Worst-case analysis of feasibility tests for self-suspenuy tasks

Frédéric Ridouard, Pascal Richard
LISI-ENSMA
Av C. Ader, Téléport 2 BP 40109
86961 Futuroscope Cedex, France
{frederic.ridouard,pascal.richgr@ensma.fr

Abstract with an execution requirement equals@@ A job must
complete its execution before the next reledBeufits of
In most real-time systems, tasks invoke external opera-time later). Tasks are assumed to be independent.

tions processed upon dedicated processors. External epera

tions introduce self-suspension delays in the task behavio Most of real-time systems contain tasks with self-

In such task systems, checking that deadlines will be meekuspension. A task with a self-suspension is a task that

at run-time isN’P-Hard in the strong sense. For that rea- during its execution prepares specifics computations (e.g.

son, known response time analysis (RTA) only compute upin/Out operations oFFT on a digital signal processor).

per bounds of worst-case response times. These pessimistiThe task is self-suspended to execute the specifics com-

estimations lead in practice the designers of areal-tine sy putations upon external dedicated processors. External

tem to oversize the computer features. The aim of this papemperations introduce self-suspension delays in the behavi

is to quantify the pessimism used in known RTA methodsof tasks. The task waits until the completion of the external

We propose an exact exponential time feasibility test and de operations to finish its execution. Generally, the executio

fine upper bounds of competitive ratio of three known RTA requirement of external operations can be integrated in the

techniques. execution requirement of the task. But, if self-suspension
delays are large, then such an approach cannot be used to

Keywords: Real-time, On-line scheduling, self-suspension, achieve a schedulable system. Thus self-suspension must

Maximum response time. be explicitely considered in the task model.

1 Introduction We have already proved [13] that the feasibility problem
of scheduling task systems i&/P-Hard in the strong
A real-time system is a system in which the correctness ofsense. We have also shown the presence of scheduling
the system depends not only on correctness of computa@nomalies undeEDF for scheduling independent tasks
tions, but also on the time at which the results are producedwith self-suspension upon an uniprocessor platform when
(if a result is late, it is a fault). A real-time system can preemption is allowed. We have proved [14] that classical
be seen as a task system where each task must respect i@-line scheduling algorithms are not better titanom-
constraints. A task meets its deadline if it completes its petitive to minimize the maximum response time. In this
execution before its deadline otherwise the task misses itspaper, we show that on-line and deterministic scheduling
deadline. There exists a feasible schedule for a task systen@lgorithms are not optimal to schedule tasks with self-
if all deadlines are met. suspension. The Response Time Analy&i34) can only
compute upper bounds of worst-case response times in a
Several models of recurring real-time tasks have been defeéasonable amount of time. These pessimistic estimations
fined. The simplest but also the most fundamental model islead in practice to oversize the computer features. The aim
provided by theperiodic task modedf Liu and Layland [8]. of this paper is to quantify the pessimism used in three
In this model, a periodic task has only two characteristics knownRTAmethods based on fixed-priority task systems.
7 = (C,T): C is the worst-case execution requirement of
task T and T its period between two successive releases. Several feasibility tests are presented and defined for
Consequently, an instance of the periodic tadfa job) is analysing tasks allowed to self-suspend. For fixed-piorit
generated and released in the system &ftanits of times task systems, there exist tests based on the computation of

worst-case response time: Kiet al. [7], Jane W. S. Liu The utilization factor of a periodic task, is the ratio of

[9] and Palenciaet al. [11, 12]. The latter approach can its execution requirement to its periodi(r;) = C;/T;.

be used folEDF scheduling [12]. There exists also a test The utilization factor of a task systemis the sum of the

based on the utilization factor of the processor [4]. But, utilization factors of all taskst/ (1) = >"""_, U(m;).

no study concerning the quality of these tests are known to

exhibit relative merits of these methods. Consequently, ou The maximum response timg; of a taskr; is equal to

approach is to analyze the relevance and quality of thesethe difference between the completion time and the release

tests. date. To minimize the maximum response time of a task set
is to minimizemax R;.

We next analyse the feasibility tests of Kia al. [7] and

Liu [9] to schedule tasks with self-suspension. Before, we A task set is saifeasibleif there exists a schedule such that

define the task model (Section 2). In Section 3, the fea- all tasks are completed by their deadlines at run-time.

sibility tests of Kim and Liu are presented. In Section 4,

we present the main technique to evaluate the on-line al-3 Presentation of feasibility tests
gorithms. In Section 5, we show that it is impossible to

define an optimal on-line algorithm to schedule tasks sys- In the following section,we present three feasibility sest
tems when tasks are allowed to self-suspend. Lastly, the

feasibility tests are analyzed to determine their pessimis e Kim etal. [7]: To define their feasibility tests, they use
the works of Wellings [16] and Mingt al. [10]. They
2 Task model define two tests based on the same principle : to con-

sider a task with a self-suspension in two independent

)) tasks without any suspension delay.
We consider that task systems are based on a collection

of periodic and independent tasks. Lebe a task system e Jane W. S. Liu [9]: This feasibility test determines
of n tasks. Every occurrence of a task is called a job. the blocking time due to self-suspension and higher-
Every taskr; (1 < i < n) arrives in the system at time priority tasks.

0, its relative deadline is denotdd; and its periodl;. If

its relative deadline is equal to the period, the task has a3.1 Feasibility tests of Kimet al. [7]

implicit deadline else if jusD; < T; constrained deadline.

The maximum execution requirement of a tasks C;. Wellings et al. [16] studied the tasks with self-suspension
but with C; ; = 0. The self-suspension is called release

In the system, preemption of tasks is allowed. Conse-jitter [3, 16]. A release jitter for a task is the differende o

quently, a job can be suspended at any time to allow thetime between arrival and release time. Consequently, they

execution of others jobs and later on will be resume to use task set in which each task has a release jitter. To deter-

continue its execution. mine the response time of a task they use the following
recurrence relation:

To simplify our results , we consider that tasks are allowed

) . 0 _
to self-suspend at most once. The Figure 1 presents this R} =C;
model. Every task; (1 < i < n) has two subtasks (with a il rpp ,
. . . n+1 R/L + Xj
maximum execution requirement, ,, 1 < k < 2) sep- R!™ =C; + g — 7 Cj Q)
arated by a maximum self-suspension delay between j=1 J

the completion of the first subtask and the start of the sec- ntl
The recurrence stops &' = R}'. And the worst-case

ond subtask. Such delays change from one execution to , o hat th .
another since they model execution requirements of ex-'€SPONSe time of; is Rf' + X;. To prove that the task is

ternal operations. Consequently every tasks denoted: ~ Schedulablel} + X; must be less than or equal 2.

Q- O’LleaO’L7Dl . . .
i+ (Gia 2 Di) Ming et al (cf [10]) have modified the recurrence relation

of Wellings (1) to take into account any task with a self-
suspension:

_ N
R — Y R =G+ X,

i—1
R! + X;
R} =Ci+ X + {%-‘ Cj ()
Figure 1. Le modtle des taches j=1 J

However, Minget al. consider the suspension delay as a

part of execution requirement. But external operations are

£

scheduled upon dedicated processors. Consequently, su
an approach can increase unnecessarily the worst-case r
sponse times of tasks. Kiet al. (cf [7]) define two new
feasibility tests to compute worst-case response times o
tasks with self-suspensions.

3.1.1 Method A of Kim

They consider thab, < T; for all ; and tasks can be pre-
empted. This first method subdivide each taslith self-
suspension in two independent tasks without suspension :

e 7,1, released at time; without release jitter and with
a processing requirement6f ;.

e T, 2, released at time;,, its jitter J; o equalsX; and a
processing requirement equaldg .

The two generated tasks inherit the period and the deadlin
of 7;.

To prove the schedulability of task, we must transform

7; into ;1 and; 2, and we then calculate the worst-case
response time of the generated tasks. has a release jitter
equal to0 andT; » has one equal t&;. The worst-case of
7;,1 andr; o are calculated independently. To calculate the
worst-case response timegf;, the Wellings’s formula (1)

is used:

mi=ca + X[220
g=11 7/
i—1
RM, + X,
+ [%W Cj.
J

Computations stop for the smallest positive integer
satlsflesR?{rl R}, and the worst-case response time
71 0f 71 is equal toRYy. If Rf; < D; thenr;; is
schedulable OtherW|se we cannot conclude thatis

schedulable.

The worst-case response timem} is calculated with the
following recurrent formula:

1
RZ; =Ci2 +

R + X,

+ T,

S

The worst-case response tinfi¥, of 7; » is calculated. To
finish, if (R}, + X; + R;2) < D;, thenr; is schedulable,
otherwise we cannot conclude.

Jj=1

3.1.2 Method B of Kim

his approach is an improvement of Ming’s methad. (
rmula 2). This method consider the suspension delays

as part of processing requirement of tasks. But without this

fassumptlon during the interval of tim¥;, other tasks can

be scheduled. To calculate the worst-case response time of a
task, X; can be reduced and furthermore the worst-case re-
sponse time of; can be shortened. Consequently, to calcu-
late the worst-case response time of a taskhe following
recurrent formula is used:

1o
n+l _ o
RV =C; + Z{TW
“[Rr+X;

+ ’71T —‘ng

j=1

i—1 .
e WhereMi =X, - Zj:l \‘%J C'j
If R = R? andR? < D, then; is schedulable. Other-
wise, we cannot conclude if it is schedulable or not.

Remark 1 SinceM; < X;, if 7; is schedulable with the
Ming’s method (cf. Formula 2), then the task is schedulable
with the method B of kim.

3.2 The Liu's method [9]

To take into account the extra delay suffered by a task
7; due to its own self-suspension and the suspension of
higher-priority tasks, Liu [9] considers this delay as adac

of blocking time ofr;, denoted; (ss).

The blocking time of a task due to its own suspension is
not more thanX;. To determine the blocking time due to a
higher-priority taskr;,, we must study two cases:

e 71, cannot delayr; during more tharCj. units of time
since the task; can be scheduled (or partially sched-
uled) during the suspensionnfbecause the processor
isidle.

e Moreover, if X}, < Cj then the blocking time cannot
be more thanX, units of time.

Consequently, the blocking factor due to each higher-
priority tasks,r, is never more than the suspension delay
of 7, and never more thafl.

Finally, the blocking time; (ss) is equal to:

i—1
= X; + > _min(Cy, Xx)
k=1

bi(ss)

Note that Liu's method is not expected to performaswell e The oblivious adversary defines the task system in ad-
as the Kim’s methods, since it does not specify where the vance based on the characteristics of the on-line algo-
suspension occurs within the task. rithm, and serves it optimally.

e The adaptive on-line adversary defines the next request
of tasks according to the decision taken by the on-line
algorithm, but serves it immediately.

4 Validation of on-line algorithms

4.1 Introduction

An algorithm that minimizes a measure of performance, is
This paper is interested by the validation of on-line algo- c-competitive if the performance obtained by the on-line
rithms. For any objective function, we wish to know the algorithm is less than or equal totimes the value of the
quality of the solution obtained with an on-line scheduling optimal algorithm. More formally, given an on-line algo-
algorithm (hereafter referred to as the performance guaran rithm A and a task system, the performance obtained by
tee of the algorithm). This quality will not be better than the on-line algorithn4 (Respthe adversary) in scheduling
the quality obtained by an optimal off-line algorithm. Two [is denotedo4(I) (Resp. o*(I)). ConsequentlyA is
commonly used methods to evaluate the performance of arc-competitive if there exists a task systénand a constant
on-line algorithm are known: csothatoy (1) < co*(I).

e The simulation : The on-line scheduling algorithms are The competitive rati of an on-line algorithmd is the

compared and evaluated in the confine of a stochastic .) L)
model. worst-case ratio while considering any instarice

e The competitive analysis : The on-line algorithm is Definition 1 The competitive ratia; 4, of the on-line algo-
compared with an optimal off-line algorithm for the rithm A to minimize a performance criterion while consid-

same problem so that the on-line algorithm achieves €ing any instance is:
its worst-case results.

. . _ oa(l)

4.2 The simulation €A = sub oo
toutl O ()

The simulation allows to compare the on-line algorithms.
To evaluate the performance of an on-line algorithm, this
method defines a stochastic model by assuming a certain

probabilistic distribution to compute task features. Whtis n t_h|s Iselctlorj,hwe demr?ndstjate trll(at there eX|shts no OE'“ne
model, a task system is generated and it is submitted to ev-olrl)t'mad a gor:; m to scd edule tag systems when tasks are
ery on-line algorithm. allowed to self-suspend upon uniprocessor systems.

Howgver, the on-line algorlthm is then evaluateq within the Theorem 1 No on-line deterministic algorithms are opti-
.co.nfme O.f the St.OChaSt'C mOdEI' Moreover., this approach mal to schedule tasks systems when tasks are allowed to
is inconsistent with thg environments of on-line algorithm self-suspend upon a uniprocessor system.

Because the probabilistic distribution model based on past
observations will always model the future arrivals of jobs. prgof:

But, as pointed out by Karp [6], this assumption is inconsis- To prove this theorem, we use the competitive analysis with
tent with the nature of on-line algorithms unless the future an adaptative adversary (cf. Section 4.3). Hence, we define

5 On-line algorithms are not optimal

resemble to the past. a task system and according to the scheduling decision of
-] any on-line and deterministic algorithm, the adversary de-
4.3 The competitive analysis fines the next request of tasks so that the on-line algorithm

misses a deadline and the adversary serves it optimally. We
The first results of this approach are the results obtained bydefine a task systerh and we show that no on-line deter-

Sleator and Tarjarf15] in 1985. This approach compares ministic algorithm can schedule optimally We consider
the on-line algorithm to an optimal clairvoyant algorithm that at time) two tasks are available:

in the worst-case. The optimal off-line algorithm (s#e

adversary defines the instances of problemto comparethe 7 :Ci11=1,X1=7,C12=1,D; =10,77 =10
two algorithms. But a good adversary defines instances of . ¢, =1, X, =4,000=1,D5 = 9,75 = 10
problem so that the on-line algorithm achieves its worst- ' '

case performance. To analyse deterministic algorithnts, tw Let A be an on-line algorithm. At timé, to make its
equivalent adversaries can be used: scheduling decisiond has two choices:

1. The on-line algorithm! does not schedule at time0
(this schedule is presented Figure 2.a). Either it sched-
ulest; or it lefts the machine idle. In the two cases,

and completed at tim&. Finally, 7; is completed at
time9 andr, attimel0. Figure 3 presents the schedul-
ing of I obtained by the adversary.

it schedulesr, at timet, with 0 < ¢ < 3 to respect
the deadline of» (For the Figure 2.a;, = 2). But at

time 3, an other tasks with a period equals ta0 is a. 7 H A
released: 0 z 6 8 10
7'3201_]121,X1:2,0172:3,D1=9 1_-2/ T H é 1.'0

n - ™

At time 3, the on-line algorithmA schedulesrs
since it has not laxity. Butl has not enough time to
completer, and 73 before their common deadline at
time 9. Consequentlyd has done a bad choice and
hence, the scheduling éfunderA is not feasible.

Figure 3. The on-line algorithm A schedules
o attime 0

Consequently, there exits no optimal on-line and determin-
istic algorithm to schedule task systems upon uniprocessor
system when tasks are allowed to self-suspend.

The optimal off-line algorithnschedules at time, »
and at timel, ;. At time 3, 73 is released and imme-
diately run. At time5, r is resumed from its self-
suspension and completed at tirde Finally, 73 is

completed at time) and r; at time 10. Figure 2.b |
presents the scheduling 6funder an optimal off-line
algorithm.

6 Analysis of feasibility tests

6.1 Introduction

l; K 4;. 6‘ g il

|

& _ e A it . In this section, the feasibility tests presented in the Sec-
8 z e 8 5 Lo tion 3 are analyzed. We use the two validation techniques

" - " presented in Section 4. These feasibility tests compute the
upper bound of the maximum response time of every task.
Figure 2. The on-line algorithm A does not At first time, we establish the pessimism of these estima-

schedule 75 attime 0 but attime ¢ =2 tions. To determine this pessimism, we use the approach
presented by Epstein and Rob Van Stee in [5]. They pro-

Consequently, we show that if an on-line and deter- vided lower bounds for on-line deterministic (or random-

ministic algorithm chooses to not rug at timeso, it ized) algorithms for several optimization criteria. They
is not optimal since there exits a feasible sche'dule of studied problems in term of competitive analysis. They au-
I tomatically generated a huge number of synthetic task sets.

For each task set, they computed the competitive ratio for
the on-line algorithm studied. Finally, they kept the task s
with the worst competitive ratio. In our work, the optimal-
ity criteria is the minimization of the maximum response
time. We use the same method: we generate, with a brute
force generation (as done in [1] for non-preemptive system)

i) . a huge number of task sets and for each feasibility test we
A schedulesr, at time 2 (to respect its deadline) yeep the task set leading to the worst competitive ratio. To
and at time6, 7, is resumed from its self-suspension ¢ompjete this analysis, we define a stochastic model to gen-
and scheduled. But between tifieand 10, A must grate g Jot of task systems. With these task systems, statis-
completer; andry, hence it is impossibleA cannot tics are defined to compare these tests.

schedule the task systei Figure 3.a presents the The feasibility tests presented in this paper are based on
scheduling off underA. fixed-priority task systems. Consequently, to use the com-
petitive analysisdf. Section 4.3), we don't use an optimal
off-line algorithm as adversary but we use the fixed priority
algorithm RM).

2. When A schedulesr, at time0, at time1, it must
scheduler; to respect its deadline. At tim2 arrives
74 with implicit deadline s = Dy):

T4 0171 = 4,X1 = 3,01_’2 = 1,T1 =10

The optimal off-line algorithm schedules at tifier
attimel, m» and attime2, 7,. Attime 6, 7 is resumed

6.2 Simulation environment period, the period of the task previously generated, is mul-
tiplied until the utilization factor (of the task system)éss

The first constraint is to obtain schedulable task systems.than0.7.

The utilization factor of generated task systems is boundedFinally, we consider tasks with implicit deadlines. More-

by 0.7. Decreasing the utilization factor is an important over, the generated task systems contain only two or three

parameter for generating feasible task systems. tasks to firstly limit time while computing exact response
times, and secondly to exhibit task systems leading to

The presence of anomalies for scheduling tasks with worst-case performance guarantees.

self-suspension in fixed-priority task system [13, 14] in-

creases the costs of computations since reducing progessin6.3 Lower bounds

requirement can lead to worst-case response times of tasks.
6.3.1 Introduction

The feasibility tests are based on the fixed-priority schedu .) .

ing algorithmRM. But, we proved [13, 14] that schedul- Next §ubsect|ons qletalltask sets automatically genebgted

ing anomalies can occur while scheduling tasks with self- OUr simulator leading to the worst-case performance of the

suspension undeRM. Consequently, if the execution re- three considered feasibility tests.

quirement of a task is decreased of one unit of time, the

response time can increase and a deadline can be misse®.3.2 Method A of Kim

Hence, to determine the exact worst-case response time o " .

task systems where tasks are allowed to self}-osuspend, Wérower bound 1 The lower bound of the competitive ratio

must test all possible processing requirements (and suspentﬁ(ratr?:zl f?rﬁsﬁllrlttaystisr:szft%eem(ra]t'lheogcﬁec(’jf lf:]m tt:srl;nslr;ng)lzz d
sion delays) for each job of each task. Ximu P ime whi uling W

to self-suspend at most onceiH1667.

Remark 2 C; (resp.X;) is the upper limit to its processing

. : Proof:
requirement (resp. worst-case suspension delay) oftask . -)
Consequently, we consider that the execution requiremenﬁ‘et I, be the following task system containing three tasks:
(resp. suspension delay) of a task can vary betwieand O =3 X = 2.1 = 3. T — 12
C; (resp. X;) since all parameters are integers. Moreover, e e e
C;.1, X; andC, 5 belong to the interva]l, 4]. Ty Ca1=3,Xy=1,052=1,T, =96

T3 03’1 = 1,X3 = 1,03’2 = 1,T3 = 96

We define two rules to reduce the hyperperiod length:

o] The upper bound of the maximum response time obtained
e To minimize the length of the hyper period, the tasks \ith the method A of Kim denoted for each taskr; of
are synchronous. I, is:

e To minimize the computations and the length of the

LA LA LA
hyper period, tasks have harmonic periods (Definition niop =8 oy =170y =39

2).
Definition 2 Let! : (71, 72,...,T,) be atask systeni.has 1 - —_-_I
harmonic periods if and only if the two following properties 0 : H é H 10 12
are respected: n B - &
Ih<Ty<---<T, Figure 4. The exact maximum response time
Vi,i € {2,...,n},T; mod T;—1 =0 obtained by RM while scheduling 14.

Remark 3 We assume that tasks are indexed in increas-

ing order of periods. The second property limits the length Figure 4 presents the exact maximum response time ob-

of the feasibility interval and the number of jobs within it. tained with the fixed-priority scheduling algorithiRM.

Consequently the task with the smallest priority,js Since There are no scheduling anomalies and for that reason, tasks

we use the fixed priority scheduling algorithm, has the are scheduled with their worst-case execution requiresnent

longest period. and suspension delays. At tinte RM schedules; and
during its suspension it schedules partiatly At time 7,

To generate a task: first, the executive requirements and the, is scheduled. At timé, =, is suspended ang, sched-

suspension delays are computed. Finally, to determine theuled. Finally at timel 1, =, finishes its execution and, at

time 12. Hence, the exact maximum responses time of tasksConsequently, the competitive competitive ratio for the- se
(denotedr M) are: ond method of Kim is:

T O'FJW =8,7: UfM =11,73: 0'5”1 =12 ch = su o) > o5(Ip)
anyl OrRM(I) — orm(IB)
Consequently, the worst-case competitive ratiolfas; ol B oB
2 max GRM > RM ' G RM
A (I) A (IA) 1 2 3
M = sup > o 22
anyl OrRM(I) — orpm(1a) > == =275
A A A 92 8
g g (o2
> 1 2 3
- (o M) O
A
oy 35
= ofM T 12 2.91667 6.3.4 Jane W.S. Liu's method
0 Lower bound 3 The competitive ratio on RM obtained
with the method of Liu ig, 875 to minimize the maximum
response time for tasks are allowed to self-suspend at most
6.3.3 Method B of Kim once.

Lower bound 2 The lower bound to minimize the maxi- pProof:
mum response time for the method B of Kim is equal to we use the instandg; defined in the Theorem 2. The upper

2,75.

Proof:
Let Iz be the following task system:

bound of maximum response time obtained with the method
of Liu for each task; of Iz and denoted” are:

T1 :0%25,7’2:05:23,73:015:47

Figure 5 presents the exact maximum response time ob-
tained withRM while scheduling . These results are:

71 0171 = 1,X1 = 1,0172 = 3,T1 =6
T9 Cg,l =].,Xg - 3, Cg,g = 2,T2 - 270
73: 031 =3,X3=2,C32=3,T5 =810 Ty UFM =5,Ty: Ué{M =8,73: UfM =24
The upper bound obtained with the second method of Kim Hence, the competitive ratio obtained for the method of Liu
for each task; of I and denoted? is equal to: to minimize the maximum response time is equal to:

0P =5, 08 =22, 1508 =35 M qup or(I) or(IB)
L anyl OrM(I) — orm(IB)

O'L O'L O'L
2 max Rllw g R2M , R3M
[I —— R N o1 037" 03
i H 4 [] O’L 23
ut - T T2 > —2 = —— = 2875
- an 8
Figure 5. The exact maximum response time 0

obtained by RM while scheduling Ip.
6.3.5 Comparison of feasibility tests

Figure 5 presents the exact maximum response time of taskrhese results show that the method BKar obtained the

2. At time 0, RM schedulesr; since it has the highest pest results. But, we cannot conclude that the best feasibil
priority. Attime 1, 7, is suspended ang; scheduled. At jty test is the method B. Because, the only possible conclu-
time 2, 7, is suspended and is completed. At time3, 73 sion is that these feasibility tests are not comparable. We
is scheduled during the suspensionref At time 6, 71 is cannot conclude since it is possible for each feasibilisy te
released and at tim® 7 is completed. Consequently, we to determine tasks sets where the feasibility test is the bes
obtain the following exact response times: test but it is the worst for another. Kiet al. have already
proved that their two methods are not comparable [7]. Now

R RM _ 9y
to prove that all the tests are not comparable, we show that

U{%M:5,T2202M = 8,73 : 03

71 -

the method A oKim and the method dfiu are not compa-

rable: , ,
Let I be the following task set: miop =51 05 = 6,13 05 = 14
n:Ci1=2X1=3Co=1T =17 The Table 1 presents for each task, the competitive ratio
Y 02’1 CLX,—3 02’2 9T, — 56 obtained with each feasibility test.
m3:C31=3,X3=10C32=2,T; =392 Task$ Method A | Method B | Method of
of Kim of Kim Liu
The competitive ratio obtained for the three tests:
T 1.00 1.00 1.00
oBM(I) =1.47 To 2.17 2.17 2.33

ofM(I) =1.80

)])] Table 1. Competitive ratio for each task of I
The ratio obtained with the method A Kfm is better than

the ratio obtained with the method bil. Consequently, the competitive competitive ratit,; for

this method is:
Let I’ be the following task set:

RM opst({) or(lc)
= >
n:C1=2,X1=3C2=1T1=9 CBst 5}115)1 orm(I) ~ orm(Ic)
T2t 02,1 = 2,X2 = 3702,2 = 3,T2 =45 > Sup {inf{cﬁM(n),ch(Ti),ch(ri)}}
T3 - 03’1 = 2,X3 = 2,03’2 = 1,T3 = 90 1<4<3

> 2.16667
The ratios orRM are:

oM (1) = 1.69
BM (1) = 1.06 6.4 Simulation results
ofM (1) = 1.56
6.4.1 Introduction
But with this task set, the method biu is better than the
method A of Kim. To conclude all tests are not comparable.
Consequently, we can define a last test: the best method.

In this section, we present numerical results obtainedhduri

the brute force generation described in Section 6.2. Alstes
(upper bounds and the exact test) have been applied to every
generated task set. We are aware that such a simulation en-
6.3.6 The Best Method vironment is not sufficientdf. [2]) to exhibit relative merits

This method consist in applying favery task all tests of the considered feasibility tests that they are only valid

and to store the smallest computed response time. Such #e confine of our stochastic model (see Section 6.2).
method can help to decrease the competitive ratio (but we

have no formal proof of that fact). 6.4.2 Results

Lower bound 4 The competitive competitive ratio ob- To obtain relevant results from a statistical point of view,
tained while considering for each task system the best fea-We generated one million of tasks sets. The tasks sets are
sibility test is2, 16667 to minimize the maximum response generated with the procedure defined in Section 6.2. The

time for tasks allowed to self-suspend at most once. Table 2 presents statistical results obtained by the siowla
for the feasibility tests.
Proof: The first row of the Table 2 presents the percentage of times
Let I be the following task system: where every feasibility test has been the best one (while
scheduling task sets). The method BKim leads to the
0 =LXi=1C,=3T1 =9 best results.
To: 021 =1,X0=3,Co2=1,T5 =72 The average competitive ratios in r@wof the Table 2 al-
T3:Cs1 =3,X3=2,C55 =1,T5 = 648 lows us to remark that the method BKiim is the feasibility

test arriving in first position. But even if the percentage of
The exact maximum response time obtained with the algo-the method ot.iu is equal to zero, this feasibility test has a
rithm RM are: average less than the average of the method Kirof

With the standard deviations (row 3 of the Table 2), the References

feasibility test with the smallest standard deviation is th

method A ofKim.
Feasibility | Method | Method | Method
tests AofKim | Bof Kim | of Liu
Best 3.64% 99.8% ~~
method 0.00%
Averagera-| 1.65 1.21 1.50
tios
Standard 0.18 0.20 0.22
deviations
of ratios

Table 2. Results of simulation for the feasibil-
ity tests for task systems with 2 or 3 tasks

7 Conclusion

In this paper, we have presented some results on tasks
For such task [g]
systems there exists no on-line optimal algorithm. We also
presented the performances of three different feasibility
For these tests, our aim was to compute their
pessimisms since they compute an upper bound of the

allowed to self-suspend at most once.

tests.

(1]

(2]

I. Alzeer, P. Molinaro, and Y. Trinquet. Calcul ex-
haustif du temps de rponse de tches et messages dans
un systme temps rel rpartin Proceedings of th&3th
Real-Time System2005.

E. Bini and GC. Buttazzo. Biasing effects in
schedulability measures.|EEE Proceedings of the
16th Euromicro Conference on Real-Time Systems
(ECRTSO04), Catania, Itajyjuly 2004.

[3] A. Burns. Preemptive priority-based scheduling: An

(4]

(5]

exact maximum response time of tasks. To determine this [7]

pessimism, we use the approach of Epstein and Van Stee
[5] and also the competitive analysis. But the feasibility
tests are not compared to an optimal algorithm, but to the
fixed-priority on-line algorithnRM. Hence, we shown that

the competitive ratio of feasibility tests are betwexns

and 2.91667 implying the designers of real-time system

We also shown that
feasibility tests are not comparable. But, if for each task,
we apply every feasibility test and we retain the best then

to oversize the computer features.

the competitive ratio decreases 2016667. Finally, for

task sets with a small number of tasks and exactly one

self-suspension per task, the method B of katral. is the
best one.

jobs). Also to extend the approach to tB®F schedul-

ing policy and the feasibility test of Palencia [12] (based [11]
on EDF). An other interesting issue can be to consider de-

(8]

9]

[10]
In further works, an interesting issue is to analyze others
feasibility tests and to consider a more general stochas-
tic environment (with task sets having a larger number of

pendent tasks (tasks with shared resources or precedence

constraints) [11].

appropriate engineering approachn Advances in
Real-Time Systems, S.H. Son, Ed.,Prentice Hall, New
Jersey pages 225-248, 1995.

U. C. Devi. An improved schedulability tast for
uniprocessor periodic task systeny®oc. Euromicro
Conference on Real-Time Systems (ECRTSiR)es
23-30, 2003.

L. Epstein and R. Van Stee. On non-preemptive
scheduling of periodic and sporadic taskBheoreti-
cal Computer Scien¢@99:439-450, 2003.

R. Karp. On-line algorithms versus off-line algo-
rithms: How much is it worth to know the future?
Algorithms, Software, Architecture, IFIP Transactions
A-12 Information processing:1:416—429, 1992.

I-G. Kim, K-H. Choi, S-K. Park, D-Y. Kim, and M-

P. Hong. Real-time scheduling of tasks that contain
the external blocking interval®eal-Time and Embed-
ded Computing Systems and Applications(RTCSA'95)
1995.

C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard real-time environ-
ment.Journal of the ACM (Association for Computing
Machinery) 20(1):46-61, 1973.

Jane W. S. Liu.Real-Time Systemshapter Priority-
Driven Scheduling of Periodics Tasks, pages 164—165.
Prentice Hall, 2000.

L. Ming. Scheduling of the inter-dependent messages
in real-time communicationProc. of the First Inter-
national Workshop on Real-Time Computing Systems
and ApplicationsDec. 1994.

J.C. Palencia and M. Gonzales-Harbour. Schedulabil-
ity analysis for tasks with static and dynamic offsets.
Proceedings of the 19th IEEE Real-Time Systems Sym-
posium 1998.

[12]

[13]

[14]

[15]

[16]

J.C. Palencia and M. Gonzales-Harbour. Offset-based
response time analysis of distributed systems sched-
uled under edf.Proceedings of the IEEE Real-Time
Systems Symposiug003.

F. Ridouard, P. Richard, and F. Cottet. Negative rasult
for scheduling independent hard real-time tasks with
self-suspension$roceedings of the 25th IEEE Inter-
national Real-Time Systems Symposium (RTSSI04)
December 2004.

F. Ridouard, P. Richard, and F. Cottet. Ordonnance-
ment de tches indpendantes avec suspenBimceed-
ings of the 13rd RTS Embedded Systems (RTSI05)
April 2005.

D. D. Sleator and R. E. Tarjan. Amortized efficiency
of list update and paging rule€ommunication of the
ACM 28 2:202-208, 1985.

A.J. Wellings, M. Richardson, A. Burns, N. Audsley,
and K. Tindell. Applying new scheduling theory to
static priority pre-emptive schedulin§oftware Engi-
neering Journal1993.

10

