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Abstract

This article introduces the concept of monotonic trans-
actions. A monotonic transaction is a particular case of
transactions for which theload arrival patternis (or can be
by rotation) localized at the beginning of the transaction.
In the general context of tasks with offsets(general transac-
tions) only exponential methods are known to calculate the
wor st-case response time. The pseudo-polynomial methods
known give an upper bound of the Wbr st-case responsetime.
The method of analysis suggested in this article gives the
real worst-case response time; moreover, this method has
a complexity lower than that of the existing methods of ap-
proximation. There are two main steps in the application
of this method: grouping the tasks of the transaction in a
normal form and seeking a monaotonic pattern.

1 Introduction

work. Then, Turja and Nolin [6] improved the schedulabil-
ity conditions by introducing the concept of "imposed in-
terference” different from the "released for executiorernt
ference” which is the method of calculation of interference
inherited from the model of Liu and Layland. In a context
of tasks with offsets, all the tasks bound by relations of off
sets form a transaction; and in a configuration of tasks, we
can have several transactions. In spite of the interest of a
lot of researchers for this model, until now, the method of
determination of the real worst-case response time remains
exponential. For this reason, methods of approximation giv
ing more or less pessimistic schedulability conditionsehav
been proposed. In any case, the concept of approximation
leads to the acceptation of some pessimism. This paper is
a complementary contribution for analyzing tasks with off-
sets. We show that, in certain cases, it is possible to pro-
pose an exact method of calculation of the real worst-case
response time having a lower complexity than the one of
all the existing methods of approximation. The structure of
the article is as follows: in section 2, we present the model

The last step of the deve|opment of a hard real-time ap- of tasks with offsets. Section 3 presents the normalization

plication consists in modeling the tasks in order to prove process of the transactions. Section 4 presents the concept
the temporal correctness of the application. This valida- 0f monotonic transaction. In section 5, we present an ex-
tion process consists in proving that, whatever happens’act method of calculation of the worst-case response time
the scheduling policy guarantees that all the temporal Con_for monotonic transactions. Lastly, section 6 presents the
straints are met. In worst-case analysis, the most used tasRpplication of the new method.

model is an extension of the model of Liu and Layland

[1] (r_nethod_s RMA based). The schedulability c_ondi_tions 2  Model of tasks with offsets

obtained with this model are however too pessimistic for
certain kinds of pattern of tasks. Thus some articles sug-
gested many other models of tasks:the multiframe model [2] 2.1
[13], the generalized Multiframe[3], the model of taskshwit
self-suspension[10] [11] [12], the model of tasks with off- The model of tasks with offsets was proposed by Tindell
sets(transaction) [4] [5] [6] [7]; the models of serial t)an  [4] in order to reduce existing pessimism of the schedwuabil
actions and reverse transactions [9] which appear as parity analysis where the critical instant for a task occurs mhe
ticular instances of the model of tasks with offset. Tin- itisreleased at the same time as all the higher prioritystask
dell [4] suggested the model of tasks with offsets; Palen- Indeed, certain tasks can for example have the same period
cia and Harbour[5] extended and formalized the Tindell’s and be bound by relations of offsets i.e. they can never be

Generality



‘Figure 1. model of‘tasks with offsets
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released at the same time. A set of tasks of the same pe
riod bound by offset is called a transaction. The release of
a transaction is bound to an external event(the transaction
themselves are offsets free), whose worst-case period of oc
currence is the period of the transaction. A task sydtam
compound of a set of transactions [5][6]:

F = {Fl,Fg, ,Fk}

A transaction (see Figure 1) contaifls| tasks of the
same period (WithE| is the cardinal of set E) :

Fi =< {7’,‘1,7}2, ---aTi|Fi\}7Ti >
A task is defined by
Tij =< Cij, ®ij, Dij, Jij, Bij, Pij >

whereC;; is the worst-case execution time (WCE®); is

the offset (minimal time between the release of the transac-
tion and the release of the task), is the relative deadline,
Ji; the maximum jitter ( givingt, the release date of an
instance of the transactidn , then the task;; is released
betweerty+®;; andty+®,;+J;;), B;; maximum blocking
due to lower priority tasks, and;; the priority. It has been
shown in [5] that it is equivalent , regarding to the worst-
case response time analysis to consifey = ®,;%7T;.
Without loss of generality, we consider that the tasks are
ordered by increasing offset3;; ; in our case, we define

the response time as being the time between the release of

the task and the completion of this task. Let us note also
hp;(Tua) the set of indices of the tasks Bf with a prior-

ity higher than the priority of a task under analysjg i.e.

J € hpi(Tyq) if and only if P;; > P,,. (assuming that the
priorities of the tasks are unique).

In order to validate the system, the Real-Time Analy-
sis (RTA) [14] method is to be applied on each task of the
transactions. The task under analysis is usually neted
Tindell showed that the critical instant of, is a particular

instant when it is released at the same time as at least one

task of higher priority in each transaction. The main dif-
ficulty is to determine what is the critical instant candelat
7;. Of a transactiorl’; that initiates the critical instant of

Tua- An exact calculation method would require to evaluate
the response time obtained by carrying out all the possible
combinations of the tasks of priority higher in each trans-
action and to choose the task in each transaction that leads
to the worst-case response time. This exhaustive method
has an exponential complexity and is intractable for realis
tic task systems; several approximation methods giving an
upper bound of the worst-case response time have been pro-
posed. The best known approximation method is the upper
bound method based on the "imposed interference”.

2.2 Upper bound method based on the
- ”imposed interference”

The "imposed interference” method has been proposed
in [6]. This method removes the unnecessary overestima-
tion taken into account in the classic computation of the in-
terference imposed by a task; on a lower priority task
Tua- THiS Overestimation does not have any impact in the
case of tasks without offset but has a considerable effect in
the approximation of the worst-case response time when we
are in the presence of tasks with offsets. This method con-
sists in calculating the interference effectively imposgd

a taskr;; on a taskr,, with a lower priority during a time
interval of length t; the idea is that the interference can-
not exceed the interval of time t. In order to calculate this
"imposed interference”, [6] substracts a parameter x (see
Figure 2) from the original interference formula; let usenot
Wie(Tua, t) the interference thdt; imposes effectively on
the response time of,, during a time interval of length

t when,. is released at the same instantrgs [6]. In a

first study of transactions, we will focus on cases with no

([5]+)-60-)

t* =t — phase(t;j, Tic)
0ic)) % T;

fort* <0
otherwise

jitter(i.e J;; = 0).

t*

Wic(Tuay t) = T

>

JERDi (Tua)

phase(n-j, Tic) = (Tz + (O” —

0
55e0) = { a0, 0y — (9T)

x;5.(t) corresponds to the part of the task that cannot
be executed in the time interval of length t; since this inter
ference is not effectively imposed in this interval, it istno
taken into account(See an example on Figure 2).

In order to determine the upper bound of the response-
time, [6] uses this function :

max
c€hp;iTua

Wi (Tuau t) = (WiC(Tua7 t))

With the value of eachV;(7,.,t) , the upper bound of
response-time?,,, of r,, can be calculatedR,,, is found



Figure 2. "Imposed interference” method on
a transaction of 4 tasks
VV??I (Tuaa 5)

Ti21(1)

I'; =< {71, Ti2, Tig, Tia }, 50 >

Wit (Tua,5) = (2-0)+(4-3)+(0-0)+(0-0)=3
by iterative fix-point lookup.
- Cua
R = Cyo + Z (Tuas RZ,))
I;er

The "imposed interference” method is less pessimistic
than the others methods of approximation but its applicatio
needs the evaluation of the valuewgf.(t) for each iteration
and for each task. Moreover, the application of these meth-

ods of approximations for some tasks in a concrete real-time
Indeed, in certain

application is sometimes unnecessary.
cases there is a tractable method for determining the rea

worst-case response time; this method is less complex than

all known approximation methods.

3 Transactions in normal form

Let I'; be a transaction and,, a task under analysis;
without loss of generality, we will consider that all thekas
of I'; are higher priority tasks for,,. Moreover, we assume
that the load of the configuration is less than 1.

3.1 Generalities

Definition : The transactiol’; is in normal form if
Oij+Cij < Ojj4yfor1 <j < T | andO;r,| +Cyr,| <
T; +On
For example the transactioiy ,I'; of Figure 3 and the
transactiorl’; of Figure 4 are in normal form. In opposite,
the transactioi’; of Figure 7 is not in normal form; indeed,
we have for exampl®;3 + Ci3 > O;4.

Let us suppose that there is a tagksuch ag0;; + C;; >
Oi(j+1) in a transactiol’;; according to theorem 1 of [4],
the busy period starting ab;; contains the busy period
starting atO;(;+1). Consequently, the task ;) cannot
initiate the critical instant for the task,,; therefore it is
useless to evaluaté’;; ) (7u.q,t) in the process of calcu-
lation of the worst-case response time. For this reason, if
a transactior’; is not in normal form, we group the tasks
of I'; in order to obtain a normal form before starting the
iterative lookup of the fix-point.

3.2 Grouping in normal form

The method of grouping in normal form is close to the
method of merging presented in [8]. LEf be the normal
form of I';. I'} is obtained as follows :

I'; is first initialized with the value of’; :

F _<{ ily 127' 9 z\F|}T>

with 7j; =75 for 1< j <Y

Process of normalization :

e Stepl:for1 <j< |F;‘|, if O7;+CF; > O;F(Hl then
mergeT( 41) into 7. These two tasks form one task
starting atO;; with a WCET equal ta”}; + C*ﬁl)
Renumber the tasks of the transactlon in increasing or-
der of O7; because, , ,, is deleted

e Step 2:

— if Of\r;\ +C;“F:| > T; + O}, then merge; into
Tirs - Cirs| = Cjp+ + Cf1. Renumber the

I tasks of the transaction and start again the step 2

— otherwise it is the end of the process

This process converges if the load of the system is less than
1. The transaction of the figure 8 is the normal form of the
transaction of figure 7.

4 Monotonic transactions

4.1 Definition:

Let Ty =< {71, T2, .... T, }, i > be a transaction
and,, a task under analysis. Without loss of generality,
we consider that all the tasks df have a higher priority
than the one of,. Letly =< {7, 7%, .., 7}jp. }, Ti >
be the normal form of the transactioi. Let us note:

° a”—O — (05 +CF) forl<j<|T}

(3+1)

e a;r: = (T; + OF;) — Ojjrs|

Note thato;; > 0 sincel’; is in normal form.
T'; is a monotonic transaction for the task, if the WCET
of I'! have decreasing values while the phasgshave in-

. .creasing values i.e:

e Clpyny <G

. for all 1 <p < |T}|

® aip < Qipt1) for all 1 <p < |T¥|



Figure 3. monotonic transaction
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Ty =< i1, Ti2, T3, Tia, Tis, 34 >

T =< 4,0,6,0,0,1 > 7o =< 3,6,5,0,0,2 >
i3 =< 3,12,4,0,0,3 >mis =< 2,27,3,0,0,5 >
Tua =< 0,10,30,0 >

T’LL a

Example of monotonic transaction : (See Figure 4) in this
example, the task,, is a lower priority task than all the
tasks ofl’;; moreoverI’; is already in normal formI"; =

].—‘;k we haveC“ > Cio > Ciz3 > Ciy > Cis andOlip <
Qi(p+1) for all 1 < p < |T'f|. Therefore, according
to the definition of monotonic transaction; is monotonic
for the taskr,,,.

4.2 Looking for monotonic pattern

For the transactiol’; :=< {7}, 7%, ... 7ip . 1, Ti >,
there is no difference, regarding the longest busy perad, t
consider that:

* * * * * ]
Y=< {75, 75, ...,TilFi|*,Ti1},,I; > or

* * * * * * * :
I =< {Tivai(k+1)v~~~7Ti\1‘7‘,\*77—i177—i27 ""7Ti(k—1)}?Tl >

We can rotate the tasks of the transactignwithout mod-
ifying the interference imposed Wdy; on the tasks having

a lower priority. For this reason, we consider thatis
monotonic if we can find a monotonic patternlif by ro-
tating the tasks of';. We know that for a monotonic pat-
tern the first task has the highest WCET. In order to look
for a monotonic pattern, we start by inventorying all the
tasks with maximum WCET. Then, we consider alterna-
tively each of these tasks; as the first task of the trans-
actionI'; by rotating the tasks df}; and we verify if the
conditions of monotony (ol;; and«;;) are respected; if
so, I'; is monotonic andr};, become the first task df;.
Then,

* * * * * * * ]
Fi =< {Tik’ Ti(k+1)7 "'7Ti‘Fi‘*’Ti1’Ti2’ ""’Ti(]cfl)}7j—; >

For example in the figure 8, there is a monotonic pattern

starting from the task;,; thus, the transactiofr; of the
figure 7 is monotonic (the transaction of the figure 8 is its
normal form).

5 Presentation of the method for monotonic
transaction

In this section, we present the method of calculating

the worst-case response time when the transadtiors
monotonic for a task,,,.
Theorem 1: LetI'; =< {Til,Til,...,Ti‘Fil},Ti > be a
transaction and,, a task under analysis. Lé&t' be the
normal form of transactiof’;. If I'; is monotonic for the
task r,,,, then the critical instant of,, occurs when it is
released at the same time as the first task’of

Proof : To simplify the writings, without loss of gen-
erality, we consider that all the tasks Bf have a higher
priority than the priority ofr,, andl’; = I'}.

Let 7;, be a task of;. Let W3 (7yq,t) be the interference
imposed ("imposed interference”) on the task, by the
transactiorl’; in a time interval of length t when,,, is re-
leased at the same timegs. In the same wayV;,, (7,q, t)

is the interference imposed wher, is released at the
same time as;,.

To show that the critical instant of,, always coincides
with the release of;;, we calculate

Wi1(Tua,t) — Wip(Tua,t) and we prove that this value is
always> 0 for all p € [1..|T;]] for any time interval of
length t.

For¢t > 0, we know that there is an integer k such as
t = k*T; +t%T; . According to theorem 2 of [8], we
have:

Wil(Tua7 t) = Wﬂ(’rua, k x Tz) + Wil(ﬂm, t%TZ) and
Wip(’rua,t) = Wip(Tuaa k * E) + Wip(Tua,t%Ti); More-
over, the interference imposed by on the taskr,, in

a time interval of lengthl; is the same whatever the task
candidate for the critical instant is. This value is:

[T [T
Wip(Tua,ﬂ‘) :Zcij = Wip(Tuaak'Ti) :k'zcij

j=1 j=1
Consequently,
Wil (Tua7 t) _Wip (Tua7 t) = Wil (Tuaa t%Ti)_Wip(Tug,7 t%T‘l)

Thus, we can reduce the problemitec ¢t < T;.
Moreover, fort < Cy1, we havelV; (1yq,t) = t; by defini-
tion of "imposed interference”

Wic(Tuart) < WilTua,t) <t
then fort < C;q,
Wit (Tuast) = Wip(Tua, t)
S0, we can reduce the problem to:

Cil <t<T



Figure 4. lllustration of the phase and Ny Figure 5. Ny = 2 and N, =
value 1 with t=13

I with N =4

Imuor o r 0y oo,

| | Figure 6. N = 2 and N, =
Ih_-_I_IJ_I_I—I___, 4 with  t=17
Let us notel; the interval fromO;; to O;1 +t: m

[0i1; 051 + ]

11 = r
andN; the number of tasks activated in the interyat _—m

Ny = [{ri; € I /Oij < Oi +t}]

Moreover, according to the assumption of the theorem,
we have inevitably:
Cik1 < Cil 7Cik2 < Ci2 7""7CikN,J < Cin By addlng
m(t) = { 1 if (Oiny +Ciny) < (041 +1) member to member, we obtain

Letn; be the characteristic function of the interference im-
posed in the last task df (see figure 4):

0 otherwise

Ny
7, indicates if the time interval of length t goes beyond the Z Cir, < Z
last task which is taken into account. J=1 J=1

Thus we have :
Since by hypothesid/,, < N; (ThusN, < N; — 1), then

Ni—1 N1

Z Cij < Wit(Tua,t) < Zcij 1) N, Ni—1

=t =t Zcikj < Z Cij (4)
Ni—1 j=1 j=1

t— Zaz] < VVvl Tuav < t— Z Qjj (2)

Consequently, according to (1),(3) and (4), we have

As for the calculation oV, (74, t), Iet us noterl, the N, Ni—1
interval fromQO;,, to Oy, +1t: Wip(Tuart) <Y Cir, < Z Cij < Wit(Tua, t)

I, = [0ip: Oip + 1] ! =t

<.
Il

and N, the number of tasks activated in the intergt case 2N, > N, (See Figure 6)

Ny,= |{ri; € Ti /Oip < O0i; <Os +tor Let US NOte< 7i, , Tik,, -, Tiky, > the tasks activated
(0ij < Osp and Oip +t > 0,5 +T;)} in the intervall,, by phases increasing i.e
ik, < @i, < < Wiky, By analogy with inequality
casel:N, < N; (See Figure 5) (2), we have :

Let us note< 7, , Tiky, ----, Tk, > the tasks activated L
in the intervall, by WCET decreasing i.e t = in, < Wip(rua,t) <t = >, (5)
Cir, > Ciy > oo > Cigy, Thus, we have : = =

Ny—1 According to the assumption of the theorem, we have in-

> Cik, < Wip(Tuas t Z(Jm (3)  evitably: |
=t Qiky > Qi1 Qig, > Qg e fliky, > 4N, - By adding



member to member, we obtain

Ny Ny
E Qik; = E Qg
Jj=1 j=1

then

Ny—1 N
E Qik; = E Qi
=1 =1

from which,we have :

SinceN, > N;

Np—1 N1
b= > i, St—Y @
j=1 j=1

According to (2), (5) and (6) we have:

Np—1 N,
Wip(Tua,t) St = Z Qi St — Zaij < Wit (Tuas t)
Jj=1 j=1

case 3N, = N;

We have two possibilities?, () = 0 orny (t) = 1

If 71(t) = 0 then there are as many phases as tasks in the
interval I;. Therefore, the last task taken into account for

the calculation ofiV;; (7.4, ) is entirely in the interval;.
Thus we use the same reasoning as in case 1.

If n1(t) = 1then There aréV; — 1 phases in the interval
1. Therefore, the task;, is not inevitably entirely in the
interval I;. We use the same reasoning as in case 2.

6 Applications of the method

In this section we apply the method of monotonic trans-

action on an example. Let
[y = {< i1, Tiz, i3, Tia, Tis, Ti6 Tis Tig >, 50}

be a transaction. The tasksIof are :(Figure 7):

i1 =< 2,1,10,0,0,11 > 735 =< 5,9,10,0,0,12 >

Tz =< 5,19,10,0,0,13 > 754 =< 7,23,10,0,0, 14 >
Ti5 =< 1,34,10,0,0,15 > 7,6 =< 8,35,10,0,0,18 >
T =< 5,47,10,0,0,17 > 7,8 =< 1,48,10,0,0,18 >
Let 7,,, be a task under analysis with a WCET,, = 8
and a lower priority than all the tasks bf.

Steps of the application of the method:

Step 1: We group the tasks of’; in order to obtain
a normal form and we obtain the transaction of Figure 8:
Iy ={< 7,75, 75, 74 > 50}

T =<5,9,2,0,0,2 > T =< 12,19,2,0,0,z >

T =< 9,34,2,0,0,2 >
(see Figure 8)
Step 21.ooking for a monotonic pattern We have :

ThH =< 8,47,2,0,0, 2 >

205> Ch >Ch and oy < oy < ajy <oy

A monotonic pattern starts from task,. Consequently,

the critical instant of the task,, coincides with the release
of the taskr;;,. We apply the iterative fix-point lookup with

the method presented in this article(see Table 1).

Table 1 : New method

lter# | I1o Rya
0 8
1 12 20
2 21 29
3 29 37
4 29 37

Let us note thatl;(7yq,t) is the value obtained with
classical RTA method.
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£(5] )

j=1

h?“ﬂmt)

With the new method, it is sufficient to calculate only
I;»(Tuq, t) at each iteration instead of calculating eight val-
ues ofW;; (7.4, t) at each iteration. Moreover, for the cal-
culation of eachiV;; (7,4, t) it is necessary to evaluatg; |
times the value of;;.(t). This evaluation is no longer nec-
essary with the new method. The number of steps in the fix-
point lookup is significantly lower. Finally, let us note tha
RTA analysis is exact. A concrete example of application
of monotonic transaction can be found in [9](intermediate
priority tasks of a serial transaction).

7 Conclusion

In a general context of tasks with offsets, the RTA meth-
ods are intractable because they are exponential in time.
This article defines a specific class of tasks with offsets:
the monotonic transactions. For this class, we found an ex-
act but simple RTA method which requires less steps (the
method is pseudo-polynomial) than the known approxima-
tion methods for the general case. This method consists
in grouping at first the tasks of the transaction in a normal
form. If the normal form presents a monotonic pattern, we
showed that the critical instant occurs when the task under
analysis is released at the same time as the first task of the
pattern; then, we applied the method presented in this arti-
cle. It is important to note that in a task system, some tasks
may be faced to some monotonic transactions, and some
transactions which are not. Thus, in order to find the worst-
case response time of such a task, the method would con-
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sist in analyzing the transactions looking for monotonit pa
terns, then consider them as classic tasks in the system, wit

a constant worst-case interference, and then to use the be t7]
approximation method [8] for the non-monotonic transac-
tions. The two methods (ours and [8]) are thus complemen-
tary. In our future work on tasks with offsets, we will inves-
tigate new classes in order to find less pessimistic schedu{®!
lability conditions with a lower complexity. Moreover, we

will try to extend this method to transactions with jitters.
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