

Simpler Analysis of Serial Transactions Using Reverse Transactions

Karim TRAORE
{karim.traore@ensma.fr}

Emmanuel GROLLEAU
{grolleau@ensma.fr}

Francis Cottet
{cottet@ensma.fr}

LISI/ENSMA

Laboratoire d’Informatique Scientifique et Industrielle
École Nationale de Mécanique et d’Aérotechnique

Téléport 2 – BP 40109 F-86961 Chasseneuil Futuroscope Cedex, France

Abstract1

 We present in this article a method of validation for
“serial transaction”. The serial transaction model has
been proposed in order to validate a concrete real-time
application. This model is typically a task reading
serial information (RS232, CAN,…): several instances
are identical and read an unitary part of a serial
packet, these tasks have the same WCET, offset
shifting, priority and relative deadline. In addition, the
last task of a transaction has to deal with the whole
packet, and is typically longer, but has a longer
relative deadline, and a lower priority. The method of
validation that we present here uses the concept of
reverse transaction deduced from the serial transaction
to analyse.

1. Introduction
The model of "serial transaction" has been extracted

from a real-time application that consists in developing
a mini-UAV (Unmanned Air Vehicle) (figure1). In the
development of a real-time application like this one,
two techniques of scheduling can be used : the on-line
scheduling, with a fixed [8][9][1] or variable
allocation of priorities of the tasks in the tasks set
[2][7][3] and off-line techniques which use a sequence
whose correctness was proved [16][5]. One of the most
important phases is the temporal validation which
consists in proving that whatever happens, all the tasks
meet their temporal constraints. RTA (Response Time
analysis) methods are used to bound the worst-case
response time of the tasks of an application. Tindell
[13] proposed a method for calculating an upper bound
of the worst-case response time less pessimistic than
classic RTA (considering a critical instant consisting of
a simultaneous release of all the tasks) in the context of
tasks with offsets (transaction).

Palencia and Harbour [12] extended Tindell’s work.
Lastly, [15][11] introduced the concept of “imposed”
interference differing from “released for execution”
interference used by Tindell. However, for now the

1 This work was supported by ONERA/DGA

exact calculation methods used to determinate the
exact worst-case response time relies on calculating
every combination of the tasks of the transactions; it
thus remains exponential in time.
In order to validate the control system of the UAV, we
have to deal with tasks with offset which are particular
instances of transactions. First, we present the UAV
application in section 2. Then section 3 presents the
concept of transactions and serial transactions. In
Section 4, the method of “imposed interference” is
defined. In section 5, we present some new results
obtained using the concept of reverse transaction.

Figure 1: the AMADO

2. Presentation of the Application

The project, named AMADO, is a UAV with a

wingspread of 55 cm, using a delta shaped wing with
two symmetrical drifts for a total weight (including the
control system) of 930 grams. The main objective is to
create an autonomous plane embedding a camera, and
to be able to follow dynamically defined waypoints.
The UAV is connected to a ground station thanks to a
wireless modem, allowing it to receive high level

orders during a mission. The critical parts of the flight
control are embedded.

2.1 Description of the application

Figure 2: main architecture of the AMADO

The Figure 2 shows two parts: the ground station,
and the embedded system.

The embedded system heart is a Freescale/Motorola
MPC555[10] connected to the actuators (3 servo-
commands and the speed-variator, refreshed every 20
ms), an IMU [6] (Inertial Measurement Unit), a GPS
receiver [4], a traditional radio receiver and a modem.
The MPC555 is a 32 bits PowerPC with a frequency of
40MHZ, 448KB of flash memory and 26KB of RAM.

Two sensors are used in order to calculate the
position and attitude of the UAV: the GPS receiver and
the IMU. The Inertial Measurement Unit sends
information about angular speed and accelerations,
which, once treated, give the roll and the pitch of the
UAV. This IMU is connected on a CAN port and
delivers information at a frequency of 50Hz and a
throughput of 1Mbps. A frame of the IMU is
compound of 3 blocks of 6 bytes. In order for the
system to get a complete frame, each block must be
read before the next arrives. Once the system has 3
blocks, it can constituate the frame, and handle it to
calculate the roll and the pitch.

The GPS receiver is used to get the speed (direction
and module) and the absolute 3Dimensional position of
the UAV. The GPS Receiver sends data to the
controller at a frequency of 4Hz and delivers
information with a throughput of 57600bps. As a
RS232 communication, the information is sent byte
after byte; the number of bytes sent during one period
(frame) of the GPS can reach 120 bytes. As in the case
of the IMU, the system must recover each byte and
arrange it before the arrival of the next byte, under
penalty of losing the complete frame.

Finally the modem [Modem1] connected to the
microcontroller on the serial port is bi-directional and
communicates with the microcontroller at a throughput
of 115kbps. The length of the frame transmitted to the

microcontroller by the modem can reach 10 bytes. The
requirements are the same as in the case of the GPS
receiver. In the presentation of this architecture, we
omitted voluntarily the video circuit that does not have
any impact on the real-time aspects of this application.

2.2 Software architecture of the application

We have chosen the real-time executive
OSEKTurbo OS/MPC5xx of Metrowerks[19] for our
application. This RTOS is conforming to the standard
OSEK/VDX [18]; standard defined for applications
with limited resources.

Apart the initialisation task, there are 12 tasks in the
control system (see Table 1). The priorities of the tasks
have been assigned following a Deadline Monotonic
policy [8]. Note that the value L=120 (resp. L=3,
L=10) corresponds to the number of times the task has
to be activated in order to acquire a frame.

Tasks Period WCET deadline Priority

 (in microsecond)

Monitoring (1) 200000 60 200000 1

Acq PWM (2) 20000 24 10000 7

Transmit Grd (3) 50000 3360 30000 5

Deliver Cmd (4) 20000 40 10000 6

Navigation (5) 250000 560 140000 2

ReguleAttitude (6) 60000 32400 60000 4

Acq GPS (7) 250000 100 L=120 160 11

Acq IMU (8) 20000 96 L=3 720 10

Acq Instruction(9) 100000 12 L=10 80 12

TreatGPS (10) 250000 3000 5000 9

TreatIMU (11) 20000 900 7500 8

TreatInstruction
(12) 100000 900 70000 3

Table1: task system of the UAV

This kind of application cannot be validated easily if

the offsets are not taken into account. Indeed, it appears
clearly that task TreatGPS is released when the whole
GPS frame has been received; it cannot thus be
released at the same time as the task Acq GPS; it is the
same case for task TreatIMU and the task Acq IMU;
the same situation occurs for the task TreatInstruction
and the task Acq Instruction.

3. Presentation of serial transaction

The Figure 3 presents a model of a serial
transaction, Li instances of the acquisition of a part of a
frame are separated by a duration corresponding to the

µcontroller

Numerical
Modem

RC
transmitter

RS232

Servomoteurs

IMU GPS

RC receiver Numerical
Modem

RS232CAN

µcontroller

Numerical
Modem

RC
transmitter

RS232

Servomoteurs

IMU GPS

RC receiver Numerical
Modem

RS232CAN

Numerical
Modem

RC
transmitter

Numerical
Modem

RC
transmitter

RS232

Servomoteurs

IMU GPS

RC receiver Numerical
Modem

RS232CAN

RS232

Servomoteurs

IMUIMU GPSGPS

RC receiver Numerical
Modem

RS232CAN

arrival rate of the packets (Acq GPS, Acq IMU, Acq
Instruction), and a longer task is used to handle the
whole frame (TreatGPS, TreatIMU, TreatInstruction).
In a serial transaction, the acquisition tasks are usually
short, because they only have to bufferize the packets
until the whole frame is built, while the treatment tasks
are longer since they have to deal with the full frame.

Fig. 3. pattern of a serial transaction

Let us give some results found in [13][14][12] relative
to transactions. Certain tasks can have the same period
and be bound by relations of offsets i.e. they can never
be released at the same time. A set of tasks of the same
period bounded by offset is called a transaction. Let us
note Γ := {Γ1, Γ2,… Γk} a set of transactions. A
transaction iΓ contains |Γi| tasks with a period iT :Γi :=
<{τi1,…, τi|Γi|},Ti>.[12][14]

A task is defined by τij := <Cij, Oij, Dij, Jij, Bij, Pij>
where ijC is the worst-case execution time (WCET),
Oij is the offset, Dij is the relative deadline, Jij the
maximum jitter, Bij maximum blocking due to lower
priority tasks, and Pij the priority. Without loss of
generality, we consider that the tasks are ordered by
non decreasing offsets ijO ; in our case, we define the
response time as being the time between the release of
the task and the completion of the task.
Let us note also)(uaihp τ the set of indices of the tasks
of iΓ with a priority higher than the priority of a task

uaτ i.e. j∈hpi(τua) if and only if Pij>Pua.
The task under analysis is usually noted uaτ .

Tindell showed that the critical instant of uaτ is a
particular instant when it is released at the same time as
one task of higher priority in each transaction (its own
transaction being handled separately). The main
difficulty is to determine what is the critical instant
candidate icτ of a transaction iΓ that initiates the
critical instant of uaτ . An exact calculation method
would require to evaluate the response time obtained
by carrying out all the possible combinations of the
tasks of priority higher than uaτ in each transaction
and to choose the task icτ in each transaction that leads
to the worst-case response time. This exhaustive
method has an exponential complexity and is
intractable for realistic task systems; several
approximation methods exist.

The first method of approximation is the "released
for execution" method. This method has been very
pessimistic in the case of the application of mini UAV;
it has been enable to validate this application however
we have proved that the application is valid. Up to

now, the best known method of approximation is the
"imposed interference" method.

4. Upper bound method based on the "imposed"
interference

This method has been proposed in [15]; it removes the
unnecessary overestimation taken into account in the
classic computation of the interference imposed by a
task iτ on a lower priority task uaτ . This
overestimation does not have any impact in the case of
tasks without offset but has a considerable effect in the
approximation of the worst-case response time when
we are in the presence of tasks with offsets.. This
method consists in calculating the interference
effectively imposed by a task jτ on a task uaτ with a

lower priority during a time interval of length t. In
order to calculate this “imposed” interference, [15]
subtracts a parameter x (see Figure 2) from the original
interference formula; let us note),(tW uaic τ the

interference of iΓ on the response time of uaτ during a

time interval of length t when icτ is released at the

same instant as uaτ .
























































≥

<
=

=−=

∑
∈

∗+=

 0*for t)T % * t(- C 0,max

 0*for t 0
)(

T %)O -(O),(),(*

 t,

iij

iicijijij

)(jc)(i x- 1
*

)(

tx

phasephasett

ijc

icic

uaihpj
ij

i
uaic tC

T
t

W

ττττ

τ
τ

Example: this transaction has 4 tasks with period 50=iT

Fig. 2: imposed interference

3)00()00()34()02()5(,1 =−+−+−+−=uaiW τ
For determining the upper bound of the response-time,
we use this function :

 t),(max),(
)(

uaichpcuai WtW
uai

ττ
τ∈

=

With the value of each),(tW uai τ , the response time

uaR of uaτ can be calculated.

),()1(n
uaua

i
i

n
ua RWCR ua τ∑

Γ∈

+ += . uaR is obtained by fix-

1 Li 2 1 Li 2

Din pi

Ti

Ci Cin

t

3)(21 =txi

{ } >=<Γ 50 , ,,, : 4321 iiiii ττττ

>=< 4 , 0 , 0 , 4 , 0 , 2:1iτ
>=< 2 , 0 , 0 , 8 , 4 , 4:2iτ
>=< 3 , 0 , 0 , 5 , 12 , 2:3iτ
>=< 1 , 0 , 0 , 15 , 17 , 3:4iτ

point iteration starting with uaua CR =0 . Let us execute
this method on the example (Figure3 (a))

Fig. 3.(a and b) Example for imposed interference (a)
reverse transaction (b)

In the transaction iΓ , we have five tasks. Let us
consider a lower priority task uaτ with 5=uaC . Let
us calculate the response-time. We present at first the
details of iteration number 2:
Iteration 2:

3)00()00()00()12()02()5,(1 =−+−+−+−+−=uaiW τ
3)00()00()12()02()00()5,(2 =−+−+−+−+−=uaiW τ
3)00()12()02()00()00()5,(3 =−+−+−+−+−=uaiW τ
3)34()02()00()00()00()5,(4 =−+−+−+−+−=uaiW τ
4)04()00()00()00()00()5,(5 =−+−+−+−+−=uaiW τ

4)0,(=uaiW τ 9=uaR
We give the values obtained in the different iterations
in the table below:

Iteration
number

t 1iW

2iW

3iW

4iW

5iW

iW

uaR

1 0 0 0 0 0 0 0 5
2 5 3 3 3 3 4 4 9
3 9 5 5 5 6 5 6 11
4 11 6 6 7 6 6 7 12
5 12 6 6 8 6 6 8 13
6 13 7 7 8 7 7 8 13

Consequently, the value of uaR is equal to 13.
It is not simple to evaluate the value of imposed

interference. Indeed, with this method it is necessary in
each iteration to evaluate the value of "n" interferences
with "n" as the number of tasks in the transaction.
Moreover, it is necessary to evaluate the value of
" ijcx " "n" times in each iteration. In order to simplify
the calculation of the value of imposed interference, we
use the transaction presented in figure 3(b). We call
this transaction the reverse transaction 1−Γi of the
transaction iΓ . With the reverse transaction, we show
in the next section that it is sufficient to calculate only
the value of),(11 tW uai τ− at each iteration.

We present in the table below the values obtained in
the different iterations:

Iteration Number 1 2 3 4 5 6

11−iW 0 4 6 7 8 8

5- Reverse transaction method
Definition1: A serial transaction is a transaction with
the following constraints:

Let iΓ be a serial transaction,
• null jitter: ∀i/τij∈Γi, Jij=0
• regular arrival pattern pi: ∀j∈[1..|Γi|], Oij=(j-

1)pi.
• there are two kinds of tasks :

o the Li=|Γi|-1 acquisition tasks such
that : τij,j∈[1..Li] := <Ci, (j-1)pi, pi, 0, Bij, Pi>;

o the treatment task τi|Γi|:=<Cin,Lipi,Din,
0, Bij, Pin>

• with Cin>Ci, Din>pi ,Pin<Pi and

iniiniii
CpCpLT −>−⋅−)(. This means that the

treatment task is longer than the acquisition tasks,
but is provided a longer deadline and a lower
priority.

Definition2 : a task uaτ is an intermediate priority task
for a serial transaction iΓ if the priority of uaτ is
lower than acquisition tasks of iΓ but higher than the
treatment task of iΓ .
Definition3 : a task uaτ is a lower priority task for a
serial transaction iΓ if the priority of uaτ is lower than
all the tasks of iΓ .
Definition4: Let iΓ be a serial transaction, we call
reverse transaction of the serial transaction iΓ the

transaction 1−Γi obtained by putting in first position the
task of last position of iΓ ; the other parameters remain
identical (period, offsets between tasks, etc.) (see
figure 3 (a and b)). The tasks of 1−Γi are defined as:
• >−+=<

Γ
− Γ iii

PBCpCC iiiinini ,,0),(,0,11τ

• [] >⋅−+−=<
−− −Γ∈)1(1 ,,0,,)1(,)1(..2, jii

PBppjCCC jiiiiinijji
τ

Theorem1: Let iΓ be a serial transaction, let 1−Γi be
its reverse transaction and uaτ a task under analysis.
If uaτ is a lower priority task for the serial transaction

iΓ , then the interference imposed by the serial
transaction iΓ on the task uaτ when it is released at the
same time as the task initiating the critical instant in iΓ
has exactly the same value as the interference imposed
by 1−Γi on uaτ when uaτ is released at the same time

as the first task in transaction 1−Γi i.e
),(),(11 tWtW uaiuai ττ =− for any t.

Proof: : Let us note

iii
pLTfi ⋅−= ; and),(11 tW uai τ−

the imposed interference on the task uaτ by the

transaction 1−Γi in a time interval of length t. We thus
will calculate),(),(11 tWtW uaicuai ττ −− .
For any time interval of length t, we know that there is
an integer k such that ii TtTkt % +⋅= .

According to [17],
)%,(),(),(111 111 iuaiiuaiuai TtWTkWtW τττ −− +⋅=−

)%,(),(),(iuaiciuaicuaic TtWTkWtW τττ +⋅=
Since the value of interference imposed in any time
interval of length iT (Period) is the same whatever the
beginning of this interval is, then

)(),(),(11 iniiiuaiciuai CCLkTkWTkW +⋅⋅=⋅=⋅− ττ
consequently,

)%,()%,(

),(),(

11

11

iuaiciuai

uaicua

TtWTtW

tWtWi
ττ

ττ
−

=−

−

−

so we can suppose iTt <≤0 ; with this consideration,
we have :

Interval),(
11 tW uai

τ−),(tW uai τ

 C t in≤

),(
11 ttW uai

=− τ ttW uain =),(τ

Ct in

ii pL ⋅
+≥

C),(in11

ii

uai

CL

tW

⋅

+=− τ

ii

ua

CL
tWi
⋅+

=

inC
),(1 τ

ii

in

in

pL
Ct

tC

⋅
+<

<
and

)(

))((

),(

11

11

tx

C
p

CpCt

CtW

i

i
i

iiin

inuai

−−

⋅






 −+−

+=− τ

[]






+∈∀

=

11..L c
),(W

 max

),(

i

ic t
tW

ua

uai

τ
τ

For Ct in≤ and t Cin iii TpL <≤⋅+ , we have
already),(),(

11 tWtW uaiuai
ττ =−

We have now to prove the equality
),(),(

11 tWtW uaiuai
ττ =− for iiinin pLCtC ⋅+<< .

For]])(C ; Ct inin ii Cp −+∈ ,),(),()1(11 tWtW uaLiuai i

ττ +=− ;

c is equal to 1+iL ; and for
] [[] ..1 c , C ;)(Ct inin iiiii LpLCp ∈∃⋅+−+∈ such as ∈t

]])1()(C;)()(C inin iiiiiiii pcLCppcLCp ⋅+−+−+⋅−+−+

For these two cases, we have),(),(

11 tWtW uaicuai
ττ =−

Moreover,))(()1(),(txCCcLtW icniniiuaic −+⋅+−=τ
because iiini CpCf −>− (according to the definition
of serial transaction).

We will prove now that for all []1..1 +∈ iLp ,

),(),(tWtW uaicuaip ττ ≤

We take the value of),(tW uaic τ like reference (figure
4 (a))

1st case : p > c with c<Li+1
 It appears clearly on the figure 4 (A and B) that the
shifting of the interval t from c to the position p

decreases the value of the interference by iCcp ⋅−)(
on the left side whereas the increasing on the value of
interference obtained on the right side is lower or equal
to iCcp ⋅−)(because iiini CpCf −>− . Therefore

),(),(tWtW uaicuaip ττ ≤ .
2nd case : p < c with c>1
 On the figure 4 (A and C), we can see that every
time the interval t is shifted the value ip towards the
left (until we reach the position p such as

ii ppLt ⋅−+<)1(), we add iC on the value of the
interference on the left side; however, the decreasing
on the value of the interference on the right side is in
the interval []ii pC ; ; therefore the value of the
interference after this shifting decreases. When t is
lower than ii ppL ⋅−+)1(, a shifting of the interval t
towards the left doesn't change the value of the
interference (Figure 4 (D)).
Consequently, the value of),(tW uaip τ is always lower

or equal to the value of),(tW uaic τ .

Fig.4 : Illustration of the comparison between),(tW uaip τ

and),(tW uaic τ

Let us note)(uahp τ the set of serial transactions such

that uaτ has a lower priority than every task of the
transaction.

A

1 c2

Example of Calculation of),(tW uaic τ with c=7

Illustration of),(tW uaip τ with p>c

 B

1 2 c p

1st Illustration of),(tW uaip τ with p<c

C

1 2 cp

2nd Illustration of),(tW uaip τ with p<c

D

1 2 cp

By applying Theorem1, the interference applied by the serial
transactions whose indices belong to)(uahp τ in a time
interval of length t is :







⋅























 −−−
+







⋅⋅












+⋅












∑

∈

jj
j

jjjnj

jj
j

jn
j

CL
p

CpCTt

CL
T
tC

T
t

,
))(%(

min

)hp(j uaτ

This formula facilitates the calculation of the upper bound of
worst-case response time for the lower priority tasks and
allows us to validate the mini UAV application. Indeed, using
this formula in conjunction with the formula obtained in [17]
for the intermediate priority tasks, we obtained the following
values (Table 2) :

Tasks Period deadline Priority
Worst-case

response time
1 200000 200000 1 56156

2 20000 10000 7 6532

3 50000 30000 5 15532

4 20000 10000 6 6572

5 250000 140000 2 56096

6 60000 60000 4 54636

7 250000 160 11 124

8 20000 720 10 468

9 100000 80 12 12

10 250000 5000 9 3408

11 20000 7500 8 5620

12 100000 70000 3 55416

Table2: Calculation of tighter upper bound of

worst-case response time of all the tasks of
the UAV application

In the table 2, we can see that all the upper bound

worst-case response times are lower than the deadline;
consequently the application of the UAV is valid.

6– Conclusion

In this article, we have at first presented the model of
serial transactions. A serial transaction Γi is compound with
Li short but urgent acquisition tasks activated each time a
serial packet is received, and a less urgent but longer
treatment task activated when a whole frame is received.

The number of acquisition tasks can be important and
makes the exact calculation of response time intractable.
Then, we have presented the imposed interference method
that gives a tighter upper bound .

After these presentations, we have introduced the concept
of reverse transaction that simplify the way to evaluate the
imposed interference of a transaction. Our future work will
focus on the method to determine the real worst case
response-time in the context of serial transactions.

References
1. N.C. Audsley, Optimal priority assignment and

feasibility of static priority tasks with arbitrary start times,
Tech. Report YCS-164, University of York, nov. 1991.

2. M.L. Dertouzos, Control robotics : the procedural control
of physical processors,

Proc. of IFIP Congress, 1974, pp. 807-813.
3. M.L. Dertouzos, A.K. Mok, Multiprocessor on-line

scheduling of hard real-time tasks, IEEETransactions on
Software Engineering 15(12), Déc. 1989, 1497-1506.

4. TIM-LC, TIM-LF, TIM-LP System Integration Manual,
http://www.u-blox.com

5. E. Grolleau, Ordonnancement temps réel hors-ligne
optimal à l'aide de réseaux de pétri en environnement
monoprocesseur et multiprocesseur, thèse, ENSMA -
Université de Poitiers, nov. 1999.

6. Crista Inertial Measurement Unit (IMU) Interface /
Operation Document, May 2004,
http://www.cloudcaptech.com.

 7. J. Labetoulle, Un algorithme optimal pour la gestion des
processus en temps réel, Revue Française d'Automatique,
Informatique et Recherche Opérationnelle (Fév.1974), 11-
17.

8. C.L. Liu and J.W. Layland, Scheduling algorithms for
mutltiprogramming in real-time environnement, Journal of
the ACM 20(1) (1973), 46-61.

9. J. Leung and J. Whitehead, On the complexity of fixed-
priority scheduling of periodic, real-time tasks,
Performance Evaluation (Netherland) 2(4) (1982), p.237-
250.

10.MPC555/MPC556 User's Manual October 2000, http://e-
www.motorola.com

11.J. Mäki-Turja and M. Sjödin, Improved Analysis for Real-
Time Tasks With Offsets –Advanced Model. Technical
Report MRTC no. 101, Mälardalen Real-Time Research
Centre(MRTC), May 2003.

12.J.Palencia Gutierrez and M.Gonzalez Harbour.
Schedulability Analysis for Tasks with Static and
Dynamic Offsets. In Proc. 19th IEEE Real-Time System
Symposium (RTSS), December 1998

13.K. Tindell, Addind Time-Offsets to Schedulability
Analysis, Technical Report YCS 221, Dept of Computer
Science, University of York, England, January 1994

14.J.Mäki-Turja and M.Nolin. Faster Response Time
Analysis of Tasks with Offsets. In Proc. 10th IEEE Real-
Time Technology and Applications Symposium (RTAS),
May 2004

15.J.Mäki-Turja and M.Nolin. Tighter Response Time
Analysis of Tasks with Offsets. In Proc. 10th International
conference on Real-Time Computing and Applications
(RTCSA’04), August 2004

16.J. Xu and D.L. Parnas, Pre-run-time scheduling of
processes with exclusion relations on nested or
overlapping critical sections, Phoenix Conference on
Computers and Communications (Phoenix, USA), Apr.
1992,pp. 6471-6479.

17. K.Traore, E.Grolleau and F.Cottet, Efficient
Schedulability Analysis of Serial Transactions, rapport de
recherche nr 06001, Laboratoire d'Informatique
Scientifique et Industrielle ENSMA, Janvier 2006

18.OSEK/VDX operating system specification 2.2.2 July
2002, http://www.osekvdx.org.

19.OSEKturbo OS/MPC5xx User's Manual, Juin 2003,
http://www.metrowerks.com.

