
LABORATOIRE D'INFORMATIQUE SCIENTIFIQUE ET INDUSTRIELLE

ÉCOLE NATIONALE SUPÉRIEURE DE MÉCANIQUE ET D'AÉROTECHNIQUE
Site du Futuroscope - B.P. 109 - 86960 FUTUROSCOPE Cedex - FRANCE

Tél. : +33 (0) 5-49-49-80-63 - FAX : +33 (0) 5-49-49-80-64
Web : http://www.lisi.ensma.fr

Rapport de recherche
N° 03 -2006

Managing Instance Data in
Ontology-based Databases

Hondjack DEHAINSALA, Guy PIERRA, Ladjel BELLATRECHE,



Managing Instance Data in Ontology-based

Databases

Hondjack Dehainsala1, Guy Pierra1, and Ladjel Bellatreche1

LISI/ENSMA, Téléport 2, 1, ave. Clément Ader 86960 Futuroscope - France
(dehainsala, pierra, bellatreche)@ensma.fr

Abstract. Recently, several approaches and systems were proposed to
store in the same repository data and the ontologies describing their
meanings. We call these databases, ontology-based databases (OBDBs)
and ontology-based data represents those data that represent ontology
individuals (i.e., instance of ontology classes). To ensure a high perfor-
mance of queries on top of these OBDBs, representation of ontology-class
instance, called, ontology-based data becomes a new challenge. Two main
representation schemes have been proposed for ontology-based data: ver-
tical and binary representations with a variant called hybrid. All these
schemes store in separate tables, instances and their properties. In this
paper, we propose a new representation of ontology-based data, called
table per class. It consists in associating a table to each ontology class,
where all property values of a class instance are represented in the same
row. Columns of this table represents those rigid properties of the on-
tology class that are associated with a value for at least one instance
of this class. In the following, we present the context of our project, the
architecture we have developed for ontology-based databases, and a com-
parison of the effectiveness of our representation of ontology-based data
with the classical representations used in Semantic Web applications.
Our benchmark involves three categories of queries: (1) targeted class
queries, where users know the classes they are querying, (2) no targeted
class queries, where users do not know the class(es) they are querying,
and (3) update queries.

1 Introduction

Nowadays, ontologies are largely used in several research and application do-
mains such as Semantic Web [19], information integration [18], e-commerce [14],
data warehousing [7], etc. This is due to their nice characteristics: consensual,
formal, shared, etc. Actually, several tools for managing (building, inferring,
querying, etc.) ontology data and ontology-based data (also called ontology in-
dividuals or ontology class instances) are available [8]. Usually, ontology-based
data manipulated by these tools are stored in the main memory. Thus, for ap-
plications that manipulate a large amount of ontology-based data, it is difficult
to ensure acceptable performance. Over the last five years, several approaches
have been proposed for storing ontology-based data in database schemas to get



benefit of the functionalities offered by DBMSs (query performance, data stor-
age, transaction management, etc.) [2, 10, 3, 15, 13, 9] (see [19] for an extensive
comparison) We call this kind of databases Ontology-based Databases (OBDBs).

Two main OBDB structures for storing ontology and ontology-based data
were proposed [3, 4, 15]: the single table approach and the dual schemes ap-

proach. In the single table approach, the description of classes properties and
their instances are stored in a single table called vertical table [1]. The schema
of this table has three columns: (subject, predicate, object), representing instance
identifier, property of an instance and value of an instance, respectively. This
approach is simple to implement and the structure may be used both for the
ontology and for instance data. Therefore, tools (inference engine, APIs, etc.)
developed for storing ontologies can also be used for processing instances data.
To ensure a high performance of queries, each column shall be indexed, and the
predicate column shall be clustered [1]. Therefore, this approach requires extra
storage cost and it may be not very efficient to process queries having a large
number of join operations [2].

Fig. 1. vertical table approach.

To overcome the drawback of the first approach, a dual scheme approach
has been proposed. It consists in storing separately ontologies and instance
data in two different structures, called ontology and data, respectively [2, 4, 15].
The ontology structure depends upon the ontology model (e.g., RDF Schema,
DAML+OIL, OWL). For instance, figure 2 shows an example of ontology struc-
ture for RDF schema.

In the dual scheme approach, instances and their properties values are also
stored separately. Three different schemes have been proposed to record class
belonging [19]. (1) a single table with two columns ID and Class, representing
the identifier of an instance, and its ontology class. (2) one table per class with
only one column storing all IDs of class instances [19] (see NOISA on figure 3).



Fig. 2. Ontology Schema in the dual scheme approach.

(3) one table per class with table inheritance using SQL99 capabilities [19, 2]
(see ISA on figure 3).

Fig. 3. Scheme instances representation approaches.

Property values are represented in a binary table or in vertical table of triples
with or without strong typing.

Fig. 4. Property values in the dual scheme approach

The dual scheme approachh has been proved to be more efficient than the
single approach in various configurations [19]. Nevertheless, when the number of
properties associated with each instance grows, browsing or querying instances
becomes more and more difficult as it requires a large number of joins. The goal
of this paper is (1) to propose a third approach for recording ontologies and
ontology-based data and (2) to present performance results that show in which
context this approach outperforms the classical approaches.

The paper is organized as follows: Section 2 presents the motivation of
our ontology-based database architecture and PLIB ontology model. Section
3 presents the architecture of OntoDB model and our proposed representation,



called, table per class, for storing ontology-based data. Section 4 presents our
experimental results. Section 5 concludes the paper and presents some perspec-
tives.

2 Motivation of our Ontology-based Database

Architecture

In this section, we outline the context of our work on ontology-based databases.
In the 90s, to allow the exchange of electronic catalogues of industrial com-
ponents, an ontology model for technical domain was developed [12] and then
published as an international standard known as PLIB (ISO 13584-42: 98). Then,
a model to exchange objects described in terms of such ontologies was developed
[17] and also standardized (ISO 13584-25:2003). In the beginning of 2001, the
PLIB model being finished, a new project called OntoDB was launched. It aimed
to store, exchange, integrate and process industrial catalogues modelled as in-
stance data associated with a formal ontology. PLIB-based ontologies were first
targeted. Then, the decision to also to support other ontology models such that
OWL or DAML+OIL has been taken.

We outline below both the PLIB ontology model and the model for PLIB-
based instance data.

2.1 PLIB Ontology Model

The PLIB ontology model is technical domain-oriented as it supports three main
capabilities broadly used in engineering: (1) a property value may depend upon
its evaluation context (e.g., the length of an axis depends upon its temperature),
(2) the property value may be associated with a measure unit (e.g., a temperature
may be expressed in degree Celsius), and (3) an object may be characterized by
one single class, and it may be represented by any number of discipline-specific
ontology class, the point of view itself being represented by an ontology class
[16].

PLIB ontologies are domain ontologies: they describe by means of properties
all the consensual entities of the target domain. Each property is defined in the
context of a class, that constitutes its domain, and it has a meaning only for
this class and its possible subclass(es). To avoid the contextual character of a
classification, in a PLIB ontology, a class is created only if it is necessary define
domain of a property that would not be understood in the context of its super-
class. Inversely, a property can be defined in the context of a class even if it
does not apply to all its instances or subclasses. The single condition is that it
is defined in an unambiguous way.

Thus, class hierarchies of PLIB ontology are extremely ”flat”. They do not
define all the possible classes existing in a given domain, but they define only
a canonical minimal vocabulary that consists only of primitive concepts. This
vocabulary shall only make it possible to describe, in a single way by a class
belonging and a set of properties value pairs, all instances which are subject of



a common understanding by domain experts. Any entity existing in a domain
can thus be described, either directly in terms of the shared ontology or by
adding additional classes that refine shared concepts and/or that add properties
to the shared ontology. To do so, the PLIB ontology model offers an extension
relationship, called case of. This relation offers to an user the possibility to define
her own ontology by specializing the relevant subset of a shared ontology. From a
semantic point of view, a class case-of of another class is subsumed by the later.
From a syntactic point of view, the case of class can import from its subsuming
class any subset of its applicable properties. This relationship makes it possible
to define, from the same shared ontology, various user ontologies with quite
different structures, while preserving the capability to integrate automatically
ontology-based data (the case-of link may be recorded in each instance).

2.2 PLIB Instance Data Model

Contrary to individuals of description logic-based ontologies that may belong
to any number of non connected ontology classes, the PLIB instance model is
strongly typed. This means that (1) each instance belongs to exactly one minimal
class (called its basis class which is the minimum for subsumption order of all the
classes to which the instance belongs, (2) each property is defined in the context
of a class that defines its domain of application, and is associated with a range
and (3) only properties that are applicable in the context a class may be used for
describing its instance. This assumption, rather similar to the OEM model in the
TSIMMIS project [5] ensures that there exists an envelop modem that fits with
any instance of a class: namely the set of all its applicable properties. But, unlike
strongly typed conceptual models, an instance is not required to be associated
with values for all the applicable properties of its basis class. This simple principle
gives more schematic autonomy to the various data sources that may refer to the
same ontology while preserving automatic integration capabilities. It also makes
consensus more easier during ontology design.

3 OntoDB model architecture

We describe below the OBDD architecture we have proposed for storing ontolo-
gies and PLIB-instance data. Three objectives were assigned to our architecture
model:

1. it shall support automatic integration and management of heterogeneous
populations whose data, schemas and ontologies are loaded dynamically;

2. it shall support evolutions of the used ontologies (adding new classes, new
properties, etc.) and their population schemas, and

3. it shall offer data access, at the ontology level, whatever is the type of the
used DBMS (relational, object-relational or object oriented).
Taking into account these objectives, our architecture is composed of four
parts. Parts 1 and 2 are traditional parts available in all DBMSs, and parts
3 and 4 are specific to OntoDB (Figure 5).



– Meta-base (”system catalog”). It is a traditional part of databases. It is
made of the whole set of system tables used by a DBMS to manage data and
to ensure its processing. Therefore, all tables of all other parts of OntoDB
are recorded in this meta-base. By means of naming convention, this part
also represents the logical model of the content, and its link with the ontol-
ogy, thus representing implicitly the conceptual model of data in database
relations.

– Content (”data”). It is the data part in traditional databases. It allows to
store instances of ontology’s classes in DB relations.

– Ontology. It allows to represent ontologies in the database. When the on-
tology model is object-oriented and the target DBMS is relational, its logical
schema is defined using an object/relational mapping. If shared ontologies
have been specialized as local ontologies, both shared ontologies and special-
ization may be recorded in this part.

– Meta-schema. It records the ontology model into a reflexive meta model.
For the ontology part, the meta schema part plays the same role as the
one played by the meta-base in traditional DBs. Indeed, this part may al-
low: (1) generic access to the ontology part, (2) support of evolution of the
used ontology model, and (3) storage of different ontology models (OWL [6],
DAML-OIL, PLIB [12], etc.).

Fig. 5. The OntoDB Architecture

Therefore our OBDB model, called OntoDB represents explicitly: (1) on-
tologies, (2) data structures, (3) data, (4) the links between the data and their
schema and (5) the link between the data and the ontology.

We just detail below the representation of ontologies and of instance data.

3.1 Representation of Ontologies

The ontologies supported by our architecture are all those that can be repre-
sented as models following Bernstein’s terminology, i.e., a set of objects accessible
through a root object using links between objects. This definition corresponds
to most of the ontology models recently developed such as OWL [6], and in par-
ticular PLIB. Such ontologies are represented as sets of instances of an object



schema (often called meta-model ) expressed in a particular modelling formalism
(XML-schema for OIL et OWL, EXPRESS for PLIB). As a result, this repre-
sentation provides an exchange format for these ontologies (an XML document
for OWL, a physical file of EXPRESS instances for PLIB). In OntoDB, the on-
tology schema is generated automatically from EXPRESS model (for OWL for
instance, the OWL model only needs to be expressed in EXPRESS).

3.2 Instances Representation

The main goal of ontologies is the representation of the semantic of objects of
a given domain. This goal is reached by assigning objects to ontological classes
and by describing them using ontological properties. According to the used on-
tology model, various constraints govern such descriptions. For instance, in RDF
Schema, DAML+OIL and OWL, an object may belong to any number of classes
and can be described by any set of properties. Therefore each domain object has
its own structure. In the opposite, a database schema aims to describe ”similar”
objects by an identical logical structure in order to optimize queries using index-
ing techniques. Without any particular assumption, the only possible common
structure consists in associating each object: (1) with any subset of set of classes;
and (2) with any subset of the set of properties.

The drawbacks of such structure become evident when, like in engineering,
each instance is characterized by a significant number of properties (e.g., 50), but
this number is quite smaller than the total number of properties of the various
classes of objects (e.g., 1000). Either it would require an important storage cost
(by using a systematic representation of all properties for every instance). This
approach has been evaluated by Agrawal et al. [1] which argued that it is not
efficient. Or it would also require a significant response time due to the need of
performing a large number join operations, if one of the approaches presented
in the introduction are used.

Fig. 6. table per class representation approach.

Thanks to the strong typing assumptions presented in section 2.21, it is possi-
ble for us to define a relevant schema for any ontology class. This schema consists
of all the class applicable properties that are used at least by one instance of
the class. Of course, this schema might contain in some case a number of null
values. But experience shows that in most context, and in particular both in
industrial component catalogues and in Web portal meta data catalogues (see
e.g., [2]) basically the same properties are used for the various instances of the
same class. As a rule, the null values are much less than 50%. Thus our approach



supports efficient query processing. Note that this schema definition implies a
major difference between object-oriented databases (OODB) and our OBDB.
In an OODB, subsumption means inheritance of properties/attributes. All the
properties defined in some class do exist in all its subclass(es). The only mech-
anism for property sharing between two subclasses of a class is to factorize this
property at the level of the mother class. But then the property shall appear in
all sibling classes. In OBDBs, inheritance is intentional: it concerns only the on-
tology level. Represented properties may be any subset of applicable properties.
Thus two classes (C1, C2) may share a property P1 when none of their sibling
class, (e.g., (C3, C4, C5) use this property. It only means that P1 is applicable
(from an ontological point of view) for all C1 to C5, but that only C1 and C2

provide a value of this property for (some of) their instances. This makes the
OBDB model much more flexible, in particular for integrating heterogeneous
databases.

To summarize our ontology-based data representation, we create a table for
each class in the database. Its columns consists of a subset of applicable prop-
erties those that are used by some of its instances.

Figure 6 shows an example of our representation structure with ontology data
of figure 1a. In the following section, we will call by table per class our approach
of representation of ontology-based data.

4 Evaluating Instance Representation Schemes

In order to study the effectiveness of our representation of ontology-based in-
stance data, we carried out a series of performance experiments to compare two
representation schemes: binary and table per class. Our initial intent was to
compare also with the vertical representation. Finally, we restricted to binary
representation for four reasons:

1. Performance results of binary and vertical representation are very similar if
the vertical table is clustered [1].

2. Most popular OBDB management systems (e.g., Sesame [4], RDFSuite [2]
and DLDB [15]) use binary representation to store ontologies instances.

3. During our experiments, we got some problem to cluster vertical tables for
the very large databases 1 we have created and we know that clustering
operation is necessary to guarantee efficiency of the vertical representation
[1].

4. The clustering operation is time consuming. A test was done on a small
database 2 and we got about 3 min and 30 seconds. This time is very signif-
icant because a clustering operation has to be performed each time modifi-
cation queries (insertion, update, deletion) are executed.

As an experimental platform, we use the ORDBMS PostgreSQL-7.4 (emu-
lated on cygwin) installed on a Pentium 3.7 GHz CPU, 6 GO of RAM, 200 GO
of Hard Disk. In all our experiments, a cache memory of 50 MO has been used.

1 Our databases are created on PostgreSQL
2 DB 10P 1K : database which has 10 valued properties and 1K instances per class



4.1 Databases

To perform our experiments, we use an ontology that is representative of our
application domain. It describes the various kinds of electronic components to-
gether with their characteristic properties. Published as an International Stan-
dard in 1998, IEC 61360 [11] is composed of 190 classes: 134 leaf classes and
56 no leaf classes. These classes have a total of 1026 properties. The average
deep of the IEC ontology hierarchy is 5. To facilitate the computation of the
sizes of the test databases, all ranges of properties were changed to have a string
(255) as their range. A generator of population of each class has been developed.
Various contents of database were generated by varying the number of instances
and the number of valued properties used for each class. We denote by TP and
TC, the binary table per property) and table per class approach, respectively.
Let DB aP iK be a database with a properties and iK instances per class. For
example, BD 50P 2K is a database with 2K instances and 50 valued properties
for each class in the database.

To conduct our experiments, we create six databases. The description of these
databases is shown in Figure 7. These databases have been classified into two
series: databases in the first serie (Serie1) have the same number of instances
per class and a different number of properties: BD 10P 1K, BD 25P 1K and
BD 50P 1K. Thus, they allow to study the effect of database size. Databases
in the second category (Serie2) have the same size (InstancesNumber × Prop-

ertiesNumber), but different number of instances and of properties per class:
BD 10P 10K, BD 25P 4K and BD 50P 2K. This classification allows us to study
the effect on query performance of the number of properties and of instances per
class.

Fig. 7. Databases created.

4.2 Query Taxonomy

We consider three classes of queries: targeted class queries, no targeted class

queries and update queries. In a targeted query, the user knows the classes that
she wants to query. For example, ”find all students that are more than 25 years
old”. In a non targeted class of queries, the user does not know the classes that
she is looking for. For instance, ”list all instances in the database that are more
than 25 year old”.



In this study, we consider PSJ queries (projection, selection and join). These
queries are executed on leaf and non-leaf classes. As in [1], we will not consider
queries using protection, selection and join operations, simultaneously.

To get reproducible experimental results, we carry out all benchmark queries
in the following way. Every query is performed once to warm up the database
buffer and then it is performed at least three times in order to get a mean running
time.

4.3 Performance Results for Targeted Class Queries

We conduct three series of experiments: (1) projection queries, (2) selection
queries, and (3) join queries. Figures below show a set of curves that give, for
each particular database, the query execution time as a function of a partic-
ular criteria. The ratio table when present, precises how many times our TC
representation is faster than the classical TP representation.

Fig. 8. Projection (a) for various size of databases, (b) for various structure of
databases.

Projection within a leaf class In order to evaluate the impact of the number
of projected properties, we performed four queries with 1, 3, 5 and 10 projected
properties, respectively. Figure 8 summarizes the execution time. The response
time for TC is relatively constant when we vary the number of projected prop-
erties, while for TP approach, it grows faster and faster when the database sizes



grow. The left part shows the behavior for several databases with same size, but
with different structures is quite similar. Thus, we will not represent this kind
of comparison for the other operators unless it is really significant.

In the TP approach, the variation of the number of projected properties
means the augmentation of join operations. Therefore the cost increases dra-
matically when all the relevant binary tables cannot be simultaneously fetched
in the main memory. This variation does not have a real effect on TC approach.
This is because the DBMS fetches all instances of the target class (for all the
classes of the benchmark) with their properties in main memory before truncat-
ing properties required by the query. Therefore, the IO cost is still the same for
each query with any number of its projected properties.

For the biggest database of our benchmark (1,7 to 3,4 GO), projection on 10
properties is about 10 to 15 times faster with TC than TP.

Selection Within a leaf class, Figures 9a and 9b show performance of se-
lection queries on one of the biggest database, namely, DB 50P 2K. In Figures
9a, we vary the number of properties in the selection predicate from 1 to 4.
The augmentation of the number of properties increases query response time in
TP approach. Once again, the worst performance is justified by the number of
join operations and the sizes of property tables that may cause an important
IO overhead. Changing the selectivity factor of the predicate that contains only
one attribute does not change significantly the behavior of both representations.
Globally, TC representation outperforms TP by a factor between 50 and 100.

Fig. 9. Selection (a) with various number of properties, (b) with various selectivity
factor.

Join Operations within a leaf class Figure 10 shows the performance of
join queries performed on databases of Series1. The queries return 1 property
value per class. The join selectivity is fixed to 0.25%. TC approach has better
performance than TP. Variation of databases size increases the ratio between



Fig. 10. Join within a leaf class.

TP and TC. The reason of worst performance of TP is justified by the size
of the binary property tables and the fact that a preliminary join is needed
between the class table and the property binary tables. In our domain of study,
TC outperforms TP between 4 and 8.

Note that obviously, the number of projected properties has an important
impact on query performance (for instance for five properties in the SELECT
statement, the ratio is between 14 and 18).

Projection and selection within non-leaves classes Figure 11 shows per-
formance results for selection and projection queries within a non-leaf class which
has seven (7) subclasses. When we compare these results with queries in leaves
classes we notice that the ratio performances are similar. Query response time in
a non-leaf class is the sum of queries response time performed in each subclass
of the non-leaf class. This explain why the shape of the curves of performances
are identical in queries on leaves and non-leaves classes (see figures 8b and 11a
for the projection queries and figures 9b and 11b for selection queries). In these
experiments, the ratio TP/TC is between 11 and 35.

4.4 No Targeted Class queries

When the class to be queried is unknown for the user, the advantages of the
table per class approach may disappear. Such queries may be formulated as
follows: ”find all instances in the database that have value val1 for a property
P1 AND/OR val2 for a property P2”, etc. Execution of this kind of queries in
TC approach is performed in two steps. In the first step, one finds all classes
in the databases which uses properties (P1, P2). In the second step, selection



Fig. 11. (a) Projection within a non-leaf class. (b) Selection within a non-leaf class

queries are performed in all the classes found in the first step. In TP approach,
execution of non-targeted queries are performed directly by a join of the tables
of the properties present in the query predicates.

We note that this kind of query is hardly used in our application domain:
”we never request an object with the weight equals 1 kilogram”. Moreover, if
one does not know the class of an object, we need, at least, several properties for
characterizing this object. Therefore, such queries request projection on several
properties.

We run these queries against databases of growing sizes (Series 1). We vary
the number of projected properties to 1, 3, 5 and 10 to represent realistic queries.
We remark that TP approach is more efficient than TC approach as long as
queries return less than 5 properties. Beyond this number of properties, TC

approach becomes more efficient.
The worst performance of TC approach when a small number of properties is
requested is due to access time to the ontology part to obtain all classes which
use the properties referenced in the queries. Query on ontology part needs to
traverse all classes and to test for each class if the searched properties belong to
it. Notice that the time to get all classes in the first step during execution of non-

targeted queries is relatively constant when we vary the number of properties in
the queries, contrary to TP approach where every new property cause one more
join in the queries. So, when the number of requested properties increases, to
compute classes in the first step in TC approach becomes smaller than the time
of joins in the TP approach. This explain why in figure 12d (projection on 10
properties) TC approach has better performance than TP approach.



Fig. 12. No Targeted Class Queries



4.5 Update Queries

Figures 13a and 13b show performance results of insertion and update queries.
We run queries on databases of growing size. Both figures show that TC is more
efficient than TP. In case of insertion, the worst performance of TP results from
the fact that all tables concerned by insertion of valued properties need to loaded
in the memory, while TC approach, needs only one loading of a single table. For
update queries (concerning only one property value), the worst performance of
TP approach is due to the size of the property table that needs to be loaded.
The cost ratio between TP and TC ranges from 2 to 56 for insertion and is about
2 from each update for a singe property.

Fig. 13. Insert and Update Queries

5 Conclusion

A number of ontology-based database structures have been proposed during
the last five years. Most of them are targeted to support real scale Semantic
Web applications. Several benchmarks were proposed to compare their perfor-
mance using Semantic Web oriented data. These benchmarks focus mainly on
the class structure and taxonomy queries (i.e., retrieving the proper or transitive
instances of a particular class or property). There exists other applications of
ontology-based database focusing mainly on property-value pairs. It is the case
of engineering databases, electronic catalogues of industrial components and a
number of B2B applications. In such context, instance data consists of a class
belonging and a number of property-value pairs. Most queries associate with
instances a number of properties.

In this paper, we firstly presented the ontology model we developed for the
engineering domain, secondly an OBDB architecture, called, OntoDB and finally,
the data structure we propose for storing instance data. This structure, called
table per class, associates to each ontology class a table that contain as columns
those applicable properties of the class that are associated with a value for at



least one instance of the class. Our proposed benchmark for comparing this
approach with the best approach known in the Semantic Web context, namely
the binary table approach, used a real standardized ontology. Thus, it reflects
the need of our application domain. Our benchmark is based on three kinds of
queries: (1) targeted class queries, where the user is supposed to know the root
class of the subsumption tree to be queried, (1) non targeted class queries, where
the user does not know what kind of ontology concepts she is looking for, and
(3) insertion and update queries.

For all these queries, the table per class approach outperforms the classical
binary table approach with ratio often bigger than 10. The only case where the
binary approach is better than our approach is for the no targeted class queries,
when the user also requests a very small number of property values. We note that
this kind of queries nearly never happens in our application domain. Engineers
always knows what they are looking for before searching for property values.

Our OntoDB prototype is already supporting more than millions of instance
with dozen of properties, but it mainly uses PLIB ontologies. We are currently
working to make its ontology model more flexible, to integrate other kind of
ontologies. We are also improving the ontology implementation to speed up the
ontology browsing process. Finally, we are developing an SQL oriented OBDB
query language that integrates a number of RQL and of SQL99 capabilities.

References

1. R. Agrawal, A. Somani, and Y. Xu. Storage and querying of e-commerce data. In
VLDB, pages 149–158, 2001.

2. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle.
The ICS-FORTH RDFSuite: Managing voluminous RDF description bases. In
SemWeb, 2001.

3. B.McBride. Jena: Implementing the rdf model and syntax specification. Proceed-
ings of the 2nd International Workshop on the Semantic Web, 2001.

4. J. Broekstra, A. Kampman, and F.V. Harmelen. Sesame: A generic architecture
for storing and querying rdf and rdf schema. In I. Horrocks and J. Hendler, editors,
Proceedings of the First Internation Semantic Web Conference, pages 54–68, July
2002.

5. S. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou,
J. D. Ullman, and J. Widom. The tsimmis project: Integration of heterogeneous
information sources. Proceedings of the 10th Meeting of the Information Processing
Society of Japan, pages 7–18, Marsh 1994.

6. M. Dean and Schreiber. Wl web ontology language reference. W3C Recommenda-
tion (2004), February 2004.

7. N. X. Dung, L. Bellatreche, and G. Pierra. A versioning management model for
ontology-based data warehouses. To Appear in Proceeding of the International Con-
ference on Data Warehousing and Knowledge Discovery (DAWAK’2006), Septem-
ber 2006.

8. JH. Gennari, Mark A. Musen, Ray W. Fergerson, William E. Grosso, M. Crubézy,
H. Eriksson, N. Noy, and Samson W. Tu. The evolution of protg: an environment
for knowledge-based systems development. Int. J. Hum.-Comput. Stud., 58(1):89–
123, 2003.



9. S. Harris and N. Gibbins. Store: Efficient bulk rdf storage, 2003.
10. ICS-FORTH. The ics-forth rdfsuite. http://139.91.183.30:9090/RDF, page web

site, 2001.
11. IEC. Iec 61360 - component data dictionary. International Electrotechnical Com-

mission. Available at http://dom2.iec.ch/iec61360?OpenFrameset, 2001.
12. ISO13584-42. Industrial automation systems and integration parts library part 42

: Description methodology : Methodology for structuring parts families. Technical
report, International Standards Organization, Genève, 1998.

13. L.Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu. Rstar: an rdf storage and query system
for enterprise resource management. thirteenth ACM international conference on
Information and knowledge management, 2004:484 – 491.

14. B. Omelayenko and D. Fensel. A two-layered integration approach for product
information in b2b e-commerce. Proceedings of the Second International Conference
on Electronic Commerce and Web Technologies, pages 226–239, September 2001.

15. Z. Pan and J. Heflin. Dldb: Extending relational databases to support semantic
web queries. Workshop on Practical and Scalable Semantic Systems ISWC2003,
2003.

16. G. Pierra. A multiple perspective object oriented model for engineering design. in
New Advances in Computer Aided Design & Computer Graphics, pages 368–373,
1993.

17. G. Pierra. Modeling classes of preexisting components in a cim perspective: The
iso 13584/env 400014 approach. Revue Internationale de CFAO et d’Infographie,
9:435–454, 1994.

18. H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann,
and S. Hübner. Ontology-based integration of information - a survey of existing
approaches. Proceedings of the International Workshop on Ontologies and Infor-
mation Sharing, pages 108–117, August 2001.

19. V. Christophides Y. Theoharis and G. Karvounarakis. Benchmarking database
representations of rdf/s stores. In Fourth International Semantic Web Conference
(ISWC’05), November 2005.


