
PFair scheduling of late released tasks with
constrained deadlines

Sadouanouan Malo1 and Annie Choquet-Geniet2 and Moustapha Bikiengar3

1Polytechnic University of Bobo Dioulasso.Information Technology High School. 01 BP 1091
Bobo Dioulasso 01, Burkina Faso.
2University of Poitiers. Laboratory of Applied Computer Science. 1 Av. Clément Ader BP 40109 -
86961 Futuroscope Chasseneuil-France.
3University of Koudougou. 01 BP 376 Koudougou, Burkina Faso.
E-mail: 1(∗)sadouanouan.malo@ensma.fr, 2annie.geniet@univ-poitiers.fr, 2bmoustaph@yahoo.fr

∗Corresponding author

ABSTRACT. Pfair scheduling has usually been applied in the context of synchronous periodic task
systems with implicit deadlines. This paper addresses the problem of scheduling asynchronous hard
real-time tasks with constrained deadlines using a Pfair strategy on multiprocessor systems. First, we
extend the notion of Pfairness to the context of asynchronous tasks with constrained deadline. Then
we investigate feasibility conditions, we propose a rather efficient one and we illustrate the relevance
of our criteria through some simulations.

RÉSUMÉ. Les ordonnancements P-équitables ont jusque là été étudiés pour des systèmes de tâches
à départs simultanés et à échéances sur requêtes. Notre objectif dans ce papier est d’étendre la dé-
finition de la P-équité aux systèmes de tâches à départs différés et à échéances contraintes puis
de dégager une condition suffisante d’ordonnançabilité. Enfin, des simulations que nous avons effec-
tuées ont permis d’illustrer la pertinence de nos résultats et de mesurer l’impact de la variation des
facteurs d’utilisation et de charge du système sur l’ordonnaçabilité du système.

KEYWORDS : Scheduling - Fairness - Pfair feasibility

MOTS-CLÉS : Ordonnancement - Équité - Ordonnançabilité P-équitable



1. Introduction
The temporal validation relies on the definition of a scheduling policy and on the

proof that the temporal requirements are all met. This issue is rather well mastered for
uniprocessor systems, but for more complex systems, many open problems still deserve
to be investigated. We here consider multiprocessor platforms, composed of identical
processors, and the global scheduling of hard real-time tasks. We assume that preemp-
tion and interprocessor migration are permitted and parallelism forbidden (at any time,
a task can run on at most one processor). In this context, it has been shown that no on-
line scheduling algorithm can be optimal [8][5]. In their paper, [3][4] proved that the
problem of optimally scheduling synchronous periodic tasks with implicit deadlines on
identical multiprocessor platforms could be solved at run- time in polynomial time using
Pfair scheduling algorithms. Pfair scheduling algorithms have been widely investigated
last years [1][2][10]. In all these works, the notion of Pfairness is defined in the context of
synchronous tasks with implicit deadlines. In [2], asynchronous systems are considered,
where asynchronism means that some of the first task slots do not take place. But the first
job of any task is still assumed to be released at time 0. In [1], sporadic tasks are con-
sidered: periods correspond only to the minimum elapsed time between two consecutive
releases. We consider here a slightly different notion of asynchronism: the first release
dates of the different tasks are no more assumed to be equal. But all the task slots are as-
sumed to occur. The problem of scheduling tasks with arbitrary deadlines in a Pfair way
on multiprocessors has been addressed in [9] and a static-priority scheme to schedule a set
of such tasks has been presented. In this paper we investigate the extension of Pfairness
in order to design Pfair scheduling schemes for asynchronous tasks with deadlines less
than or equal to periods. We first extend and adapt Pfairness definition to this new context
and then we propose a a sufficient but rather effective feasibility condition and then we
present some simulation results.

The remainder of the paper is organized as follows. In section 2, we formally define
the Pfair multiprocessor scheduling problem. In section 3, we prove that Pfair algorithm
exists for any periodic task set and we give sufficient feasibility conditions. In section 4,
we present the simulations results. Conclusions and perspectives are given in section 5.

2. Pfair scheduling
We adopt the following notations: for any real number x, bxc is the integer immedi-

ately below or equal to x and dxe is the integer immediately above or equal to x. A slot
t denotes the time interval [t, t + 1). We assume that processors are allocated for integral
number of slots, thus a task cannot be preempted within a slot. We consider a platform
composed of m identical processors. We use the classical task model.

Definition 1. A task τi = 〈ri, Ci, Di, Ti〉 is characterized by four parameters: its first
release time ri, its per period worst case execution time Ci, its relative deadline Di and
its period Ti. The weight of task τi is Ui = Ci

Ti
and its density is CHi = Ci

Di
.

We have ri ≥ 0 and we assume that Ci, Di and Ti are integral and verify Ci ≤ Di ≤
Ti. Thus we have 0 < Ui ≤ 1. In this section we consider a set Γ of tasks such that
ri = 0 (the tasks are said to be synchronous) and Di = Ti.



Definition 2. A schedule for a task set Γ is a function S : Γ × N → {0, 1}, such that
∀t ∈ N :

∑
τi∈Γ S (τi, t) ≤ m with S (τi, t) = 1 if task τi is scheduled in slot [t, t + 1)

and S (τi, t) = 0 otherwise. A schedule is then valid iff ∀τi ∈ τ,

t=ri−1∑
t=0

S (τi, t) = 0 and

∀k ∈ N∗,
t=ri+(k−1)Ti+Di−1∑

t=0

S (τi, t) =
t=ri+kTi−1∑

t=0

S (τi, t) = kCi

A fair schedule is approximately an ideal fluid schedule such that, at any time t, each
task has been processed for ωi (t) = Ui × t processor time units. Now, since processor
time is allocated in integral number of slots, the ideal behaviour is approximated by either
the integer directly above or directly beyond. A schedule S is said to be Pfair iff ∀τi, t :

τi ∈ Γ, t ∈ N,−1 < ωi (t) −
j=t−1∑
j=0

S (τi, t) < 1. Informally, the allocation error

associated with each task must always be less than one slot. A Pfair algorithm has the
following high-level structure: at each time t ≥ 0, a dynamic priority is assigned to each
task and the m highest-priority tasks are scheduled in slot t. It can be summarized as
follows [4]:

1) All urgent tasks are scheduled, where a task is urgent at time t if it must be
scheduled at time t either the fairness condition would be violated.

2) Contending tasks are sorted, where a task is contending if the fairness condition
is violated neither if it is processed nor if it isn’t.

3) The remaining processors are allocated to the highest-priority contending tasks.
Three Pfair scheduling algorithms, PF , PD and PD2 (4; 3; 1; 2), are known to be opti-
mal on an arbitrary number of processors as stated in the theorem 1. Furthermore, there
exists a sufficient and necessary feasibility feasibility condition in the context of syn-
chronous independent tasks with implicit deadlines. The three algorithms differ in the
choice of tie-breaking rules. In the remainder of the paper, we will consider the algorithm
PF to illustrate our results.

Theorem 1. [4][2] The algorithms PF , PD and PD2 are optimal for sets of syn-
chronous independent tasks with implicit deadlines. Moreover, such a task set Γ has a

Pfair schedule on m processors if and only if
∑
τi∈Γ

Ci

Ti
≤ m.

3. Extension of Pfairness
Our aim is now to prove that fairness can be extended to all independent periodic task

sets. We thus consider a periodic task set Γ such that ∀τi ∈ Γ, τi = 〈ri, Ci, Di, Ti〉 with
ri ≥ 0 and Di ≤ Ti. We first extend the notion of Pfairnes in the following way: in
an ideal schedule of a periodic task set, each task τi must have received at time t, ωi (t)
processor time units. ωi (t) is such that:



ωi (t) =


t ∈ [0, ri) ⇒ ωi (t) = 0
t ∈ [kTi + ri, kTi + Di + ri) ⇒ ωi = kCi + Ci

Di
(t− kTi − ri)

t ∈ [kTi + Di + ri, (k + 1) Ti + ri) ⇒ ωi = (k + 1) Ci

where k =
⌊

t
Ti

⌋
represents the instance number of the pending instance of the task.

We first have carried out some simulations using the algorithm PF . These simula-
tions lead to two constatations: firstly, if deadlines are less than or equal to periods, if
i=n∑
i=1

Ci

Di
≤ m, the task set is feasible on m processors and secondly if asynchronous tasks

with implicit deadlines are considered, Baruah’s condition still holds. This leads us to
infer the following result:

Theorem 2. Given a periodic task set Γ, if
i=n∑
i=1

Ci

Di
≤ m, then Γ has a valid Pfair schedule

on m processors over any time interval [0, t).

The proof of the theorem is an adaptation of the proof presented in [4] to prove theo-
rem 1 for PF . It is based on the graph theory. We prove that a Pfair schedule exists on any
time interval [0, L). In the further, CTRτi

(t) denotes the complete processor demand of
all sub-tasks of task τi whose feasibility intervals are included in [0, t]. Thus, CTRτi (t)
is equal to j where j is such that dj

i ≤ t < dj+1
i . We first define a weighted digraph G

and prove that if G has an integral flow of size
∑

τi∈Γ CTRτi
(L) then the task set Γ has

a Pfair schedule.

Definition 3. The Pfair-graph is the weighted digraph G (L) is defined as G (L) =
(V,E) with: V = V0 ∪ V 11 ∪ V2 ∪ V3 ∪ V4 ∪ V5 and E = E1 ∪ E2 ∪ E3 ∪ E4; V0 =
{(Source〉}; V1 = {〈1, τi〉 , τi ∈ Γ}; V2 = {〈2, τi0, 0〉 , τi, i = 1 . . . n s.t. ri > 0} ∪{
〈2, τi0, j〉 , (i, j) s.t. i = 1 . . . n, j ∈

[
1,

⌊
L−ri

Ti

⌋)}
;

V3 = {〈3, τi0, t〉 , (i, t) s.t. i = 1 . . . n, t ∈ [0, ri)} ∪ {〈3, τi, t〉 , (i, t) s.t.

i = 1 . . . n, t ∈ [kTi + ri, tTi + ri + Di) , with1 ≤ k ≤
⌊

L−ri

Ti

⌋}
∪{

〈3, τi0, t〉 , (i, t) s.t. i = 1 . . . n, t ∈ [kTi + Di, (k + 1) Ti) , with1 ≤ k ≤
⌊

L−ri

Ti

⌋}
;

V4 = {〈4, t〉 , t ∈ [0, L)} and V5 = {〈sink〉}. Edges and capacities are defined by:
E0 = {(〈source〉 , 〈1, τi〉 , CTRτi (L)) , i = 1 . . . n}; E1 = {(〈1, τi〉 , 〈2, τi0, 0〉) ,
i = 1 . . . n s.t. ri > 0}; E2 = {(〈2, τi0, 0〉 , 〈3, τi0, t〉 , 0) , (i, t) s.t. i = 1 . . . n, t ∈ [0, ri)}
∪

{(〈
2, τ j

i

〉
, 〈3, τi, t〉 , 1

)
, (i, j, t) s.t. i = 1 . . . n, j ∈ [0, CTRτi (L)) , t ∈

[
rj
i , d

j
i

)}
∪{

(〈2, τi0, j〉 , 〈3, τi, t〉 , 0) , (i, j, t) s.t. i = 1 . . . n, j ∈
[
1,

⌊
L−ri

Ti

⌋)
,

t ∈ [kTi + ri + Di, (k + 1) Ti + ri) with1 ≤ k ≤
⌊

L−ri

Ti

⌋
t
}

;

E3 = {(〈3, τi0, t〉 , 〈4, t〉 , 0) , t ∈ [0, ri)} ∪{
(〈3, τi, t〉 , 〈4, t〉 , 1) , t ∈ [kTi + ri, kTi + ri + Di) with1 ≤ k ≤

⌊
L−ri

Ti

⌋}
∪

{(〈3, τi0, t〉 , 〈4, t〉 , 0) , (i, t) s.t. i = 1 . . . n, t ∈ [kTi + ri + Di, (k + 1) Ti)
with1 ≤ k ≤

⌊
L−ri

Ti

⌋}
; E4 = {(〈4, t〉 , 〈sink〉 ,m) , t ∈ [0, L)}.

In order to prove the theorem, we first establish the following lemma.

Lemma 1. If the Pfair-graph G (L) has an integral flow of size
∑

τi∈Γ CTRτi (L), then
Γ has a Pfair schedule on [0, L].



Proof. Let us assume that such an integral flow exists. We first define a schedule S de-
duced from the Pfair -graph as:

Definition 4. Let f be an integral flow of size
∑

τi∈Γ CTRτi
(L) of G, we define SG as

follows. For τi ∈ Γ, t ∈ N,

SG(τi, t) =

{
1 if t ∈ [0, L) ∧

(
∃j ∈ [0, CTRτi (L)) s.t. f

(〈
2, τ j

i

〉
, 〈3, τi, t〉 , 1

)
= 1

)
0 otherwise

We show that SG is Pfair over the time interval [0, L).

The size of the flow is
i=n∑
i=1

CTRτi (L), thus each node of V1 is filled to capacity, i.e.

the flow carried by each link from source to 〈1, τi〉 is equal to CTRτi (L). Each node in
V1 has exactly CTRτi (L) outgoing edges of capacity 1, the other outgoing edges have a
null capacity thus they receive a flow equal to 0. Thus each node

〈
2, τ j

i

〉
of V2 receives

a flow equal to 1. Then, each node
〈
2, τ j

i

〉
has one single outgoing edge which carries

a flow equal to 1, the other outgoing edges carry a flow equal to 0. Now, each node
of V3 has exactly one outgoing edge. This edge carries a flow equal to the flow carried
by its incoming edge. In the same way, the nodes in V4 have one single outgoing edge,
which carries the cumulated flow carried by their incoming edges. Since the capacity
of this outgoing edge is m, at most m incoming edges carry a flow equal to 1. Thus at
most m sub-tasks are processed. Now, the potential exists for a task τi to get scheduled
twice at the same time (if rj

i = dj−1
i − 1). But since the edge from 〈3, τi, t〉 to 〈4, t〉

has a capacity equal to 1, this situation is avoided: if this edge carries a flow equal to 1,
only one incoming edge carries a non-null flow. Thus two different processed sub-tasks
cannot belong to the same task. Thus at any time t in [0, L), there exists at most m tasks
such that SG (τi, t) = 1. Furthermore, f

((〈
2, τ j

i

〉
, 〈3, τi, t〉 , 1

))
= 1 implies that

rj
i ≤ t < dj

i thus, each processed sub-task is processed in its feasibility window. Finally,
each sub-task is effectively processed. Indeed, there exists

∑i=n
i=1 CTRτi (L) sub-tasks

in [0, L). Following the definition of SG, the number of processed sub-tasks is equal to
the global incoming flow of vertices of V3. And the global input flow of V3 is constant,
equal to

∑i=n
i=1 CTRτi (L) by definition of the flow. Thus each sub-task is processed. The

schedule SG is thus Pfair on [0, L).

We now prove the existence of an integer flow of size
∑i=n

i=1 CTRτi
(L). We use the

following flow assignments:

Definition 5. Let f be the flow defined as:

f (〈source〉 , 〈1, τi〉 , (L)) = CTRτi (L), f (〈1, τi〉 , 〈2, τi0, 0〉 , 0) = 0,

f (〈1, τi〉 , 〈2, τi, j〉 , 1) = 1, f (〈1, τi〉 , 〈2, τi0, j〉 , 0) = 0,

f (〈2, τi0, 0〉 , 〈3, τi0, t〉 , 0) = 0, f (〈2, τi0, j〉 , 〈3, τi0, t〉 , 0) = 0,

f
(〈

2, τ j
i

〉
,
〈
3, τi, r

j
i

〉
, 1

)
= CHi − j + rj

i CHi

dj
i − 1 = rj+1

i ⇒ f
(〈

2, τ j
i

〉
,
〈
3, τi, d

j
i − 1

〉
, 1

)
= j + 1− rj+1

i CHi

otherwise ⇒ f
(〈

2, τ j
i

〉
, 〈3, τi, t〉 , 1

)
= CHi

f (〈3, τi0, t〉 , 〈4, t〉 , 0) = 0, f (〈3, τi0, t〉 , 〈4, t〉 , 1) = CHi,



f (〈4, t〉 , 〈sink〉 ,m) =
∑

τi∈Γ
ri+kTi≤t>ri+kTi+Di

CHi

Lemma 2. f is a flow of size
∑

τi∈Γ CTRτi
(L) of G (L).

Proof. We first prove that the capacity constraints are met. Edges in E0, E1 are filled
to capacity, and edges in E3 carry flows either equal to 0 or to the density CHi which
is less than or equal to 1, thus capacity constraints are met. If an edge in E4 is con-
sidered, it carries a flow

∑
τi∈Γ

ri+kTi≤t<ri+kTi+Di

CHi ≤
∑
τi∈Γ

CHi now by assumption we

have
∑
τi∈Γ

CHi ≤ m, so the capacity constraint is met. Finally, for edges in E2, we must

prove that CHi −
(
jrj

i CHi

)
≤ 1 and (j + 1) − rj+1

i CHi ≤ 1 if dj
i − 1 = rj+1

i .

We have rj
i =

⌊
j

CHi

⌋
thus j

CHi
− 1 < rj

i ≤ j
CHi

thus CHi < rj
i CHi − j ≤ 0 thus

0 < CHi −
(
j − rj

i CHi

)
≤ CHi ≤ 1. We prove that (j + 1) − rj+1

i CHi ≤ 1 using
similar arguments. Thus capacity constraints are all met. We must then show that the flow
is preserved at every inner vertex. For null capacity nodes, the flow is clearly preserved.
For any node 〈1, τi〉 of V1, the incoming flow is CTRτi (L), and the outgoing flow is
equal to the number of sub-tasks since edges are filled to capacity, thus the outgoing flow
is CTRτi

(L) too. Each vertex 〈2, τi, j〉 has an incoming flow of 1. Each vertex 〈2, τi, j〉
has dj

i − 1 − rj
i outgoing edges. Then the flow out of 〈2, τi, j〉 is, if dj

i − 1 = rj+1
i ,

CHi−
(
j − rj

i CHi

)
+CHi

(
dj

i − rj
i − 2

)
+(j + 1)−rj+1

i CHi which simplifies to 1.

Otherwise, we have dj
i − 1 6= rj+1

i thus
⌈

j+1
CHi

⌉
− 1 6=

⌊
j+1
CHi

⌋
which means that j+1

CHi
is

integral thus dj
i = j+1

CHi
. Now, the flow out is CHi−

(
j − rj

i CHi

)
+CHi

(
dj

i − rj
i − 1

)
which then simplifies to 1. There is only one outgoing edge leaving any vertex 〈3, τi, t〉
of V3, which carries a flow equal to CHi. If dj

i − 1 = rj+1
i , then there are two incoming

edges which carry a flow of size (j + 1)− rj+1
i CHi + CHi −

(
(j + 1)− rj+1

i CHi

)
=

CHi. Otherwise there is only one incoming edge which carries a flow equal to CHi.
We consider finally a vertex 〈4, t〉 of V4. Its incoming edges with non zero capacity are
edges (〈3, τi, t〉 , 〈4, t〉 , 1) with ri + kTi ≤ t < rii + kTi + Di. Thus the incoming flow
is

∑
τi∈Γ

ri+kTi≤t>ri+kTi+Di

CHi, which is thus equal by definition to the flow of the unique

outgoing edge. Thus, we proved that the flow is preserved at any inner node. Thus f is a
flow of size

∑
τi∈Γ CTRτi (L).

Now Lemma 2 implies the existence of a fractional flow of size
∑

τi∈Γ CTRτi (L) for
the Pfair-graph G (L) = (V,E). Since capacities are integral, this implies the existence
of an integral flow of size

∑
τi∈Γ CTRτi (L) in G (L) [6]. Then Lemma 1 proves that a

Pfair schedule can be constructed. This proves the theorem 2.
Then we extend the algorithm PF to periodic task sets (ri ≤ 0, Di ≤ Ti). Here, a

task can be Urgent, Tnegru or Contending if t ∈ [kTi + ri, kTi + ri + Di) and is Idle if
t < ri or t ∈ [kTi + ri + Di, (k + 1) Tii). The extension is then straightforward: at each
time t, Urgent tasks are scheduled, Contending tasks are sorted and the firsts of them are
allocated to the remaining processors.



4. Simulation results
The next point of interest is to determine whether this condition is efficient. We thus

investigate the soundness of our bound. For that purpose, we have carried out some sim-
ulations. We have first implemented a task set simulator and a scheduler based on our
extension of PF . We have then generated a significant number of task sets with different

values of either U =
i=n∑
i=1

Ci

Ti
or CH =

i=n∑
i=1

Ci

Di
. In order to limit the scheduling step, we

have generated periods according to Goossens methodology [7], which permits to have a
bound for the hyperperiod (the LCM of the task periods). For our simulations the upper
bound of hyperperiods is set to 210. Offsets, constrained deadlines and WCET are chosen
uniformly within respectively the intervals [0, Ti], [1, Ti] and [1, Di − 1]. Then we have
scheduled them with our adapted PF policy, in order to estimate the ratio of feasible
sets among them. All simulations have been carried out over a time interval included

in
[
0, max

i∈[1,n]
(ri) + 2T

)
. Then we have considered several cases. Task sets can be syn-

chronous or asynchronous, with implicit or constrained deadlines. They are characterized
by either U ≤ m or CH ≤ m or CH > m. For each case, we have generated a sample
of 5000 tasks sets for simulations. As expected, we find a Pfair feasibility rate of 100%
for systems with implicit deadlines: for synchronous systems, it corresponds to Baruahs
theorem (theorem 1), and for asynchronous systems, it comes from our result (theorem
2). For the other cases, we conclude that for constrained task sets, U ≤ m is no more a
sufficient condition, since there exists Pfair unfeasible task sets with a utilization factor
less than m and CH ≤ m is not a necessary condition since there exist Pfair feasible task
sets with CH > m.

Then we refined our simulations in order to determine the incidence of U or CH on
Pfair feasibility. We have considered systems m processors. For each case, we generate
samples for different values of CH between m and m + 1, namely CH = m + k

10
(0 ≤ k ≤ 10). For each value of CH , we again determine the ratio of Pfair feasible
task sets. We have seen that this rate decreases rather quickly when CH increases. If
CH remains close to m, the rate of valid system remains high, but the slope of the curve
is high and consequently the rate becomes very small if CH approaches m + 1. We
can conclude from these results that our bound is rather good in the sense that only few
systems rejected by our test are in fact Pfair feasible.

We also investigated the correlation between U and the Pfair feasibility. We consider
systems with m processors, and synchronous task systems with constraint deadlines. We
see that if U is close to m, then quite no systems are Pfair feasible. But if U is less than
m
2 , we have 100% of Pfair feasible systems. Further investigations must be done here.

5. Conclusions
We have considered real-time applications running on a multiprocessor platform. For

such systems, we have extended the notion of Pfairness to any set of periodic indepen-
dent task set with implicit or constrained deadlines. We have considered as well late re-
leased tasks as constraint deadlines. We have proposed a sufficient condition and given an

adapted version of PF . We proved the existence of a Pfair schedule if CH =
i=n∑
i=1

Ci

Di
≤



m. Then we have presented simulation results, which illustrate the soundness of our suffi-
cient conditions. These simulations have shown that if CH increases from m, the rate of
Pfair feasible systems decreases quickly. We also present some results about the incidence

of the utilisation factor U =
i=n∑
i=1

Ci

Ti
. We have speculated about the existence of a lower

U , which can be used for any periodic task set with implicit or constrained deadlines.

6. References

[1] J. Anderson, A. Block, and A. Srinivasan. Pfair scheduling : Beyond periodic task sytems. In
Proceedings of the 12th Euromicro Conference on Real-Time Systems, pages 35–43. Chapman
and Hall, 2000.

[2] J. Anderson, P. Holman, and A. Srinivasan. Fair scheduling of real time tasks on multiproces-
sors. Handbook of scheduling : Algorithms, Models and Performance analysis, pages 31.1–
31.21, 2004.

[3] S. Baruah, J. Gehrke, and C.G. Plaxton. Fast scheduling of periodic tasks on multiple resources.
In Proceedings of the 9th International Parallel Processing Symposium, pages 280–288, April
1995.

[4] S.K. Baruah, N.K. Cohen, C.G. Plaxton, and D.A. Varvel. Proportionate progress : a notion of
fairness in resource allocation. Algorithmica, 15:600–625, 1996.

[5] M.L. Dertouzos and A.K.L. Mok. Multiprocessor scheduling in hard real-time environment.
IEEE transactions on sofware Engineering, 15(12):1497–1506, 1989.

[6] L.R. Ford Jr and D.R. Fulkerson. Flows in networks. Princeton University Press, 1962.

[7] C. Macq and J. Goossens. Limitation of the hyper-period in real-time periodic task set gener-
ation. In Teknea, editor, Proceedings of the 9th international conference on real-time systems,
pages 133–148, Paris France, March 2001. ISBN 2-87717-078-0.

[8] A.K. Mok and M.L. Dertouzos. Multi processor scheduling in a hard real-time environment.
In Proc. of 7th Texas Conference on Computer Systems, 1978.

[9] S. Ramamurthy. Scheduling periodic hard real-time tasks with arbitrary deadlines on multipro-
cessors. In IEEE Real-Time Systems Symposium, 2002.

[10] A. Srinivasan, P. Holman, and J.H. Anderson. Integrating aperiodic and recurrent tasks on
fair- scheduled multiprocessors. In 14th Euromicro Conference on Real- Time Systems, pages
189–198, Vienna, Austria, June 2002. IEEE Computer Society.


