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Abstract

Developing intelligent systems to integrate numerous, autonomous and heterogeneous data sources in order to give end users an uniform query

interface is a great challenging issue. The process of constructing a global schema of the integrated system is usually done manually. This is due to

the presence of semantic and schematic heterogeneities among schemas of sources. In most cases, sources do not contain enough knowledge to help

in solving these heterogeneities and then generating the global schema. In this paper, we present an ontology-driven integration approach called a

priori approach. Its originality is that each data source participating in the integration process contains an ontology that defines the meaning of its

own data. This approach ensures the automation of the integration process when all sources reference a shared ontology, and possibly extend it by

adding their own concept specializations. We present two integration algorithms where (1) the shared ontology may be extended during the

integration process, and (2) the instances of local sources are projected onto the shared ontology. Finally, we show that this theory allows to

integrate automatically electronic catalogues into corporate engineering databases using the PLIB ontology model.

# 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Product data are collections of all database objects and

document files describing an industrial product (e.g., CAD

drawings, 3D models, fluid dynamic simulations) and its

engineering and manufacturing process. These data are

produced by many different heterogeneous engineering

applications. In order to prevent errors resulting from tedious

manual or file-based data transfers between engineering

systems, to ensure data consistency across different tools and

to provide a global view of all project-related data, an

integration of different engineering systems is required [27].

This integration will facilitate data sharing. Data sharing

systems are crucial for supporting a wide range of applications,

such as scientific collaborations, data management on the Web

and cooperation between government agencies. Nowadays

integrating heterogeneous and autonomous data sources

represents a significant challenge to the database and AI

communities. Availability of numerous sources increases the

requirements for developing tools and techniques to integrate

these sources. By autonomy is meant the ability of a database

system to choose its own design with respect to any matter,

including the data being managed, the representation (data

model, query language) and the naming of the data elements

[28]. Data integration is the process by which several

autonomous, distributed and heterogeneous databases sources

(where each source is associated with a local schema) are

integrated into a single data source associated with a global

schema. It recently received a great attention due to many data

management applications: examples are peer-to-peer data [1],

data warehouse [2], e-commerce [19], and web services [25].

Formally, a data integration system is a triple I: hG, S, Mi,
where G is the global schema (over an alphabet AG) which

provides a reconciled and an integrated schema, S is a set of

source schemas (over an alphabet AS) which describes the

structure of sources participating in the integration process, and

M is the mapping between G and S which establishes the

connection between the elements of the global schema and
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those of the sources. Queries to a data integration system are

stated in terms of relations in G, and are intended to provide the

specification of which data to extract from the virtual database

represented by I.

To integrate local schemas into a global one, semantic

correspondences between concepts of these schemas needs to be

specified. These correspondences can be elaborated using two

different approaches: (1) by the use of procedural techniques

(like SQL views) to map each concept from one source to

another. This correspondence is expected to involve an human

expert, or (2) by the use of ontologies that bring some levels of

automation. In the first generation of integration systems (e.g.,

TSIMMIS [6]), data meaning was not explicitly represented.

Thus, concept meaning and mapping meaning were manually

encoded in a view definition. The major progress toward

automatic integration resulted from some levels of explicit

representation of data meaning through ontologies [32].

Ontologies are consensual and explicit representations of

conceptualization [9]. Most ontologies used in proposed

integration approaches [4] are based on words, and not on

concepts. Such ontologies are called linguistic ontologies. To

capture the meaning of the terms used as names of concepts and

properties by sources, these approaches exploit the terminolo-

gical relationships among terms represented by a thesaurus (like

WordNet [18]). For example, WordNet has a set of terminolo-

gical relationships like SYN (Synonymous-of), BT/NT repre-

senting Hypernym/Hyponym, Broader/Narrower. These

terminological relationships are weighted. Consequently, these

approaches offer approximate results (2 concepts are 90%

similar). Their fundamental problem is their inability to integrate

automatically at the meaning level several heterogeneous and

autonomous data sources.

In a number of domains, including Web service, e-

procurement, synchronization of distributed databases, the

new challenge is to perform fully automatic integration of

autonomous databases. We claim that: if we do not want to

perform human-controlled mapping at integration time, this

mapping shall be done a priori during the database design.

This means that some formal shared ontologies must exist, and

each local source shall embed some ontological data that

references explicitly this shared ontology. Some systems are

already developed based on this hypothesis: Picsel2 [25]

project for integrating Web services, the COIN project for

exchanging for instance financial data [8]. Their weakness is

that once the shared ontology is defined, each source shall only

use the common vocabulary. The shared ontology is in fact the

integrated schema and each source has few schematic

autonomy.

Our approach gives more schematic autonomy to various

data sources participating in data integration process. To

achieve this goal, three hypothesis are required:

1. Each data source participating in the integration process

shall contain its own ontology. We call that source an

ontology-based database (OBDB).

2. Each local source references a shared ontology ‘‘as much as

possible’’ (see Section 6).

3. Local ontology may extend the shared ontology as much as

needed.

When these assumptions hold, our integration process

integrates automatically ontologies and then data of sources.

1.1. Context of our study

The context of our work is the automatic integration of

industrial component data sources [24]. In this domain, each

component supplier provides component catalogues and each

manufacturing company represents component data in data-

bases. Each catalogue, either on paper or electronic, has its own

structure, and the used database has also a specific structure. It

is to solve this integration problem that our approach has been

developed since the early 1990s [22] in the context of ISO 184/

SC4/WG2. The result of this work, known as PLIB (officially

ISI 13584), allows to model, and to integrate automatically

electronic catalogues and engineering databases designed

following the PLIB model as documented in ISO 13584-

25:2004. Indeed, both electronic catalogues and engineering

databases include not only component data, but also their own

ontology. Our approach requires that the target domain is

already modelled by a shared consensual (e.g., standard)

ontology. We already contributed to the development of such

ontologies at the international standardization level (e.g., ISO

DIS 13584-511, IEC 61360-4:1998, etc.). Note that in other

domain, a number of other initiatives go to the same direction to

ensure an automatic data integration process (see, for example,

a travel agency ontology in [25]).

Our a priori data integration approach is based on conceptual

ontologies. Contrary to linguistic ontologies, ontologies that we

use represent language-independent concepts. They are formal,

consensual, embedded within each data source (consequently

they can be exchangeable), extensible using the subsumption

relationship (each source may add whatever property or class).

Like COIN [8] (where the ontology represents a contextual

information of values), our ontology also represents the context

of ontology definitions. In [3], preliminary results about our a

priori data integration approach were presented.

1.2. Organization and contribution of the paper

The rest of this paper is organized as follows: in Section 2,

we describe the background of the integration problem in the

general context of heterogeneous sources, in Section 3 we

propose a classification of integration approaches that

facilitates the position of our work from the previous work,

in Section 4 we present an overview of the PLIB ontology

model that will be used as a basic support for our integration

algorithms, in Section 5, we present the concept of ontology-

based database and its structure, in Section 6 integration

algorithms are presented, in Section 7 we show how our theory

may be used in the domain of industrial components. Both

component catalogues and component databases may be

structured as ontology-based data sources making applicable

the presented algorithms. Section 8 concludes the paper.

L. Bellatreche et al. / Computers in Industry 57 (2006) 711–724712
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The main contributions of this paper are:

1. A new classification of integration systems using three

orthogonal criteria’s: (1) data representation, (2) the sense of

the mapping between global and local schemas, and (3) the

mapping automation.

2. An a priori approach ensuring a fully automatic integration

process and respecting the schematic autonomy of each data

source.

3. A new structure for representing both component catalogues

and component databases. This structure allows catalogues

and databases to switch from paper to data-explicit

electronic catalogues, and from conventional component

databases to engineering databases, respectively.

2. Background

Any integration system should consider both integration at

schema level (schema integration consists in consolidating all

source schemas into a global or mediated schema that will be

used as a support of user queries) and at data level (global

population). Constructing a global schema from local sources is

difficult because sources store different types of data, in varying

formats, with different meanings, and reference them using

different names. Consequently, the construction of the global

schema must handle different mechanisms for reconciling both

data structure (for example, a data source may represent in the

same field first and last name, when another splits it into two

different fields), and data meaning (for example synonym,

hypernym, hyponym, overlap, covering, and disjoint).

The main task to integrate heterogeneous data sources is the

identification of equivalent concepts (and properties) used by

these sources. To do so, different categories of conflicts should

be solved. Goh et al. [8] suggest the following taxonomy:

naming conflicts, scaling conflicts, confounding conflicts and

representation conflicts. These conflicts may be encountered at

schema level and at data level.

� Naming conflicts: occur when naming schemes of concepts

differ significantly. The most frequently case is the presence

of synonyms and homonyms. For instance, the status of a

person means her familial status or her employment status.

� Scaling conflicts: occur when different reference systems are

used to measure a value (for example, price of a product can

be given in dollar or in euro).

� Confounding conflicts: occur when concepts seem to have the

same meaning, but differ in reality due to different measuring

contexts. For example, the weight of a person depends on the

date where it was measured. Among properties describing a

data source, we can distinguish two types of properties:

context-dependent properties (e.g., the weight of a person)

and context non-dependent properties (gender of a person).

� Representation conflicts: arise when two source schemas

describe the same concept in different ways. For example, in

one source, student’s name is represented by two elements

FirstName and LastName and in another one it is represented

by only one element Name.

3. A classification of integration systems

It is rather difficult to classify the existing integration

systems. Most of studies classified them using only one criteria.

Some studies distinguish two categories of integrated systems

those using Local as View (LaV) approach [7,25,15], and those

using Global as View (GaV) approach [6]. Other contributions

distinguish between systems using a single ontology, a multiple

ontologies, and a shared ontology [32]. Some other work focus

on the place of data and distinguish mediator and warehouse

approaches [30]. We propose below three orthogonal criteria’s,

which allow to characterize the various existing integration

systems. These criteria’s will be described in next sections.

3.1. Data representation

This criteria specifies whether data of local sources are

duplicated in a warehouse remained in local sources and then

accessed through a mediator.

3.2. Sense of the mapping between the global and local

schemas

In GaV systems, the global schema is expressed as a view (a

function) over data sources. This approach facilitates the query

reformulation by reducing it to a simple execution of views in

traditional databases. However, changes in information sources

or adding a new information source requires a database

administrator to revise the global schema and the mappings

between the global schema and source schemas. Thus, GaV is

not scalable for large applications. In the source-centric

approach, each data source is expressed with one or more views

over the global schema. Therefore, LaV scales better, the global

schema is defined as an ontology [25], independently of source

schemas. In order to evaluate a query, a rewriting in terms of the

data sources is needed. Rewriting queries using views is a

difficult problem in databases [14]. Thus, LaV has low

performance when queries are complex.

3.3. Mapping automation

This criteria specifies whether the mapping between the

global schema and local schemas is done in a manual, a semi-

automatic, or a fully automatic way. Manual mappings are

found in the first generation of integration systems that integrate

sources represented by a schema and a population (i.e., each

source Si is defined as: hSchi, Popii as in classical databases)

and without explicit meaning representations.

The manual systems focus mainly on query support and

processing at the global level, by providing algorithms for

identifying relevant sources and decomposing (and optimizing)

a global query into sub queries for the involved sources. The

construction of the mediators and the wrappers used by these

systems is done manually because their main objective focus on

global query processing [5].

To make the data integration process (partially) automatic,

explicit representation of data meaning is necessary. Thus most

L. Bellatreche et al. / Computers in Industry 57 (2006) 711–724 713
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of the recent integration approaches use ontologies [12,5,25].

Based on the way how ontologies are employed, we may

distinguish three different architectures [32]: single ontology

methods, multiple ontologies methods, and hybrid methods (see

Fig. 1). In the single ontology approach, each source is related to

the same global domain ontology (e.g., Lawrence and Barker

[13] and Picsel [25,12]). As a result, a new source cannot bring

new or specific concepts without requiring change in the global

ontology. This violates the source schematic autonomy require-

ment (each source can extend its schema independently). In the

multiple ontologies approach (e.g., Observer, [17]), each source

has its own ontology developed without respect to other sources.

Then, inter-ontology meanings need to be defined. In this case,

definition of the inter-ontology mapping is very difficult as

different ontologies may use different aggregation and granu-

larity of ontology concepts [32]. The hybrid approach has been

proposed to overcome the drawbacks of single and multiple

ontologies approaches. In this approach, each source has its own

ontology, but all ontologies are connected by some means to a

common shared vocabulary (e.g., KRAFT project [31]).

In all these approaches, ontologies and ontology mappings

are defined at integration time. Therefore, they always need a

human supervision, and they are only partially automatic. To

enable automatic integration, the semantic mapping shall be

defined during the database design. This means that there shall

exist a shared ontology, and moreover, each local source shall

contain ontological data that refers to the shared ontology.

Some systems have already been proposed on that direction

such as Picsel2 [25], and COIN [8]. But to remain automatic,

these systems do not allow to each data source to add new

concepts and properties.

Our OBDB approach belongs to this category, but we also

allow each data source to make its own extension in the shared

ontology.

4. The PLIB ontology model

Several formalisms of ontologies were developed during last

10 years. One can cite for example, Ontolingua [10] for

artificial intelligence applications, DAML + OIL and OWL

[16] for Web applications, and PLIB for technical applications

[24]. All these formalisms allow the following: (1) a

representation and computer-sensible exchange of ontologies,

(2) a representation and a data-processing exchange of objects

defined in terms of these ontologies, and (3) a feasibility to

develop consensual ontologies for more or less vast commu-

nities. In this paper, we use the PLIB ontology model because

this model was specifically developed for describing technical

objects and for providing integration mechanisms. Like in usual

engineering practice and unlike in OWL (or in DAML), in

PLIB, a technical object may be modelled by a set of different

functional models, each one representing a particular dis-

cipline-specific representation (e.g., geometry procurement,

simulation, etc.) [23]. The PLIB ontology model also allows to

define more precisely each technical property (see Fig. 2)

concerning integration mechanisms, the PLIB ontology model

introduces, through a particular subsumption relationship

collected case-of (see Section 4.3), a means to articulate

formally together several ontologies. Indeed, in the technical

domain, providing an approximate integration (as it might be

obtained using linguistic ontologies) is worse than providing no

answer at all. A number of domain ontologies based on this

model already exist or are emerging (e.g., IEC, JEMIMA,

CNIS, etc., see http://www.plib.ensma.fr) that covers progres-

sively all the technical domain.

A PLIB ontology model has the following characteristics:

� Conceptual: each entity and each property are unique

concepts completely defined. The terms (or words) used for

describing them are only a part of their formal definitions.

� Multilingual: a universal identifier (UID) is assigned to each

entity and property of the ontology. Textual aspects of their

descriptions can be written in several languages (French,

L. Bellatreche et al. / Computers in Industry 57 (2006) 711–724714

Fig. 1. Different ontology architectures.

Fig. 2. A PLIB property description interface of PLIBEditor (an editor of PLIB

ontology).
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English, Japanese, etc.). The UID is used to identify exactly

one concept (property or entity).

� Modular: an ontology can reference another one for

importing entities and properties without duplicating them.

Thus, providing for schematic autonomy of various sources

that do reference a shared ontology.

� Consensual: the conceptual model of PLIB ontology is based

on an international consensus and published as international

standards (IEC 61630-4:1998, ISO 13584-42:1998) (for more

details see [21]).

� Unambiguous: contrary to linguistic ontology models [21],

where partially identical concepts are gathered in the same

ontology-thesaurus with a similarity ratio (affinity) [5,29],

each concept in PLIB has with any other concepts of the

ontology well identified and explicit differences. Some of

these differences are computer-interpretable and may be used

for processing queries, e.g., difference of measure units,

difference of evaluation context of a value.

4.1. An automatic resolution of naming conflicts in PLIB

One of the utilization of UID is solving naming conflicts (due

to synonyms and homonyms) as shown in the following example:

Example 1. Let S1 be a source referencing the PLIB ontology

model describing a Hard Disk in the French language (Fig. 3).

This source has the schematic autonomy to use different

language of its attributes (for example, it may use ‘‘Taux de

transfer’’ instead of ‘‘Transfer rate’’). For the integrated system,

these two attributes (properties) are similar because they have

the same UID. More generally, if several sources use different

names, we can identify easily whether they are different or

identical using the following procedure:

1. These two properties have the same UID, for the integration

system, these properties are identical (they represent the

same thing, i.e., the transfer rate of a hard disk), even they

have different names.

2. They have different UIDs, for the integration system, they

are different, even they have the same name.

Note that unlike other integration systems based on

linguistic ontologies where affinity measurements and thresh-

olds are used to compute the similarity between concepts

[5,29], orthogonality of PLIB ontologies and use of UID make

resolution of naming conflicts deterministic and fully auto-

mated.

L. Bellatreche et al. / Computers in Industry 57 (2006) 711–724 715

Fig. 3. An example of ontology exchange structure and ontology instances exchange structure.
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4.2. PLIB class properties

The PLIB ontology model is represented by a tree of classes

(in fact, a forest), where each class has its own properties. Two

types of properties are distinguished: characterization rigid

properties (a rigid property is a property that is essential to all

instances of a class [11]) and context-dependent properties that

are the value of which is a function depending on its measuring

context. For instance, the data transfer rate of hard disk depends

upon the interface used for connecting to its computer or the

lifetime of bearing depends on its radical and axial load and on

its rotational speed. Those variables that characterize the object

context are called context-parameters.

4.3. Extension possibilities offered by PLIB

When a PLIB ontology is shared between various sources

because these sources commit to the ontological definitions

that were agreed and possibly standardized (e.g., IEC 61360,

ISO 13399-100), each source remains autonomous and may

extend the shared ontology using subsumption relationship.

Two relationships are distinguished: specialization (is-a) and

case-of.

4.4. The is-a relationship

It is the usual relationship that may be used within an

ontology (either shared or specific to one source) to specialize a

class. Note that both ontologies and ontology instances are

modeled and exchanged together as instances of some schema.

The ontology is exchanged as instances of the PLIB ontology

model (see ontology layer in Fig. 3), and ontology instances are

exchanged as instances of the PLIB instance schema (see data

layer in Fig. 3). There are both ontologies and ‘‘ data’’ might be

stored in the same database (see Section 5). Fig. 3 considers a

PLIB ontology describing an Hard Disk with nine properties.

This class is specialized in order to define External Disk with

three other properties.

4.5. The case-of relationship

In this case, properties are not inherited but may be explicitly

(and partially) imported. Fig. 5 shows an extension of the shared

ontology Hard Disk using the case-of relationship. The local

ontology External Disk of S2 imports some properties of the

shared one (model code, capacity, interface, transfer rate, etc.).

Note that this local ontology does not import some properties of

the shared ontology like rotational rate, data buffer, etc. To satisfy

its needs, it adds other properties describing its External Disk like

Read Rate, Write Rate, Marque and Price. This particular

relationship is a key mechanism allowing each source both to

make its own extensions and to exchange information with other

actors referencing the same shared ontology.

The PLIB ontology model is completely stable and several

tools have already been developed to create, validate, manage

or exchange ontologies (such tools can be found at PLIB home

site: www.plib.ensma.fr).

5. Ontology-based databases

Contrary the existing database structures (that contain two

parts: data according to a logical schema and a meta-base

describing tables, attributes, foreign keys, etc.), an ontology-

based database (OBDB) contains four parts: two parts as in the

conventional databases plus the ontology definition and meta-

model of that ontology. The relationship between the left and

the right parts of this architecture associates to each instance in

the right part its corresponding meaning defined in the left part.

This architecture is validated by a prototype developed on

Postgres called OntoDB. This concept of OBDB is the key

concept for modeling both electronic catalogues and engineer-

ing databases (Fig. 4).

5.1. Formal definition of a PLIB ontology

Formally (for a more complete model, see [21]), a PLIB

ontology may be defined as the quadruplet O: hC, P, Sub,

Applici, where:

� C is the set of the classes used to describe the concepts of a

given domain (like travel service [25], equipment failure, etc.);

� P is the set of properties used to describe the instances of the

C classes. Note that it is assumed that P defines a much

greater number of properties that those usually represented in

a database. Only a subset of them might be selected by any

particular database.1

� Sub is the subsumption (is-a and case-of) function (Figs. 3

and 5) defined as Sub : C! 2C.2 For a class ci of the ontology

it associates its direct subsumed classes.3 Sub defines a partial

order over C.

� Applic is a function defined as Applic: C! 2P. It associates

to each ontology class those properties (either characteriza-

tion or context-dependent properties) that are applicable (i.e.,

rigid) for each instance of this class. Applicable properties are

inherited through is-a subsumption and partially imported

through case-of subsumption.

L. Bellatreche et al. / Computers in Industry 57 (2006) 711–724716

Fig. 4. The ontology-based database architecture.

1 A particular database may also extend the P set.
2 We use the symbol 2C to denote the power set of C.
3 C1 subsumes C2 iff 8x 2 C2, x 2 C1.
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Note that as usual ontological definitions are intentional: the

fact that a property is rigid for a class does not mean that value

will be explicitly represented for each instance of the case. In

our approach, the choice is made among applicable properties

at the schema level.

Example 2. Fig. 5 gives an example of an shared ontology with

two classes C = {Hard Disk and External Disk}. Let

P = {Model Code, Capacity, Rotational rate, Data buffer, Seek

time, Interface, Transfer rate, Weight, Dimension, Power type,

Software requirement, Colour} be set of properties that char-

acterizes these classes. Properties in P will be assigned to

classes of the ontology (therefore, each class will have its own

applicable properties). The subsumption function Sub defines a

is-a relationship between classes (for example, the class Hard

Disk subsumes the class External Disk).

5.2. Representation of instances

The main goal of ontologies is the representation of the

semantic of objects of a given domain. This goal is reached by

assigning objects to classes and by describing them using

properties. According to the used ontology model, various

constraints govern such descriptions. For instance, in OWL, an

object may belong to any number of classes and can be

described by any subset of properties. Therefore, each domain

object of a given class has its own structure. In the opposite, a

database schema aims to describe ‘‘similar’’ objects by an

identical logical structure in order to optimize queries using

indexing techniques. In the lack of any particular assumption on

the representation of objects, the only possible common

structure consists in associating each object: (1) with any subset

of set of classes; and (2) with any subset of the set of properties.

The drawbacks of such structure are evident. Either it would

require an important storage cost (by using a systematic repre-

sentation of all properties for every instance), or it would require

also a significant response time due to the need of performing a

large number join operations (if only relevant properties and their

relevant classes are represented for each instance).

Therefore, in the context of our proposed architecture

OntoDB, we impose three restrictions referenced to as the

strong typing assumptions.

� R1. We assume that the set of classes to which an instance

belongs to are ordered by the subsumption relationship has a

unique minimal class (called instance base class).

� R2. Each ontology specifies for each of its classes, those

properties that are allowed for use in a class instance

(applicable properties).

� R3. Each object can be described only by applicable

properties of its instance base class.

Thanks to the strong typing assumptions, it is possible to

define a relevant schema for any ontology class. This schema

L. Bellatreche et al. / Computers in Industry 57 (2006) 711–724 717

Fig. 5. An example of extending locally a shared ontology.
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consists of all applicable properties that are used at least by one

instance of a class. Of course this schema might contain in some

case a number of null values. But it will support an efficient

query processing.

5.3. A formal representation of an OBDB

For the purpose of simplicity in formulas, we assure that

each non-leaf class4 is abstract. Formally, an OBDB is a

quadruplet hO, I, Sch, Popi, where:

� O is an ontology (O: hC, P, Sub, Applici);
� I is the set of instances of the database;

� Sch: C! 2P associates to each ontology class ci of C the

properties, which are effectively used to describe the

instances of the class ci. Sch has two definitions based on

the nature of each class (a leaf or a non-leaf class).

� Schema of each leaf class ci is explicitly defined. It shall

only ensure the following:

8 ci 2C; SchðciÞ�ApplicðciÞ (1)

(Only applicable properties may be used for describing

class instances of ci).

� Schema of a non-leaf class cj is computed. It is defined by

the intersection between the applicable properties of cj and

the intersection of properties associated with values in all

subclasses ci,j of cj.

Schðc jÞ ¼ Applicðc jÞ
\
ð

\
ci; j 2 Subðc jÞ

Schðci; jÞÞ (2)

An alternative definition may also be used to create the

schema of a non-leaf class where instances are completed

with null values:

Sch0ðc jÞ ¼ Applicðc jÞ
[
ð

\
ci; j 2 Subðc jÞ

Schðci; jÞÞ (3)

� Pop: C! 2I associates to each class (leaf class or not) its

own instances. The instances of each leaf class ci are

explicitly implemented and the Pop(cj) of each non-leaf

class cj is computed as the following:

Popðc jÞ ¼
[

ci; j 2 Subðc jÞ
Popðci; jÞ (4)

Example 3. Let’s consider the class tree in Fig. 6 where A, B

are a non-leaf classes and C, D are leaf-classes. We assume that

each class has it own applicable properties, and the DBA

(database administrator) has chosen its schema for C, D and

a formula (2) or (3) for all non-leaf classes. To find the schema

of the class A using Eq. (2), we first perform the intersection

operation among all properties of the schema of its subsumed

classes. We obtain a set U = {a1}, then we perform the inter-

section operation between U and the applicable properties of A

({a0, a1, a2}). As result the schema of A contains one property

a1 (see Fig. 6).

By using Sch0 definition (Eq. (3)), Sch0(A) would be (a1, a2).

The instances from C will be associated with NULL value for

property a2.

6. Algorithms for integrating ontology-based database

sources

In this section, we present algorithms to integrate various

ontology-based database sources that correspond to the same

domain. A typical scenario is the one of databases of a

particular domain like travel agencies [25]. Each supplier

references the same domain ontology and adds its own

extensions. Let S = {SB1, SB2, . . ., SBn} be the set of data

sources participating in the data integration process. Each data

source SBi (1 � i � n) is defined as follows: SBi = hOi, Ii, Schi,

Popii. We assume that all sources have been designed

referencing as much possible a common shared ontology O.

As much possible means that (1) each class of a local ontology

references explicitly (or implicitly through its parent class) its

lowest subsuming class in the shared ontology, and (2) only

properties that do not exist in the shared ontology may be

defined on a local ontology, otherwise it should be imported

through the case-of relationship. This requirement is called

smallest subsuming class reference requirement (S2CR2). Each

source is designed following three steps:

1. The DBA of each source defines her own ontology Oi:

hCi, Pi, Subi, Applicii ensuring S2CR2;

2. The DBA of each source chooses for each leaf class

properties that are associated with values by defining

Schi : Ci! 2Pi ;

3. The DBA chooses an implementation of each leaf ci class

(e.g., to ensure the third normal form), and then she defines

Sch(ci) as a view over ci implementation.

The architecture of our integrated systems is shown in Fig. 7.

Note that the structure of the integrated system is also an

ontology-based database. We may distinguish several integra-

tion operations, corresponding to different assumptions on the

relationships between the various ontologies involved in the

integrated system. Thus defining an algebraic structure over

OBDBs associated with automatic integration algorithms.

L. Bellatreche et al. / Computers in Industry 57 (2006) 711–724718

Fig. 6. An example of a non-leaf class schema (properties between {} are

applicable properties).

4 If ci is a leaf class, this means Sub(ci) = f.
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Two approaches seem of particular interests. In both

approaches, each local ontology must be a specialization of

the shared ontology O (to ensure the schematic autonomy of a

local source). This specialization is done through explicit

subsumption using the case-of relationship (Fig. 5) and should

respect the S2CR2 requirement. Then, two approaches are:

1. ExtendOnto: the shared ontology is itself extended with all

the local specializations of the various local sources. Then,

the local instances are integrated within the integrated

system without any change.

2. ProjOnto: the shared ontology is not modified. Each local

source instance is projected onto the applicable properties of

its smallest subsuming class in the shared ontology, and then it

is added to the population of this class of the shared ontology.

Another approach called FragmentOnto that assumes the

shared ontology is completed enough to cover the needs of all

local sources. Such an assumption is done for instance in the

Picsel2 project [25] for integrating web service (travel agency) or

in COIN [8]. The source design consists in (1) selecting subset of

the shared ontology (classes and properties), and (2) designing

the local database schema. This approach has been presented in

[3]. It leaves less schematic autonomy for the design of the local.

6.1. An integration algorithm for ExtendOnto

Note that our assumption about the relationship between the

shared ontology and local source ontologies leaves a lot of

schematic autonomy to each data source:

� the classification of each source may be completely different

from the shared ontology;

� some classes and properties that do not exist in the shared

ontology and may be added in the local ontologies.

But all the ontologies reference ‘‘as much possible’’

(S2CR2) a shared ontology: O: hC, P, Sub, Applici. Therefore,

each source SBi maps the referenced ontology O to its ontology

Oi. This mapping can be defined as follows: Mi : C! 2Ci ,

where Mi(c) = {greatest classes of Ci subsumed by c}. Thus,

with the S2CR2 assumption, each data source SBi is now

defined as a quintuple: SBi = hOi, Ii, Schi, Popi, Mii. In this case,

automatic integration is possible. To do so, we should find the

structure of the final integrated system IF: hOF, SchF, PopFi.
Note that the structure of OF is hCF, PF, SubF, ApplicFi, where

element of these structures are defined as follows:

� CF ¼ C [ ðij1�i�nÞCi;
� PF ¼ P[ ðij1�i�nÞPi;

� ApplicFðcÞ ¼ ApplicðcÞ if c2C
AppliciðcÞ if c2Ci

�

� SubFðcÞ ¼ SubðcÞ [MiðcÞ if c2C
SubiðcÞ if c2Ci

�

Then, the population PopF of each class (c) is computed

recursively using a post-order tree search. If ci belongs to one Ci

and does not belong to C, its population is given by:

PopF(ci) = Popi(ci). Otherwise (i.e., c belongs to the shared

ontology tree), PopF(c) is computed as follows:

PopFðc jÞ ¼
[

ci; j 2 SubFðc jÞ
PopFðci; jÞ (5)

Finally, the schema of each class c of the integrated system is

computed following the same principle as the population of c. If

ci belongs to one Ci and does not belong to C, its schema is

determined by: SchF(ci) = Schi(ci). And 8c 2 C, SchF(c) is

computed using the formula (2) (respectively, (3)). This shows

that it is possible to leave a large schematic autonomy to each

local source and to compute in a fully automatic, deterministic

and exact way the corresponding integrated system. To the best

of our knowledge, our ontology-based database approach is the

first approach that reconciles these two requirements.

Example 4. Suppose we have two ontology-based databases

referencing a shared ontology as in Fig. 8. Local class E in

source 1 (OBDB1) references the class C2 (by importing only

a1, a2, a3 properties). The local class F of source 2 references

the class C3 of the shared ontology (by importing three attri-

butes a1, a5 and a6). Moreover classes E and F add new

properties e and f , respectively. To integrate these two sources,

the shared ontology should be extended by considering the two

added local classes (Fig. 8).

6.2. An integration algorithm for ProjOnto

This scenario differs from the previous one by the fact that

the shared ontology is not modified. Thus, OF = O:

� CF = C,

� PF = P,

� ApplicF(c) = Applic(c),

� SubF(c) = Sub(c).

L. Bellatreche et al. / Computers in Industry 57 (2006) 711–724 719

Fig. 7. Architecture of our integration system.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

In this scenario, we consider that each instance of a local

source is projected onto the applicable properties of its smallest

subsuming class in the shared ontology. So this class becomes

instance base class (note that in the previous scenario, no class

of shared ontology is instance base class). Let Pop*(c) be the

projected instances population on a class of the shared ontology

c. It is computed by the union of all local classes referencing

directly the class c.5 Pop*(c) is given the following equation:

Pop�ðcÞ ¼
[

i2 ½1:n�
ð
[

c j 2MiðcÞ
Popiðc jÞÞ (6)

The schema of projected instances of a class c is given as

follows:

Sch�ðcÞ ¼
[

i2 ½1:n�
ð
[

c j 2MiðcÞ
Schiðc jÞÞ (7)

or

Sch�ðcÞ ¼
\

i2 ½1:n�
ð
[

c j 2MiðcÞ
Schiðc jÞÞ (8)

The populations and the schemas of the leaf classes of the

shared ontology are computed by the formulas (6) and (7),

respectively (or (6) and (8)). For a non-leaf classes, formulas

(6)–(8) must be completed:

SchFðcÞ ¼ ApplicðcÞ ¼
\
ðSch�ðcÞ

[
ð

[
ck 2SubFðcÞ

SchFðckÞÞÞ

(9)

or

SchFðcÞ ¼ ApplicðcÞ ¼
\
ðSch�ðcÞ

\
ð

\
ck 2SubFðcÞ

SchFðckÞÞÞ

(10)

and in both cases:

PopFðcÞ ¼ ð
[

ck 2SubFðcÞ
PopFðckÞÞ

[
Pop�ðcÞ (11)

Example 5. We consider the same sources and the shared

ontology as in the previous example. The structure of the

integrated system is described in Fig. 9. The class C2 is a

non-leaf class and instance base class.

It is important to notice that when all data sources use

independent ontologies without referencing a shared ontology

(1) the same algorithm allows to record in the integrated

system, the content of each data source together with its own

ontology, or (2) the task of mapping these ontologies (i.e.,

defining Mi, 1 � i � n) onto a receiver ontology may be done

manually, by the DBA of the receiving system. In this latter

case, the integration process will be performed automatically

either or as in the ProjOnto case as in the ExtendOnto case.

7. Integrating electronic catalogues of industrial

component within engineering database

In most engineering fields, products to be designed are

essentially assembled of pre-existing components. In such fields,

an important part of the engineering knowledge is the component

knowledge. It corresponds to an expertise on the criteria to be

used to select a component, on the condition of component usage,

on the behaviour of components and on the relevant component

representation for each specific discipline [20].

L. Bellatreche et al. / Computers in Industry 57 (2006) 711–724720

Fig. 8. ExtendOnto scenario (properties between {} are applicable properties).

5 Local classes of a source SBi references directly a class c of shared ontology

are the classes in Mi(c).



Aut
ho

r's
   

pe
rs

on
al

   
co

py

The component knowledge is highly structured. Compo-

nents are defined at various levels of abstraction (e.g., fasteners/

screws/machine screws/hexagon machine screw; bearing/

circular bearing/double ball bearing) where the component

retrieval process may take place. Engineering properties are

defined at each level, that also apply to lower levels. In a

database, each component class should be described by its own

table with some kind of table inheritance. It is why the

relational model is so poorly adapted for managing compo-

nents. Most conventional so-called article database, based on

the relational technology, only contain a fixed number of

properties for describing any component. These properties

include a long string, (often called ‘‘designation’’), where

engineering properties are all encoded (see Fig. 10).

7.1. From conventional component database to

engineering database

PLIB ontologies allow to make explicit the component

engineering knowledge. This knowledge may then be repre-

sented within an OBDB together with component data. In such

databases, that we call engineering database, all the technical data

about components may be explicitly represented. Moreover the

data meaning described in the database as a PLIB ontology allows

to provide user friendly interfaces, allowing to display together

data and data meaning [26,24]. Fig. 12 shows an example of a

graphic interface that may be automatically generated.

7.2. From paper-like catalogues to explicit electronic

catalogues

The information content of a component catalogue is exactly

the same as in engineering database. This means that it contains

an explicit local ontology that possibly references a standard

ontology, and description of components by means of the values

of their technical properties, and possibly, associated textual

documentation. All these pieces of information may be

modelled by the PLIB model. Moreover, the PLIB model

being developed in the EXPRESS language, it is possible to

exchange all these pieces of information as an electronic file

(see Fig. 11) that represents in fact the exact content of an

OBDB. Thus, integrating such files into an engineering

database turns to the problem of automatic integration of

OBDB discussed in Section 6. Note that if a customer has no

engineering database, such electronic catalogues may be

generated and exchanged as electronic document. Fig. 12 is an

example of such an electronic catalogue generated in DHTML

L. Bellatreche et al. / Computers in Industry 57 (2006) 711–724 721

Fig. 9. ProjOnto scenario (properties between {} are applicable properties).

Fig. 10. Engineering information encoding in an usual component database.

Fig. 11. An example of an electronic catalogue exchanged as instances of the EXPRESS language.
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as an active documents for the Web. This catalogue may be

browsed through Internet. It may be loaded on the user site for

use by the company designers without needing to access to

Internet, it may also be used to select a component and either to

issue an ordering form to the supplier, or to get the data

description of the component for insertion within a current

design. Note that, in this catalogue, each property value that

corresponds to a context-dependent property is associated with

the values of the context parameter of which it depends.

7.3. Interpretation of OBDB integration scenario for

industrial components

We have already noticed that standard PLIB ontologies were

emerging covering more and more industrial sectors. We may

quote for instance IEC 61360-4 for electronic components, ISO

13399 for manufacturing cutting tools, ISO 13584-511 for

mechanical fasteners, ISO 13584-501 for measuring instru-

ment, etc. (see http://www.plib.ensma.fr or www.oiddi.org). In

those domains where such ontologies exist, we make the

following assumptions:

� Component manufacturers will reference as much as possible

standard ontologies for describing their own component

catalogues.

� Component users having an engineering database will record

in their engineering database the relevant standard ontologies

(associated e.g., with SQL view to define their own

ontologies).

With the above assumptions, the two automatic integration

algorithms presented in Section 6 permit the following:

L. Bellatreche et al. / Computers in Industry 57 (2006) 711–724722

Fig. 12. An electronic catalogue automatically generated for the Web (each Ctx Dep set of columns gathers context-dependent properties, with their context

parameters values).

Fig. 13. An example of nail integrated system.
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1. For ProjOnto, to integrate automatically all components of

all manufacturer electronic catalogues as instances of the

standard ontology;

2. For ExtendOnto, to store in the user database the complete

content (ontology + component data) of all manufacturer

electronic catalogues with two kinds of possible accesses: (1)

a generic access through the standard ontology (if any) and

(2) a specific assess to each catalogue by going down the

integrated ontology hierarchy (see Fig. 13).

8. Conclusion

In this paper, we have presented a new classification of

integration systems based on three criteria’s: (1) data representa-

tion, (2) sense of the mapping between global and local schemas,

and (3) level of automation of the mapping (manual, semi

automatic and automatic). We also proposed a fully automated

technique for integrating heterogeneous sources called the a

priori approach to data integration. This approach assumes the

existence of a shared ontology and guarantees the schematic

autonomy of each source that can extend the shared ontology to

define its local ontology. This extension is done by adding new

concepts and properties. The ontologies used by our approach are

modelled according to a formal, multilingual, extensible, and

standardized (ISO 13584) ontology model known as PLIB that

was developed for modelling industrial components. The fact that

the ontology is embedded within each data source helps in

capturing both the domain knowledge and the knowledge about

data, schema, and properties. Therefore it allows a complete

automation of the integration process, contrary to the existing

techniques. Two integration algorithms are presented (1) when

sources extend the shared ontology by specific classes and

properties and that these extensions are represented in the

integrated system and (2) when sources extend the shared

ontology but instance data are projected onto the shared ontology

before being exchanged. This model of a data source that contains

its own ontology is called ontology base data base (OBDB). We

have shown that OBDB could be the structure of both user

component database (called engineering database) and of

electroniccatalogues. In thiscase,ouralgorithmsallowautomatic

integration of supplier catalogues into user engineering database.

In addition to its capability for automating the integration

process of heterogeneous databases (several prototypes of

ontology-based databases are currently in progress in our

laboratory), there are many other tasks currently in progress.

They include the following: (1) development of an XML

schema for exchanging OBDBs and electronic catalogues, this

one, called OntoML is currently under development within ISO

TC184/SC4/WG2, (2) development of a query language for

OBDB, (3) design of web services for component information

exchange and for B2B e-engineering.
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