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Abstract—Engineering models are computer-based models that
enclose technical data issued from engineering domains. Those
models usually implicit many of the details required to under-
stand and interpret the data. In this context, integrating the
results of models and querying the heterogeneous information is
a challenge.

In order to address the issue of handling heterogeneous models,
we propose toannotate the engineering modelswith concepts of
the ontologies of the specific engineering domains. We describe
here the proposal of asemantic annotation meta-model, which
extends an ontology-based database architecture with constructs
that allow to tag engineering models using ontology concepts.

This work is inspired from a petroleum engineering case study,
and we validate our approach by presenting an implementation
of this case.

Index Terms—Data integration and interoperability, Ontology-
based databases, Meta-modelling, Semantic annotation,
Petroleum engineering models

Paper category: technical solution.

I. I NTRODUCTION

Engineering models are computer-based models often used
to run simulations or perform verification and validation
over technical data. The heterogeneity of these models, their
representations in logical models that are close to low-level
computer representations and the verbose format in which they
are documented make the integration task a challenge. Conse-
quently, the exploitation of such engineering data models and
the corresponding data becomes a difficult work to engineers
that are not trained for such activities. Professionals should be
able to exploit these models with their own knowledge models,
instead of spending lot of effort in translating their knowledge
to the current computer representation of this models.

Examples of activities that rely on various engineering mod-
els are: simulation, validation, verification, design, storage,
exchange; within several engineering domains, ranging from
civil engineering, aeronautics, environment, agriculture, auto-
motive industry to social organizations. All these activities and
domains are the subjects of a huge amount of heterogeneous
models and data.

When dealing with complex information systems, the prob-
lem of how to provide access to heterogeneous information
already appeared decades ago. The typical solution for in-
formation integration is to provide a uniform interface to a
collection of heterogeneous information sources, giving users
the illusion that they are a centralized and homogeneous
information system. However, the models do not inter-operate,
because there is no semantic added to their objects and the
expression of model mappings is only hard coded.

The last decade has seen the emergence of the use of
ontologies, in order to provide an explicit and formal definition
of specific domains [1]. With the development of ontologies
for specialized engineering domains, it becomes possible to
access the engineering models at the semantic level, through
the ontologies concepts.

Our work is conducted in the domain of petroleum reservoir
engineering, in particular, the activity ofoil & gas reservoir
modelling, performed by oil & gas companies (see Section
III). Considering this activity, petroleum engineers and geosci-
entists rely on three-dimensional representations of the earth
underground (calledreservoir modelsor oilfield models) to
take important decisions about oil-reservoir operations.The
reservoir model is the final result of the oilfield modelling
workflow (Fig. 1).

The definition of an ideal working platform has been the
major concern of petroleum exploration software vendors for
long. In Chevron company’s use case [2] they claim that still
a large amount of heterogeneous data is generated every day
from multiple sources such as seismic data, well data, drilling
data, transportation data, and marketing data. In order to deal
with the flood of information, as well as the heterogeneous
data formats of the data, a new approach for information search
and access is necessary.

The end-users of this community aim to be able to retrieve
and re-use information that are created in the various areas
of expertise within reservoir modelling and represented in
diverse oilfields models. In summary, the petroleum explo-
ration domain is still looking for a proper solution for the



interoperability problem.
The proposal of this work for addressing the semantic

interoperability problem in engineering domains such as the
petroleum exploration activity is an approach based onse-
mantic annotation of engineering models. Semantic annotation
is a current Web Semantic technique for adding knowledge
to resources by means of semantic tags (see Section II).
We envisage the use of semantic annotation for:(i) making
explicit the expert knowledge enclosed in the model and(ii)
interrogating raw data using semantic concepts represented by
domain ontologies. This approach is explained in Section IV.

To carry out this approach, we consider to use an Ontology-
Based Database (OBDB), which allows to store data and
ontologies in a same database. We introduce this concept in
Section II-A. In Section VII we present an implementation
for the case study in oil & gas reservoir modelling. Some
initial results from this domain are presented that illustrate
how this approach enables to extract emergent semantics from
engineering models.

Fig. 1. Oilfield modelling workflow

II. BACKGROUND

In this section we introduce the basic notions of ontology-
based databases (OBDB), engineering models and semantic
annotation, in order to provide the fundamental background
to our approach.

A. Ontology-Based Databases (OBDBs)

Ontology-Based Databases (OBDB) are database architec-
tures that deal with the problem of persistence of ontologies
while taking advantage of the characteristics of databases
(scalability, safety, capability to manage a huge amount of
data, etc.) [3]. We summarize in this section a comparative
analysis of OBDB systems (available in [4]) and their capa-
bilities to solve the interoperability issues.

∙ Type 1 OBDBs. Information is represented in a
single schema composed of a unique triple table
(subject, predicate, object), which may be
used to represent both ontology descriptions and instance
data. This approach raises, however, serious performance
issues when queries require many self-joins over this
table. Example of type 1 OBDBases are3Store [5] and
Jena [6] frameworks.

∙ Type 2 OBDBs. They store separately ontology descrip-
tions and instance data in two different schemas. The

schema for ontology descriptions depends upon the on-
tology model used to represent ontologies (e.g., RDFS[7],
OWL[8], PLIB[9]). For instance data, different schemas
have been proposed:vertical tablecan be used to store
instance data as triples; or abinary representationcan be
used, where each class is represented by a unary table
and each property by a binary table; alsotable per class
representationshave been proposed where a table having
a column for each property associated with value for at
least one instance of a class is associated to each class.
Example of type 2 OBDBases isSesame[3] framework
andONTOMS [10].

∙ Type 3 OBDBs. A new type of OBDB, OntoDB [11],
proposes to add another layer to type 2 OBDBs. This
schema calledmeta-schemarecords the ontology model
into a reflexive meta model. For the ontology schema, the
meta-schema plays the same role as the one played by the
system catalog in traditional databases. The meta-schema
allows: (i) generic access to the ontology, (ii) support of
evolution of the used ontology model, and (iii) storage
of different ontology models (OWL, DAML+OIL[12],
PLIB, etc.). Indeed, OntoDB is declined on three dif-
ferent conceptual levels, which allows to differentiate the
instances, from their structure and from their meta-model.

In the context of our work, we have two fundamental
criteria for choosing an OBDB. Firstly, the OBDB must
have the capability to manage a huge amount of information,
since an important quantity of data is currently available in
Petroleum Industry. Secondly, the support of evolution of the
OBDB meta-model is important, since we need to extend
this architecture to represent other data containers than the
ontology meta-model (i.e., anannotationmeta-model). As a
consequence, we have chosen OntoDB architecture, which
fulfills this two criteria, as we will detail further on.

B. Engineering Models

Engineering development processes involve a set of activi-
ties which manipulate data related to an engineering domain.
Engineering data can be expressed in various types of models:
database tables, programming units (such as classes ofJava
or C programming languages), mathematical expressions, and
so on. These representations lead to heterogeneous models
that need to be reduced. As a consequence, engineering
models produce a huge quantity of instances, the raw data.
When integrated, these data allow the emergence of new
knowledge that is relevant for the engineers. In several areas,
this integration is still made by the engineers themselves and
is neither formalised nor computerised. The engineering area
that is used as case study for this work is the Petroleum
Industry. In this area, engineering models are depicted by
three-dimensional representations of the earth underground,
and the interpretation of the different petroleum engineering
models demands background knowledge and context from the
domains users.



C. Semantic Annotation

At the moment, there are several frameworks and tools
that allow to create semantic annotations over resources
(web pages, textual documents, multimedia files). From a
comparative analysis of several semantic annotation projects,
available in [13], we understand that most of those frameworks
and tools (such as SHOE Knowledge Annotator [14]), still
rely on knowledge in HTML pages, XML documents or in
other textual resources. Several works were also proposed
concerning the annotation of images [15] and, more recently,
concerning the annotation of the Web-services[16]. Tools like
Vannotea[17] also propose to add meta-data to multimedia
resources such as audio and video files.

However, despite the significant number of tools and frame-
works that provide ontology-based annotation, none of the
annotation tools proposed so far enable theannotation of engi-
neering models(or, more generally, computer-based models).
Concretely, there is no technique allowing to complete those
models by formal comments or explanations, or to attach more
semantics to the technical data produced by the modelling
tools. Indeed, much of a company’s knowledge can be found in
text repositories, such as projects documentation and reports.
Nevertheless, we cannot deny that engineering models are the
result of their builder’s expertise, and this is some strategic
knowledge that cannot be lost. In the next section we present
the case study of petroleum engineering used to illustrate our
approach.

III. A C ASE STUDY IN PETROLEUM ENGINEERING

In a typical workflow for oil & gas reservoir modelling,
engineers and scientists from various geosciences fields pro-
vide interpretations about the data prospected from the earth
underground. Those professionals are experts in a specific field
within the several disciplines involved in the workflow. As a
consequence, they are competent to use data and tools only
from their own specific domain. Therefore, it is challengingfor
this community to retrieve and re-use information issued from
various fields of expertise and represented differently across
domains, using different modelling tools.

In this context, we face two main practical problems.(i)
Originally, the users do not have means of preserving the
interpretations made during the construction of the oilfield
models. Documents in natural language that explain their
interpretation are merely produced.(ii) There is no software
framework that allows to making queries over the data and
interpretation contained in those models. As a consequence,
to formulate queries about the oilfield models, the user must
know the structure of the data that constitutes the model.

The Geological Seismic Interpretation

The case study in oilfield modelling considered in this work
focus an specific activity that occurs in the initial phases
of the workflow. TheGeological Seismic Interpretationaims
at identifying the first geological objects from the raw data.

The interpreter (a geoscientist) observes the input raw data
(notably, seismic images, which are pictures of underground
structures – Fig. 2a), and gives an interpretation about it,
recognizing horizontal and vertical traces in the image and
identifying them as asReflectorsand Reflector Interruptions,
respectively. As illustrated in the Fig. 2b, the user has iden-
tified and pointed in the image somereflectors(r1, r2, r3)
and interruptions(int1, int2). The spatial coordinates and
other informations about the identified objects are, then, saved
in cloud-of-point files (whose most common format is named
XYZ file), which are outputted by the seismic interpretation
tool. During all the task, it is not feasible for the users to make
notes and comments about their interpretations, nor to establish
relations between the data files generated. The informations
about the geological objects are stored using the chosen data
format.

One of the expectations of the users of this community
is to be able, within any phase of the workflow, to ask
questions related to the geological objects. The main issue
is to determine how to formulate those queries without having
to know the internal data structure of the objects. A typical
question would be for example to determineall the horizons
that were interpreted within a reservoir study. An Horizon
is a geological concept that stands for various objects. Geo-
scientists can designate aReflector using the termHorizon.
So this query requires that the system knows that the term
Horizon is a general case of the termReflector, and also
knows which files represent the information that constitutes
the Reflectors. Currently it is not possible to answer this type
of question, since we have no way of correlating the data
stored in technical formats with their meanings in geological
terms. The geological identification of an object lies in the
head of the geoscientist who made the interpretation.

Another difficulty is that there is no knowledge-base shared
among all the modelling tools. Such knowledge-base would
indeed make it possible to(i) preserve the interpretations
made by the user during the construction of the oilfield
model; and, consequently, to(ii) possibly recover the previous
interpretations. We explain in the next section the proposed
approach for addressing those issues.

(a) Seismic Image (b) Interpreted Seismic

Fig. 2. Seismic interpretation activity.



IV. T HE PROPOSEDAPPROACH

In order to make the expert’s knowledge explicit in en-
gineering models, we propose to annotate the models using
domain ontologies. Thisengineering models annotationpro-
cess must be able to represent the following elements:(i)
ontologies and their instances;(ii) engineering models and
their data and(iii) annotations of the engineering models,
which establish links between ontologies and engineering
models.
(i) The knowledge about geosciences fields was acquired

with experts and represented asdomain ontologies. The geo-
sciences ontologies are stored in an ontology-based database.
(ii) We applied, then, meta-modelling techniques to repre-

sent the engineering model’s dataas instances of its meta-data.
The actual data schemas and their access information (such
as file names) were represented as meta-data. As a result,
it is possible to address the problem of retrieving the real
data. In order to persist the access information of engineering
models, it is necessary to provide a meta-model and store
these information in the same database as the ontologies.
But it is not desirable to represent the engineering meta-
data using constructs for ontologies, since we do not expect
to have, for engineering meta-data, the same features that
are currently proposed to ontologies, such as, subsumption
between concepts. The constructs of engineering meta-dataare
different from the constructs used to define ontologies (such
as owl:Class in OWL language), because these entities
have different nature. For these reasons, in order to persist
engineering meta-data along with ontologies, we decided to
enrich the original set of constructs for building ontologies
with Engineering Meta-modelconstructs. The Engineering
Meta-model is actually the minimum necessary set of the
features that allows a uniform description of these models
(file name, identification, main composite objects, etc.). The
main added constructs for building engineering meta-data are
#DataElement and#DataAttribute.
(iii) Finally, we provided a means for linking engineering

meta-models to the concepts of ontologies. In this context,
considering that these models keep the users’ interpretation
about data, and that each user may have a different opinion,
it is expected that the annotations of these models can record
the different interpretations supplied by different end-users.
It means that, for the same dataset, there will probably be
different annotations expressing each user’s opinion, andthat
must be uniquely identified. Another requirement is that one
user can annotate several data elements with one ontology
concept, and vice-versa. There is need, then, for an N-to-
N relationship for the annotation elements. Therefore, in this
approach, the annotation becomes a top-level entity, separated
from the ontological concept and from the entity being anno-
tated. The annotation entity has also its own attributes, such
as creation date, author name and version information.

It follows that we also defined aMeta-model for Annotation.
The construct#Annotation, creates a link between the
construct of ontology concepts (it varies depending on the on-

Fig. 3. Constructs of Engineering and Annotation Meta-models.

tology model) and the construct#DataElement, by means
of the relations#annotates and#isAnnotatedBy. The
meta-models are illustrated in Fig. 3 as a UML class diagram1.

Next section introduces the OBDB architecture supporting
the persistance of the described models and their instances.

V. THE ONTODB ONTOLOGY-BASED DATABASE

The OntoDB system [11] is an ODBD architecture to
support evolutions of the ontology schema. OntoDB makes
use of meta-modelling techniques and propose separation
of modelling layers. OntoDB allows, thus, to represent the
different constructors of existing ontology models (e.g, RDF,
OWL, PLIB), enabling to store ontologies specified in differ-
ent ontology languages, and to separate the instances, from
their data structure and from their meta-model. We explain
OntoDB’s architecture as follows.

A. The OntoDB architecture

OntoDB is implemented on top of PostgreSQL open source
database system2, and consists of 4 parts (Fig. 4).

Fig. 4. OntoDB Architecture.

(1) The part shown in Fig. 4(1) is the traditional part
available in all DBMSs, namely theMeta-base, which contains
the system tables used to manage all the data contained in the
database.

The other parts of the architecture of OntoDB present sim-
ilarities with the OMG’s Meta Object Facility, which propose
four superposed layers that represent all levels of abstraction
of information: meta-metamodels (M3 level), metamodels (M2
level), metadata (M1 level) and data (M0 level).

(2) The Meta-schemapart (Fig. 4(2)) corresponds to the
MOF levels M3 and M2. The meta-schema stores the upper
level constructs, named#ENTITY and#ATTRIBUTE, which,
from the database point of view, correspond to two tables.

1The proposed meta-models are represented here as the M2 layer in the
OMG’s Meta Object Facility (MOF) four-layer architecture (http://www.omg.
org/mof/).

2http://www.postgresql.org/



It also contains the traditional layer available in all OBDBs:
the meta-model for building ontologies. OntoDB provides the
ontological constructs#Class, #Property, #DataType
and others, which corresponds to instances of#ENTITY. If
the Meta-schema of OntoDB is extended with new constructs,
they are added as new lines in#ENTITY table, as illustrated
in the Fig. 5.

Fig. 5. Tables in OntoDB’s Meta-Schema

The ontological constructs of OntoDB allows to rep-
resent the main constructors of existing ontology mod-
els (e.g, OWL, PLIB). Thus, in OntoDB it is possi-
ble to store ontologies specified in different ontology-lan-
guages. The construct#Class stands for ontological entities
that represent categories of objects (such asowl:Class
from the OWL language orPLIB:Class from the PLIB
model). The construct#Property stands for the charac-
teristics of ontological entities and the relations they have
among them (such asrdf:Property from the RDF lan-
guage, orowl:DataProperty from the OWL language or
PLIB:property_det from the PLIB model).

(3) The third part of OntoDB, namedModel, corresponds
to the MOF level M1, where we describe the structure of the
domain ontologies, that is, the concepts and relations from
some domain (Fig. 4(3)).

(4) The instances are in the MOF level M0, theInstancepart
(Fig. 4(4)). Ontology-based data (instances) are represented in
OntoDB using an horizontal approach; one table is created for
each ontological class; its columns consists of a subset of the
class applicable properties (i.e., that include the class in their
domain), namely those that are used by at least one instance
of the class. This representation scales well when numerous
properties per instances are used.

B. The OntoQL Language

In order to exploit the OntoDB OBDB, theOntoQL lan-
guage has been proposed by Jean et al. [18]. The OntoQL
language has a syntax similar to SQL, and provides Data Def-
inition, Manipulation and Query Languages at the three layers
of OntoDB, from the logical level to the meta-schema level.
Consequently, it is possible to extend the meta-schema (M2)
level of OntoDB by using the OntoQL Ontology Definition
Language (see the extension of OntoDB in Section VI).

The concepts of an ontology are created in OntoQL using
the object-oriented constructors defined in the M2 level of
OntoDB (#Class and#Property).

OntoQL provides also aQuery Languagethat can be used
to interrogate both themeta-schemaand theontology contents.
To query the meta-schema, we use some special constructors
to directly address the meta-elements, such as the ‘#’ symbol

in the query Q1, which selects the names of all classes of the
database.

Q1: SELECT #name FROM #Class

Q2: SELECT age FROM Person

Querying the content is similar to a classical SQL query and
the properties will not be prefixed by the ‘#’ symbol (example:
query Q2). OntoQL enables also to query both meta-schema
and contents in the same query, which offers the capability
of uniform manipulation of ontology and instances within the
database.

In the following section we illustrate how we extended the
meta-schema of OntoDB in order to implement the case study
in oilfield modelling.

VI. EXTENDING ONTODB WITH ANNOTATIONS AND

ENGINEERING MODEL

The implementation considered for our approach must be
able to represent the following elements:(i) engineering
models and their data;(ii) ontologies and their instances and
(iii) annotations of the engineering models. We present here
how to use OntoQL to extend the core-model of OntoDB to
include constructs of theEngineering Meta-Model and of the
Annotation Meta-Model proposed in the previous section.
They are created by instantiating the#ENTITY construct.

The first part of our proposal is anEngineering Meta-model,
which defines the entities that are the building blocks that
allow to represent any data artifact used in engineering models.
The Fig. 6 shows a UML representation of theEngineering
Meta-model.

Fig. 6. Meta-model constructs for engineering models

The entity #DataElement is the abstract super-
entity. The entity #DataClass can define hierarchies
and have #DataAttributes. We can also have
#DataAssociations, which relate twoDataClasses.
Those entities are created in OntoDB using OntoQL
expressions, such as statements Q3 and Q4.

Q3: CREATE ENTITY #DataElement
(#name STR)

Q4: CREATE ENTITY #DataClass UNDER
#DataElement (#subtype_of REF (#DataClass))



The next step was to define constructs for building Semantic
Annotations, which correspond to links between theOntology
meta-modeland the Engineering meta-model. The Fig. 7
shows a UML representation of the Annotation entities created
in OntoDB.

Fig. 7. Meta-model constructs for Annotation

The entity #Annotation defines a link between the
entity #Class (the OntoDB construct for ontology classes)
and the entity#DataElement, by means of the relations
#annotates and #isAnnotatedBy. Those entities are
created in OntoDB using OntoQL expressions, such as the
statement Q5.

Q5: CREATE ENTITY #Annotation
(#annotates REF(#DataElement), #isAnnotatedBy
REF(#Class))

In Fig. 8 we show a zoom of the meta-schema part of
OntoDB (from Fig. 4(2)) after its extension with the new
constructs.

Fig. 8. Zoom of extended OntoDB’s meta-schema

In the following section we illustrate how the extension of
the meta-schema of OntoDB was used to implement the case
study in oilfield modelling.

VII. A PPLICATION TO THEGEO-MODELLING CASE

STUDY

In the Section III we presented a case study in petroleum
engineering in which we should be able to make queries
about data issued from oilfield models using concepts of the
knowledge-level.

After having extended the M2 level of OntoDB with the
two new meta-models, we need to represent:(i) how data is
identified using geosciences concepts,(ii) how data is actually
structured by the oilfield modelling applications,(iii) the
annotation elements over the oilfield data.

A. Representing Geosciences Ontologies

Significant efforts have been developed by various geo-
logical surveys for issuing ontology-based formalizations of
the geological knowledge currently represented on geological
maps [19]. However, the needs for reservoir studies are not
the same as those of geological map editors. Consequently, we
decided to complete the already existing geological ontologies
by defining specific ontologies for describing additional geo-
logical concepts related to the particular field of oil reservoir
modelling. This meets the traditional definition of Gruber,
which stipulates that ontologies allow describing static knowl-
edge attached to a field, by specifying what are the objects
that compose the domain and how they are organized [1]. We
thus created a common vocabulary which can then be refined
to describe semantic characteristics in OWL-DL language [8].
This vocabulary was tentatively classified resulting in a set of
domain ontologies adapted to our needs. We present in Fig. 9
some extracts of the geosciences ontologies, depicted as UML
diagrams.

Fig. 9. Extracts of ontologies for geological modelling.

The set of domain ontologies is composed by:
∙ local ontologiesfor representing the concepts used by

the professionals in specific fields of expertise within
the oilfield modelling workflow, such as theSeismic
Interpretation ontology(Fig. 9(a)), and theWell ontology
(Fig. 9(b));

∙ an ontology for describing the concepts ofcommon Geol-
ogy: geological units, geological boundaries, geological
processes, lithology and reservoir. This ontology is called
the Basic Geologyontology (Fig. 9(c)).

The Basic Geology ontology (whose most recent version
was presented in a W3C workshop [20]) identifies geological
concepts that are applied through the whole oilfield modelling
chain. Those concepts refer to objects which are identified at



the beginning of the chain, but receive a different character-
ization within the various geological models. The geological
interpretation consists, then, in binding these multiple charac-
terizations to the same shared ontological concept.

Although we represent the geosciences ontologies in OWL
language, we choose OntoDB database to do the persistence of
the ontologies and data, because of the advantages described
in Section V. We use a mapping algorithm that translates
OWL ontologies to OntoQL statements which use the con-
structs defined for building ontologies, and then store them
in OntoDB. The way how the ontologies are represented in
OntoDB is shown in Fig. 10: the ontology constructs in part
(2), the structure of the domain ontologies in part (3) and the
ontologies instances in part (4).

Fig. 10. Ontologies in OntoDB

Statements Q6 and Q7 exemplify the OntoQL statements
that creates the ontology classes that represent the geolog-
ical concept Horizon and the geology seismic concept
Reflector (from the Seismic ontology) in the OntoDB
database using the ontology meta-model constructs.

Q6: CREATE #Class Horizon

Q7: CREATE #Class Reflector PROPERTIES (URI
STR, identification STR)

In the example presented as the case study, the geologist
identifiesReflectorsfrom horizontal seismic traces. We repre-
sent this by creating an instance of the conceptRefletor,
which is identified asbent-surface by the geologist, as
the statement Q8:

Q8: INSERT INTO Reflector (URI,
identification)
VALUES (r1, bent-surface)

B. Representing Oilfield Data

As explained in the case study section, each oilfield mod-
elling activity corresponds to the utilization of one specific
tool, which characterises data in a different structure: points,
surfaces, meshes.

We observed the available metadata of oilfield models
(types, attributes, header) and reduced this metadata to the
minimum necessary structure that allows a uniform description
of those models (file name, identificator, main composite
objects, etc.). The objective in capturing and formalizingthis
metadata is to enable querying data using concepts of the
knowledge-level and, for future works, to allow data trans-
formation between models. For this, the oilfield data artefacts
should be represented asinstances of their metadata.

For the activity observed in the case study (the Geological
seismic interpretation) the folowing metadata was abstracted:
seismic traces are represented as clouds of 3D points in an
ASCII file, a format known asXYZ file. Thus, we represent
data used in this activity as instances of theXYZ filemetadata.
The Fig. 11 illustrates a simplification of the XYZ format
metadata.

Fig. 11. The XYZ metadata

The statement Q9 exemplifies the encoding of the
XYZ format metadata in OntoDB using using the just-
added#DataClass constructor. It creates aDataClass
entity named XYZFile, with a DataAttribute named
surfaceName, of type String, and multiplicity exactly
1.

Q9: CREATE #DataClass XYZFile
(PROPERTIES (surfaceName STR 1 1)

The statement Q10 create theChannelLine dataclass
with attributechannelLine, and statement Q11 alters the
dataclassXYZFile by adding an associationhasLine which
connectsXYZFile to multiple ChannelLine.

Q10: CREATE #DataClass ChannelLines
(PROPERTIES (channelLine ARRAY 1 ’1’, )

Q11: ALTER #DataClass XYZFile
(ADD PROPERTIES (hasLine REF(ChannelLines) 1
’*’)

Then, we represent seismic data as instance of the metadata
created above. This is exemplified in the OntoQL statements
Q12 to Q15 below, Here we create an instance ofXYZFile,
whose attribute filename isreflect3D-0047.xyz, which
has twochannelLines (each line is composed of 3 points,
that represent the 3D coordinate).

Q12: INSERT INTO XYZFile
(URI, filename, surfaceName)
VALUES (r_47, ‘reflect3D_0047.xyz’,
‘reflect47’)



Q13: id_1 = INSERT INTO ChannelLines
(channelLine) VALUES ([0.19 1.31 0.24])

Q14: id_2 = INSERT INTO ChannelLines
(channelLine) VALUES ([0.91 2.31 3.04])

...

Q15: UPDATE XYZFile WHERE URI = r_47 SET
hasLine = [id_1, id_2]
Q16: INSERT INTO hasLine (end1, end2)
VALUES (id_5, id_7)

The advantage of representing the technical data as instances
in OntoDB is that we will have stored, in the same place, both
data and ontologies, and this will make it possible to create
the link between the two.

C. Defining typed-annotations

Finally, since we have all metadata and the local ontologies
represented in OntoDB metamodel (level M1), we can now
define the link between those models By means of the con-
struct#Annotation. In the present case study we know that
a very common annotation will be performed by geologists
during the interpretation of the reflectors from a seismic
image. Thus, in statement Q17 we create an annotation of
the typeReflectorAnnotation, which annotates entities of type
XYZFile with concepts of typeReflector.

Q17: CREATE #Annotation ReflectorAnnotation
(XYZFileURI REF(XYZFile), ReflectorURI
REF(Reflector))

The final step is to create instances of the typed annotations
in order to annotate real data. In statement Q18 we create an
instance of the typed-annotationReflectorAnnotation, which
makes reference to an instance of the metadataXYZFile
and an instance of the ontology conceptReflector, created
previously.

Q18: INSERT INTO ReflectorAnnotation (author,
date, ReflectorURI, XYZFileURI) VALUES
(Geologist_1, 10/10/2008, r_47, r1)

The advantage of the typed-annotation is that we group in a
same annotation table files that could have been created by any
type of seismic application. The annotation table stands for all
the annotations performed during one same interpretation task.

Fig. 12 extends Fig. 10 and illustrates the implementation
of the case study in the three levels of OntoDB. In the part
(2) (M2 level) we have original constructs of ontologies, aug-
mented of Annotation and Engineering Models constructs; in
the part (3) (M1 level) we have the geosciences ontologies, the
oilfield metadata, and the typed-annotations; finally, in the part
(4) (M0 level), we depict an extract of the tables in OntoDB:
in the table#Class we have all the geosciences concepts
and their instances, the table#DataElement contains all
the metadata for Oilfield Models and the reference to the real
data. The links between the data and their ontological meaning
is expressed in the table#Annotation. In this example, the
XYZ file namedref3D-47.xyz is annotated by an instance
r1 of the conceptReflector. The instancer1 is the result

Fig. 12. Implementation of the case study using OntoDB extension.

of the interpretation of some geoscientist, who identifies this
reflector as ‘bent-surface’.

D. Annotation Production Process

The annotation elements described below will be pro-
duced within the different activities of the oilfield modelling
workflow. According to the type of task and the computer-
based tool used, we distinguish three scenarios for producing
instances of annotations:

∙ white box annotation: the annotation system is in-
tegrated to the modelling tool. The annotation system
knows the associated local ontology, so, when the user
produces an interpretation about the oilfield model, the
annotation system automatically creates instances of an-
notation referring to the URI of the ontology. For the
Seismic interpretation task, it is being developed a tool
for automatic seismic interpretation (by Verney et al. [21])
that generates:(i) the instances of the Seismic Ontology,
which corresponds to the seismic interpretation, as well
as(ii) the annotationsthat link these ontology instances
to the technical data used by the tool.

∙ black box annotation: when using a proprietary oilfield
modelling tool, it is not possible to integrate the annota-
tion system into it. The annotation must then be carried
out in an interactive way by the user: while interpreting
the oilfield model he/she also produces annotations over
the data files, like an experience report. This corresponds
to the practice of generating text documents that explicate
the interpretations, the difference is that documents are
in natural language, and cannot be processed later on
by automatic tools, while annotations produced with an
ontological tool are explicit and formal.



∙ intrusive annotation: when the oilfield model is already
interpreted, the annotation system examines the data
files associated and discovers, by using heuristic rules,
which objects must be annotated and then associate
the correspondent ontology instances to these objects,
producing then the instances of annotations. An practi-
cal example is the set of files used to represent Well
information, which are described using an XML-based
standard called WITSML (Wellsite Information Transfer
Standard Markup Language) [22]. This standard defines
XML tags that are specific to the well domain. A well
data file created using WITSML is able to be processed
by a parser, and its information transformed in ontological
instances in the knowledge base. The link to the original
data source is maintained by the annotation.

VIII. E XPLOITATION OF THE EXTENDEDONTODB
ARCHITECTURE

As explained in previous sections, in the oilfield modelling
workflow the users must know how the data is structured in
internal formats so as to formulate queries about the oilfield
models. We believe that annotating those models with mean-
ingful concepts (concepts from the ontologies of the specific
domains within oilfield modelling) will allow the professionals
to formulate queries using their domain vocabulary, instead of
using the data structure.

We present here how to interrogate the oilfield database
using the constructs included in the OntoDB’s meta-schema.
Some simplified queries that use the meta-model constructs
are expressed as follows.

∙ Find the name of theTypedAnnotation that annotates
the Reflector classes:
Q19: SELECT #name FROM #Annotation
WHERE #isAnnotatedBy.#name = ‘Reflector’

R: #name = ‘ReflectorAnnotation’

∙ Find the name of theDataClass that is annotated by
Reflector
Q20: SELECT #Annotation.#annotates.#name
FROM #Annotation
WHERE #isAnnotatedBy.#name = ‘Reflector’

R: #name = ‘XYZFile’

∙ Find the instance ofXYZFile that is annotated by the
given instance ofReflector
Q21: SELECT filename from XYZFile
JOIN ReflectorAnnotation
ON XYZFile.oid =

ReflectorAnnotation.annotates.oid
WHERE
ReflectorAnnotation.isAnnotatedBy.oid =
(select Reflector.oid from Reflector
where Reflector.URI = ‘r1’)

R: filename = ‘reflect3D_0047.xyz’

Thanks to the new parts which we propose, OntoDB will be
able to store within a single data base, the engineering models
data and their ontology-based annotations. So the semantic

concerning the objects, which is usually just in the head of
the users, can be added inside the database. This approach
enables to formulate queries that use the vocabulary that is
significant for the domain professionals, instead of obliging
them to understand how data are organised within the database.

Moreover, having ontologies stored with the data allows to
use integration techniques, such as, in the case of OntoDB, the
subsumptionrelations. This mechanism leaves an important
autonomy to the several databases whose local ontologies
refer the same shared ontology for the definition of their data
schema. We will discuss about this possibility as a future work
in the conclusions.

IX. CONCLUSION

This paper has presented an extension of a database ar-
chitecture in order to handle both data elements issued from
engineering models and annotations that allow to linking the
engineering models data elements to their semantic defini-
tion represented by ontology concepts (classes, properties,
instances or property values). As a consequence, we have
obtained a homogeneous representation of the whole data and
knowledge manipulated by engineers. Moreover, the availabil-
ity of an exploitation language capable of manipulating both
meta-models, ontologies, instances and annotations was useful
since, we are capable, with OntoQL, to address semantic
queries that are free from the implementation details available
in the different annotated engineering models. A case study
illustrating this approach has been shown. It is issued fromthe
application domain we are working on: petroleum engineering
models and geological models.

The proposed OntoDB ontology based database extension
was possible thanks to the availability of:

∙ an explicit representation of the ontology in the database.
As a consequence, we have been able to attach the
annotation to the classes and to the properties of the
ontology and not to the columns of the logical model
of the database where instances or data issued from the
engineering data models are stored;

∙ the possibility to access and to manipulate the ontology
model through the access and manipulation to the meta-
model;

∙ an exploitation language allowing to manipulating both
the instances, their classes and the meta-model in the
case of ontologies.

These characteristics are offered by the OntoDB ontology
based database and by the OntoQL exploitation language.
The extension of the ontology model with the annotation and
engineering models model permitted to attach various typesof
annotations to classes and/or properties of the ontology. As a
consequence, we have been able to describe semantic queries
that exploit the engineering models at the semantic level, and
thus abstracting from the logical model.

We believe that the possibility to access the meta-model
level well adapted to define model extensions that preserve
upward compatibility with the extended model. This work has
opened several new directions and perspectives. Indeed, such



extensions are possible for other different engineering domains
provided that an engineering and an annotation models are set
up at the meta-model level. Moreover, we expect to describe
other relationships at the ontology level so as to be able
to a posteriori attach ontology concepts and the associated
annotations to pre-existing ontologies.
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