
Negative results for scheduling independent hard real-time tasks
with self-suspensions

Fréd́eric Ridouard, Pascal Richard, Francis Cottet
LISI-ENSMA

Av C. Ader, T́eléport 2 BP 40109
86961 Futuroscope Cedex, France

{frederic.ridouard,pascal.richard,francis.cottet}@ensma.fr

Abstract

In most real-time systems, tasks use remote op-
erations that are executed upon dedicated pro-
cessors. External operations introduce self-
suspension delays in the behavior of tasks. This
paper presents several negative results concern-
ing scheduling independent hard real-time tasks
with self-suspensions. Our main objective is to
show that well-known scheduling policies such
as fixed-priority or Earliest Deadline First are
not efficient to schedule such task systems. We
prove the scheduling problem to be NP-hard in
the strong sense, even for synchronous task sys-
tems with implicit deadlines. We also show that
scheduling anomalies can occur at run-time: re-
ducing the execution requirement or the suspen-
sion delay of a task can lead the task system
to be infeasible under EDF. Lastly, we present
negative results on the worst-case performances
of well-known scheduling algorithms (EDF, RM,
DM, LLF, SRPTF) to maximize tasks completed
by their deadlines.

1 Introduction

Efficient real-time systems exploit the power of
dedicated processors. Tasks prepare specific com-

putations such as signal processing (e.g.,FFT)
and then wait until these external operations com-
plete. When a task invokes an external opera-
tion, that task is suspended by the real-time ker-
nel and the scheduler chooses the next task ready
to run according to an on-line scheduling pol-
icy. The execution requirement of a remote op-
eration invoked by a task can be modeled as a
self-suspension delay. Next, we consider real-
time scheduling of independent tasks with self-
suspension allowed upon a uniprocessor system.
Let τi,1 and τi,2 be two parts of a taskτi sepa-
rated by a self-suspension delay. Self-suspensions
are modeled differently according to the schedul-
ing environment (time-driven or priority-driven
scheduling policies). In a time-driven system, a
self-suspension can be modeled as a time-lag be-
tween the end of a subtaskτi,1 and the start time
of τi,2. In this former approach, the maximum
self-suspension delay is enforced as a hard timing
constraint between the end ofτi,1 and the starting
time of τi,2. Nevertheless, self-suspension delays
change from one execution to another since they
model execution requirements of external opera-
tions. As a consequence, time-lags modeling ex-
ternal operations cannot be assumed to be con-
stant in a priority-driven system. At run-time, the
pending task is resumed when an external opera-
tion completes. Thus, self-suspension delays can-

1

not be modeled as time-lags associated to prece-
dence constraints in the on-line setting.
Several feasibility tests are known for analysing
tasks allowed to self-suspend. In [3] is presented
a test based on the utilization factor of the pro-
cessor. For fixed-priority task systems, tests are
based on the computation of worst-case response
time of tasks [5, 9, 8]. Such an approach can
also be used forEDF scheduling [9]. But, to the
best of our knowledge few have been published
on the efficiency of classical scheduling priority-
driven policies for dealing with tasks allowed to
self-suspend.
We next show that well-known on-line schedul-
ing algorithms are not efficient to schedule tasks
with self-suspensions. Section 2 defines for-
mally task systems with self-suspensions consid-
ered in the remainder. We first show in Sec-
tion 3 that there exists neither optimal polynomial
time, nor pseudo-polynomial time, scheduling al-
gorithm. Furthermore, we show that if there exists
an universal scheduling algorithm for tasks with
at most one self-suspension per task thenP = NP.
We also present scheduling anomalies occurring
while scheduling tasks with self-suspensions un-
der EDF. To the best of our knowledge, this is
the first time that such anomalies are exhibited
for scheduling independent tasks upon an unipro-
cessor system. In Section 4, we show that clas-
sical scheduling algorithms fail to schedule task
systems having arbitrary small utilization factors
whereas there exist trivial off-line feasible sched-
ules. Lastly, using resource augmentation tech-
nique (for instance see [10]), we show that there is
no competitive on-line scheduling algorithm us-
ing ak-speed processor against an off-line sched-
uler run under a unit-speed processor.

2 Tasks with Self-Suspensions

Real-time softwares are usually based on a collec-
tion of recurring tasks. Every taskτi, 1 ≤ i ≤ n
has an upper limit to its execution requirementCi

(worst-case execution time), a relative deadline

Di to its release date and a periodTi. If Di = Ti

for a taskτi, then the task has animplicit dead-
line, if Di ≤ Ti then it has aconstrained deadline.
Every occurrence of a task is called ajob. We as-
sume next that tasks can be preempted at any time
and resumed later without any incurring costs (no
overhead). The utilization factor of a periodic task
τi, is the ratio of its execution requirement to its
period: U(τi) = Ci/Ti. The utilization factor of
a task systemτ is the sum of the utilization fac-
tors of all tasks:U(τ) =

∑n
i=1 U(τi). A task

set is saidfeasible if there exists a schedule such
that all tasks are completed by their deadlines at
run-time. Classical on-line schedulers use priority
rules such as Rate Monotonic - (RM) and Dead-
line Monotonic - (DM), Earliest Deadline First
(EDF) and Least laxity First (LLF) policies.
Tasks are scheduled on a single processor whereas
external operations that they perform are executed
on remote dedicated processors. We study the
scheduling of periodic tasks having at most one
self-suspension each. We limit ourselves to this
simple case to simplify the presentation of our re-
sults.

Definition 1 A task τi with a self-suspension is a
task defined by two subtasks (τi,1 and τi,2) sep-
arated by a maximum self-suspension delay be-
tween the completion of the first subtask and the
start of the second subtask. A task τi, 1 ≤ i ≤ n
has the following sequence at run-time:

• an input subtask τi,1 having an execution re-
quirement of at most Ci,1,

• a suspension delays modeling an external
operation with a length of at most Xi ≥ 0,

• an output subtask τi,2 having an execution
requirement of at most Ci,2.

If a taskτi has no self-suspension (i.e,Xi = 0),
then its subtasks are merged as a single one with
an execution requirementCi = Ci,1 +Ci,2. A task
system is a collection of independent tasks with
self-suspensions.

2

3 Complexity of the Run-Time
Scheduling Problem

We next show that the feasibility problem of
scheduling synchronously released tasks, with
implicit deadlines having at most one self-
suspension each, isNP-hard in the strong sense.
We also prove that scheduling anomalies can oc-
cur underEDF.

3.1 Computational Complexity

In [11], we proved the feasibility problem of
scheduling synchronous periodic task systems to
beNP-hard in the strong sense when tasks are al-
lowed to self-suspend and have constrained dead-
lines. In this previous paper, we left open the case
of tasks having at most one self-suspension and
implicit-deadlines (the deadline is equal to the pe-
riod for every task). Please notice that in this par-
ticular case, the feasibility problem of schedul-
ing tasks when self-suspensions are not allowed
is solved inO(n) by checking that the utilization
factor of the processor satisfiesU ≤ 1. Theorem 1
establishes that the feasibility problem of schedul-
ing tasks with self-suspensions isNP-hard in the
strong sense, even in this restrictive case.

Theorem 1 The feasibility problem of scheduling
periodic tasks with at most one self-suspension
per task and implicit deadlines is NP-hard in the
strong sense.

Proof: We shall transform from 3-Partition,
known to be stronglyNP-Complete.
Instance: SetA of 3m elements, a boundB ∈ N ,
and a sizesj ∈ N for eachj = 1..3m such that
B/4 < sj < B/2 and such that

∑
j=1..3m sj =

mB.
Question: CanA be partitioned intom disjoint
setsA1, A2, ..., Am such that, for1 ≤ i ≤ m,∑

j∈Ai
sj = B (eachAi must therefore contain

exactly three elements fromA)?
For every 3-Partition instance we define an in-
stance of the scheduling problem with3m + 1
tasks:

• the tasksτ1, ..., τ3m:

1 ≤ i ≤ 3m




Ci,1 = Ci,2 = si

Xi = (2m − 1)B
Di = Ti = 4mB

• a taskτ3m+1 with:

C3m+1,1 =

⌈
B

2

⌉
C3m+1,2 =

⌊
B

2

⌋

X3m+1 = B

D3m+1 = T3m+1 = 2B

We can now prove that we have a solution to the
3-Partition instance if, and only if, there is a fea-
sible schedule for the previously defined task sys-
tem with self-suspensions. The hyperperiod of the
task set isH = lcm(T1, . . . , T3m+1). It is easy to
show that its utilization factor is exactly1:

• the workload generated by the first set of
tasks within the hyperperiod is:

3m∑
i=1

(Ci,1 + Ci,2) = 2
3m∑
i=1

si = 2mB

• the workload generated by the taskτ3m+1

within the hyperperiod is:

4mB

2B

(⌈
B

2

⌉
+

⌊
B

2

⌋)
= 2mB

Hence, the workload of the task set is4mB within
the hyperperiod having exactly the same length.
Thus, the utilization factor of the previously de-
fined task set is exactly 1. As a consequence, there
is no idle-time in any feasible schedule. The task
τ3m+1 has no laxity in every feasible schedule.
Thus, its execution leaves idle-blocks of lengthB
in the schedule that are separated by the execution
of the last subtask ofτ3m+1 and the first subtask
of the next job ofτ3m+1. Except for the first job of
τ3m+1, the execution ofτ3m+1 starts its execution
for B units of times and then leaves an idle-block
of lengthB in every feasible schedule (Figure 1

3

presents the pattern of every feasible schedule;↑
is a release date and↓ a deadline). Ablock is such
an interval left idle by the execution ofτ3m+1. In
every feasible schedule, thekth block is defined
as follows:[
2(k − 1)B +

⌈
B

2

⌉
; 2kB −

⌊
B

2

⌋)
∀k ≥ 1

(If Part) Consider a 3-Partition ofA, then we can
define a feasible schedule as follows. We first
consider the subsetA1, that contains exactly 3
elements and has a sizeB. We schedule the first
subtask of the corresponding tasks in the first
block and the second one into the blockm + 1.
The end of the first subtask and the start of the
second one are separated by an interval of time
of length (2m − 1)B. Thus, suspension delays
are respected. The same principle is used to
sequence tasks corresponding to elements inA2,
in subsequent blocks(2,m + 2); and so on. This
method leads to a feasible schedule.

(Only if Part) Assume that we have a feasible non-
preemptive schedule. We shall consider the case
of preemptive schedules later. As a consequence,
tasks having their first subtasks in the first block
of the schedule cannot have their second subtasks
in the subsequentm− 1 blocks. Since the utiliza-
tion factor of the task system is 1, then these sec-
ond subtasks can only be scheduled in the block
m+1, otherwise we necessarily introduce an idle
time in this block. Furthermore, every block has
3 subtasks since their execution requirements ver-
ify B/4 < Ci,j < B/2, i = 1..3m, j = 1, 2.
According to these facts, we can set elements cor-
responding to tasks in theith block into the subset
Ai, 1 ≤ i ≤ m, leading to a feasible 3-Partition.
We now have to consider preemptive schedules
by showing that no subtask can be scheduled in
more than one block. We use a contradiction ar-
gument. Assume there exists such a subtask that
is started in the first block and completed in block
2, for instance. All the other subtasks are started
and completed within this block. Then, due to the

size of jobs, there is no more than two subtasks
completed in blockk. As a consequence, in block
k + m, only two tasks having subtasks completed
in block k can be scheduled while respecting the
self-suspension delays. As a consequence, there
is an idle-time in blockk+m, that contradicts the
fact that the utilization factor is equal to1. ♦

We next show that there is nouniversal schedul-
ing algorithm to schedule tasks with self-
suspensions, unlessP = NP. Please notice that, a
scheduling algorithm is said to be universal if the
algorithm takes a polynomial amount of time (in
the length of the input) to make each scheduling
decision [4].

Theorem 2 If there exists an universal schedul-
ing algorithm for tasks with at most one self-
suspension per task then P = NP.

Proof:
To prove this theorem, we use a classical proof
approach, such as presented in [4]. Precisely,
we show that if a such an algorithm exists, and
if it takes a polynomial amount of time (in the
length of the input) to choose the next processed
job, then P = NP. Because, one can find a
pseudo-polynomial time algorithm to solve the 3-
PARTITION problem.
We assume that there exists a scheduling algo-
rithm for scheduling independent periodic tasks
with at most one self-suspension upon a unipro-
cessor system, we denote this algorithmA. From
an instance of the 3-PARTITION problem, to de-
fine a setI of tasks, we use the same reduction
technique as that in the proof of Theorem 1. Since
the hyperperiod of the schedule is4Bm andA is
assumed to be a polynomial time scheduling al-
gorithm, then the whole algorithm for checking
deadline is at most pseudo-polynomial (i.e, it is
clearly performed in time proportional toBm).
Thus, the solution delivered by the algorithmA
gives a solution to solve the 3-PARTITION prob-
lem.

4

Figure 1. A feasible schedule of the instance (Theorem 1).

Therefore we have found a pseudo-polynomial
time algorithm to solve the 3-PARTITION prob-
lem. But 3-PARTITION problem isNP-complete
in the strong sense. As a consequence, if the algo-
rithm A exists thenP = NP. This is a contradic-
tion. We can then conclude that such an algorithm
does not exist.♦

3.2 Scheduling anomalies under EDF

The validation problem is difficult when the
scheduling algorithm is priority-driven. Execu-
tion requirement of jobs can vary at run-time. An
anomalous behavior occurs when reducing the
execution requirement of a task can lead to miss a
deadline whereas the same task system is feasible
if all jobs are run with their worst-case execution

requirements.
In uniprocessor system, scheduling independent
tasks without self-suspension can never lead to
scheduling anomalies underEDF [6]. Thus, if
all deadlines are met while considering the worst-
case execution times for all tasks, then reducing
the execution requirement of a task cannot lead
EDF to miss a deadline at run-time. According to
this result, considering the worst-case execution
requirements of tasks in the feasibility analysis
leads to a necessary and sufficient schedulability
condition. We prove hereafter that the sufficient
part of this result does not hold when tasks are
allowed to self-suspend.

Theorem 3 EDF has anomalies to schedule in-
dependent tasks with self-suspensions upon one

5

processor.

Proof: To prove this theorem, we define an in-
stance of tasksI and we show that if an execution
requirement of a task or a suspension delay are
decreased, then a deadline will be missed. The
instanceI contains three tasks with the following
characteristics :

τ1 : r1 = 0, D1 = 6, T1 = 10,

C1,1 = 2, X1 = 2, C1,2 = 2

τ2 : r2 = 5, D2 = 4, T2 = 10,

C2,1 = 1, X2 = 1, C2,2 = 1

τ3 : r3 = 7, D3 = 3, T3 = 10,

C3,1 = 1, X3 = 1, C3,2 = 1

EDF defines the following schedule when all
tasks use their worst-case execution requirements
and worst-case suspension delays: at time0, τ1 is
scheduled and self-suspended at time2. At time
4, τ1 is released, immediately scheduled and com-
pleted at time6. Then, at this instant,τ2 is re-
leased, scheduled and self-suspended at time7. τ3

is released at time7 and immediately scheduled.
At time 8, τ3 self-suspends andτ2 is resumed af-
ter its self-suspension and completed by time9.
Lastly, τ3 is resumed and completed by time10.
Figure 2.a presents the schedule obtained under
EDF.
Now, we show thatC1,1, X1 or C1,2 are decreased
of one unit of time, thenτ3 is not completed by
its deadline. For instance, let us consider that
C1,1 = 1 and all other job requirements are still
unchanged thenτ1 is completed by time5. Then,
τ2 is released and immediately run. At time7,
τ2 is resumed from its self-suspension andτ3 is
delayed since it has a larger deadline thanτ2. τ3

starts its execution at time8 ans is completed by
time 11, thus one unit of time after its deadline.
The corresponding schedule is presented in Fig-
ure 2.b. The same anomaly occurs ifX1 or C1,2

are decreased (i.e.,X1 = 1 or C1,2 = 1).

τ1
0 6

5 9

7 10

τ2
τ3

0 5 10

a.

0 5 10

b.

Figure 2. Example of execution-time anomaly
for EDF by decreasing C1,1 of one unit of time

It is easy to show that in all these cases there exist
feasible schedules whileEDF always fails.♦
According to these results, if a processing time or
a self-suspension delay decreases then scheduling
anomalies can arise. The previous result can be
easily extended to fixed-priority task systems.

4 Competitive Analysis

In this section, in order to simplify the result
presentations, we assume that periods are larger
enough so that exactly are job of each task be-
longs to the hyperperiod. We first recall known
results on on-line scheduling to maximize tasks
completions (maximizing the number of early
tasks or equivalently minimizing the number of
tardy tasks). We shall use thecompetitive analysis
to compare these classical scheduling algorithms
against an optimal clairvoyant algorithm (the ad-
versary).
The competitive analysis allows to determine the
performance guarantee of an on-line algorithm.
This approach compares an on-line algorithm to
an optimalclairvoyant algorithm: the adversary.
A good adversary defines instances of problems
so that the on-line algorithm achieves its worst-
case performance. An algorithm that minimizes

6

a measure of performance isc-competitive if the
value obtained by the on-line algorithm is less
than or equal toc times the optimal value obtained
by the adversary. We also say thatc is the per-
formance guarantee of the on-line algorithm. An
algorithm is said to becompetitive if there exists
a constantc so that it isc-competitive. More for-
mally, given an on-line algorithmA, let I be an
instance, then,σA(I) is the value obtained byA
and σ∗(I) is the value obtained by the optimal
clairvoyant algorithm, thenA is c-competitive if
there exists a constantc so thatσA(I) ≤ cσ∗(I).
The competitive ratiocA of the algorithmA is the
worst-case ratio while considering any instance
I: cA = supanyI

σA(I)
σ∗(I)

. The competitive ratio of
an algorithmA is greater than or equal to 1. If
cA = 1, thenA is an optimal algorithm.
There is no competitive algorithms for general
preemptive task systems, but competitive algo-
rithms are known for special cases [1, 2]. In the
same context, we then prove that if tasks are al-
lowed to self-suspend at most once, then classi-
cal on-line scheduling algorithms are not compet-
itive. Note that our results are also valid from the
feasibility point of view since we always consider
task sets having an arbitrarily small utilization
factor such that there exists a feasible schedule
whereas classical on-line algorithms miss most of
the deadlines. Lastly, we show that using ak-
speed processor cannot help to achieve a feasi-
ble schedule against a clairvoyant scheduling al-
gorithm using a unit-speed processor. So extra
resources is not useful for scheduling tasks with
self-suspensions.

4.1 Known results

Baruah et al. [1, 2] proved that there is no com-
petitive on-line preemptive scheduling algorithm
to maximize task completions for uniprocessor
systems. But, to obtain such a result, the adver-
sary defines a task set under overloaded condi-
tions. But, these authors show that there are also
positive results for special cases [1, 2]. We next

present one of these special cases that will be used
after:

Definition 2 Monotonic Absolute Deadlines
(MAD):
A task system is said to be MAD if each newly-
arrived task will not have a absolute deadline
before that of any task that has previously
arrived.

We also recall the definition of the SRPTF
scheduling rule:

Definition 3 Shortest Remaining Processing
Time First (SRPTF):
SRPTF is an on-line scheduling algorithm that
allocates the processor at any time to the task
having the shortest remaining processing time.

In [1, 2] is proved that if the task system has the
MAD property, then the on-line scheduling algo-
rithm SRPTF is 2-competitive to minimize the
number of tardy tasks. Furthermore, this rule
yields a best possible on-line algorithm.

4.2 Negative results for scheduling tasks with self
suspensions

We first prove that SRPTF is no longer competi-
tive to maximize task completions for MAD task
sets and self-suspensions allowed.

Theorem 4 For task systems with arbitrarily
small utilization factor, the on-line scheduling al-
gorithm SRPTF is not competitive to maximize the
number of early tasks allowed to self-suspend at
most once.

Proof: To demonstrate this theorem, we study
the instanceI generated by the clairvoyant algo-
rithm. I is an instance ofn + 1 tasks:τ0 arrives
in the system at the time0 with only one sub-
task (C0,1 = 1, X0 = C0,2 = 0) and its dead-
line is at timeK − 1 (whereK is an arbitrary
large number). The other tasks have the follow-
ing characteristics: fori ∈ {1, . . . , n}, ri = i− 1,

7

Ci,1 = Ci,2 = 1, Xi = K−2 andDi = K. In Fig-
ure 3, we show the outcomes of the scheduling of
I by SRPTF and by an optimal clairvoyant algo-
rithm. At time 0, τ0 andτ1 are available,SRPTF
schedulesτ0 becauseτ0 has the shortest remaining
processing time. After, the first subtask of taskτi

is scheduled at timei (1 ≤ i ≤ n) and the second
at timeK + (i − 1). The clairvoyant algorithm
schedulesτ1 at time0 and it schedules every task
τi (i ∈ {2, . . . , n}) at time i − 1. To finish, the
clairvoyant algorithm schedulesτ0.

SRPTF

Optimal
algorithm

...

...

... ...

... ...

τ1
2

τn
...

τ0

τ

τ1
2

τn
...

τ0

τ

K

K

0

0

Figure 3. SRPTF is not competitive

Consequently, the competitive ratio ofSRPTF is:

cSRPTF =
σSRPTF

σOpt

= lim
n→∞

1

n + 1
= 0

The factor of utilization is:

UI =
∑n

i=0
Ci,1+Ci,2

Ti
= 1

K−1
+

∑n
i=1

2
K

= limK→∞ 2n+1
K

= 0

To conclude, we have an instance with an arbi-
trarily small utilization factor such asSRPTF is
not competitive to maximize the number of early
tasks.♦

With the instance of the task system used in the
proof of the Theorem 4, we can extend the previ-
ous result forEDF, DM andRM.

Corollary 1 For task systems with arbitrarily
small utilization factor, the scheduling algo-
rithms EDF, DM and RM are not competitive to

maximize the number of early tasks when self-
suspensions are allowed.

Proof: We use the same instanceI that in the
proof of the Theorem 4. For this instance,EDF,
DM andRM assign priorities to the tasks exactly
as SRPTF do. Consequently, we obtain the same
conclusions for all these scheduling algorithms.♦

We now consider theLeastLaxity First schedul-
ing algorithm (LLF) [7].

Theorem 5 For task systems with arbitrarily
small utilization factor, the scheduling algorithm
LLF is not competitive to maximize the number of
early tasks when self-suspensions are allowed.

Proof: To prove this theorem, we study an in-
stanceI with n identical tasks. Every taskτi

(1 ≤ i ≤ n) is released at timeri = 0 and ifK is
a large integer thenCi,1 = 3, Xi = K − 3(n+ 1),
Ci,2 = 3; and its deadline isDi = K. Figure
4 presents the outcomes of the scheduling ofI
by LLF and by an optimal algorithm. At time0,
the first subtask ofτ1 is scheduled byLLF. But at
time 1, the priorities of the tasksτi (2 ≤ i ≤ n)
are greater than the priority ofτ1. Consequently,
the taskτ2 is scheduled. But at time2, the oth-
ers tasks have a priority greater than the priority
of τ2. Therefore, every taskτi with 1 ≤ i ≤ n
always have the same laxity leadingLLF to pre-
empt the active job after one unit of its execution.
The clairvoyant algorithm schedules in the order,
the first subtask ofτ1, τ2, . . . , τn and in the same
order the second subtask of these tasks.
Figure 4 presents the outcomes of the scheduling
of I by LLF and by an optimal algorithm. Conse-
quently, the competitive ratio ofLLF is:

cLLF =
σLLF

σOpt

=
0

n
= 0

The factor of utilization is:

8

...
LLF

Optimal
algorithm

...

...

......... ...

K

K

Figure 4. LLF is not competitive

UI =
∑n

i=1
Ci,1+Ci,2

Ti
=

∑n
i=1

6
K

= limK→∞ 6n
K

= 0

To conclude, we have an instance with a proces-
sor utilization factor close to zero leadingLLF to
non-competitiveness. Consequently, for any pro-
cessor utilization factor,LLF is not competitive to
minimize the number of tardy tasks.♦

4.3 Resource augmentation

In the competitive analysis, the on-line algorithm
and the optimal one use the same processor hav-
ing a unit speed. A simple way to improve the
competitive ratio is to give a faster processor to
the on-line algorithm whereas the off-line algo-
rithm is still running on a unit speed processor.
This technique is calledresource augmentation. It
has been proved in [10], thatEDF is still optimal
under overloaded conditions if it is run under a
two-speed processor while the optimal algorithm
is run under a unit speed processor. Thus, if a fea-
sible schedule is determined by a clairvoyant al-
gorithm with a1-speed processor, thenEDF will
define a feasible schedule under a2-speed proces-
sor.
We next show that when tasks are allowed to
self-suspend, thenEDF cannot define a feasible
schedule under ak-speed processor while there
exists an off-line feasible schedule under a1-
speed processor (determined by an optimal clair-
voyant algorithm). As a consequence, allocating

extra resources does not help to define a simple
on-line scheduling policy.

Theorem 6 EDF is not optimal even with a k-
speed processor, for any poositive integer k.

Proof: We use a contradiction argument. Letk be
an integer such thatk > 1 and such that if there
exists a feasible schedule under a1-speed proces-
sor then there exists a feasibleEDF schedule un-
derk-speed processor. LetI be an instance with
two tasks. These two tasks ofI arrive in the sys-
tem at time0 with the following characteristics:

τ1 : C1,1 = 2k,X1 = 0, C1,2 = 0, D1 = 4k − 1

τ2 : C2,1 = 1, X2 = 4k − 2, C2,2 = 1, D2 = 4k

d2d1

k 2k 3k 4k0

2 1/k 1/k
b.

d2d1

k 2k 3k 4k0

a. τ2τ1τ2

τ2 τ2τ1

Figure 5. The schedule of I under EDF

• At time0, τ2 is scheduled and self-suspended
at time1. Thenτ1 is immediately scheduled
and completed at time2k+1. At time4k−1,
τ2 is resumed after its self-suspension.τ2 is
completed by time4k. Figure 5.a shows a
feasible schedule ofI under a1-speed pro-
cessor.

• At time 0, τ1 is scheduled since its absolute
deadline is before the deadline ofτ2. Then,
at time2, τ1 is completed andτ2 is scheduled
and is completed at time4k + 2/k. Figure
5.b shows thatEDF cannot scheduleI under
ak-speed system.

9

So, the assumption that there is a feasible sched-
ule under ak-speed processor is false and the the-
orem is demonstrated for any integerk > 1. ♦

This result is not so surprising since when a
faster processor is used by the on-line algorithm
then no extra resources are given to the proces-
sors running remote operations. Thus, the length
of external operations are still unchanged (self-
suspension delays are not decreased since the
modeled external operations are still running on
unit speed remote processors).

5 Conclusion

We have presented some negative results to sched-
ule tasks allowed to self-suspend when exter-
nal operations are executed upon dedicated pro-
cessors. We have firstly proved that schedul-
ing synchronous tasks having at most one self-
suspension and implicit deadlines is a strongly
NP-hard problem and there is no universal
scheduling algorithm, unlessP = NP. Then,
we have shown that under theEDF scheduling
policy, scheduling anomalies can occur at run-
time. Using adversary arguments, we have shown
that classical scheduling rules can miss deadlines,
even if the utilization factor of the processor is ar-
bitrarily small, whereas an off-line feasible sched-
ule can be easily defined. Lastly, we also have
proved that allocating extra resources does not
help to schedule tasks with self-suspensions.
In further works, we will try to define practical
solutions for scheduling such task systems. An
other interesting issue will be to consider non in-
dependent tasks.

6 Acknowledgements

The authors wish to express their gratitude to the
anonymous reviewers for their helpful comments.
We also would like to thank Joël Goossens for his
comments on an earlier version of this paper.

References

[1] S. Baruah, J. Haritsa, and N. Sharma. On-
line scheduling to maximize task completions.
The Journal of Combinatorial Mathematics and
Combinatorial Computing, 39:65–78, 2001.

[2] S. Baruah, J. Haritsa, and N. Sharma. On-line
scheduling to maximize task completions.In
Proceedings of the 15th IEEE Real-TIme Sys-
tems Symposium, San Juan, Puerto Rico, pages
228–237, Dec 1994.

[3] U. C. Devi. An improved schedulability tast
for uniprocessor periodic task systems.proc.
Euromicro Conference on Real-Time Systems
(ECRTS’03), pages 23–30, 2003.

[4] K. Jeffay, D. F. Stanat, and C. U. Martel. On
non-preemptive scheduling of periodic and spo-
radic tasks. proc. Real-Time Systems Sympo-
sium, pages 129–139, 1991.

[5] I. G. Kim, K. Choi, S. K. Park, D. Y. Kim, and
M. P. Hong. Real-time scheduling of tasks that
contain the external blocking intervals.proc.
Conference on Real-Time Computing Systems
and Applications, pages 54–59, 1995.

[6] C. L. Liu and J. W. Layland. Scheduling al-
gorithms for multiprogramming in a hard-real-
time environment.Journal of the Association for
Computing Machinery, 20(1):46–61, 1973.

[7] A. K. L. Mok. Fundamental design problems of
distributed systems for hard real-time environ-
ment. PhD thesis, MIT, 1983.

[8] J. C. Palencia and M. Gonzalez-Harbour.
Schedulability analysis for tasks with static and
dynamic offsets.Proceedings of the 19th Real-
Time Systems Symposium, IEEE Computer Soci-
ety Press, pages 26–37, December 1998.

[9] J. C. Palencia and M. Gonzalez-Harbour. Re-
sponse time analysis of edf distributed real-time
systems. www.ctr.unican.es/publications, De-
cember 2003.

[10] C. A. Philips, C. Stein, E. Torng, and J. Wein.
Optimal time-critical scheduling via resource
augmentation.proc. 29th Ann. ACM Symp. on
Theory of Computing, pages 110–149, 1997.

[11] P. Richard. On the complexity of scheduling
tasks with self-suspensions on one processor.
proc. Euromicro Conference on Real-Time Sys-
tems (ECRTS’03), pages 187–194, 2003.

10

