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Abstract

In most real-time systems, tasks invoke external opera-
tions processed upon dedicated processors. External opera-
tions introduce self-suspension delays in the task behaviors.
In such task systems, checking that deadlines will be meet
at run-time isNP-Hard in the strong sense. For that rea-
son, known response time analysis (RTA) only compute up-
per bounds of worst-case response times. These pessimistic
estimations lead in practice the designers of a real-time sys-
tem to oversize the computer features. The aim of this paper
is to quantify the pessimism used in known RTA methods.
We propose an exact exponential time feasibility test and de-
fine upper bounds of competitive ratio of three known RTA
techniques.

Keywords: Real-time, On-line scheduling, self-suspension,
Maximum response time.

1 Introduction

A real-time system is a system in which the correctness of
the system depends not only on correctness of computa-
tions, but also on the time at which the results are produced
(if a result is late, it is a fault). A real-time system can
be seen as a task system where each task must respect its
constraints. A task meets its deadline if it completes its
execution before its deadline otherwise the task misses its
deadline. There exists a feasible schedule for a task system
if all deadlines are met.

Several models of recurring real-time tasks have been de-
fined. The simplest but also the most fundamental model is
provided by theperiodic task modelof Liu and Layland [8].
In this model, a periodic taskτ has only two characteristics
τ = (C, T ): C is the worst-case execution requirement of
task τ and T its period between two successive releases.
Consequently, an instance of the periodic taskτ (a job) is
generated and released in the system afterT units of times

with an execution requirement equals toC. A job must
complete its execution before the next release (T units of
time later). Tasks are assumed to be independent.

Most of real-time systems contain tasks with self-
suspension. A task with a self-suspension is a task that
during its execution prepares specifics computations (e.g.
In/Out operations orFFT on a digital signal processor).
The task is self-suspended to execute the specifics com-
putations upon external dedicated processors. External
operations introduce self-suspension delays in the behavior
of tasks. The task waits until the completion of the external
operations to finish its execution. Generally, the execution
requirement of external operations can be integrated in the
execution requirement of the task. But, if self-suspension
delays are large, then such an approach cannot be used to
achieve a schedulable system. Thus self-suspension must
be explicitely considered in the task model.

We have already proved [13] that the feasibility problem
of scheduling task systems isNP-Hard in the strong
sense. We have also shown the presence of scheduling
anomalies underEDF for scheduling independent tasks
with self-suspension upon an uniprocessor platform when
preemption is allowed. We have proved [14] that classical
on-line scheduling algorithms are not better than2 com-
petitive to minimize the maximum response time. In this
paper, we show that on-line and deterministic scheduling
algorithms are not optimal to schedule tasks with self-
suspension. The Response Time Analysis (RTA) can only
compute upper bounds of worst-case response times in a
reasonable amount of time. These pessimistic estimations
lead in practice to oversize the computer features. The aim
of this paper is to quantify the pessimism used in three
knownRTAmethods based on fixed-priority task systems.

Several feasibility tests are presented and defined for
analysing tasks allowed to self-suspend. For fixed-priority
task systems, there exist tests based on the computation of
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worst-case response time: Kimet al. [7], Jane W. S. Liu
[9] and Palenciaet al. [11, 12]. The latter approach can
be used forEDF scheduling [12]. There exists also a test
based on the utilization factor of the processor [4]. But,
no study concerning the quality of these tests are known to
exhibit relative merits of these methods. Consequently, our
approach is to analyze the relevance and quality of these
tests.

We next analyse the feasibility tests of Kimet al. [7] and
Liu [9] to schedule tasks with self-suspension. Before, we
define the task model (Section 2). In Section 3, the fea-
sibility tests of Kim and Liu are presented. In Section 4,
we present the main technique to evaluate the on-line al-
gorithms. In Section 5, we show that it is impossible to
define an optimal on-line algorithm to schedule tasks sys-
tems when tasks are allowed to self-suspend. Lastly, the
feasibility tests are analyzed to determine their pessimism.

2 Task model

We consider that task systems are based on a collection
of periodic and independent tasks. LetI be a task system
of n tasks. Every occurrence of a task is called a job.
Every taskτi (1 ≤ i ≤ n) arrives in the system at time
0, its relative deadline is denotedDi and its periodTi. If
its relative deadline is equal to the period, the task has a
implicit deadline else if justDi ≤ Ti constrained deadline.
The maximum execution requirement of a taskτi is Ci.

In the system, preemption of tasks is allowed. Conse-
quently, a job can be suspended at any time to allow the
execution of others jobs and later on will be resume to
continue its execution.

To simplify our results , we consider that tasks are allowed
to self-suspend at most once. The Figure 1 presents this
model. Every taskτi (1 ≤ i ≤ n) has two subtasks (with a
maximum execution requirementCi,k, 1 ≤ k ≤ 2) sep-
arated by a maximum self-suspension delayXi between
the completion of the first subtask and the start of the sec-
ond subtask. Such delays change from one execution to
another since they model execution requirements of ex-
ternal operations. Consequently every taskτi is denoted:
τi : (Ci,1, Xi, Ci,2, Di).

Figure 1. Le modŁle des tâches

The utilization factor of a periodic taskτi, is the ratio of
its execution requirement to its period:U(τi) = Ci/Ti.
The utilization factor of a task systemτ is the sum of the
utilization factors of all tasks:U(τ) =

∑n

i=1
U(τi).

The maximum response timeRi of a taskτi is equal to
the difference between the completion time and the release
date. To minimize the maximum response time of a task set
is to minimizemaxRi.

A task set is saidfeasibleif there exists a schedule such that
all tasks are completed by their deadlines at run-time.

3 Presentation of feasibility tests

In the following section,we present three feasibility tests:

• Kim et al. [7]: To define their feasibility tests, they use
the works of Wellings [16] and Minget al. [10]. They
define two tests based on the same principle : to con-
sider a task with a self-suspension in two independent
tasks without any suspension delay.

• Jane W. S. Liu [9]: This feasibility test determines
the blocking time due to self-suspension and higher-
priority tasks.

3.1 Feasibility tests of Kimet al. [7]

Wellings et al. [16] studied the tasks with self-suspension
but with Ci,1 = 0. The self-suspension is called release
jitter [3, 16]. A release jitter for a task is the difference of
time between arrival and release time. Consequently, they
use task set in which each task has a release jitter. To deter-
mine the response time of a taskτi, they use the following
recurrence relation:

R0
i = Ci

Rn+1

i = Ci +

i−1
∑

j=1

⌈

Rn
i + Xj

Tj

⌉

Cj (1)

The recurrence stops ifRn+1

i = Rn
i . And the worst-case

response time ofτi is Rn
i + Xi. To prove that the taskτi is

schedulable,Rn
i + Xi must be less than or equal toDi.

Ming et al (cf [10]) have modified the recurrence relation
of Wellings (1) to take into account any task with a self-
suspension:

R0
i = Ci + Xi

Rn+1

i = Ci + Xi +
i−1
∑

j=1

⌈

Rn
i + Xj

Tj

⌉

Cj (2)
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However, Minget al. consider the suspension delay as a
part of execution requirement. But external operations are
scheduled upon dedicated processors. Consequently, such
an approach can increase unnecessarily the worst-case re-
sponse times of tasks. Kimet al. (cf [7]) define two new
feasibility tests to compute worst-case response times of
tasks with self-suspensions.

3.1.1 Method A of Kim

They consider thatDi ≤ Ti for all i and tasks can be pre-
empted. This first method subdivide each taskτi with self-
suspension in two independent tasks without suspension :

• τi,1, released at timeri without release jitter and with
a processing requirement ofCi,1.

• τi,2, released at timeri, its jitter Ji,2 equalsXi and a
processing requirement equal toCi,2.

The two generated tasks inherit the period and the deadline
of τi.

To prove the schedulability of taskτi, we must transform
τi into τi,1 andτi,2, and we then calculate the worst-case
response time of the generated tasks.τi,1 has a release jitter
equal to0 andτi,2 has one equal toXi. The worst-case of
τi,1 andτi,2 are calculated independently. To calculate the
worst-case response time ofτi,1, the Wellings’s formula (1)
is used:

Rn+1

i,1 = Ci,1 +

i−1
∑

j=1

⌈

Rn
i,1

Tj

⌉

Cj,1

+
i−1
∑

j=1

⌈

Rn
i,1 + Xj

Tj

⌉

Cj,2

Computations stop for the smallest positive integern
satisfiesRn+1

i,1 = Rn
i,1 and the worst-case response time

R∗
i,1 of τi,1 is equal toRn

i,1. If R∗
i,1 ≤ Di then τi,1 is

schedulable. Otherwise, we cannot conclude thatτi,1 is
schedulable.

The worst-case response time ofτi,2 is calculated with the
following recurrent formula:

Rn+1

i,2 = Ci,2 +

i−1
∑

j=1

⌈

Rn
i,2

Tj

⌉

Cj,1

+
i−1
∑

j=1

⌈

Rn
i,2 + Xj

Tj

⌉

Cj,2

The worst-case response timeR∗
i,2 of τi,2 is calculated. To

finish, if (R∗
i,1 + Xi + R∗

i,2) ≤ Di, thenτi is schedulable,
otherwise we cannot conclude.

3.1.2 Method B of Kim

This approach is an improvement of Ming’s method (cf.
Formula 2). This method consider the suspension delays
as part of processing requirement of tasks. But without this
assumption, during the interval of timeXi, other tasks can
be scheduled. To calculate the worst-case response time of a
task,Xi can be reduced and furthermore the worst-case re-
sponse time ofτi can be shortened. Consequently, to calcu-
late the worst-case response time of a taskτi, the following
recurrent formula is used:

Rn+1

i = Ci + Mi +

i−1
∑

j=1

⌈

Rn
i

Tj

⌉

Cj,1

+

i−1
∑

j=1

⌈

Rn
i + Xj

Tj

⌉

Cj,2

WhereMi = Xi −
∑i−1

j=1

⌊

Xi

Tj

⌋

Cj

If Rn+1

i = Rn
i andRn

i ≤ Di thenτi is schedulable. Other-
wise, we cannot conclude if it is schedulable or not.

Remark 1 SinceMi ≤ Xi, if τi is schedulable with the
Ming’s method (cf. Formula 2), then the task is schedulable
with the method B of kim.

3.2 The Liu’s method [9]

To take into account the extra delay suffered by a task
τi due to its own self-suspension and the suspension of
higher-priority tasks, Liu [9] considers this delay as a factor
of blocking time ofτi, denotedbi(ss).

The blocking time of a task due to its own suspension is
not more thanXi. To determine the blocking time due to a
higher-priority taskτk, we must study two cases:

• τk cannot delayτi during more thanCk units of time
since the taskτk can be scheduled (or partially sched-
uled) during the suspension ofτi because the processor
is idle.

• Moreover, ifXk < Ck then the blocking time cannot
be more thanXk units of time.

Consequently, the blocking factor due to each higher-
priority tasks,τk is never more than the suspension delay
of τk and never more thanCk.

Finally, the blocking timebi(ss) is equal to:

bi(ss) = Xi +
i−1
∑

k=1

min(Ck, Xk)
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Note that Liu’s method is not expected to perform as well
as the Kim’s methods, since it does not specify where the
suspension occurs within the task.

4 Validation of on-line algorithms

4.1 Introduction

This paper is interested by the validation of on-line algo-
rithms. For any objective function, we wish to know the
quality of the solution obtained with an on-line scheduling
algorithm (hereafter referred to as the performance guaran-
tee of the algorithm). This quality will not be better than
the quality obtained by an optimal off-line algorithm. Two
commonly used methods to evaluate the performance of an
on-line algorithm are known:

• The simulation : The on-line scheduling algorithms are
compared and evaluated in the confine of a stochastic
model.

• The competitive analysis : The on-line algorithm is
compared with an optimal off-line algorithm for the
same problem so that the on-line algorithm achieves
its worst-case results.

4.2 The simulation

The simulation allows to compare the on-line algorithms.
To evaluate the performance of an on-line algorithm, this
method defines a stochastic model by assuming a certain
probabilistic distribution to compute task features. Withthis
model, a task system is generated and it is submitted to ev-
ery on-line algorithm.
However, the on-line algorithm is then evaluated within the
confine of the stochastic model. Moreover, this approach
is inconsistent with the environments of on-line algorithms.
Because the probabilistic distribution model based on past
observations will always model the future arrivals of jobs.
But, as pointed out by Karp [6], this assumption is inconsis-
tent with the nature of on-line algorithms unless the future
resemble to the past.

4.3 The competitive analysis

The first results of this approach are the results obtained by
Sleator and Tarjan[15] in 1985. This approach compares
the on-line algorithm to an optimal clairvoyant algorithm
in the worst-case. The optimal off-line algorithm (saidthe
adversary) defines the instances of problem to compare the
two algorithms. But a good adversary defines instances of
problem so that the on-line algorithm achieves its worst-
case performance. To analyse deterministic algorithms, two
equivalent adversaries can be used:

• The oblivious adversary defines the task system in ad-
vance based on the characteristics of the on-line algo-
rithm, and serves it optimally.

• The adaptive on-line adversary defines the next request
of tasks according to the decision taken by the on-line
algorithm, but serves it immediately.

An algorithm that minimizes a measure of performance, is
c-competitive if the performance obtained by the on-line
algorithm is less than or equal toc times the value of the
optimal algorithm. More formally, given an on-line algo-
rithm A and a task systemI, the performance obtained by
the on-line algorithmA (Resp.the adversary) in scheduling
I is denotedσA(I) (Resp. σ∗(I)). Consequently,A is
c-competitive if there exists a task systemI and a constant
c so thatσA(I) ≤ cσ∗(I).

The competitive ratiocA of an on-line algorithmA is the
worst-case ratio while considering any instanceI.

Definition 1 The competitive ratio,cA, of the on-line algo-
rithm A to minimize a performance criterion while consid-
ering any instanceI is:

cA = sup
toutI

σA(I)

σ∗(I)

5 On-line algorithms are not optimal

In this section, we demonstrate that there exists no on-line
optimal algorithm to schedule task systems when tasks are
allowed to self-suspend upon uniprocessor systems.

Theorem 1 No on-line deterministic algorithms are opti-
mal to schedule tasks systems when tasks are allowed to
self-suspend upon a uniprocessor system.

Proof :
To prove this theorem, we use the competitive analysis with
an adaptative adversary (cf. Section 4.3). Hence, we define
a task system and according to the scheduling decision of
any on-line and deterministic algorithm, the adversary de-
fines the next request of tasks so that the on-line algorithm
misses a deadline and the adversary serves it optimally. We
define a task systemI and we show that no on-line deter-
ministic algorithm can schedule optimallyI. We consider
that at time0 two tasks are available:

τ1 : C1,1 = 1, X1 = 7, C1,2 = 1, D1 = 10, T1 = 10

τ2 : C2,1 = 1, X2 = 4, C2,2 = 1, D2 = 9, T2 = 10

Let A be an on-line algorithm. At time0, to make its
scheduling decision,A has two choices:
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1. The on-line algorithmA does not scheduleτ2 at time0
(this schedule is presented Figure 2.a). Either it sched-
ulesτ1 or it lefts the machine idle. In the two cases,
it schedulesτ2 at time t, with 0 < t ≤ 3 to respect
the deadline ofτ2 (For the Figure 2.a,t = 2). But at
time 3, an other taskτ3 with a period equals to10 is
released:

τ3 : C1,1 = 1, X1 = 2, C1,2 = 3, D1 = 9

At time 3, the on-line algorithmA schedulesτ3

since it has not laxity. ButA has not enough time to
completeτ2 andτ3 before their common deadline at
time 9. ConsequentlyA has done a bad choice and
hence, the scheduling ofI underA is not feasible.

The optimal off-line algorithmschedules at time0, τ2

and at time1, τ1. At time 3, τ3 is released and imme-
diately run. At time5, τ2 is resumed from its self-
suspension and completed at time6. Finally, τ3 is
completed at time9 and τ1 at time 10. Figure 2.b
presents the scheduling ofI under an optimal off-line
algorithm.

Figure 2. The on-line algorithm A does not
schedule τ2 at time 0 but at time t = 2

Consequently, we show that if an on-line and deter-
ministic algorithm chooses to not runτ2 at times0, it
is not optimal since there exits a feasible schedule of
I.

2. WhenA schedulesτ2 at time 0, at time 1, it must
scheduleτ1 to respect its deadline. At time2 arrives
τ4 with implicit deadline (T4 = D4):

τ4 : C1,1 = 4, X1 = 3, C1,2 = 1, T1 = 10

A schedulesτ4 at time 2 (to respect its deadline)
and at time6, τ2 is resumed from its self-suspension
and scheduled. But between time9 and10, A must
completeτ1 andτ4, hence it is impossible.A cannot
schedule the task systemI. Figure 3.a presents the
scheduling ofI underA.

The optimal off-line algorithm schedules at time0, τ1,
at time1, τ2 and at time2, τ4. At time6, τ2 is resumed

and completed at time7. Finally, τ1 is completed at
time9 andτ4 at time10. Figure 3 presents the schedul-
ing of I obtained by the adversary.

Figure 3. The on-line algorithm A schedules
τ2 at time 0

Consequently, there exits no optimal on-line and determin-
istic algorithm to schedule task systems upon uniprocessor
system when tasks are allowed to self-suspend.

�

6 Analysis of feasibility tests

6.1 Introduction

In this section, the feasibility tests presented in the Sec-
tion 3 are analyzed. We use the two validation techniques
presented in Section 4. These feasibility tests compute the
upper bound of the maximum response time of every task.
At first time, we establish the pessimism of these estima-
tions. To determine this pessimism, we use the approach
presented by Epstein and Rob Van Stee in [5]. They pro-
vided lower bounds for on-line deterministic (or random-
ized) algorithms for several optimization criteria. They
studied problems in term of competitive analysis. They au-
tomatically generated a huge number of synthetic task sets.
For each task set, they computed the competitive ratio for
the on-line algorithm studied. Finally, they kept the task set
with the worst competitive ratio. In our work, the optimal-
ity criteria is the minimization of the maximum response
time. We use the same method: we generate, with a brute
force generation (as done in [1] for non-preemptive system),
a huge number of task sets and for each feasibility test we
keep the task set leading to the worst competitive ratio. To
complete this analysis, we define a stochastic model to gen-
erate a lot of task systems. With these task systems, statis-
tics are defined to compare these tests.
The feasibility tests presented in this paper are based on
fixed-priority task systems. Consequently, to use the com-
petitive analysis (cf. Section 4.3), we don’t use an optimal
off-line algorithm as adversary but we use the fixed priority
algorithm (RM).
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6.2 Simulation environment

The first constraint is to obtain schedulable task systems.
The utilization factor of generated task systems is bounded
by 0.7. Decreasing the utilization factor is an important
parameter for generating feasible task systems.

The presence of anomalies for scheduling tasks with
self-suspension in fixed-priority task system [13, 14] in-
creases the costs of computations since reducing processing
requirement can lead to worst-case response times of tasks.

The feasibility tests are based on the fixed-priority schedul-
ing algorithmRM. But, we proved [13, 14] that schedul-
ing anomalies can occur while scheduling tasks with self-
suspension underRM. Consequently, if the execution re-
quirement of a task is decreased of one unit of time, the
response time can increase and a deadline can be missed.
Hence, to determine the exact worst-case response time of
task systems where tasks are allowed to self-suspend, we
must test all possible processing requirements (and suspen-
sion delays) for each job of each task.

Remark 2 Ci (resp.Xi) is the upper limit to its processing
requirement (resp. worst-case suspension delay) of taskτi.
Consequently, we consider that the execution requirement
(resp. suspension delay) of a task can vary between1 and
Ci (resp.Xi) since all parameters are integers. Moreover,
Ci,1, Xi andCi,2 belong to the interval[1, 4].

We define two rules to reduce the hyperperiod length:

• To minimize the length of the hyper period, the tasks
are synchronous.

• To minimize the computations and the length of the
hyper period, tasks have harmonic periods (Definition
2).

Definition 2 LetI : (τ1, τ2, . . . , τn) be a task system.I has
harmonic periods if and only if the two following properties
are respected:

T1 ≤ T2 ≤ · · · ≤ Tn

∀i, i ∈ {2, . . . , n}, Ti mod Ti−1 = 0

Remark 3 We assume that tasks are indexed in increas-
ing order of periods. The second property limits the length
of the feasibility interval and the number of jobs within it.
Consequently the task with the smallest priority isτn. Since
we use the fixed priority scheduling algorithm,τn has the
longest period.

To generate a task: first, the executive requirements and the
suspension delays are computed. Finally, to determine the

period, the period of the task previously generated, is mul-
tiplied until the utilization factor (of the task system) isless
than0.7.
Finally, we consider tasks with implicit deadlines. More-
over, the generated task systems contain only two or three
tasks to firstly limit time while computing exact response
times, and secondly to exhibit task systems leading to
worst-case performance guarantees.

6.3 Lower bounds

6.3.1 Introduction

Next subsections detail task sets automatically generatedby
our simulator leading to the worst-case performance of the
three considered feasibility tests.

6.3.2 Method A of Kim

Lower bound 1 The lower bound of the competitive ratio
for the feasibility test of the method A of Kim to minimize
the maximum response time while scheduling tasks allowed
to self-suspend at most once is2, 91667.

Proof:
Let IA be the following task system containing three tasks:

τ1 : C1,1 = 3, X1 = 2, C1,2 = 3, T1 = 12

τ2 : C2,1 = 3, X2 = 1, C2,2 = 1, T2 = 96

τ3 : C3,1 = 1, X3 = 1, C3,2 = 1, T3 = 96

The upper bound of the maximum response time obtained
with the method A of Kim denotedσA

i for each taskτi of
IA is:

τ1 : σA
1 = 8, τ2 : σA

2 = 17, τ3 : σA
3 = 35

Figure 4. The exact maximum response time
obtained by RM while scheduling IA.

Figure 4 presents the exact maximum response time ob-
tained with the fixed-priority scheduling algorithmRM.
There are no scheduling anomalies and for that reason, tasks
are scheduled with their worst-case execution requirements
and suspension delays. At time0, RM schedulesτ1 and
during its suspension it schedules partiallyτ2. At time 7,
τ2 is scheduled. At time9, τ2 is suspended andτ3 sched-
uled. Finally at time11, τ2 finishes its execution andτ3, at
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time12. Hence, the exact maximum responses time of tasks
(denotedσRM

i ) are:

τ1 : σRM
1 = 8, τ2 : σRM

2 = 11, τ3 : σRM
3 = 12

Consequently, the worst-case competitive ratio forI is:

cRM
A = sup

anyI

σA(I)

σRM (I)
≥

σA(IA)

σRM (IA)

≥ max

(

σA
1

σRM
1

,
σA

2

σRM
2

,
σA

3

σRM
3

)

≥
σA

3

σRM
3

=
35

12
= 2.91667

�

6.3.3 Method B of Kim

Lower bound 2 The lower bound to minimize the maxi-
mum response time for the method B of Kim is equal to
2, 75.

Proof:
Let IB be the following task system:

τ1 : C1,1 = 1, X1 = 1, C1,2 = 3, T1 = 6

τ2 : C2,1 = 1, X2 = 3, C2,2 = 2, T2 = 270

τ3 : C3,1 = 3, X3 = 2, C3,2 = 3, T3 = 810

The upper bound obtained with the second method of Kim
for each taskτi of IB and denotedσB

i is equal to:

τ1 : σB
1 = 5, τ2 : σB

2 = 22, τ3 : σB
3 = 35

Figure 5. The exact maximum response time
obtained by RM while scheduling IB .

Figure 5 presents the exact maximum response time of task
τ2. At time 0, RM schedulesτ1 since it has the highest
priority. At time 1, τ1 is suspended andτ2 scheduled. At
time 2, τ2 is suspended andτ1 is completed. At time3, τ3

is scheduled during the suspension ofτ2. At time 6, τ1 is
released and at time8, τ2 is completed. Consequently, we
obtain the following exact response times:

τ1 : σRM
1 = 5, τ2 : σRM

2 = 8, τ3 : σRM
3 = 24

Consequently, the competitive competitive ratio for the sec-
ond method of Kim is:

cRM
B = sup

anyI

σB(I)

σRM (I)
≥

σB(IB)

σRM (IB)

≥ max

(

σB
1

σRM
1

,
σB

2

σRM
2

,
σB

3

σRM
3

)

≥
σB

2

σRM
2

=
22

8
= 2.75

�

6.3.4 Jane W. S. Liu’s method

Lower bound 3 The competitive ratio on RM obtained
with the method of Liu is2, 875 to minimize the maximum
response time for tasks are allowed to self-suspend at most
once.

Proof:
We use the instanceIB defined in the Theorem 2. The upper
bound of maximum response time obtained with the method
of Liu for each taskτi of IB and denotedσL

i are:

τ1 : σL
1 = 5, τ2 : σL

2 = 23, τ3 : σL
3 = 47

Figure 5 presents the exact maximum response time ob-
tained withRM while schedulingIB. These results are:

τ1 : σRM
1 = 5, τ2 : σRM

2 = 8, τ3 : σRM
3 = 24

Hence, the competitive ratio obtained for the method of Liu
to minimize the maximum response time is equal to:

cRM
L = sup

anyI

σL(I)

σRM (I)
≥

σL(IB)

σRM (IB)

≥ max

(

σL
1

σRM
1

,
σL

2

σRM
2

,
σL

3

σRM
3

)

≥
σL

2

σRM
2

=
23

8
= 2.875

�

6.3.5 Comparison of feasibility tests

These results show that the method B ofKim obtained the
best results. But, we cannot conclude that the best feasibil-
ity test is the method B. Because, the only possible conclu-
sion is that these feasibility tests are not comparable. We
cannot conclude since it is possible for each feasibility test
to determine tasks sets where the feasibility test is the best
test but it is the worst for another. Kimet al. have already
proved that their two methods are not comparable [7]. Now
to prove that all the tests are not comparable, we show that
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the method A ofKim and the method ofLiu are not compa-
rable:
Let I be the following task set:

τ1 : C1,1 = 2, X1 = 3, C1,2 = 1, T1 = 7

τ2 : C2,1 = 1, X2 = 3, C2,2 = 2, T2 = 56

τ3 : C3,1 = 3, X3 = 1, C3,2 = 2, T3 = 392

The competitive ratio obtained for the three tests:

σRM
A (I) = 1.47

σRM
B (I) = 1.30

σRM
L (I) = 1.80

The ratio obtained with the method A ofKim is better than
the ratio obtained with the method ofLiu.

Let I ′ be the following task set:

τ1 : C1,1 = 2, X1 = 3, C1,2 = 1, T1 = 9

τ2 : C2,1 = 2, X2 = 3, C2,2 = 3, T2 = 45

τ3 : C3,1 = 2, X3 = 2, C3,2 = 1, T3 = 90

The ratios onRM are:

σRM
A (I ′) = 1.69

σRM
B (I ′) = 1.06

σRM
L (I ′) = 1.56

But with this task set, the method ofLiu is better than the
method A of Kim. To conclude all tests are not comparable.
Consequently, we can define a last test: the best method.

6.3.6 The Best Method

This method consist in applying forevery task all tests
and to store the smallest computed response time. Such a
method can help to decrease the competitive ratio (but we
have no formal proof of that fact).

Lower bound 4 The competitive competitive ratio ob-
tained while considering for each task system the best fea-
sibility test is2, 16667 to minimize the maximum response
time for tasks allowed to self-suspend at most once.

Proof:
Let IC be the following task system:

τ1 : C1,1 = 1, X1 = 1, C1,2 = 3, T1 = 9

τ2 : C2,1 = 1, X2 = 3, C2,2 = 1, T2 = 72

τ3 : C3,1 = 3, X3 = 2, C3,2 = 1, T3 = 648

The exact maximum response time obtained with the algo-
rithm RM are:

τ1 : σRM
1 = 5, τ2 : σRM

2 = 6, τ3 : σRM
3 = 14

The Table 1 presents for each task, the competitive ratio
obtained with each feasibility test.

Tasks Method A
of Kim

Method B
of Kim

Method of
Liu

τ1 1.00 1.00 1.00
τ2 2.17 2.17 2.33
τ3 1.57 1.43 1.64

Table 1. Competitive ratio for each task of IC

Consequently, the competitive competitive ratio ,CBst for
this method is:

cRM
Bst = sup

anyI

σBst(I)

σRM (I)
≥

σL(IC)

σRM (IC)

≥ sup
1≤i≤3

{inf{cRM
A (τi), c

RM
B (τi), c

RM
L (τi)}}

≥ 2.16667

�

6.4 Simulation results

6.4.1 Introduction

In this section, we present numerical results obtained during
the brute force generation described in Section 6.2. All tests
(upper bounds and the exact test) have been applied to every
generated task set. We are aware that such a simulation en-
vironment is not sufficient (cf. [2]) to exhibit relative merits
of the considered feasibility tests that they are only validin
the confine of our stochastic model (see Section 6.2).

6.4.2 Results

To obtain relevant results from a statistical point of view,
we generated one million of tasks sets. The tasks sets are
generated with the procedure defined in Section 6.2. The
Table 2 presents statistical results obtained by the simulator
for the feasibility tests.
The first row of the Table 2 presents the percentage of times
where every feasibility test has been the best one (while
scheduling task sets). The method B ofKim leads to the
best results.
The average competitive ratios in row2 of the Table 2 al-
lows us to remark that the method B ofKim is the feasibility
test arriving in first position. But even if the percentage of
the method ofLiu is equal to zero, this feasibility test has a
average less than the average of the method A ofKim.
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With the standard deviations (row 3 of the Table 2), the
feasibility test with the smallest standard deviation is the
method A ofKim.

Feasibility
tests

Method
A of Kim

Method
B of Kim

Method
of Liu

Best
method

3.64% 99.8% ≈
0.00%

Average ra-
tios

1.65 1.21 1.50

Standard
deviations
of ratios

0.18 0.20 0.22

Table 2. Results of simulation for the feasibil-
ity tests for task systems with 2 or 3 tasks

7 Conclusion

In this paper, we have presented some results on tasks
allowed to self-suspend at most once. For such task
systems there exists no on-line optimal algorithm. We also
presented the performances of three different feasibility
tests. For these tests, our aim was to compute their
pessimisms since they compute an upper bound of the
exact maximum response time of tasks. To determine this
pessimism, we use the approach of Epstein and Van Stee
[5] and also the competitive analysis. But the feasibility
tests are not compared to an optimal algorithm, but to the
fixed-priority on-line algorithmRM. Hence, we shown that
the competitive ratio of feasibility tests are between2.75
and 2.91667 implying the designers of real-time system
to oversize the computer features. We also shown that
feasibility tests are not comparable. But, if for each task,
we apply every feasibility test and we retain the best then
the competitive ratio decreases to2.16667. Finally, for
task sets with a small number of tasks and exactly one
self-suspension per task, the method B of Kimet al. is the
best one.

In further works, an interesting issue is to analyze others
feasibility tests and to consider a more general stochas-
tic environment (with task sets having a larger number of
jobs). Also to extend the approach to theEDF schedul-
ing policy and the feasibility test of Palencia [12] (based
on EDF). An other interesting issue can be to consider de-
pendent tasks (tasks with shared resources or precedence
constraints) [11].
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