mobile code. .the
de-Calais/FEDER TAC COM'DOM, the European IST-FP6 INSPIRE ~ WOrSt case execution time, WCET) allows allocating cor-

project. rectly the computational resources between the different
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competing tasks in the underlying operating system andliminary assumptions for our work. We describe our loop
makes it possible to prevent availability attacks. Indeed, bounds detection tool, followed by some examples that il-
by misleading the WCET computation algorithm, mali- lustrate how the types are derived statically on the code
cious programmers could intentionally minimize the pro- producer. The linear verification process is then explained
cessor time consumption of their programs to launch athrough the same examples. Some experimental results of
denial-of-service attack. It also improves the deployment our work on the kernel o€amille [5] operating system
scheme as the code recipient would rather know in ad-are presented. Finally, we consider some future work.
vance if the downloaded application will definitely run

within the amount of CPU available on the system and 2 Preliminaries

meet its deadline.

The eXiSting tlmlng anaIySiS methods are executed Bounding the number of |oop iterations is a well-
atomica”y in one execution site where hardware architec- founded research area. In the genera| case, itis impossi_
ture, runtime environment, and compilation or interpre- pje for an automatic analysis to determine whether a given
tation strategy are known in advance. In a mobile code |oop will execute a definite number of times. This is one
execution scenario, the producer cannot unilaterally de-gpvious consequence of the undecidability of Hating
termine the CPU needs of a program because it dependgoblem Some work has already been achieved to predict
closely on the number of CPU cycles consumed by the |oop bounds automatically by Healy et al. [9]. Their ap-
target processor. In addition, the memory and CPU con-proach, based on classic control-flow analysis, uses block
sumptions of existing algorithms quickly increase with the gominance and loop frontiers and can give quite tight pre-
complexity of the program. This means thatitis notrealis- gjctions of the number of iterations in loops with integer
tic to shift the burden of computing the WCET of dynami-  jndexes. Gustafsson [8] used abstract interpretatioro[4] t
cally loaded application on the consumee(constrained  automatically determine loop bounds and false paths.
device). Note that our work is basically different. Indeed, one of

Thus, we proposed in [2] to split the WCET compu- our goals shall be to detect loops statically on the producer
tation process in two phases. The first step is executedside. However, the main difference with the approaches
when the source code is compiled on the producer. Thencited previously is that we must provide a way to the con-
the computation process had to be finalized when the codesumer to verify the loop bounds inferred by untrusted code
is deployed on the host system. The challenges are to dissuppliers. The verification overhead should be less impor-
tribute the computation efficiently to do the heaviest op- tant than the effort due to detect loop bounds in the first
erations on the producer and to endow the consumer withplace. Therefore, the code recipient needs only to trust
the ability to check the safety of the information inferred its own loop bounds checker. It also should induce, if the
by untrusted parties. method is to be effective, a linear verification effort much

As far as worst case execution time computation is con- simpler than the tools required to analyze statically the
cerned, evaluating loop bounds represents a critical issuecode to extract loop bounds.
and is the major source of timing unpredictability. We Since not all the loops have a predictable behavior,
propose in this paper a novel scheme for safely computingsuitable for our analysis, we present, in the following,
loop bounds on constrained devices by using a PCC basedome preliminary assumptions on the recognizable loop
approach. On the producer side, the intermediate code iatterns. Then, we introduce the precedence relation de-
statically analyzed to extract loop bounds that will be used fined on the basic blocks involved in these patterns. This
for timing analysis. We chose to determine loop bounds relation will be used by our typing algorithm presented in
by proceeding in a manner that is similar to standard type the following section.
derivation. An inference engine scans the instructions and
tracks the values taken by the program variables. Accord-2.1. Recognizable loop patterns

ing to the transition rules, a variable can be a constant, The |oops that are candidates for our static analysis fol-

an open range of values, or a loop index. This process|ow the execution pattetrexplained below :
is repeated iteratively until a fix-point is reached. Then,

the state types are stored for the entry point to each basic 1. Initialization step: contains loop initialization code

block which constitutes the proof. The WCET proof is that should execute unconditionally. The loop

sent to the consumer with the intermediate code. The tar- counter variable is explicitly set up to a starting value

get system needs a single pass to check the consistency of  that represents the lower bound of the loop execution
the loop bounds inferred by the producer with the code. count.

An on-the-fly compiler produces the native code corre- _ ) _

sponding to the underlying platform. The WCET com- 2. Counter update stepcontains the instructions that
putation process is finalized and a global WCET value is are intended to perform loop control variable updates
calculated by the target system. (e.g. incrementation).

The rest of the paper procee.ds as follows. Fi.rst, WE  1an execution pattern defines the sequence of steps takemdhe
present some working hypothesis that should define pre-visit of the loop.
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3. Condition evaluation steprontains the evaluation the control flow graph. We have < y if and only if z al-
of the loop termination condition. The loop counter ways happens befoigin all execution paths. For the sake
variable is compared to the upper bound of the loop of simplicity and for implementation reasons, we use an
execution count. If the termination condition is ful- label functionorder which gives a number to each node
filled, the loop is stopped, else go to the loop header such thatVz,y € V' 2 < y = order|z] < order[y].
and repeat. This labeling function can be assimilated to a depth-first
) topological order of a graph where the nodes are ordered
Note : We consider only the case where the lower bound, sequentially. Indeed, a depth-first traversal of a graph vis
step and upper bound values are expressed as constanfg || the nodes marking them as they are visited. The
and can be calculated at analysis time. The loop conditiony,mper of the last descendant of each node is also saved,
can also be evaluated at the beginning of the repeating SeCthus, enabling an efficient test of precedence in the Depth
tion of code. In this case, if the loop condition is true an k.t Traversal Tree.
iteration is carried out else the loop is terr.ni.nateld. - In Figure 1, the ordering of the different basic blocks
We are aware that not all the loops fit in this simple jngjcates that in the case of a pre-test loop the identified
pattern. However, we chose to focus on this kind of loop gteps will execute consecutively as follows : Initializati
constructs based on the observation that many loop CoN-gtep (1) — Condition evaluation stef— Counter update
structs iterate a fixed number of times and do some Simplestep 6). On the other hand, for the post-test loop, the
work every iteration and have a single target of the loop loop execution pattern will be formed in sequence by :

exit. In [13], an inspection of industrial code leads to the |hitialization Step 1) — Counter update steg)(— Condi-
following conclusions : 94% of the analysed loops had o evaluation step4).

a single target of the loop exit and can be syntactically
bound, only a few loops actually depend on outer loops
and should be simple to bound. In addition, The evalu-
ation of the RTEMS operating system source code in [3]
shows that the program constructs were quite simple. No

nested loops, unstructured code or recursion were found. "€ Set of rules that we propose in this work aims at
guaranteeing that the loop bounds inferred statically on

the code producer will be respected at run-time on the
code recipient. Static analysis of compiled-programs pro-
vides information about expected program behavior in or-
der to minimize dynamic checks and so runtime overhead.
Mainly, it is considered necessary in our context to notify,

as soon as possible at the moment of installation of the

downloaded program, any possible run-time error. Tradi-
1 | Initalization Block Initialization Block | 1 tionally, static analysis is associated with Abstract inte

pretation [4]. Recently, however, much interest has been
Loop Body Block

shown in the potential of type inference as a means of per-
Counter Update Block | 3

forming static analysis as well as ensuring program cor-
Condition Evaluation
Bl

3. Loop Bounds Detection on the Code Pro-
ducer

2.2. Precedence Relation

To detect loop bounds, we need to identify each step
and transition in the execution pattern. Figure 1 sketches
the control flow graphs of a pre-test and a post-test loop
corresponding to the patterns described previously.

Condition Evaluation
Block

4 Loop Body Block

Counter Update Block

rectness on compiled code when the application is de-
ployed on the target. Our approach is casted as a type
inference problem where types are used to express loop
bounds. In the following, we describe the formalization
of our type system.

3.1. The Instruction Set
The instruction set, used in the remainder of this paper,
is a finite set of elementary arithmetic operations and basic

lock

Exit Block 5 control-flow operations as illustrated in Figure 2. A pro-
gram P is a sequence of instructions where each instruc-
tion is referred to with an instruction count@p. When

Figure 1. Pre-test and Post-test loops P is a program, we writbom(P) for the domain ofP

(its set of program countersy[pp] is defined only for
The control flow of a given program is usually depicted pp € Dom/(P).
as a directed grap&y(V, E), whereV is the set of basic Note : We denote byar the set of the program vari-
blocks of code and an edde, y) € E represents a pos- ables,Cst the set of the constants, ahdbels the set of
sible flow of control fromu: to y. We define a precedence the instructions targeted by a branch operatiemanges
relation< between basic blocks denoting their execution over Var, ¢ ranges ovelCst and L; ranges ovetabels
order in the loop traversal. Letandy be two vertices of  ¢mp ranges ove{ <, <, >, >}. The instructiord in Fig-
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Instructions = w—cC (1) 3.3. Operational semantics
V—V+cC (2) We model a state of an execution as a tugle, T'),
b—vempc (3) where pp is the program counter, T is the current state
vd < vs op tabArgs (4) of program variables, represented by a total map from
JumpL; (5) the set of variables to the set of values. The execution
Jumpif v, L; (6) of each instruction except "return”, changes the state of
Return v (7) execution of the program P from statgp, T') to state

Program P:= PJI (pp’,T"). The operational semantics, illustrated in Fig-

Figure 2. Instruction Set ure 4, describe how the evaluation of instructions affects

the program state and informally behave as follows:

Rule 1: The evaluated instruction is an assignment to a
constant value. The type ofis changed o{a}, with e

the ordering number of the basic block that includes the
assignment instruction. The next instruction to be evalu-
ated corresponds to the valid program pgintt 1.

ure 2 represents any operation or method invocationson
with the list of argumenttabArgs TheReturninstruction

is used to terminate the instruction flow and to restore the
context of the caller.

3.2. A type system for loop bounds detection . ] o
A variable in a given program can have different types RUl€ 2: The instruction at the current program point is

as illustrated in Figure 3. If a variable has an irrelevant € result of the evaluation of a comparison of a variable

state for loop bounds detection, its type is seflto A v and a constand. The type of the variablé is set to

variable can also be a constant value, an open range of @7 ¢p; ¥)), With e the ordering number of the basic
integer values (where is the lower bound of the range block that includes the comparison instruction. The next

and o is the incrementation step), a conditional (where instruction to be evaluated corresponds to the valid pro-

var is compared to a constant valyeusing an operator ~ 9ram pointpp + 1.

cmp) or a loop iterator (where is the lower bound of the

range ) the upper bound and the incrementation step). Rule 3:  The evaluated instruction corresponds to the in-

We consider a distinction between a possible iterator andcrementation of a variable by a constant step. If the

a confirmed one. The flags ? and ! indicate a possible variablev has been already initializedé. its current type

and a confirmed iterator, respectively. A possible iterator is {a},), its type is changed tv 2[,, with ¢’ the ordering

is obtained when a variable is consecutively initialized, number of the basic block that includes the incrementation

incremented and compared to an upper bound by a sin-nstruction. The next instruction to be evaluated corre-

gle execution path. A confirmed iterator is obtained when sponds to the valid program poipp + 1.

the variable is consecutively initialized, incremented an

compared to an upper bound by all the execution paths. Rule 4: If the variablev has been already initialized,
The types are tagged with an order numbekceptthe  incremented and compared to an upper boure (jits

T type. This ordering number makes it possible to figure cyrrent type isle @ ¢].), the re-evaluation of the incre-

out, at which step of the loop execution pattern, the type mentation instruction ensures that the variable v is a con-

has been created. Thus, it becomes possible to be ensuregimed iterator by this path and its type can be changed

of the prece_d.enc.e rglatlonsh|p betvyeen the specific b_a5|cto [ 7/’}!6“ ¢/ denotes the ordering number of the basic

blocks identified in Figure 1. For this purpose, we define pjock that includes the incrementation instruction. The

a functiony that attributes an ordering number to €ach ey instruction to be evaluated corresponds to the valid
instruction. When a new tygis created atan instruction  proqram poinpp + 1.

i, the functiony determines the ordering number of the
basic block to which the instruction belongg(i) = e).

Then, the newly created type is stamped with the resulting Rule 5: I the case of a post-test loop pattern, the vari-

ableb contains the evaluation of the comparison between

value(Te). a variablev of the program and a constant value with the
— comparison operator ranging ovgg, <}. The variable
Types  T:u= T Irrelevant v is an open intervala %[,,. The galuition of the con-
{O‘ie Constant value ditional branch instruction induces changes at two points
a2, Open. range of the program. The first corresponds to the fulfillment of
(var,cmp, ), ~ Conditional the branching condition and can be reached by the given
[ 7 9, Possible iterator LabelId. If a variable v was initialized, incremented and
[a 7 9], Confirmed iterator compared to an upper bound, then its type can be changed
Figure 3. Type Syntax to [a @ ’(/J]Z,, with ¢” the ordering number of the basic

block labeled byl.abelld. The second program point cor-
responds to the failure of the condition when the program
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implicitly branches tgp + 1. It propagates irrelevant in- A control flow graph annotated with the precedence order
formation for loop bounding and the types of all the vari- of each basic block is joined to each fragment of code.
ables is set td" at this program point.

Sample Program 1 Consider the sample program in

Rule 5 In the case of a pre-test loop pattern, the vari- rigyre 5 that corresponds to a post-test loop pattern. The
ableb contains the evaluation of the comparison between program P uses two variables and tmp to iterate 10

a variablev of the program and a constant value with the imes. As explained in 2.1, the loop pattern should con-
comparison operator ranging over, >}. The variable st of the consecutive execution of an initialization step

v is an open intervalo 7[,. The evaluation of the con-  cqunter update step, and a condition evaluation step. This
ditional branch instruction induces changes at two points loop pattern will allow us to detect an iterator.

of the program. The first corresponds to the fulfillment of

the branching condition and can be reached by the given BB pp Label Instuction | 1
Labelld. The variablev exceeds the upper bound of the o 1 i—o0 ]

loop, the types of all the variables will be set 10 at 1 2 L1 —i+1
the basic block labeled babelId. The second program 3 tmp—i<9

point (pp + 1) corresponds to the failure of the condition 4 jumpif tmp L1

and indicates that the loop iterates one more time. Thus, [2__5 return i l 3

the type ofv can be changed fa < ’(/J]Z” with ¢’ the or-

dering number of the basic block labeledgy+ 1. g gp g["émp] Ep' TT'["t?p]
11 T.T 2 {o'}1 T
Rule 6: This rule corresponds to the evaluation of any | 2 || 2 {0}, T 3 [or[,.T
method invocation different from those listed previously. | 3 | 3 [0 :[,, T 4 0], (<9,
It produces an irrelevant value for our analysis, thus, | 4 || 4 [0 1[2,(i,<,g)2 2 [0,1,9];,T
changing the type of the destination variablélto 5 T, T
o 5|2 [olo],T 3 [ol9].G,<,9),
3.4. Unification Rules 6 Il 3 [0 1 9]? 4,<,9), | 4 [0 1 9]? (1,<,9
Some instructions may have multiple preceding paths L af L 1 g
of execution and the types constructed on these paths have [ S (R IO 09,7
5 T,T
to be merged. This can only occur at the targets of jumps a1l L1l
corresponding to the entries of basic blocks. Therefore, a 2 g TO"'TQ]Q T 3 %O 0 ICELE

set of unification rules must be written and applied when
an unconditional or a conditional branch instruction is Figure 5. Listing of Sample Program 1, CFG

evaluated. In classic typing systems, a hierarchy of types, and Execution trace of type inference pro-
represented by a partially ordered set of classes, is often cedure

used for the unification operation. In our type system,

the precedence relation defined between the types raises

new issues. The unification rules must handle the prece- Figure 5 shows the execution trace of the type deriva-
dence relation that exists between the different types. If tion algorithm. From left to right, the columns indicate
we considew a variable of our program, the current type the analysis step, the current program counter, the current
of T'[v]., andT'[v], the new type that is created after the types of the local variables, the program counter of the
evaluation of an unconditional or a conditional branch in- next instruction to be evaluated and finally the types of
struction. Wheru is inferior to b, it means that the type  the local variables after the evaluation of the current in-
tagged bya has been created in a step that precedes thestruction.

type computed inb. The Table 1 shows the different Execution starts by initializing both the types of vari-
unification rules depending on the types that have to beablesi andtmp to T. At step1, the first instruction as-
merged. For lack of space, we do not put the unification signs a constant value to the variableThe type ofi is

rules that involves the conditional type. If a conditional then tagged with the precedence order of the correspond-
type(var, cmp, 1), is unified with(var, cmp, \),, the re- ing basic block and becomg$},. The type oftmp re-
sulting type is(var, cmp, min(1, A)),. The unification of mains unchanged. These new types are transmitted to the
a conditional and any other type gives an irrelevant infor- next instruction to be evaluated which is indicated by the

mation and the resulting type is therefore setto program countef. At step2, the incrementation of
changes its type fronf0}, to [0 1[,. At step3, the in-
3.5. Examples struction3 is evaluated. The variablenp contains the

To illustrate the type derivation procedure explained result of the comparison betweemnd a constant value.
previously, consider the code samples in Figure 5, 6 andlts type is set to a conditional on the variable
7. Each sample program consists of a sequence of instruc- At step 4, the evaluated instruction is a conditional
tions that belongs to the instructions set, defined in 3.1. branch. According to our typing rules, the types of the
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Plpp] =V «— « Plpp] =b < v cmpo

« € Cst cmpe {<,<,>, >}, 0 € Cst
(pp+1)eDom(P) (pp+1)eDom(P)
(pp, T) — (pp+1,T") whereT"[v] = {a}, (pp, T) = (pp+1,T") whereT"[b] = (var,cmp, ),
—Rulel- —Rule 2 -
Plpp] =V «—V+o Plpp]=Vv «Vv+o
o € Cst o € Cst
TVl = {a}, TVl = [a % 9],
(pp+1)eDom(P) (pp+1)eDom(P)
x(pp) =¢€'se > e x(pp) =¢€'se > e
(pp, T) — (pp+1,T") whereT"[v] = [a %], (pp, T) — (pp + 1, T") whereT'[v] = [a @ 1/1}!6,
—Rule 3— —Rule 4 -
P[pp] = Jumpif b, Labelld P[pp] = Jumpif b, Labelld
T[b] = (var,cmp,),, cmpe {<, <} T[b] = (var,cmp,v),, cmpe {>,>}
TV] = [a 2[,, TV] = [a 2[,,
(pp+1), LabelldeDom(P) (pp+1), LabelldeDom(P)
X(Labelld) = e";e" > e’ > e x(pp+1)=¢e";e" >e >e
(pp, T) — (pp+ 1,T") whereVv e Var,T'[v] = T (pp, T) — (Labelld, T") whereV v € Var, T'[v] = T
(Labelld, Ty whereT'[v] = [« & ¢]Z,, (pp+ 1,T")y whereT"[v] = [a @ w]z,,
—Rule5- —Rule5 -

P[pp] = vd « vs op tabVar
(pp, T) — (pp + 1,T"y whereT [vd] = T
—Rule 6 -

Figure 4. Operational Semantics

S | T e [, [ 59, [« = 9],

T T T T T T

{8}a T {min(e, 8)}, [min(e, 8) 7], [ay], ] [min(e, 8) % 9], |

[ﬁ 4 LL T {a}p [min(oz, B) min(,¢) L [min(a, B) min(o,¢) zp} b 7 — [min(oz, B8) min(,¢) 1/1] b _
[5 ¢ y]: T {a}s T [min(a, 3) min(c,$) max (1, 'y)} t'; min(a, 3) min(c,$) max(y, ) t';
[ﬁ 4 »y]la T T T T -min(a, 8) min(e9) max(z/},*y)_ |

Table 1. Unification Rules

local variables will be changed on two different program fore the incrementation one in the loop execution pattern.
points. The first branch target corresponds to the fulfill- At step6, the instructiorB is evaluated: is incremented

ment of the condition and sets the typeiofo a possi- and we can infer that the variablés an iterator by all the
? . . . .

ble iterator [0 1 9],. Indeed, the identified steps of the €xecution paths. The type ois setto a confirmed iterator

loop pattern (initialization, update, condition evaloafi [0 %9],.

has been consecutively executed and we can infer that the

variablei is an iterator at least by one execution path. The . . .
: At steps7 ands, this type is propagated with respect of
second branch target corresponds to the failure of the con-, e X
o . the unification rules. The analysis stops at the Stejnen
dition and sets the types of all the variablesTto o .
the types of the variablesand¢mp at the program point
At step5, the type information determined at the pre- 3 still unchanged.

vious step has to be merged with the type stored at
the current program point. Thus, a unification had to
be made between the following types{0},, T) and

(ot 9];, (i,<,9),). According to our unification rules,

At step9, the evaluated instruction is a return instruc-
tion that stops the program flow and does not propagate
; any types. This is the last analysis step. The inference
the type ofi on label L1 must be set tc{O L 9]5 as its engine reached a fix-point and identified an iterator where
precedence ordéris greater than the precedence order of the lower bound i), the incrementation step isand the
{0},. This denotes that the initialization step occurred be- upper bound i$.
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Sample program 2 Consider the sample program in This denotes that the initialization step occurred before i
Figure 6 that corresponds to a pre-test loop pattern. Thethe loop execution pattern. As far as the variabie is
program P uses two variable$ and ¢tmp to iterate 10 concerned, its type is changedTas it is indicated in Ta-
times. As explained in 2.1, this loop pattern should con- ble 1. At step7, the evaluated instruction is a conditional
sist of the consecutive execution of an initialization seep  branch and all the steps required to create an iterator are
condition evaluation step and a counter update step. Thisat least validated by on execution path. So the typeisf
loop pattern will allow us to detect an iterator. changed to a possible iterator on a jump target andto

on the other. At step, i is incremented and its type can be

[ BB pp Label Instruction | 1 changed to a confirmed iteratfo 1 9]. In the remain-
L0 = =0 : | ing steps, according to the unification rules, the confirmed
1 g L1 jtlznn?;;tlm??_z 2 iterator is propagated until we reach a fix-point in step
2 4 f—i+1 ‘>
5 jump L1 3 4 Sample program 3 Consider the sample program in
(3 6 L2 return i l Figure 7. This example corresponds to a post-test loops.
In Examplel, an iterator was detected as the identified
g gp g[i,émp] ?p' TT'[i’tg‘p] steps were executed consecutively as follows : Initializa-
11 ToT 5 {0’}1 T tion step - Counter update step — Condmon_ _evaluatlon
2 |2 {0}, T 3 {0}, (i,>,9), step. In this example, the code has been modified to force
3 |3  {0};,3>,9), 4 {0}, (4,>,9), the program to execute the following pattern : Initializa-
P I g E)IT[ . tion step — Counter update step — Initialization step — Con-
10 h 702 4\ T2 dition evaluation step. As an initialization step occurs af
5 |s [0 1'[4  (1,>,9), 2 [0 : [4 (1,9, ter a counter update one, the detection of the iterator is
6 |2 [or[,.T 3 0], ,?(z‘, >,9), compromised.
7 |3 ol [4 (6,>,9), 4 02 9}1‘1 (i,>,9),
. 6 T, T I [ BB pp Label Instruction ] 1
8 | 4 [01.9]%,(1»,9)2 5 0.1.9}%,(1'»,9)2 [0 1 0 ] 2
9 5 ot 9]4 6>9), |2 [0r9] L 6>,9), 1 § L1 t'm;:fli . J
10 || 2 [01.9]‘%,1' 3 CE 9}L (i,>,9), 4 jumpiftmgLZ
1|3 [0ro].G>9, |4 [019].6>9), 2 5 —4 | 3
6 T,T 3 6 L2 tmp—i<9 BB3) 4
12| 4 [oro] .G>9, |5 [0r9].G>9), 7 jumpif tmp L1
136 T,T 0 0,0 [4 8 return i l 56d) 5
Figure 6. Listing of Sample Program 2, CFG S T pp THimp] oo TPl
and Execution trace of type inference pro- 0 10 0.0 1 T.7
cedure 1|1 T,T 2 {0},,T
2 || 2 {o}ll,r 3 [0.1.[2,1'
3 | 3 0], T 4 oL, T
After initializing all the variables of the program 0, 4 |a ol % T 5 %O 1% T
our tool begins processing instructions. At stefhe eval- 2 6 [0 1 [2 T
uation of the assignment instruction changes the type of 5 || 5 0 .1.[ T 6 {4}, 'QT
to {0}, for the next step. The stepevaluates the instruc- 6 || 6 {41, *r 7 {4);.(,<,9),
tion 2 which is a comparison between the variablend 77 {4)5.,5,9), || 2 {4}5,(,<,9),
a constant value. The type 6fp had to be changed to 8 {4}5.(5,<,9),
(1,>,9),. At step3, the evaluated instruction is a con- S 5 ﬁ]}tg I g Eg?’ 1
ditional branch. In this case, due to the unusable types 10l 2 {4}2 T 5 {4}2 T
of the variables, the conditional branch instruction only 6 {4},.T
propagates the inferred types to the jump targets. Atstep | 11 (|5  {4}3. T 6 {4)5,T
4, the first jump target is evaluated and corresponds to the 128 {45,659, 3 0.0

implicit branch to the next instruction. Ass incremented
in this step, its type had to be setf® . [,. At step5, the
unconditional branch propagates the types to the label L1.

Figure 7. Listing of Sample Program 3, CFG
and Execution trace of type inference pro-

At step6, as the instruction has been already evaluated, a cedure

unification between the following types had to be made:

{0}, and [0 1[,. According to our unification rules, the Execution starts by setting the types of all the variables
type ofi on label L1 must be set t({O 1 [4 as its order-  to T. Through the step$, 2, 3 the variablei is first ini-

ing numbert is greater than the ordering number{of , . tialized then incremented. Its type is changec{(ld [2.
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At step4, the evaluated instruction is a conditional branch replaced by a tag on the node representing the execution
that propagates the type information to instructioand count of the block. In the case of nested loops, the inner
6. At stepb, the instruction5 assigns a constant value loop is tagged by the product of its execution count and
to 7. Thus, the type of is changed to{4},. At this the outer loop one, as illustrated in [2].

program point, the loop pattern consists of the following  Once the tagged-tree is built, it is sent to the target sys-
steps : initialization — incrementation — initializatioAt tem within the binary containing the code and the estab-
step6, a unification between an open interval stamped by lished proof of type correctness. The embedded compiler
the precedence order([0 . [2) is replaced by a constant is responsible for searching the most costly branch in the
value stamped by the precedence orgi¢{4},) as indi- tagged-tree. The proof consists of an array containing the
cated by the unification rulegmp is changed to a condi-  types of the program variables at each jumping target and
tional on the variablé. At step7, the branch instruction is sketched in 4.1. A verification step is mandatory as far
transmits the types to the corresponding jump targets. Atas the tagged-tree is concerned but is beyond the scope of
steps, i is a constant stamped with the precedence orderthis paper.

3. i is incremented at a basic block stamped with a prece-

dence ordeR. The type of i still unchanged as suggested 4. Verification on the consumer side

by the rule 3 in Figure 3.3. The next steps propagate this

type until a fix-point is reached and an iterator is never A safe mobile code that can be executed by a consumer

detected. must satisfy the following requirements:
3.6. Proof generation 1. A basic block has always a precedence order smaller
Before generating the proof that will be packaged with than those of its successors.

the code sent to the consumer, an ultimate step will con-

sists of rejecting any program when we can determine off- 2. The loop bounds should be in the range of values in-
line that its behavior is unsafe. An unsafe behavior is de- ferred by the static analysis done on the producer.
tected off-line when the loop bounds detection tool identi-

fies a backedge that is not described by a bounded iterator4.1. Loop bounds verification process

In this case, the timing consumption of the mobile code  Our loop bounds detection tool performed the iterative
cannot be bounded and verified in the code recipient. type checking analysis at the code producer’s end. The
Finding backedges relies also on the precedence relaproof that will be packaged with the code sent to the con-
tion explained in section 2. Indeed, the depth first traver- sumer consists of annotations added to the intermediate
sal of the control flow graph assigns two timing stamps code. Indeed, at the beginning of each basic block, the
for each basic block. One time stamp is related to the time inferred types of the local variables at this program point
when a basic block is first discovered and is noted d[b]. are added as an annotation. We now describe how these
The second accounts for the time when the algorithm fin- annotations are verified at the code consumer end:
ishes examining the basic block list of successors and is

noted f[v]. An edge(b — V') is a backedge il[b] < d[b'] e At the beginning of a basic block, set the derived
and f[b] > f[V']. Note that the discovery time stamp was types of each variable of the program to the anno-
used for tagging the different types computed by the in- tated types.

ference engine. )

Determining these time stamps on the consumer repre- ® Make one linear pass through the statements of the
sents an important overhead and implies heavy computa- ~ P10Ck, applying the inference rules explained before
tions. Before sending the code to the consumer, we ap-  (© the derived types.
ply a transformation in order to guarantee the respect of
the precedence order of the basic blocks. This transfor-
mation guarantees that the loop bounds will be verified
on the consumer by a straight forward inspection of code.
However, reordering the code probably affects the runtime
behavior of a method or increases the code size and the
number of local variables slightly as mentioned in [10].  4-2- Examples

Furthermore, to minimize the workload affected to the N the following, we illustrate the verification process
consumer in order to compute the WCET of the mobile €xPlainedin 4.1.
code, we use a parser to flatten the control flow graph of

the program into a tree. This eases the computation of theSampIe program 1 The annotated type table joined to

WCET by the recipient part of the system, since search- the code received by the consumer is represented below:
ing the most costly path is less resource-demanding in a

tree than in a cyclic graph. Conditional statements are Label | i tmp
represented by separate branches in the tree. Loops are L1 [oXo] | T

e At the end of a basic block, check that the derived
types are coherent with the annotated types of all its
successors. If the annotations do not verify this prop-
erty, we reject them.

T
2
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Table 2 shows the steps of the verification process of the [ Step  pp Instruction  Tu[s,¢mp]  Tali, tmp]
code sample 1. At step according to our operational se- 1 1o i=0 _ ¢ | {0}17!
mantics explained in 3.3, the derived types of the program | 2 2 mp—i>9  Jolo] T [0l 9]%7
variables andtmp corresponds t§0},, T. At step2, the 3 3 jumpiftmpL2 0 [0l 9]%,T
evaluated instruction is a jump target. We must check that | 4 4 i1 0 [0 1 9]%,T
the current state indicated bya(},, T) is coherent with 5 5  jumpLl 0 019 T
the annotations done on the produciér { 9] !27 T). Infor- 6 6  retumni 0 T

mally, we must verify that the initialization step occurred
before the creation of the iterator type. As the precedence
order of the current state is smaller than the annotated
type, the conformity of the proof is verified and current
state is set to[() - 9]!2, T). For the following instructions, o _
the derived types are computed with regard to the typing The annotated type table joined to the code received by

Table 3. Verification process on the con-
sumer of the sample program 2

rules that were used by the loop detection tool. the consumer is represented below:
Label | i tmp
Step pp Instruction Tali,tmp] Ty, tmp] L1 [0 1 9}! T
1 I i—0 ] ' 01T, L R
2 2 ie—i+1 [0%9],T [oXo],.T —
) 2 ? Table 4 shows the steps of the verification process of the
3 3 tmp—i<9 0 [019] T . )
o ) 2’ code sample 3. At step according to our operational se-
4 4 jumpiftmpll § 02 9]? (>,9 mantics explained in 3.3, the derived types of the program
5 5  retumi 0 [029],.G,>,9 variablesi andtmp corresponds t¢0},, T. At step2, the
o evaluated instruction corresponds to a jump target. We
Table 2. Verification process on the con- must check that the current state indicated f§}(, T)
sumer of the sample program 1 is coherent with the annotations done on the producer

([o* 9]!2, T ). We must verify that the initialization step
occurred before the creation of the iterator type. As the
o precedence order of the current state is smaller than the
Sample program 2 The annotated type table joined 10 gnnotated type, the conformity of the proof is verified and
the code received by the consumer is represented below: current state is set to[(( 1 9}!27 T). At step3, the proof

Label | i tmp continuity is ensured. At step a constant valué is as-
L1 [E 9]! T signed toi. This initialization occurs in a basic block that
L2 T Yl occurs after the creation of an iterator. The verifier reject

the code as the proof does not correspond to the mobile
Table 3 shows the steps of the verification process of thecgge received by the consumer.

code sample 2. At step, according to our operational

semantics explained in 3.3, the derived types of the pro-| Step pp _Instruction Tali, tmp]  Tali, tmp]

gram variables and¢mp corresponds t§0},, T. At step 1 1 e _0 0 ! {0}1171

2, the evaluated instruction is a comparison operation and 2 2 il [oto], T Jolo] T

corresponds to a jump target. We must check that the cur{ 3 3 jumpiftmpL2 0 [0 1 9] o1

rent state indicated by{(},, T) is coherent with the an- 4 4 4 0 Proof Inconsistence
. 1 a1t 5 5 tmp—i<9 0 Proof Inconsistence

nOt_at'ons dong on the PrOduce{ﬂ(“ 9}47 T). We must 6 6 jumpiftmp L1 0 Proof Inconsistence

verify that the initialization step occurred before the-cre | 6 6  retumni 0 T,T

ation of the iterator type. As the precedence order of the o
current state is smaller than the annotated type, the con- Table 4. Verification process on the con-
formity of the proof is verified and current state is setto ~ sumer of the sample program 3

([o* 9];, T). For the following instructions, the derived
types are computed with regard to the typing rules that

were used by the loop detection tool. 5. Experimental Results

Sample program 3 For the sample program 3, our loop We experimented our loop bounds detection tool within
bounds detection tool never detects an iterator. As thisthe Facade framework [7]. This framework is based
code fragment does not correspond to a recognizable loopon a typed intermediate language designed for resource-
pattern, our tool rejects the program. In the following, we limited devices and mainly smart cards. Thanks to this in-
show that our verification tool rejects the code if a ma- termediate language, it was possible to devise an extensi-
licious programmer tries to mislead it by sending a false ble operating system call&hamille[5]. In Camille, appli-
proof. cations and operating system extensions are programmed
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using a high level language as C or Java for instance, theramount of the memory actually referenced by a program.
translated into an Facade Intermediate language by a coddt can also be used to control the system resource usage by
converter or a dedicated compiler, before they are loadedaccounting the number allocation and deallocation in loop

in the embedded systemCamille already supports the
Proof Carrying Code model. Indeed, extensions are val-

constructs.

idated when loaded in the operating system by a verifier, References

which ensures their type-correctness.

Our algorithm was applied to th@amille kernel as it
corresponds to our requirements. Inde€dmille itself
is written using a type-safe subset of the C language and
can be translated iRagadeusing a customized version of
GCC. Table 5 describes the kernel source code in terms of
footprint, number of lines. More information about the
source can be found in [6].

Kernel C Files
Size (kB) 195 148.5
Number of lines | 5962 6606

Table 5. Description of Camille Kernel code

Kernel Fagade Files

Our off-line tool, first, builds the control flow graph
and determines the precedence order on the 53 compo-
nents constituting the kernel. The analysis is done on the
intermediate code and detects 614 basic blocks. Then, the
tool proceeds by an iterative type checking analysis. The
instruction set used in 3.1 can be considered as a subset
of the The Facade language. It uses the CardInt class with
the method#\sisfor assignmentf| for addition, andopl
for arithmetic comparison.

In the kernel written in C language, we accounted 60
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responding to the translation of the kernel files was in-
spected by our loop bounds detection tool concerning
the recognizable loop patterns. It contains 120 methods
covering essentially arithmetical operations and memory
management. The tool allows to bound 70% of the ker-
nel methods. The remaining methods contains infinite
loops or depend closely on the system inpw@s.( /O
Stream). Our type analysis took fairly 5 iterations on the
set of classes to reach a fixed-point.
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Abstract

Cache memories have been widely used in order
to bridge the gap between high speed processors
and relatively slower main memories, and thus to
improve the overall performance of systems. How-
ever in the context of hard real-time systems, they
are a source of predictability problems. A lot of
progress has been achieved to model caches to
statically determine safe and precise bounds on the
wor st-case execution times (WCETS) estimates of
tasks on architectures with caches. Nonetheless
cache-aware WCET analysis techniques may not
always be applicable or may be too pessimistic,
because some memory accesses are unknown stati-
cally. Another reason may come froma poorly doc-
umented or non-deterministic cache line replace-
ment policy. An alternative approach is to lock
cache lines so as to make memory access times en-
tirely predictable.

In this paper, we consider an instruction cache
and a task. We propose a an algorithm which par-
titions the task into a set of regions. Each region
owns statically a locked cache contents determined
offline.

A set of tasksis used to experimentally analyze
the effects of the algorithm on the wor st-case cache
miss rate (WCCMR). A sharp improvement is ob-
served, as compared with a system without any
cache. Furthermore it is observed that the results
obtained on WCCMRs compare to the results ob-
tained from static analysis of a cache whose pol-
icy is to replace least recently used (LRU) cache
lines. Contrary to cache analysis techniques, our
algorithm depends neither on the scheduling pol-
icy, nor on the cache line replacement policy. Asa
further property, it works at the machine language
level, and thus does not require any source code.

Keywords : hard real-time systems, cache
memories, worst-case execution time
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1 Introduction

1.1 Cachememoriesand real-timeissues

Caches are small buffer memories with low la-
tency which are inserted between the CPU and the
main memory. They benefit from the spatial and
temporal locality often found in instruction and/or
data streams in order to store, at any time, mem-
ory references which are likely to be addressed in a
near future. They operate transparently. Therefore
no change is required in the memory addressing
scheme. They bring an improvement of the overall
performance of computer systems. However two
phenomena make it hard to know statically mem-
ory access in the worst case:

e Intra-task interferences which occur when a
task overrides its own cache lines, mainly
because of the relatively small size of the
cache as compared with the task’s memory
demands.

e In preemptive multitasking systems, preemp-
tions cause inter-task interferences. Namely
when the execution is switched from a task A
towards a task B, some cache blocks used by
A may be evicted by B.

In the industry, there is a growing demand of
hard real-time systems with improved performance
and cheaper hardware. Thus the challenge here
is to accomodate the performance goal of cache
memories with predictability requirements of hard
real-time systems.

1.2 Cachememoriesin hard real-time systems

There are at the present time two categories of
approaches for safely incorporating cache memo-
ries in hard real-time systems. In the first one,
cache analysis, caches operate without any re-
striction. Static analysis techniques (cache-aware
WCET analysis [9, 7] and schedulability analysis



[6]) predict their worst-case impact on the system
schedulability. They assume that the cache line re-
placement policy is known.

The second category of approaches consists in
using caches in a restricted or customized manner
in order to adapt them to the needs of hard real-
time systems and schedulability analysis.

Cache-partitioning techniques assign portions
of a cache to some specified tasks in order the
guarantee that for each task its most recently used
code or data will remain in the cache while the
processor executes another task. The partitioning
can be made at the hardware [5] or software level
[8]. Since the dynamic behavior of the cache is
isolated within each partition, inter-task interfer-
ences are eliminated. The counterpart is that the
per-task available amount of memory is reduced,
hence decreased performance. Furthermore static
cache analysis is still required to tackle intra-task
interferences.

An alternative is to use cache locking tech-
niques. Locking a cache line consists in loading
some contents in a cache and inhibiting the cache
line replacement policy. If all the cache lines are
locked, we say that the state of the cache is a locked
cache state. Predictability is strictly ensured if
contents is chosen offline. This feature is available
on several commercial processors (among others:
Motorola ColdFire MCF5249, Motorola PowerPC
603e, ARM 940T).

Given a task, its code is subdivided into one or
more zones. Each such zone has a locked cache
state. Consequently, executions of the task are sub-
divided into temporal windows, in each of which
the cache is locked. When there is more than one
zone, the locking scheme is said to be dynamic,
whereas for only one zone, it is static [11, 2].

If the locking method is global, at every instant,
each task owns a portion of the cache space. No
cache reload is needed when a task is preempted.
In the case of a local locking method (see for ex-
ample [10, 3]), each task owns the entire cache. To
ensure this, the cache is reloaded each time a pre-
emption occurs.

1.3 Paper contentsand contributions

This paper explores the use of local dynamic
locking of instruction caches in hard real-time sys-
tems. Dynamic cache locking is attractive from
several points of views. First of all, it improves
the worst and average-case performance of tasks,
as compared with the case where the same tasks do
not use any cache at all.

When using dynamic instruction cache locking
techniques, the interactions between the dynamic
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properties of caches and other architectural compo-
nents such as pipelines or branch predictors are less
complex, making easier the analysis of these com-
ponents in validation tools of hard real-time sys-
tems. Dynamic instruction cache locking can also
be used when no cache analysis method can apply
accurately, due for instance to non-deterministic or
poorly documented cache replacement strategies.

It may be also suitable for designing mixed sys-
tems providing both tasks with hard real-time con-
straints and tasks with soft real-time constraints
which may use unrestricted caches.

In this paper, we propose algorithms for find-
ing a partition of the machine code of a given task
into regions, and to determine a locked state of the
instruction cache for each such region. It is per-
formed in a non-blind manner by using memory
access patterns obtained by profiling the task. The
goal is to improve the worst-case performance as
compared with a system with no cache, in such
a way that this performance be comparable with
results obtained from static analysis of the same
cache whose replacement policy is the least re-
cently used (LRU).

1.4 Paper organization

The remainder of the paper is organized as fol-
lows. Section 2 gives an overview of the proposed
local dynamic instruction cache locking strategy.
Then we detail the experimental setup and perfor-
mance measurements used for validating our ap-
proach in Section 3. In Section 4, we give an
overview of other studies related to our work. Fi-
nally we conclude in Section 5 with a summary of
the paper contributions.

2 A dynamicinstruction cachelocking
technique

In this section we describe our method which
supports dynamic instruction cache locking. After
introducing the assumptions and notations (82.1)
and giving a first glance at the method (8§2.2), the
central objects of this work, namely regions, are
studied in paragraph 2.3. Then we detail how to
associate a locked cache state to a region of a pro-
gram in order to improve the worst-case perfor-
mance of this program (82.4). Finally, an algo-
rithm for partitioning a program into such regions
is described in the paragraph 2.5.

2.1 Assumptions
2.1.1 Architectureand program model

In our model, we consider a CPU provided with
a one-level set-associative instruction cache.



We will consider a progamm presented in bi-
nary form. Each subroutine owns a unique re-
turn point. Indirect jumps are excluded. Moreover
the program is assumed to execute within a finite
amount of time.

Throughout this paper, for any program, we
will associate to each of its subroutines a control
flow graph (CFG). A control flow graph is an ab-
stract representation of a subroutine. Each node in
the graph represents a basic block, i.e. a sequen-
tial piece of code with a unique entry point and a
unique exit point. Directed edges are used to rep-
resent jumps in the control flow.

2.1.2 Reloading and locking operation

Reloading and locking the cache may be done
by inserting instructions calling a special subrou-
tine. However, in this work, this operation is as-
sumed to be done without modifying the program.
We use debug registers which raise an exception at
specified values of the program counter. An excep-
tion handler does the job of reloading and locking
the cache. The benefit is that the program’s mem-
ory map is left unchanged.

2.2 Overview

We propose to apply a local dynamic cache
locking strategy which aims to improve the WCET
of a program as compared with the case of a system
with no cache. The main issue is to avoid perform-
ing an exhaustive search of all the possible subdivi-
sions of the program and of all possible cache con-
tents for each subdivision, as this would result in
a combinatorial explosion. The proposed method
consists in the following two steps :

1. Profiling.
We determine, from executions of the pro-
gram with various entry data sets, a collec-
tion of execution paths along with their ex-
ecution frequencies. These paths must ver-
ify the following two conditions: (i) as many
basic blocks as possible are reached; (ii) no
path can be deduced from other paths with
set operations, so that the number of paths
is minimal. From this profiling information,
we compute for each basic block an execution
frequency.

Program partitioning

A greedy algorithm is applied on the set of
basic blocks. At the initial state, the program
is presented as the set of basic blocks of its
control flow graph. Each such basic block is
a region. At each step of the algorithm, re-
gions are aggregated into new regions. Each

181

region has a locked cache state. Two basic op-
erations, merging and inlining, allow to create
new regions from existing ones. The goal of
the algorithm is to determine a set of regions
minimizing the WCET estimation of the pro-
gram.

2.3 Regions

The notion of region is central in this work.
Given a subroutine whose CFG is known, a re-
gion R is a connected part of this CFG. Namely,
between any couple B;, By of basic blocks of R,
there exists at least one non-directed path between
them. R may be of one of two types :

e R is a simple region if it has a locked cache
state which is known statically. This state is
computed with an algorithm described in sec-
tion 2.4. The addresses through which other
regions of the program may enter R are cache
reload points. When one of them is reached,
the cache is reloaded with the locked cache
state of R.

Suppose R spans all the basic blocks of its
subroutine. If there is a significant benefit
from avoiding cache reloads when entering
and exiting from this subroutine, R may be
inlined. In this case, R inherits the cache
state of any region in which the subroutine
was called.

2.4 Computation of a locked cache state for a
simpleregion

Consider a simple region R in a program. We
provide it with a locked cache state. Namely, for
each cache line, we select from this region the
memory line such that: (i) it can be loaded in that
cache line; (ii) its execution frequency is the high-
est; (iii) the gain obtained from having this mem-
ory line in the cache is more important than the cost
of loading and locking it in the cache.

The last condition is true if the execution fre-
quency of this memory line exceeds a constant pro-
portional to the average number of times a cache
reload occurs when entering R.

This locked cache state is chosen so as to min-
imize, among all possible choices, an heuristic
which is the approximate time spent, during any
execution of the program, in the basic blocks of R
plus the average time spent reloading the locked
cache state of R. The proof of this property
vaguely follows the lines of the main proof pre-
sented in [11], so we will not detail it here.



25 The Region Merging and Inlining algo-
rithm
In this Section, first we define two basic op-
erations on regions, namely merging and inlining
(82.5.1). Then, in order to improve the WCET of a
program, an algorithm (82.5.2) partitions the pro-
gram into regions using these two operations.

25.1 Basic operationson regions

Merging Let R; and Ry be two simple regions
that are connected. Merging these two regions into
a new simple region R means that:

e R aggregates the blocks of R; and Rs

e The locked cache state of R is computed by
the algorithm presented in the paragraph 2.4.

We will use the notation R = R; © R, to ex-
press the fact that the region R is obtained as the
result of merging Ry with R,.

Inlining Suppose a subroutine contains only a
simple region R. There may be a potential benefit
by avoiding cache reloads when calling and exiting
this subroutine. The general idea for the inlining
operation is to allow the this subroutine to inherit
the locked cache state from the subroutine which
has just called it.

We now define a calling region C'R of R the
following way (cf. figure 1):

e C'Ris asimple region.

e There exists at least one chain (fo, ..., fi—1)
of subroutine calls leading from C'R to R: (i)
the call towards fy lies in C'R; (ii) if m > 2,
each fo, ... fm—_o represent an inlined region;
(iii) f,,—1 calls towards the subroutine repre-
senting R.

Now let CR; (1 < i < n) be the calling regions
of R. Then inlining R means that, for each C'R;:

e For each memory line of R, its frequency is
assumed to be scaled up by the proportion,
among all the calling regions, of calls from
CR; towards R.

e Its locked cache state is computed (§2.4) of-
fline from the knowledge of the memory lines
of both CR; and R.

From now on, the locked cache state of R is
inherited from the locked cache state of the last ac-
cessed calling region during runtime (cf. figure 1).
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simple region
[ inlined region

subroutine call

memory lines of R sent in each
of its calling regions

Figure 1. Aregion R and its calling re-
gions C'R;. Inlining operation on R.

2.5.2 Description of thealgorithm

In this subsection, we give a description of an
algorithm which determines a partition of a pro-
gram P into regions in order to to minimize the
WCET of P. We propose a sub-optimal strategy,
the RMI (Region Merging and Inlining) greedy al-
gorithm. RMI takes as an input the partition of P
in basic blocks, which are initial regions. At each
iteration, a pair of regions is chosen and merged
once for all, thus giving a new partition choice.
RMI keeps also track of the current best partition.
Inlining operations are involved when updating the
best partition. When completed, RMI returns the
best found partition of the program.

Quality of an operation. Let Qe be a partition
of P, and o5t the partition resulting from an opera-
tion (merging or inlining) on Q. The quality cri-
terion of this operation is based on the difference,
noted ¢, between the WCETS of P with the locked
cache states from respectively Qpost and Qpre. The
best operation gives the lowest value of §, noted
Omin- It represents on the WCET of P its best im-
provement if dymin < 0, and its least deterioration
otherwise.

In order to choose among some possible oper-
ations on Qpe the best one, the EvalOp algorithm
(cf. algorithm 1) must be called each time such an
operation was attempted on pe. Given an opera-
tion, the WCET of the resulting partition 05t and
its quality criterion § are computed (¢. 1-2). Then
EvalOp updates the information on the partition re-
sulting from the best operation on Qe if needed (¢.
3).



Algorithm 1 EvalOp algorithm
Require: P: program; Qpe: partition of P; Qpest:
partition after an operation; dnmin: best quality
criterion
Ensure: Qmin: partition resulting from the best
operation; dmin
1: WCET(Qpost) «— WCET of P with Qpos;
2: 0 «— WCET(Qpost) - WCET(Qpre);
3: if 0 < dmin then Qpin onst; Omin + 0;

Description of the RMI algorithm. First note
that a partition € of P into regions gives rise to
a search space. Namely this search space contains
all the partitions that can be deduced from € by
operations (merging and inlining) on its regions.

Algorithm 2 RMI algorithm
Require: P: program, Qinit: initial partition of P,
Smax: Max size of a set of locked cache states

Ensure: Qpeqt: best found partition

L Qcur < Qinits Qbest — 0;
WCET(Qcyr) < WCET of P with Qgyr;
WCET (Qpest) < WCET of P (no cache);
while a subroutine has more than 1 simple re-
gion in Q¢ do

2:
3:
4:

5 Qeur < TryMerge(P, Qcur);

6: if WCET(Qu) < WCET(Qpest) and
Size(Qcur) < Smax then Qpest «— Qeur;

7 Qinlined < Qcur;

8:  whilethere are inlineable regions in Qjnjined
do

9 Qintined < TryInline(P, Qinjined):;

10: if WCET(Qintined) < WCET(Qpest) and

Size(chr) S Smax then Qbest — Qinlined;
11:  end while
12: end while

The RMI algorithm (cf. algorithm 2) starts from
the initial solution search space corresponding to
the basic blocks of P stored in the current partition
choice Q¢yr (£. 1). At each iteration, RMI searches
for the best merging between a pair of regions (¢.
5) by calling the TryMerge algorithm (cf. algo-
rithm 3), thus updating €, and equivalently re-
ducing the solution search space. It then updates
the information on the best partition (¢. 6-11). The
whole process is iterated until no merging opera-
tion is possible in the solution search space, which
means that, in Q¢ only one simple region remains
in each subroutine (¢. 5). When choosing the
best partition Qpest 0f P, RMI first compares Qpest
against Qg (¢. 6), and updates it if needed. Then,
starting from €, a greedy algorithm is used to
choose a sequence of inlining operations (¢. 8-11)
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by calling the Trylnline algorithm (cf. algorithm
4). At each step, the current choice is stored in
Qintined- After a choice was made, Qe is updated
if needed.

Description of the TryMerge algorithm.  Given
a partition 2 of the program P, for each pair of
mergeable regions, the TryMerge algorithm tries
to merge them and builds a test partition Qs (4.
3). If the EvalOp algorithm decides that Qg re-
sults from the current best merging operation, it is
stored in Qmin (0. 4). After completion, €2 is up-
dated with the partition stored in Qi representing
the best merging operation (¢. 6).

Algorithm 3 TryMerge algorithm
Require: P: program, Q2: partition of P
Ensure: Q
L Omin < Omax;
2: for each connected pair of simple regions
(Rl, Rg) € Qdo
Qest — (A\{R1, R2}) U{R1 ® Ry},
(Qmim 5min) — EvaIOp(P, Q, Qest, 5min);
end for
© Q — Qnin;

o a kR w

Description of the Trylnline algorithm. Given
a partition Q of P, for each subroutine which con-
tains only one simple region R, the Trylnline al-
gorithm builds a test partition Qg in which R is
inlined (¢. 3-7). As for TryMerge, the EvalOp al-
gorithm is used to choose the current best inlining
operation (¢. 8) whose corresponding partition is
stored in Qmin. After completion, 2 contains the
partition corresponding to the best inlining opera-
tion (¢. 10).

Algorithm 4 TrylInline algorithm
Require: P: program, €2: partition of P
Ensure:

1 Omin < Omax;

2: for each inlineable region R € Q do

3:  CR: setof calling regions of R in 2;

4 R «— R;CR «CR,

5: Qtest — Q\{R, CR},

6: Inline R'inCR/;

70 Qpest  Otest U {RI,CRI};

8 (Qmin; omin) < EVAlOP(P, §2, Qtest, dmin);

9: end for
10: ) «— Qmin;

As regards the worst-case complexity of the
RMI algorithm in terms of the basic operations in-
volved, merging and inlining, it is quadratic in the



number of basic blocks of the considered program.
This property is shown in the annex A.

3 Experimental results

This section deals with an experimentation de-
signed to validate the approach adopted in this
work. In the paragraph 83.1, the experimental pro-
tocol and the assumptions are detailed. Then in the
following paragraph (83.2), we evaluate the impact
of our method on the worst-case performance.

3.1 Experimental setup

Hardwareand timingmodel. As the worst-case
performance with regards to an instruction cache is
our only concern, we assume an executive support
from a 32 bit MIPS R3000 processor at instruction
level only. In our model, this processor provides
only one architectural component, namely an in-
struction cache. Its cache line replacement policy
is the LRU policy. Moreover we suppose that this
cache can be totally locked.

The size of the cache ranges from 512 bytes to
4 kilobytes, and its associativity is equal to 1 (thus
it is direct-mapped). The application performance
with respect to the cache is our only concern in this
study. Therefore the timing model for the proces-
sor is very simple. The worst case performance
of a task under a given configuration of the cache
is measured in worst case cache miss rate (WC-
CMR).

When the cache is dynamically locked, a spe-
cial routine of the underlying operating system is
assumed to manage the reloading and the locking
of the cache. As the performance of this routine
is highly critical, it is assumed to be stored into a
scratch-pad memory [12]. As we focus on cache
misses, only operations loading memory lines into
the cache are taken into account. Thus, given a
locked cache state S, the worst number of cache
misses of this routine is assumed to be equal to | S|,
i.e. the number of cache linesin S.

Generation of execution traces. In order to pro-
file programs, a MIPS R3000 processor emulator
at instruction level is used to generate execution
traces.

Estimation of worst case missrates. The WC-
CMRs of programs, presented in binary form, are
computed with the Heptane! static WCET anal-
ysis tool [4]. Within the context of this work, it
uses a technique based on abstract syntaxic trees.

IHeptane is an open-source software available at
http://www.irisa.fr/aces/software/software.html
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In such a tree, the leaves are basic blocks, while
the other nodes are sequences, if-then-else con-
trol structures, or loop structures. The WCET and
the WCCMR are computed bottom-up by formu-
lae which establish for each node a partial WCET
(resp. WCCMR) depending on its children nodes.
The WCET (resp. WCCMR) of the root node is
then the WCET (resp. WCCMR) of the analyzed
program.

Heptane includes hardware modeling capabili-
ties to estimate safely but precisely the numbers
of hits and misses in the worst case on architec-
tures with instruction caches, pipelines and simple
branch predictors. In the present study, Heptane’s
pipeline and branch prediction modeling modules
were switched off since our focus is on instruction
caches only. In addition of a cache analysis mod-
ule, Heptane was incorporated a module that takes
into account the presence of a dynamically locked
instruction cache. This new module uses a file de-
scribing the set of cache states and cache reload
points of the program to be analyzed. It classifies
instructions into two categories : missand hit. An
instruction is classified a a hit if it is locked in the
instruction cache, and is classified as a miss other-
wise.

Experimentation process. Given a program and
a parametrization of the instruction cache, the ex-
periment proceeds in two steps (see figure 2). First,
the set of cache states and cache reload points is
computed by the RMI algorithm. For this purpose,
execution traces are generated with Nachos.

The second step is the performance evaluation it-
self. The WCCMR is computed with Heptane.
Two cases are considered: (i) a system with a dy-
namic instruction cache (i.e. operating in its nor-
mal behavior); (ii) a system with a dynamically
locked instruction cache.

WCCMR
estimation

partition into

profiling regions

locked cache
states

execution
traces

Figure 2. Experimental protocol

The experiments were conducted on three
benchmark tasks, whose features are summarized



in figure 3. The third column gives, for each task,
the code size in bytes.

Name Description Size
minver | matrix inversion 4584
matmult | matrix product 1328
jfdctint | integer DCT transformation | 3424

Figure 3. Characteristics of tasks

3.2 Performance of dynamicinstruction cache
locking

In this paragraph, we interpret the results ob-
tained from the experimentation. First, we ex-
amine the worst-case performance improvement
obtained with our approach (83.2.1). Then we
study some properties of the RMI algorithm itself
(83.2.2).

3.2.1 Worst-case performance

We compare the worst-case performance of the
tasks in two situations: (i) the cache is dynamically
locked; (ii) the cache is dynamic wih a LRU pol-
icy. The figures 4, 5, and 6 describe the results of
the experiments. In the locked case, the WCCMR
comprises the cache misses due to the task itself,
and the cache misses arising from cache reloading
operations.

Impact of the cache size. As seen on figures
4, 5, and 6, in both locked and LRU cases, the
worst-case performance is far better than without
any cache (in this situation, the WCCMR would
be equal to 100%).

In the dynamic case, the WCCMR sharply de-
creases when increasing the cache size, as the
cache conflict probability decreases.

In the locked case, when increasing the cache
size, we observe a general tendency towards the
decrease of the part of the WCCMR which rep-
resents the reload overhead, . But for a notable
exception in the case of the task jfdctint with a 1
KB cache, a similar tendency applies as regards the
part of the WCCMR from the task itself.

Now we compare the worst-case performance
between the locked cache and the dynamic case.
In this aim, we compute, for each task and each
cache size, a ratio between the total WCCMR in
the locked case and the WCCMR in the dynamic
case. With the exception of two results (jfdctint
with a 1 KB cache, and minver with a 4 KB cache),
the average ratio is equal to 1 for jfdctint, 1.44 for
minver and 0.83 for matmult. Thus the results are
in the same order of magnitude in the locked and
dynamic situations.
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Figure 4. WCCMR results for minver.
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Impact of the associativity degree. On the fig-
ure 7, we consider the task minver and a 1 KB
cache. The impact of the associativity degree is
illustrated both in the locked and LRU cases.

We observe that the worst-case performance of
the locked cache scales well when increasing the
associativity degree. This can be explained by the
fact that, for a given cache size, a cache contents
computed by the Lock-MP algorithm for a spec-
ified associativity degree remains valid for other
associativity degrees. This confers to the RMI al-
gorithm a low sensitivity to the variations of this
parameter.

3,3%

1,7% 1,7%

1 2 4

Associativity degree

[ Locked cache W Reload overhead

Figure 7. Compared impact of the as-
sociativity degree of a 1 KB cache for
the task minver.

3.22 Propertiesof theRMI algorithm

Performance. As noticed before, the worst-case
complexity of the RMI is quadratic in the number
of basic operations, merging or inlining, on the ini-
tial set of basic blocks of a task. The figure 8 in-
dicates, among others, for each task and for each
cache parametrization, the number I B of initial ba-
sic blocks and the time 7' it took to compute a set
of locked cache states. The study of the quantity
T /1B? shows that the computation time 7" in sec-
onds follows the approximate law 7' = 0.51 B2.

Locked cache states. As regards the number of
locked cache states determined by the RMI al-
gorithm, the figure 8 shows that this number de-
creases when the size of the cache increases. This
is is essentially due to the fact that the cache con-
tents selection algorithm Lock-MP accepts a more
important number of useful memory lines in a less
important number of locked cache states.

A notable fact is that, even when the size of a
task is inferior or approximately equal to the size
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of the cache, the RMI algorithm may determine
more than one locked cache state. It can be seen
in the figure 8 in the case of the task minver for a
4 KB cache, and in the case of the task matmult
for most of the cache sizes. A reason for rejection
of valuable memory lines by the Lock-MP algo-
rithm is the existence of conflicts due to placement
constraints in a set-associative cache. The RMI al-
gorithm may address this issue by creating more
locked cache states when there is a benefit from
considering those rejected memory lines.

Task Cache | Nb of ba- | Computation | Nb of

size sic blocks | time cache

states

512B | 135 3h 6min 49s 10
minver 1KB 135 2h SOm?n 52s | 6

2 KB 135 2h 35min 13s | 4

4 KB 135 2h42min 12s | 3

512B | 23 5min 22s 12
jfdctint 1KB 21 4min 32s 3

2 KB 19 3min 12s 3

4 KB 19 3min 13s 1

512B | 23 2min 48s 2
matmult 1KB 23 2m!n 48s 2

2 KB 22 2min 50s 2

4 KB 23 3min 2

Figure 8. Results characteristics

4 Related work

Studies have been performed for static instruc-
tion cache locking in multitasking hard real-time
systems. In [2], a global approach is proposed.
The cache state minimizing the cache-aware re-
sponse time (CRTA) [1] of each task is chosen. It
is achieved with a genetic algorithm. The fitness
function is a weighted mean of the response time
of each task. The same authors explored a local
approach in [3] with the same algorithm for cache
contents selection.

In [11], two greedy algorithms have been de-
signed for a global locking scheme. Both have a
pseudo-polynomial complexity. From task periods
and access statistics of instruction blocks along the
worst-case execution path of each task, each al-
gorithm selects a cache state so as to minimize a
well chosen cache-aware metric, and thus to im-
prove the task set schedulability. A local variant is
proposed in [10].

As explained in [10], static cache locking lacks
some scalability. If the ratio between the size of the
task set and the size of the cache memory is very
high, only a very small fraction of the task set will
benefit from the cache. Our work is applied on a
per-task basis, and thus is a local approach. It is de-
signed to overcome the scalability problem by al-



lowing the locked state of the cache to be reloaded
at some addresses of a program.

The work [13] is a combination of dynamic data
cache locking and static cache analysis. Given
a task, at compile time, an algorithm computes
the regions in the code where one cannot accu-
rately determine all possible cache contents re-
quired for analyzing the state of the data cache, be-
cause of memory references which cannot be stati-
cally known. Such regions are enclosed with a pair
of statements so that the cache is locked in them.
A locality analysis based on the study of reuse vec-
tors selects the data to be loaded in the cache. In or-
der to address the multitasking issues, it is assumed
that the data cache is partitioned among the tasks
of the system. Also the knowledge of the cache
replacement policy is required.

As compared with this work, our approach pro-
poses a scheme in which the instruction cache is al-
ways locked. Thus our method does not depend on
the cache line replacement policy, and may be used
in cases when static cache analysis fails. More-
over our work does not depend on any partition of
the cache. Therefore it does not require addition-
nal partitioning techniques, and it can be easily ap-
plied in situations in which the number of tasks of
the system may vary.

Finally, scratch-pad memories [12] are an alter-
native to instruction or data caches. These are on-
chip static memories with low latencies. As a con-
sequence they may reconcile performance and pre-
dictability. They generally provide lower capaci-
ties than caches and consume far less power. Be-
cause of the addressing scheme, the code of tasks
must be explicitly modified in order to benefit from
scratch-pad memories. Thus, as compared with our
scheme, this approach requires more compiler sup-
port. We believe that the addressing transparency
provided by instruction caches is a key advantage,
because it alleviates the need for code transforma-
tions.

5 Conclusion

The key benefit of instruction cache locking is
to make the memory access times entirely pre-
dictable and to be a technique that eliminates intra-
task conflicts. It can be applied in situations
where static cache analysis cannot be used (e.g.
when the cache has a non deterministic or undocu-
mented cache line replacement policy). Moreover,
it may make easier the analysis of other architec-
tural components. In this work, we have proposed
a local dynamic cache locking strategy and an al-
gorithm for determining a finite number of cache
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configurations for a given task. Its additional fea-
tures are independence from any scheduling pol-
icy (it is a per-task strategy), unnecessity to access
the source code of programs, scalability with re-
gards to cache associativity. With regard to per-
formance evaluation against a system without any
instruction cache, a sharp improvement is observed
on the miss rates in the worst case. Moreover for
many cache parametrizations, the worst-case per-
formance is in the same order of magnitude as re-
sults from static LRU cache analysis.

As a further work, it would be interesting to ex-
plore the transposition of the RMI algorithm (i.e.
we keep the basic merging and inlining operations)
from a greedy algorithm towards a genetic algo-
rithm. The main reason is that a genetic algorithm
exhibits a better exploration of a solution space and
thus might find sets of locked cache states which
would lead to better improvements on worst-case
performances. Another direction would be to adapt
this work in other situations. It could be easily
achieved for multi-level instruction caches. Fi-
nally, the adaptation to data caches should be in-
vestigated.

A Worst-case complexity of the RMI
algorithm

As regards the worst-case complexity of the
RMI algorithm, we now show that it is quadratic
in terms of involved operations (merging and in-
lining). First we detail a worst-case scenario.
Suppose our program comprises Ng subroutines
Fy ... Fy, each with N basic blocks assimilated
to simple regions. In each Fy, the Ny regions
are consecutive. We consider the following call-
ing hierarchy: for each k, Fj, calls the subroutines
Fyq1 ... Fyg_1. For the sake of simplicity, we as-
sume here that the main subroutine may be inlined.
Starting from the value &£ = 0, RMI repeats the fol-
lowing steps until only one simple region remains
in each subroutine: (i) choose a pair of regions of
F}, then merge them; (ii) in the remaining subrou-
tines Fyy1, ..., Fng—1, N0 pair of regions is cho-
sen for merging; (iii) if only one simple region re-
mains in Fj, then increment &; (iv) try to inline
each of the subroutines Fy, ..., F._1, but never
choose one.

Given a value of &, each of the subroutines
Fo, ..., Fr_1 contain only one region simple. At
a given stage, assume the subroutine F} has Ny —
1 + 1 regions. Then Ni — i mergings are tried
before making a choice. As each of the remain-
ing Ng — k — 1 subroutines Fy4,..., Fy,_1 has
Np simple regions, overall (Ng —k—1)(Ngr—1)



mergings are tried without any choice being made.
As regards the subroutines Fy, ..., Fx_1, k inlin-
ing operations are tried without any success. Thus,
atagivenstage, (Ng —i)+(Ng—k—1)(Ng—1)
operations are done. As the number of regions of
Fy, can vary from 2 to Ny for mergings, 7 ranges
from 1 to Ny — 1. Now summing over the Ng
subroutines, we obtain the following number of
operations: Y r° " SN (Ng — i) + (Ns —
k —1)(Nr — 1) + k]. The computation of this
sum yields 3 N3Ng(Np — 1) operations. Thus
this value is in O((NsNg)?). As NsNg is the
number of basic blocks of the program, the worst-
case complexity of the RMI algorithm in number
of operations is quadratic with the number of basic
blocks.
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Abstract cope with temporary overloaded conditions (using an ad-
mission controller to regulate admitted workload while

Efficient schedulability tests are required for analyz- ensuring that task deadlines will be met). Polynomial time
ing large task systems or for designing on-line admission schedulability tests are necessary to define efficient admis-
controllers. We next focus on periodic fixed-priority tasks. sion controllers.
For fixed-priority tasks with constrained deadlines (i.e.,
deadlinesarelessthan or equal to periods), no exact poly-
nomial time feasibility test is known. We propose several
polynomial time algorithmswith performance guarantees
(with an ijnput accuracy parameter) and compare them
with known exact feasibility tests (running in pseudo-
polynomial time) and a fully polynomial time approxima-
tion scheme (FPTAS). Our main objective is to define the
capabilities of such algorithms according to the system
workload and an accuracy parameter defining the quality
of results to compute.

Checking the feasibility of a task system is usually
a hard computational problem, that cannot be solved in
polynomial time in the number of tasks. Exact feasibility
tests are known for periodic fixed-priority tasks [10, 11]
and run in pseudo-polynomial time. Furthermore, their
execution times can vary from one execution to another
according to the task parameters [13, 6]. Nevertheless,
there are two ways for defining efficient schedulability
tests that consists on:

e improving initial values of an exact feasibility test
as in [13] or [6]. But, the worst-case computational

. complexity of such tests is still pseudo-polynomial,
1 Introduction piexity p poly

o defining an approximate schedulability test running

Large real-time systems are emerging in many ap- in polynomial time as in [7, 1, 9.

plications, including industrial automation, defense and
telecommunication. For these systems, the exact work-
load cannot be predicted and there are significant runtime
uncertainties due to the controlled environment or system
resources states. In many case, best effort strategies ar
required to admit or reject works. After the admission
control, all admitted tasks must meet their timing require-
ments. Many admission controllers are dedicated to im-
prove some Quality of Service (QoS) metrics or a bene-
fit function. They are usually based on two on-line algo-
rithms: an admission controller that checks if a new task  The paper is organized as follows: Section 2 presents
can be accepted without any consequence on already adthe task model considered in the remaining of the paper.
mitted tasks and a scheduler that chooses the next task t&ection 3 presents known exact feasibility tests and ap-
run among uncompleted admitted tasks. In many systems,proximate feasibility tests for periodic fixed-priority tasks.
tasks are assumed to be periodic, but their first release timeSection 4 presents some computational complexity results
is not predictable (i.e., tasks are released over time) andand new polynomial time feasibility tests for fixed-priority
can be killed due to system mode changes. Due to suchreal-time tasks. Section 5 presents experimental results
a dynamic arrival of works, these real-time systems must based on numerical simulations.

Next, we focus on the second promising way. Approx-
imation algorithms perform a compromise between com-
gutational effort to decide the feasibility of task systems

nd the quality of taken decisions. If the approximate al-
gorithm concludes that a task system is feasible, then it
will be true at run-time for all possible behaviors of these
tasks. But, if the answer is negative, then we cannot con-
clude that the task system will be infeasible at run-time.
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2 Thetask modd

We consider uniprocessor real-time systems running
periodic tasks. A periodic task; defines a set of jobs.
Every periodic task is known and implemented in the soft-

ware architecture. Thus, job parameters are always known

before starting the system. Every taskis defined by
three parameters and denotedC;, D;,T;). C; is the
worst-case execution requirementf D; its the rela-
tive deadline (the time window between its release and
its completion), andl’; its period between two succes-

pute the worst-case response time of task

i—1
Wi(t) = Ci+ > rbfilt) @)

Jj=1

For taskr;, its exact worst-case response tilgis the
minimal solution to the equation:
Wi(R}) = Ry 3)

Joseph and Pandya [10] proposed a recursive algorithm

sive releases. We assume that deadlines are constrainedy solve the previous equation. But an iterative algo-

D; < T;,1 < i < n, wheren is the number of tasks in
the system.

rithm can be defined using successive approximation of
response times in order to reach the smallest fixed-point

Every job generated by a periodic task is scheduled us- of Equation 3 (this lead to simple recursion formula). The

ing a fixed-priority. At any time, the highest priority job
is run among available ones. According to such a basic
dispatching policy, the optimal priority assignment can be
performed off-line using the Deadline Monotonic [2] pri-
ority ordering. We assume that task priorities are known

feasibility test consists on: first, computing worst-case

response times of all tasks, and second, checking that
R < D;,1 < i < n. The corresponding algorithm

is pseudo-polynomial and the number of iterations before

reaching the smallest fixed-point widely varies from one

before starting the system (i.e. priority assignment is done t8sk system to another and is highly dependent on task

off-line) and tasks are indexed using the priority ordering,
thusry is the highest priority task.

3 Review of feasibility tests for preemptive
fixed-priority task systems

parameters [13, 6].

Lehoczkyet al. [11] provided a processor demand
analysis for checking task feasibility that will lead in prac-
tice to a different feasibility test. Their main result is
stated hereafter:

Theorem 1 [11] In a synchronous task system, task 7; is

Three main approaches are used to define SChedU|aTeasib|eif and only if, there exists a time ¢ € (0, D,] such

bility tests: analyzing the system utilization factor (i.e.,
Yo, C;/T;), analyzing the processor demand or analyz-
ing worst-case response times of tasks. For fixed-priority

tasks, tests are known for checking a sufficient schedula-

bility condition of tasks having deadlines equal to peri-

ods such as [12]. A necessary and sufficient schedulabil-

ity condition can be computed in pseudo-polynomial time

that W;(t) < t.

Such a result defines an alternative way to check fea-
sibility of a task system, without explicitly computing
worst-case response times. The cumulative request bound
function (defined in Equation 2) only changes for a finite
set of values (i.e., when tasks are released). Thus, the

for systems having constrained-deadlines using & procesmper of time instants to check the feasibility of task
sor demand analysis or by computing worst-case respons&n, Theorem 1 is defined by the following testing set (for

times of tasks. But, no polynomial time algorithm nor
NP-hardness result are currently known for the feasibility
problem related to the studied task model. Next, we only

present results and schedulability tests that will be used in

the remainder of the paper.

3.1 Exact algorithms

For a given task;, the scenario leading to its worst-
case response tinfe; is achieved when task is released
at acritical instant (i.e., simultaneously with all higher
priority tasks) [12]. The processor demand analysis is
based on the total execution time required by a tasknd
can be expressed as of function of time. In a periodic syn-

chronous task system, the total execution time requested

by taskr; is (request bound function):

_ [Tiw c;

The cumulative request bound function allows to com-

rbf;i(t) ()

constrained-deadline task systems):
[Di/T;]}U{Di}  (4)

Thus, checking task; feasibility requires to verify if:
Wi(t)

£ (50)<

As a consequence if one instaht € S; satisfies
W;(t) < tthenr; is feasible and no more time instant
has to be checked to decide the feasibility-af Accord-
ing to Theorem 1, a practical implementation of such a

Si={bT;lj=1...i,b=1...

®)

test usually requires to check only a subsetSef But,
the computational complexity of this algorithm depends
on the ratio: D,;/T;. As a consequence, the algorithm
runs in pseudo-polynomial time. In [5], an improvement
of this test is presented, but this algorithm is still running
in pseudo-polynomial time.
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In practice, the algorithms proposed by [10] and [11] task system is not schedulable, but can give a wrong

can lead to a quite different number of iterations. But, answer in the other case with a bounded e¢rgre.,
their pseudo-polynomial complexities are not acceptable it returns not schedulable whereas the task system is
to define an on-line admission controller and furthermore, feasible).

the numbers of iterations are too dependent on task pa-

e Based on the results obtained by [1] for EDF, Fisher

and Baruah [9] proposed another definition: if a task
32 Approximation algorithms system is stated as infeasible then it is really not fea-
sible on a slower processor (with speled ¢).

rameters.

An approximation algorithm is a polynomial time al-
gorithm that is used to solve efficiently NP-hard (opti- Even if these two frameworks are different, the per-
mization) problems. There exist several ways to define a formance guarantee of an approximation algorithm is ob-
solution in polynomial time with performance guarantees tained by bounding the error on the exact value of the
in comparison with an exact algorithm (always comput- fynction rbf(¢) and its approximate version. We only
ing the optimal value of an optimized function). Lt present the function proposed in [9] that is directly linked

be an approximation algorithm adPT" be an exactal-  (and will be reused) to the problem we cope with in this
gorithm. For any instance, vales returnedyr OPT paper.

for a given instancd are respectively denotedi(7) and ) _ ) )
OPT(I). The (relative) performance guarantee of the al- _ 1he functionbf;(#) is a non-decreasing step function.

gorithm A is defined by aatio A(I)/OPT(I) while con- ~ The number of steps is not bounded by any polynomial
sidering any possible instandeof a given optimization functionin the size of task parameters. One_way to de_flne
problem. The competitive ratio of is thus defined by: ~ &N polynomial-time approximation scheme is to consider
74 = infan,r A(I)JOPT(I), wherel is ainstance of the @ limited numbek_of steps (polynomially bounded in the
considered problem. Thus, the ratio defines the worst-casglumber of tasks in the system) and then to use a linear
performance guarantee while considering all possible in- function to define an upper bound @ff;(¢). The num-
stances of the optimization problem. An approximation Der of steps that will be considered while computing the
algorithm is a polynomial time algorithm having a ratio approximate request bound function is defined as follow:
bounded by a constant. Note that an algoritAns op- k=T1/e] -1 ©)
timal (i.e., always leads to the optimal value of the opti-

mized objective function) if, and only if, 4 = 1. Then, the approximate demand bound functibfi, (t) is

A approximation scheme is a parametric approxima- defined by considering the firgtsteps ofrb f;(¢):
tion algorithm (thus running in polynomial time) that —

takes an input problem instance and an error bdurd rbfi(t) = rbfi() if ¢ <(k-1)Ti
e < 1. The error bound defineg aweuracy input pa- = O+ tﬂ otherwise
rameter. The ratio of an approximation scheme must be i

defined as followsr4 < 1 + €. A Polynomial-Time Ap-
proximation Scheme (PTAS) is an algorithm that runs in
polynomial time in the length of the input. A fully poly-
nomial time algorithm (FPTAS) is a PTAS that satisfies an
additional condition: it is also polynomial ity/e. That is . -l

the best result that can be achieved to solve an NP-hard Wi(t) = Ci+ Y _rbf,(t) )
problem. Only few optimization problems admit FPTAS. J=1

Then, theapproximate cumulative request bound func-
tion is defined by:

Since few years, approximation algorithms gainagreat  To complete the test, Fisher and Baruah use exactly
interest in the real-time research community. To the best the same principle than those proposed by Lehoczky et
of our knowledge, no approximation algorithm has been al. [11] but defining a testing set, but having a polynomial
proposed to calculate approximate response times of tasksyumber of entries according to the input task system size
with performance guarantees (we shall provide such a re-and the accuracy parametey: (
sultin the next section). Nevertheless, checking feasibility — _
is not an optimization problem, but onlydecision prob- Si={bTjlj=1...i-1Lb=1...k}U{D;}  (8)
lem. As a consequence, approximation algorithm prin-
ciples cannot be exploited without revisiting their defini-
tion. In fact, several frameworks have been proposed to
reuse approximation algorithm concepts and thus defining
several approaches to perfoapproximate schedulability
analysis.

wherek is defined in Equation 6. A basic implementa-
tion of this approximate schedulability test leads to an
O(n? /¢) algorithm [9]. Clearly, ife is closed to 0, then
the number of iterations performed by the algorithm is
quite huge and should not be acceptable into an on-line
admission controller (even if it is a polynomial time al-
e Chakrabortyet al. [7] proposed approximation gorithm from a theoretical point of view). Thus, numer-
scheme that always provide the good answer if the ical experimentations are necessarily required according
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to the application in order to definegaod value fore for Algorithm 1: Linear Time Approximation Algorithm
the considered task systems. Note that such an approx- pData 0, (T, ety Th)
imation scheme has been extended to task systems with

arbitrary deadlines in [8] (i.e., periods and deadlines are f’l_zs ?10
not related). for i=2..ndo
_ r=r+Ci1/Ti1;
4 New Algorithms s =5+ Ci-1;
R;, = Ci) /(1 —r),
We first present some computation complexity results, end s+ G/ =)

and then, we propose three new polynomial time algo-
rithms for checking the feasibility of fixed-priority tasks
with constrained-deadlines.

return (Ry,...,R,);

. . - task 7; is not schedulable, it is necessary and sufficient

41 Computational complexity of feasibility prob-  , check there exist a time instarguch that dbf() > ¢
lems . ) » ~ (see [3] for the definition of the demand bound function

The computation complexity theory classifies decision dbf(t)). This is done in polynomial time sincghy(t)
problems according to their internal complexity. Check- s computable in linear time. Thus, a non-deterministic
ing feasibility of a task system is obviously a decision 5gorithm can check the infeasibility of a task system in

problem. Nevertheless, no computational complexity re- sy nomial time. Thus, the considered feasibility prob-
sult is known for the feasibility problem related to the g, belongs to coVP. O

studied task model. This decision problem is not known

N'P-hard, nor belonging toVP. Before defining approx- Next, we present several polynomial time algorithms
imation algorithms, we first state a computational com- t0 check the feasibility of fixed-priority tasks with con-
plexity result for fixed-priority tasks, then we recall that Strained deadlines.

verifying that tasks scheduled under EDF (Earliest Dead-

line First) leads to a very different class of problems in the #2 A linear time approximation

computational complexity theory, unleBsequals\P. Consider the workload function stated in Equation 2
and letR; be the exact worst-case response time;ofn
Theorem 2 Checking deadlines for synchronous fixed- order compute an approximate worst-case response time
priority tasks having constrained-deadlines is a decision (i.e., an upper bound), one can relax the integral values
problem belonging to NP. of ¢/T; while computing the interference of any higher

_ priority taskr;. That is to say:
Proof: In order to show the problem to be NP, we
have to prove that a task set can be decided feasible us- . i1 R;
ing a polynomial time non-deterministic algorithm. If the Ri < Ci+ Z (1 + T) Cj
non-deterministic part of such an algorithm "guesses” a =1 !
scheduling point in the testing set defined in Equation For obtaining a lower bound of the worst-case response
4 for checking the feasibility of a task;, then a neces-  time ofr;:
sary and sufficient condition according to Theorem 1 is: i—t
Wi(t) < t: Such atestis done'ln .polyno.m|al time since R >0+ Z _iCj
the Equation 2 is computable in linear time. Repeating e T;
this principle for every task leads to a polynomial time ) o _ _
test (using a non deterministic algorithm). Thus, the con- USing the two previous inequations, we obtain:

sidered feasibility problem belongs A6P. O

C,' * Z;’:l Cj 9
Note that the same feasibility problem will be in 86P %ZW SRS l—zﬁ ©)
if we consider an EDF scheduler (thus, one can checked =1 =L
in polynomial time for a given datethat a task system We use such an upper bound to approximate the worst-
is infeasible, but checking that a task system is feasible case response time ef. Then, these upper bounds of
requires more than a polynomial amount of time [3]). tasks can be used to define a linear time feasibility algo-

rithm (i.e., running inO(n), wheren is the number of

Theorem 3 [3] Checking deadlines for synchronous tasks) that computes response time upper boubdas
tasks having constrained deadlines, to be scheduled un- presented in Algorithm 1.

der EDF, is a decision problem belonging to co-AP. } ) . )
We first establish a negative result concerning the

Proof: In order to show the problem to be NP, we performance guarantees of Algorithm 1 while consider-
have to prove that a task set can be decided infeasibleing any possible task systems with constrained-deadline.
using a polynomial time non-deterministic algorithm. If Then, we shall show that under a simple assumption that
one "guesses” a time instamnt then for checking that  Algorithm 1 has a bounded performance guarantee.
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Theorem 4 Let R} bethe exact worst-case response of 7; Theorem 6 If we assume that there exists a constant K
and R; be the upper bound computed by Algorithm 1, then such that K > 3" .(C;)/min; C; for any task system,
theratio R;/R; is not bounded (i.e., Algorithm 1 has no then Algorithm 1 has a performance guarantee not greater
performance guarantee). than K.

Proof : Consider the following task system with two Proof: Starting from equation 9:
tasks: 71 (1 — ¢,1,1) and > (Ke, K, K), wheree satis-

fiesO < e < 1 andK is an arbitrary integer number such C; . 22:1 o
that K > 1. Note that periods are proportional, thus a 1—yi ! C; SRS 1—yi ! C;
necessary and sufficient condition for the task system to =11 J=1T;
be schedulable under the Rate Monotonic scheduling r“|eThus,
is C1/T1 + C>/T» < 1. The utilization factor is:
Cy Cy Ke & < 2221 Cj <K
U—T—1+T—2—(1—€)+f—1 ;f— Cz —

Thus, the task system is schedulable under Rate Mono-Thus, under the assumption, Algorithm 1 is I&-
tonic and the exact worst-case response times and thosapproximationd

obtained by Algorithm 1 are: Thus, one can hope that Algorithm 1 is quite interesting
for evaluating task systems having small tasks with sim-

By = Ri=l-e ilar worst-case execution times. For such systems, Algo-
B - K By = 14 (K —1)e rithm 1 provides an efficier®(n)-time approximation al-
2 € gorithm for computing worst-case response times of tasks.
Thus, the worst-case performance guarantee of Algorithm BUt, when there are high variations on task lengths, then
1 is obtained while considering: the algorithm cannot be efficient, since the constamian
N be a huge number.
R 1 K-1 1 . L ) .
lim R—f = lim e + ( e ) =lim - = o0 Using a similar argument, we define an assumption
20 hi; 20 He coe such that the lower bound defined in Equation 9 has a per-
o formance guarantee in comparison with exact worst-case

A similar result can be achieved for the performance response times of tasks.
guarantee of the lower boun&; that is defined by:
max;—; ., S Theorem 7 If we assume that there exists a constant K

1=1...n Ri .

suchthat K > 3.(C};)/ min; C; for any task system, the

Theorem 5 Let R} bethe exact worst-case response of 7; lower bound of the worst-case response time defined in
and R; be the lower bound computed in Equation 9, then Equation 9 has a performance guarantee not greater than
theratio R} /Ri is not bounded (i.e., the lower bound has K.

no performance guarantee).

Proof: As in the previous proof, starting from equation 9
Proof : Consider the following task system with two we directly obtain:

tasks: 71 (K, 2K,2K) and» (¢, 2K, 2K), wheree satis-

fies: 0 < € < 1 andK is an arbitrary number such that R} Z;:l C;
K > 1. Note that periods are equal. Thus, it is quite easy E < T C <K
to see that the Rate Monotonic scheduling algorithm leads
to a feasible schedule. =
The exact worst-case response time for tasls It; = We investigate next sections, two new approximation
K + €. And the lower bound defined by Equation 9 is: algorithms requiring more computational efforts (i.e., that
~ € are not running in linear time).
R2 = 1 K = 2¢
2K 4.3 A deterministic approximation algorithm
As a consequence, we verify: The algorithm proposed by Joseph and Pandya [10] is
R: K+e based on computing the smallest fixed-point of Equation
lim == = lim =00 3. The algorithm runs in pseudo-polynomial time since

0 0o 2 . . .
“ORy ¢ the number of iterations is not known to be bounded by a

As a consequence, such a lower bound has no perfor-polynomial number in the task system size.

mance guarantee A simple way to achieve a bounded number of itera-

We now prove that if task parameters satisfy a sim- tions is to stop computations at most afteiterations. If
ple condition, then Algorithm 1 is an approximation al- the smallest fixed-point is reached beférigerations then
gorithm. the algorithm returns the exact worst-case response times.
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Algorithm 2: Deterministic Approximation Algo- Algorithm 3: Randomized Approximation Scheme

rithm Data 0, (T1ye ooy Tn), €
Data S, (T, Th), € k=[] -1;
(Ry,...,Ry)=Algorithml(n, (11, ...,7n); Feasz'eble:True;
=[] -1 i=1,
r=s5=0; whilei < n and Feasible do
for i=2..ndo fi=False;
l=0; i=1;
t=0Cy; whilej < k and not f; do
while (t < W;(t) andl < kand ¢t < D;) do Choose randomly a timee S;;
l=1+1; if Wi(t) < tthen
‘ t = W;(t); ‘ fi=True;
end end
if t = W;(¢) then j=Jj+1
‘ R; =t end
end 1=1+1,
end B . Feasible = f;;
return (Ry, ..., Ry); end

return Feasible;

Otherwise, it returns the upper bound presented in the pre-
vious section (i.e., using Algorithm 1):

. 23:1 C, number of items. The feasibility test enumerates the test-
i = 1 s 10 ing set and stops when a timéhat verifiesiV;(¢) /t < 1.
- Zj=1 T The worst-case behavior of such a test is achieved when

all items in the testing set have been checked. The number
of iterations for analyzing task; is at mostZ;.:1 [%J
From the implementation point of view, the order in which
items inS;’s are enumerated is not important.

The numbek is a parameter that must be based on an
accuracy constant:e,0 < € < 1. As Fisher and Baruah,
we define it as follows

k= H 1
€ A simple way to define an approximation scheme based

Algorithm 2 presents the pseudo-code of the determin- On the Lehoczky, Sha and Ding’s exact feasibility test is
istic approximation algorithm. In order to improve the al- {0 limit the sizeS; while checking the feasibility of task
gorithm efficiency, we first run Algorithm 1 that defines 7i- Once again, we fix such a number using an accuracy
initial values of approximate worst-case response times, cOnstant, 0 < e <1 as follows:k = [e1-1.
The algorithm runs ird)(%) since the workloadiV;(t) is
computed irO(n). In order to ensure the algorithm to be an approxima-

As a direct consequence of the result presented in The-tion scheme we also have to use the approximate work-
orem 4, we can establish that Algorithm 2 is an approxi- 0adW;(t) (i.e., Equation 7) rather than the exact work-
mation algorithm under the following condition: thereisa load W;(t) (i.e., Equation 2). If such a function is not
constantk” such that’ > 3" (C;)/ min; C; for any task used, we cannot ensure that the algorithm has competitive

system. ratio bounded by a constant (i.e., to ensure that is an ap-
proximation algorithm). As a consequence, Algorithm 3
Theorem 8 If we assume that there exists a constant K is a simple randomized version of the algorithm proposed

such that K > 3°.(C;)/min; C; for any task system, in [9].

then Algorithm 2 has a performance guarantee not greater

than K. We define a randomized approximation scheme by

_ S enumerating randomly at mostitems in eachS; with

4.4 A randomized approximation scheme the same probability (i.e., a uniform law). While consid-
The last proposed algorithm is based on the Lehoczky, ering such items if no of them leads to a positive answer,

Sha and Ding’s feasibility test. This algorithm checks the then we state the task system to be infeasible. The cor-

processor demand using a testing Seffor any taskr;. responding algorithm has a computational complexity of

The size of such a set is not known to have a polynomial O(n;)_ If ¢ tends to 0, then the randomized approxima-
1We same the same definition bfin order to allow comparisons of ~ 110N Scheme has the same behavior than Lehoczky, Sha

algorithms in the Section dedicated to numerical experimentations. and Ding’s exact feasibility test.
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Algorithm Names Authors
LSD89 Lehoczky, Sha and Ding, 1989
JP86 Joseph and Pandya, 1986
FBO5 Fisher and Baruah, 2005
uB Section 4.2
DET Section 4.3
RAND Section 4.4

Table 1. Algorithm name abbreviations used
in the paper

5 Numerical results

We first describe the simulation environment and then
numerical results.

5.1 Experimentation environment

We compared all presented methods (see Table 1 for
the complete list). Task systems are randomly generated
in order to achieved a given processor workload. The
maximum worst-case execution time is fixed to 100 units
of time and deadlines are constrained for all tasks (i.e.,
D; <T;,1<1i<mn). The simulator parameters are:

e the processor workload are 0.5 and 0.9,

e the number of tasks are between 2 and 50 tasks in
every task systems,

e considered epsilon values are from 0.01 to 0.46 with
a step 0.05 (Note thatif > 0.5, thenk = [1] — 1is
always equal to 1).

For every value of these parameters, 25 task systems
have been randomly generated and all methods have been

run and compared. In the following, algorithms will be
denoted as indicated in Table 1.

We only focus on two output parameters:
e the number of validated task systems,

e the number of iterations performed by the algo-
rithms, which indicate the number of times that the
workload function is computed during the test (i.e.,
Equation 2).

We are aware that simulation environment can have
biasing effects on results [4], nevertheless every simula-
tion results is always valid only within the confine of the
stochastic model defined in the simulator. We note that
results presented in the next section are valid for our sim-
ulation environment, and only for it.

5.2 Simulation Results

Figures 1 and 2 present numerical results for task sys-
tems having a processor utilization equal to 0.5. Fig-
ure 1 gives the number of validated task systems (i.e.,
the output status of the test ieasible). The algorithm

Number of Validated Task Systems
(Workload =0.5)

100%

[N
A

e

—=—LSD89
FBOS
——UB
—»—DET
—e—RAND

0,2 0,25

epsilon

0,3 0,35 0,4 0,45 0,5

Figure 1. Number of validated task systems:
all methods achieved good performances
(Workload 0.5)

Average Iteration Numbers
(Workload = 0.5)

—=s—JP86
——FB05
——DET
—x—RAND

\\

0,15

0,2 0,25 0.3 0,35 0,4 0,45 0,5

epsilon

Figure 2. Iteration numbers according to ep-
silon values (Workload 0.5)

LSD89 is used as a reference. As we can see, all meth-
ods achieved good performances. More precisely, Figure
1 shows that LSD89, FBO5 and DET have equivalent re-
sults. The randomized algorithm has lower performances
in comparison with DET. The linear time approximation
algorithm (based on the upper bound presented in Section
4.2) leads to acceptable results since in more than 94 per-
cent it achieves a positive result (i.e., the same result than
an exact feasibility test).

The average iteration number of JP86 remains constant
for every epsilon value, because epsilon is not an input
parameter for that algorithm. One can note that algorithm
FBO5 requires more iterations than JP86 for task sets when
small epsilon values are considered. But, when epsilon is
up to 0.25, then FBO5 needs the same average iteration
numbers than the other approximation algorithms and fur-
thermore achieves better results.

Figures 3 and 4 present the same kink of results for a
processor workload equal to 0.9. Clearly from Figure 3,
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Number of Validated Task Systems has been presented in Section 4.2.

(Workload =0.9)

‘N 6 Conclusion

- \\ \\ o Efficient feasibility tests are required for implementing

s0% -t an admission controller for large real-time systems. We

o \_\\:&% e focused on feasibility tests with a polynomial time com-

S e— plexity for defining efficient admission controllers. We

o presented computational complexity results and compared
R A several approximate feasibility tests. We shown the check-

epsilon

ing the feasibility of tasks with constrained-deadlines be-
) ) longs toN’P when tasks have fixed-priorities, whereas the
Figure 3. Number_of validated task systems: same problem with EDF belongs to ¢6P. We proposed

all methods achieved good performances three simple approximate algorithms and compared them
(Workload 0.9) with exact feasibility tests [10, 11] and one existing poly-
nomial time approximation scheme [9].

Numerical results shown that if the processor utiliza-

Average lteration numbers tion is not high, then admission control can be efficiently

(Workload =0.9) done in linear time. When the processor utilization in-
creases, then we can use the Fisher and Baruah’s fully

- polynomial time approximation scheme. According to our
710 1A results, it could also interesting to evaluate exact feasibil-
610 B ity tests since in many situations they can be as powerful
i ~eoEr than polynomial time approximation schemes even if their
510 == worst-case computational complexities lead to pseudo-
210 polynomial time algorithms. But, there is still a small
liz gap between polynomial time admission control and ex-
000 005 010 015 020 025 030 03 040 045 050 act tests based pseudo-polynomial time algorithms.

epsilon

The fully polynomial-time approximation scheme pro-
posed in [9] is to decide if a given task system is feasi-
ble on a unit speed processor. But, it is not the case then
the test ensures that the task system is infeasible upon a
slower processor (the slowdown is related to the accuracy
parameter). Thus, we want to use such techniques in or-
der to define an efficient scheduling algorithm for tasks to
FBO5 is more competitive in comparison to other approx- be run upon a variable speed processor for power aware
imation algorithms. But, when epsilon is up to 0.25 then computer systems.

its performance against an exact feasibility test decreases We must also conclude that the existence of approxi-

?hratsz'hca:l.y t0 30 percc_ent (t)'f poslltlvetrr]esglts. :)ne cant_?ote mation algorithms (or better approximation schemes) for
atthe linear approximation algorithm IS not competitive computing worst-case response times of tasks is still an

enough when the processor utilization is high. important open issue. Most of known papers do not cope
According to Figure 4, the average iteration numbers With any performance guarantee in comparison with exact
have slopes in comparison with numerical results achievedvalues of worst-case response time. Thus, we think that
for a processor utilization equal to 0.5. Once again, FB05 for most real-world systems validated with such schedu-
becomes interesting for values around 0.25 since it re- lability tests lead to oversizing the real-time system fea-
guires the same average number of iterations and achievegures.
better results.
As a conclusion, we must say that FBO5 is better than References
the proposed polynomial time approximation algorithms _ _
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Abstract

In this paper we show how to extend classical real-
time feasibility conditions for preemptive fixed pri-
ority scheduling of periodic tasks to consider ker-
nel overheads. The kernel considered in this pa-
per is the event driven OSEK kernel. We identify
the sources of overhead that influence the response
time of the tasks. In such a system the overheads
are due to the context switching and the mecha-
nisms used to activates/ter minates and reschedul es
tasks and to the granularity of the periodic timer
used to implement the periodic task model. We
show how to take into account those overheads in
the classical feasibility conditions. \WWe compare the
theoretical modified feasibility conditionswith ker-
nel overhead to the results obtained on a real im-
plementation. We show that the kernel overheads
cannot be neglected and that the theoretical results
are valid and can be used for a real-time dimen-
sioning of an OSEK system.

1 Introduction

Fixed priority scheduling in real-rime systems has
been extensively studied in the last thirty years.
Thetask model considered in this paper isthe peri-
odic model. The problem isto schedule a periodic
task set 7 = {m,..., 7o} With a preemptive fixed
priority scheduling. A periodic task 7; is defined
by:

e (; : Theworst case execution time (WCET).
T; : The period of the task.

D; : The deadline constraint (a task released
at time ¢ must be executed by ¢ + D;).

e P, : Thefixed priority (priority O isthe lowest
priority).
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The starting point for preemptive fixed priority
scheduling is in [7] that proposed a simple poly-
nomial time sufficient feasibility condition for the
Rate Monotonic (RM)algorithm. The Feasibility
Conditions (FC) have then been extended by [4] in
thecasewhereVi, D; < T; and by [8], [3] for tasks
with no obvious relation between D; and T; valid
for al the tasks. The feasibility conditions are
based on the worst case response time computation
for any periodic task. The scheduling model used
in the FC is the event driven model. The FC are
pseudo-polynomial but do not consider kernel
overheads. The preemption cost is considered
either null or isincluded as an extra duration in the
WCET of the tasks, leading to imprecise FC.

In the time driven model, [8] showed how to take
into account the cost of the scheduler. The sched-
uler behaves as periodic tasks with a preemption
cost that can be taken into account in the feasibil-
ity conditions.

Yet, in the event driven model, the solution to
increase the durations of the tasks to take into
account kernel overheads can be very pessimistic
[5] as it dways considers a worst case maximum
number of preemptions for atask.

In this paper, we consider an event driven im-
plementation of OSEK. OSEK standard has been
initiated in 1993 by several german companies
like BMW, Bosch, Daimler-Benz, Opel, and
Siemens. The objectives were to save money,
with a standard OS and to increase the software
compatibility between manufacturers by using
standard interfaces for all processors and network
protocols. The OSEK operating system offers the
necessary functionality to support event driven
control. Yet, the current approach used for system
dimensioning leads to overestimate the overhead
of the operating system, without a precise analysis



of the operating system leading to a pessimistic
dimensioning. e.g. developers generally limit the
CPU of the tasks to allocate the rest of the CPU
to the operating system without a good charac-
terization of the OS. In this paper, we propose to
characterize the overheads of an OSEK kernel to
propose a deterministic system dimensioning.

We study the sources of kernel overheads for the
fixed priority scheduling of preemptive periodic
tasks in the case where Vi, D; < T;. We show
how to integrate the overheads of the kernel in
the classical theoretical feasibility conditions and
show that this extension is valid for areal-time di-
mensioning. In section 2, we recall the principles
of an OSEK kernel. We then describe in section
3 the environment used and the sources of kernel
overhead. We identify different sources of over-
head i.e. the time granularity chosen for the peri-
odic timer used for the periodic model implemen-
tation may introduce a variation in the actua pe-
riod chosen OSEK. We then focus on the task acti-
vation/termination and on the context switch over-
heads. In section 4, we show how to integrate the
identified kernel overheads in classical theoretical
real-time analysis. In section 5, we propose to
compare the theoretical worst case response times
to kernel overhead with the experimental results
obtained with area OSEK implementation show-
ing that our analysisis relevant for system dimen-
sioning. Finally, we conclude.

2 OSEK characteristics

In subsection 2.1, task management is exposed.
The scheduling policy isdetailed in subsection 2.2.
Then, the alarm mechanism, used to implement the
periodic task model is described in subsection 2.3.

2.1 Task management

Two different task concepts are provided by the
OSEK operating system: basic tasks, and extended
tasks. Extended tasks are distinguished from ba-
sic tasks by being alowed to wait for events for
communi cations between tasks and resources man-
agement. The OSEK operating system is responsi-
ble for saving and restoring task context in con-
junction with task state transitions whenever nec-
essary. We are interested in this paper in the over-
heads due to the switching task mechanism and to
the alarms treatment used to implement the peri-
odic task model. We therefore focus on basic tasks
which have three possible states:
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e Running: Intherunning state, the CPU isas-
signed to the running task, so that its instruc-
tions can be executed. Only one task can be
in this state at any time, while al the other
states can be adopted simultaneously by sev-
eral tasks.

e Ready : All functiona prerequisites for a
transition into the running state exist, and the
task only waits for election of the processor.

e Suspended: In the suspended state thetask is
passive and can be activated.

Terminate

Preempt

Activate

Flgure 1. Basic task state model

We now describe the transitions between the states
exposed in figure 1.

Transi- | Former| New Description

tion state state

Acti- Susp- | Ready | A new task is set into
vate ended the ready state by the

service ActivateTask.
Start Ready | Run- A ready task selected
ning by the scheduler is ex-

ecuted.
Preempt Run- Ready | The scheduler decides
ning to start another task.
The running task is put
in the ready state.

Termi- | Run- Susp- | The running task
nate ning ended | completes and self-
suspends by the service
TerminateTask.

Table 1. States and status transitions
for basic tasks

In the OSEK operating system, a task can termi-
nate by calling the service TerminateTask. Ending
the task without a call to TerminateTask is strictly
forbidden and causes undefined behavior. Task ac-
tivation is performed using the operating system
service ActivateTask. After activation the task is
ready to execute from the first statement. The fol-
lowing figure illustrates the interactions between
two tasks suspended at time O and the evolution of
their states with time. Task 7 is set to the running
state and is later preempted by atask -, of higher
priority.
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Figure 2. Evolution of the states of
two basic tasks

2.2 Scheduling policy

In the OSEK operating system, there are three dif-
ferent scheduling policies: full preemptive, non
preemptive, and mixed preemptive. In the latter
case, a system is composed of both preemptive
and non-preemptive tasks. In this paper, we con-
sider Full preemptive scheduling as it maximizes
the kernel overheads. Full preemptive scheduling
means that a task which is presently running may
be put into the ready state, as soon as ahigher prior-
ity task has got ready. The preempted task context
is saved so that it can be resumed at the location
where it was preempted.

2.3 Alarm mechanism

The alarm mechanism allowsimplementing the pe-
riodic task model. Each alarm has two parameters:
the time where it starts for the first time, and its
period. Each time an alarm occurs, it activates its
associated task. This mechanism uses the OSEK
time base to count the time which is different from
the CPU time (clock cycle). This OSEK time base
isaso called " Tick Time".

The OSEK time base has a time granularity of pe-
riod T3;.,, multiple of the clock cycle. The use of a
timer permitsto the processor to create a periodical
interruption. The CPU load dueto thisinterruption
is discussed in subsection 3.2.

3 Kerne overheads

Because several OSEK versions exist we have
to describe our development environment. Our
OSEK operating system is based on the OSEK-
OS-specification version 2.2 [2] and is provided by
Vector Corp. Our target device is a dsPIC30F6014
which is provided by Microchip Corp. and excited
by a quartz at 7,3728 MHz. The integrated Phase
Lock Loop multiplies this frequency by 16. Ac-
cording to the structure of dsPIC, theinternal cycle
timeisequal to: T.ycie = Tgm95505 = 33, 91ns.
We propose different measurements to validate our
tests and experimentations and measure the over-
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heads due to OSEK. In subsection 3.1, we explain
our measurement methods. Then, we describe the
OSEK's overheads in subsection 3.2. After which
the overheads measurements are shown in subsec-
tion 3.3.

3.1 Measurements methods

We have done two kinds of measurements. We first
determine the influence of the Tick Time on both
the worst case response times and the actual val-
ues of the periods chosen by the kernel. Then we
study the influence of the kernel on the worst case
response times of the tasks.

Theworst case response times of the tasks depends
on the WCET of the tasks. To reduce the uncer-
tainty of the WCET determination, each task is
only composed of a simple empty loop which cor-
respondsto ” for(i = 0;i < EndLoop;i+ +);".
We use astandard simulation tool MPLab, whichis
also provided by Microchip Corp., to determinethe
WCET, depending on the value of the ” EndLoop”
constant. Thus, no uncertainty isintroduced in the
execution times of the tasks (we only want to mea-
sure the kernel overheads, not the WCET uncer-
tainty).

We have integrated, in our OSEK'’s source code, a
software which automatically measures the worst
case response times of several activations for each
task in the worst case scenario corresponding to
lemma 2. This software uses a 16-bit timer for its
measurements which are stored in RAM. Once al
measurements are made, these results are transmit-
ted via a seria port a 115200 bauds. Thus, the
transmission does not influence the obtained re-
sults.

3.2 OSEK’s overheads

Like any operating system, OSEK needs to gener-
ate its own time base, called the Tick Time, hav-
ing aperiod Ty;.;. As described in subsection 2.3,
this Tick Time is used to manage the alarms in
charge of implementing the periodic task model.
Under certain conditions, this management can add
a CPU load which cannot be neglected. In para-
graph 3.2.1, an experiment is done to show how
this Tick Time influences the execution time of a
single task. This experiment aso illustrates the
impact of this Tick Time actua value, chosen by
OSEK, of the period of atask. In addition, because
the switching task mechanism creates another CPU
load, it can also affect the tasks when it is too fre-
guent. In Paragraph 3.2.2, an experiment is done
to show how this mechanism can also influence the
duration of atask.
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To illustrate the Tick Time influence, we consider
the following example whereasingletask isrun by
the system. Thistask has a period equal to 100ms
and a duration equal to 50m.s. We present its re-
sponse time (r) for agiven Tick Time period T3;cx

380
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80 1 I

30

147 34;7 54‘17 71‘17 94‘17 1 1‘47
Ttick(cycles)

Figure 3. Comparison between the

WCET (dotted curve) to the measured

response time (continuous curve) of

the task

The overhead of the OSEK operating system
increases when Ty, decreases. Consequently,
the task response time increases in the same way.
As we can see on figure 3, the response time is
multiplied by at least 2 or more when the Tick
Time is below 295 cycles. The response time is
strongly increased when the Tick Time is equal to
147 cycles.

We now, examine the maximum absolute error ob-
tained on the considered periodic task for a given
value of Ty, Asexplained in subsection 2.3, the
periodic model is based on an alarm mechanism
which depends on the Tick Time. That is why, the
period is more precise when Tick Time is multiple
of it. The period of the task is rounded to the near-
est multiple of T;.,. The actua period, denoted
T for atask 7; chosen by OSEK kernel is as fol-

lows:
T, — Tyier /2
Ti* _ (1 +L 7 tzck/ J) Ttick
Ttick

We can notice that its error never exceeds the du-
ration T3;cr /2. Our OSEK implementation uses a
16-bit timer to generate the Tick Time. Hence T}k
cannot exceed 222215 (65535% 33, 91ns). Finaly,
in this interval, the Tick Time should be the great-
est value multiple of the greatest common divisor
between al periods of the tasks to cancel the im-
precision Ty;.x /2.

3.2.2 Switching task mechanism

We now consider a preemptable task of WCET
50ms. Thistask isinterrupted by a higher priority
task which isempty. The Tick Timeis constant and
equal to 2949 cycles. Consequently, the Tick Time
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constantly increases the response time of 3, 5ms.
Thus, when the period of the higher priority task
decreases, we observe the deviation which is only
due to the switching task mechanism on figure 4.
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70
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£ 60
=55
B0 e

45
2949 12949 22949 32049 42949 52049

Period of the em pty task (cycles)

Figure 4. WCET (dotted curve) vs
measured response time (continuous
curve) of the task

We can see that the difference between theoreti-
cal and real durationsincreases when the period of
the higher priority task decreases. In other words,
switching task mechanism is non-negligible. We
show how to take it into account in section 4.

3.3 Overheads measurements

Now that the overheads are identified, the objec-
tive is to measure them in order to integrate them
into the feasibility conditions. In subsection 3.3.1,
we begin with an illustration of the measured du-
rations. Then, the durations of the overheads are
given in subsection 3.3.2.

3.3.1 [llustration of the measured events

In this subsection, we determine the durations of
the overheads previously exposed. Each time a
Tick Time occurs, there are three possible scenar-
i0s:

The Tick Time only manages
the alarms but no task must be
activated

Crig

The Tick Time manages the
alarms and N tasks must be ac-
tivated

The Tick Time manages the
alarms, N tasks must be acti-
vated and one of them must be
set to the running state (poten-
tially stopping the execution of
arunning task)

The two last scenarios illustrate the cases where
alarms occur and activate their associated task.



3.3.2 Measurements

The following table gives the notations used for
each overheads:

Symbol | Description

Ctick The execution time of the alarms manage-
ment that occurs every Ti;c.

Cact The execution time required to activate a
task. The state of an activated task is set
to ready.

Cschea | Theexecution timerequired to schedule the

task (if any) that hasjust been activated and
that has the highest priority among al the
tasks in the ready state.

Cterm | Theexecutiontimeto terminate thetask and

reschedule.

Table 2. Notations of the measure-
ments

The following table gives the results of our mea-
surements:

Symbol | WCET
(cycles)

Click 179

Cact 393

Cs ched 166

Cierm | 300

Table 3. Execution times of kernel
overheads

4 Real-Time analysis with kernel
over heads

We consider in this paper, that for any task 7;,
D; < T;. We now recall classical results in the
uniprocessor context for real-time scheduling.

e A task issaid to be non-concrete if itsfirst re-
lease time is not known in advance. In this
paper, we only consider non concrete first re-
quest times, asthe activation request times are
supposed to be unpredictable.

For any task 7,

e hp(i) denotes the set of tasks having a higher
or equal priority than 7; except 7;.

e [p(i) denotes the set of tasks having a strictly
lower priority than 7;.

e Time is assumed to be discrete (task arrivals
occur and task executions begin and termi-
nate at clock cycles; the parameters used are
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expressed as multiples of the clock cycles);
in [1] it is shown that there is no loss of
generality with respect to feasibility results
through restricting the schedulesto being dis-
crete, once the task parameters are assumed
to be integers (multiples of the clock cycles)
i.e. adiscrete schedule exists, if and only if a
continuous schedule exists.

e Anidletime of level 7; is defined as atime
t, such that there are no tasks in hp(i) U 7;
released before time t pending at timet. An
interval of successive idle times of level 7; is
called anidle period of level ;.

e A level 7; busy period is defined as atimein-
tervad [a, b), such that there is no idle time of
level 7; in [a, b) and such that both aand b are
idle times of level 7;.

e The worst case busy period of level 7; isthe
first busy period resulting from the scenario
where dl tasks 7; in 7 are first requested at
time 0, and are periodic from 0.

Notice that this definition of the worst case level 7;
busy period is dlightly different from the one pro-
posed by [6] where only tasksin hp(i) U 7; where
considered. With kernel overhead, we show in the-
orem 1 that atask in Ip(i) can also have an influ-
ence on the worst case response time of atask 7;.

e FP denotes any arbitrary Fixed Priority
scheduling with Highest Priority First used
on-line.

o Uy, = Z Tl is the processor utilization fac-

tor,i.e, thefractl on of processor time spent in
the execution of thetask set [ 7] without kernel
overhead. An obvious necessary condition for
the feasibility of any task setisU,,, < 1 (this
is assumed in the sequel).

Lemmal [4] The worst-case response time r;
of a non-concrete periodic task ; (with D; <
T;,Vi € [1,n]) scheduled FP is found in the worst
case busy period of level 7; and r; isthe solution of
the following equation:
ri=Ci+ 3 [F#]

JEhp(i)

Proof: The worst case busy period of level ; pro-
posed in this paper is the same as the one proposed
in[4] when we consider that all the execution times
of the overheads are null. The equation of r; isthe
one proposed in [4]. [ |



Lemma 2 The worst case response time of a pe-
riodic task with kernel overheads is found in the
worst case busy period of level .

Proof: For atask 7;, the kernel overheads are max-
imized when the number of activations of tasksin
hp(i) and Ip(i) are maximized. Leading to the
same worst case scenario for tasks in hp(i) asin
[4]. Notice that for tasks in Ip(4), we only have
to consider the overheads of the tasks activations
(achieved by the ActivateTask) whose number is
maximized when tasks in Ip(i) are released as de-
scribed in the worst case busy period of level ;.

|

Theorem 1 The worst case response time r; of a
periodic task ; with the OSEK kernel overheadsis
the solution of the following equation: r; = Cyet +
Ci + Cterm + Z [%}—I (Cact + Cj + Cterm) +

jERP(3)
Z ’V%Wcact"’max( Z [%]7 l)Csched+
j€lp(i) ’ Ti€hp(i) 7
[T:l(k —| Ctick’,-

Proof: We consider atask 7; released in its worst
case busy period of level ;. The worst case re-
sponse time of 7; is composed of three terms:

e Thefirsttermisequal to: Cyet+Ci+Chrerm +
Z (%-' (Cact + Cj + Cte'r"m)- For any
jehp(i) 7
request of atask in hp(i) U, the kernel must
activate, run and terminate the task. The equa-
tion of lemmal is updated accordingly.

e Thesecondtermisequalto: > [7%]Cact-
jelp(i) 7
For any task in Ip(i), the scheduler must at
least activate the tasks according to their re-
quest times and put it in the ready state. The
second part corresponds to the maximum du-
ration required to activate the tasksin Ip(i).

e The third term is

max( Yy,
Ti€hp(i) 7
The scheduler is called to savelrestore the
context of task 7; every time a task with
a priority higher to 7; is run. If hp(i) is
empty then the scheduler is called once for
7;. The maximum number of scheduler calls
isbounded by: max( > [#5],1)Cschea-
Tj€hp(i 7

We must also take into é\c)count the alarm
overhead. By assumption, all the alarms are
managed by a periodic timer of period T};cx
of duration Cy;.,. Leading to an overhead
equalsto: [ = Clck-

Ttick

equal to:
[%]a ]-)Csched + ’VTt “Ctick’-

T
ick
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We now propose a sufficient feasibility condition
for the dimensioning of our OSEK system.

Theorem 2 A sufficient feasibility condition for
the scheduling of periodic tasks scheduled with
preemptive FP with the OSEK kernel overheadsis
(where T, isthe period of task with the maximum
priority):

vVner,rn <D; (1)

C+C7‘ +Cshd
Uno + Z act teT;: che S 1 (2)
T;E€ET

Proof: Equation (1) is straightforward. Equation
(2) isclearly necessary asthe kernel overheads add
a duration Cyet + Cherm 10 every tasks and the
scheduler may be called for each task activation.

|

5 Experimentation

In this section, we experiment the previous theoret-
ical resultson agiven task set. Thistask setiscom-
posed of five preemptive periodic tasks described
intable 4.

Task | C; (cycles) | D; (cycles) | T; (cycles) | P;
Ts 15920 55720 87560 4
T4 55720 318400 796000 3
T3 71640 636800 1273600 2
T2 398000 2547200 2308400 1
T1 796000 5094400 4855600 0

Table 4. Task Set

Note that the T;;., parameter has been chosen to
be the small in order to increase the CPU load
due to the Tick Time. This CPU load is, in worst
case, equa to Ciick/Trick = 0,22. Task 7 has
the lowest priority and will be often preempted by
higher-priority tasks which should largely increase
its execution time.

We now compare for any task 7; the theoretical
response time without overhead r?, the theoreti-
cal response time with kernel overheads -} and the
measured responsetime rZ in areal OSEK system.
We now determine two significant ratios in table
6 for each task to characterize the performance of
our theoretical worst case response time with ker-
nel overheads.

Thefirst column of results provides the percentage
of deviation between the theoretical response time
with kernel overheads and the rea response time



Task | ¥ (cycles) | =} (cycles) | rZ (cycles)
T5 15920 23721 20997
T4 71640 117642 112309
T3 159200 232303 223926
T2 652720 1014316 961556
5! 1838760 3611823 3461052

Table 5. Comparison between the dif-
ferent response times

Task | (1—25) x 100 | (1— ) x 100
Ts 11,48% 32,89%
T4 4,53% 39,10%
T3 3,61% 31,47%
T2 5,20% 35,65%
T1 4,17% 49,09%
Table 6. Performance theoretical

worst case response time with kernel
overheads

obtained with our OSEK system. The deviation is
higher for the task 75 as it has the smallest exe-
cution time. The overheads are accordingly more
important. The deviations obtained for the tasks 74,
and 73 decrease as their execution times increase.
The tasks 75, and 7, are more influenced by the
context switching mechanism in OSEK.

In al cases, the deviations are small and enable
to use the theoretical approach for a real-time
dimensioning.

The second column of results shows the deviation
between the theoretical approach with and without
kernel overheads showing that the deviation ranges
from 31,47% to 49,09%. Hence, the kernel over-
heads cannot be neglected and influences signifi-
cantly the worst case response times of the tasks.

6 Conclusion

In this paper we have studied the impact of ker-
nel overheads in the theoretical feasibility condi-
tions of preemptive fixed priority scheduling of pe-
riodic tasks. We have considered an event driven
OSEK system proposed by Vector Corp. We have
identified the sources of kernel overheads and have
shown how to integrate them in the worst case re-
sponse times of the tasks, used by the feasibility
conditions. We have shown in our experiments that
the overestimation of the theoretical worst case re-
sponse times does not exceed 11,48% and that the
feasibility condition without kernel overhead are
not valid.
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