
OntoQL: an exploitation language for OBDBs

Stéphane Jean Guy Pierra Yamine Ait-Ameur

LISI/ENSMA, Téléport2 - 1, Avenue Clément Ader, Futuroscope, France
{jean,pierra,yamine}@ensma.fr

Abstract

A database containing an ontology which de-
fines the semantics of the data structured by
a traditional logical model is called an On-
tology Based DataBase(OBDB). Data models
and query languages designed for traditional
databases are inappropriate for OBDBs. This
paper proposes a new exploitation language
for OBDBs called OntoQL. It allows to query
the data at semantic level using the expressive
power provided by the ontology model. More-
over, both data and ontology can be queried
in parallel. This is particulary useful for users
who do not have an exact knowledge of the
used ontologies and/or logical database mod-
els. Finally, it opens interesting issues on
query optimization.

1 OBDB another database model

The design of a database is founded on a sequence
of steps. A conceptual model is designed from the
user requirements. This model prescribes the informa-
tion that shall be represented in the target database.
Then, it is transformed into a logical model which pro-
vides data structures that implement the concepts of
the conceptual model. As a consequence: 1) exchang-
ing of data between different databases issued from
different conceptual models of a common application
domain is difficult since they present both structural
and semantic heterogeneities 2) a large amount of se-
mantics of the data is lost during the transformation
from conceptual to logical model.

These two points have been addressed quite sepa-
rately in the database field by proposing integration
approaches or new database models aiming at bridg-
ing the gap between the conceptual and the logical
models. Ontologies, defined by Gruber [GRU 93] as
”an explicit specification of a conceptualization” play a
major role in implementing these solutions. An ontol-
ogy allows to describe, in a consensual way, the whole
relevant information of a rather broad application do-
main. When such an ontology exists, the process of
database design no longer needs to create new con-
ceptualization, but it just needs to extract and/or im-

port from the domain ontology, relevant information
pieces required for application design. The Ontology
Based Database (OBDB) model, developed in our lab-
oratory [PIE 05], allows to represent both the ontol-
ogy of an application domain, the encoded concep-
tual model and the logical database model together
with its instances stored in a database. Each piece
of data is associated to an ontological concept which
defines its meaning unambiguously. Thus, this model
avoids semantics loss occurring during the transfor-
mation from conceptual to logical model. Oppositely
to other approaches like ontology-based search or web
service discovery, where automated reasoning provided
by the ontology model is a key functionality, we fo-
cus on performance and scalability of OBDB and on
the processings enabled by the OBDB model (inte-
gration, data exchange, . . .) Currently, the OBDB
model is formally specified and an implementation is
available. My PhD work is performed in the context
of the development of the OBDB model. As a PhD
student, I was assigned the task of specifying, design-
ing and implementing an exploitation language, named
OntoQL, allowing to manage OBDB databases. This
paper presents the different steps we followed to de-
sign the OntoQL language. First, we present a set
of requirements we have identified for this language.
Then, section 3 briefly studies how three categories
of languages fulfill (fully/partly) these requirements.
Section 4 and 5 present specification and implemen-
tation issues of the OntoQL language for the OBDB
model. Finally, section 6 describes our outgoing work.

2 Requirements for an exploitation
language of an OBDB

Before presenting the requirements we identified for
OntoQL, it’s necessary to precise OBDB assumptions.
Each instance of the logical/conceptual model is asso-
ciated to a single description (one base class) in the
ontology. On the one hand, since a data description of
the conceptual/logical model may import only a subset
of the corresponding concept description available in
the conceptual ontology, an instance may respect only
a subset of definitions of its base class: ”strong typ-
ing” assumption linking ontology and conceptual mod-

els. On the other hand, like in traditional databases
all the concepts available in the conceptual model are
represented in the logical model and thus an instance
must respect all the definitions of its associated de-
scription in the conceptual model: ”exact typing” as-
sumption. Currently, we consider the PLIB ontology
model [ISO 98] and we have defined a restriction of
OWL [BEC 04] to use it as a ”strong typing” based
ontology model. However, considering other ontology
models is currently being studied.

Under these assumptions, as the first proposal of
our PhD work, the following requirements for an ex-
ploitation language of an OBDB were established.
Req1. Ontology manipulation. It requires to be
able to insert, update or delete classes, properties, de-
finitions, comments, . . . of the ontology.
Req2. Creation of conceptual models from an
ontology. One of the main characteristics of the
OBDB model is its capability to operationally sup-
port the conceptual model of the described database.
The elements of the conceptual model are built from
the concepts available in the ontology. Importation
of part or whole of the concepts described in the on-
tology allows to build such a conceptual model. Op-
erators implementing such an importation mechanism
shall be provided by the exploitation language.
Req3. Manipulation of contents. Instances of
a conceptual model define the content or extent of a
database. They shall be inserted, deleted and updated
in the OBDB model.
Req4. Querying capabilities. Querying shall be
allowed at different levels.

4.1- Query on content: retrieve information con-
tent of known conceptual models. It corresponds to
the traditional query capabilities provided by classical
database languages like SQL[COD 70].

4.2- Query on ontology: retrieve ontology char-
acteristics. It may be used either to retrieve definitions
(names, translations, labels, URIs, . . .) of a given con-
cept or to retrieve part or whole of the ontology which
may be exported, shared and mapped onto other on-
tologies. The first family of operators manipulates on-
tology concepts in order to discover their meanings
while the second family of operators manipulates on-
tologies themselves.

4.3- Query on ontology and on content: gather
the capabilities of both the two previous levels. It al-
lows to query both ontology concepts and contents of
conceptual models. The logical model of the concep-
tual model is hidden since the queries are addressed
directly to the ontology. It becomes possible to access
both concept meanings and contents and to extract
part of an ontology together with the related instances.
Req 5. Expression of mapping operators.
Among the operators that manipulate ontologies (4.2),
we may find mapping operators which shall allow to
map an ontology onto a set of conceptual models

and/or map an ontology onto a set of ontologies.
Req6. Use of the proposed language. The sug-
gested language shall be usable interactively on any
OBDB. In addition, the proposed language shall offer
an application programming interface (API) allowing
to manipulate and to query either concepts of the on-
tology or instances in the OBDB.
Req7. Formal consistent semantics. The pro-
posed language shall be formally specified and satisfy
relevant semantic properties (e.g. completeness).

3 Limits of existing solutions

When the previous requirements have been set up,
we have checked, as second and bibliographic step,
whether existing database and/or ontology languages
fulfill these requirements.

3.1 Traditional database languages: SQL99
and OQL

SQL99[EIS 99] and OQL[CAT 93] support the defin-
ition of classes and properties but don’t allow to de-
fine ontological descriptions (synonymous names, com-
ments, illustrations, . . .) of a class and of the re-
lated properties. An extent may be associated to these
classes as a relation in SQL99 or as a name for OQL.
However, these extents are defined using all the prop-
erties defined on the class. They respect the exact
typing assumption. Once the extent has been defined,
instances may be managed. SQL99 and OQL provide
the insert, update and delete operators.

Since the ontology models we considered are de-
scribed in an object oriented approach, the operators
provided by SQL99 or OQL are well suited to retrieve
part or whole of the ontology. However, only OQL
allows to express a query directly on a given object,
thus enabling to retrieve definitions of a given ontology
concept. Moreover, if the conceptual model extracted
from the ontology is object oriented based, SQL99 or
OQL can be used to query information of this con-
ceptual model. But, neither OQL, nor SQL99 provide
specialized operators to retrieve both object value and
object semantics. They don’t provide operators for
manipulating models and mapping too.

From an operational point of view, SQL99 and
OQL may be both used interactively or embedded in
a programming language. Finally, the specification of
SQL99 and OQL define a formal consistent semantics.

3.2 Ontology languages: OWL-QL

The OWL Query Language (OWL-QL) [FIK 04] is a
candidate standard language for querying the semantic
Web represented using OWL. OWL-QL is a deductive
language based on the logical resolution of first or-
der queries. The model where the OWL predicates
are interpreted is a set of RDF triples. This sim-
ple model allows to combine data and ontology con-

cepts in a query expression. However, the expressive
power of OWL-QL is limited compared to classical
database languages. Indeed, it doesn’t support com-
plete Boolean filters (negation, disjunction), set-based
operations (union, intersection, difference), arithmetic
operations on data values, non polymorphic query, . . .

3.3 OBDB available languages: CQL

CQL [MIZ 02] is an exploitation language for data-
bases based on the PLIB ontology for components
library management systems. Even if this language
is not fully compatible with existing standards, it is
equipped with all the features of a database language.
However, it is very close to the PLIB ontology model
and to relational database systems. The user of CQL
needs to have a deep knowledge of the PLIB ontology
and of relational database concepts. It contains ad-hoc
operators with no formalized semantics. Moreover, the
definition does not take into account the strong typing
assumption. Finally, CQL makes a clear distinction
between queries on content and queries on the ontol-
ogy. A different data model and different query opera-
tors are proposed by CQL for each part. Indeed, CQL
doesn’t provide set-based operations (union, intersec-
tion, difference) nor polymorphic query or functions on
aggregate on the ontology part. Consequently, CQL
doesn’t allow to query data and ontology simultane-
ously.

3.4 Summary

Table 1 summarizes the previous comparison. It ap-
pears that none of the discussed approaches covers the
requirements we stated in section 2. Therefore, next
section outlines the specification of the proposed On-
toQL language under development on top of OBDB.
This proposition is the kernel of our PhD work cur-
rently under development either from the theoretical
(addressed in section 4) and operational (addressed in
section 5) points of views.

SQL99 OQL OWL-QL CQL
1 no no yes yes
2 no no yes yes
3 yes yes yes yes
4.1 yes yes partially yes
4.2 partially yes partially yes
4.3 no no partially no
5 no no no no
6 yes yes yes yes
7 yes yes yes no

Table 1: Fulfilled requirements by existing languages

4 Our current specification

This section presents some of the features available in
the OntoQL proposal.

4.1 Ontology Data Definition Language
(Req1)

All common characteristics of PLIB and OWL, more
some crucial aspects (e.g. multilingual), represent the
kernel of our ontology model. These core concepts are
”hard-encoded” in OntoQL through a set of keywords
in the language. For instance, the name, definition
and the four properties of a class can be declared as
follows:

CREATE CLASS CVehicle (
DESCRIPTOR (

#name[fr]=’Véhicule’,
#definition[en]=’a conveyance’)

PROPERTIES (
max speed REAL, color STRING,
price REAL CURRENCY TYPE,

owner CPerson inverse its vehicle SET[0:n]));

Since the definition of a property in an ontology model
is not restricted to a domain specification, a CREATE
PROPERTY command is also proposed. To support
full PLIB and full restriction of OWL, a modular ap-
proach is adopted. Indeed, parameters values on On-
toQL allowing to work in full PLIB or full OWL can
be set.

4.2 Content Data Definition Language (Req2)

To create new instances, one must first define an ex-
tension to the ontology class. This definition requires
to choose the set of valued properties from an ontol-
ogy class in the target application. For example, in
the following definition of the extent of CVehicle, two
properties of CVehicle among the four available prop-
erties are used.

CREATE EXTENT OF CVehicle (max speed, color);

The representation of the logical model depends on the
used database model defined by a parameter value of
OntoQL. The extracted logical model can also be cus-
tomized by explicitly specifying the data type used in
the database for a given extent of a class or a property
instead of using the default representation. Moreover,
it is possible to specify the way of representing non
atomic properties.

4.3 Query Language (Req4)

Query on ontology and on content may be used to
retrieve property values of an instance together with
the semantic definitions of the properties of these in-
stances. For example, the following query retrieves the
price value (content) of all the kinds of vehicles (* op-
erator) and the currency (described in the ontology)
in which this value is defined:

SELECT c.price, c.price.#currency

FROM CVehicle* as c;

Notice that if no extent of CVehicle is available, no
value of price is returned but the information on
currency is provided.

Querying both ontology and content are particu-
larly useful for a user without exact knowledge of the
ontology. For example, the previous query can be ex-
pressed without knowledge about the identifier of the
property price:

SELECT c.$P, c.$P.#currency
FROM CVehicle* AS c
USING $P = SELECT p FROM #PROPERTY p

WHERE p.#range=REAL CURRENCY TYPE

AND p.#name[en]=’price’;

$P is used as a wildcard. Its value is defined in the
specific USING clause.

4.4 Mapping operators (Req5)

The USING clause of OntoQL can also be used
to express mappings between concepts of different
ontologies. In the following example, the class
CVehiculeNissan is defined as a case of the class
CVehiculeRenault. The case of operator is a PLIB
operator defining a subsumption relationship between
two classes. Compared to the is a operator, it allows
to inport only a subset of the properties of an up-
per class (partial inheritance). Thus, the query ex-
pressed on the CVehiculeRenault will retrieve all the
CVehiculeNissan instances as well.

SELECT c.$P, c.$P.#currency
FROM CVehiculeRenault* AS c

USING CVehiculeNissan CASE OF CVehiculeRenault,
$P = SELECT p FROM #PROPERTY p

WHERE (p.#domain=CVehiculeRenault
OR p.#domain=CVehiculeNissan)
AND p.#range=REAL CURRENCY TYPE

AND p.#name[en]=’price’;

Notice that this query may retrieve the price of the
vehicles in different currencies. Indeed, the property
whose english name is price may be defined differ-
ently in the ontologies defining the CVehiculeRenault

(e.g. Euro currency) and CVehiculeNissan (e.g. Yen
currency) classes.

4.5 API (Req6)

Our API is encoded in the JAVA language. First,
this interface offers functionalities similar to JDBC,
i.e it allows to send an OntoQL query. The result is
processed in a Resultset object. Second, this inter-
face offers the JAVA representation of the used ontol-
ogy model. A load method is defined in each of the
classes corresponding to the ontology model. It al-
lows to load the main attributes of an object whose
identifier is known. The object is then loaded on de-
mand, i.e an OntoQL query is called whenever a non

loaded attribute is requested. Third, the defined in-
terface allows to get the result of an OntoQL query as
an extension of the Resultset class (OntoQLResultset)
containing objects of the java representation of the on-
tology model.

4.6 Formal consistent semantics (Req7)

An algebra representing the concepts of the OBDB
data model and the operators allowing to manipulate
them are under development. Equations are associated
to each operator to define their formal semantics.

5 Our current implementation

An implementation prototype of OntoQL and its API
actually run. This implementation is based on the On-
toDB operational prototype of OBDB [PIE 05]. This
implementation uses the PostgreSQL relational-object
database system.

5.1 Implementation choices

When implementing the OBDB model in a relational-
object system, two techniques to process OntoQL
queries could have been applied 1) design a new query
module (query optimizer and query processor) 2) use
the semantics of the OBDB model to translate OntoQL
queries into relational-object queries on the implemen-
tation of this model in the relational-object system.

At this early stage of our work, the second approach
has been implemented for rapid prototyping reasons.
We obtained some feedback on our proposed query lan-
guage which help for evolving the specification. In or-
der to make our proposal independent of any OBDB
implementation, it must translate an OntoQL query
into a sequence of API operators calls. Such an API
has been implemented and it provides access to the
data contained in the OBDB (Figure 1: Internal API).
Next section presents our proposal to visually edit an
OntoQL query and section 5.3 describes how such a
query is processed.

����������	
���	������
��� ����	
�	���������

���������	 	���

�	��	�

�����	��

���

�	���	��

���
������

�	��	�

Figure 1: Implementation architecture of OntoQL

5.2 OntoQL visual query language

Defining a query on both ontology and extent may be
rather complex. We have decided to implement in par-
allel both textual (presented before) and a QBE-like
[ZLO 77] graphical language. Our current QBE-like
implementation is written as a module of the PLibEd-
itor software, developed for managing PLIB ontolo-
gies. Currently, our implementation allows the users to

query data from the ontology using polymorphic query
and path expression (part of Req4.3). Figure 2 shows
how such a query can be interactively constructed.
The query construction begins by the choice of a class
in the ontology hierarchy (tag1). Then, the properties
used for restriction and selection in the query are cho-
sen among those that are in the class domain through
a dialog box accessible by a contextual menu (tag2).
It creates automatically a table (tag3) with columns
corresponding to the chosen properties. This table is
the template of the query result. Then, the selection
criteria are defined in a disjunctive form using a new
line of the table for each element of the disjunctive
condition. Finally, the user may choose if the query
is polymorphic through a contextual menu. The panel
above the template table (tag4) is used for the on-
tology description of a chosen property in the query.
It will be used latter as a template for querying the
ontology level (Req4.2).

Figure 2: QBE for OntoQL

5.3 OntoQL query processing

Let us describe the processing of the following query
inside the OntoQL engine of figure 1.

SELECT max speed, color

FROM CVehicle* WHERE price < 10000;

Once parsed, this query is processed by an optimizer
module. The strong typing semantics specifies that a
property of an ontology class may not be implemented
in the related logical model. Thus, whenever a selec-
tion operator involves a non used property of an on-
tology class, it is not necessary to process the query:
the result is the empty set. This capability can be
generalized to path expression properties: whenever a
path expression implies a non used property it’s unnec-
essary to compute its value. Using this optimization
technique, the previous query is only processed on the
subclasses of the CVehicle class where the property
price is used and valued. Supposing that it is the case
for the classes CCar and CTruck, the optimizer module
transforms our query into the following one:

(SELECT max speed, color
FROM CCar* WHERE price < 10000) UNION

(SELECT max speed, color

FROM CTruck* WHERE price < 10000)

Once optimized, the query is passed to the translator
module (figure 1) which translates through the internal
API our query into a repository dependent one. In
our implementation, the previous OntoQL query will
be translated into the following SQL query.

(SELECT max speed, color
FROM TCar WHERE price < 10000) UNION
(SELECT max speed, color
FROM TSportCar WHERE price < 10000) UNION
(SELECT max speed, color

FROM TTruck WHERE price < 10000)

where TCar (resp. TSportCar, TTruck) are the internal
names of the extent of CCar (resp. CSportCar, CTruck).

6 Future work

Our work will pursue the investigation of both specifi-
cation and implementation of OntoQL. At the specifi-
cation level, it is planned to establish the formal prop-
erties required for OntoQL (e.g. completeness of the
queries and information extraction). At the implemen-
tation level, two directions will be followed. First, pur-
sue the implementation of an optimized and efficient
query module on top of OBDB. Second, complete the
QBE-like language by offering the possibility to query
both the ontology and the content level.

References
[BEC 04] Bechhofer S., van Harmelen F., Hendler J.,

Horrocks I., McGuinness D. L., ad Lynn Andrea Stein
P. F. P.-S., “OWL Web Ontology Language Reference”,
World Wide Web Consortium, Feb. 2004.

[CAT 93] Cattell R. G. G., The Object Database Standard:
ODMG-93, Morgan Kaufmann, 1993.

[COD 70] Codd E. F., “A Relational Model of Data for Large
Shared Data Banks.”, Commun. ACM, vol. 13, num. 6,
1970, p. 377-387.

[EIS 99] Eisenberg A., Melton J., “SQL: 1999, formerly
known as SQL 3”, SIGMOD Record, vol. 28, num. 1,
1999, p. 131-138.

[FIK 04] Fikes R., Hayes P. J., Horrocks I., “OWL-QL -
a language for deductive query answering on the Semantic
Web.”, J. Web Sem., vol. 2, num. 1, 2004, p. 19-29.

[GRU 93] Gruber T. R., “A translation approach to portable
ontology specifications”, Knowl. Acquis., vol. 5, num. 2,
1993, p. 199–220, Academic Press Ltd.

[ISO 98] ISO13584-42, “Industrial Automation Systems and
Integration Parts Library Part 42 : Description method-
ology : Methodology for Structuring Parts families”, report
, 1998, International Standards Organization.

[MIZ 02] Mizoguchi-Shimogori Y., Murayama H., Mi-
namino N., “Class Query Language and its application
to ISO13584 Parts Library Standard”, In 9th European
Concurrent Engineering Conference, ECEC 2002, Modena,
Italy, 2002, p. 128-135.

[PIE 05] Pierra G., Dehainsala H., Ait-Ameur Y., Bel-
latreche L., “Base de Données à Base Ontologique :
principes et mise en œuvre.”, To appear in Ingénierie des
Systèmes d’Information (ISI), 2005.

[ZLO 77] Zloof M. M., “Query-by-Example: A Data Base
Language.”, IBM Systems Journal, vol. 16, num. 4, 1977,
p. 324-343.

