
Finding cyclic behavior in multiprocessor real-time
scheduling

Annie Choquet-Geniet1
Laboratoire d’Informatique Scientifique et Industrielle

Université de Poitiers & E.N.S.M.A.
Téléport 2, Site du Futuroscope, F-86961 Futuroscope Chasseneuil Cédex

&

Sadouanouan Malo

Ecole Supérieure d’Informatique - Université Polytechnique de Bobo Dioulasso,
01 BP 1091 Bobo Dioulasso 01, Burkina Faso

Abstract

This paper concerns sets of periodic independent real-timetasks with hard deadlines, in a
multiprocessor context. We address the cyclicity problem for global multiprocessor schedul-
ing. Our aim is to prove the existence of a steady state after atranscient state in valid sched-
ules. This could be helpfull for performing exact schedulability tests as well as for the sake
of simulation. First, we underline the main differences between the uniprocessor and the
multiprocessor cases. Then we consider the case of fixed-priority scheduling strategies,
and finally, we extend our results to a wider class of scheduling algorithms. And finally, we
present some amazing results as to the date of the begining ofthe steady state.

Key words: Real-time systems, Scheduling, Multiprocessor Systems

1 author for all correspondance
Email addresses:ageniet@ensma.fr (Annie Choquet-Geniet),

sadouanouan.malo@laposte.net (Sadouanouan Malo).

Preprint submitted to Elsevier Science 10 November 2006

1 Introduction

1.1 The problem

The general use of multiprocessor architectures gave rise to many investigations in
the field of multiprocessor scheduling. For uniprocessor systems, scheduling has
been widely studied and many solutions have been proposed. However in the case
of the multiprocessor context it becomes very complex, and many questions still
remain to be answered. One of the most difficult questions concerns the existence
of a steady state, after the system loading phase. Solving the cyclicity problem im-
plies first to prove the occurrence of the steady state, and second to characterize the
moment at which it begins. This issue has been successfully addressed for unipro-
cessor systems [9]. The key point of the proofs is the analysis of the processor
activity which is closely related to the processor demand orbacklog (the sum of
the remaining processing times of pending tasks): the processor is shown to be idle
only if there are no pending tasks. Unfortunately, this result does not hold anymore
in multiprocessor context. This is due to the assumption that a task cannot run on
two different processors at the same time. Thus uniprocessor methods cannot be ex-
tended to multiprocessor systems. The problem must be considered in a completely
new way. The aim of this paper is to provide a first approach. Since the problem
turns out to be very intricate, we have restricted ourselvesto sets of independent
periodic hard real-time tasks, with offsets. Furthermore we first focuse on global
fixed priority scheduling algorithms and then we extend the results to a wider class,
wich includes global EDF and global LLF scheduling.

1.2 Multiprocessor scheduling

Scheduling real-time applications on multiprocessor architectures can be solved
using either global or partitioned approaches. In partitioned methods, all instances
of a task run on the same processor. The problem is here to determine the most
suited allocation of tasks onto the different processors. Then each set of tasks is
scheduled on its own processor using a given uniprocessor scheduling algorithm.
In global methods, tasks can run at any time on any processor.So a task is never
definitively assigned to a given processor, it may start and resume on any one. Both
methods cannot be compared in the sense that there exist tasks systems that can be
scheduled when using one of the method, but not when using theother one. Fur-
thermore, the problem of deciding whether there exists a valid schedule for a given
tasks systems is NP-hard for both methods. See [2, 17] for a comparison between
both approachs and [23] for an overview on the complexity of the problem of the
existence of a valid schedule.
The cyclicity problem can easily be solved for partitioned scheduling. The solu-
tion is a straightforward extension of the uniprocessor result. Indeed, the schedule
computed on a processorPi (tasks are assumed to be independent) is cyclic from
a given timeti that can be deduced from the tasks parameters (see [9]) with ape-
riod equal to the least common multiple of the periods of the tasks assigned to this

2

processor. Therefore, the whole schedule is cyclic from thegreatestti, with period
equal to the least common multiple of the periods of all the tasks.
So we focuse on global scheduling, for wich the problem is still open. In [10] it has
been proven that no on-line optimal2 scheduling algorithm can exist, in the gen-
eral case. Nevertheless, there still exists an optimal polynomial algorithm, as well
as a necessary and sufficient schedulability condition, if only synchronous3 inde-
pendent tasks with implicit deadlines4 are considered [1,6]. Beside, many investi-
gations have been made on schedulability tests, leading to sufficient schedulability
condition (see e.g. [3–5,8,12]) but for asynchronous systems, there exists no exact
schedulability test, and only simulation can lead to conclusion when the sufficient
conditions are not met. Furthermore on-line scheduling formultiprocessor systems
comes up against the problem of scheduling anomalies, even if tasks are indepen-
dent: the scheduling strategy is validated using worst caseexecution times, however
if the actual computing time of some instance of a task is shorter, some temporal
faults may occur [13, 19, 23]. An alternative solution consists in considering off-
line scheduling: a schedule previously computed is stored within a table used by
the dispatcher. Since these strategies are clairvoyant5 their decisions are made ac-
cording to a complete knowledge of the systems, whereas on-line algorithms rely
on the instantaneous state of the system. Off-line strategies are thus more powerful
than on-line strategies. The counterpart is the rather highcost of off-line methods.
Indeed, they are often based on an exhaustive enumeration ofthe set of possible
solutions. Most off-line strategies that can be found in theliterature deal with non
periodic applications. Only finite sets of jobs, which may beindependent or not, are
scheduled possibly using some heuristics or branch-and-bound algorithms in order
to bound the cost of the method ([11,21,22,24]).
There are significantly less results about the off-line scheduling of periodic tasks
sets: methodologies based respectively on a geometrical and a Petri nets based mod-
eling of the application have been developped in [16] and [14], but these method-
ologies can only deal with synchronous systems.

1.3 Our contribution

A systematic investigation of the cyclicity problem in the multiprocessor context
would help to overcome the lack of off-line scheduling strategies for periodic asyn-
chronous applications. As a matter of fact, if the system is proven to behave cycli-
cally after the loading phase, and if the start datet of the cycle is characterized, we
can demonstrate that strategies developed for single-instance tasks can be enlarged
to periodic tasks sets. Only instances of periodic tasks of which arrival dates stand
beforet + P (whereP is the least common multiple of the periods) must be con-2 an algorithm is said to beoptimal if for any application, either it computes a feasible
schedule (a schedule where all the deadlines are met) or there exists no such schedule at all3 the release times are all the same4 due dates are equal to the periods5 the release dates of every instances of every tasks are known

3

sidered. A feasible schedule6 involving these instances would lead to an infinite
feasible schedule. Without such a cyclicity result, the size of the schedule that has
to be computed cannot be bounded. Consequently off-line methods would not work
either. Another interesting application of our result concerns simulation: simulat-
ing the behaviour of the application according to the chosenscheduling strategy
can be used either to analyse the performances of this strategy (see e.g. [2] which
compare global and partitioned fixed-priority scheduling for synchronous systems)
or to produce a validation test, when available schedulability tests cannot be used
(either a sufficient condition is not verified or there existsno such condition). The
main question is: how long must the simulation be carried on?The cyclicity result
would answer the question.
We consider sets ofn independent tasks, andm processors. We first investigate
the cyclicity properties of fixed-priority scheduling strategies. Our goal is to char-
acterize the beginning of the schedule cyclic part. We then enlarge the results to
a wider class of algorithms. The remainder of the paper is organized as follows.
In part 2, our assumptions and notations are stated. In part 3, we introduce partial
and complete acyclic idle slots, and show that the core results of the uniprocessor
investigation do not hold anymore under the multiprocessorassumption. In part
4, it is shown that the cycle corresponds to the first scheduleof size lcm7 of the
periods without any acyclic idle slots, if the system is fully loaded. In part 5, the
results are extended to not fully loaded systems. Finally, part 6 extends our results
to further algorihtms, including EDF and LLF, and presents the perspectives of our
researchs. In particular, we present some amazing examples, which show that that
for EDF and LLF, the beginning of the steady state can occur very late compared
to the uniprocessor bound(r + P).
2 System model

The PRAM model [15] withm processors is considered: processors are all iden-
tical, each has its own memory, but a common memory can be accessed by every
one, in constant time. We adopt the global assumption: a tasks is never definitively
assigned to a given processor, it can at any time resume on anyprocessor. We con-
sider applications composed ofn independent periodic tasks,�1(r1, C1, D1, P1),�2(r2, C2, D2, P2), . . . ,�n(rn, Cn, Dn, Pn) (in the sequel,E denotes the set {�1, �2,
. . . ,�n}). Each task is submitted to hard temporal constraints. We adopt the classical
modeling of tasks [18]. Each task�i is characterized by four temporal parameters
as described in figure 1: first release date or offsetri; worst-case execution timeCi;
relative deadlineDi, which corresponds to the maximal delay allowed between the
release and the completion of any instance of the task; and period Pi. Each task�i
consists of an infinite set of instances (or jobs), released at timesri + k � Pi, with
k 2 N . We assume that parallelism is forbidden (at any time, a taskcan run on at6 a schedule isfeasibleif all the deadlines are met7 lcm denotes the least common multiple

4

Fig. 1. Temporal modeling of a real time periodic task

most one processor) and that temporal parameters are known and deterministic. P
denotes thehyperperiod of the system defined as P = lcm(P1, P2, . . . ,Pn), and r is
the latest release time: r = Max{r1; : : : ; rn}.
The processorutilization factor characterizes the processors workload due to the

application. It is defined by U =
nPi=1 CiPi . If U > m (m being the number of proces-

sors), the system is over-loaded and temporal faults cannotbe avoided [7].
For any times t and t’, and for any task�i, the following terminology is used (see
figure 2):� PIi(t) is thepending instanceof task�i at time t (the last instance released at

or before t).� RCTi(t) is theremaining computation time for the instancePIi(t) of tasks�i.� RCT i(t) corresponds to theelapsed computation timeof the instancePIi(t).� W (t; t0) denotes thecumulated processed execution timebetween time t and
time t’.� Wi(t; t0) is theprocessed execution timefor task�i between time t and time t’.

Fig. 2. Pending instance, elapsed computation time and remaining computation time

Following the definitions,RCTi(t) + RCT i(t) = Ci. Furthermore, if processors are
never idle between t and t’, W(t, t’) = m� (t’- t).
For the sake of the instantaneous description of the system,the notions of state for
a task and for the whole system are introduced.

5

Definition 1 Thestate of a task�i at time t is defined by :sti(t) = 8>>><>>>:� (0, disti(t) = ri - t) if �i is not yet released (t <ri)� (RCTi(t), disti(t)) else, wheredisti(t) denotes the
remaining time until the next release.

Thestate of the systemS at time t is defined bySTS(t) = (st1(t), st2(t), . . . ,stn(t)).

In the further,slot t denotes the time interval [t, t+1]. A task isscheduled at time t
means that one processor processes it during slot t.
We recall thatE is {�1, �2, . . . ,�n}, let Pm(E) denotes the set of subsets ofE of size
less than or equal to m.
A scheduleon m processors is defined by O :N ! Pm(E) such that�i 2O(t), �i
is scheduled at time t.

LetOi be such thatOi(t) =

8><>:1 if �i 2 O(t)

0 else
.

A schedule isfeasibleif and only if 8i 2 1::n; ri�1Pt=0 Oi(t) = 0 and,8k 2 N� ,ri+(k�1)Pi+Di�1Pt=0 Oi(t) = ri+kPi�1Pt=0 Oi(t) = k � Ci.
A scheduling strategy isconservativeif a task never intentionally waits8 :j O(t) j= 8><>:j fi j sti(t) = (a,b) with a>0}j if j fi j sti(t) = (a,b) with a>0}j < m

m otherwise

A schedule isdeterministic if and only if scheduling decisions are the same each
time the states are the same :STS(t) = STS(t’)) O(t) = O(t’).
In the sequel, only conservative and deterministic schedules are considered. Fur-
thermore the allocation problem is not addressed.
A schedule iscyclic with period P from timet
 if and only if8 t� t
, O(t) = O(t+P).
If the schedule is deterministic, the cyclicity can be deduced from state examina-
tion, as stated by the following lemma.

Lemma 2 Let O be a deterministic schedule. If there existst0 such thatSTS(t0) =STS(t0 + P) and t < t0) STS(t) 6= STS(t + P) then O is cyclic with period P
from t0.
It comes from the fact that, thanks to determinism, O(t) depends only onSTS(t).8 If A is a set,j A j is the cardinality of A

6

3 Idle slots

First special attention is paid to processor activity. In the sequel, only feasible
schedules are concerned.

3.1 Acyclic idle time units

When the processor utilization factor is less thanm, processors are globally idle
for at leastP � (m�U) processing time units9 each hyperperiod. These idle time
units are calledcyclic since they occur regularly. If the processor utilization fac-
tor is equal tom, there are no such idle time units. But nevertheless, some further
idle time units may still occur in the transient state, as underlined by the following
example. We consider 2 processors and a system S1 composed of5 tasks : S1 =
{ �1(0, 1, 3, 3),�2(0, 1, 3, 3),�3(0, 4, 9, 9),�4(0, 2, 3, 3),�5(8, 2, 9, 9)}. Tasks are as-
sumed to be ordered in decreasing priority order (�1 having the highest priority and�5 the lowest). The schedule produced by the associated fixed-priority algorithm is
depicted on figure 3. The processors utilization factor equals to 2 (note that none of

Fig. 3. Schedule for system S1. An idle time unit occurs at time 7: one processor is idle at
time 7.

the sufficient fixed-priority schedulability condition canbe applied). There are no
cyclic idle time units, but nevertheless, an idle time unit occurs at time 7. Besides,
the system is in the same state at times 8 and 17 = 8 + P (STS1(8) = STS1(17)).
The schedule is thus cyclic from 8 (lemma 2). The idle time unit observed at time
7 never appears again. It is called anacyclic idle time unit.
In uniprocessor case, we have shown that the number and the location of the acyclic
idle slots depend only on the application, not on the scheduling strategy, provided
it is conservative [9]. Unfortunately, this does not hold for multiprocessors. Figure
4 presents another deterministic and conservative schedule (not provided by a fixed
priority strategy) again for tasks system S1.There are two idle time units, at times9 a processor processes one processing time unit during each slot. There are thus globallym� P processing time units each hyperperiod

7

2 and 5.
Another point had been deduced from uniprocessor investigations: it is always the

Fig. 4. Another feasible schedule for system S1. There are two idle time units, the last
one occurs at time 5 and the cycle begins at time 8:STS1(8) = STS1(17) butSTS1(7) 6=STS1(16).

case that the cyclic behaviour starts directly after the last acyclic idle time unit.
Here again, this properties cannot be generalized to multiprocessors, as shown by
figure 4: the cycle starts at time 8, but the last idle time unitoccurs at time 5. We
can note that the cycle cannot start at time 6, since between times 6 and 15, task�5 is never scheduled. This put an end to any attempt to generalize uniprocessor
results to multiprocessors.
These rather negative observations incited us to restrict our investigations field. In
paragraphe 4, we will thus consider only fixed-priority scheduling strategies.

3.2 Partial and complete idle slots

A slot t is calledidle slot if at least one idle time unit occurs during slot t. In
uniprocessor systems, there is no distinction between idleslots and idle time units.
For uniprocessors, idle slots implies no pending task, so noremaining processing
time, but this does not hold for multiprocessors. It just implies that there are less
thanm pending tasks. Two kinds of idle slots can be distinguished (see figure 5):� Complete idle slots: all processors are idle, so consequently there are no pending

tasks. There are thusm idle time units during this slot.� Partial idle slots: only q processors amongm (0 < q < m) are not idle, so there
areq pending tasks, and the cumulated remaining processing timeis not equal to
0. There arem� q idle time units during this slot.

We first prove that the number of acyclic idle time units is bounded.
Proposition 3 Let S be a fully loaded system of tasks, and O a feasible schedule.
Then the number of acyclic idle time units within O is bounded.

8

Fig. 5. Partial and complete idle slots, with two processors.

PROOF. Consider a time interval[0; r+ k� P ℄ (k 2 N and r = max{r1; : : : ; rn}).
A task�i completes at least10 b r�riPi
 + k�PPi times within this window. Thus, the
execution of task�i requires at least (b r�riPi
 + k�PPi)� Ci processing time units. It

follows that the processors have globally to execute at least (
nPi=1(b r�riPi
+ k�PPi)�Ci)

= (
nPi=1b r�riPi
)�Ci+m�k�P time units (remember that U = m). There are thus at

mostm� (r+k�P)� [(nPi=1b r�riPi
�Ci+m�k�P ℄ = m� r� (nPi=1b r�riPi
)�Ci
processing time units left for idle slots. This number does not depend on k, so this
bound hold for infinite schedules. Therefore, the number of acyclic idle slots is
bounded.2
4 Fully loaded processors and fixed-priority algorithms

We focuse on fixed-priority scheduling strategies. For the sake of determinism, we
assume that two different tasks have different priorities.And we assume the uti-
lization factor to be equal tom. There are thus no cyclic idle slots. Our aim is to
characterize the steady state start point, by means of the last acyclic idle slot. We
claim that the steady state corresponds to the first part of the schedule of size P
which contains no idle slots.

Theorem 4 In a fixed-priority schedule O, if there is an idle slot at timet
 followed
by P time units without idle slots, then the schedule obtained within the window
[t
+1, t
+P +1) defines the steady state of the application. This can be formally
expressed by:8><>:j O(t
) j< m8t 2 [t
 + 1; t
 + P ℄; j O(t) j= m) O is cyclic fromt
 + 1.

The remainder of this section consists of the proof of this result. We discuss on the
nature of the idle slot occurring at timet
 (either complete or partial). If no idle slot
occurs at all, we statet
 = -1.10 b x
 denotes the greatest integer less than or equal to x

9

4.1 Complete idle slot

We assume first the idle slot att
 to be complete. The task set can be decomposed
in three parts:� Re is the set of tasks for whicht
 + 1 is a (possibly first) release date:�i 2 RE , (t
 + 1� ri)mod Pi = 0 andri � t
 + 1� LR is the set of the late released tasks, whose offsets are greater thant
 + 1:�i 2 LR, ri > t
 + 1� AR is the set of the already released tasks. Their offsets are less thant
 andt
 +

1 is not a release date:�i 2 AR, (t
 + 1� ri)mod Pi 6= 0 andri � t

4.1.1 Processed execution time betweent
 + 1 andt
 + P + 1
The basis of the proof consists in the estimation ofW (t
+1; t
+ 1+ P), which is
the cumulated processed execution time betweent
 + 1 andt
 + P + 1. Because of
the assumption that no idle slot takes place between these two dates, this execution
time equals tom� P. The contribution of each set of tasks to the whole execution
time is computed as follows:� Load due to tasks in Re: each task�i within Re is processed exactlyPPi times,

thus Re generates a processor load equal to
P�i2Re PPi � Ci.� Load due to tasks in LR: each task�i within LR completesb t
+P+1�riPi
 in-

stances, and starts a last one. Furthermore, since�i is not yet released att
 + 1,
we have RCT(t
 + 1) = 0. Thus the cumulated processed time equals toP�i2LRb t
+P+1�riPi
 � Ci + RCT i(t
 + P + 1).� Load due to tasks in AR: each task�i within AR completesPPi � 1 instances,
and starts a last one. Furthermore, at timet
 + 1, there is no pending task left,
since the idle slot at timet
 is complete, andt
 +1 is not a release date for tasks
in AR. Thus,RCTi(t
 + 1) = 0 and the cumulated load coming from AR equals
to

P�i2AR(PPi � 1)� Ci + RCT i(t
 + P + 1).
We thus have the following load equation:W (t
 + 1; t
 + P + 1) = P�i2Re PPi � Ci+ P�i2LR(b t
+P+1�riPi
 � Ci +RCT i(t
 + P + 1))+ P�i2AR((PPi � 1)� Ci +RCT i(t
 + P + 1))= m� P
4.1.2 Late first releases
In order to refine the estimation of the processed execution time due to tasks with
late first releases, we must investigate their offsets. Lemma 5 states that these tasks
must start less than a period aftert
 + 1. Otherwise, some further idle slots would
occur aftert
.

10

Lemma 5 8�i 2 LR, we havet
 + 1 < ri < t
 + Pi + 1.

PROOF.
a - We first assume there existsi0 such thatri0 > t
 + Pi0 + 1. It follows thatb t
+P+1�ri0Pi0
 < PPi0 � 1. Besides, we know thatRCT i(t
 + P + 1) � Ci for

each task, andb t
+P+1�riPi
 � PPi � 1 for each task�i in LR but �i0 (becauset
 + 1 < ri) t
+1�ri+PPi < PPi). Thus we have:m� P = W (t
 + 1; t
 + P + 1)� P�i2Re[AR[(LR�f�i0 g) PPi � Ci + b t
+P+1�ri0Pi0
 � Ci0 +RCT i0(t
 + P + 1)< nPi=1 PPi � Ci � Ci0 + Ci0< m� P
So the contradiction.
b - Let us now assume there is somei0 such thatri0 = t
 + Pi0 + 1. We haveb t
+P+1�ri0Pi0
 = PPi0 � 1 andRCT i0(t
 + P + 1) = 0. This produces the same
inconsistency as in case a.2
4.1.3 Proof of the theorem
We can now estimate the contribution of each tasks subset, and complete the proof.
From lemma 5, we have for each task�i in LR b t
+P+1�riPi
 = PPi �1. We thus have:m� P = W (t
 + 1; t
 + P + 1)= nPi=1 PPi � Ci + P�i2LR[AR(RCT i(t
 + P + 1)� Ci)= m� P + P�i2LR[AR(RCT i(t
 + P + 1)� Ci)
Now, for each task�i in LR [AR, RCT i(t
 + P + 1) � Ci � 0. It follows thatRCT i(t
 + P + 1) = Ci. Thus8�i 2 LR [AR, RCTi(t
 + 1) = RCTi(t
 + P + 1) = 0
Besides �i 2 Re) RCTi(t
 + 1) = RCTi(t
 + P + 1) = Ci
Finally, for each task�i, we havedisti(t
 + P + 1) = disti(t
 + 1) sincedisti is
periodic, with periodPi. Thus for each task�i, we havesti(t
+P+1) = sti(t
+1).
From lemma 2, we conclude that O is cyclic fromt
 + 1.2
4.2 Partial idle slot

At time t
, q tasks are pending, with 0 < q < m. Without loss of generalities, we can
assume that tasks�1, �2, . . . , �q are processed at timet
. SetE is decomposed into
four subsets:

11

� PT is the set of the pending tasks at timet
 (PT = {�1, �2, . . . ,�q}).� Re, LR andAR are defined as in previous section, but considering only tasks
which do not belong to PT.

The contribution to the cumulated processed execution timebetweent
 + 1 andt

+ P + 1 of any task�i in PT is (PPi �1)�Ci+RCTi(t
+1)+RCT i(t
+P +1). We
consider the complete instances, plus what is still to be processed at timet
 + 1 plus
what has already been processed at timet
 + P + 1. The load equation becomes:W (t
 + 1; t
 + P + 1) = P�i2Re PPi � Ci+ P�i2PT(PPi � Ci)+ P�i2PT [RCTi(t
 + 1) +RCT i(t
 + P + 1)� Ci℄)+ P�i2LR(b t
+P+1�riPi
 � Ci +RCT i(t
 + P + 1))+ P�i2AR((PPi � 1)� Ci +RCT i(t
 + P + 1))= m� P
The remainder of the proof relies on the behaviour of tasks inPT. To adapt to
the partial idle time case the proof of the complete idle slotcase, we first prove that
a task in PT cannot have performed more computation at timet
 + P + 1 than at
time t
 + 1.

Lemma 6 8�i 2 PT;RCTi(t
 + 1) +RCT i(t
 + P + 1) � Ci.
This lemma can also be expressed as follows:8�i 2 PT;RCT i(t
 + P + 1) �RCT i(t
 + 1).
4.2.1 Proof of theorem
Assume lemma 6 to be established. The end of the proof is very close to the proof
of the complete idle slot case. In a first step we prove that lemma 5 holds in that
context to. The proof is quite the same as before: in the computation of the cumu-
lated processed time, the contribution of task�i from PT, consists ofPPi �Ci, which
is included in U, andRCTi(t
 + 1) + RCT i(t
 + P + 1)� Ci, which is less than
or equal to 0. The end of the proof is the same as in the previouscase.
We then have:m� P = W (t
 + 1; t
 + P + 1)= P�i2Re PPi � Ci+ P�i2PT(PPi � Ci + [RCTi(t
 + 1) +RCT i(t
 + P + 1)� Ci℄)+ P�i2LR[(PPi � 1)� Ci +RCT i(t
 + P + 1)℄+ P�i2AR[(PPi � 1)� Ci +RCT i(t
 + P + 1)℄

12

= m� P+ P�i2PT(RCTi(t
 + 1) +RCT i(t
 + P + 1)� Ci)+ P�i2LR(RCT i(t
 + P + 1)� Ci)+ P�i2AR(RCT i(t
 + P + 1)� Ci)
It follows thatP�i2PT(RCTi(t
 + 1) +RCT i(t
 + P + 1)� Ci)+ P�i2LR(RCT i(t
 + P + 1)� Ci)+ P�i2AR(RCT i(t
 + P + 1)� Ci)= 0
Now we have:� 8�i 2 PT , RCTi(t
 + 1) +RCT i(t
 + P + 1)� Ci � 0 (from lemma 6).� 8�i 2 LR [AR, RCT i(t
+P +1)�Ci � 0 : an instance cannot process more

than the global execution time.
Thus, each term of the previous sum is negative and the sum equals to 0. It follows
that� 8�i 2 PT , RCTi(t
 + 1) +RCT i(t
 + P + 1)� Ci = 0� 8�i 2 LR [AR, RCT i(t
 + P + 1)� Ci = 0.
And we conclude as in the case of a complete idle slot.2
4.2.2 Proof of the lemma
The key lemma (lemma 6) must now be proven. Let�i be any task in set PT. We
must consider three cases:
1 - An instance of�i is released at timet
 + 1.
ThenRCTi(t
+1) = Ci, t
 + P +1 is also a release time for�i, soRCT i(t
+P+1)
= 0. Thus the lemma holds.
2 - t
 + 1 is not a release time for�i, andPIi(t
 + 1) has continuously been pro-
cessed from its release.
Let ri + k
 � Pi be its release date. ThenRCT i(t
 + 1) = t
 + 1 - (ri + k
 � Pi).
And we obviously haveRCT i(t
+P +1) � (t
 + P + 1) - (ri + P +k
�Pi). Thus,RCT i(t
 + P + 1) � RCT i(t
 + 1). So the lemma.
3 - t
 + 1 is not a release time for�i, and�i has not been continuously processed
from its released, but has been preempted at some points of time, by some tasks
with highest priorities.
In order to deal with that case, we introduce some further definitions.

Definition 7 (1) A time t is called apreemption point if there exists at least one
pending task which is not processed during slot t.

(2) Let t be a premption point.

13

Its preemption context is the tuple Ctx(t) = (�i1 ; �i2 ; : : : ; �im, list) such that:� �i1 ; �i2; : : : ; �im are processed at time t.� list is the set of the pending but not processed tasks at time t.

According ot the definition, if t is a preemption point and Ctx(t) its context, Ctx(t).list
is non empty. Furthermore, if�k is a task in Ctx(t).list, tasks�ij , for j =1, .., m have
higher priority than task�k.
Let (tp1; tp2; : : : ; tpf) denotes the increasing sequence of preemption points which
occur beforet
. Notice that, sincet
 is an idle slot, it cannot be a preemption point.
We now prove that a pending task which is not processed at timet can neither be
processed at time t + P.

Lemma 8 Let tp be a preemption point and�k a task in Ctx(tp).list. Then�k is not
processed at time tp + P, i.e.Ok(tp + P) = 0.

PROOF. We prove the lemma by induction on the sequence of preemptionpoints.
I - Let tp1 be the very first preemption pointtp1, and (�i1 ; �i2; : : : ; �im , list1) its
context. Let�k be any task inlist1. We consider the next three cases:

(1) �i1 ; �i2 ; : : : ; �im have been released beforetp1. They have been continuously
processed (because they havec never been preempted), they have highest pri-
orities than�k, thus, sincetp1 is the first preemption point,PIk(tp1) is released
precisely attp1. Besides, we haveRCTij (tp1) � RCTij (tp1 + P) (because
of the continuous processing of�ij). Furthermore, since it is processed at timetp1, �ij does not have completed execution at timetp1, so it has neither com-
plete execution at timetp1 +P . Thus tasks�ij (j = 1 . . . m) are still pending at
time tp1 + P , they have priority over�k, thus�k cannot be processed at timetp1 + P .

(2) Assume that some of the tasks�ij are released beforetp1 and some other attp1. Tasks released attp1 are also released attp1+P . Let �iu be a task released
beforetp1. It has been processed continuously from release time up totp1, so
we haveRCTiu(tp1)(which is maximal)� RCTiu(tp1+P). Thus here again,
every tasks�ij (j = 1..m) are still pending at timetp1 +P , and we conclude as
for the previous case.

(3) Every tasks of the context oftp1 are released at timetp1. They are thus also
released at timetp1 + P , and we conclude again in the same way.

II - Assume the lemma to hold for i = 1. . . s. We first prove the following corollary:

Corollary 9 Assume that, for any preemption pointtp 2 ftp1; tp2; : : : ; tpsg, and
for any task�k in Ctx(tp).list,Ok(tp+P) = 0 (i.e. lemma 8 holds forftp1; tp2; : : : ; tpsg).
Then we have:
A - 8tpr (r � s),8�i such thatri � tpr + 1, RCTi(tpr + 1) � RCTi(tpr + P + 1)
B - 8t < tps+1, 8�i such thatri � t + 1, RCTi(t+ 1) � RCTi(t+ P + 1)

14

Proof of the corollary
A - By assuption, each time�i is pending but idle at a timetpu, it is also idle one hy-
perperiod later. So�i is idle at least as often between the release ofPIi(tpr+P +1)
andtpr + P + 1 as between the release ofPIi(tpr + 1) andtpr + 1. It follows thatRCTi(tpr + 1) � RCTi(tpr + P + 1).
B - We notetr the release date ofPIi(t).
(1) If t+1 is a release date for�i, we haveRCTi(t+1) = 0 = RCTi(t+P +1)
(2) If t + 1 is not a release date for�i and �i has been continuously processed

from tr up to t + 1, thenRCTi(t + 1) is maximal, thusRCTi(t + 1) �RCTi(t + P + 1).
(3) Else�i has been preempted at some points of time. Lettpu be the last preemp-

tion point before t (tpu � t).
(a) If t = tpu then we apply point I.
(b) If t 6= tpu (t is thus not a preemption point) and ifPIi(t + 1) completes

at or beforet+ 1, RCTi(t + 1) = Ci � RCTi(t + P + 1).
(c) In the other cases, we havetr � tpu (else,�i would have been continu-

ously processed). From point I, we haveRCTi(tpu + 1) � RCTi(tpu +P + 1). Furthermore,PIi(t+ 1) is continuously processed fromtpu + 1
up tot+1. ThusWi(tpu+1; t+1) = t�tpu � Wi(tpu+P +1; t+P+1).
We then deduce the result.2

III - Consider the(s+1)th preemption pointtps+1 and its context (�j1 ; �j2 ; : : : ; �jm ,lists+1). We use point B of corollary 9 with t =tps+1 - 1, and a task�jk of the
context oftps+1. We thus haveRCTjk(tps+1) � RCTjk(tps+1 + P). As before,
we conclude that none of the tasks of the context oftps+1 can have completed
execution at timetps+1 + P , so�k which has a lower priority cannot be processed
at that time.2
We can now complete the proof of lemma 6. It corresponds to thepoint II of the
corollary, with s = f and k = i (�i being the task of PT under consideration).2
5 Not fully loaded processors

We now get rid of the fully loaded processors assumption, andconsider the caseU < m. There areP�(m�U) cyclic processing time units each hyperperiod P. Letk be equal toP�(m�U). We introduce further tasks {�n+1; �n+2; : : : ; �n+k}, called
idle tasks, with the following temporal parameters:rn+i = 0; Cn+i = 1; Dn+i =Pn+i = P . These tasks support processors cyclic idleness. Then we assume task�n+i (with 1 � i � k) to have priority level i and the tasks�i with i � n to
have priority levels betweenk + 1 andk + n. Thus, the idle tasks have the lowest
priorities, according to the work conserving property of fixed-priority scheduling.
Then we can apply the result of the fully loaded processors section, and the result

15

still holds.

6 Extensions and perspectives

Future works must address two issues. First, the results we got for fixed-priority
scheduling strategies must be enlarged to other strategies. And then, it would be
helpful to determine an upper bound for the date of the beginning of the steady
state.

6.1 Other scheduling strategies

The proof in the complete idle slot case does not depend on thechosen scheduling
strategies. Thus it can be extended to any deterministic andconservative strategies.
Only the partial idle slot case uses the fixed priority assumption. And more pre-
cisely, it is used for proving lemma 8, which in turn was used to prove that a task
already released at time t can never have processed more processing time units at
time t + P than at time t. We now examine the case of Earliest Deadline First and
Least Laxity First.

6.1.1 Earliest Deadline First
We first consider the earliest deadline first strategy: the processed tasks are those
with the nearest deadlines [18]. If we focus on our proof, we can note that it is
not necessary to link priorities to the tasks, but only to instances, provided the
following property holds (which we call monotony property): for any two tasks, say�1 and�2, if PI1(t) have an higher priority thanPI2(t), thenPI1(t + P) also have
an higher priority thanPI2(t + P). This property holds for ED, so does our result.
Furthermore, our result holds for any job-level dynamic priorities strategy [8] which
obey the monotony property.

6.1.2 Least Laxity
Here, the running tasks are those with the lowest laxities, were the laxity is defined
by Lax(�i, t) = deadline ofPIi(t) - RCTi(t) [20]. We prove directly that a task
cannot have processed more execution time units at time t + P than at time t (t
being greater than its release time). That is to say, we provethat:8 t, 8 �i , t � ri) RCT i(t) � RCT i(t + P)
Assume this result not to hold. We then definet0 as the smallest t such that there
exists some task�i such thatRCT i(t) < RCT i(t + P) (with t� ri).
Let �i0 be such a task. We haveRCT i0(t0) < RCT i0(t0 + P) (1)RCT i0(t0 � 1) = RCT i0(t0 + P � 1) (2)

16

We deduce from (1) thatt0 is not a release time for�i0 (else, we would haveRCT i0(t0) = RCT i0(t0 + P) = 0) and�0 has been processed at timet0 + P - 1,
but not at timet0 - 1. We also deduce that�0 is not completed at timet0 - 1. Thus,
because of conservatism, there are m tasks, says�i1 ; �i2 ; : : : ; �im that are processed
at timet0 - 1. Following the definition oft0, we haveRCT ij (t0 � 1) � RCT ij (t0 + P � 1) (3)

And according to the LLF strategy, we haveLax(�ij ; t0) � Lax(�i0 ; t0) (4)

Besides, from (2) we getLax(�i0 ; t0 + P � 1) = Lax(�i0 ; t0) + P � 1. From (3)
we getLax(�ij ; t0 + P � 1) � Lax(�ij ; t0) + P � 1. Combined with (4) it givesLax(�ij ; t0 + P � 1) � Lax(�i0 ; t0 + P � 1). Then, thanks to determinism, tasks�i1 ; �i2 ; : : : ; �im have again priority over�0 at timet0 + P. Thus�0 cannot have been
processed at timet0 + P. So the contradiction. Thus, theorem 4 also holds for LLF
schedules.

6.1.3 Further investigations
Considering the cases where the theorem holds, and the example of a scheduling
strategy for which it does not, we can underline the differences. In case of fixed-
priority assignments, of EDF and of LLF, one just have to knowtheir states to
decide which one of two tasks has priority over the other. We call this property
"local determinism". In the case of the example of figure 4, deciding which of two
tasks has priority required the knowledge of the state of thewhole system. We
conjecture that our result holds for all local deterministic scheduling strategies.

6.2 An upper bound fort
 ?

In the uniprocessor case, we have proven thatt
 is less than r + P [9]. For multi-
processor case, we have surprising results. Indeed, this bound holds neither for ED
nor for LL. The two next examples give evidence of the late occurrence of the last
acyclic idle slot.
We first consider system S2 = <�1 (5, 6, 11, 11),�2 (0, 6, 11, 11),�3 (0, 6, 11, 11),�4 (3, 4, 11, 11)>. We compute the EDF schedule on the time interval [0, 66], for 2
processors P1 and P2. It is given figure 6.
We note that the system is in the same state at times 55 and 66, there is an idle slot
at time 54 followed by 11 time units without idle slot, so the schedule is cyclic only
from time 55. And we have 54 = r + 4P + 5.
If we consider the system S3 = <�1 (225, 90, 161, 161),�2 (115, 40, 161, 161),�3
(0, 72, 161, 161),�4 (129, 120, 161, 161)>, again schedulted by EDF, we find the
last acyclic idle slot at time 7037 = r + 42P + 50.
So the last acyclic idle slot can be very delayed. And it seemsto be difficult to find

17

Fig. 6. Schedule O1. The last idle slot occurs at t = 54 = r +4P + 5.

an interesting upper bound in the general case.

As to LLF, we have the same problem. Consider system S4 = <�1 (5, 4, 11, 11),�2 (0, 6, 11, 11),�3 (4, 6, 11, 11),�4 (3, 6, 11, 11)>. For the sake of determinism,
we adopt the following static rule when we have to chose amongseveral tasks hav-
ing the same laxity: we chose the tasks with the least numbers. We get the schedule
O3 (figure 7). We haveSTS3(25) = STS3(36) andSTS3(24) 6= STS3(35). So the

Fig. 7. Schedule O3. The last idle slot occurs at t = 24 = r + P + 9.

schedule is cyclic from 25.

Another point must be underlined: it is not true that there exists a feasible schedule
if and only if there exists a feasible schedule on the time interval [0, r + P]. As an
example, consider the system S5 = <�1 (8, 3, 16, 16),�2 (0, 3, 4, 4),�3 (2, 9, 16, 16),�4 (4, 1, 2, 2)>. The LLF-schedule in the interval [0, 24] is feasible. Nevertheless a
temporal fault occurs at time 66 = R + 3P + 10.

As to the fixed-priority case, things seems to be different: we made some exper-
imentations, using a configurations generator, and we always find the last acyclic
idle slot before r + P. So we conjecture this result still holds for fixed priorities.
Then simulating the system for P slots after the last acyclicidle slot still provides
an exact schedulability test, which can be helpful when sufficient conditions do not
hold. This is e.g. the case whenU = m (see figure 3) for fixed-priority scheduling.
And if our conjecture is true, the simulation won’t exceedr + 2� P slots.

18

7 Conclusion

Because it is mandatory for off line scheduling or for validation by simulation,
we have investigated the cyclicity problem for multiprocessor systems. We have
first shown that neither the approach developed in the uniprocessor context nor the
results got in this context can be extended to the multiprocessor context. We have
then considered independent tasks systems, and fixed-priority scheduling strategies.
We have derived from the observation of the processors idleness a characterization
of the beginning of the steady state: it corresponds to the beginning of the first
interval of size P without acyclic idle slot. This result hasalso been proven for
EDF and LLF. But we also have shown that some deterministic and conservative
strategies do not meet this characterisation. We have conjectured that our result
holds for any locally deterministic and conservative scheduling strategy. We also
have wondered whether there exists an upper bound for the steady state beginning.
In uniprocessor context, this upper bound had been shown to be equal tor+P . For
the sake of multiprocessor context, we made some experimentations: in the fixed-
priority case, the steady state always started beforer + P , but for EDF and LLF, it
could start later. For the time, we don’t have any interesting conjecture, since this
date can be very late compared tor+P . This will be one of our future investigation
fields.

References

[1] J. Anderson, P. Holman, and A. Srinivasan. Fair scheduling of real time tasks on
multiprocessors. Handbook of scheduling : Algorithms, Models and Performance
analysis, pages 31.1–31.21, 2004.

[2] B. Andersson and J. Jonsson. Fixed-priority preemptivemultiprocessor scheduling: to
partition or not to partition. InProceedings of the conference on Real-Time Computing
Systems and Applications, pages 337–346, December 2000.

[3] T.P. Baker. Multiprocessor edf and deadline monotonic schedulability analysis. In
Proceedings of the24th IEEE Real-Time Systems Symposium, 2003.

[4] T.P. Baker. An analysis of edf schedulability on a multiprocessor. Transactions on
Parallel and Distributed Systems, 16(8):760–768, 2005.

[5] T.P. Baker. An analysis of fixed-priority schedulability on a multiprocessor.The
Journal of Real-Time Systems, 32:49–71, 2006.

[6] S.K. Baruah, N.K. Cohen, C.G. Plaxton, and D.A. Varvel. Proportionate progress : a
notion of fairness in resource allocation.Algorithmica, 15:600–625, 1996.

[7] G.C. Buttazzo.Hard Real-Time Computing Systems. Kluwer Academic Publishers,
1997.

[8] J. Carpenter and all. A categorization of real-time multiprocessor scheduling problems
and algorithms. Handbook of scheduling: Algorithms, Models and Performance
Analysis, 2003.

19

[9] A. Choquet-Geniet and E. Grolleau. Minimal schedulability interval for real time
systems of periodic tasks with offsets.Theoretical of Computer Science, pages 117–
134, 2004.

[10] M.L. Dertouzos and A.K.L. Mok. Multiprocessor scheduling in hard real-time
environment.IEEE transactions on sofware Engineering, 15(12):1497–1506, 1989.

[11] M.R. Garey and D.S. Johnson. Schedulling tasks with nonuniform deadlines on two
processors. Journal of the Association for Computing Machinery, 23(3):461–467,
1976.

[12] J. Goossens, S. Funk, and A. Baruah. Priority-driven scheduling of periodic tasks
systems on multiprocessors.The journal of Real Time Systems, 25:187–205, 2003.

[13] R. Graham. Bounds on the performance of scheduling algorithms. In M. Frappier and
H. Habrias, editors,Computer and job shop scheduling theory. John Wiley and Sons,
1976.

[14] E. Grolleau and A. Choquet-Geniet. Real-time scheduling in multiprocessor
environment by means of Petri nets.Proceedings of RTS 2001, pages 189–206, 2001.

[15] R.M. Karp and V. Ramchandani. Parallel algorithms for shared-memory machines. In
J.V. Leuwen, editor,Algorithms and complexity, pages 869–935. MIT press, 1990.

[16] G. Largeteau, D. Geniet, and E. Andres. Discrete geometry applied in hard real-time
systems validation. InProc. of12th Discrete Geometry for Computer Imagery, LNCS
3429, pages 23–33. Springer Verlag, 2005.

[17] J. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of periodic
real-time tasks.Performance Evaluation, pages 237–250, 1982.

[18] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard
real-time environment.Journal of the ACM, 20(1):46–61, 1973.

[19] J. Liu and R. Ha. Efficient methods of validating timing constraints. Advances in
Real-Time Systems, pages 199–223, 1995.

[20] A.K. Mok and M.L. Dertouzos. Multi processor scheduling in a hard real-time
environment. InProc. of7th Texas Conference on Computer Systems, 1978.

[21] R.R Muntz and E.G. Coffman jr. Preemptive scheduling ofreal-time tasks on
multiprocessor systems. Journal of the association for computing Machinery,
17(2):324–338, 1970.

[22] K. Ramamritham, J.A. Stankovic, and P. Shiah. O(n) scheduling algorithms for real-
time multiprocessor systems.International Conference on Parallel Processing, 3:143–
153, 1989.

[23] J.A. Stankovic, M. Spuri, M. Di Natale, and G. Buttazzo.Implications of classical
scheduling results for real time systems.IEEE Computer, 28(9):16–25, 1995.

[24] J. Xu. Multiprocessor scheduling of processes with release times, deadlines,
precedence and exclusion relations.IEEE Transactions on Software Engineering,
19(2):139–153, 1993.

20

