
Ontology-based structured web data warehouses for sustainable

interoperability: requirement modeling, design methodology and tool

Selma Khouri ab, Ilyes Boukhari a, Ladjel Bellatreche a, Eric Sardet c, Stéphane Jean a, Michael Baron a

aLISI/ENSMA - Poitiers University
Futuroscope - France

bNational High School for Computer Science (ESI), Algiers - Algeria

cCRITT Informatique, Futuroscope - France

The spectacular growth of the Internet and its widespread adoption by worldwide corporations lead to an
enormous quantity of heterogeneous, distributed and autonomous data sources. To facilitate the access to these
huge amounts of data and make these sources interoperable, two technologies may be combined: data warehousing
and ontologies. Data warehouses are designed to aggregate data and allow decision makers in these companies to
obtain accurate, complete and up to date information. In the past decade, data warehouse technology (DWT)
has been successfully applied in several domains such as telecommunication, retail, finance and many other
industries. It supports a wide range of applications throughout the enterprise. The DWT has been largely
used to offer sustainable solutions for enterprises. On the other hand, ontologies are models for specifying the
semantics of concepts used by various heterogenous sources in a well defined and unambiguous way. Ontologies
exist in various domains (E-commerce, Engineering, Tourism, etc.) and are used to increase interoperability
between sources. They may be used to improve communication between decision makers and users collaborating
together, by specifying the semantics of the used concepts. In this paper, we propose a methodology for designing
data warehousing applications from various sources. Each source has its local ontology referencing a global one.
For satisfying its local requirements and giving to sources more autonomy, each source may specialize/extend
the global ontology. The presence of ontologies has three main contributions: (i) each owner of each source may
use it to define his/her requirements, (ii) it reduces most important types of conflicts that may exist in sources
and requirements (schematic and semantic) and (iii) it facilitates the sustainable urbanisation of the target data
warehouse. Our methodology is supported by a case tool facilitating the tasks of data warehouse designers.

Keywords: Structured Web Data, Integration Systems, Ontology-based Databases, Requirement Engineer-
ing, Case Tool, OWL formalism, PLIB formalism.

1. Introduction

The rapid development of Information Technol-
ogy solutions enforces the theory stating that the
World is a Global Village. This theory breaks ge-
ographical barriers and distances between com-
panies and organisations. Faced to this globaliza-
tion phenomenon, enterprises have had to adapt
their traditional behaviours to reach high level
of competitiveness. To achieve this goal, enter-
prises need to share data and knowledge beyond
their own boundaries by the mean of advanced
Web technologies. New types of applications are
emerging such as: e-tailing, e-government, e-

learning following the concept of e-entreprise, on-
line services like finance, publishing and mar-
keting, all managed by web-based enterprises.
We also face an outburst of start-ups and spin
off that are blooming every day, which need to
integrate existing web data into their own in-
formation systems. Additionally, recent Google
research projects demonstrated that increasing
quantities of these web data are structured. The
prime example of such data is the deep web, re-
ferring to content on the web that is stored in
databases and served by querying HTML forms
(14). More recent examples of structure are a va-

1

2

riety of annotation schemes (e.g., Flickr, the ESP
game, Google Co-op) that enable people to add
labels to content on the web, and Google Base a
service that allows users to load structured data
from any domain they desire into a central repos-
itory (14). In such applications, web data are
stored within structural databases. Sharing these
mountains of web data efficiently between differ-
ent companies collaborating together is a crucial
issue that needs to be addressed. Note that these
data are particularly heterogeneous, distributed,
and autonomous and evolving in a dynamic envi-
ronment.

Data integration is one of the relevant solutions
that offers these functionalities to companies. It
can be viewed as a process by which several het-
erogeneous sources are consolidated into a sin-
gle data source associated with a global schema.
It recently received a great attention from aca-
demic and industrial communities. This is due
to many data management applications for ex-
ample peer-to-peer applications, data warehouses
(DW), E-commerce, and Web services. In a de-
cisional context, DW integration systems are the
most suitable solutions offering various analysis
and visualization tools used within a decision-
making process. A DW can be seen as an inte-
gration system, where relevant data of various
sources are extracted, transformed and material-
ized in a warehouse (18) (Figure 3). A DW has
additionally a multidimensional layer organizing
its data into central subjects to analyze (Fact
concept) according to different analysis perspec-
tives (Dimension concepts). Dimensions can also
be organized into hierarchies representing differ-
ent levels of granularity. This multidimensional
aspect enables various OLAP (Online Analyti-
cal Processing) analyses for decision makers, that
traditional integration systems do not. DWs have
been successfully applied in various applications
fields like telecommunications1, health care (62),
and by different companies such as Continental
Airlines, Wal-Mart, Toyota and Hewlett-Packard
(43).

The main task in data integration is the iden-
tification of syntactic and semantic conflicts be-

1Teradata company: http://www.teradata.com

Figure 1. Types of semantics conflicts.

tween heterogeneous data. Different categories of
conflicts may be encountered at the schema level
and at the data level and should be solved. Goh
et al. (32) suggest the following taxonomy (Figure
1): naming conflicts, scaling conflicts, confound-
ing conflicts and representation conflicts. For ex-
ample a scaling conflict occurs when the price of
a product is given in Dollar for a company in the
United States or in Euro for a company in Eu-
rope.
The lack of a generally agreed terminology fol-

lowed by enterprises collaborating together has
been recognized as the bottleneck for efficient
integration (19). An effective approach to deal
with integration and interoperability is the use
of common standards. Many integration applica-
tions used domain ontologies as a reference model,
where data reconciliation and mapping is ob-
tained according to concepts of the domain ontol-
ogy. Several ontology-based integration systems
were proposed (16; 32; 45). Based on the way how
ontologies are employed in these systems, (65),
three different architectures are distinguished
(Figure 2): (i) single ontology methods relating
each source to the same global domain ontology,
which limits considerably source schematic auton-
omy, (ii) multiple ontologies methods where each
source has its own ontology developed without
respect to other sources, which requires difficult
tasks of inter-ontology mapping and (iii) hybrid
methods where each source has its own ontology,
but all ontologies are connected by some means

3

to a common shared vocabulary. The main as-
sumption of these systems is that all the sources
use the same shared ontology. This assumption is
relaxed by the emergence of many dedicated ref-
erence models covering many industrial areas. We
can cite global standards and models developed in
tourism industry that are used by big companies
like Open Travel Alliance (www.opentravel.org)
and Hospitality Industry Technology Integration
Standards (www.hitis.org), or the standard ISO
10303 for product information in industrial envi-
ronments, etc. Those ontologies have been exten-
sively used for traditional Web applications (Web
services, pervasive computing, etc.) and Web 2.0,
like ontologies FOAF2 and SIOC3 used for so-
cial networks domain. Ontologies are specified us-
ing different formalisms developed during last fif-
teen years like languages of the semantic Web
(Daml+Oil, RDF, RDFS and OWL) for web ap-
plications, and PLIB (Parts Library) (54) for-
malism used for engineering applications. OWL is
currently accepted as W3C recommendation for
publishing ontologies on the Web. The PLIB for-
malism defines a domain-oriented (for engineering
products) ontology model that has been devel-
oped during the 90’s at the ISO level. The result
is a standard series, ISO 13584.

�� ��������	���
� ���������	���
� �������	���
��������	���
� ���� ���������	���
� �������	���
��������	���
� ����

�������	���
�

�� ��
��
�� ��	���
� ���	���� ��	���
��� ������ ��	���
���
Figure 2. Different Ontology Architectures

The outburst of ontologies in various domains
and their use by different companies leads to

2http://www.foaf-project.org
3http://sioc-project.org/

the creation of important amounts of web data
referencing ontologies. These data are called
Ontology-Based Data (OBD). Some solutions
proposed to manage OBD in main memory like
Jena (50) and OWLIM (44). Such systems al-
low fast loading and fast update of data but be-
come very fastidious when data grows and a big
amount of semantic data is available. To over-
come this problem, database solutions have been
proposed offering efficient storage and querying
mechanisms for ontological data. The generated
databases are called ontology-based databases
(OBDB). OBDB are databases storing both on-
tology and data in the same database schema (fig-
ure 8).

OBDBs kept the attention of both industrial
(like Oracle and IBM) and academic (OntoDB)
communities, where different OBDBs were pro-
posed like Rdfsuite (4), OntoDB (22), Sesame
(12) and Oracle (21). Those OBDBs rapidly be-
come candidate sources for the integration pro-
cess. OBDB are suitable solutions for managing
OBD for OLTP (OnLine Transactional Process-
ing) applications, but not for OLAP applications.
Following the same idea of OBDB, Ontology-
Based Data Warehouses (ODBW) are adequate
solutions for analyzing those ontology-based data.
Our architecture scenario is in this case similar
to hybrid integration methods of Figure 2 intro-
duced previously. Furthermore, some recent re-
search efforts in DW design proposed ontology-
based methods and frameworks for the definition
of the DW model. This is due to the role of do-
main ontologies in clarifying semantics of sources
during the integration process, and their strong
similarities with conceptual models (26). Ontolo-
gies can actually be seen as conceptual models of
a whole domain via a logical theory offering rea-
soning capabilities that conceptual models do not
have.

Additionally to sources, user requirements are
actually recognized as an important component
for DW design. Some design methods followed a
data-driven approach generating the DW model
only from data sources. Different studies iden-
tified limitations of this approach and proposed
requirements-driven or mixed design methods. It
is currently recognized that DW life cycle includes

4

Figure 3. Traditional interoperability scenario by DWs.

a first phase of requirements analysis (35). We
noticed furthermore that users’ requirements are
not only used during the design phase, but are
also used during different exploitation phases of
DW life cycle:

• requirements are saved a posteriori as users’
queries in most DBMS (like Oracle or Sql
Server) for optimization purposes,

• user’s preferences, which are considered as
non-functional requirements, are exploited
for personalization and recommendation
processes like in (29),

• quality of the DW can be measured accord-
ing to its capacity to fulfil the different re-
quirements and goals like in (64). Require-
ments are also traced in order to manage
the evolution of the decisional application.

All these works, suppose the existence and avail-
ability of requirements. However, most of integra-
tion systems proposed (virtual and materialized)
do not care sufficiently about user’s requirements
and do not give them their right value within the
system developed.

We propose in our approach to specify user’s
requirements at the ontological level, and also to
store these requirements in the DW repository.
This is particularly important when we know that
requirements analysis step is a tedious task re-
quiring much time and effort from users and from

designers. One cannot afford to redo this costly
task more than once (Figure 4). Actually, the fu-
sion between the two domains (Requirement En-
gineering and ontologies) aroused the interest of
research community since the 80s where ontolo-
gies showed their effectiveness for requirements
specification, their unification, their formalization
and for reasoning about requirements. Ontologies
allow requirements engineers to analyze a require-
ments specification with respect to the semantics
of the application domain. They are useful for de-
tecting incompleteness and inconsistency as sated
in IEEE requirements specification (1). More con-
cretely and in the same way as for data sources,
ontologies are used to identify and manage se-
mantic conflicts between requirements formulated
by different users that do no share the same vo-
cabulary.
Another dimension that has to be considered

for integration systems is the complex dynam-
icity of the environment they evolve in, contin-
ually shaken by new requirements and business
needs. This dimension is called sustainable inter-
operability, which goal is to make interoperability
between companies easily adaptable to environ-
ment changes. Changes can be of different forms:
changes occurring in sources, in business require-
ments or in the ontology. Changes can occur at
two levels: data level and schema level. An ef-
fective evolution policy must be able to predict
and limit certain changes during the design phase

5

of the integration system, and should be able to
adapt the system according to additional changes
occurring once the system is developed.
We propose in this paper a methodology for

designing OBDWs using domain ontologies. The
presence of sources and requirements specified at
the ontological level is used: (i) during the in-
tegration process to eliminate semantic conflicts
between sources and requirements, (ii) during de-
sign phase to specify the different deign models
(conceptual and logical) and (iii) to forecast the
evolution of the system once developed.

1.1. Contributions

The main contributions of this paper are:

1. A new classification of DW design methods,
showing their convergence to ontology-base
conceptualisation.

2. A methodology for designing DWs from
OBDB and users’s requirements supported
by a case tool.

3. A new structure for representing both data
and requirements and their respective se-
mantics in the OBDW.

4. A discussion about different DW evolution
scenarios, and how our defined OBDW can
prevent environment changes.

1.2. Organization of the Paper

The rest of this paper is organized as follows.
Section 2 presents the case study that will be used
as an illustrating example that we consider along
the paper. Section 3 presents the background re-
quired for facilitating the understanding of our
approach. Section 4 presents the related work,
where a classification of the different DW design
methods is proposed. Section 5 presents our DW
design methodology comprising a description of
a proposed requirements model, the design pro-
cess used to make requirements persistent within
the DW model, and the definition of the OBDW.
Section 6 describes a tool implementing the de-
sign methodology proposed. Section 7 discusses
different evolution scenarios of the developed sys-
tem. Section 8 concludes the paper and suggests
some future issues.

2. Case study

The ontology depicted in figure 5, that will
be used as example along the paper, refers to the
rental car ontology4, representing cars reservation
domain. Our scenario is that an online company
is managed in a given region but have Branches
based in different countries. Customers of this
company from a given Country can rent a Car
of a given CarModel. Once the request validated,
a Rental agreement is made. The Reservation of
the car has a certain Duration and can be Can-
celled according to certain conditions.

Decision makers of this company aim at per-
forming OLAP analysis related to sales of agree-
ments. For this reason, they specify some deci-
sional requirements such as:

• Pricing Summary Report provides a report
of all reservations made at a given reserva-
tion date. The report lists totals of best-
Price, basicPrice and rate of guaranteed.
Note that the rate is equal to the sum [ba-
sicPrice - bestPrice].

• This requirement aims at retrieving the 10
reservations with the highest value for all
customers in a given region.

• This requirement aims at retrieving the 5
branches of all regions with highest number
of customers having cancelled their reserva-
tion.

• This requirement consists in finding the av-
erage price of reservations of a given car
model.

3. Background

In this section, we present in details four con-
cepts that we consider important for our work:
Ontologies, OBDBs, Materialized integration sys-
tems (DW) and Requirements. We will explain
each concept in the following sections.

3.1. C1: Ontologies

Ontologies have been defined for various do-
mains for a wide range of applications. As a con-

4www.lsi.upc.edu/õromero/EUCarRental.owl

6

Figure 4. New interoperability scenario by DWs.

sequence, existing ontologies are not all alike. In
order to define precisely the type of ontologies
needed in our work, we propose the following tax-
onomy of ontologies.

3.1.1. Taxonomy: the onion model

Two main categories of ontologies have
emerged in the literature (55). Conceptual On-
tologies (CO) represent object categories and
properties that exist in a given domain whereas
Linguistic Ontologies (LO) represent the terms
used in a given domain eventually in different
natural languages. However existing COs present
quite different characteristics according to the on-
tology model used to define them and to the ap-
plications they are designed for. As a consequence
we have divided this category into two subcate-
gories. This new classification is based on the no-
tions of primitive and defined concepts given by
Gruber (36). Primitive concepts define the bor-
der of the domain conceptualized by the ontology.
Each concept in the domain is represented in a
unique way by a primitive concept. Primitive con-
cepts are the foundations on which new concepts
called defined concepts can be introduced. These
defined concepts are specified by a complete ax-

iomatic definition expressed in terms of other
concepts (primitive or defined). For example the
concept Car-Reservation is defined as a type of
Rental-Agreement concept. Based on this distinc-
tion between primitive and defined concepts, our
ontology taxonomy is composed of three cate-
gories:

• Canonical Conceptual Ontologies (CCO)
represent all the concepts in a given domain
in a single way without any redundancy.
Thus, CCOs only include primitive con-
cepts. An example of a CCO for electronic
components can be found in (IEC61360-
4,1999). Defining a canonical (non redun-
dant) vocabulary in a given domain is par-
ticularly useful for data exchange. For ex-
ample, in the STEP project, exchange mod-
els are defined in the EXPRESS language as
a STEP Application Protocol (AP). These
canonical exchange models are used by in-
dustrial users to exchange product descrip-
tions between different organizations. Thus,
CCOs can also be used as exchange models.
PLIB projet (54), which is the continuity of
STEP project, aims at providing a canoni-

7

Figure 5. Rental car ontology model.

cal representation of concepts of a given do-
main. In that representation context, prop-
erties play a key role. First, classes are only
specified when they are required to define a
property domain. Secondly, each property
is defined in the domain of a class, and is
meaningful only for that class and its pos-
sible subclasses.

• Non Canonical Conceptual Ontologies
(NCCO) include not only primitive con-
cepts but also defined concepts. Using de-
fined concepts, different reasoning tasks
can be performed on the ontology (e.g.,
classification of classes or instances). More-
over, defined concepts can also be used by a
user to query and manipulate the ontology.
NCCO are supported by different languages
of the semantic web like RDF and OWL.

• Linguistic Ontologies (LO) define the terms
that appear in a given domain. LOs in-
clude relationships between terms such as
synonymous-of or homonymous-of. They
are useful for system-user communication
as well as providing the terms used in a
given domain in different natural languages.

Wordnet5 is a well-known example of such
ontologies.

Currently ontology design focuses on one of
these three categories, the canonical, non canon-
ical or linguistic part. However, as we have seen
previously, these three categories of ontologies are
complementary. The model, presented in Figure
6, called the onion model (37), illustrates how
these three categories of ontologies can be com-
bined. The CCO layer provides the foundation to
represent and exchange the knowledge of a do-
main. It is extended by a NCCO layer to map
different conceptualization made on this domain.
Finally the LO layer is the natural language rep-
resentation of all the concepts defined in the CCO
and NCCO layers.

Ontologies that we use in our work follow this
model. In next sections we will see how we can
benefit from the different layers of an ontology
that follows this model.

3.1.2. Formal Definition

We focus in our study on conceptual ontologies,
whose schema can be formally defined as follows:

5http://www.cogsci.princeton.edu/wn

8

Figure 6. The onion model of domain ontologies.

(9): O :< C,P,Sub,Applic >:

• C is the set of classes describing the concepts
of a given domain.

• P is the set of properties describing the in-
stances of C.

• Sub : C → 2C is the subsumption function,
which associates each class Ci to its direct
subsumed classes. Two subsumption rela-
tionships are introduced in our framework:
(i) OOSub: describing the usual subsump-
tion of inheritance relationship, where the
whole set of applicable properties is inher-
ited. (ii) OntoSub: describing a subsump-
tion relationship without inheritance, where
a part of the whole applicable properties
may be imported from a subsuming class to
the subsumed one (Figure 7). OntoSub is
the formal operator of modularity. OntoSub
is formalized by ’case-of’ relationships in
PLIB formalism. Similar mechanisms exist
in OWL ontologies. (66) gives an overview
of different modularity methods defined for
OWL ontologies.

• Applic : C → 2P is a function that asso-
ciates to each ontology class, the properties

that are applicable for each instance of this
class.

3.1.3. Ontologies VS Conceptual models

Conceptual ontologies can be seen as the con-
tinuity of conceptual models describing a whole
domain. Ontologies have actually been used for
designing various database applications. The first
works proposed to use ontologies in the de-
sign of traditional DBs. (63) proposed a method
similar to Chen methodology (20) for design-
ing databases by adding a semantic layer and
proposed to assist designers to define concep-
tual models using linguistic ontologies. (24) pro-
posed an extension of the ANSI/X3/SPARC ar-
chitecture giving ontologies their place during de-
sign process of database scheme. (8) proposed a
methodology for designing OBDB covering con-
ceptual and logical design phase basing on func-
tional dependencies embedded in the used ontol-
ogy. Ontologies are effectively similar to concep-
tual models as they both define a conceptualiza-
tion of the universe of discourse using a set of
classes and properties, but ontologies have spe-
cific characteristics that gives the added value:

• Modeling Objective: An ontology describes
concepts and properties of a domain inde-
pendently of any objective. A conceptual

9

Figure 7. OntoSub operator.

model prescribes concepts and properties
of a domain according to applicative objec-
tives.

• Consensuality: the consensual aspect that
characterizes ontologies facilitates the de-
signer task by offering him a global view
of the domain of interest.

• Concepts identification: data in a concep-
tual model have a meaning only in the par-
ticular context for which the model is de-
fined. Concepts in an ontology have univer-
sal identifiers and can be referred from any
other context. This eases ontology usage for
data exchange or integration.

• Reasoning : ontologies are formal models of-
fering reasoning capabilities that can be
used either to check consistency of infor-
mation or to deduce new information from
existing facts.

Figure 8. General architecture of OntoDB.

3.2. C2: Ontology-Based DataBase

3.2.1. Storage of ontologies in databases:

the OntoDB ontology-based

database

As we said in the introduction, several OBDB
have been proposed by industrial and academic
communities. In this paper, we consider OBDB
followed OntoDB architecture. This architecture
is composed of 4 parts as illustrated in Fig. 8.

Parts 1 and 2 are traditional parts available in
all DBMSs, namely the meta-base part that con-
tains the system catalog and the data part that
contains instance data. Parts 3 (ontology) allows
to represent ontologies in the database. The ontol-
ogy model supported by this architecture is the
PLIB ontology model but we will see that the
part 4 of this architecture can be used to adapt
and extend this architecture to other ontology
models such as OWL. The part 4 (meta-schema)
is specific to OntoDB. It records the ontology
model into a reflexive meta model. For the ontol-
ogy part, the meta-schema part plays the same
role as the one played by the meta-base in tradi-
tional databases. Indeed, this part may allow: (1)
generic access to the ontology part, (2) support
of evolution of the used ontology model, and (3)
storage of different ontology models.

Let us now see how the different concepts are
stored in the 4 parts of OntoDB. We use the ex-
ample presented in Fig. 9.

10

Figure 9. An toy example of an ontology and its
instances

Figure 10. Storage of instance data in the data
part of OntoDB

Part 2 stores instance data following a rela-
tional approach. Indeed, all instances of a given
ontology class is stored in a single table. However,
contrary to relational databases, all properties of
a given class may not be valued by instances of
this class. Thus, the table used to store instances
of a class only includes columns for the properties
that are used at least by one instance of the class.
Fig. 10 shows an example of the storage of the in-
stances of the Customer and Address classes of
an ontology.

Part 3. of OntoDB stores ontologies using a re-
lational schema defined according to the ontology

Class

ID Name

1 Person� ������� ! "# ���
… …

Class

ID Name

1 Person� ������� ! "# ���
… …

SubClassOf

ID VALUE

2 1

… …

SubClassOf

ID VALUE

2 1

… …

Property

ID Name

1 name � $%�! $# ���
… …

Property

ID Name

1 name � $%�! $# ���
… …

Domain

prop class

1 1� &
… …

Domain

prop class

1 1� &
… …

Range

prop type

1 xsd:string�
xsd:integer!
xsd:string

… …

Range

prop type

1 xsd:string�
xsd:integer!
xsd:string

… …

Figure 11. Storage of ontologies in the ontology
part of OntoDB

Figure 12. Storage of ontologies in the meta
schema part of OntoDB

model supported. Fig. 11 presents the main tables
of this schema. These tables are used to store the
hierarchy of classes as well as the properties of
the ontology.
Finally, part 4 stores the ontology model used

to define ontologies of part 3. Fig. 12 presents the
storage of the main components of an ontology
model i.e., constructors of classes and properties.
This schema can be extended to support a specific
ontology model.
Managing all the data stored in OntoDB us-

ing SQL would be difficult since this language is
based on the relational model and thus does not
include any operators for ontologies. As a con-
sequence we have designed a specific language
called OntoQL.

3.2.2. Querying ontologies and its in-

stances: the OntoQL query language

Specific languages have been designed to query
ontologies and their instances such as SPARQL6.
The OntoQL language that we have proposed has
three main characteristics that distinguish it from

6http://www.w3.org/TR/rdf-sparql-query/

11

other proposed languages: (1) the OntoQL lan-
guage is independent of a given ontology model.
Indeed, it is based on a core ontology models con-
taining the constructors shared by different on-
tology models and this core ontology model can
be extended by the OntoQL language itself, (2)
the OntoQL language exploits the linguistic infor-
mation that may be associated to a conceptual
ontology allowing to express queries in different
natural languages and (3) the OntoQL language
is compatible with the SQL language and thus,
it allows to exploit data at the logical level of an
OBDB. Moreover, it extends this language to ex-
ploit data at the ontological level, independently
of the logical representation of the data, and still
to manipulate the structure of these data from
this level.
Let’s now see different OntoQL statements that

allow users to manipulate all the data of OntoDB.
These statements are based on the ontology ex-
ample shown in Fig. 9.
Queries one instance data can be expressed. For

example the following query searches the name
and country of all the direct instances of the Per-
son class (keyword ONLY).

SELECT name, address.country

FROM ONLY (Person)

As we can see, the OntoQL language has a syn-
tax similar to SQL and provides operators to nav-
igate through the hierarchy of classes (by default,
a query searches on all direct and indirect in-
stances of a class) and the composition of proper-
ties through path expressions (address.country).
The OntoQL language exploits the LO layer of
an ontology to allow user to express their queries
in different natural languages. For example if all
the concepts of our example of ontology are as-
sociated to a term in French defined in the LO
part of the ontology, the previous query can be
expressed as follow

SELECT nom, adresse.pays

FROM ONLY (Personne)

USING LANGUAGE FR

The OntoQL language also supports query on on-
tologies. For example the following query searches

the names in French and in English of all the
classes of the ontology.

SELECT #name[fr], #name[en]

FROM #class

As we can see all the elements of the ontology
level (e.g, class or name) are prefixed by #; This
prefix is used to distinguish query on instances
from query on ontologies.

Since query on ontologies and query on in-
stances can be expressed, these two capabilities
can be combined in OntoQL. The following query
exploits this capability to find all direct and indi-
rect instances of the Person class showing in the
same time the name in English of the direct class
the instance belongs to.

SELECT p.name, TYPEOF(p.#name[en])

FROM Person p

The TYPEOF operator retrieves the belonging
class of an instance. Thus this query retrieves all
persons and it shows if this person is a customer.

The OntoQL language is also equipped with a
definition and manipulation language. In particu-
lar, the definition language can be used to extend
the ontology model used to define ontologies. For
example the following statement extends the on-
tology model with the AllValuesFrom constructor
from the OWL ontology model.

CREATE ENTITY #OWLAllValuesFrom UNDER #Class

(#onProperty REF(#Property),

#allValuesFrom REF(#Class))

An OWL restriction is a particular class. Thus
the new constructor #OWLAllValuesFrom ex-
tends the basic constructor of class (#Class). An
OWL restriction is defined on a particular prop-
erty (#onProperty) and takes its values from a
given class (#allValuesFrom). This new construc-
tor is added to the meta schema part of OntoDB.

To conclude this part, we show in Fig. 13 the
complete architecture of our software to handle
ontologies and their instances. OntoDB stores
all the data and OntoQL provides an access at
the knowledge level to query and exchange these
data.

12

Figure 13. OntoDB and its associated access lay-
ers OntoQL and OntoML

3.3. C3: DWs seen as materialized integra-

tion systems

DWs are actually considered as integration sys-
tems materialized by multidimensional concepts
for facilitating OLAP analysis. We explain these
two aspects in the following sections.

3.3.1. Integration

The ontology used in our design approach is
a conceptual domain ontology covering and inte-
grating the set of OBDBs. Formally, a data inte-
gration system is a triple I :< S,G,M >, where
S is a set of source schemas which describe the
structure of sources participating in the integra-
tion process, G is the global schema which pro-
vides a reconciled and an integrated schema and
M is the mapping between G and S which estab-
lishes the connection between the elements of the
global schema and those of the sources (9).

In our approach, S, G and M are defined as
follows:

• S is represented by the set of OBDB con-
taining their own local ontology Oi :<
Ci, Pi, Subi, Applici > defined from a global
shared ontology,

• G is the global ontology (GO) formalized as
GO :< Cp, Pp, Subp, Applicp >

• M is the mapping between GO and

OBDBs represented by the subsomption
relationship OntoSubi,p : Cp → 2Ci be-
tween GO et Oi that associates to each class
cp of Cp the set of classes ci ∈ Ci that are
subsumed directly by cp:
∀cp ∈ Cp, OntoSubi,p(cp) = {ci ∈ Ci|(cp
subsume ci) ∧ (∀c′i|ci ∈ Subi(c

′
i) ⇒ c′i /∈

OntoSubi,p(cp)) ∧ (∀c′p ∈ Subp(cp) ⇒ ci /∈
OntoSubi,p(c

′
p))}.

Several automatic integration scenarios may be
defined in this context. We analyzed and formal-
ized in (9) three scenarios corresponding to dif-
ferent articulations between locale ontologies and
the global one: (i) FragmentOnto that assumes
that the shared ontology is complete enough to
cover the needs of all local sources. Each local
ontology is a fragment of the shared ontology.
(ii) ExtendOnto where the integrated ontology is
composed of the shared ontology extended with
all the local specialization of the variations of lo-
cal sources. (iii) ProjOnto where each local source
defines its ontology by projecting its instances
onto the applicable properties of its smallest sub-
suming class in the shared ontology. We focus for
the rest of the method on the global ontology GO
covering the available OBDBs.
Additionally to integration methods, and to

prepare data integration process, some exchange
based formats have been proposed to facilitate
and automate data exchange such OntoML. On-
toML stands for ”Product Ontology Mark-up
Language” (ISO13584-32). It has been developed
in the ISO TC184/SC4 framework. It is an XML
Schema designed for use by applications that
need to exchange and process PLIB compliant
domain ontologies, possibly together with their
related instances, in various Web-oriented envi-
ronments. When designing OntoML, an underly-
ing idea was to clearly separate the representa-
tion of ontology concepts from the representation
of instances. Indeed, in an engineering context,
what is important is to ensure that instances ex-
changed between business partners can be inter-
preted without any ambiguity, whatever be the
underlying ontology language used to describe
the related classes and properties (product ex-
change interoperability). For that purpose, the

13

ISO 29002 series has been developed. It aims
to provide general mechanisms guaranteeing that
the concept information can be exchanged inde-
pendently from the data model of the underly-
ing ontology model. Therefore, ISO 2002 provides
(among other things) a neutral concept identifi-
cation mechanism (ISO29002-5) and a neutral in-
stance representation mechanism (ISO29002-10)
(reference to the underlying class associated to a
set of property reference/typed value couples).

3.3.2. Multidimensional paradigm

Multidimensional design organizes data into
Facts (subject of analysis) and Dimensions (anal-
ysis perspectives). Dimensions can form hierar-
chies, where each level of the hierarchy represents
a level of granularity. Fact tables are composed
of measures (fact attributes) and dimensions are
composed of dimension attributes. Different stud-
ies proposed models following the multidimen-
sional paradigm. After studying different multidi-
mensional normal forms proposed, we retain the
following multidimensional constraints:

• Data summarization: data summarization
guarantees a correct aggregation of data
(46) by means of three necessary conditions
agreed by most multidimensional models:
(i) Disjointness : meaning that the sets of
objects to be aggregated must be disjoint,
(ii) Completeness : meaning that the union
of subsets must constitute the entire set,
and (iii) Compatibility of the Dimension,
the kind of measure being aggregated and
the aggregation function used. Many design
methods ensure the first two conditions by
looking for many-to-one relationships be-
tween each fact and its dimension and a
one-to-many relationship between levels of
the same hierarchy. The compatibility con-
dition requires to access semantics of data
to check whether it is possible to apply ag-
gregation operation to aggregate measures
along dimension levels. These three condi-
tions are considered as the first step ensur-
ing the quality of the DW model and some
studies used them to propose multidimen-
sional normal forms.

• Dimension hierarchies: (48) enumerates and
classifies different types of dimension hierar-
chies (simple, multiple, generalized). A mul-
tidimensional model should represent these
different hierarchies. When translating hi-
erarchies to the logical level, some of them
may have the same relational representa-
tion. It is thus important to keep trace of
dimension semantics within the DW.

Three different logical implementations of a
multidimensional model are possible: Multidi-
mensional OLAP approach (MOLAP), Rela-
tional OLAP approach (ROLAP) and Hybrid
OLAP approach (HOLAP). MOLAP approach
stores multidimensional data in array-based mul-
tidimensional storage and implement the OLAP
operations over these special data structures.
Each dimension of the DW model is represented
as an array dimension. MOLAP approach offers
good access times, but the array update and man-
agement are more difficult.

ROLAP approach maps DW multidimensional
model into relational tables. Each fact concept
becomes a fact table having measure attributes
and each dimension concept becomes a dimen-
sion table having dimension attributes. Fact ta-
bles store secondary key attributes of dimensions
tables related to the fact. ROLAP servers include
optimization, scalability, implementation of ag-
gregation navigation logic and additional services,
which make the relational approach the most pop-
ular representation adopted by several important
DBMS editors. ROLAP systems model DW appli-
cations by means of a star schema or its variant.
A star schema consists of a huge fact table and a
number of dimension tables (14). The fact table is
joined to dimension tables. The snowflake schema
is a variant of the star schema where dimension
tables are split into several dimension level tables
according to their granularity.

HOLAP approach combines both MOLAP and
ROLAP approaches to get benefits from the scal-
ability of ROLAP and the faster computation of
MOLAP. HOLAP manages frequently used data
(generally aggregated data) in a MOLAP system
and other data in a ROLAP system.

14

Figure 14. DW star schema

3.3.3. C4: Requirements engineering

Requirements engineering (RE) plays a cru-
cial role in information systems development pro-
cesses to reduce the risk of failure. Requirements
of an enterprise-wide DW system determine its
functional behaviour and its available informa-
tion, for example what data must be accessible,
how it is transformed and organized, as well as
how it is aggregated or calculated. Requirements
enable stakeholders to communicate the purpose,
establish the direction and set the expectations
of information goals for the enterprise. On the
other hand, the development team of a data ware-
house system expects a complete, correct and un-
ambiguous specification of the system to build,
which means a further refinement of the business
requirements from the stakeholders.

Generally, a RE process can be divided into
four activities: (i) requirements elicitation, (ii) re-
quirements specification, (iii) requirements vali-
dation and (iiii) requirements management. The
requirements specification presents a significant
stage that relates to the requirements formaliza-
tion. A good requirements specification implies
thus a good DW design. There are several tech-
niques for requirements specification to assist re-
quirements analysts and stakeholders in produc-
ing requirements specification of higher quality,
and some of them are put into practice in indus-
try:

• Informal techniques: are built in natural
language, sometimes with structuring rules.
Their use introduces risks of ambiguities
because neither their syntax, nor their se-
mantics are perfectly defined. Among these
techniques, we can quote questionnaires and
interviews.

• Semi-formal techniques: are generally based
on graphic notations with a specified syntax
allowing having a clear vision of the system.
These models are good vectors of communi-
cation between designers and users system.
Among these techniques we can quote UML
notation.

• Formal techniques: are based on mathemat-
ical or logical notations which provide a pre-
cise and no ambiguous framework for re-
quirements modelling. We can quote models
using the B notation and ontological mod-
els.

4. Related work: Towards a conceptual

continuity of DW design methods

Many recent studies proposed to combine DW
and ontology technologies principally for the
following tasks: Extract-Transform-Load (ETL)
process, validation of the multidimensional struc-
ture, and DW design. Some proposals exploit on-
tologies for the ETL phase: (15) proposed ETL
method for integrating data from sources into
the DW using an ontology as a global schema
describing sources, (60) proposed to automate
the ETL process by constructing OWL ontol-
ogy linking schemas of sources to the DW tar-
get schema. In another perspective, some propos-
als use ontologies for the validation or extension
of the DW multidimensional schema: (40) pro-
posed to use hyperonymy and hyponymy rela-
tionships of Wordnet ontology to enrich and com-
plete dimensions hierarchies. To the best of our
knowledge, only three studies proposed the use
of ontologies for designing DW applications (57;
51; 41). Before describing these three works, we
first present a classification of DW design meth-
ods that shows their convergence to the ontologi-

15

Figure 15. Classification of DW design methods.

cal methods through a conceptual continuity ap-
proach.
When exploring the main DW design works,

we notice a trend of methods following a supply-
driven approach, where the DW model is gener-
ated from an analysis of data sources (38; 61).
User’s requirements are ignored in these works.
The domain of requirement analysis is related to
Requirements Engineering (RE). RE for DW de-
sign aims at identifying needs of users and deci-
sion makers to implement a DW satisfying them.
The experience showed that revisiting require-
ments specification is generally needed even after
DW implementation7. Many methods (47; 67),
called demand-driven methods, were proposed to
generate a DW model after analysing users’ re-
quirements. Other methods (11; 30), called mixed
methods, generate the DW model from both
sources and requirements.
These methods generate DWmodel either from

logical schemas of sources (38), or from concep-
tual schemas of sources (61; 34) requiring gener-
ally reverse engineering efforts, or recently from
ontological schemas (Figure 15). Ontologies have
been proposed in DW design, essentially as a so-
lution to data integration problems caused by se-
mantic heterogeneities. These ontological meth-
ods are mainly supply-driven methods, where do-
main ontologies are used as conceptual schemas
integrating data sources. (57) defines the DW
multidimensional model (facts and dimensions)
from an OWL ontology by identifying functional
dependencies (Functional ObjectProperties) be-

7http://www.redbooks.ibm.com

tween ontological concepts. (51) defines a frame-
work for analyzing annotations of the semantic
web by designing a semi-structured DW.

From requirements perspective, we notice that
proposed methods define DW schema from in-
formal requirements models (28), or from semi-
formal models (generally UML models or models
of i*8 framework) (49; 47; 13). These methods
consider users’ requirements as the set of speci-
fications of the given application. Ontologies on
the other hand can be seen as the set of spec-
ification of the entire domain. We proposed in
(41) an ontological design method that consists
in defining a conceptual model from an OWL do-
main ontology integrating data sources and speci-
fying requirements. This method is also supported
by a design tool (42). Users’ requirements in this
method are expressed in terms of concepts of the
domain ontology to generate a DW ontology, from
which a multidimensional model is defined. Fol-
lowing the hybrid approach, (58) also proposed
a mixed method producing a multidimensional
model from an OWL ontology describing sources.
Requirements are then used to identify the ETL
operations needed for mapping the sources to tar-
get data stores.

In this paper, we propose an ontological design
method following a mixed approach, extending
our previous method (41), where we define a new
DW storage structure representing requirements
persistently. Requirements analysis in DW design
litterature can differ according to the object ana-
lyzed. We distinguish process-driven, user-driven
or goal-driven analysis. Process-driven analysis
(47; 13; 59) analyzes requirements by identify-
ing business processes of the organization. User-
driven analysis (67) identifies requirements of
each target user and unifies them in a global
model. Goal driven analysis (11; 30; 40) identifies
goals and objectives that guide decisions of the
organization at different levels. It is recognized
by different authors that goal-driven analysis pro-
vides a good definition of users requirements (56).

8i* is a framework using notions of Goals and Agents. i*
is used for identifying users of the system to develop, and
represent them into social actors dependent each other
through the goals to realize, tasks to be made and re-
sources used.

16

Figure 16. Criteria for analyzing related works.

Identifying goals of users at the beginning of the
project is an important step in the development
process, especially in decisional applications that
needs to analyze the activity of an organization
and where goals is an important indicator of this
activity. To define requirements, we thus followed
the goal-driven approach that has been used in
DW context (11; 30).

According to the four concepts detailed in the
background section (Schemas, Sources, Integra-
tion, Requirements) (See Figure 16), we summa-
rize the most relevant works discussed in Table
1:

Our proposed approach defines the DW from
the global ontology integrating available OBDB
sources. Requirements are specified at the onto-
logical level, and are made persistent in the DW
structure.

5. Our Design Approach

Our objective is to define an OBDW mak-
ing users requirements persistent within the DW
structure. To fulfill this objective, we need to de-
fine: (i) a requirements model, (ii) the process
making those requirements persistent and (iii) the
structure of the OBDW proposed. The following
sections will describe each step.

5.1. The requirements model

The requirements model we propose follows
a goal-driven approach. A goal is an objec-
tive that the system under consideration should

achieve. Goal-oriented requirements specification
produces the so called goal graphs, which rep-
resent goals and their logical relationships in an
AND-OR graph form (18). From our analysis of
various existing works suggested in goal-oriented
litterature, we propose our Goal-oriented model
to assist DW analysts and stakeholders in pro-
ducing requirements specification of high quality.
We formalize a goal based on the GQM definition
(Goal Question Metric) (6): ”A goal is defined for
an object, for a variety of reasons, with respect to
various models of quality, from various points of
view, relative to a particular environment”.
Fig. 17.b presents the goal oriented require-

ments model we defined, represented as an UML
class diagram designed with Eclipse Papyrus plu-
gin. This model is composed of a main class Goal-
Model that stores all Goals, and is aimed at pro-
moting requirements reuse.
Let us consider the first requirement of the

case study Goal1: ”This requirement provides a
report of all reservations made at a given reser-
vation date. The report lists totals of bestPrice,
basicPrice and rate of guaranteed cancelled. Note
that the rate is equal to the sum [bestPrice - ba-
sicPrice].”. A goal is described by the follow-
ing properties: goal identifier (Id), name (Goal1),
description, purpose (Report) and its priority
(mandatory or optional goal). Three reflexive re-
lationships between goals are distinguished: (i)
Influence relationships: positive or negative in-
fluence relationships exist between goals. For ex-
ample Goali : Reduce number of cars for branch
C negatively influences Goalj : Increase rental
agreements for branch C. (ii) ParentChild rela-
tionships: decomposing a general goal into sub-
goals using AND/OR relations, (iii) GoalRelation
representing relations of conflicts, refinement,
containment and equivalence between goals.
A goal is characterized by three classes related

to Goal class through aggregation relationships,
that we call coordinates of the goal. They are
used for easing the gathering of the goals from
users. Coordinates are: a Metric measuring the
satisfaction of a goal (sum [bestPrice - basicPrice]
for Goal1, a Result to analyze (bestPrice, ba-
sicPrice and rate for Goal1), and Parameters re-
flecting the object of the goal (reservation date

17

Authors/Criteria Type of Schema Type of Sources DW Integration Requirements
(34) Conceptual or relational Traditional No No
(38) Relational Traditional No No
(11) Conceptual Traditional No Yes
(30) Relational Traditional No Yes
(57) Ontological Traditional No No
(58) Ontological Traditional Yes Yes
(51) Ontological Ontology-based No Yes
(41) Ontological Traditional No Yes

Table 1
DW design works analyzed following 4 criteria

Figure 17. Requirement model connected to the ontology model

18

Figure 18. Graph of goals of the rental car domain

for Goal1).
Two types of goals are identified: functional

and non-functional. A non-functional require-
ment is defined as an attribute or constraint of
the system (such as security, performance, flexi-
bility, etc) (31). Each goal involves one or more
actors that interact with the system to fulfil the
goal (eg. Sales manager for Goal1). Having a set
of goals, a graph of goals can be produced as pre-
sented in figure 18. The graph is composed of
the different goals as nodes and the described re-
lationships between goals as edges.

Users’ goals are expressed at the ontological
level where we defined a mapping between co-
ordinates of each goal (Metric, Result and Pa-
rameter) and the properties of the domain ontol-
ogy. Coordinates of the goal are expressed using
the properties of the ontology in order to allow
the designer to choose the most relevant proper-
ties of each class that can be used to define the
goal. The domain ontology represents the global
model integrating the whole sources. Goals are
used in this process, to inform us about the most
relevant information to store in the DW model.
Figure 17.a represents a fragment of the OWL
ontology meta-model.

Fig. 19.c and Fig. 19.d presents an example of
instantiation of the ontology and goal models us-
ing Goal1 requirement expressed on classes and
properties of Rental car ontology.

5.2. The design process proposed

DW design typically includes the three usual
design phases: conceptual, logical and physical

phases. We first extract a DW ontology from the
global domain ontology (GO), that is considered
as the DW conceptual model that will be an-
notated by multidimensional concepts. A set of
transformation rules is used to translate the con-
ceptual model into a logical relational model.

5.2.1. Definition of the DW ontology

Extracting the DW ontology

A DW ontology (DWO) is defined as a mod-
ule of the Global Ontology (GO) by extracting
concepts and properties used to express users
goals. This DWO represents the DW concep-
tual model that will be stored in the DW struc-
ture for describing its data semantics. Three sce-
narios are possible: (1) DWO = GO: the GO
corresponds exactly to users’ goals and require-
ments, (2) DWO ⊂ GO: the DWO is extracted
from the GO using OntoSub operator and cov-
ers all requirements, (3) DWO ⊃ GO: the GO
does not fulfill the entire users’ requirements. The
designer extracts the fragment of the GO cor-
responding to requirements and can locally en-
rich it with new concepts and properties. Fol-
lowing the first formalization of domain ontolo-
gies, the DWO is formally defined as follows:
O :< CDW ,PDW ,SubDW ,ApplicDW >.

Once the DWO is defined, we exploit its rea-
soning capabilities to correct all inconsistencies,
and to reason about the goals model.

Reasoning on the DW ontology

Two usual reasoning mechanisms are first used:
checking the consistency of the ontology (classes
and instances) and inferring subsumption rela-
tionships. This reasoning is supported by most
existing reasoners, and allows the detection of
design errors. Another reasoning mechanism is
used in order to propagate influence relation-
ships between goals. Influence relationships are
used afterwards for exploring the multidimen-
sional structure of the DW model, where we
consider ’fact’ concepts as central concepts and
’dimensions’ as concepts influencing them. For
propagating influence relationships, we defined
propagating rules inspired from works on casual
graphs (17) that use the same semantic of influ-

19

ence relationships. Two operations are used: addi-
tion corresponding to the idea of cumulative influ-
ences of numerous paths having the same target
goal, and multiplication operation corresponding
to the idea of transitivity of influences in a path.
Those rules are applied on the graph of goals to
find a sort of transitive closure of influence rela-
tionships.
Based on the goal model of figure Fig. 17.b, we

defined the following propagating rules:
Positive − influence(G1, G2) ∧ Negative −

influence(G2, G3) −→ Negative −
influence(G1, G3)
Negative − influence(G1, G2) ∧ Negative −

influence(G2, G3) −→ Positive −
influence(G1, G3)
Positive − influence(G1, G2) ∧ Positive −

influence(G2, G3) −→ Positive −
influence(G1, G3)
Negative − influence(G1, G2) ∧ Positive −

influence(G2, G3) −→ Negative −
influence(G1, G3)
Positive − influence(G1, G2) ∧ Negative −

influence(G1, G3) −→ Undetermined −
influence(G1, G2)

Annotating the DW ontology

The multidimensional role of concepts and
properties are then identified based on an anal-
ysis of defined goals. We consider for each goal,
properties used to define the result (or its metric)
as potential fact measures as it represents a result
to analyze. Parameters are entities possibly influ-
encing a goal result and are thus considered as po-
tential dimension attributes. Parameters of goals
influencing this given goal (existing and inferred)
are also considered as potential dimensions. Let
us take the following goals ”Increase rental agree-
ments for country C” and the goal ”Reduce num-
ber of cars for all branches” influencing the first
goal negatively. Parameters Branch (of the sec-
ond goal) and Country (of the first goal) are both
candidates to represent dimensions for the mea-
sure Rental Agreements (See figure 20 for this
example). We validate the link between facts and
their potential dimensions by looking for (1,n) re-
lationships from the DW ontology. (1,n) relation-
ships are identified as direct or transitive func-

Figure 20. Influence relationships used for com-
pleting DW multidimensional structure

tional ObjectProperties in OWL ontologies (57).
Algorithm 1 formalizes these steps.

5.2.2. Definition of the DW logical model

The logical model of the DW is generated by
translating the annotated DWO into a relational
model. Several works in the literature proposed
methods for translating ontologies described in
a given formalism (PLIB, OWL, RDF) to a re-
lational or object-relational representation (27).
This translation can follow three possible rela-
tional representations (2): vertical, binary and
horizontal (See Figure 21). Vertical representa-
tion is used for RDF ontologies, and stores data
in a unique table of three columns (subject, pred-
icate, object). In a binary representation, classes
and properties are stored in tables of different
structures. Horizontal representation translates
each class as a table having a column for each
property of the class. We proposed in (23) a set of
translation rules for representing PLIB and OWL
ontology (classes, properties and restrictions) in
a relational schema following the binary and hor-
izontal representations.

In our case study scenario (ontology model and
requirements), the DWO was equal to the GO.
The multidimensional algorithm identified two
facts: (i) Rental-Agreement having the following
dimensions Rental-duration, Car-Model, Country,
customer, and (ii) Branch fact having Customer
and Country as dimensions. Figure 22 presents
the relational star schema obtained after trans-
lating the DWO into a relational schema.

20

Figure 19. Instantiation of the requirements and ontological models

Figure 22. Rental car Star schema defined by the design process proposed.

21

begin

for Each goal G do
Each ontological property used as
result or metric of G is a measure
candidate;
Each property used as a parameter of
G is a dimension attribute candidate;
Parameters of the goals influencing
goal G are dimension attributes of the
measure identified for G;
Classes that are domains of properties
that are measures candidates are
facts candidates;
Classes that are domains of dimension
attributes are dimension candidates;
if fact class F is linked to a
dimension by (1,n) relationship then

keep the two classes in the model;
else

R
end

eject the dimension class;

end

Hierarchies between dimensions are
constructed by looking for (1,n)
relationships between classes
identified as dimensions (for each
fact);

end

end

Algorithm 1: Multidimensional annotations

5.3. Definition of the OBDW

To validate our proposal, we choose the OBDB
OntoDB (22) introducing an additional part
called the meta-schema (Figure 23). The DW
ontology defined is loaded in OntoDB. The meta-
schema is extended to include the requirements
model (Fig. 17.b). This extension is done by
defining OntoQL statements. OntoDB currently
supports only the horizontal relational represen-
tation for the data part. The main characteristic
of this solution is that it materializes all different
models used along the life cycle of DW applica-
tions: the conceptual model (represented by the
ontology), the logical model that may represented

Figure 21. Rental car Star schema defined by the
design process proposed.

following a binary or horizontal relational repre-
sentation according to the choice of the designer,
the meta-schema extended by the requirements
model we defined for storing requirements persis-
tently in the DW, and the local ontology defining
semantics of stored data and requirements.

6. Case tool implementing the proposed

method

To validate our proposal, a case tool has been
developed implementing the design steps de-
scribed (Figure 24). This tool is designed to offer
designers similar functionalities offered by classi-
cal database case tool tools such as: PowerAMC,
Rational Rose, etc. We chose OWL formalism as
an example to implement our design process. Our
tool is a graphical system developed in Java Fig-
ure 25. Considered OBDBs reference an exist-
ing integrated ontology (GO) formalized in OWL.
The GO integrating the selected OBDBs is iden-
tified by its URI, and its information is displayed

22

Figure 23. OBDW: Extended OBDB of type III by the requirements model.

on the same way as Proteg editor. Classes are
presented as a hierarchy. The selection of a class
displays its information (Concept name, descrip-
tion, properties, super-classes and instances). Ac-
cess to all ontologies is made through the OWL
API. Designers can either express users’ require-
ments through an interface allowing them to se-
lect the different classes and properties used in
requirements or by choosing a text file contain-
ing these requirements. Requirements expressed
must follow the goal model we presented above.
The tool checks the syntax of each requirement.
The projection of requirements on the GO gen-
erates the DW ontology (DWO) that is a mod-
ule of the GO. DWO is extracted using ProSé
plug-in available within Protégé editor, ensuring
the logical completeness of the extracted ontol-
ogy (39). Fact++ reasoner is invoked to clas-
sify the DWO classes taxonomy and to check its
consistency. Influence rules defined on goals are
implemented using SWRL (Semantic Web Rule
Language) language 9, which must be combined
with Jess 10 inference engine to execute defined
SWRL rules and apply them on the DWO. A
parser analyzes requirements specified in order to
identify the multidimensional role of classes and

9http://www.w3.org/Submission/SWRL/
10http://www.jessrules.com/

properties according to the annotation algorithm
defined (Algorithm 1). The logical star schema
is then defined after translating the DWO anno-
tated. This multidimensional model is presented
in two ways: (i) as a tree whose nodes are identi-
fied facts, their measures, their respective dimen-
sions and dimensions attributes, (ii) graphically
as a relational star schema that can be printed.
The designer can modify this model graphically
by adding and deleting classes and properties. A
demonstration video of this tool is available at
http://www.lisi.ensma.fr/members/bellatreche.

7. Open issues on evolution in OBDW de-

fined

The second issue when making heterogeneous
systems interoperable is to keep and maintain this
interoperability operational to different changes
characterizing the complex environment these
systems evolve in. This new direction is called
sustainable interoperability. Increasingly research
efforts are proposed in this direction for evolving
interoperable systems sustainably (52; 7; 33; 25;
45). Managing the DW evolution implies main-
taining and updating the warehouse so that it
fulfils the organization requirements as well as
possible.
Based on concepts seen in the background, we

23

Figure 24. Architecture of the proposed case tool.

discuss in what follows some scenarios of DW evo-
lutions and we show how our ontology-based data
warehouse can adapt to different changes aris-
ing to ontologies, sources and requirements. These
scenarios are as follows: (i) The changes occur in
the ontology but does not affect the DW model,
(ii) The changes occur in the ontology and affect
the DW model, (iii) The changes occur in require-
ments, (iv) The changes occur in sources.

7.1. Ontology changes do not affect the

DW model

The DW model we defined is designed based
on domain ontology. An ontology, by definition
is a shared and consensual conceptualization of
a given domain. This is one of the advantages
of considering the domain ontology schema as a
first design level where most domain changes are
already limited. One can make the reasonable as-
sumption that the shared ontology evolves slowly.
However, in some few cases the ontology can
evolve. (53) identified three causes for an ontol-

Figure 25. Interfaces from the case tool proposed.

ogy evolution: (i) Changes in the domain (domain
evolution due to changes in the real world), (ii)
Changes in conceptualization (changes in usage
perspective), (iii) Changes in the explicit spec-
ification (occur when an ontology is translated
to another knowledge-representation language).
These changes can interest decision makers or
not. If not, the DW model remains the same. The
second case where the changes interest decision
makers is discussed in the following point.

7.2. Ontology changes affect the DW

model

In this scenario, changes occurring in the on-
tology have to be impacted on the DW model.
The exchange interoperability is based on the use
of a shared ontology for which definitions have
been defined at a given time. At that given time,
the interpretation of concepts descriptions is ef-
fectively unambiguous. But, during an ontology
lifetime, evolutions/corrections may be required
and, in order to preserve the right interpretation
of concepts at any time, a versioning management
must be provided. In PLIB for example, some on-
tology change management rules have been de-
fined. These rules are based on the ontology con-
tinuity principle (10). The idea is to keep track
of evolutions by ensuring in a single ontology
(the more recent one) that whatever have been
its evolutions, the interpretation of any concept
descriptions that was conforming to that ontol-
ogy at a given instant can be performed. As a
consequence, it means for instance that a con-

24

cept cannot be removed, but must be annotated
” deprecated”. This evolution management dis-
tinguishes ontology evolution that corresponds to
revision changes (no impact in the concept de-
scription interpretation), version change (the old
ontology cannot interpret all the evolutions pro-
vided by the new ontology) and error correction
(the concept shall be deprecated).

7.3. Requirements change

Handling requirements evolution means main-
taining the changes that occur to the decisional
requirements and studying their impact on the
DW model. Indeed, new requirements may arise
and others may become inappropriate. These
changes can either just be updated the DW
model, or can affect the whole DW structure (for
example by rising new facts and dimensions). The
requirements model in our approach is stored in
the DW structure extending the DW conceptual
model. The impact of each requirement change
on DW schema and data can thus be identified
and can be managed more accurately. As stated
in (3), when requirements and their connection
with semantics sources are represented using for-
mal expressions and stored on dedicated knowl-
edge bases, this facilitates a sustainable interop-
erability through the creation of systems capable
to reason and deduce mapping readjustments ac-
cording to requirements changes.

The impact of requirements changes on other
requirements is also an important dimension. A
change made to one requirement may affect sev-
eral other requirements making them to change as
well. Neglecting these dependencies can increase
the cost of implementing a requirement, and in
turn cause budget or schedule problems (5)

7.4. Sources change

Changes in a DW sources, like in the tradi-
tional databases, have two categories: (i) Content
changes (insertion, update, deletion of data and
records), (ii) Schema changes (addition, modifi-
cation and dropping data structures and their
attributes) (52). In order to tackle the problem
of schema changes, two different ways are possi-
ble: schema evolution and schema versioning. The
first approach consists in updating a schema and

transforming data from an old schema into a new
one, and only the current version of a schema is
present. In contrast, the second approach keeps
track of the history of all versions of a schema
(52). We proposed in (52) a framework for man-
aging the versioning model of a DW constructed
form ontology-based sources. The approach deals
with asynchronous evolution of local ontologies
of sources and the shared one. An important ad-
vantage in our approach is the link between the
different models. Changes can thus be identified
and managed on the conceptual level (the local
ontologies), and can be propagated to the other
models along the design cycle (logical and physi-
cal models).

8. Conclusion

Systems interoperability is one of the most im-
portant issues that needs to be solved for enter-
prises that have to deal with different partners
collaborating beyond their own frontiers. In or-
der to cooperate and to exchange information in
an efficient way, enterprises data need to be inte-
grated into a unified view. Ontologies have been
proved to be effective solutions for the developing
integration solutions allowing enterprise sources
to share the same vocabulary. The presence of
ontologies during the development of integration
systems facilitates the management of data and
requirements ambiguity.
In parallel to this situation, ontologies have been
extensively adopted by companies. As conse-
quence, mountains of ontological data are pro-
duced. To offer solutions for storing, managing,
querying these data, ontology based database
(OBDB) systems have been proposed by aca-
demic and industrial communities. As conse-
quence, ontological instances become a gold mine
for decision makers to get efficient knowledge to
improve the profit of their enterprises. Data ware-
house is the enterprise memory that materializes
data from different sources. In this paper, we pro-
pose a new approach for designing ontology-based
data warehouse from a set of OBDBs. Addition-
ally to the nature of sources participating in the
construction of our data warehouse, a second im-
portant component that our methodology consid-

25

ers is the user’s requirements. We propose to ex-
tend the use of ontologies, on the same way as
for data sources, to clarify (eliminate ambiguity)
and unify users requirements. User’s requirements
are furthermore stored in the DW model. The
presence of these requirements may contribute in
reducing the complexity of other phases of the
DW life cycle (optimization, personalization and
evolution management). To do so, a requirement
model following a goal-driven formalism is given
and mechanism to ensure their persistency into
the DW is developed. The final DW structure
defined is validated within the OBDB OntoDB,
extending its ontological meta-schema by the re-
quirements model. A tool implementing the de-
sign method proposed is developed. A discussion
about different evolution scenarios and their man-
agement within our proposed design framework is
presented.
This work leads to many other tasks currently

in progress including: (i) evaluating our method
for large scale case study, (ii) a validation of differ-
ent evolution management scenarios, (iii) study of
the impact of requirements persistency in differ-
ent phases of life cycle of DW development (query
processing and physical design) and (iv) the ex-
tension of our design method (including user re-
quirement persistency) for OLTP applications.

References

[1] IEEE 830. Recommended practice for software re-
quirements specifications. 1998.

[2] D.J. Abadi, A. Marcus, S. Madden, and K. Hollen-
bach. Sw-store: a vertically partitioned dbms for
semantic web data management. VLDB Journal,
18(2):385–406, 2009.

[3] C. Agostinho and R. Jardim-Gonçalves. Dynamic
business networks: A headache for sustainable sys-
tems interoperability. In OTM Workshops, pages
194–204, 2009.

[4] S. Alexaki, Christophides V., G. Karvounarakis,
D. Plexousakis, and K. Tolle. In proceedings of
the second international workshop on the semantic
web. In SemWeb, 2001.

[5] A. Aybuke and W. Claes. Engineering and Managing
Software Requirements. Springer, 2005.

[6] V. Bazili, C. Gianluigi, and H. D. Rombach. The goal
question metric approach. Technical report, Com-
puter science Technical Report Series CS-TR-2956,

1992.
[7] B. Bebel, J. Eder, C. Koncilia, T. Morzy, and

R. Wrembel. Creation and management of versions
in multiversion data warehouse. In In Proc. ACM
SAC, pages 717–723, 2004.

[8] L. Bellatreche, Y. Ait Ameur, and C. Chakroun. A
design methodology of ontology based database ap-
plications. Logic Journal of the IGPL, Oxford Uni-
versity Press, 19(5):648–665, 2011.

[9] L. Bellatreche, D. Nguyen Xuan, G. Pierra, and
H. Dehainsala. Contribution of ontology-based
data modeling to automatic integration of elec-
tronic catalogues within engineering databases.
Computers in Industry Journal Elsevier, 57(8-
9):711–724, 2006.

[10] L. Bellatreche, G. Pierra, and E. Sardet. Evolution
Management of Data Integration Systems by the
Means of Ontological Continuity Principle. Recent
Trends in Information Reuse and Integration Book,
edited by Springer, 2011.

[11] A. Bonifati, F. Cattaneo, S. Ceri, A. Fuggetta, and
S. Paraboschi. Designing data marts for data ware-
houses. ACM Transactions on Software Engineer-
ing and Methodology, 10(4):452–483, 2001.

[12] J. Broekstra, A. Kampman, and F. V. Harmelen.
Sesame: A generic architecture for storing and
querying rdf and rdf schema. In International Se-
mantic Web Conference, pages 54–68, 2002.

[13] R. Bruckner, B. List, and J. Schiefer. developing re-
quirements for data warehouse systems with use
case. Seventh Americas Conference on Information
Systems, 2001.

[14] M. J. Cafarella and A. Y. Halevy. Web data man-
agement. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data,
pages 1199–1200, 2011.

[15] D. Calvanese, G. Giacomo, M. Lenzerini, D. Nardi,
and R. Rosati. Data integration in data warehous-
ing. Int. J. Cooperative Inf. Syst., 10(3):237–271,
2001.

[16] S. Castano, V. Antonellis, and S. D. C. Vimer-
cati. Global viewing of heterogeneous data sources.
Transactions on Knowledge and Data Engineering,
13(2):277–297, 2001.

[17] B. Chaib-draa. Causal maps: theory, implementation,
and practical applications in multiagent environ-
ments. IEEE TKDE, 14(6):1201–1217, 2002.

[18] S. Chaudhuri and U. Dayal. n overview of data ware-
housing and olap technology. A Sigmod Record,
26(1):65–74, March 1997.

[19] D. Chen, G. Doumeingts, and F. Vernadat. Archi-
tectures for enterprise integration and interoper-

26

ability: Past, present and future. Special issue on
Enterprise Integration and Interoperability in Man-
ufacturing Systems. Computers In Industry. Else-
vier, 59(5), 2008.

[20] P. Chen. The entity relationship model - towards
a unified view of data. ACM Transactions on
Database Systems (TODS), 1(1):9–36, 1976.

[21] E. I. Das, G. Eadon Chong, and J. Srinivasan.
Supporting ontology-based semantic matching in
rdbms. In VLDB, pages 1054–1065, 2004.

[22] H. Dehainsala, G. Pierra, and L. Bellatreche. Ontodb:
An ontology-based database for data intensive ap-
plications. In DASFAA, pages 497–508, April 2007.

[23] C. Fankam. Ontodb2 : un systme flexible et efficient
de base de donnes base ontologique pour le web
smantique et les donnes techniques. Ph.d. thesis,
Poitiers University, 2009.

[24] C. Fankam, S. Jean, L. Bellatreche, and
Y. Ait Ameur. Extending the ansi/sparc ar-
chitecture database with explicit data semantics:
An ontology-based approach. In Second European
Conference on Software Architecture (ECSA’08,
pages 318– 321, 2008.

[25] J. Ferreira, C. Agostinho, J. Sarraipa, and R. Jardim-
Gonçalves. Monitoring morphisms to support sus-
tainable interoperability of enterprise systems. In
Robert Meersman, Tharam S. Dillon, and Pilar
Herrero, editors, OTM Workshops, volume 7046 of
Lecture Notes in Computer Science, pages 71–82.
Springer, 2011.

[26] E. Franconi, F. Baader, U. Sattler, and P. Vassil-
iadis. Fundamentals of Data Warehousing, chap-
ter Multidimensional Data Models and Aggrega-
tion. Springer Verlag Berlin Heidelberg, 2000.

[27] A. Gali, C.X Chen, K. Claypool, and R. Uceda-Sosa.
From ontology to relational databases. ER Work-
shops, pages 278–289, 2004.

[28] I. Gam and C. Salinesi. A requirement-driven
approach for designing data warehouses.
REFSQ’2006, 2006.

[29] A. Giacometti, P. Marcel, E. Negre, and A. Soulet.
Query recommendations for olap discovery driven
analysis. International Journal of Data Warehous-
ing and Mining IJDWM, 2011.

[30] P. Giorgini, S. Rizzi, and M. Garzetti. Goal-oriented
requirement analysis for data warehouse design.
DOLAP’05, pages 47–56, 2005.

[31] M. Glinz. On non-functional requirements. 15th IEEE
International Requirements Engineering Confer-
ence RE07, pages 21–26, 2007.

[32] C.H. Goh, S. Bressan, E. Madnick, and M.D. Siegel.
Context interchange: New features and formalisms

for the intelligent integration of information. ACM
Transactions on Information Systems, 17(3):270–
293, 1999.

[33] M. Golfarelli, J. Lechtenborger, S. Rizzi, and
G. Vossen. Schema versioning in data warehouses:
enabling cross-version querying via schema aug-
mentation.Data and Knowledge Engineering, 2006.

[34] M. Golfarelli and S. Rizzi. Methodological framework
for data warehouse design. In DOLAP, pages 3–9.
ACM, 1998.

[35] M. Golfarelli and S. Rizzi. Data Warehouse De-
sign: Modern Principles and Methodologies. Mc-
Graw Hill, 2009.

[36] T. R. Gruber. A translation approach to portable
ontology specifications. In Knowledge Acquisition,
5:199–220, 1993.

[37] S. Jean, G. Pierra, and Y. Aı̈t Ameur. Domain
ontologies: A database-oriented analysis. In José
A. Moinhos Cordeiro, Vitor Pedrosa, Bruno En-
carnação, and Joaquim Filipe, editors, WEBIST
(1), pages 341–351. INSTICC Press, 2006.

[38] M. R. Jensen, T. Holmgren, and T.B. Pedersen. Dis-
covering multidimensional structure in relational
data. 6th International Conference on Data Ware-
housing and Knowledge Discovery, LNCS Springer,
3181:138–148, 2004.

[39] E. Jiménez-Ruiz, B.C. Grau, U. Sattler, T. Schnei-
der, and R. Berlanga Llavori. Safe and economic
re-use of ontologies: A logic-based methodology
and tool support. In Franz Baader, Carsten Lutz,
and Boris Motik, editors, Description Logics, vol-
ume 353 of CEUR Workshop Proceedings. CEUR-
WS.org, 2008.

[40] Mazon J.N., J. Trujillo, M. A. Serrano, and M. Pi-
attini. Improving the development of data ware-
houses by enriching dimension hierarchies with
wordnet. in: M. Collard (Ed.), ODBIS, 4623 of
Lecture Notes in Computer Science, Springer:85–
101, 2006.

[41] S. Khouri and L. Bellatreche. A methodology and tool
for conceptual designing a data warehouse from
ontology-based sources. DOLAP10, pages 19–24,
2010.

[42] S. Khouri and L. Bellatreche. Dwobs: Data warehouse
design from ontology-based sources. In DASFAA,
pages 438–441, 2011.

[43] M. A. King. A realistic data warehouse project: An in-
tegration of microsoft acces and microsoft excel ad-
vanced features and skills. Journal of Information
Technology Education Innovations in Practice., 8,
2009.

[44] A. Kiryakov, D. Ognyanov, and D. Manov. Owlim

27

- a pragmatic semantic repository for owl. WISE
Workshops, pages 182–192, 2005.

[45] H. Kondylakis and D. Plexousakis. Exelixis: evolv-
ing ontology-based data integration system. In Pro-
ceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 1283–1286,
2011.

[46] H.G. Lenz and A. Shoshani. Summarizability in olap
and statistical data bases. In SSDBM, pages 132–
143, 1997.

[47] B. List, J. Schiefer, and A. M. Tjoa. Process-oriented
requirement analysis supporting the data ware-
house design process a use case driven approach.
11th International Conference on DEXA, pages
593–603, 2000.

[48] E. Malinowski and E. Zimányi. Hierarchies in a
multidimensional model: From conceptual model-
ing to logical representation. Data Knowl. Eng.,
59(2):348–377, 2006.

[49] J. Mazon, J. Pardillo, E. Soler, O. Glorio, and J. Tru-
jillo. Applying the i* framework to the develop-
ment of data warehouses. In The 3rd International
i* Workshop - istar08, pages 79–82, 2008.

[50] B. McBride. Jena: Implementing the rdf model
and syntax specification. Technical report Hewlett
Packard Laboratories, 2001.

[51] V. Nebot, R. Berlanga, J. M. Perez, M. J. Aram-
buru, and T. B. Pedersen. Multidimensional inte-
grated ontologies: A framework for designing se-
mantic data warehouses. Journal on Data Seman-
tics JoDS, 13:1–36, 2009.

[52] D. Nguyen Xuan, L. Bellatreche, and G. Pierra. A
versioning management model for ontology-based
data warehouses. In DaWaK, pages 195–206, 2006.

[53] Klein M.C.A. Noy N.F. Ontology evolution: Not
the same as schema evolution. Knowl. Inf. Syst.,
6(4):428–440, 2004.

[54] G. Pierra. Context-explication in conceptual ontolo-
gies: Plib ontologies and their use for industrial
data. Journal of Advanced Manufacturing Systems,
World Scientific Publishing Company, 2006.

[55] G. Pierra. Context representation in domain ontolo-
gies and its use for semantic integration of data.
Journal of Data Semantics (JoDS), 10:174–211,
2008.

[56] C. Rolland. Reasoning with goals to engineer require-
ments. Enterprise Information Systems Springer,
pages 1–8, 2005.

[57] O. Romero, D. Calvanese, A. Abello, and
M. Rodriguez-Muro. Discovering functional depen-
dencies for multidimensional design. DOLAP09,
pages 1–8, 2009.

[58] O. Romero, A. Simitsis, and A. Abelló. Gem:
Requirement-driven generation of etl and multidi-
mensional conceptual designs. In DaWaK, pages
80–95, 2011.

[59] J. Schiefer, B. List, and R.M. Bruckner. A holistic
approach for managing requirements of data ware-
house systems. 8th Americas Conference on Infor-
mation Systems, 2002.

[60] D. Skoutas and A. Simitsis. Designing etl processes
using semantic web technologies. In Proc. of the
ACM 9th International Workshop on Data Ware-
housing and OLAP, pages 67–74, 2006.

[61] I.Y. Song, R. Khare, and B. Dai. Samstar: A
semi-automated lexical method for generating star
schemas from an er diagram. DOLAP07, pages 9–
16, 2007.

[62] N. Stolba. Towards a sustainable data warehouse ap-
proach for evidence-based heathcare. Ph.d. thesis,
Vienna University of Technology, 2007.

[63] V. Sugumaran and V. C. Storey. The role of domain
ontologies in database design: An ontology man-
agement and conceptual modeling environment.
ACM TODS, 31(3):10641094, 2006.

[64] P. Vassiliadis, M. Bouzeghoub, and C. Quix. Towards
quality-oriented data warehouse usage and evolu-
tion. Inf. Syst., 25(2):89–115, 2000.

[65] H. Wache, T. Vögele, U. Visser, H. Stucken-
schmidt, G. Schuster, H. Neumann, and S. Hübner.
Ontology-based integration of information - a sur-
vey of existing approaches. Proceedings of the In-
ternational Workshop on Ontologies and Informa-
tion Sharing, pages 108–117, August 2001.

[66] P. Bao J. Wang Y., Haase. A survey of formalisms
for modular ontologies. In: IJCAI 2007. Workshop
SWeCKa., January 2007.

[67] R. Winter and B. Strauch. A method for demand
driven information requirements analysis in data
warehousing projects. 36th HICSS, page 231, 2003.

