Finding cyclic behavior in multiprocessor real-time
scheduling

Annie Choquet-Geniét

Laboratoire d’Informatique Scientifique et Industrielle
Université de Poitiers & E.N.S.M.A.
Téléport 2, Site du Futuroscope, F-86961 Futuroscope Giramsl Cédex

&

Sadouanouan Malo

Ecole Supérieure d’Informatique - Université Polytechi@qie Bobo Dioulasso,
01 BP 1091 Bobo Dioulasso 01, Burkina Faso

Abstract

This paper concerns sets of periodic independent realitisies with hard deadlines, in a
multiprocessor context. We address the cyclicity problengfobal multiprocessor schedul-
ing. Our aim is to prove the existence of a steady state aftanacient state in valid sched-
ules. This could be helpfull for performing exact schedilitgttests as well as for the sake
of simulation. First, we underline the main differenceswsatn the uniprocessor and the
multiprocessor cases. Then we consider the case of fixedtprscheduling strategies,
and finally, we extend our results to a wider class of schadudigorithms. And finally, we
present some amazing results as to the date of the beginthg sfeady state.

Key words: Real-time systems, Scheduling, Multiprocessor Systems

I author for all correspondance
Email addresses: ageni et @nsna. fr (Annie Choquet-Geniet),
sadouanouan. nal o@ apost e. net (Sadouanouan Malo).

Preprint submitted to Elsevier Science 10 November 2006



1 Introduction
1.1 The problem

The general use of multiprocessor architectures gaveaisgny investigations in
the field of multiprocessor scheduling. For uniprocessstesys, scheduling has
been widely studied and many solutions have been propossdeVér in the case
of the multiprocessor context it becomes very complex, aadynguestions still
remain to be answered. One of the most difficult questions&mrs the existence
of a steady state, after the system loading phase. Solvengyitiicity problem im-
plies first to prove the occurrence of the steady state, aswhsto characterize the
moment at which it begins. This issue has been successfidiyeased for unipro-
cessor systems [9]. The key point of the proofs is the amalgkithe processor
activity which is closely related to the processor demantamklog (the sum of
the remaining processing times of pending tasks): the gemras shown to be idle
only if there are no pending tasks. Unfortunately, this ftedoes not hold anymore
in multiprocessor context. This is due to the assumptiohahask cannot run on
two different processors at the same time. Thus uniprocessthods cannot be ex-
tended to multiprocessor systems. The problem must bedmnesi in a completely
new way. The aim of this paper is to provide a first approachcé&the problem
turns out to be very intricate, we have restricted ourselwesets of independent
periodic hard real-time tasks, with offsets. Furthermoeefisst focuse on global
fixed priority scheduling algorithms and then we extend #dseilts to a wider class,
wich includes global EDF and global LLF scheduling.

1.2 Multiprocessor scheduling

Scheduling real-time applications on multiprocessor ig&ctures can be solved
using either global or partitioned approaches. In partgtbmethods, all instances
of a task run on the same processor. The problem is here toxdetethe most
suited allocation of tasks onto the different processohenleach set of tasks is
scheduled on its own processor using a given uniproceskedating algorithm.
In global methods, tasks can run at any time on any proceSsaa. task is never
definitively assigned to a given processor, it may start asdme on any one. Both
methods cannot be compared in the sense that there existsigstems that can be
scheduled when using one of the method, but not when usingthiez one. Fur-
thermore, the problem of deciding whether there existsid gahedule for a given
tasks systems is NP-hard for both methods. See [2, 17] formgpanson between
both approachs and [23] for an overview on the complexityhefpgroblem of the
existence of a valid schedule.

The cyclicity problem can easily be solved for partitionetieduling. The solu-
tion is a straightforward extension of the uniprocessounlteBideed, the schedule
computed on a processéy (tasks are assumed to be independent) is cyclic from
a given timet; that can be deduced from the tasks parameters (see [9]) with a
riod equal to the least common multiple of the periods of #sk$ assigned to this



processor. Therefore, the whole schedule is cyclic frongteatest;, with period
equal to the least common multiple of the periods of all tlskg$a

So we focuse on global scheduling, for wich the problem ikggien. In [10] it has
been proven that no on-line optintakcheduling algorithm can exist, in the gen-
eral case. Nevertheless, there still exists an optimalrutyal algorithm, as well
as a necessary and sufficient schedulability conditiomli§ synchronou$ inde-
pendent tasks with implicit deadlinésare considered [1, 6]. Beside, many investi-
gations have been made on schedulability tests, leadingffioient schedulability
condition (see e.g. [3-5, 8,12]) but for asynchronous sysi¢here exists no exact
schedulability test, and only simulation can lead to cosidn when the sufficient
conditions are not met. Furthermore on-line schedulingrfaltiprocessor systems
comes up against the problem of scheduling anomalies, évaskis are indepen-
dent: the scheduling strategy is validated using worst easeution times, however
if the actual computing time of some instance of a task istehosome temporal
faults may occur [13, 19, 23]. An alternative solution ceisiin considering off-
line scheduling: a schedule previously computed is storgdirwa table used by
the dispatcher. Since these strategies are clairvéytdir decisions are made ac-
cording to a complete knowledge of the systems, whereageralgorithms rely
on the instantaneous state of the system. Off-line stresesgie thus more powerful
than on-line strategies. The counterpart is the rather &agh of off-line methods.
Indeed, they are often based on an exhaustive enumeratithre clet of possible
solutions. Most off-line strategies that can be found inlitezature deal with non
periodic applications. Only finite sets of jobs, which mayrmependent or not, are
scheduled possibly using some heuristics or branch-andébalgorithms in order
to bound the cost of the method ([11, 21,22, 24]).

There are significantly less results about the off-line daliag of periodic tasks
sets: methodologies based respectively on a geometrida Betri nets based mod-
eling of the application have been developped in [16] andl, [d4t these method-
ologies can only deal with synchronous systems.

1.3 Our contribution

A systematic investigation of the cyclicity problem in theiltiprocessor context
would help to overcome the lack of off-line scheduling stgaes for periodic asyn-
chronous applications. As a matter of fact, if the systenrasgn to behave cycli-
cally after the loading phase, and if the start datéthe cycle is characterized, we
can demonstrate that strategies developed for singlarinsttasks can be enlarged
to periodic tasks sets. Only instances of periodic taskshothvarrival dates stand
beforet + P (whereP is the least common multiple of the periods) must be con-

2 an algorithm is said to beptimal if for any application, either it computes a feasible
schedule (a schedule where all the deadlines are met) eréhests no such schedule at all
3 the release times are all the same

4 due dates are equal to the periods

5 the release dates of every instances of every tasks are known



sidered. A feasible schedleinvolving these instances would lead to an infinite
feasible schedule. Without such a cyclicity result, the sizthe schedule that has
to be computed cannot be bounded. Consequently off-lineedstwould not work
either. Another interesting application of our result cems simulation: simulat-
ing the behaviour of the application according to the chasgreduling strategy
can be used either to analyse the performances of thisggrégee e.g. [2] which
compare global and partitioned fixed-priority scheduliagdynchronous systems)
or to produce a validation test, when available schedutgltédsts cannot be used
(either a sufficient condition is not verified or there existssuch condition). The
main question is: how long must the simulation be carried ™M cyclicity result
would answer the question.

We consider sets af independent tasks, and processors. We first investigate
the cyclicity properties of fixed-priority scheduling g&gies. Our goal is to char-
acterize the beginning of the schedule cyclic part. We thdarge the results to
a wider class of algorithms. The remainder of the paper iarmumgd as follows.
In part 2, our assumptions and notations are stated. In paré 3troduce partial
and complete acyclic idle slots, and show that the core tesifithe uniprocessor
investigation do not hold anymore under the multiprocesssumption. In part
4, it is shown that the cycle corresponds to the first schedifize Icm’ of the
periods without any acyclic idle slots, if the system isyutbaded. In part 5, the
results are extended to not fully loaded systems. Finadlgt,  extends our results
to further algorihtms, including EDF and LLF, and presehtsperspectives of our
researchs. In particular, we present some amazing examytesh show that that
for EDF and LLF, the beginning of the steady state can occry haée compared
to the uniprocessor bourid + P).

2 System model

The PRAM model [15] withm processors is considered: processors are all iden-
tical, each has its own memory, but a common memory can besseddy every
one, in constant time. We adopt the global assumption: & iaskever definitively
assigned to a given processor, it can at any time resume opraogssor. \We con-
sider applications composed afindependent periodic tasks(ry, Cy, Dy, Py),
To(ra, Co, Do, P), ..., To(rn, Cpn, Dy, P,) (in the sequelf denotes the setr{, 7,
...,To}). Each task is submitted to hard temporal constraints. tdgathe classical
modeling of tasks [18]. Each taskis characterized by four temporal parameters
as described in figure 1: first release date or offsetiorst-case execution timg;
relative deadling);, which corresponds to the maximal delay allowed between the
release and the completion of any instance of the task; amodp®,. Each taskr;
consists of an infinite set of instances (or jobs), releaséithasr; + £ x P;, with

k € N. We assume that parallelism is forbidden (at any time, a ¢askrun on at

6 a schedule ifeasibleif all the deadlines are met
" lcm denotes the least common multiple



»
>

D;
offset  4¢ a— T
M "l 0—— == V¥ -
+ 18t deadline
St release C. 2™ release

1

Fig. 1. Temporal modeling of a real time periodic task

most one processor) and that temporal parameters are knawtederministic. P
denotes théyperperiod of the system defined as P = IcR( P, ..., P,),and ris

the latest release time: r = Max{ . .., ,}.

The processoutilization factor characterizes the processors workload due to the

application. It is defined by U {j . If U > m (m being the number of proces-

sors), the system is over- loaded and temporal faults cdveavoided [7].

For any times t and t’, and for any task the following terminology is used (see

figure 2):

e PI;(t) is thepending instanceof taskr; at time t (the last instance released at
or before t).

e RCT;(t) is theremaining computation time for the instance”I;(t) of tasksr;.

e RCT;(t) corresponds to thelapsed computation timeof the instance’I;(t).

e W (t,t') denotes theumulated processed execution timéetween time t and
time t.

e W;(t,t'") is theprocessed execution timéor taskr; between time t and time t".

PI(t)

— | — ——— 4 -
r+ kP \ / t \// r; + (k+1).P;

RCT(t) RCT(t)

Fig. 2. Pending instance, elapsed computation time andingmyscomputation time

Following the definitionsRCT;(t) + RCT;(t) = C;. Furthermore, if processors are
never idle betweentand t’, W(t, t') = m (t’- t).

For the sake of the instantaneous description of the systenmotions of state for
a task and for the whole system are introduced.



Definition 1 Thestate of a taskr; at time t is defined by :

e (0, dist;(t) = r; - ) if 7; is not yet released (t «;)

sti(t) = N o (ROT,(t), dist,(t)) else, wherelist;(t) denotes the
remaining time until the next release.

Thestate of the systen$ at time tis defined byTs(t) = (st1(t), sta(t), .. ., st,(1)).

In the furtherslott denotes the time interval [t, t+1]. A taskssheduled at time t
means that one processor processes it during slot t.

We recall that is {r, 7o, ..., 7.}, let P,,(£) denotes the set of subsetsobf size
less than or equal to m.

A scheduleon m processors is defined by ™ :— P,,(£) such that; € O(t) <
is scheduled at time t.
Let O; be such thaD,(t) = .
O else

r;—1
A schedule ideasibleif and only if Vi € 1..n, > O;(t) = 0 and,vk € N*,
t=0

ri‘l‘(k?_l)Pi‘l‘Di_l ri+kP;—1
=0 t=0
A scheduling strategy isonservativeif a task never intentionally waifs

o) | {i | st;(t) = (a,b) with a>0} if | {i | st;(¢) = (a,b) with a>0} <m
m otherwise

A schedule igleterministic if and only if scheduling decisions are the same each

time the states are the sam&Ts(t) = STs(t') = O(t) = O(t").

In the sequel, only conservative and deterministic scle=daie considered. Fur-

thermore the allocation problem is not addressed.

A schedule izyclic with period P from time. if and only if Vt > ¢., O(t) = O(t+P).

If the schedule is deterministic, the cyclicity can be detlfrom state examina-

tion, as stated by the following lemma.

Lemma 2 Let O be a deterministic schedule. If there existsuch thatST’s(t,) =
STs(to + P)and t <ty = STs(t) # STs(t + P) then O is cyclic with period P
fromt,.

It comes from the fact that, thanks to determinism, O(t) delseonly onSTs(¢).

8 If Ais aset, A |isthe cardinality of A



3 Idle slots

First special attention is paid to processor activity. le gequel, only feasible
schedules are concerned.

3.1 Acyclic idle time units

When the processor utilization factor is less thanprocessors are globally idle
for at leastP x (m — U) processing time unit$ each hyperperiod. These idle time
units are callectyclic since they occur regularly. If the processor utilizatioo-fa
tor is equal tom, there are no such idle time units. But nevertheless, sontieeiu
idle time units may still occur in the transient state, asartided by the following
example. We consider 2 processors and a system S1 compoSetdsis : S1 =
{m(0,1, 3, 3),(0, 1, 3,3),3(0,4,9,9),(0, 2, 3, 3),75(8, 2,9, 9)}. Tasks are as-
sumed to be ordered in decreasing priority ordeh@ving the highest priority and
75 the lowest). The schedule produced by the associated fistedty algorithm is
depicted on figure 3. The processors utilization factor Equae? (note that none of

AT e HE e B e S e B e B

!

v, A T T | . !
A )

4 4

1:4$||¢||¢|| T 1

T - i

Idle time 1

nits o 1 2 345 67 8 910 11 12 13 14 151617 18

Cycle

Yy Y Y Y VY

Fig. 3. Schedule for system S1. An idle time unit occurs aetimone processor is idle at
time 7.

the sufficient fixed-priority schedulability condition cae applied). There are no
cyclic idle time units, but nevertheless, an idle time uritwrs at time 7. Besides,
the system is in the same state at times 8 and 17 = 8 1R, (8) = STs.(17)).
The schedule is thus cyclic from 8 (lemma 2). The idle timd observed at time
7 never appears again. It is calledagyclicidle time unit.

In uniprocessor case, we have shown that the number andciigolio of the acyclic
idle slots depend only on the application, not on the schiegsitrategy, provided
it is conservative [9]. Unfortunately, this does not hold maultiprocessors. Figure
4 presents another deterministic and conservative schéaoi provided by a fixed
priority strategy) again for tasks system S1.There are thetime units, at times

9 a processor processes one processing time unit during kedchsere are thus globally
m X P processing time units each hyperperiod



2 and 5.
Another point had been deduced from uniprocessor invegiita it is always the

L 700 e I e B S e Y e R e B M e B - D N >

‘UZLI_LII_II = =t il e oem b o >
S S e N e s e S S s e R s | oy B
T, 11 e e B e B e B e B e O s O e s s >
s 4 - p— .
Idle o E | >
SIS 0 12 345 67 8 91011 1213 14 15161718 192021 2223 242526

identical schedules

J

Cycle

Fig. 4. Another feasible schedule for system S1. There aceidie time units, the last
one occurs at time 5 and the cycle begins at tim&"Bs(8) = STs1(17) butSTs(7) #
STs1(16).

case that the cyclic behaviour starts directly after the dagclic idle time unit.
Here again, this properties cannot be generalized to nnottgssors, as shown by
figure 4: the cycle starts at time 8, but the last idle time ondurs at time 5. We
can note that the cycle cannot start at time 6, since betweas 6 and 15, task
75 IS never scheduled. This put an end to any attempt to geperaliprocessor
results to multiprocessors.

These rather negative observations incited us to resuicinvestigations field. In
paragraphe 4, we will thus consider only fixed-priority stihiéng strategies.

3.2 Partial and complete idle slots

A slot t is calledidle slot if at least one idle time unit occurs during slot t. In
uniprocessor systems, there is no distinction betweersidte and idle time units.
For uniprocessors, idle slots implies no pending task, seen@ining processing
time, but this does not hold for multiprocessors. It just liepthat there are less
thanm pending tasks. Two kinds of idle slots can be distinguisisee figure 5):
e Complete idle slots all processors are idle, so consequently there are nopgndi
tasks. There are thus idle time units during this slot.
e Partial idle slots: only ¢ processors among (0 <¢ < m) are not idle, so there
areq pending tasks, and the cumulated remaining processinggina equal to
0. There aren — ¢ idle time units during this slot.
We first prove that the number of acyclic idle time units is hded.
Proposition 3 Let S be a fully loaded system of tasks, and O a feasible skehedu
Then the number of acyclic idle time units within O is bounded



Partial idle Complete
slot idle slot

<3 <3

[ | © | l [
t t +1 t t

C C C C

l — —

L L

Fig. 5. Partial and complete idle slots, with two processors

PROOF. Consider atime interval, » + k£ x P] (k € Nandr=max{;,...,r.}).

A taskT; completes at least’ | A+ <P times within this window. Thus, the
+ £5F) x C; processing time units. It

execution of task; requires at Ieast[%J

follows that the processors have globally to execute at (@s@ ||+ Ry % )
i=1 ' !

n

= (X [55%]) x Cj+m x k x P time units (remember that U = m). There are thus at
i=1 t

mostm x (r+k x P) = (35| 252 ] x Cy+m x kx P] = mxr— (% | 552]) x C,
i=1 i=1
processing time units left for idle slots. This number doetsdepend on k, so this

bound hold for infinite schedules. Therefore, the numberaytlc idle slots is
bounded

4 Fully loaded processors and fixed-priority algorithms

We focuse on fixed-priority scheduling strategies. For tileef determinism, we
assume that two different tasks have different prioritAasd we assume the uti-
lization factor to be equal te:. There are thus no cyclic idle slots. Our aim is to
characterize the steady state start point, by means of shadsclic idle slot. We
claim that the steady state corresponds to the first parteo6thedule of size P
which contains no idle slots.

Theorem 4 In a fixed-priority schedule O, if there is an idle slot at timéollowed
by P time units without idle slots, then the schedule obtaingtiiwithe window
[t.+1,t.+ P+ 1) defines the steady state of the application. This can bedibym
expressed by:

| O(te) [<m . .
= Qs cyclic from¢, + 1.
Vtet.+1,t.+ P, O(t) |=m

The remainder of this section consists of the proof of thésilte We discuss on the
nature of the idle slot occurring at timg(either complete or partial). If no idle slot
occurs at all, we state = -

10| x | denotes the greatest integer less than or equal to x



4.1 Complete idle slot

We assume first the idle slot atto be complete. The task set can be decomposed
in three parts:
e Reis the set of tasks for which + 1 is a (possibly first) release date:
7, € RE< (t,+1—1r;) mod P,=0andr; <t.+1
e LR isthe set of the late released tasks, whose offsets areegthaty, + 1:
nE€ELRsr,>t.+1
e AR is the set of the already released tasks. Their offsets ssdlan,. andt, +
1 is not a release date:
7, € AR< (t.+1—1;) mod P; # 0 andr; < t.

4.1.1 Processed execution time between 1 andt, + P + 1

The basis of the proof consists in the estimatiofft, + 1, ¢, + 1 + P), which is
the cumulated processed execution time betwgenl andt. + P + 1. Because of
the assumption that no idle slot takes place between thesdates, this execution
time equals ton x P. The contribution of each set of tasks to the whole executio
time is computed as follows:

e Load due to tasks in Re each task; within Re is processed exactgf times,

thus Re generates a processor load equaBo = x C.
Ti€ERe

e Load due to tasks in LR: each task; within LR completes| &=t2+1=": | jn-
stances, and starts a last one. Furthermore, sinsenot yet released at+1,
we have RCT{. + 1) = 0. Thus the cumulated processed time equals to

> Ltc_l—P]j;l_T‘J x C; +Wi(tc + P+ 1)

T,€LR

e Load due to tasks in AR each task; within AR completes— — 1 instances,
and starts a last one. Furthermore, at tilme: 1, there is no pendlng task left,
since the idle slot at timg. is complete, and, +1 is not a release date for tasks
in AR. Thus,RCT;(t. + 1) = 0 and the cumulated load coming from AR equals
to ¥ (£ —1)xC;+RCT(t. + P +1).

P.
T,EAR
We thus have the following load equation:

W(t.+1,t.+P+1) = ¥ £ xC;

T,€ERe "

+ % ([EEBHen | x O+ RCTy(t + P + 1))

T €ELR Fi
+ ZA (£ —1) x C;+ RCT;(t. + P+ 1))
T, €EAR ¢

=mxDP

4.1.2 Late first releases

In order to refine the estimation of the processed execuitio@ due to tasks with
late first releases, we must investigate their offsets. LarGrstates that these tasks
must start less than a period after 1. Otherwise, some further idle slots would
occur aftert,.

10



Lemmab5 Vr; € LR,we have, + 1< r;<t.+ P, + 1.

PROOF.
a - We first assume there exiggssuch that;, > ¢. + P,, + 1. It follows that

|t | P 1. Besides, we know thaBCT;(t, + P + 1) < C; for
2 10

each task, andt2H=ri| < L — 1 for each taskr; in LR but 7;, (because

te+1 <r; = LHZNEE < By Thus we have:

mxP=W(t.+1,t.+P+1)

< > Lo O+ |0 | 0+ RCOT, (te + P+ 1)
i€ ReUARU(LR\{Ti}) " !

< E:jg-*CZ'—-CEO4—CEO
i=1""

<mxP
So the contradiction.
b - Let us now assume there is soipsuch that;,, =¢. + P,, + 1. We have
L%j = #£- —1andRCTj,(t. + P + 1) = 0. This produces the same
inconsistency as in case@.

4.1.3 Proof of the theorem
We can now estimate the contribution of each tasks substtt@nplete the proof.
From lemma 5, we have for each taskn LR | =t2E=ri | = £ — 1. We thus have:

mxP=W(t.+1,t.+P+1)
=y PxC+ ¥ (ROT(t.+P+1)-C)
i=1"" 7,€LRUAR

—mxP+ Y (RCTi(t.+P+1)-C)

7€ LRUAR
Now, for each task; in LR U AR, RCT;(t. + P + 1) — C; < 0. It follows that

Vri € LRUAR, RCT(t, +1) = RCTi(t.+ P +1) =0

Besides

7, € Re = RCT;(t.+ 1) = RCT;(t.+ P+ 1) = C;
Finally, for each task;, we havedist;(t. + P + 1) = dist;(t. + 1) sincedist; is
periodic, with periodP;. Thus for each task, we havest;(t.+P+1) = st;(t.+1).
From lemma 2, we conclude that O is cyclic frapy- 1. O

4.2 Partial idle slot
Attimet,, g tasks are pending, with 0 < g < m. Without loss of geneeadjte can

assume that tasks, 7, ..., 7, are processed at timg. Set& is decomposed into
four subsets:

11



e PT is the set of the pending tasks at ti&PT = {r, 7o, ..., 7,}).

e Re, LR andAR are defined as in previous section, but considering onlystask
which do not belong to PT.

The contribution to the cumulated processed execution bieteeert,. + 1 andt.

+ P + 1 of any task; in PT is P%_ —1)xCi+ RCT;i(t,+1)+RCT;(t,+P+1). We

consider the complete instances, plus what is still to begaged at time. + 1 plus

what has already been processed at tinieP + 1. The load equation becomes:

Wt+1,t.+P+1) = 3 £xC

T,€Re "
eEPT "

+ > [RCT(t.+1)+ RCT(t.+ P +1) - Ci])

T, €PT

+ %R(LthrP;l—r'J x C;+ RCT;(t.+ P+ 1))
T; € 4

+ ¥ (5 -1)xC+RCTi(t.+ P+1))

7€EAR '

=mxP

The remainder of the proof relies on the behaviour of taskBTn To adapt to
the partial idle time case the proof of the complete idle séste, we first prove that
a task in PT cannot have performed more computation at timeP + 1 than at
timet, + 1.

Lemma 6 Vr; € PT, RCT;(t.+ 1)+ RCT;(t.+ P+ 1) < C;.

This lemma can also be expressed as follows: € PT, RCT;(t. + P + 1) <
RCT;(t.+1).

4.2.1 Proof of theorem

Assume lemma 6 to be established. The end of the proof is Vesg to the proof
of the complete idle slot case. In a first step we prove thatriarb holds in that
context to. The proof is quite the same as before: in the ctatipn of the cumu-
lated processed time, the contribution of taskom PT, consists of x C;, which
is included in U, andRCT;(t. + 1) + RCT;(t, + P + 1) — C;, which is less than
or equal to 0. The end of the proof is the same as in the precasss.

We then have:

mxP=W(t.+1,t.+ P+1)
= EXCZ‘
'rigZePi

+ ¥ (& X Ci+[RCT(tc+ 1) + RCT;(t. + P+ 1) — C}])

,€PT "

+ X [(5—1)x C; + RCTy(t. + P +1)]

+ ¥ [(#—1) x Ci+ RCT;(t. + P+ 1)]

12



=mxDP

+ > (RCT;(t.+1)+ RCT(t.+ P +1) - C;)

T, € PT

+ ¥ (RCT;(t.+P+1)-C))
T,€LR

+ > (RCTi(t.+P+1)—-C))
7€EAR

It follows that
> (RCT(t.+ 1)+ RCT;(t.+ P+1)—C)

T, €PT

+ Y (RCT(t.+P+1)-C))
T,€LR

+ > (RCT(t.+P+1)—C))
7,€EAR

=0

Now we have:

e V1, € PT, RCT;i(t. + 1)+ RCT;(t. + P +1) — C; < 0 (from lemma 6).

e V1, € LRUAR, RCT,(t.+ P+1)— C; < 0:aninstance cannot process more
than the global execution time.

Thus, each term of the previous sum is negative and the suatssqpuO. It follows

that

o V1, € PT,RCT;(t.+ 1) + RCT(t.+ P+1)—C; =0

o V7; € LRUAR,WZ(tC—i‘p—Fl) —C; =0.

And we conclude as in the case of a complete idleSlot.

4.2.2 Proof of the lemma

The key lemma (lemma 6) must now be proven. tebe any task in set PT. We
must consider three cases:

1 - Aninstance of; is released at timé& + 1.

ThenRCT(t.+1) = C;, t.+ P +1is also a release time fqr SORCT; (t,+ P+1)

= 0. Thus the lemma holds.

2 -t. + 1is not a release time fat;, and PI;(¢. + 1) has continuously been pro-
cessed from its release.

Letr; + k. x P, be its release date. The®CT;(t. + 1) =t.+ 1 - (r; + k. x P).
And we obviously hav&kCT(t.+P+1) < (t.+ P +1)-{; + P +k, x P;). Thus,
RCT;(t. + P +1) < RCT;(t. + 1). So the lemma.

3 -t.+ 1is not a release time fat;, andr; has not been continuously processed
from its released, but has been preempted at some pointef biy some tasks
with highest priorities.

In order to deal with that case, we introduce some furtheniiefins.

Definition 7 (1) Atime tis called @reemption point if there exists at least one

pending task which is not processed during slot t.
(2) Lettbe a premption point.

13



Its preemption contextis the tuple Ctx(t) =€;,, 7i,, . . ., 7, list) such that:
® T, ,Ti,...,T;, areprocessed attime t.
e listis the set of the pending but not processed tasks at time t

According ot the definition, if t is a preemption point and @xxs context, Ctx(t).list

is non empty. Furthermore, 1, is a task in Ctx(t).list, tasks;, , for j =1, .., m have
higher priority than task;.

Let (tp1, tpo. . . ., tpy) denotes the increasing sequence of preemption pointdwhic
occur before,.. Notice that, since. is an idle slot, it cannot be a preemption point.
We now prove that a pending task which is not processed atttoaa neither be
processed attime t + P.

Lemma 8 Let tp be a preemption point ang a task in Ctx(tp).list. Themn, is not
processed attime tp + P, i.€),(tp + P) = 0.

PROOF. We prove the lemma by induction on the sequence of preempaonts.
| - Let tpl be the very first preemption poity,, and ¢;,, 7i,, . .., 7, , list;) itS
context. Letr; be any task iist;. We consider the next three cases:

Q) 7,7, ..., 7, have been released befarg. They have been continuously
processed (because they havec never been preempted)atreelighest pri-
orities thanry, thus, sincep; is the first preemption poinE I, (¢p,) is released
precisely atp,. Besides, we hav&C'T;, (tp.) > RCT; (tp, + P) (because
of the continuous processing af). Furthermore, since it is processed at time
tp1, 7;; does not have completed execution at titpg so it has neither com-
plete execution at timg&; + P. Thus tasks;; (j=1...m) are still pending at
timetp, + P, they have priority overy, thus7, cannot be processed at time
tp1 + P.

(2) Assume that some of the tasks are released beforg, and some other at
tp,. Tasks released g, are also released gi; + P. Letr;, be ataskreleased
beforetp,. It has been processed continuously from release time ¢ tso
we haveRC'T;, (tp:)(which is maximaly> RCT;, (tp: + P). Thus here again,
every tasks;; (j = 1..m) are still pending at tim&, + P, and we conclude as
for the previous case.

(3) Every tasks of the context @p, are released at timg;. They are thus also
released at timep; + P, and we conclude again in the same way.

Il - Assume the lemmato hold for i =1...s. We first prove thédwing corollary:

Corollary 9 Assume that, for any preemption poipte {tp;,tps,...,tps}, and
for any taskr, in Ctx(tp).list,O (tp+P) = 0 (i.e. lemma 8 holds fofip,, tps, . . ., tps}).
Then we have:

A -Vtp, (r <s),Vr; suchthatr; < tp, + 1, RCT;(tp, + 1) > RCT;(tp, + P + 1)

B -Vt < tpsy1, V7 suchthat; <t+ 1, RCT;(t+ 1) > RCT;(t+ P + 1)

14



Proof of the corollary

A - By assuption, each timeg is pending butidle at a timi,,, it is also idle one hy-
perperiod later. Sg; is idle at least as often between the releasB bftp, + P +1)
anditp, + P + 1 as between the release Bf;(¢p, + 1) andip, + 1. It follows that
RCT,(tp, +1) > RCT,(tp, + P + 1).

B - We notetr the release date d?/;(¢).

(1) If t+ 1is arelease date fof, we haveRCT;(t + 1) = 0 = RCT;(t+ P + 1)
(2) If t + 1 is not a release date for and 7; has been continuously processed
from ¢r up tot + 1, then RCT;(t + 1) is maximal, thusRCT;(t + 1) >

RCT(t+P+1).

(3) Elser; has been preempted at some points of timezhgbe the last preemp-

tion point before t{p, <t).

(@) Ift = tp, then we apply point I.

(b) If ¢ # tp, (tis thus not a preemption point) andif7;(¢ + 1) completes
at or beforet + 1, RCT;(t + 1) =C; > RCT,(t + P + 1).

(c) In the other cases, we hawe < tp, (else,r; would have been continu-
ously processed). From point I, we hakR€'T;(tp, + 1) > RCT;(tp, +
P +1). FurthermorePI;(t + 1) is continuously processed frofp, + 1
uptot+1. ThusW;(tp, +1,t+1) =t —tp, > Wi(tpy+P+1,t+P+1).
We then deduce the resuli.

Il - Consider the(s + 1) preemption pointp,; and its contexts;,, 7, . . ., 7.,
lists4+1). We use point B of corollary 9 with t #p,,; - 1, and a task;, of the
context oftp,,. We thus haveRCT;, (tps41) > RCT}, (tps+1 + P). As before,
we conclude that none of the tasks of the context;Qf ; can have completed
execution at timep, ., + P, so7, which has a lower priority cannot be processed
at that timed

We can now complete the proof of lemma 6. It corresponds tgdthet 11 of the
corollary, with s = f and k = i£; being the task of PT under consideration).

5 Not fully loaded processors

We now get rid of the fully loaded processors assumption,@nsider the case
U < m. There aré” x (m—U) cyclic processing time units each hyperperiod P. Let
k be equal taP x (m—U). We introduce further tasks{. 1, 742, - - -, Tu1x}, Called

idle tasks, with the following temporal parameters;; = 0,C,,.; = 1,D,,; =
P,.; = P. These tasks support processors cyclic idleness. Then suenastask
Taei (With 1 < ¢ < k) to have priority level i and the tasks with i < n to
have priority levels betweeh + 1 andk + n. Thus, the idle tasks have the lowest
priorities, according to the work conserving property oetixpriority scheduling.
Then we can apply the result of the fully loaded processagmse and the result

15



still holds.

6 Extensions and perspectives

Future works must address two issues. First, the resultsowvéog fixed-priority
scheduling strategies must be enlarged to other strategmesthen, it would be
helpful to determine an upper bound for the date of the baginaof the steady
state.

6.1 Other scheduling strategies

The proof in the complete idle slot case does not depend ochibgen scheduling
strategies. Thus it can be extended to any deterministicanservative strategies.
Only the partial idle slot case uses the fixed priority assionp And more pre-
cisely, it is used for proving lemma 8, which in turn was usegrove that a task
already released at time t can never have processed momespnog time units at
time t + P than at time t. We now examine the case of EarliestreaFirst and
Least Laxity First.

6.1.1 Earliest Deadline First

We first consider the earliest deadline first strategy: tloegssed tasks are those
with the nearest deadlines [18]. If we focus on our proof, \aa oote that it is
not necessary to link priorities to the tasks, but only tdanses, provided the
following property holds (which we call monotony propertigr any two tasks, say
71 andry, if PI,(t) have an higher priority tha® I,(t), then PI,(t + P) also have
an higher priority tharPI5(t + P). This property holds for ED, so does our result.
Furthermore, our result holds for any job-level dynamiopties strategy [8] which
obey the monotony property.

6.1.2 Least Laxity

Here, the running tasks are those with the lowest laxitiesevhe laxity is defined
by Lax(r;, t) = deadline ofPI;(t) - RCT;(t) [20]. We prove directly that a task
cannot have processed more execution time units at time tha® dt time t (t

being greater than its release time). That is to say, we ptate

Assume this result not to hold. We then deftgeas the smallest t such that there
exists some task such thatRC'T;(t) < RCT;(t + P) (with t> r;).
Let 7;, be such a task. We have

RCTZ‘O (to) < RCTZ'O (t() + P) (l)
RCTZ'O (tg - 1) - RCTZ'O (to + P - 1) (2)

16



We deduce from (1) thafy is not a release time for;, (else, we would have
RCT;,(t) = RCT,,(t, + P) = 0) andr, has been processed at tithe+ P - 1,
but not at time, - 1. We also deduce thag is not completed at timg, - 1. Thus,
because of conservatism, there are m tasks, says,, ..., 7;,, that are processed
at timet, - 1. Following the definition of,, we have

RCT; (to —1) > RCT;;(to + P — 1) 3)
And according to the LLF strategy, we have

Lax(7;;,t0) < Lax(7i,, to) 4)

Besides, from (2) we gédtaz(7;,,to + P — 1) = Lax(7;,,to) + P — 1. From (3)

we getLax(r;,,to + P — 1) < Laz(m;,, to) + P — 1. Combined with (4) it gives
Lax(7i;,to + P — 1) < Lax(7;,, to + P — 1). Then, thanks to determinism, tasks
Tiis Tins - - - » Ti, NAVE @QAIN priority over, at timet, + P. Thusr, cannot have been
processed at timg + P. So the contradiction. Thus, theorem 4 also holds for LLF
schedules.

6.1.3 Further investigations

Considering the cases where the theorem holds, and the éxaing scheduling
strategy for which it does not, we can underline the diffee=n In case of fixed-
priority assignments, of EDF and of LLF, one just have to krtbeir states to
decide which one of two tasks has priority over the other. \Alethis property

"local determinism”. In the case of the example of figure 4jdiag which of two

tasks has priority required the knowledge of the state ofwhele system. We
conjecture that our result holds for all local determimisitheduling strategies.

6.2 An upper bound far, ?

In the uniprocessor case, we have proven tha less than r + P [9]. For multi-
processor case, we have surprising results. Indeed, thisddwolds neither for ED
nor for LL. The two next examples give evidence of the lateuoance of the last
acyclic idle slot.

We first consider system S2 =<(5, 6, 11, 11), (0, 6, 11, 11)5 (O, 6, 11, 11),
;4 (3, 4, 11, 11)>. We compute the EDF schedule on the time iat¢dy 66], for 2
processors P1 and P2. It is given figure 6.

We note that the system is in the same state at times 55 anllesé,is an idle slot
at time 54 followed by 11 time units without idle slot, so tlehedule is cyclic only
from time 55. And we have 54 =r + 4P + 5.

If we consider the system S3 =<(225, 90, 161, 161); (115, 40, 161, 161);
(0, 72, 161, 161)14 (129, 120, 161, 161)>, again schedulted by EDF, we find the
last acyclic idle slot at time 7037 =r + 42P + 50.

So the last acyclic idle slot can be very delayed. And it seterbe difficult to find

17



pralolofolololulu i li i Tulolololoos i TuTuTuToTo oo aTu lu fu lu Ta [u]

p2[3[3[33]3]aalalalalolola3]ala5Talalalalolololala3]sTalalalafolala]o]
0 10 20 30 36

pi[2lolofslslalulaluluilulalolols a3l ulalalalalslolsl3l3l3[a T T T T T T 1 |

p2[3]3]3falalalalololofolola]3alalalalololololololslalalala[3T T T T T T ] |
36 40 50 ’JSS 66

last idle slot

Fig. 6. Schedule O1. The last idle slot occurs att=54 =r +4P + 5

an interesting upper bound in the general case.

As to LLF, we have the same problem. Consider system S4,X5 4, 11, 11),
75 (0, 6,11, 11)3 (4, 6, 11, 11);4 (3, 6, 11, 11)>. For the sake of determinism,
we adopt the following static rule when we have to chose ansengral tasks hav-
ing the same laxity: we chose the tasks with the least numWérget the schedule
O3 (figure 7). We havéTs3(25) = STs3(36) andSTs3(24) # STs3(35). So the

Pl 2|2|2|2|2|2|3|3|1|1|3|1|1|2|2|2|2|2|3|1|3|1|1|1|2|2|2|2|2|2|3|1|1|3|1|1 N

p2lolofolalsfalalalsalalslololalslalsalalalslalslolalalalslalalalalalsl2] |
0 10 20 |_425 30 36

last idle slot

Fig. 7. Schedule O3. The last idle slot occurs att=24=r+ P + 9.

schedule is cyclic from 25.

Another point must be underlined: it is not true that therstexa feasible schedule
if and only if there exists a feasible schedule on the timerirl [0, r + P]. As an
example, consider the system S5% €8, 3, 16, 16)7, (0, 3, 4,4),3 (2,9, 16, 16),
74 (4,1, 2, 2)>. The LLF-schedule in the interval [0, 24] is fib#s. Nevertheless a
temporal fault occurs at time 66 = R + 3P + 10.

As to the fixed-priority case, things seems to be differer@:made some exper-
imentations, using a configurations generator, and we afiay the last acyclic
idle slot before r + P. So we conjecture this result still Isdior fixed priorities.
Then simulating the system for P slots after the last acydlecslot still provides
an exact schedulability test, which can be helpful whena@efit conditions do not
hold. This is e.g. the case whéh= m (see figure 3) for fixed-priority scheduling.
And if our conjecture is true, the simulation won't exceed 2 x P slots.

18



7 Conclusion

Because it is mandatory for off line scheduling or for valida by simulation,
we have investigated the cyclicity problem for multipraa@ssystems. We have
first shown that neither the approach developed in the uogssor context nor the
results got in this context can be extended to the multimemecontext. We have
then considered independent tasks systems, and fixedtpsdneduling strategies.
We have derived from the observation of the processorsedkea characterization
of the beginning of the steady state: it corresponds to tlyggnbang of the first
interval of size P without acyclic idle slot. This result halso been proven for
EDF and LLF. But we also have shown that some deterministiccamservative
strategies do not meet this characterisation. We have ciomgzl that our result
holds for any locally deterministic and conservative schieg strategy. We also
have wondered whether there exists an upper bound for thdysstate beginning.
In uniprocessor context, this upper bound had been showa ¢gbal ta- + P. For
the sake of multiprocessor context, we made some experati@ms: in the fixed-
priority case, the steady state always started befare?, but for EDF and LLF, it
could start later. For the time, we don’t have any intergstionjecture, since this
date can be very late compared-te P. This will be one of our future investigation
fields.

References

[1] J. Anderson, P. Holman, and A. Srinivasan. Fair schedubf real time tasks on
multiprocessors. Handbook of scheduling : Algorithms, Models and Perfornganc
analysis pages 31.1-31.21, 2004.

[2] B. Andersson and J. Jonsson. Fixed-priority preemptiuttiprocessor scheduling: to
partition or not to partition. IfProceedings of the conference on Real-Time Computing
Systems and Applicationgages 337-346, December 2000.

[3] T.P. Baker. Multiprocessor edf and deadline monotomicesiulability analysis. In
Proceedings of the4!h IEEE Real-Time Systems Symposi2e03.

[4] T.P. Baker. An analysis of edf schedulability on a mulbgessor. Transactions on
Parallel and Distributed System$6(8):760—768, 2005.

[5] T.P. Baker. An analysis of fixed-priority schedulalyilion a multiprocessor.The
Journal of Real-Time Systen82:49-71, 2006.

[6] S.K.Baruah, N.K. Cohen, C.G. Plaxton, and D.A. Varvetopbrtionate progress : a
notion of fairness in resource allocatiollgorithmicg 15:600-625, 1996.

[7] G.C. Buttazzo.Hard Real-Time Computing Systenmsluwer Academic Publishers,
1997.

[8] J.Carpenter and all. A categorization of real-time nputicessor scheduling problems
and algorithms. Handbook of scheduling: Algorithms, Models and Perforneanc
Analysis 2003.

19



[9] A. Choguet-Geniet and E. Grolleau. Minimal scheduliépilnterval for real time
systems of periodic tasks with offset§heoretical of Computer Sciengeages 117—
134, 2004.

[10] M.L. Dertouzos and A.K.L. Mok. Multiprocessor scheitigl in hard real-time
environment.IEEE transactions on sofware Engineerjrip(12):1497-1506, 1989.

[11] M.R. Garey and D.S. Johnson. Schedulling tasks withundarm deadlines on two
processors. Journal of the Association for Computing MachineB8(3):461-467,
1976.

[12] J. Goossens, S. Funk, and A. Baruah. Priority-drivemedaling of periodic tasks
systems on multiprocessorghe journal of Real Time Systen26:187—-205, 2003.

[13] R. Graham. Bounds on the performance of schedulingristhges. In M. Frappier and
H. Habrias, editorsComputer and job shop scheduling thealghn Wiley and Sons,
1976.

[14] E. Grolleau and A. Choquet-Geniet.  Real-time schedulin multiprocessor
environment by means of Petri nelroceedings of RTS 200fages 189-206, 2001.

[15] R.M. Karp and V. Ramchandani. Parallel algorithms fosir@d-memory machines. In
J.V. Leuwen, editorAlgorithms and complexitypages 869-935. MIT press, 1990.

[16] G. Largeteau, D. Geniet, and E. Andres. Discrete gennagiplied in hard real-time
systems validation. IRroc. of12" Discrete Geometry for Computer ImagebNCS
3429, pages 23-33. Springer Verlag, 2005.

[17] J. Leung and J. Whitehead. On the complexity of fixeaiy scheduling of periodic
real-time tasksPerformance Evaluatigrpages 237-250, 1982.

[18] C.L. Liu and J.W. Layland. Scheduling algorithms for liprogramming in a hard
real-time environmentJournal of the ACM20(1):46-61, 1973.

[19] J. Liu and R. Ha. Efficient methods of validating timingnstraints. Advances in
Real-Time Systempages 199-223, 1995.

[20] A.K. Mok and M.L. Dertouzos. Multi processor schedglitn a hard real-time
environment. IrProc. of 7*" Texas Conference on Computer Systetf38.

[21] R.R Muntz and E.G. Coffman jr. Preemptive schedulingreél-time tasks on
multiprocessor systems. Journal of the association for computing Machinery
17(2):324-338, 1970.

[22] K. Ramamritham, J.A. Stankovic, and P. Shiah. O(n) dalieg algorithms for real-
time multiprocessor systemisiternational Conference on Parallel Processj@gl43—
153, 1989.

[23] J.A. Stankovic, M. Spuri, M. Di Natale, and G. Buttazzbmplications of classical
scheduling results for real time systeniSEE Computer28(9):16—-25, 1995.

[24] J. Xu. Multiprocessor scheduling of processes witheask times, deadlines,
precedence and exclusion relationdEEE Transactions on Software Engineering
19(2):139-153, 1993.

20



