Proc. of Database Systems for Advanced Applications (DASFAA'2007),
Bangkok, Thailand, April 9-12, 2007.

OntoDB: An Ontology-Based Database for Data
Intensive Applications

Hondjack Dehainsala', Guy Pierra', and Ladjel Bellatreche!

LISI/ENSMA, Téléport 2, 1, ave. Clément Ader 86960 Futuroscope - France
(dehainsala, pierra, bellatreche)@ensma.fr

Abstract. Recently, several approaches and systems were proposed to
store in the same database data and the ontologies describing their mean-
ings. We call these databases, ontology-based databases (OBDBs), and
Ontology-based data denotes those data that represent ontology individ-
uals (i.e., instance of ontology classes). To ensure a high performance of
queries on top of these OBDBs, efficient representation of ontology-based
data becomes a new challenge. Two main representation schemes have
been proposed for ontology-based data: vertical and binary representa-
tions with a variant called hybrid. In all these schemes, each instance
is split into a number of tuples. In this paper, we propose a new rep-
resentation of ontology-based data, called table per class. It consists in
associating a table to each ontology class, where all property values of
a class instance are represented in a same row. Columns of this table
represents those properties of the ontology class that are associated with
a value for at least one instance of this class. We present also the context
of our project, the architecture we have developed for ontology-based
databases, and a comparison of the effectiveness of our representation
with the classical representations used in Semantic Web applications.
Our benchmark involves three categories of queries: (1) targeted class
queries, where users know the classes they are querying, (2) no targeted
class queries, where users do not know the class(es) they are querying,
and (3) update queries.

1 Introduction

Nowadays, ontologies are largely used in several research and application do-
mains such as Semantic Web, information integration, e-commerce, data ware-
housing, etc. This is due to their nice characteristics: consensual, formal, shared,
etc. Actually, several tools for managing (building, inferring, querying, etc.) on-
tology data and ontology-based data (also called ontology individuals or ontology
class instances) are available (e.g., Protégé 2000, etc.). Usually, ontology-based
data manipulated by these tools are stored in the main memory. Thus, for appli-
cations that manipulate a large amount of ontology-based data, it is difficult to
ensure acceptable performance. Over the last five years, several approaches have
been proposed for storing both ontologies and ontology-based data in database
schemas to get benefit of the functionalities offered by DBMSs (query perfor-
mance, data storage, transaction management, etc.) [2—4, 8,11, 12] (see [16] for an

This work has been partly supported by the French ANR under grant
ANROSRNTL02706 (e-Wok-Hub).

extensive comparison). We call this kind of databases Ontology-Based Databases
(OBDBs).

Two main OBDB structures for storing ontology and ontology-based data
were proposed: the single table approach and the dual schemes approach. In the
single table approach [1, 3,8, 11], the description of classes, properties and their
instances are stored in a single table called wvertical table [1]. The schema of
this table has three columns: (subject, predicate, object), representing instance
identifier, property of an instance and value of an instance, respectively. This
approach is simple to implement and the structure may be used both for the
ontology and for instance data. Therefore, tools (inference engine, APIs, etc.)
developed for storing ontologies can also be used for processing instances data.
To ensure a high performance of queries, each column shall be indexed, and the
predicate column shall be clustered [1], or materialized views need to be created
[12]. In both cases, this approach requires extra storage cost and it may be not
very efficient to process queries having a large number of join operations [2].
Moreover, the drawback of such optimizations is the update overhead.

name address @ — TRIPLES
agé country! Sting |~ oprer | prEDICAT OBJECT
r Peraon rifiype rifeclass
Student rifiype rifsclass
Worker rdftype rifs:class <
Ontology Student, | rdfs:subClassOf Person ;..’.
= Worker | rdfs subClassOf Person 3
Instances jnstanceNt instanceOf instancaOf e rifiype s
name rdf-range s Stting
Stadert#l | instanceOf Student
Worker#l | inslanceOf Warker g
Stodentél name Peter é
Watker#l name John g

Fig. 1. vertical table approach.

To overcome the drawback of the first approach, a dual scheme approach
has been proposed. It consists in storing separately ontologies and instance
data in two different structures, called ontology and data, respectively [2,4, 12].
The ontology structure depends upon the ontology model (e.g., RDF Schema,
DAML+OIL, OWL). Figure 2a shows an example of ontology structure for RDF
schema.

In the dual scheme approach, instances and their properties values are also
stored separately. Three different schemes have been proposed to record class
belonging [16]. In the two first approaches, each class is mapped onto a table.
The third one, called, hybrid [2] maps all classes on the same binary table. These
scheme are as follow: (1) one table per class with only one column storing all
IDs of class instances [2,15] (see NOISA on figure 2b). (2) one table per class
with table inheritance using SQL99 capabilities [2,4] (see ISA on figure 2b).
(3) a single table with two columns ID and Class, representing the identifier

of an instance, and its ontology class [2]. The ID column may be either the
URI or integer identifiers mapped on URI in a particular binary table (called
”instances”).

RANGE PROPERTY DOMAIN CLASS SUBCLASS
TYPE | PROPERTY || D | NaME PROPERTY | CLASS D [NaME || wer | 5w
xsdstring 1 1 tame 1 1 1 | Pesmn 1 2
xsdinteger 2 2 age 2 [2 | Studeat 1 3
3 [Cewcrass 3 3 address 3 1 3| Worker
xsd string 4 4 grade. 4 2 & Address
s float 5 3 sl i 3 SUBPROPERTY
s string 6 6 country [4 swper | sub
HYBRID APPROACH NOISA IsA
STUDENT PERSON
INSTANCES
0 -
D CLASSID
student#l
b) student] Student
worker#l Worker
workER | [ADDRESS sTubENT | [worker | [appress
address#l Address
D D D D D
workentl || addresstt studentitl || worker#t addresl
BINARY TABLE APPROACH VERTICAL TABLE APPROACH
SALARY COUNTRY NAME TRIPLES
D ‘ VALUE D ‘ VALUE D VALUE SUBJECT | PREDICAT | OBJECT
worker#l | 1500 worker#l | France sudent#l | Peter — e Peter
"ADDRESS GRADE worker#l John studentit] grade PHD
9 D | VALUE w [vawe [[AGE | worker#1 name Jotn
worker#l | addressil suent#l | PO || D VALUE | p— e 0
HYBRID APPROACH
STRING RANGE INTEGER RANGE
SUBJECT | PREDICAT OBJECT SUBJECT | PREDICAT OBJECT
Worker#l | address France Worker#l salary 1500
Student#] rame Peter Stadent#l age n

Fig. 2. (a) Ontology Schema in the dual scheme approach. (b) Instance scheme alter-
native representations. (c¢) Property value scheme alternative representations

Three representation of property values are possible: (1) binary tables, (2)
vertical table of triples and (3) hybrid approach consisting of a set of triple
tables (one per a range data type) (see Figure 2c). It is worth noticing that
both the vertical table approach, and the dual scheme approach with hybrid
representation of instances and properties involve a small number of large tables
when other dual scheme a approaches involve a large number of smaller tables.

A number of benchmarks were already performed to compare these various
approaches [1,2,11,12, 16]. The main findings may be summarized as follows :

— the vertical table approach may only provide similar query results with the
dual schema when the vertical table is clustered [1], and/or when materi-
alized views represent the dual scheme content [16]. Even in this case the
vertical table approach provides worst results for taxonomic queries, i.e.,
those queries requiring subsumption inference [16].

— The dual scheme approach with hybrid representation of instance belonging
and property values also require clustering operations of these tables [16],
else this approach is outperformed by dual scheme with unary instance tables
and binary property tables.

— The clustering operation is time consuming. A test was done on a small
database !. We got about 3 mins and 30 seconds, which is very significant.
This is because a clustering operation has to be performed each time for
each update query. Thus the cost of updating the database schema when
unary and binary representation are used is to be compared with the cost of
clustering data in vertical table and hybrid approaches.

— Most popular OBDB management systems (e.g., Sesame [4], RDFSuite [2]
and DLDB [12]) use binary representation to store ontologies instances.

Thus, from the previous experiments, we may conclude that the dual scheme
approach with unary instance and binary property representations appear as
a suitable approach for those databases that are both rather large and often
updated. Nevertheless, when the number of properties associated with each in-
stance grows, browsing or querying instances becomes more and more difficult
as it requires a large number of joins. The goal of this paper is (1) to propose
a third approach for recording ontologies and ontology-based data and (2) to
present performance results that show in which context this approach outper-
forms the classical approaches.

The paper is organized as follows: Section 2 presents the motivation of our
ontology-based database architecture, called OntoDB and the PLIB ontology
model. Section 3 presents the architecture of OntoDB and our proposed rep-
resentation, called, table per class, for storing ontology-based data. Section 4
presents our experimental results. Section 5 concludes the paper and presents
some perspectives.

2 DMotivation of our Ontology-based Database
Architecture

In this section, we outline the context of our work on ontology-based databases.
In the 90s, to allow the exchange of electronic catalogues of industrial compo-
nents, an ontology model for technical domain was developed [10] and then pub-
lished as an international standard known as PLIB (ISO 13584-42: 98). Then,
a model to exchange objects described in terms of such ontologies was devel-
oped [14] and also standardized (ISO 13584-25:2003). In the beginning of 2001,
the PLIB model being finished, a new project called OntoDB was launched. It
aimed to store, exchange, integrate and process industrial catalogues modeled as
ontology-based data associated with a formal ontology. PLIB-based ontologies
were first targeted. Then, the decision to also to support other ontology models
such that OWL or DAML+OIL has been taken.

We outline below both the PLIB ontology model and the model for PLIB-
based instance data.

! DB_10P_1K : database which has 10 valued properties and 1K instances per class
(see section 4.1)

2.1 PLIB Ontology Model

The PLIB ontology model is technical domain-oriented as it supports four main
capabilities broadly used in engineering: (1) a property value may depend upon
its evaluation context (e.g., the length of an axis depends upon its temperature),
thus a property may be a function, (2) the property value may be associated
with a measure unit (e.g., a temperature may be expressed in degree Celsius),
(3) an object must be characterized by one single ” characterization class” (as-
sociated with properties), but it may also be associated with any number of
discipline-specific ontology class, the point of view itself being represented by
an ontology class [13], and (4) an object may be classified in any number of
" classification class” (not associated with properties). It is worth noticing that
this particular taxonomy of meta classes allows PLIB ontology to represent a
number of Semantic Web applications such as Web Portal catalogs [2].

PLIB ontologies are domain ontologies: they describe by means of classes
and properties all the consensual entities of the target domain. Each property
is defined in the context of a class, that constitutes its domain, and it has a
meaning only for this class and its possible subclass(es). To avoid the contextual
character of a classification, in a PLIB ontology, a class is created only if it is
necessary to define the domain of a property that would not be understood in
the context of its super-class. Inversely, a property can be defined in the context
of a class even if it does not apply to all its instances or subclasses. The single
condition is that it is defined in an unambiguous way.

Thus, class hierarchies of PLIB ontology are extremely ”flat”. They do not
define all the possible classes existing in a given domain, but they define only
a canonical minimal vocabulary that consists only of primitive concepts. This
vocabulary shall only make it possible to describe, in a single way by a class
belonging and a set of properties value pairs, all instances which are subject of a
common understanding by domain experts. Any entity existing in a domain can
thus be described, either directly in terms of the shared ontology or by adding
additional classes that refine shared concepts and/or that add properties to the
shared ontology.

2.2 PLIB Instance Data Model

Contrary to individuals of description logic-based ontologies that may belong
to any number of non connected ontology classes, the PLIB instance model is
strongly typed. This means that (1) each instance belongs to exactly one minimal
characterization class (called its basis class which is the minimum for subsump-
tion order of all the characterization classes to which the instance belongs), (2)
each property is defined in the context of a characterization class that defines
its domain of application, and is associated with a range and (3) only proper-
ties that are applicable in the context a characterization class may be used for
describing its instance. This assumption, rather similar to the OEM model in
the TSIMMIS project [5] ensures that there exists an envelop modem that fits
with any instance of a class: namely the set of all its applicable properties. But,

unlike strongly typed conceptual models, an instance is not required to be asso-
ciated with values for all the applicable properties of its basis class. This simple
principle gives more schematic autonomy to the various data sources that may
refer to the same ontology while preserving automatic integration capabilities.
It also makes consensus more easier during ontology design.

3 OntoDB model architecture

We describe below the OBDD architecture we have proposed for storing on-
tologies and PLIB-instance data. The objectives of our architecture model were:
(1) to support automatic integration and management of heterogeneous popula-
tions whose data, schemas and ontologies are loaded dynamically, (2) to support
evolutions of the used ontologies and of ontology scheme, and (3) to offer data
access, at the ontology level, whatever is the type of the used DBMS. Our archi-
tecture is composed of four parts. Parts 1 and 2 are traditional parts available
in all DBMSs, namely the data part that contains instance data and meta-base
part that contains the system catalog. Parts 3 (ontology) and 4 (meta-schema)
specific to our OntoDB (Figure 3).

The ontology part allows to represent ontologies in the database. The on-
tologies supported by our architecture are all those that can be represented
and exchanged as models following Bernstein’s terminology, i.e., a set of objects
accessible from a root object using links between objects. This definition cor-
responds to most of the ontology models recently developed such as OWL [6],
and in particular PLIB. When the target DBMS is relational, the ontology part
schema is defined using an object /relational mapping.

The meta-schema part records the ontology model into a reflexive meta
model. For the ontology part, the meta schema part plays the same role as the
one played by the meta-base in traditional DBs. Indeed, this part may allow: (1)
generic access to the ontology part, (2) support of evolution of the used ontology
model, and (3) storage of different ontology models (OWL, DAML+OIL, PLIB,
etc.).

Ontology structure Data structure
(meta-schema) (4) (meta-base) (1)

B B EE

""" DB content
{data) (2)

;:‘(g(!_t' ay) (3)

Fig. 3. The OntoDB Architecture

By means of naming convention, the meta-base part also represents the log-
ical model of the content, and its link with the ontology, thus representing im-

plicitly the conceptual model of data in database relations. Therefore our OBDB
model, called OntoDB represents explicitly: (1) ontologies, (2) data scheme, (3)
data, (4) the links between the data and their schema and (5) the link between
the data and the ontology.

Let us discuss the representation of ontology-based data. Ontologies allow
representation of the semantic of objects of a given domain. This is done by
assigning objects to ontological classes and by describing them using ontological
properties. According to the used ontology model, various constraints govern
such descriptions. For instance, in RDF Schema, DAML+OIL and OWL, an
object may belong to any number of classes and can be described by any set
of properties. Therefore each domain object has its own structure. In the oppo-
site, a database schema aims to describe ”similar” objects by an identical logical
structure in order to optimize queries using indexing techniques. Without any
particular assumption, the only possible common structure consists in associat-
ing each object: (1) with any subset of set of classes; and (2) with any subset of
the set of properties. All the OBDB scheme discussed in section 1 support this
capability.

The drawbacks of such structure become evident when, like in engineering,
each instance is characterized by a significant number of properties (e.g., 50),
and when this number is quite smaller than the total number of properties of the
various class instances (e.g., 1000). Either it would require an important storage
cost (by using a systematic representation of all properties for every instance).
This approach has been evaluated by Agrawal et al. [1] which argued that it is
not efficient. Or it would require a significant response time due to the need of
performing a large number join operations, if one of the approaches presented
in the introduction are used.

STUDENT WORKER ADDRESS
(o)in} name aade oI name salary address [8)11] coumry
studentél Peter FHD worker#l John 1500 addressi] | | address¥l France

Fig. 4. table per class representation approach.

Thanks to the strong typing assumptions presented in section 2.2, it is possi-
ble for us to define a relevant schema for any ontology class. This schema consists
of all the class applicable properties that are used at least by one instance of
the class. Of course, this schema might contain in some case a number of null
values. But experience shows that in most context, and in particular both in
industrial component catalogues and in Web portal meta data catalogues (see
e.g., [2]) basically the same properties are used for the various instances of the
same class. As a rule, the null values are much less than 50%. Thus our approach
supports efficient query processing. Note that this schema definition implies a
major difference between object-oriented databases (OODB) and our OBDB.
In an OODB, subsumption means inheritance of properties/attributes. All the

properties defined in some class do exist in all its subclass(es). The only mech-
anism for property sharing between two subclasses of a class is to factorize this
property at the level of the mother class. But then the property shall appear in
all sibling classes. In OBDBs, inheritance is intentional: it concerns only the on-
tology level. Represented properties may be any subset of applicable properties.
Thus two classes (C1,C2) may share a property P; when none of their sibling
class, (e.g., (Cs,Cy, Cs) use this property. It only means that P; is applicable
(from an ontological point of view) for all C; to Cj, but that only C; and Cs
provide a value of this property for (some of) their instances. This makes the
OBDB model much more flexible, in particular for integrating heterogeneous
databases.

To summarize our ontology-based data representation, we create a table for
each class in the database. Its columns consists of a subset of applicable prop-
erties those that are used by some of its instances.

Figure 4 shows an example of our representation structure with ontology data
of figure la. In the following section, we will call by table per class our approach
of representation of ontology-based data. Note that our OntoDB model records
explicitly the structure of each class table and that taxonomies queries (i.e.,
queries that require subsumption inference) are first evaluated intentionally (to
know which classes use each particular property) before querying the data part.

4 Evaluating Instance Representation Schemes

In order to study the effectiveness of our representation of ontology-based in-
stance data, we carried out a series of performance experiments to compare two
representation scheme: unary instance and binary property representations (bi-
nary for short) vs table per class. Our initial intent was to compare also with
the wvertical representation. Finally, we restricted to binary representation for
two reasons: (1) the existing benchmarks all that confirm that binary approach
equals or outperforms other classical schemes (see section 1), and (2) some ex-
periments we did on the vertical table approach proven that, in our context also,
it was less efficient than the binary approach.

As an experimental platform, we use the ORDBMS PostgreSQL-7.4 (emu-
lated on cygwin) installed on a Pentium 3.7 GHz CPU, 6 GO of RAM, 200 GO
of Hard Disk. In all our experiments, a cache memory of 50 MO has been used.

4.1 Databases

To perform our experiments, we use an ontology that is both real and repre-
sentative of our application domain. It describes the various kinds of electronic
components together with their characteristic properties. Published as an Inter-
national Standard in 1998, ITEC 61360 [9] is composed of 190 classes: 134 leaf
classes and 56 no leaf classes. These classes have a total of 1026 properties. The
average deep of the IEC ontology hierarchy is 5. To facilitate the computation
of the sizes of the test databases, all ranges of properties were changed to have

a string (255) as their range. A generator of population of each class has been
developed. Various contents of database were generated by varying the number
of instances and the number of valued properties used for each class. We denote
by TP and TC, the binary table per property and table per class approach, re-
spectively. Let DB_aP_iK be a database with ”a” properties and ”iK” instances
per class. For example, BD_50P_2K is a database with 50 valued properties and
2K instances for each class in the database.

Seriel Serie2
DB 10P 1K |DB 25P 1K | DB SOP 1K | DB 10P 10K | DB 2I5P 4K | DB S0P IK
Number of valued properties / class 10 25 50 10 25 50
Number of instances / dass 1K 3:4 1K 10K 4K K
Numbe of mitialised casses 134 134 134 134 134 134
Total number of instances in DB 1H¥E 134K 13K 1340K 536K 268K
Data size m DB 0,341 GO 084G0 1,68G0 3.41G0 341G0 34160

Fig. 5. Databases created.

To conduct our experiments, we create six databases. The description of these
databases is shown in Figure 5. These databases have been classified into two
series: databases in the first serie (Seriel) have the same number of instances
per class and a different number of properties: BD_10P_1K, BD_25P_1K and
BD_50P_1K. Thus, they allow to study the effect of database size. Databases
in the second category (Serie2) have the same size (InstancesNumber x Prop-
ertiesNumber), but different number of instances and of properties per class:
BD_10P_10K, BD_25P_4K and BD_50P_2K. This classification allows us to study
the effect on query performance of the number of properties and of instances per
class. Note the serie 2 databases containt 13.5 millions of RDF triples.

4.2 Query Taxonomy

We consider three classes of queries: targeted class queries, no targeted class
queries and update queries. In a targeted query, the user knows the classes that
she wants to query. For example, ”find all students that are more than 25 years
old”. In a non targeted class of queries, the user does not know the classes that
she is looking for. For instance, ”list all instances in the database that are more
than 25 year old”.

In this study, we consider PSJ queries (projection, selection and join). These
queries are executed on leaf and non-leaf classes. As in [1], we will not consider
queries using protection, selection and join operations, simultaneously, as their
result may be deduced from PSJ results.

To get reproducible experimental results, we carry out all benchmark queries
in the following way. Every query is performed once to warm up the database
buffer and then it is performed at least three times in order to get a mean running
time.

4.3 Performance Results for Targeted Class Queries

We conduct three series of experiments: (1) projection queries, (2) selection
queries, and (3) join queries. Figure 6 below show a set of curves that give, for
each particular database, the query execution time as a function of a particular
criteria. The ratio table when present, precises how many times the classical TP
representation is slower than our TC representation. Due to space limitations,
we are not showing the complete experimented results that are described in
[7]. In particular, the query behaviour for several databases with same size, but
with different structures is quite similar. Thus, we will not represent this kind
of comparison.

4000 2500

1400

= TC Selectivity factor 25% -
3500 . TP = o i -
-~~~ DB_10P_1K (0,33860) / Al == —=—T0
3000 TP T A—] " | | N
= ——— ~DB_25P_1K (0.84G 0} e TP i 1000 Bl
7 4
E230 DEB_50°_1K (1,6860) 7 1500
T z 600
|£ 20m 5
/ £
EHDD >3 1000 =800
<] s = 2 o
= = £ =
1000 — = B =1
g - 500 : =
500 — S L 200
S = =
3 o= T rrrlrinl | .

0
1 3 § P 1 ¥ 3 5 T 10 0B_10P_1K DB_35F_1K DB_B0F_1K
Number of projected properies

Number of propertiesin predicate DB size
NB props 1 3 5 10
03G0 | 1 [1] 2 [2 [NBprops | 1 | 3 | 5 [7 [10 0,334 GO[0,838 GO| 1,68 GO
084G0 | 4 | 5 | 6 | 6 [oBsoP_2k| 17 | 17 | 18 | 74| 9 [4 | 4 | 8 |
16860 | 7 | 8 | 12 |15

{a) Ratio performance TP/TC {b) Ratio performance TP TC (c) Ratio performance TP/TC

Fig. 6. (a) Projection for various number of properties and various size of databases,
(b) Selection with various number of properties (DB_50P_2K)(c) Join within a leaf
class for various size of databases.

Projection within a leaf class. We performed four queries with 1, 3, 5 and
10 projected properties, respectively. Figure 6a summarizes the execution time.
The response time for TC is relatively constant when the number of projected
properties increases, while for TP approach, the variation of the number of pro-
jected properties means the augmentation of join operations. Therefore the cost
increases dramatically when all the relevant binary tables cannot be simultane-
ously fetched in the main memory. For the biggest database of our benchmark
(1,7 to 3,4 GO), projection on 10 properties is about 10 to 15 times faster with
TC than TP.

Selection within a leaf class. Figure 6b shows performance of selection
queries on one of the biggest database, namely, DB_50P_2K. We varied the num-
ber of properties in the selection predicate from 1 to 10. Once again, the worst
performance is justified by the number of join operations and the sizes of property
tables that may cause an important 10 overhead. Changing the selectivity factor

of the predicate that contains only one attribute does not change significantly
the behavior of both representations. Globally, T'C' representation outperforms
TP by a factor between 17 and 85.

Join Operations within a leaf class. Figure 6¢ shows the performance of
join queries performed on databases of Seriesl. The queries return 1 property
value per class. The join selectivity is fixed to 0.25%. T'C' approach has better
performance than TP. Variation of databases size increases the ratio between
TP and TC. The reason of worst performance of TP is justified by the size
of the binary property tables and the fact that a preliminary join is needed
between the class table and the property binary tables. In our domain of study,
TC outperforms TP between 4 and 8.

Projection and selection within non-leave classes. We have also evaluated
projection and selection within a non-leaf class with seven subclasses. Query
response time in a non-leaf class is the sum of queries response time performed
in each subclass of the non-leaf class. So, the shape of the curves of performances
are identical in queries on leaves and non-leaves classes. In these experiments,
the ratio TP/TC is between 11 and 35.

4.4 No Targeted Class queries

When the class to be queried is unknown for the user, the advantages of the
table per class approach may disappear. Such queries may be formulated as
follows: ”find all instances in the database that have value wval; for a property
P; AND/OR waly for a property P»”, etc. Execution of this kind of queries in
TC approach is performed in two steps. In the first step, one finds all classes
in the databases which uses properties (P, P). In the second step, selection
queries are performed in all the classes found in the first step. In TP approach,
execution of non-targeted queries are performed directly by a join of the tables
of the properties present in the query predicates.

We note that this kind of query is hardly used in our application domain: we
never request "an object with the weight equals 1 kilogram”. Moreover, if one
does not know the class of an object, we need, at least, several properties for
characterizing this object. Therefore, such queries request projection on several
properties.

We ran these queries against databases of growing sizes (Series 1). We varied
the number of projected properties to 1, 3, 5 and 10 to represent realistic queries.
TP approach is more efficient than TC approach as long as queries return less
than 5 properties. Beyond this number of properties, TC approach becomes more
efficient.

The worst performance of TC approach when a small number of properties is
requested is due to access time to the ontology part. It needs to traverse all classes
and to test for each class if the searched properties belong to it. Notice that the
time to get all classes in this step is relatively constant when we vary the number

of properties in the queries, contrary to TP approach where every new property
cause one more join in the queries. So, when the number of requested properties
increases, to compute classes in the first step in TC approach becomes smaller
than the time of joins in the TP approach.

4.5 Update Queries

Figures 7a and 7b show performance results of insertion and update queries. We
run queries on databases of growing sizes. Both figures show that TC is more
efficient than T'P. In case of insertion, the worst performance of TP results from
the fact that all tables concerned by insertion of valued properties need to loaded
in the memory, while T'C' approach, needs only one loading of a single table. For
update queries (concerning only one property value), the worst performance of
TP approach is due to the size of the property table that needs to be loaded.
The cost ratio between TP and TC ranges from 2 to 56 for insertion and is
about 2 from each update for a singe property.

CHANGING VALUE OF ONE PROPERTY OF INSTANCE
i ADDING ONE INSTANCE = 5 P———
ann g e TP - e I

800 =
a0 o= 20
600 —-

500 — 15

I3 - -
400 0 o SR //.

300 —= '_/__//
200 = 5
100 ——
1 i i
0,334 Go 0,838 Go 1,68 Go 0,334 Go 0,838 Go 1,68 Go
¢ ¢ (o oas el
0,334 GO[0,838 GO 1,68 GO 0.334 GO[0.838_GOJ 1.68 GO
(@) Ratio: TP / TC (b) Ratio : TP / TC

Fig. 7. Insert and Update Queries

5 Conclusion

A number of ontology-based database structures have been proposed during
the last five years. Most of them are targeted to support real scale Semantic
Web applications. Several benchmarks were proposed to compare their perfor-
mance using Semantic Web oriented data. These benchmarks focus mainly on
the class structure and taxonomy queries (i.e., retrieving the proper or transitive
instances of a particular class or property). There exists other applications of
ontology-based database focusing mainly on property-value pairs. It is the case
of engineering databases, electronic catalogues of industrial components and a
number of B2B applications. In such context, instance data consists of a class
belonging and a number of property-value pairs. Most queries associate with
instances a number of properties.

In this paper, we firstly presented the ontology model we developed for the
engineering domain, secondly our OBDB architecture, called OntoDB, and fi-
nally, the data structure we propose for storing instance data. This structure,
called table per class, associates to each ontology class a table that contain as
columns those applicable properties of the class that are associated with a value
for at least one instance of the class. Our proposed benchmark for compar-
ing this approach with the best approach known in the Semantic Web context,
namely the binary table approach, used a real standardized ontology with real
size databases that contain up to 15 millions of RDF triples. Thus, it reflects
the need of our application domain. Our benchmark is based on three kinds of
queries: (1) targeted class queries, where the user is supposed to know the root
class of the subsumption tree to be queried, (1) non targeted class queries, where
the user does not know what kind of ontology concepts she is looking for, and
(3) insertion and update queries.

For queries (1) and (3), the table per class approach outperforms the classical
binary table approach with ratio often bigger than 10. The only case where the
binary approach is better is for the no targeted class queries, when the user
only requests a very small number of property values. We note that this kind of
queries nearly never happens in our application domain. Engineers always knows
what they are looking for before searching for property values.

Our OntoDB prototype is already supporting more than millions of instances
with dozen of properties, but it mainly uses PLIB ontologies. We are currently
working to make its ontology model more flexible, to integrate other kind of
ontologies. We are also improving the ontology implementation to speed up the
ontology browsing process. Finally, we are developing an SQL oriented OBDB
query language that integrates most of RQL and of SQL99 capabilities.

References

1. R. Agrawal, A. Somani, and Y. Xu. Storage and querying of e-commerce data. In
Proc. VLDB’01, pages 149-158, 2001.

2. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle. On
storing voluminous rdf descriptions: The case of web portal catalogs. In Proc.
ofWebDB’01 (co-located with ACM SIGMOD’01), 2001.

3. B.McBride. Jena: Implementing the rdf model and syntax specification. In Proc.
of the 2nd Intern. Workshop on the Semantic Web, 2001.

4. J. Broekstra, A. Kampman, and F.V. Harmelen. Sesame: A generic architecture
for storing and querying rdf and rdf schema. In Proc. of the First Inter. Semantic
Web Conf., pages 54—68, 2002.

5. S. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou,
J. D. Ullman, and J. Widom. The tsimmis project: Integration of heterogeneous
information sources. Proceedings of the 10th Meeting of the Information Processing
Society of Japan, pages 7-18, Marsh 1994.

6. M. Dean and Schreiber. W1 web ontology language reference. W3C Recommenda-
tion (2004), February 2004.

7. H. Dehainsala, G. Pierra, and L. Bellatreche. Managing instance data in ontology-
based databases. Technical report, LISI-ENSMA http://www.lisi.ensma.fr/ftp/
pub/documents/reports/2006,/2006-LISI-003-DEHAINSALA .pdf, 2006.

10.

11.

12.

13.

14.

15.

16.

S. Harris and N. Gibbins. 3store: Efficient bulk rdf storage. In Proc. of the 1st
Intern. Workshop on Practical and Scalable Semantic Systems (PSSS’03), 2003.
IEC. Iec 61360 - component data dictionary. International Electrotechnical Com-
mission. Available at http://dom2.iec.ch/iec613607?OpenFrameset, 2001.
ISO13584-42. Industrial automation systems and integration parts library part 42
: Description methodology : Methodology for structuring parts families. Technical
report, International Standards Organization, Geneéve, 1998.

L.Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu. Rstar: an rdf storage and query system
for enterprise resource management. thirteenth ACM international conference on
Information and knowledge management, 2004:484 — 491.

Z. Pan and J. Heflin. DIdb: Extending relational databases to support semantic
web queries. ISW(C’2003, 2003.

G. Pierra. A multiple perspective object oriented model for engineering design.
in New Advances in Computer Aided Design & Comp. Graphics, pages 368-373,
1993.

G. Pierra. Context-explication in conceptual ontologies: Plib ontolo-
gies and their use for industrial data. to appear in Journal of Ad-
vanced Manufacturing Systems, World Scientific Publishing Company, avail-
able at http://www.lisi.ensma.fr/ftp/pub/documents/papers/2006,/2006-J AMS-
Pierra.pdf 2006.

K. Stoffel, M.G. Taylor, and J.A. Hendler. Efficient management of very large
ontologies. In Proc. of American Association for Artificial Intelligence Conference
(AAAT’97), 1997.

V. Christophides Y. Theoharis and G. Karvounarakis. Benchmarking database
representations of rdf/s stores. In Fourth International Semantic Web Conference
(ISWC’05), November 2005.

