
Proc. of Software Engineering and Knowledge Engineering (SEKE2006), San Francisco Bay, USA, July 5-7, 2006.

Querying ontology based databases. The OntoQL proposal

Stéphane Jean, Yamine Aı̈t-Ameur, Guy Pierra

LISI/ENSMA BP 40109, 86961 Futuroscope Cedex, France
E-mail: {jean,yamine,pierra}@ensma.fr

Abstract
Several approaches for storing ontologies and their in-

stances in databases have been proposed. As a conse-
quence, the need of defining languages to query such ontol-
ogy based databases (OBDB) appeared. In this paper, we
present OntoQL, an ontology query language designed for
OBDB databases. This paper particulary emphasizes on the
language constructs. Several query examples showing the
interest of this language compared to traditional database
query languages are given. Finally, we overview the pro-
posed OntoQL implementation on a prototype of OBDB.

1 Introduction

Nowadays, ontologies are used in a lot of diverse re-
search fields. They provide with the capability to represent
a huge set of information contents. Several data models rec-
ommending the use of ontologies to describe data and their
semantics have been developed. These models consider that
an user or a system is able to retrieve the definition, mean-
ing, translation and/or identifier of a given data item corre-
sponding to a given data concept stored in an ontology.

Therefore, the idea of describing the ontology as well as
the database model in a single model emerged in several
work [18, 2, 16, 10, 5]. We call Ontology Based Database
(OBDB) the database models allowing to store the ontology
and the data in a common and single data model.

The goal of this paper is to describe OntoQL, an ontol-
ogy query language for an OBDB model, called OntoDB,
designed according to a database approach. In this paper,
we present the basic constructs of this language and an
overview of an implementation of this language on a pro-
totype of OBDB.

This paper is structured as follows. Sections 2 gives a
brief state of the art of OBDB models. Section 3 presents
the OBDB model addressed in this paper. Section 4 intro-
duces the OntoQL language by a set of queries on an ex-
ample of ontology based database. Section 5 overviews the
development conducted around the OntoQL language. Sec-
tion 6 discusses related work. Section 7 concludes the pa-
per by summarizing the main results and suggesting future
work.

2 OBDB models: state of the art

Storing ontologies and their instances in databases has
been the subject of several research studies and proposals.
In the context of the Semantic Web, several OBDB mod-
els [2, 5, 16, 10] have been proposed to manage data de-
scribed by ontologies represented in the standard ontology
models RDFS [14] or OWL [3]. In these approaches, an in-
stance, often called an individual, has its own property and
class structure. Therefore, to manage instances, a generic
database schema, not meaningful to a user and not cus-
tomizable, is used. The simplest and more general one uses
an unique table of triples [10] for storing both the ontology
and its instances. Other approaches [2, 5] separate the rep-
resentation of the ontology and its instances in two parts.
The most common practice for storing instance data is to
used the so-called vertical model [1] where information is
stored in triples (subject, property, value) a vari-
ant of which, called the binary model is to have one table per
property that contains only pairs of the form (subject,

value).
Our approach differs from the ones listed previously.

A table is associated to each class of the ontology. The
columns of these tables correspond to the properties of these
classes. Before presenting the OntoQL query language ex-
ploiting this OBDB proposal for storing ontologies and their
instances, let us describe the OntoDB OBDB model.

3 The OntoDB ontology based database
model

The OntoDB model is composed of two main parts. The
ontology part storing ontology definitions and the content
part storing the instances which descriptions and semantics
are described by the stored ontologies. In order to illustrate
the OntoQL proposal, a practical toy example is shared by
all the sections of this paper.

3.1 The ontology part

The ontology part gathers the basic shared constructions
of the PLIB [17], RDFS [14] and OWL [3] ontology mod-

1



els. Some of these constructions are issued from object ori-
ented modelling.

• Each ontology concept has an unique identifier (oid);
• Each ontology concept is an instance of the concept

entity of the ontology model.
• Each ontology concept is described by attributes val-

ues whose types may be either primitive types, associ-
ation or collection types.

• The entities of the ontology model may be linked by
an inheritance (multiple) relationship.

The ontology part may be described by the simplified
UML class diagram of figure 1. This figure shows that an
ontology contains a set of concept definitions gathered by
classes and properties. An ontology defines a mechanism
for uniquely identifying concepts (name spaces). Each
class is described by a set of multi-lingual attributes (name,
definition . . . ). Classes are linked by an inheritance re-
lationship (superClasses). A set of properties may be
used to characterize instances of classes (properties).
Each property is defined in the scope of a class for which
it is applicable (or of a superclass of this class) (scope).

Class

-LG_CODE
-value

MultilingualString

-namespace

Ontology
-oid
-code
-version

Concept

Property

name

definition

scope

properties *

* concepts

superClasses

*

Figure 1. An UML model for the ”ontology”
part of an OBDB

Figure 1 represents the kernel of the ontology model ad-
dressed by the OntoQL language presented in this paper.
This kernel can be extended by specific features related to
any specific ontology model. For example, in the PLIB on-
tology model, classes are also described by illustrations,
external files, notes, remarks, . . . which are added to this
kernel.

-name
-surname
-address
-email

Person

-type
-birthdate

Research Institute

-name
-acronym

Laboratory

team *

director

TemporaryPermanent

Professor Assistant Professor

Figure 2. An example of ontology

In order to illustrate our model, let us consider
a simple example describing data related to research

institutions (figure 2). Each research institute is
composed of research teams with several persons

(permanent or temporary). These persons have differ-
ent statuses (professor, assistant professor, associate
professor, . . . ). Among the research institutes, we distin-
guish laboratories that are characterized by an acronym

and headed by a director.

3.2 The content part

The content part contains data and their logical schemas.
However, contrary to classical databases, the logical
schemas are linked to the ontology. Several work have stud-
ied this link [19]. In our approach, the logical schemas are
built from a subset of the ontology. Therefore, different log-
ical schemas can be derived from a single ontology.

An user determines which classes must be represented in
the content part (extension of the class), and for each class
the user determines which available properties (thanks to
the scope attribute) are needed to describe the instances of
a class. A table is derived to represent these instances. The
link between this table and the ontology is automatically
built and stored in the database.

Figure 3 presents a simple logical schema of a database
that can be built from the defined ontology. In this example,
the chosen properties are name, director and team for the
Laboratory class and name, surname and email for the
Person class. The property team being n−n, this schema
contains the intermediate table Laboratory Team.

Laboratory

PK oid

p_name
FK1 p_director

Person

PK oid

p_name
p_surname
p_email

Laboratory _Team

PK,FK1 oidLaboratory
PK,FK2 oidPerson

Figure 3. An example of logical database
model for content part

3.3 Yet another database language ?

The answer to the question Why another database lan-
guage ? is found in the specificities of the ontology based
database model chosen to encode ontologies and their in-
stances. Indeed, not all the properties of an ontology class
are valuated in the content part. Therefore, it is necessary to
store on the one hand the ontology in order to get the class
and properties descriptions and on the other hand the logical
schema (may be more than one logical schemas) storing the
content and instances of classes and values of properties.

Having defined the ontology and their content, we are
able to present the OntoQL language we have developed.

2



4 The OntoQL language

The OntoQL language is defined from the traditional
components available in database exploitation languages.
This section presents the language in a syntactical way and
gives relevant queries on our example of ontology.

4.1 The data definition language

4.1.1 Definition of the ontology part
OntoQL provides with the resources to create, update and
delete concepts of an ontology (classes, properties, . . . )
and of attribute values (names, definitions, . . . ). The fol-
lowing instruction creates a class with an English name
Laboratory. It extends the class Research Institute and
gives definitions and names in other languages (French
and Spanish). Four properties are defined and created: the
name of the laboratory, its director, its acronym and its
team.

CREATE CLASS Laboratory EXTENDS "Research Institute"(
DESCRIPTOR (

#name[fr,es] = (‘Laboratoire’,‘Laboratorio’),
#definition = ‘workplace for conducting

research activities’,
#definition[fr] = ‘lieu pour mener des recherches’)

PROPERTIES (
name String, director Person,
acronym String, team SET OF Person));

Two specific clauses are introduced: DESCRIPTOR for intro-
ducing class attributes and descriptions (prefixed by #) and
PROPERTIES to describe the relevant characterization prop-
erties of the concept. The valuations of these properties de-
fine the instances of concepts.

A property may be modified. The following clause
changes the English name and adds an illustration to the
director property.

ALTER PROPERTY director ADD DESCRIPTOR (
#name[en] = ‘headmaster’,
#illustration=‘headmaster.jpg’);

4.1.2 Definition of the content part
The extent of a class is defined from the ontology by choos-
ing which properties are valued for a given class.

CREATE EXTENT OF Laboratory (name, team, director);

This clause creates a container (table) of instances of
the class Laboratory with the properties name, team and
director. The link with the ontology and its concept defi-
nitions is also kept in the database.

4.2 The data manipulation language

When the extent of a class is defined, like in SQL3 [7],
class instances can be inserted, deleted and updated. The
following clause creates a new instance of the Laboratory
class.

INSERT INTO Laboratory (name, acronym)
VALUES (‘Laboratoire d’Informatique Scientifique

et Industrielle’, ‘LISI’);

The properties valued in an INSERT clause may be not
described in the extent of a class (the acronym property
in the previous clause). In this case, OntoQL offers three
options: 1) either a NULL value is inserted or 2) an error
is returned and the clause is rejected or 3) the extent of the
class is completed by a new property and all the values of
this property are completed with NULL values for the other
instances.

To manipulate a property which type is another class,
there is need to use nested clauses. For example,

UPDATE ontology_sic:Laboratory
SET director =
(SELECT p FROM p in ontology_sic:Person
WHERE p.name=‘LIENHARDT’ and p.surname=‘Pascal’)

WHERE acronym = ‘SIC’;

modifies the director of the laboratory which acronym

is SIC by retrieving the director in a class Person of the
ontology ontology sic.

4.3 The data query language

This section reviews the most important and novel as-
pects of the querying part of the OntoQL language. We
focus on specific constructions that have emerged from the
ontology based database model we have implemented. The
language offers the possibility to query ontologies, contents
(instances) and both ontology and content thanks to the im-
plementation of the link between these two parts.

4.3.1 Querying the ontology

The ontology model of figure 1 contains some object ori-
ented constructions. Therefore, and in order to keep aligned
with relational object database languages, OntoQL pro-
poses a syntax close to the one of languages like OQL [6]
or SQL3[7].

Object oriented database constructions of OntoQL

Path expressions. OntoQL allows the use of path expres-
sions in a SELECT clause. The following query is used to re-
trieve the identifier of the class domain of a property which
identifier is 7B13543.

SELECT #scope.#oid FROM #property WHERE #code=‘7B13543’

Manipulation of collections. To traverse collections, On-
toQL expresses dependent collections in the FROM clause.
Next query retrieves the code and version of classes defin-
ing a property named acronym.

SELECT c.#code, c.#version
FROM c in #class, p in c.#properties
WHERE p.#name = ‘acronym’

3



In our example, the previous query returns the code and
the version of the class Laboratory and its potential sub-
classes.

Moreover, queries may be nested in the clauses SELECT,
FROM or WHERE. The following query returns the name and
the properties of all classes which name starts by the letter
"A".

SELECT c.#name, (SELECT p.#name FROM p in #property
WHERE p.#scope=c)

FROM c in #class
WHERE c.#name like ‘A%’

OntoQL provides with quantification operators ALL and
EXISTS like in the clause

SELECT c.#name FROM c in #class
WHERE ‘001’ < ALL (SELECT p.#version

FROM p in c.#properties)

which returns the name of classes having all applicable
properties with a version greater than 001.

Finally, OntoQL is equipped with aggregate operators
(count, sum, avg, min, max), access to the i-th element
of an indexed collection, sorting (ORDER BY) and set opera-
tions (UNION, INTERSECT, EXCEPT, GROUP BY).

Specific OntoQL constructions.

Significant differences between the ontology model and
object oriented models are available in the ontology model
we defined. These differences led to specific constructions
of the OntoQL language.

The multi-lingual aspect is one of these differences.
Translations of the attributes may be defined. For exam-
ple, the following query returns the names in French and in
English of all the available classes.

SELECT #name[FR,EN] FROM #class

A second difference is the availability of internal (known
by database implementors) and external (known by users,
e.g., URI) identifiers for all the concepts more their names.
Each of these identifiers may be used in an OntoQL query.
For example, the names can be used to retrieve other ele-
ments of the ontology. The following query uses the name
of a class to retrieve the French names of all its properties.

SELECT #name[FR] FROM "Research Institute".#properties

Notice that, for efficiency, the OntoQL engine uses the in-
ternal identifiers to run this query.

Moreover, name spaces may be used to refer to elements
of an ontology. The USING clause is used for this purpose,
it refers to a given name space outside the current one. The
previous query, run on the sic ontology name space, can
be written as:

SELECT p.#name[FR]
FROM ns_sic:Laboratory.#properties
USING NAME_SPACE ns_sic AS sic_ontology

We have shown how OntoQL manages the ontology part
and allows an user to retrieve the relevant descriptive infor-
mation available in an ontology. Let us describe now, how
contents may be queried.

4.3.2 Querying the content

OntoQL allows the query of contents. Moreover, since the
content is linked to the ontology, querying the content does
not rely on any specific logical database model. Therefore,
two applications sharing a common ontology will have the
right to run a common query even if the underlying logical
database models are different.

Before giving the intuition of the content querying, let us
recall some basic characteristics of instances.
• Each instance has an unique identifier (oid).

• Each instance has a basic class in the ontology.

• Each instance is described by the values of the proper-
ties defined in the extent of the class.

• Ontology classes may be linked by an inheritance re-
lationship.

Querying the content will be similar to querying the ontol-
ogy, except that that properties will not be prefixed by the #
symbol.

Next query returns the laboratory names whose mem-
bers do not have homonymous name with the director of
this laboratory.
SELECT l.name
FROM l in Laboratory
WHERE l.director.name <> ALL (SELECT member.name

FROM member in l.team)

Notice that the same query written in SQL on the logical
model presented on figure 3 is much more complicated.
It requires to retrieve all the tables associated to the class
Laboratory.

A polymorphic search operator ∗ allows a query to re-
trieve the instances of a class and of all its subclasses. As
illustrated below, the first query retrieves the names of in-
stances which basic class is Research Institute while the
second one returns the names for the Laboratory class as
well.
SELECT name FROM "Research Institute"

SELECT nom FROM "Institut de Recherche"*

Notice that the second query of the previous example is
written in French. This possibility is provided thanks to the
capability of the ontology to support multilingual attribute
names and concept language translations.

4.3.3 Querying both ontology and content

Since the links between ontologies and their contents are
kept in the Ontology Based Database model, OntoQL has
exploited this capability to allow querying both ontology
and content in the same query.

4



From ontology to content

To query contents, OntoQL suggests an iterator i on in-
stances of a class C by writing i in C or C as i. Next
query returns the identifiers of instances belonging to the
polymorphic extent of a class which French name begins
with the string "Per".

SELECT i.oid
FROM C in #class, i in C*
WHERE C.#name[fr] like ‘Per%’

Moreover, it permits to retrieve and/or use the values of a
property discovered by the query itself on the ontology part.
The following query allows the retrieval of the values of the
properties of the instances obtained in the previous query.

SELECT i.oid, p.#name[fr], i.p
FROM C in #class, p in C.#properties, i in C*
WHERE C.#name[fr] like ‘Per%’

The previous query returns a tuple per property, but to ob-
tain a single tuple per instance, one can write:

SELECT i.oid, (SELECT i.p, p.#name[fr]
FROM p in C.#properties)

FROM C in #class, i in C*
WHERE C.#name[fr] like ‘Per%’

From content to ontology

OntoQL proposes the use of the typeOf operator to
make distinction between properties and retrieve informa-
tion from the ontology part starting from the content part.
This typeOf operator is implemented thanks to the link be-
tween ontology and content stored in the OBDB database.
For example, the following query

SELECT i.name, i.surname, typeOf(i).#name[fr]
FROM i in Person*

returns the French name of the basic class of the polymor-
phic instances of the class Person.

This kind of queries is particularly useful in a system
where instances are originated from different sources and
specializing a shared ontology. It allows the implementation
of several automatic integration strategies [4].

5 The OntoQL toolkit

Around the OntoQL language, we have designed and im-
plemented1 the tools that we describe in this section.

OntoQL engine. The OntoQL engine implements the al-
gebra, called OntoAlgebra [11], defining the semantics of
the OntoQL language and the resulting optimizations on an
OntoDB prototype.

OntoQL*Plus. OntoQL*Plus is a command line OntoQL
language interface. It provides a syntax highlighting and a
history of the executed commands.

1demonstrations are available at:
http://www.plib.ensma.fr/plib/demos/ontodb/index.html

OntoQBE. OntoQBE is a graphical OntoQL language in-
terface. Figure 4 shows an interactively constructed On-
toQL query. This interface allows to express object-oriented
constructors of OntoQL such as path expressions (TAG1)
or polymorphism (TAG2). Moreover, this interface presents
the ontological definitions (illustration, code, version . . . )
of the concepts involved in the query (TAG3).

Figure 4. OntoQBE: A graphical OntoQL lan-
guage interface.

OntoAPI. OntoAPI is a JAVA representation of the ontol-
ogy model presented in section 3.1. This API (Application
Programming Interface) allows to load classes and proper-
ties of an ontology from an OBDB without knowing the
OntoQL language.

JOBDBC. JOBDBC API provides an access to an OBDB
from the JAVA programming language. It extends the JDBC
API providing methods to retrieve instances of OntoAPI in-
terfaces as the result of a query and giving ontological defi-
nitions as metadata of a query.

6 Comparison with Related Work

OntoQL has been defined as an extension of SQL to
exploit an OBDB model defined for semantic integration.
With respect to this origin, related languages are multi-
database languages like SchemaSQL [13] or MSQL [15].
OntoQL shares with these languages the capability to ex-
press queries on data independently of their schemas. How-
ever, whereas these languages use the system catalog as
an abstraction from database schemas, OntoQL uses on-
tologies. Consequently, OntoQL presents many differences
with these languages such as its object-oriented nature or
its independency of the model (relational, object-relational,
object) used to represent the schemas of the data.

Query languages for the semantic web like RQL [12]
or OWL-QL [8] have been defined on OBDB models pre-
sented in section 2. Like OntoQL, these languages offer the
possibility to query ontologies, instances and both ontology
and instances. However, in these approaches, an instance
is an URI independently of its values of properties. It can
belong to different classes not related by the subsumption

5



relationship. Consequently, OntoQL presents the following
differences with these languages.

• Object orientation. The result of an OntoQL query
searching instances of a class/entity is an object (inter-
nal identifier and state) and not an URI (external iden-
tifier).

• Manipulation of schema. OntoQL allows to create, al-
ter and drop the schema of the data and offers the pos-
sibility to query data from these schemas (SQL upward
compatibility).

• Type checking. OntoQL checks whether proper-
ties/attributes used in the SELECT or WHERE clauses are
defined on some classes/entities in the current scope.

• Usual syntax. OntoQL provides usual constructors of
traditional languages. For example, SELECT * can be
used to retrieve the state of an instance.

Moreover, OntoQL presents the following features not
yet provided by semantic web query languages [9] :

• Exploitation of multi-lingual definitions. An OntoQL
query on content may be expressed in different natural
languages. Moreover, attributes may have values for
different natural languages.

• Useful operators. OntoQL provides grouping (GROUP
BY), sorting (ORDER BY) and collection manipulation
operators.

7 Conclusion

The contribution of this paper is double. On the one
hand, we have discussed and shown the differences exist-
ing between classical database models and ontology based
database models. The need of new tools to manage the lat-
ter was a result of this study. On the other hand, we pro-
posed a database language for managing the ontology based
databases.

This paper showed a new language allowing the exploita-
tion of ontology based databases. The need of such a lan-
guage was motivated by the fact that both ontologies and
their contents are stored in a database. This language is
fully implemented on an OBDB prototype on top of Post-
greSQL and actually runs on several applications. A QBE
like interface is also available and a demo of the usage of
this language can be found at:
http://www.plib.ensma.fr/plib/demos/ontodb/.

For the future it is planned to study the link existing
between database based approaches for ontologies and the
logic based approaches for ontologies. Our claim is that it
is possible to offer an efficient storage capability for the in-
stances described in the logic based approaches for ontolo-
gies like in OWL. As a benefit, we would be able to provide
a database management to the instance together with a rea-
soning engine.

References

[1] R. Agrawal, A. Somani, and Y. Xu. Storage and querying of
e-commerce data. In VLDB, pages 149–158. Morgan Kauf-
mann Publishers Inc., 2001.

[2] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plex-
ousakis, and K. Tolle. The ics-forth rdfsuite: Managing vo-
luminous rdf description bases. In SemWeb, 2001.

[3] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, and P. F. P.-S. ad Lynn Andrea Stein. OWL
Web Ontology Language Reference. World Wide Web Con-
sortium, Feb. 2004.

[4] L. Bellatreche, G. Pierra, D. N. Xuan, H. Dehainsala, and
Y. Aı̈t-Ameur. An a priori approach for automatic integra-
tion of heterogeneous and autonomous databases. In DEXA,
pages 475–485, 2004.

[5] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame:
A generic architecture for storing and querying rdf and rdf
schema. In SemWeb, pages 54–68, 2002.

[6] R. G. G. Cattell. The Object Database Standard: ODMG-
93. Morgan Kaufmann, 1993.

[7] A. Eisenberg and J. Melton. Sql: 1999, formerly known as
sql 3. SIGMOD Record, 28(1):131–138, 1999.

[8] R. Fikes, P. J. Hayes, and I. Horrocks. Owl-ql - a language
for deductive query answering on the semantic web. Journal
of Web Semantics, 2(1):19–29, 2004.

[9] P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A compar-
ison of rdf query languages. In SemWeb, November 2004.

[10] S. Harris and N. Gibbins. 3store: Efficient bulk rdf storage.
In PSSS, 2003.

[11] S. Jean, Y. Aı̈t-Ameur, and G. Pierra. An object-oriented
based algebra for ontologies and their instances. Technical
report, LISI/ENSMA, january 2006.

[12] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plex-
ousakis, and M. Scholl. Rql: a declarative query language
for rdf. In WWW, pages 592–603, 2002.

[13] L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian.
Schemasql - a language for interoperability in relational
multi-database systems. In VLDB, pages 239–250, 1996.

[14] O. Lassila and R. Swick. Resource description framework
(rdf) model and syntax specification, 1999.

[15] W. Litwin, A. Abdellatif, A. Zeroual, B. Nicolas, and
P. Vigier. Msql: A multidatabase language. Inf. Sci., 49(1-
3):59–101, 1989.

[16] Z. Pan and J. Heflin. Dldb: Extending relational databases
to support semantic web queries. In PSSS, 2003.

[17] G. Pierra. Context-explication in conceptual ontologies:
Plib ontologies and their use for industrial data. Journal of
Advanced Manufacturing Systems, 2004.

[18] G. Pierra, H. Dehainsala, Y. Aı̈t-Ameur, and L. Bellatreche.
Base de données à base ontologique : principes et mise en
œuvre. Ingénierie des Systèmes d’Information, 10(2):91–
115, 2005.

[19] H. Wache, T. Vgele, U. Visser, H. Stuckenschmidt,
G. Schuster, H. Neumann, and S. Hübner. Ontology-
based integration of information — a survey of existing ap-
proaches. In IJCAI-01 Workshop: Ontologies and Informa-
tion Sharing, pages 108–117, 2001.

6


