Negative results for scheduling independent hard real-time tasks
with self-suspensions

Fredéric Ridouard, Pascal Richard, Francis Cottet
LISI-ENSMA
Av C. Ader, Teleport 2 BP 40109
86961 Futuroscope Cedex, France
{frederic.ridouard,pascal.richard,francis.cgt@ensma.fr

Abstract

In most real-time systems, tasks use remote op-
erations that are executed upon dedicated pro-
cessors. External operations introduce self-
suspension delays in the behavior of tasks. This
paper presents several negative results concern-
ing scheduling independent hard real-time tasks
with self-suspensions. Our main objective is to
show that well-known scheduling policies such
as fixed-priority or Earliest Deadline First are
not efficient to schedule such task systems. We
prove the scheduling problem to be AP-hard in
the strong sense, even for synchronous task sys-
tems with implicit deadlines. We also show that
scheduling anomalies can occur at run-time: re-
ducing the execution requirement or the suspen-
sion delay of a task can lead the task system
to be infeasible under EDF. Lastly, we present
negative results on the worst-case performances
of well-known scheduling algorithms (EDF, RM,
DM, LLF, SRPTF) to maximize tasks completed
by their deadlines.

1 Introduction

putations such as signal processing (ekd=T)

and then wait until these external operations com-
plete. When a task invokes an external opera-
tion, that task is suspended by the real-time ker-
nel and the scheduler chooses the next task ready
to run according to an on-line scheduling pol-
icy. The execution requirement of a remote op-
eration invoked by a task can be modeled as a
self-suspension delay. Next, we consider real-
time scheduling of independent tasks with self-
suspension allowed upon a uniprocessor system.
Let 7,;, and 7, be two parts of a task; sepa-
rated by a self-suspension delay. Self-suspensions
are modeled differently according to the schedul-
ing environment tfme-driven or priority-driven
scheduling policies). In a time-driven system, a
self-suspension can be modeled as a time-lag be-
tween the end of a subtask; and the start time

of 7,5. In this former approach, the maximum
self-suspension delay is enforced as a hard timing
constraint between the end qf, and the starting
time of 7, ». Nevertheless, self-suspension delays
change from one execution to another since they
model execution requirements of external opera-
tions. As a consequence, time-lags modeling ex-
ternal operations cannot be assumed to be con-
stant in a priority-driven system. At run-time, the

Efficient real-time systems exploit the power of pending task is resumed when an external opera-
dedicated processors. Tasks prepare specific contion completes. Thus, self-suspension delays can-

not be modeled as time-lags associated to precep; to its release date and a peridd If D; = T;
dence constraints in the on-line setting. for a taskr;, then the task has amplicit dead-
Several feasibility tests are known for analysing line, if D; < T; then it has @onstrained deadline.
tasks allowed to self-suspend. In [3] is presentedEvery occurrence of a task is callegiab. We as-

a test based on the utilization factor of the pro- sume next that tasks can be preempted at any time
cessor. For fixed-priority task systems, tests areand resumed later without any incurring costs (no
based on the computation of worst-case responseverhead). The utilization factor of a periodic task
time of tasks [5, 9, 8]. Such an approach can;, is the ratio of its execution requirement to its
also be used foEDF scheduling [9]. But, to the period: U(r;) = C;/T;. The utilization factor of
best of our knowledge few have been publisheda task systemr is the sum of the utilization fac-
on the efficiency of classical scheduling priority- tors of all tasks:U(7) = > " U(r). A task
driven policies for dealing with tasks allowed to set is saideasible if there exists a schedule such
self-suspend. that all tasks are completed by their deadlines at
We next show that well-known on-line schedul- run-time. Classical on-line schedulers use priority
ing algorithms are not efficient to schedule tasksrules such as Rate MonotonicRN!) and Dead-
with self-suspensions. Section 2 defines for-line Monotonic - DM), Earliest Deadline First
mally task systems with self-suspensions consid-(EDF) and Least laxity Firstl(LF) policies.

ered in the remainder. We first show in Sec- Tasks are scheduled on a single processor whereas
tion 3 that there exists neither optimal polynomial external operations that they perform are executed
time, nor pseudo-polynomial time, scheduling al- on remote dedicated processors. We study the
gorithm. Furthermore, we show that if there exists scheduling of periodic tasks having at most one
an universal scheduling algorithm for tasks with self-suspension each. We limit ourselves to this
at most one self-suspension per task tRea N'P. simple case to simplify the presentation of our re-
We also present scheduling anomalies occurringsults.

while scheduling tasks with self-suspensions un-) o

der EDF. To the best of our knowledge, this is D€finition 1 Atask 7; with a self-suspension is a

the first time that such anomalies are exhibited {2 defined by two subtasks (7;; and 7;2) sep-

for scheduling independent tasks upon an unipro-2rated by a maximum self-suspension delay be-
cessor system. In Section 4, we show that clastWeen the completion of the first subtask and the
sical scheduling algorithms fail to schedule task St&rt of the second subtask. Atask7;, 1 <@ < n
systems having arbitrary small utilization factors nasthe following sequence at run-time:

whereas there exist trivial off-line feasible sched- ¢ an input subtask 7.1 having an execution re-
u!es. Las_tly, using resource augmentation tech- quirement of at most C; 1,

nique (for instance see [10]), we show that there is ’

no competitive on-line scheduling algorithm us- e a suspension delays modeling an external

ing ak-speed processor against an off-line sched- operation with a length of at most X; > 0,

uler run under a unit-speed processor. _ _
e an output subtask 7;» having an execution

) . requirement of at most C, 5.
2 Taskswith Self-Suspensions s ol most Gz

If a task7; has no self-suspension (i.&, = 0),
Real-time softwares are usually based on a collecthen its subtasks are merged as a single one with
tion of recurring tasks. Every taskr;, 1 < i <n an execution requiremett = C;; +C; 5. Atask
has an upper limit to its execution requireméit system is a collection of independent tasks with
(worst-case execution time), a relative deadlineself-suspensions.

2

3 Complexity of the Run-Time e the tasks, ..., Tam:

Scheduling Problem Cix = Ciy=s;

1<i<3m X, = (2m-1)B

We next show that the feasibility problem of
T; =4mB

scheduling synchronously released tasks, with
implicit deadlines having at most one self-
suspension each, igP-hard in the strong sense.

ke
I

e ataskrs,, 1 with:

We also prove that scheduling anomalies can oc- B B
cur underEDF. Camt11 = [5—‘ Cami12 = {§J
3.1 Computational Complexity Xamy1 = B

o D31 = T3mp1 =28
In [11], we proved the feasibility problem of
scheduling synchronous periodic task systems tofe can now prove that we have a solution to the
be \’P-hard in the strong sense when tasks are al-3-partition instance if, and only if, there is a fea-
lowed to self-suspend and have constrained deadsible schedule for the previously defined task sys-
lines. In this previous paper, we left open the casetem with self-suspensions. The hyperperiod of the
of tasks having at most one self-suspension andask set isH = lem(Ty, . . ., Typnys). Itis easy to

implicit-deadlines (the deadline is equal to the pe- show that its utilization factor is exactly
riod for every task). Please notice that in this par-

ticular case, the feasibility problem of schedul- ® the workload generated by the first set of
ing tasks when self-suspensions are not allowed tasks within the hyperperiod is:

is solved inO(n) by checking that the utilization 3 3

factorpf the processorsz_atl_s_ﬁ@fsg 1. Theorem 1 Z (Ciy + Cia) =2 Z s; = 2mB
establishes that the feasibility problem of schedul- ’ ’
ing tasks with self-suspensionsAg§>-hard in the
strong sense, even in this restrictive case. e the workload generated by the task,, ..
within the hyperperiod is:

=1 i=1

Theorem 1 Thefeasibility problem of scheduling

periodic task; W|th at mo;t one self-suspepsi on AmB /TB B
per task and implicit deadlines is N’P-hard in the S5 \ |32 5= 2mB
strong sense.

Proof: We shall transform from 3-Partition, Hence, the workload of the task setlis B within
known to be stronglywP-Complete. the hyperperiod having exactly the same length.
Instance: Se#l of 3m elements, a boun® € N, Thus, the utilization factor of the previously de-
and a sizes; € N for eachj = 1..3m such that fined task setis exactly 1. As a consequence, there

B/4 < s; < B/2and suchthad_,_, ; s; = isnoidle-time in any feasible schedule. The task
mB. T3me1 has no laxity in every feasible schedule.
Question: CanA be partitioned inton disjoint ~ Thus, its execution leaves idle-blocks of length
setsA;, Ay, ..., A, such that, forl < i < m, in the schedule that are separated by the execution
Zje A Si = B (each A; must therefore contain of the last subtask ofs,,, . ; and the first subtask
exactly three elements from)? of the next job ofr,, 1. Except for the first job of

For every 3-Partition instance we define an in- 73,1, the execution ofs,, . ; Starts its execution
stance of the scheduling problem wish, + 1 for B units of times and then leaves an idle-block
tasks: of length B in every feasible schedule (Figure 1

presents the pattern of every feasible schedule; size of jobs, there is no more than two subtasks
is a release date arjda deadline). Alockis such ~ completed in block. As a consequence, in block
an interval left idle by the execution @f,,,;. In k + m, only two tasks having subtasks completed
every feasible schedule, thié" block is defined in block &£ can be scheduled while respecting the
as follows: self-suspension delays. As a consequence, there

is an idle-time in block + m, that contradicts the
|:2(k: ~1)B + [Ew :2kB — {gD vk > 1 fact that the utilization factor is equal 10

2

(If Part) Consider a 3-Partition of, then we can We next show that there is naniversal schedul-
define a feasible schedule as follows. We firsting algorithm to schedule tasks with self-
consider the subset;, that contains exactly 3 suspensions, unlegs= N'P. Please notice that, a
elements and has a siz2 We schedule the first Scheduling algorithm is said to be universal if the
subtask of the corresponding tasks in the firstalgorithm takes a polynomial amount of time (in
block and the second one into the bloek+ 1. the length of the input) to make each scheduling
The end of the first subtask and the start of thedecision [4].
second one are separated by an interval of time
of length (2m — 1)B. Thus, suspension delays Theorem 2 If there exists an universal schedul-
are respected. The same principle is used tdng algorithm for tasks with at most one self-
sequence tasks corresponding to elements,in suspension per task then P = NVP.
in subsequent block®, m + 2); and so on. This
method leads to a feasible schedule. Proof:

To prove this theorem, we use a classical proof
(Only if Part) Assume that we have a feasible non-approach, such as presented in [4]. Precisely,
preemptive schedule. We shall consider the casave show that if a such an algorithm exists, and
of preemptive schedules later. As a consequenceif it takes a polynomial amount of time (in the
tasks having their first subtasks in the first block length of the input) to choose the next processed
of the schedule cannot have their second subtaskpb, then? = AP. Because, one can find a
in the subsequent — 1 blocks. Since the utiliza- pseudo-polynomial time algorithm to solve the 3-
tion factor of the task system is 1, then these secPARTITION problem.
ond subtasks can only be scheduled in the blockWe assume that there exists a scheduling algo-
m + 1, otherwise we necessarily introduce an idle rithm for scheduling independent periodic tasks
time in this block. Furthermore, every block has with at most one self-suspension upon a unipro-
3 subtasks since their execution requirements vercessor system, we denote this algoritAmFrom
ify B/4 < C;; < B/2,i = 1.3m,j = 1,2. an instance of the 3-PARTITION problem, to de-
According to these facts, we can set elements corfine a set/ of tasks, we use the same reduction
responding to tasks in th& block into the subset technique as that in the proof of Theorem 1. Since
A;, 1 < i < m, leading to a feasible 3-Partition. the hyperperiod of the scheduled&m and A is
We now have to consider preemptive schedulesassumed to be a polynomial time scheduling al-
by showing that no subtask can be scheduled ingorithm, then the whole algorithm for checking
more than one block. We use a contradiction ar-deadline is at most pseudo-polynomial (i.e, it is
gument. Assume there exists such a subtask thatlearly performed in time proportional t8m).
is started in the first block and completed in block Thus, the solution delivered by the algorithsn
2, for instance. All the other subtasks are startedgives a solution to solve the 3-PARTITION prob-
and completed within this block. Then, due to the lem.

4

T3m—1 | B ¥ ¥ | B . . B { r ! B ;. r.;
T i 3 @mins | . | | l
T I L o L,
T, T o | o N L
7 T I . A S I L
_____ s | Cmis i l
S I = N B SHR RN
* S ! ! ! ! ! ! !

T i L el I S N L
o B |] l
Ty : L n | | I O v,
2mB 4mB

B Is, =E-

= G- |2 2 Gmnt|7)

Figure 1. A feasible schedule of the instance (Theorem 1).

Therefore we have found a pseudo-polynomial requirements.

time algorithm to solve the 3-PARTITION prob- In uniprocessor system, scheduling independent
lem. But 3-PARTITION problem igvP-complete tasks without self-suspension can never lead to
in the strong sense. As a consequence, if the algoscheduling anomalies und&DF [6]. Thus, if
rithm A exists ther? = AP. This is a contradic- all deadlines are met while considering the worst-
tion. We can then conclude that such an algorithmcase execution times for all tasks, then reducing

does not exist> the execution requirement of a task cannot lead
EDF to miss a deadline at run-time. According to
3.2 Scheduling anomalies under EDF this result, considering the worst-case execution

requirements of tasks in the feasibility analysis
leads to a necessary and sufficient schedulability

_ _ _ _ condition. We prove hereafter that the sufficient
tion requirement of jobs can vary at run-time. An 4t of this result does not hold when tasks are
anomalous behavior occurs when reducing the 1owed to self-suspend.

execution requirement of a task can lead to miss a
deadline whereas the same task system is feasibl&€heorem 3 EDF has anomalies to schedule in-
if all jobs are run with their worst-case execution dependent tasks with self-suspensions upon one

The validation problem is difficult when the
scheduling algorithm is priority-driven. Execu-

5

Processor. T M
0

Proof: To prove this theorem, we define an in- 12 5
stance of task$ and we show that if an execution T3 T_e‘_i
requirement of a task or a suspension delay are
decreased, then a deadline will be missed. The

instancel contains three tasks with the following 5. -ﬁm—
characteristics :

b. [<>
T1i7"1:O,D1:6,T1:10, j j '
0 5 10
Ci1=2,X1=2C2=2
Ty 112 =5, Dy = 4,15 = 10, Figure 2. Example of execution-time anomaly
Co1=1,Xo=1,Cy5 =1 for EDF by decreasing C'; ; of one unit of time

T3 . T3 = 7,D3 :3,T3 ==].0,
0371 = 1,X3 = 1,03’2 =1
Itis easy to show that in all these cases there exist
EDF defines the following schedule when all feasible schedules whileDF always fails.<>

tasks use their worst-case execution requirementé\ccording to these results, if a processing time or
and worst-case suspension delays: at timg is a self-suspension delay decreases then scheduling
scheduled and self-suspended at titneAt time anomalies can arise. The previous result can be
4, 11 is released, immediately scheduled and com-€asily extended to fixed-priority task systems.
pleted at time6. Then, at this instants, is re-
leased, scheduled and self-suspended attime 4 Competitive Analysis
is released at tim& and immediately scheduled.
At time 8, 73 self-suspends ang is resumed af- In this section, in order to simplify the result
ter its self-suspension and completed by tilne presentations, we assume that periods are larger
Lastly, 73 is resumed and completed by tine. enough so that exactly are job of each task be-
Figure 2.a presents the schedule obtained undelongs to the hyperperiod. We first recall known
EDF. results on on-line scheduling to maximize tasks
Now, we show that; ;, X; or (', » are decreased completions (maximizing the number of early
of one unit of time, thens is not completed by tasks or equivalently minimizing the number of
its deadline. For instance, let us consider thattardy tasks). We shall use thempetitive analysis
C11 = 1 and all other job requirements are still to compare these classical scheduling algorithms
unchanged themn, is completed by timé. Then, against an optimal clairvoyant algorithm (the ad-
T, IS released and immediately run. At tinle versary).
To IS resumed from its self-suspension ands The competitive analysis allows to determine the
delayed since it has a larger deadline thants performance guarantee of an on-line algorithm.
starts its execution at timeans is completed by This approach compares an on-line algorithm to
time 11, thus one unit of time after its deadline. an optimalclairvoyant algorithm: the adversary.
The corresponding schedule is presented in Fig-A good adversary defines instances of problems
ure 2.b. The same anomaly occursXif or C - so that the on-line algorithm achieves its worst-
are decreased (i.eX; = 1orC;, = 1). case performance. An algorithm that minimizes

a measure of performancedscompetitive if the present one of these special cases that will be used
value obtained by the on-line algorithm is less after:

than or equal te times the optimal value obtained

by the adversary. We also say thais the per- Definition 2 Monotonic Absolute Deadlines
formance guarantee of the on-line algorithm. An (MAD):

algorithm is said to beompetitive if there exists A task system is said to be MAD if each newly-

a constant so that it isc-competitive. More for- ~ arrived task will not have a absolute deadline
mally, given an on-line algorithral, let 7 be an ~ Defore that of any task that has previously
instance, theng (1) is the value obtained byl arrived.

and o*(I) is the value obtained by the optimal
clairvoyant algorithm, them is c-competitive if
there exists a constantso thato 4 (1) < co*(I).
The competitiv_e rati@A of thelalg.orithmA i; the pefinition 3 Shortest Remaining Processing
worst-case ratio W?I|e conS|der|ng any 'n_StanceTimeFirst (SRPTF):

I: ca = supg,,; Zﬁ‘((l)). The competitive ratio of

an algorithmA is greater than or equal to 1.
ca = 1, thenA is an optimal algorithm.

There is no competitive algorithms for general

preemptive task systems, but competitive algo-In [1, 2] is proved that if the task system has the
rithms are known for special cases [1, 2]. In the MAD property, then the on-line scheduling algo-
same context, we then prove that if tasks are al-rithm SRPTF is 2-competitive to minimize the
lowed to self-suspend at most once, then classinumber of tardy tasks. Furthermore, this rule
cal on-line scheduling algorithms are not compet-yields a best possible on-line algorithm.

itive. Note that our results are also valid from the

feasibility point of view since we always consider 4.2 Negativeresultsfor scheduling taskswith self
task sets having an arbitrarily small utilization suspensions

factor such that there exists a feasible schedule

whereas classical on-line algorithms miss most of e first prove that SRPTF is no longer competi-
the deadlines. Lastly, we show that using-a Ve to maximize task completions for MAD task

speed processor cannot help to achieve a feasiSets and self-suspensions allowed.
ble schedule against a clairvoyant scheduling al- : o
g y g Theorem 4 For task systems with arbitrarily

gorithm using a unit-speed processor. So extra

. small utilization factor, the on-line scheduling al-
resources is not useful for scheduling tasks with™ ™ . . .
self-suspensions. gorithm SRPTF isnot competitive to maximize the

number of early tasks allowed to self-suspend at
most once.

We also recall the definition of the SRPTF
scheduling rule:

SRPTF is an on-line scheduling algorithm that
It allocates the processor at any time to the task
having the shortest remaining processing time.

4.1 Known results

Proof: To demonstrate this theorem, we study
Baruah et al. [1, 2] proved that there is no com- the instancd generated by the clairvoyant algo-
petitive on-line preemptive scheduling algorithm rithm. I is an instance of. + 1 tasks: 7, arrives
to maximize task completions for uniprocessor in the system at the timé with only one sub-
systems. But, to obtain such a result, the advertask Co; = 1, Xy = Cp2 = 0) and its dead-
sary defines a task set under overloaded condiline is at time X' — 1 (where K is an arbitrary
tions. But, these authors show that there are alsdarge number). The other tasks have the follow-
positive results for special cases [1, 2]. We nexting characteristics: fore {1,...,n},r =1i—1,

7

Ciin=0Ci2=1X;,=K-2andD, = K. InFig-

maximize the number of early tasks when self-

ure 3, we show the outcomes of the scheduling ofsuspensions are allowed.

I by SRPTF and by an optimal clairvoyant algo-
rithm. At time0, 7, andr; are availableSRPTF
schedules, becausey has the shortest remaining
processing time. After, the first subtask of task
is scheduled at time(1 < i < n) and the second
attime K + (¢ — 1). The clairvoyant algorithm
schedules at time0 and it schedules every task
7, (i € {2,...,n}) attimei — 1. To finish, the
clairvoyant algorithm schedules.

l o
SRPTF .. cee]

[k ——{]

0 K
1
T
Opti nal L2
algorithm ...
: il : 1

o K

Figure 3. SRPTF is not competitive

Consequently, the competitive ratio 8RPTF is:

OSRPTF _ 1. 1
n—oon + 1

CSRPTF = =0

O0pt
The factor of utilization is:

o n Ci1+Cia 1 n 2
Ur = Zi:o T; =%k Zi:l K

= llmK_mo 27}2—1 =

Proof: We use the same instandethat in the
proof of the Theorem 4. For this instandeDF,
DM andRM assign priorities to the tasks exactly
as SRPTF do. Consequently, we obtain the same
conclusions for all these scheduling algorithns.

We now consider théeastLaxity First schedul-
ing algorithm CLF) [7].

Theorem 5 For task systems with arbitrarily
small utilization factor, the scheduling algorithm
LLF isnot competitive to maximize the number of
early tasks when self-suspensions are allowed.

Proof: To prove this theorem, we study an in-
stance/ with n identical tasks. Every task;

(1 <i<n)isreleased attime, = 0 and if K is
alarge integerthe@;; = 3, X; = K —3(n+ 1),
C;2 = 3; and its deadline i); = K. Figure
4 presents the outcomes of the scheduling of
by LLF and by an optimal algorithm. At time,
the first subtask of,; is scheduled by.LF. But at
time 1, the priorities of the tasks; (2 < i < n)
are greater than the priority ef. Consequently,
the taskr, is scheduled. But at time, the oth-
ers tasks have a priority greater than the priority
of 7,. Therefore, every task with 1 < i < n
always have the same laxity leadibgF to pre-

To conclude, we have an instance with an arbi-empt the active job after one unit of its execution.

trarily small utilization factor such aSRPTF is

not competitive to maximize the number of early the first subtask of;, 7,

tasks.<>

The clairvoyant algorithm schedules in the order,
..., T, and in the same
order the second subtask of these tasks.

Figure 4 presents the outcomes of the scheduling

With the instance of the task system used in theof I by LLF and by an optimal algorithm. Conse-
proof of the Theorem 4, we can extend the previ- quently, the competitive ratio dfLF is:

ous result folEDF, DM andRM.

Corollary 1 For task systems with arbitrarily
small utilization factor, the scheduling algo-
rithms EDF, DM and RM are not competitive to

The factor of utilization is:

DD m DD extra resources does not help to define a simple

on-line scheduling policy.
LLF

K Theorem 6 EDF is not optimal even with a k-
speed processor, for any poositive integer k.

Proof: We use a contradiction argument. ligbe

an integer such thdt > 1 and such that if there
exists a feasible schedule undelr-apeed proces-
K sor then there exists a feasil#®F schedule un-
der k-speed processor. Létbe an instance with
two tasks. These two tasks bfarrive in the sys-
tem at time0 with the following characteristics:

Opti mal

al gorithm

Figure 4. LLF is not competitive

n Ci14+Ci2 n
U = Zi:l % - Zi:l %
. 6n T13011:2k,X1:0,012:0,D1:4k—1
= limg oo 7 =0 , :
. . 7'230271:1,X2:4l{3—2,0272:17D2:4k’
To conclude, we have an instance with a proces-
sor utilization factor close to zero leadihiF to
non-competitiveness. Consequently, for any pro- d, d,

cessor utilization factot,LF is not competitive to

minimize the number of tardy task$. a. TTz T TZ\L

4.3 Resource augmentation 0 ke 2k sk 4k

d, d,
In the competitive analysis, the on-line algorithm 2 1/k 1/k
gnd the (_)ptimal one use the same processor hav-b. —T[Tl | ,\{[2
ing a unit speed. A simple way to improve the [[[

. . . 0 k 2k 3k 4k
competitive ratio Is to give a faster processor to

the on-line algorithm whereas the off-line algo-
rithm is still running on a unit speed processor.
This technique is callexsource augmentation. It

has been proved in [10], th&DF is still optimal e Attime0, 7, is scheduled and self-suspended
under overloaded conditions if it is run under a at time1. Thenr, is immediately scheduled

two-speed processor while the optimal algorithm and completed at tink+ 1. At time 4k —1,
is run under a unit speed processor. Thus, ifafea- . is resumed after its self-suspensian.is

Figure 5. The schedule of I under EDF

sible schedule is determined by a clairvoyant al- completed by timelk. Figure 5.a shows a
gorithm with al-speed processor, th&DF will feasible schedule of under al-speed pro-
define a feasible schedule undeé*speed proces- Cessor.

sor.

We next show that when tasks are allowed to e Attime 0, r; is scheduled since its absolute
self-suspend, theBDF cannot define a feasible deadline is before the deadline of Then,
schedule under &-speed processor while there at time2, r; is completed and, is scheduled
exists an off-line feasible schedule underl-a and is completed at timék + 2/k. Figure
speed processor (determined by an optimal clair- 5.b shows thaEDF cannot schedulé under

voyant algorithm). As a consequence, allocating a k-speed system.

9

So, the assumption that there is a feasible schedReferences

ule under &-speed processor is false and the the-
orem is demonstrated for any integer> 1. $

This result is not so surprising since when a

[1]

S. Baruah, J. Haritsa, and N. Sharma. On-
line scheduling to maximize task completions.
The Journal of Combinatorial Mathematics and
Combinatorial Computing, 39:65-78, 2001.

faster processor is used by the on-line algorithm [2] S. Baruah, J. Haritsa, and N. Sharma. On-line

then no extra resources are given to the proces-
sors running remote operations. Thus, the length
of external operations are still unchanged (self-
suspension delays are not decreased since the
modeled external operations are still running on
unit speed remote processors).

5 Conclusion

We have presented some negative results to sched-
ule tasks allowed to self-suspend when exter-
nal operations are executed upon dedicated pro-
cessors. We have firstly proved that schedul-
ing synchronous tasks having at most one self-
suspension and implicit deadlines is a strongly
NP-hard problem and there is no universal
scheduling algorithm, unles® = NP. Then,

we have shown that under tHeDF scheduling
policy, scheduling anomalies can occur at run-

3] U. C. Devi.

[4]

[5]

[6]

scheduling to maximize task completiondn
Proceedings of the 15th IEEE Real-TIme Sys-
tems Symposium, San Juan, Puerto Rico, pages
228-237, Dec 1994.

An improved schedulability tast
for uniprocessor periodic task systemgroc.
Euromicro Conference on Real-Time Systems
(ECRTS 03), pages 23-30, 2003.

K. Jeffay, D. F. Stanat, and C. U. Martel. On
non-preemptive scheduling of periodic and spo-
radic tasks. proc. Real-Time Systems Sympo-
sium, pages 129-139, 1991.

I. G. Kim, K. Choi, S. K. Park, D. Y. Kim, and
M. P. Hong. Real-time scheduling of tasks that
contain the external blocking intervalsproc.
Conference on Real-Time Computing Systems
and Applications, pages 54-59, 1995.

C. L. Liu and J. W. Layland. Scheduling al-
gorithms for multiprogramming in a hard-real-
time environmentJournal of the Association for
Computing Machinery, 20(1):46-61, 1973.

time. Using adversary arguments, we have shown [7] A. K. L. Mok. Fundamental design problems of

that classical scheduling rules can miss deadlines,
even if the utilization factor of the processor is ar-
bitrarily small, whereas an off-line feasible sched-
ule can be easily defined. Lastly, we also have
proved that allocating extra resources does not
help to schedule tasks with self-suspensions.

In further works, we will try to define practical
solutions for scheduling such task systems. An
other interesting issue will be to consider non in-
dependent tasks.

[10]

6 Acknowledgements

The authors wish to express their gratitude to they11j

anonymous reviewers for their helpful comments.
We also would like to thank & Goossens for his
comments on an earlier version of this paper.

10

distributed systems for hard real-time environ-
ment. PhD thesis, MIT, 1983.

[8] J. C. Palencia and M. Gonzalez-Harbour.

[9] J. C. Palencia and M. Gonzalez-Harbour.

Schedulability analysis for tasks with static and
dynamic offsets.Proceedings of the 19th Real-
Time Systems Symposium, |EEE Computer Soci-

ety Press, pages 26—37, December 1998.

Re-
sponse time analysis of edf distributed real-time
systems. www.ctr.unican.es/publications, De-
cember 2003.

C. A. Philips, C. Stein, E. Torng, and J. Wein.
Optimal time-critical scheduling via resource
augmentation.proc. 29*» Ann. ACM Symp. on
Theory of Computing, pages 110-149, 1997.

P. Richard. On the complexity of scheduling
tasks with self-suspensions on one processor.
proc. Euromicro Conference on Real-Time Sys-
tems (ECRTS 03), pages 187-194, 2003.

