
Scheduling of self-suspending tasks:
state of art and new insights

Frédéric Ridouard, Pascal Richard
LISI-ENSMA and University of Poitiers
{frederic.ridouard,pascal.richard}@ensma.fr

1 Introduction

Most of real-time systems contain tasks with self-suspension. A task with a self-suspension is a task that during its execution
prepares specifics computations (e.g. In/Out operations or FFT on a digital signal processor). The task is self-suspended to
execute the specifics computations upon external dedicated processors. External operations introduce self-suspension delays
in the behavior of tasks. The task waits until the completion of the external operations to finish its execution. Generally,
the execution requirement of external operations can be integrated in the execution requirement of the task. But, if self-
suspension delays are large, then such an approach cannot be used to achieve a schedulable system. Thus, self-suspension
must be explicitly considered in the task model.
We consider sporadic tasks with self-suspension. Let I be a task system of n tasks. Every occurrence of a task is called a
job. Every task τi (1 ≤ i ≤ n) arrives in the system at time 0, its relative deadline is denoted Di and its period Ti. We
assume that tasks are subjected to constrained-deadlines (Di ≤ Ti). Tasks are allowed to self-suspend at most once. Every
task τi (1 ≤ i ≤ n) has two subtasks (with a maximum execution requirement Ci,k, 1 ≤ k ≤ 2) separated by a maximum
self-suspension delay Xi between the completion of the first subtask and the start of the second subtask. Such delays change
from one execution to another since they model execution requirements of external operations. Consequently every task τi is
denoted: τi : (Ci,1, Xi, Ci,2, Di, Ti).
Only few positive results have been defined for schedulability analysis of self-suspending tasks. Most of them exploit par-
ticular task sets and restrictive assumptions. But to the best of our knowledge, no solution provides simultaneously results
for efficiently scheduling and analysing self-suspending tasks. In this note, we present the state of the art about the self-
suspending tasks. Then, we present some possible insights to define solutions to this scheduling problem.

2 Known results

It has been already proved in [9, 8] that the feasibility problem of scheduling self-suspending task systems is NP-Hard in
the strong sense. We have also shown the presence of scheduling anomalies under fixed priorities and EDF for scheduling
independent tasks with self-suspension upon an uniprocessor platform when preemption is allowed. We have also proved that
classical on-line scheduling algorithms (EDF,LLF,RM,DM) are not better than 2-competitive to minimize the maximum re-
sponse time and not competitive to minimize the number of tardy tasks. Response Time Analysis for fixed-priority scheduling
algorithm RM, [2, 6] have been proposed for computing response time upper bounds. Finally, we have also shown that it is
impossible to define an optimal on-line algorithm to schedule sporadic tasks systems when tasks are allowed to self-suspend
(cf. [8]).
In [3], the authors characterize the exact critical instant for self-suspending sporadic tasks. They deduce a pseudo-polynomial
response-time tests for analysing the schedulability of such self-suspending tasks. In [5], the periodic tasksets with suspen-
sions, pipelines, and non-preemptive sections are considered. The authors show how to transform such a task system into a
periodic taskset with only suspensions. Then, they use prior results [4] to derive tardiness bounds for more complex systems.

From a practical scheduling point of view, in [1] is presented a configurable synchronization protocol for self-supending
process sets. In fact, the protocol extends the concept of priority ceilings. Furthermore, an algorithm for computing the
corresponding maximum blocking times is presented.



3 New insights

We next present some ideas to develop in order to achieve valuable positive results on scheduling self-suspending tasks:
Particular task characteristics. Most of negative results are based on instance problems in which suspension delays are
quite huge. A recurrent problem with the scheduling of self-suspending tasks is the duration of suspension delays since it
can be so important that the computation time is negligible. Studying particular task set, while fixing some properties of
task parameters usually help to understand the difficulties encountered while solving a general complex problem. For that
purpose, we think that it is important to investigate some particular cases such as: suspension delays cannot exceed processing
time for each task, suspension delays are all equal a constant, suspension delays are all equal to 1, etc. It is surely one way to
achieve some positive results.
Resource augmentation technique. Classical scheduling algorithms are not optimal for scheduling tasks allowed to self-
suspend. An important question is: is there a processor speed s so that a classical scheduling algorithm (e.g., RM or EDF)
will lead to a feasible schedule if one exists upon a unit-speed processor (i.e., computed by an optimal off-line scheduling
algorithm).
Impact of scheduling anomalies. What is the impact of considering only worst-case execution time and suspension delays
while performing a schedulability analysis? Is-it possible to establish simular results as these one obtained by Mok et al.
in [7] that analyses the robustness of non-preemptive scheduling for RM and EDF. They proved that scheduling anomalies
can lead to miss at most 50% of deadlines. If such a positive result cannot be achieved for the general self-suspending
task scheduling problems, but may be some basic assumptions on task parameters will help (e.g., bounding the ratio Xi

Ci
) to

formulate sufficient conditions for the self-suspending robustness.
The multiprocessor point of view. Self-suspending taskset can in fact be modelled by chains of tasks, where suspension
delays are tasks run upon some dedicated processors (e.g. I/O processing devices). We think that known results in the
multiprocessor scheduling theory can be used to derive some results for uni-processor scheduling of self-suspending tasks.

References

[1] Y.S. Chen and L.P. Chang. A real-time configurable synchronization protocol for self-suspending process sets. Real-Time
Systems, 42:34–62, 2009.

[2] I-G. Kim, K-H. Choi, S-K. Park, D-Y. Kim, and M-P. Hong. Real-time scheduling of tasks that contain the external
blocking intervals. Real-Time and Embedded Computing Systems and Applications(RTCSA’95), 1995.

[3] K. Lakshmanan and R. (Raj) Rajkumar. Scheduling self-suspending real-time tasks with rate-monotonic priorities.
Proceedings of the 16th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’10), Stockholm,
Sweden, (12–15), April 2010.

[4] C. Liu and J.H. Anderson. Task scheduling with self-suspensions in soft real-time multiprocessor systems. Proceedings
of the 30th IEEE Real-Time System Symposium, pages 425–436, 2009.

[5] C. Liu and J.H. Anderson. Scheduling suspendable, pipelined tasks with non-preemptive sections in soft real-time mul-
tiprocessor systems. Proceedings of the 16th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’10), Stockholm, Sweden, (12–15), April 2010.

[6] Jane W. S. Liu. Real-Time Systems, chapter Priority-Driven Scheduling of Periodics Tasks, pages 164–165. Prentice
Hall, 2000.

[7] A.K. Mok and W.C. Poon. Non-preemptive robustness under reduced system load. Proceedings of the 26th IEEE
Real-Time System Symposium (RTSS’05), 2005.

[8] F. Ridouard and P. Richard. Worst-case analysis of feasibility tests for self-suspending tasks. In proc. 14th Real-Time
and Network Systems, Poitiers, 2006.

[9] F. Ridouard, P. Richard, and F. Cottet. Negative results for scheduling independent hard real-time tasks with self-
suspensions. Proceedings of the 25th IEEE International Real-Time Systems Symposium (RTSS’04), 1, December 2004.


