
Example-based Programming: a pertinent visual approach
for learning to program.

Nicolas Guibert
Laboratoire d’Informatique Scientifique

et Industrielle,
 Laboratoire d’Informatique Scientifique

et Industrielle,
ENSMA - University of Poitiers

BP 40109, 86961 Futuroscope Cedex,
France.

33 (0)5 49 49 80 70

guibert@ensma.fr

Patrick Girard
 Laboratoire d’Informatique Scientifique

et Industrielle,
ENSMA - University of Poitiers

BP 40109, 86961 Futuroscope Cedex,
France.

(33) (0)5 49 45 37 24

girard@ensma.fr

Laurent Guittet

ENSMA - University of Poitiers
BP 40109, 86961 Futuroscope Cedex,

France.
(33) 05 49 49 80 67

guittet@ensma.fr

ABSTRACT
Computer Science introductory courses are known to be difficult
for students. Kaasboll [1] reports that drop-out or failure rates
vary from 25 to 80 % world-wide. The explanation is related to
the very nature of programming: “programming is having a task
done by a computer”[2]. We can notice three internal difficulties
in this definition:
• The task itself. How do we define it, and specify it?
• The abstraction process. In order to “have it done by…”
students need to create a static model covering each task behavior.
• The “cognitive gap”. It is difficult for novice
programmers to model the computer, and its “mindset”, which is
required to express the task model in a computer-readable way.
The bad usability of programming languages increases this
difficulty.

The lack of interactivity in the editing-running-debugging loop is
often pointed as an important aggravating factor for these
difficulties. In the mid-seventies, Smith [3] introduced with
Pygmalion another programming paradigm: Programming by
Examples, where algorithms are not described abstractly, but are
demonstrated through concrete examples. This approach involves
several advantages for novices. It allows them to work concretely,
and to express the solution in their own way of thinking, instead
of having to embrace a computer-centered mindset. The
programming process becomes interactive, and as PbE languages
are “animated” languages, no translation from the dynamic
process to any static representation is required.

In this paper we investigate both the novice programmer and
existing PbE languages, to show how visual and example-based
paradigms can be used to improve programming teaching. We
give some elements of a new Example-based Programming
environment, called Melba, based on this study, which has been
designed to help novice programmers learning to program.

Categories and Subject Descriptors
D.1.7 [Visual Programming].

H.1.2 [User/Machine Systems]: Human Factors.

H.5.2 [User Interfaces]: Graphical user interfaces (GUI).

I.3.6 [Methodologies and Techniques]: Interaction techniques,
Languages.

General Terms
Design, Human Factors, Languages.

Keywords
Metaphors, Example-based Programming, Visual Programming,
Didactics for Computer Science.

1. INTRODUCTION
The programming process traditionally involves the static and
abstract description of a dynamic task in a dedicated language, in
order to teach a computer how to perform this task. At this point,
the system checks the syntactic correctness of this algorithm and
then allows the programmer to test the correctness of the program
itself. But this type of interaction between the computer and the
programmer proved to be inappropriate for beginners: as related
by Kaasboll between 25 and 80% of students world-wide either
fail or give up introductory courses.
Prior works investigating novice programmers troubles have
allowed us to summarize their errors in a simplified taxonomy
based on three layers of programming expertise. Pragmatics is the
definition of the task. Semantics define the computer performer,
and syntax refers to the medium used by the programmer to

3. Pragmatics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

2. Semantics

1. Syntax

Figure1 . A common decomposition of programming
knowledge : the “semiotic ladder”

express the abstraction of the task behaviors in computer readable
way.
When starting experiencing programming, novices first encounter
syntactic errors raised by the compiler. When (at last!) their
program syntax is corrected, they run it, mostly often to discover
it doesn’t perform as they expected it to; in beginners case this
generally relates to misconceptions of the machine model. We
propose to summarize them in three classes: temporal errors are
characterized by misconceptions of the control structures
(including the most basic : sequence); anthropomorphic relate to
the common hidden belief that the computer is able to understand
what is meant, not only to perform what is written; the last class
of semantic troubles refers to the difficulties to cross the cognitive
gap of data representation between the task domain and the
computer domain. Most often, data in the domain is analogical,
that is, the shape of data reveals the concept. On the other hand,
computer world requires numerical data representations that lack
this analogy and are said fregean, see figure 2.

Finally, students are confronted with pragmatic errors; that is they
realize their abstraction of the task was not complete, resulting in
bugs; plus, they have trouble modeling non-trivial tasks (the gap
between programming and software engineering skills).
In an attempt to reduce the inner difficulties of programming task,
Smith introduced with Pygmalion [3] the concept of
“Programming by Examples”. Its main idea is that knowing how
to perform a task should be enough to program the task: the
programmer “plays the role” of the computer-performer and
demonstrates concrete examples of task behaviors in a direct
manipulation interface; while the programmer role-plays, the PbE
system records the associated program. We will demonstrate an
example of PbE in Pygmalion (since pygmalion is the PbE
pioneering system, it can be used to show the core of PbE,
without interfering concepts), the minimum of two numbers.
First we define this function by creating a function icon, figure 3
(in Pygmalion a box contains a value, which can be either a
litteral or the result of an expression).
Then we define our concrete case by filling the arguments. After
that, we call the “if … then … else” control structure. We create a
“<” test and put it in the “if” icon by drag and drop. After that, we
drag and drop the “6” box to fill the first argument of the “<”
operator (figure 4). By doing this, we inform the system that the
first argument of “<” is the first argument of “Min”. We do the
same for “4”, and then the system automatically evaluates the test

as false. We drag and drop the second argument into the return
box and thus fill execute the return statement. And it’s done, we

have programmed:

Min =

Figure 3. A function icon in Pygmalion, with two
parameters.

Min = 6 4

Figure 4. Defing by filling arguments with a litteral value
or the evaluation of an expression

“function Min (integer a, integer b)
 return integer

Triangle
2 2

4 13
10 6

begin
 if not(a<b) then return b
 else ????
end”

This incomplete algorithm is already usable, in the case (a>b). To
complete the definition, we call the function in the case (a<b), the
system drives us back in the edition environment to program this
case. We’ve defined the function in two concrete examples, with
the programmer playing the role of the computer-performer.
In the next parts, we will relate programming by Example systems
to the different layers of programming knowledge, and we will
show how such concepts can be integrated to the teaching of
programming, and what benefits it can bring to students.

Figure 2. On the left, an analogical representation of a
triangle ; on the right, an associated fregean model used

in programming. 2. A Typology of Programming by Examples
in a teaching programming perspective
If we refer once again to Duchateau’s definition (“programming is
having a task done by a computer-performer”) and relate
pragmatics to modeling the task, semantics to knowledge of the
computer-performer, and syntax to the language which interfaces
the programmer who models the task and the computer which
performs the program, we can already notice an important
difference between programming by examples and classical
programming paradigms. On one hand, the programmer creates a
static plan to command the computer, and on the other hand, the
programmer role-plays the actions of the computer-performer, and
the system “learns” by generalizing. This “First-Person
Programming” style reduces in itself the gap between the user and
the computer-performer. The programmer has no difficulty to
infer the abilities of the system, because all the actions the
computer can perform are displayed in a graphical interface. We
can classify the different PbE systems in three classes, depending
on what this graphical interface exactly displays.

2.1 Syntactic PbE systems
In syntactic PbE systems, such as Pygmalion, the computer
displays a set of instructions, and programming is done by
creating and filling these instructions (with results of expression
or litterals). For instance, in the previous example, the interaction
objects where the “<” expression, the “if … then … else”

branching statement, and the “Min” function we were editing. The
object displayed by the PbE system is therefore the program. As
the programming model is a manipulation of statements, we label
this first class of systems as “Syntactic”.

2.2 Semantic PbE systems
A second class of PbE systems does not display the program
itself, but the program context only. Usually, such system-centric
representations use a metaphor for increased usability. We label
these systems as “semantic” as they model the computer-
performer. A good example of such system is Ken Kahn’s
ToonTalk [4], which uses on a lego-looking micro-world to
represent the objects of the program. Graphical operators (a dusty
vacuum which can “draw up” values to generalize them as
variables, scales are used for tests… figure 5) provide a
metaphorical knowledge of the computer-performer state and
abilities.

Figure 5. Using a metaphor to display the « computer

algebra » (typed system data and associated operators)
In a teaching perspective, semantic PbE might be useful to
provide support to the concepts of variable and data types, when
powered by the appropriate metaphor.

2.3 Pragmatic PbE systems
Whereas semantic PbE systems use metaphors to provide to an
intended audience understanding of the computer-performer, the
PbE systems we label as “pragmatic” have for objective to keep
the programming process inside the task domain. Pragmatic
systems do not try to provide a comprehensive representation of
the computer; they put the computer world in a “black box”, and
try to make the programmer forget the box exists. A canonical
Pragmatic PbE system is Smith and Cypher’s StageCreator [5],
whose goal is to enable kids to write animations, simulations or
2D games by Programming by Examples techniques:
“programming is kept in domain terms, such as engines and track,
rather than in computer terms, such as arrays and vectors”.

Figure 6. Pragmatic systems, as StageCast creator, take a
domain-centric perspective, and allow the programmer to

remain in the task domain while programming.
In a didactical issue, pragmatic systems could allow a complete
novice programmer to learn the control structures of imperative

programming, and how the system interprets an imperative
program, without having to understand concepts like (fregean)
data types, or variables. Of course, such pragmatic system must fit
to an imperative programming style (unlike Creator).

2.4 Pedagogical issues
If we refer once more to Duchateau’s definition of programming,
using an adapted pragmatic PbE enables to teach the “abstract and
complete modeling of the task” part of programming, putting the
computer-performer in a black box. Once the students has
acquired a correct temporal model of algorithm processing, using
an adapted metaphor in a semantic PbE interface helps to
understand what is the computer-performer; finally, using a
advanced syntactic programming with examples interface helps
the student to cross the “having done by…” obstacle without
being disturbed by misspelling. We believe that dividing
programming difficulties in separate phases has obvious
didactical advantages. In the next parts, we present the MELBA
example-based system, which implements such approach in a
learning tool for programmers.

3. Programming by Examples in learning
programming: the Melba system.

3.1 Introducing control structures: example
of the robot with the dropper
Using pragmatic programming by examples in learning
algorithms control structures is best illustrated with an example.
We will demonstrate how this works this example of the robot
with the dropper [2], see figure 7.

Figure 7. Pragmatic PbE in MELBA: the example of the

dropper exercise.

Its working environment is: an alignment of glasses, and a
dropper the robot can use. The computer-performer is able to
(menu “operations”) : position the dropper on the first glass, step
to the following glass, press a drop into the current glass, fill the
dropper. It is able to test: if all glasses are full, if the current glass
is full, if the dropper is empty and if it is on the last glass. The
programmer (Command New) can create a new example with a
given capacity and initial content of the dropper, a given number
of glasses with given capacities and initial contents.
Now, let’s demonstrate how the environment can be used to
program the task of filling all glasses. The novice student selects
the “operators” menu, and the “On_first_glass” command. The
system creates an history in the shape of a movie tape, with the
before and after states of the action, and writes the code on a
contiguous frame. Then he/she selects the “press_drop” and the

“On_next_glass” and continues by selecting the “redo” command,
specifies the group of actions he/she want to redo, and sees
options to : redo <n> times, or redo until <?>. Student chooses :
“until <on_last_glass>”, because he/she noticed thenumber of
glasses is variable from example to example. This creates a loop
in the program frame, and starts running it … but soon generates
an error message : “Error : -dropper_empty-”. So the student steps
back one action, and inserts in the history : “fill_drop”. But the
system knows that part of a loop has been edited, and therefore
prompts the students if this action should be executed (a) each
time, (b) on a special condition. Choosing the last one creates a
“if … then …”. Similar problems will appear when the system
will try “on_next_glass” when it is on the last one, or try
“press_drop” on a full glass. This shows how Pragmatic PbE can
be integrated in teaching programming, to show on concrete
interactive examples when to use control structures and how they
work . Using several examples to see how the created algorithm
performs in other initial states is also supported and very
important in this step of learning. Let us notice that the system
prompts the user if editing the program makes it non-compliant
with previous examples. An interesting approach is to ask other
students if they can generate a counter-example with the “new”
command.

3.2 Semantic PbE as a support of a correct
modeling of the computer-performer: the
desktop metaphor.
A difficulty novice students commonly encounter is trouble
modeling what the computer can and cannot do. In a situation of
linguistic communication this leads to the “superbug” (Spohrer
1986) or “anthropomorphic bug”, the hidden belief the computer
is able to infer their intents from incomplete specifications. This
problem demonstrates the need, in order to learn programming, to
define a good model of the computer-user. This is where semantic
PbE enters in action. We chose the computer desktop for
representing the computer-performer, because it had several
advantages in this perspective. First, the Window-Desktop
metaphor is familiar to our audience, and is the classical way to
display what’s “inside” the computer. Second, there is a strong
mapping (table 1) between programming objects and concepts and
desktop objects or operators: the document is a named box that
contains one typed data (= variable). The window metaphor also
provides many applications (= libraries) to manipulate numbers,
text, trees and tables. These applications are composed of many
procedure or functions (the concepts of input or output parameters
are also supported in the metaphor: “Open …”, “Save as…”).

Table 1. Links between the concepts of imperative
programming and the metaphor

ADA
Programming

Language

MELBA semantic
Programming by
Demonstration

A numeric variable (types
Integer, Natural, Positive,

Float, String, Boolean,

Arrays et Records, access)

A document (documents use icons

of their default application)
Assigning to a variable

Editing the document, then saving

it as… , or drag and drop.
Calling a procedure or a

function
Pressing a button or clicking a

menu item

The program context The computer desktop

The metaphor helps understanding the “computer’s mind”, and
we link pragmatic and semantic representations in order to help
the student to understand the relationships between the two.

4. Conclusion
In this paper, we introduced the problems of learning
programming. We raise the idea that the poor means of interaction
(non interactive, abstract, require to learn a difficult syntax,
require to build complex representations of the machine state, and
to mentally animate them, require to adopt a machine-centric
mindset) used in nowadays programming are strongly linked to
these difficulties. We suggest to adopt another learning model for
programming, which allows to divide the students difficulties in
successive learning steps, and study the usability of an alternative
programming paradigm, programming by examples. We build a
taxonomy of PbE systems relaying on their demonstrational
interface, and link each type of interface to a particular step in the
learning process. Then we present a new visual programming by
examples system named MELBA, which was built for learning
programming. This system, for now a prototype, is going to be
transformed into a completely functional environment, in order to
lead a study on the effects of the system and its associated
approach with actual students.

5. REFERENCES
[1] Kaasboll, J., Learning Programming, . 2002, University of

Oslo.
[2] DUCHÂTEAU, C. From "DOING IT ..." to "HAVING IT

DONE BY ...": The Heart of Programming. Some Didactical
Thoughts. in NATO Advanced Research Workshop
"Cognitive Models and Intelligent Environments for
Learning Programming". 1992. S Margherita, Italy.

[3] Smith, D.C., A Computer Program to Model and Stimulate
Creative Thought. 1977, Basel: Birkhauser. 187p.

[4] Kahn, K., How Any Program Can Be Created by Working
with Examples, in Your Wish is My Command, H.
Lieberman, Editor. 2001. p. 21-44.

[5] Smith, D.C., Novice Programming comes of Age.
Communications of the ACM, 2000. 43(3): p. 75-81.

