
Scheduling of real-time applications with variable utilization factor using a
PFair based aperiodic server

Annie Choquet-Geniet1
annie.geniet@univ-poitiers.fr

Christian Fotsing1
fotsingc@ensma.fr

Sadouanouan Malo1;2
sadouanouan.malo@ensma.fr1University of Poitiers. Laboratory of Applied Computer Science

1 Av. Clément Ader BP 40109-86961 Futuroscope Chasseneuil-France2Polytechnic University of Bobo Dioulasso. Information Technology High School.
01 BP 1091 Bobo Dioulasso 01

Abstract

We consider the scheduling problem for real time ap-
plications with variable processor utilization factor. They
are composed of a set kernel of periodic tasks and of a flow
of aperiodic tasks, all with firm deadlines. Periodic tasks
are scheduled according to a PFair policy. We propose an
efficient acceptance test for aperiodic traffic, which guar-
antees steady and predictable periodic scheduling, a very
small error rate and which has a low complexity. We then
compare its performances to the performances of chal-
lenger acceptance tests.

1 Introduction

We consider real-time applications composed of a set
periodic task kernel and of an aperiodic task flow. Periodic
tasks are mostly dedicated to control, e.g. temperature
acquisition in a nuclear station, robot’s trajectory com-
putation, processing of informations provided by a syn-
chronous link.... Aperiodic tasks arise as answers to ape-
riodic events: human interaction, alarm activation, error
detection.... We consider here only hard real time tasks.
Thus we deal with applications composed of n periodic
tasks�1,. . . ,�n and of aperiodic tasks. Both periodic and
aperiodic tasks are submitted to firm deadlines, by which
they must be completed, for safety reasons. E.g. a late
computed value can be obsolete, using it may be mislead-
ing and even dangerous.

One of the main challenge for system designer is to
guarantee that all deadlines will be met. This is the con-
cern of scheduling. Now, the architecture of the applica-
tion, due to aperiodic traffic, is variable, thus scheduling
must be adaptative, so that it can take at any time the ac-
tual processor workload into account. For periodic traffic,
the scheduling problem consists in defining a suited strat-
egy and to prove that all temporal constraints will be re-
spected. We consider here only global scheduling: tasks

can run at any time on any processor, they may start and
resume on any one. For aperiodic tasks, the problem con-
sists in defining an acceptance test which obeys the fol-
lowing criteria :

1. An accepted aperiodic task must complete at the lat-
est by its deadline.

2. The acceptance of a new aperiodic task must not lead
any periodic task to miss its deadline.

3. A new accepted task must not lead a previously ac-
cepted aperiodic task to miss its deadline.

This issue has already been studied for uniprocessor sys-
tems. One of the most effective solution consists in
scheduling tasks according to EDF [7, 8]: the processed
task has the nearest deadline. There is one single queue,
sorted in increasing order of deadlines, which contains pe-
riodic tasks as well as accepted aperiodic ones. The accep-
tance test is then very simple. It consists in considering
the aperiodic task as a new periodic one. In multiproces-
sor context, the most efficient scheduling strategy is PFair
scheduling [3, 4]. Furthermore, the feasability test con-
sists only in verifying if the utilization factor is at most
equal to the number of processors. Here again, a solution
for the acceptance test is to consider each new aperiodic
tasks as a new periodic one, and to use the global feasabil-
ity test. This method has nevertheless two drawbacks.
Firstly, periodic tasks are not steadily scheduled, there
may be rather much jitter, and it is not possible to pre-
dict when periodic tasks will occur if the aperiodic flow is
not known. Secondly, since each aperiodic task is consid-
ered by the test as a periodic one, it is supposed to require
possibly much more slots than effectively necessary (sev-
eral instances may be considered). The test is therefore
sometimes pessimistic. Our aim is to propose a method
which guarantees a planned, steady and fair periodic pro-
cessing, in association with an acceptance test which con-
siders only the required slots, so which is less pessimistic

than the global PFair acceptance test. The accepted ape-
riodic queue is sorted according to EDF. Aperiodic tasks
are scheduled in background: they use the idle time units
left by the periodic tasks. For efficiency reasons, the PF
schedule can be computed before run-time, since it will
never be affected by the aperiodic traffic. Then only the
acceptance test and the aperiodic task scheduling run on-
line. This will reduce the overhead due to scheduling. We
have chosen to PF strategy for two reasons :

1. PF is optimal in multiprocessor context, and the fea-
sibility test is very simple.

2. PF enables to predict with a complexite O(1) the
number of idle time units within any temporal inter-
val, with only a very small error. Our acceptance test
relies on this predictability property.

The paper is organised as follows. In part 2, we intro-
duce the task model and our notations. We also briefly
present PFair scheduling. In part 3, we discuss the lo-
cation of the idle time units. In part 4, we describe our
acceptance test. And finally, in part 5, simulation results
are presented, which illustrate the performances of our
method.

2 Task model and PFair scheluling

We consider multiprocessor systems, with m proces-
sors. For any realx, bx
 denotes the greatest integer less
than or equal tox anddxe the smallest integer greater than
or equal tox.

2.1 The task model
We consider applications composed ofn independent

synchronous periodic tasks with implicit deadlines�i(Ci,Pi). Each task is submitted to hard temporal constraints.
We adopt the classical modeling of tasks [7]. Eachperi-
odic task �i is characterized by its worst-case execution
time Ci and its periodPi, and consists in an infinite set
of instances (or jobs), released at timesk � Pi, with k2 N. At each release, the precedent instance must have
complete execution (deadlines are implicit). We assume
parallelism to be forbidden: at any time, a task can run on
at most one processor. Finally, we suppose that temporal
parameters are known and deterministic.
In the sequel, P denotes thehyperperiod of the system
defined as P = lcm(P1, P2, . . . ,Pn).
The processorutilization factor characterizes the pro-
cessor workload due to the application. It is defined by

U =
nPi=1 CiPi . If U > m (m being the number of pro-

cessors), the system is over-loaded and temporal faults
cannot be avoided [6]. In the sequel, we assume thatm � 1 < U < m.The case U = m is avoided because
we need to dispose of some processor capacity for aperi-
odic traffic.
In the further,slot t denotes the time interval [t, t+1)1. A

1[a, b) =fu j a� u< bg

task isscheduled at time t means that one processor pro-
cesses it during slot t.
A schedule is defined by S :N�f1; : : : ; ng ! f0; 1g such

that
nPi=1S(t; i) � m. We have S(t,i) = 1, �i is scheduled

at time t, for i = 1 . . . n and if
nPi=1S(t; i) = k < m then

(m - k) idle time units occur at time t. Anidle time unit
corresponds to idleness for one processor.

LetSi be such thatSi(t) =

�
1 if S(t; i) = 1
0 else

.

For any times t and t’, and for any task�i, we defineWi(t; t0) as theprocessed execution time for task�i be-

tween time t and time t’. We haveWi(t; t0) = t0�1Pu=t Si(u).
An aperiodic task�s consists in an arrival timers, a

worst case execution timeCs and a relative deadlineDs.
Its deadline isds = rs +Ds. For any aperiodic task�si ,RCTsi(t) denotes theremaining computation time of�si at time t:RCTsi(t) = Csi � t�1Xu=rsi Ssi(u) = Csi �Wsi (rsi ; t)
.

2.2 PFair scheduling
PFair scheduling strategies have been proposed in the

multiprocessor context, for which they are very efficient
[4]. The basic idea is that each task is processed at “reg-
ular rate”. This means that at each time t, the number of
processed slotsWi(0; t) is proportionnal to t, with coeffi-
cientui = CiPi . But, since the number of processed slots
at time t must be integer,ui � t is approximated by eitherbui � t
 or dui � te.
This is formally expressed by the following definition:
A schedule isPFair iff we have:8t 2 N;�1 < ui � t� t�1Pj=0Si(j) < 1.

Figure 1 illustrates PFairness. For any task�i, the bro-
ken lineWi must remain strictly between both limit linesW� = ui � t� 1 andW+ = ui � t+ 1.

At any time t, a task is said to be:� ahead if Wi(t) is above the ideal lineWi(t) = ui�t.
It has been processed a little bit more than in the ideal

case. We have:ui � t� t�1Pj=0Si(j) < 0.� punctual if it has been processed for exactlyui � t
slots. We have:ui � t� t�1Pj=0Si(j) = 0.� behind if Wi(t) is under the ideal lineWi(t) = ui�t. It has been processed a little bit less than in the

ideal case. We have:ui � t� t�1Pj=0Si(j) > 0.

PFair strategies follow the global frame described below.
1 - The task set is partitioned into three sets.

Figure 1. PFair and non PFair executions:
PFair execution curve must be located be-
tween both dotted lines� the Urgent set collects all the behind tasks which

would be late (under the lower bound) if they were
not processed at time t. These tasks must be pro-
cessed at time t, else the PFairness condition would
be violated.� theTnegru set collects the ahead tasks which would
be in advance (over the upper bound) if they were
processed at time t. These tasks must not be pro-
cessed at time t, else the PFairness condition would
be violated.� the Contending set collects the other tasks: the
PFairness won’t be violated neither if they are pro-
cessed nor if they are not.

2 - Urgent tasks are executed.
3 - Contending tasks are sorted. The m -j Urgent(t) j
first contending tasks are processed2.
The different status of tasks is illlustrated by figure 2.
Note that usually, PFair strategies are depicted by means
of feasibility windows of unitary subtasks. Feasability
windows are deduced from the lag inequations. Figure 3
illustrates the windows construction and figure 4 presents
an example.
Several PFair versions have been proposed in the littera-

ture (PF, PD andPD2 [4, 5, 1, 2]). These algorihms differ
in the way they select tasks to process among the contend-
ing tasks. The remainder of the paper holds whatever the
chosen PFair algorithm. These scheduling strategies are
very efficient, as stated in theorem 1.

Theorem 1. [4] The scheduling algorithms PF, PD andPD2 are optimal for systems of periodic synchronous in-
dependent tasks with implicit deadlines in multiprocessor
context. Moreover, the system is feasible if and only ifU � m where m is the number of processors.

2j A j denotes the cardinality of set A

Figure 2. Tnegru, contending and urgent
tasks

Figure 3. Feasibility windows: construction

Figure 4. Feasibility windows: example

For multiprocessor systems, Pfair scheduling strategies
are the only known optimal strategies. In the sequel, we
assume periodic tasks to be scheduled according to a PFair
strategy.

2.3 The aperiodic queue
We suppose that the operating system maintains an

aperiodic queue as shown on figure 5. The periodic sched-
ule can either be computed on line, or, for more efficiency,
have been previously computed. In this case, the sched-
uler disposes of the periodic schedule. We furthermore

Figure 5. The aperiodic queue

assume the aperiodic queue to be sorted according to EDF
(Earliest Deadline First [7]), i.e. in increasing order of
deadines. The task with the neartest deadline is processed
first. We adopt the background approach: aperiodic tasks
are scheduled when some processors have no periodic task
to process.

3 Idle time units

Aperiodic tasks can be scheduled each time an idle
time unit occurs. The efficiency of our method is based
on the predictability of the idle time unit location. For
that purpose, we require them to be distributed according
to PFair rule. We first have to discuss the way idle time
units are supported: they can either take place when no
periodic task can be processed, or they can be modeled by
a specific task, the idle task. We investigate their location
and numbering in both cases.

3.1 Idle time units management
We consider systems with m processors and assume the

utilization factor of the application to verifym � 1 <U < m. The processor is thus idleP � (m � U) slots
each hyperperiod. The simpler way is to schedule idle
time units in background, i.e. to schedule idle time units
each time there is less than m ready tasks to process. Note
that here, the notion of ready task differs from the classi-
cal one: a task is ready if it hasn’t completed execution,
and if its execution won’t lead the task to violate the PFair
condition. We can adopt this solution only if we can guar-
antee a PFair-like distribution of idle time units. This is
of matter for us since we want to count on-line the num-
ber of idle slots within any time interval, what we can do

only if they are PFair distributed. Unfortunately, this is
not the case, as illustrated by figure 6. We have consid-
ered a system of 5 processors, and an application com-
posed of 16 tasks: (�1 = <14, 60>, �2 = <26, 300>,�3
= <14,50>,�4 = <59, 150>,�5 = <48, 100>,�6 = <87,
300>,�7 =<0, 120>,�8 =<9, 20>,�9 =<63, 300>,�10
= <82, 200>,�11 = <50,200>,�12 = <76, 300>,�13 =<4, 10>,�14 = <16, 100>,�15 = <9, 20>,�16 = <65,
300>). We have U = 4.647, P = 600 and there are 212
idle time units.A PFair distribution of the idle slots guar-
antees that at any time t, eitherb 212600 � t
 or d 212600 � te idle
times units have taken Figure. place 6 shows the distribu-
tion of the idle time units for the 80 first slots. We first
note that the background idle time distribution doen’t re-
spect PFairness. E.g., at time 10, according to PFairness,
either 3 or 4 idle time units should have occur, but no one
has still occured. Furthermore, we can see that several
idle time units may occur simultaneously. In such a case,
even if enough idle time units are available for an ape-
riodic demand, we cannot conclude (i.e. guarantee that
the aperiodic demand can be processed on time). Indeed,
the demand may come from one single aperiodic task, and
an aperiodic task cannot run on several processors at the
same time. Thus the number of idle time units it actually
may use can be smaller that the required number.
We thus introduce a further task, calledidle task defined
by �0 =< P � (m�U); P > (remember that we have as-
sumedm� 1 < U < m). The system is thus fully loaded
(U = m) but is still PFair feasible according to Baruah’s
theorem. By construction, an idle time unit takes place
each time the idle task is processed. Thus, since�0 is
scheduled by a Pfair algorithm, idle time units are PFairly
distributed, and because a task cannot be parallelized, sev-
eral idle time units can never occur simultaneously.

Figure 6. Idle time units repartition for a
multiprocessor system: some occur simul-
taneously

From now on, we adopt the idle task solution.

3.2 Idle time units location
Let us consider a time interval [t, t’]. We focuse on the

idle task�0. Beause of PFairness, we have:�bu0 � t
 �W0(0; t) � du0 � tebu0 � t0
 �W0(0; t0) � du0 � t0e

We can deduce:bu0 � t0
 � du0 � te �W0(t; t0) � du0 � t0e � bu0 � t

We thus dispose of a minimal value for the number of
idle time units within any time interval. Furthermore, the
difference between the upper and the lower bounds is at
most equal to 2. Thus, the rate of non counted idle time
units will be rather small, provided considered intervals
are wide enough. In the sequel, we denote by MW(t, t’)
this minimal value.

4 The acceptance process

We assume periodic tasks to be scheduled by means of
a PFair strategy, and aperiodic tasks to be supported by the
idle task. The idle task acts as a PF aperiodic server. Each
time the server is scheduled, if there is no pending aperi-
odic task, the slot is lost, i.e. a real idle time unit occurs.
We first present the principle of the acceptance test, and
we then give some indications about its implementation.

4.1 The acceptance test
Let (�s1 ; �s2 ; : : : ; �sk) be the set of the pending ac-

cepted aperiodic tasks. We assume the set to be ordered in
increasing deadlines order. Let�s = (t; Cs; Ds) be a new
aperiodic task with arrival time t. We denoteds its dead-
line (ds = t +Ds). We haveds1 < ds2 < ::: < dsk.The
acceptance test relies on the approximation of the number
of idle slots within a time interval by its minimal value. It
runs as follows:� if dsk � ds

The new aperiodic task has a greater deadline than
any pending aperiodic task, so it won’t have any im-
pact on their execution. The decision depends on the
number of idle time units between t andds: either
there are enough ones to process�s after completion
of all pending aperiodic tasks and beforeds, then the
task can be accepted or the number of remaining idle
time units after completion of the pending aperiodic
tasks and beforeds is less thanCs, then the task must
be rejected. Thus the task is accepted if and only ifW M(t; ds) � kXi=1 RCTsi(t) + Cs� If 9 j 2 1 : : : k � 1 such thatdsj � ds < dsj+1
Thejth first aperiodic tasks won’t be affected by the
execution of�s, but should�s be processed, then it
will delay the completion of�sj+1 ; : : : ; �sk . We must
then make sure that this delay will not cause the tem-
poral failure of some of them. We therefore verify:

1. �s can meet its deadline:W M(t; ds) � jXi=1 RCTsi(t) + Cs

2. each delayed task will still be processed on
time: 8p 2 j + 1 : : : k;W M(t; dsp) � pXi=1 RCTsi(t) + Cs� If ds < ds1 . Each pending aperiodic task will be

affected by the execution of�s. Thus we must verify
that

1. W M(t, ds) � Cs i.e. the new task can respect
its temporal contraint,

2. each delayed task will still be processed on
time:8p 2 1 : : : k;W M(t; dsp) � pXi=1 RCTsi(t)+Cs

We can note that we never have to consider periodic tasks,
which simplifies the decision process.

4.2 Implementation
We first compute the periodic schedule before run-

time. It is computed on the interval [0, P] and then it-
erated. Only the acceptance test and the aperiodic sched-
uler are processed at run-time. Each time the idle task is
planned to be processed, the scheduler is invocated, and if
the aperiodic queue is not empty, the first aperiodic task
is processed. For the sake of the acceptance test, we must
maintain the remaining processing times of every pending
aperiodic tasks. Thus, we maintain a list of aperiodic ac-
cepted tasks sorted in increasing deadline order. For theith task, we store: - its deadlinedsi , - its remaining com-
puting timeRCTsi , - the cumulated remaining aperiodic
processing time that must be completed at the latest atdsi
(see table 1).

id s1 s2 . . . sk
dl ds1 ds2 . . . dsk
RCT RCTs1 RCTs2 . . . RCTsk
C RCT RCTs1 RCTs1 +RCTs2 . . . RCTs1+� � �+RCTsk

Table 1. Aperiodic table used by the accep-
tance algorithm

The acceptance algorithm is then

Function Accept
inputu0: float -- utilization factor of the idle task�0
T -- accepted aperiodic table
k : integer -- number of already accepted ape-

riodic tasks� = (t, C, D) -- new aperiodic task
output

accepted: boolean
-- true if the task is accepted, false else

d = t + D
M_W :=b u0 � d
 � d u0 � t e
If T is empty then
-- there is no aperiodic pending task

accepted :=(M_W � C)
end if
elsif d < T(1).dl then
-- the new task will postpone comple-
tion times of all pending aperiodic tasks
If M_W � C

then accepted := true
for i in 1..k loop

if b u0 � T (i):dl
 � d u0 � t e< C + T (i):C RCT
then accepted := false

end if
end loop
else accepted := false

end if
elsif T(k).dl � d then
-- the new task will have no incidence on other aperi-
odic tasks
If b u0 � d
 � d u0 � t e� C + T (k):C RCT

then accepted := true
else accepted := false

end if
else i:= 1
While T(i+1).dl � d loop

i := i+1
end loop

-- we havedi � d � di+1
if b (u0 � T (i):dl
 � d u0 � t e� C + T (i):C RCT

then accepted := true
for j in i+1..k loop

if b u0 � T (j):dl
 � d u0 � t e< C + T (j):C RCT
then accepted := false

end if
end loop

else accepted := false
end if

end if
return accepted

The list of pending acepted aperiodic tasks must be up-
dated after acceptation of a new task. We use an insertion
function Insert ((dl, RCT, CRCT), j, T) which insert the
tuple (dl, RCT,CRCT) in position j in the list T.

Function insert_task
input
T -- pending accepted aperiodic tasks

� = (t, C, D) -- new aperiodic task
Precondition
Task � is accepted
output
the updated list of accepted tasks

d = t + D
If T is empty then
insert((d, C, C), 1, T)

elsif d < T(1).dl then
for i in 1..k loop
T(i).C RCT := T(i).C RCT + C

end loop
insert((d, C,C), 1, T)

elsif T(k).dl � d then
insert((d, C, T(k).C RCT + C), k+1, T)

else i:= 1
While T(i+1).dl � d loop
i := i+1

end loop
for j in i+1..k loop
T(j).C RCT := T(j).C RCT + C

end loop
insert((d, c, T(i).C RCT + C), i+1, T)

end if
return(T)

Finally, the global scheduling algorithm is the follow-
ing. We use a deletion function del(T, k) which delete thekth item of table T.

Function schedule
input
T -- pending accepted aperiodic tasks
L -- list of the new arrived aperiodic tasks
t -- current time
output
updated list of pending aperiodic tasks
identity of the processed task

while L is not empty loop� := head(L)
unqueue(L)
If accept(u0,T,�) then

insert_task(T, �)
end if

end loop
if T is not empty then

id :=T(1).id
T(1).RCT := T(1).RCT - 1
for i in 1..k loop

T(i).C RCT := T(i).C RCT - 1
end loop
If T(1).RCT = 0 then del(T, 1)
end if

end if;
return(id, T)

5 Performance analysis

We first evaluate the complexity of our method. Since
the periodic schedule is never revised, the periodic sched-
ule has to be computed only once, before run-time for ef-
ficiency reasons, on the interval [0, P]. Then, computation
of the number of idle time units within any time interval
is done in O(1). Thus, the acceptance test requires O(k)
additions and O(k) comparisons, where k is the number
of pending aperiodic tasks. Updating the list of accepted
tasks also runs in O(k), so does the function Schedule.
The second point of interest is to compare our method to
previously existing methods and to optimal strategies. The
greatest challenger for our method consists in scheduling
at run-time together periodic and aperiodi tasks accord-
ing to PFair policy. The acceptance test is very simple:

if
nPi=1 CiPi + kPj=1 CsjDsj + CD � m then the task (t, C, D) is

accepted else it is rejected. We call this method thejoined
PFair method. Note that it considers each aperiodic task
as a periodic task. Therefore, more slots are reserved for
each aperiodic task than required (corresponding to the
different instances supposed to occur within the next hy-
perperiod). Moreover, periodic tasks must be scheduled
on line, and the periodic schedule is not steady. Because
of a more precise idle time unit reservation, our method
will produce better results, in the sense that more aperi-
odic traffic will be accepted. In order to prove it, some
simulations have been carried out. We first create sam-
ples of periodic task sets. A sample S(U,m) consists in
500 task sets, where m is the number of processors and is
characterized by:� the utilization factor of any task set of the sample

must belong to the interval [m�1+ i10 ,m�1+ i+110],
for i in 2. . . 9.� periods are chosen according to Goossens’ method
[9].� WCET Ci are chosen uniformly within the interval
[1, Pi2]

For each task sets, we then generate a aperiodic task
flow. A flow is characterised by:� the interarrival obeys an exponential law, with meanx� deadlines must be less than P� relative deadlinesDsi are uniformaly chosen within

the interval [10, DMax]� the WCET of a task�si is uniformaly chosen within

the interval [
Dsi10 ; Dsi2]

For each sample, we carry out 3 simulations, over the time
interval [0, P):

1. we first use our method, periodic tasks are scheduled
by PF

2. we implement the joined PFair method

3. we also implement an exact method based on PF pe-
riodic scheduling. Each time we need to accept or
reject a task, we count in the PF schedule the exact
number of idle time units. Then we proceed exactly
as in our method, using the exact number of idle time
units instead of our approximation.

We then use competitive analysis, using the exact PFair
method as referent method. For any couple (tasks set,
aperiodic flow), we compute the ratio of the cumulated
accepted aperiodic demand by our method (resp. by the
joined PFair method) over the cumulated accepted aperi-
odic demand for the exact method. We have repeated the
experience for different tuple (m, x, Dmax). Figure 7
presents the results for 4 processors, with a mean inter-
arrival x = 40 and a maximal relative deadline DMax =
200. Results obtained for other values (2 ou 4 processors,
x = 20 or 40, DMax = 40 or 200) lead to similar figures.

Figure 7. Comparison our method and
joined PFair method

We can see that for almost all values of U, our test
behaves almost like the exact test, meanwhile the joined
PFair method has lower performances, in the sens that it
accepts less aperiodic load. Performances of our test re-
ally decreases only for high values of U (m� 0:1 < U <m). With such utilization factors, there are few remaining
idle slots, and thus the error due to the approximation of
idle slots number becomes significant, and in such cases,
the joined PFair method becomes competitive. But in al-
most all cases, our method has higher performances. Note
that equivalent obervations can be made for uniprocessor
systems, for which the challenger method to our ones is
EDF [8]. Experimentations show that, except for high val-
ues of U, our method has significantly better results than
EDF.

6 Conclusion

We have proposed an efficient acceptance test for ape-
riodic tasks, with firm deadlines. Periodic tasks are sched-
uled by a PFair algorithm, e.g. PF [4]. The periodic sched-
ule is steady, new accepted aperiodic tasks do not interfere
with periodic tasks. This has two advantages: the peri-
odic schedule can be computed before run-time over the
interval [0, P), and is then iterated, and the periodic task
location is deterministic. The acceptance test runs in O(k)
where k is the number of pending aperiodic tasks. We
have here assumed tasks to be synchronous (they are first
released at the same time), with implicit deadlines, but we
can note that the synchronous assumption can be omitted
[10]. The method we propose can be used for uniproces-
sor systems as well as for multiprocessor systems if m -
1 < U < m, where m is the number of processors. If
U � m - 1, the problem is more intricated, since there
must be more than one idle task. In this case, there is one
(or more) idle processor, and we must first partition aperi-
odic tasks between idle processor(s) and active processors.
Tasks assigned to the active set are scheduled according to
our methodology. Further investigation will deal with the
way tasks can be partitionned, and look for the best way
to schedule tasks on the idle processor(s). Figure 8 illus-
trates the complete method form � 2 � U � m � 2.

Figure 8. The method when m � 2 � U �m�1. Aperiodic tasks are distributed in two
separate queues. One of the processor is
completely dedicated to aperiodic service.
The (m-1) others are used to schedule con-
jointly periodic and aperiodic tasks accord-
ing to our methodology.

References

[1] J. Anderson, A. Block, and A. Srinivasan. Pfair scheduling
: Beyond periodic task sytems. InProceedings of the12th
Euromicro Conference on Real-Time Systems, pages 35–
43. Chapman and Hall, 2000.

[2] J. Anderson, P. Holman, and A. Srinivasan. Fair schedul-
ing of real time tasks on multiprocessors.Handbook of
scheduling : Algorithms, Models and Performance analy-
sis, pages 31.1–31.21, 2004.

[3] S. Baruah. Fairness in periodic real-time scheduling. In
Proceedings of the16th IEEE Real-Time Systems Sympo-
sium, pages 200–209, 1995.

[4] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel. Propor-
tionate progress : a notion of fairness in resource alloca-
tion. Algorithmica, 15:600–625, 1996.

[5] S. Baruah, J. Gehrke, and C. Plaxton. Fast scheduling of
periodic tasks on multiple resources. InProceedings of the9th International Parallel Processing Symposium, pages
280–288, April 1995.

[6] G. Buttazzo.Hard Real-Time Computing Systems. Kluwer
Academic Publishers, 1997.

[7] C. Liu and J. Layland. Scheduling algorithms for multi-
programming in a hard real-time environment.Journal of
the ACM, 20(1):46–61, 1973.

[8] J. Liu. Real-Time Systems. Prentice Hall, 2000.
[9] C. Macq and J. Goossens. Limitation of the hyper-period

in real-time periodic task set generation. In Teknea, editor,
Proceedings of the 9th international conference on real-
time systems, pages 133–148, Paris France, March 2001.
ISBN 2-87717-078-0.

[10] S. Malo, A. Choquet-Geniet, and M. Bikienga. Extension
of pfair scheduling application context. Technical report,
LISI, ENSMA, 2008.

