
Using semantic properties for real time scheduling

Christian Fotsing, Annie Geniet
LISI, ENSMA

1 Av. Clement Ader BP 40109-86961 Futuroscope Chasseneuil-France
fotsingc@ensma.fr, annie.geniet@univ-poitiers.fr

Guy Vidal-Naquet
SUPELEC - 3 rue Joliot-Curie

Plateau de Moulon. BP 91192 Gif-Sur-Yvette Cedex-France
guy.Vidal-Naquet@supelec.fr

Abstract

We consider interacting tasks with conditional state-
ments. The classical temporal model associates a single
WCET to each task, and considers the union of the real-
time primitives that occur in the different branches of con-
ditional statements. Thus the model considers only a non
realistic worst case, which can lead to erroneous conclu-
sions. Furthermore, semantic is never considered. We ex-
tend the task model with conditional statements, and the
notion of schedule is replaced by the notion of scheduling
tree. We then present some examples which illustrate the
benefit of taking semantic into account. This lays the ba-
sis for a complete model based scheduling analysis which
explicitely takes conditional statements and semantic into
account.

1 Introduction

We consider real time applications dedicated to process
control. They are generally modeled as a set of periodic,
possibly interacting tasks. For safety reasons, tasks have
to respect firm deadlines. One of the main challenges for
system designer is to ensure that all deadlines are met.
This is the concern of scheduling. Scheduling theory re-
lies on the temporal modeling of tasks. Classically, a task
τi <ri, Ci, Di, Pi> is modeled by four temporal param-
eters [LL73]: its first release time ri, its worst case exe-
cution time (WCET) Ci, its relative deadline Di which is
the maximum acceptable delay between release and com-
pletion of any instances of the task, and its period Pi. A
task consists in an infinite set of instances (or jobs) re-
leased at times ri + k × Pi, where k is a natural integer.
Tasks may also communicate or share critical resources.
They may thus use real-time primitives (send or receive
messages, lock and unlock resources). In classical ap-
proaches, one single WCET is associated to each task. If
a task contains conditional statements, its WCET corre-

sponds to the longest execution path of the task. It can be
obtained either by simulation or by static syntaxical anal-
ysis of the task code [CPRS03]. All real-time primitives
are also considered to occur, even if they are in differ-
ent branches of conditional statements. Thus scheduling
analysis is performed from a non realistic model. This can
lead to erroneous conclusions. Our aim is to illustrate that
the classical modeling of tasks must be refined. More-
over, we illustrate through some examples that semantic
must also be considered, otherwise, again erroneous con-
clusions could be drawn.
The paper is organised as follows. First we present our
assumptions. Then, we present our task model and the
scheduling model: since we consider conditional state-
ments, the notion of schedule is no longer suited, and
must be replaced by the notion of scheduling tree which
describes the different possible effective behaviors of the
application. We present the limitations of the classical
approach through some examples and we conclude and
present our future investigations.

2 Context and classical temporal model

2.1 General context
In this paper, we consider applications composed

of interacting periodic tasks. They run on preemptive
uniprocessor systems. We consider pre-runtime (off-line)
scheduling. This means that we want to obtain, from the
modeling of the tasks, a global execution model of the ap-
plication. This execution model (a schedule in classical
scheduling analysis) can then be implemented within the
system.
We assume that tasks consist in [CGGC96, GCG00]

• blocks composed of imperative statements. bi(j) de-
notes the ith block of the tasks, with execution time
equal to j,

• conditional statements: IF condition THEN ... ELSE
.... End if,

• Lock(R) and Unlock(R) where R is a resource of the
system,

• Send(M) and Receive(M) where M is a message
linked to a mailbox.

We assume that real-time primitive processing times are
included in the processing times of neighbour blocks. Fur-
thermore, execution times of condition evaluation are in-
cluded in the execution times of the statements of the
branches THEN and ELSE. E.g., for task T1 on Figure
1, the computing time required by the evaluation of the
condition is included in the execution times of blocks b2

and b3. Then we model tasks by execution trees (Figure
1).

Figure 1. Modeling of a task with conditional
statement by an execution tree

2.2 From execution trees to classical temporal model
of tasks

The classical model, called here sequential model, is a
sequence of blocks and of real-time primitives.The WCET
of each block is computed, and real-time primitives are
temporally located. A real-time primitive occurs at time t
if there exists a branch of the task in which this primitive
occurs at time t [Gro99, Bab96, Nie91]. We present suc-
cintly the computation of this sequential model. WCET
are computed using classical methods that can be found in
the literature [CPRS03, Pua05].
If we were to follow the usual model, the task of Figure 1
would be represented by (see Figure 2):

Figure 2. Usual model for the task of Fig-
ure 1

2.2.1 Task without conditional statements

The WCET is an upper bound of the execution time
required by the task when it runs alone on the processor.
The sequential model is here the effective description of
the behavior of the task.

2.2.2 Task with conditional statements

Each branch of the execution tree is associated to its
own WCET. The global WCET is then the maximal value
of these WCET. Figure 3 illustrates the WCET computa-
tion.

Figure 3. Evaluation of WCET for a task with
conditional statements

2.2.3 Task with conditional statements and resource
utilization

We consider a task with a conditional statement such
that:

• The THEN branch has a WCET equal toC1, and uses
resource R1 between execution times t1 and t2

• The ELSE branch has a WCET equal to C2, and uses
resource R2 between execution times t′1 and t′2

The sequential model has a WCET equal to max(C1, C2),
and the task is considered to useR1 between t1 and t2 and
R2 between t′1 and t′2. Figure 4 illustrates this case.

Figure 4. Conditional statement and utiliza-
tion of resources

2.2.4 Task with conditional statement and communi-
cation primitives

We consider a task with a conditional statement such
that:

• The THEN branch has a WCET equal to C1, and
sends a message M1 at execution time t

2

• The ELSE branch has a WCET equal to C2, and re-
ceives a message M2 at execution time t’

The sequential model has a WCET equal to max(C1, C2),
and the task is considered to send message M1 at time t
and to receive message M2 at time t’. Figure 5 illustrates
this case.

Figure 5. Conditional statement and com-
munication

3 Scheduling

Classical scheduling approaches compute schedules
from the WCET. Schedules here completely hide condi-
tional behaviours of tasks. Now, if one wants to depicte
the actual behaviour of the system, he has to consider the
tree modeling of tasks, and he cannot thus produce one
single schedule. He must describe every possible paths
followed by the application. Thus, we must introduce a
new execution model: the scheduling tree, which lets ex-
plicitely appear each conditional node. Consider the ap-
plication of Figure 6, composed of two synchronous tasks.
The behavior of the application must be modeled on the
time interval [0, 16] where 16 is the hyperperiod 1, and
it is then iterated. A scheduling tree is given in Figure 6.
The application processes T2 for one time unit, then the
conditional statement of T2 is scheduled. There are thus
two subtrees, which correspond to the further behaviour
of the application if the “then” respectively “else” branch
of T2 is chosen. The application can here have 8 different
behaviours on [0, 16]. A scheduling tree is then valid if
all deadlines are met whatever the different choices made
in conditional statements. The scheduling tree of Figure
6 is valid since the first occurrence of T2 completes ei-
ther at time 3 or at time 4, and the second occurrence at
times 11 or 12, whatever the followed branch. And task
T1 completes between times 12 and 16. So all deadlines
are met. A real-time system is then said to be globally (or
strongly) feasible if there exists at least one valid schedul-
ing tree. We are now interested in the feasibility analysis.
We consider pre run-time (off-line) analysis for uniproces-
sor systems. When sequential models are used, we have a
necessary condition for a system to be feasible:

1the lcm of all periods

Figure 6. Scheduling tree

Property 1 [But97] If a system of n sequential tasks
(τ1,τ2,. . . , τn) is feasible then its utilization factor 2 is at
most equal to 1

Our aim is now to present some examples which show
that considering the sequential models of tasks can lead to
erroneous conclusions.

4 Classical analysis versus our analysis

4.1 Utilization of several resources
We consider a system S1 composed of two tasks

T1 <0, 16, 32, 32> and T2 <0, 2, 4, 4>. They share
two resources R1 and R2.

• T1 uses R1 between execution time units 3 and 6

• T1 uses R2 between execution time units 4 and 8

• T2 uses R1 during its first execution time unit and
then R2 during the second.

We first use here the sequential model, and conclude that
the system is not feasible, because task T2 always miss its
third deadline. Indeed, between times 0 and 8, 2 instances
of T2 are processed, for 4 time units. T1 is thus processed
for 4 time units within the 8 first time units. Thus at time
8, T2 is released, but R1 is locked by T1, and it cannot
be unlocked before time 10. But then R2 will be locked
for still 2 more time units, thus won’t be available before
time 12. Thus T2 will miss its deadline (see Figure 7).
We now refine our analysis, and consider the pseudo-code
of tasks. We assume that the sequential model of T1 has
been deduced from the code given in Figure 8. We can
observe that resources R1 and R2 are never both used by
an instance of T1. The former analysis thus doen’t hold.

2the utilization factor U is defined as U =
n∑

i=1

Ci
Pi

3

Figure 7. System S1 is not feasible

Figure 8. Code and execution tree of task T1

In fact, either T1 uses R1 and then T2 can be processed
at time 10 even if R2 is still locked, or T1 uses R2, then
T2 can be processed at time 8 before T1 locks R2. We
present in Figure 9 a valid scheduling tree of the appli-
cation. The system is thus feasible, despite the negative
conclusion when using the classical sequential model.

Figure 9. A scheduling tree of S1

4.2 Considering semantic
We consider a system S2 composed of two communi-

cating tasks T1 <0, 5, 9, 9> and T2 <0, 5, 9, 9>. We
assume that:

• T1 receives a message M to T2 after its 1st execution
time unit

• T1 sends a message M’ from T2 after its 4th execu-
tion time unit

• T2 receives a message M’ from T1 after its 2nd exe-
cution time unit

• T2 sends a message M to T1 after its 3rd execution
time unit

This system is not feasible for two reasons:

• it doesn’t respect the necessary condition (prop-
erty 1): U = 5

9 + 5
9 = 10

9 > 1,

• deadlock cannot be avoided.

Now, let us assume that this sequential model comes from
the pseudo code described in Figure 10. Furthermore,

Figure 10. System S2

since x is an input parameter of both tasks, and, since they
are always released at the same time, they always consider
the same value for x. We can notice that, according to the
semantic of tests, either T2 executes its THEN branch and
T2 its ELSE branch, or conversely. Thus either message
M is send and received or message M’. The deadlock thus
doesn’t take place. Moreover, the case corresponding to
U greater than 1 is impossible, because of the semantic.
And the system is feasible in practise. Figure 11 presents
a valid scheduling tree. Here again, only the semantically
correct branches have been kept.

Figure 11. A scheduling tree of S2 - Missing
branches are semantically inconsistent

4

5 Conclusion and future work

We have laid the basis for future works. We in-
tend to develop a complete model based methodology for
scheduling analysis. For that purpose, we will extend
the Petri nets based methodology proposed in [CGGC96,
GCG00]. The former examples prove that the classical
sequential model of tasks as well as the notion of sched-
ule must be refined. They also prove that it is mandatory
to take semantic into account in the feasibility analysis.
The general frame of our future investigations is given in
Figure 12.

Figure 12. Our methodology

References

[Bab96] J.P. Babau. Etude du comportement tem-
porel des applications temps réel à con-
traintes strictes basée sur une analyse
d’ordonnançabilité. PhD thesis, University of
Poitiers, France, 1996.

[But97] G.C. Buttazo. Hard real Time computing sys-
tems: predictable scheduling algorithms and
applications. Kluwer Academic, 1997.

[CGGC96] A. Choquet-Geniet, D. Geniet, and F. Cottet.
Exhaustive computation of the scheduled task
execution sequences of a real-time applica-
tion. In Proc. of FTRTFT’96, October 1996.

[CPRS03] A. Colin, I. Puaut, C. Rochange, and P. Sain-
rat. Calcul de majorants des pires temps
d’exécution : état de l’art. Techniques et Sci-
ences Informatiques (TSI), 22(5):651–677,
2003.

[GCG00] E. Grolleau and A. Choquet-Geniet. Off line
computation of real time schedules by means
of petri nets. In R. Boel and G. Stremersch,
editors, Discrete events systems, pages 309–
316. Kluwer Academic Publishers, 2000.

[Gro99] E. Grolleau. Ordonnancement temps réel
hors-ligne optimal à l’aide de réseaux de
Petri en environnement monoprocesseur et
multiprocesseur. PhD thesis, ENSMA:
Ecole Nationale Supérieure de Mécanique
et d’Aérotechnique Ecole Doctorale Sciences
Pour l’Ingénieur, Novembre 1999.

[LL73] C.L. Liu and J.W. Layland. Scheduling al-
gorithms for multiprogramming in real-time
environnement. Journal of the ACM, 20(1),
1973. pages 46, 61.

[Nie91] E. Niehaus. Program representation and
translation for predictable real-time systems.
In Proceedings og the 12th IEEE Real-Time
Systems Symposium, pages 53–63, San Anto-
nio, Texas, 1991.

[Pua05] I. Puaut. Obtention de pires temps
d’exécution (wcet, worst case execution
times). Technical report, Université de
RENNES 1, IRISA, Septembre 2005.

5

