
Performance optimization for hard real-time
fixed priority tasks

Joël Goossens Pascal Richard
Université Libre de Bruxelles LISI-ENSMA

Brussels, Belgium Poitiers, France

Abstract: Many real-time systems must simultaneously handle hard real-
time constraints and Quality of Service constraints. Thus, a performance crite-
rion must be optimized for some tasks while meeting all deadlines for hard
real-time tasks. For that purpose, we present a generic Branch & Bound
method dedicated to hard real-time fixed-priority schedulers. Our approach
is based on a generic algorithm that defines common functions to any per-
formance criteria. Only few functions need to be specialized to deal with a
specific criterion. We then present such a specialization for minimizing the
weighted average response time of synchronously released and constrained
deadline tasks. This performance measure aims to minimize work-in-progress
in the system.

Contents

1. Introduction
2. Generic Branch and Bound

3. The specific case of the average response time
4. Conclusion

Key works Scheduling, Fixed-Priority, Performance Optimization

1 Introduction

The use of computers to control safety-critical real-time functions has increased
rapidly over the past few years. As a consequence,real-time systems — com-
puter systems where the correctness of a computation is dependent on both
the logical results of the computationand the time at which these results are
produced — have become the focus of much study.
Since the concept of“time” is of such importance in real-time application
systems, and since these systems typically involve the sharing of one or more
resources among various contending processes, the concept ofscheduling is
integral to real-time system design and analysis. Scheduling theory as it per-
tains to a finite set of requests for resources is a well-researched topic. How-
ever, requests in real-time environment are often of a recurring nature. Such
systems are typically modelled as finite collections of simple, highly repetitive
tasks, each of which generatesjobs in a very predictable manner. These jobs
have upper bounds upon their worst-case execution requirements, and associ-
ated deadlines. In this work, we consider periodic task systems, where each
task makes a resource request at regular periodic intervals. The processing time
and the time elapsed between the request and the deadline are always the same
for each request of a particular task. In our model of computation, each peri-
odic task is characterized by the 4-tuple������� ��� ���, with � � �� � ��,
�� � �� and�� � �, i.e., by a period��, a hard deadline delay��, an execu-
tion time��, and the weight��. The requests of�� are separated by�� time
units and occur at time�� � ���� (� � �� �� � � �). The execution time required
for each request is�� time units;�� can be considered as the worst-case execu-
tion time for a request of��. The execution of the�th request of task��, which
occurs at time�������, must finish before or at time����������; the dead-
line failure is fatal for the system: the deadlines are considered to be hard. All
timing characteristics of the tasks in our model of computation are assumed to
be natural integers (it may be noticed that the value��’s can be real numbers
as well). Interesting sub-cases of periodic tasks areimplicit deadline systems,
where each deadline coincides with the period (i.e., each request must simply
be completed before the next request of the same task occurs);constrained
deadline systems, where the deadlines are not greater than the periods andar-
bitrary deadline systems, where no constraint exists between the deadline and
the period (notice that if the deadline is greater than the period, many requests
of a single task may be simultaneously active, even if the system is feasible,
i.e., all deadlines are met).

Real-time scheduling theory has traditionally focused upon the development of
algorithms forfeasibility analysis (determining whether all jobs can complete
execution by their deadlines) andrun-time scheduling (generating schedules at
run-time for systems that are deemed to be feasible) of such systems.
In some real-time applications, tasks are not only subject to complete by their
deadlines, but more control of the on-line schedule is required. Typically, we
consider additionally the notion of Quality of Service (QoS), interpreted in
many ways (e.g., response time, jitters, etc.). In the real-time environment,
the objective is then to optimize a performance measurewhile respecting the
deadlines of jobs. The parameters�� defines the importance of the tasks�� in
terms of the optimization criterion. If there are no particular constraints on the
criterion, then this weight is set to 0.
Most uniprocessor scheduling algorithm operate as follows: at each instant,
each active job is assigned a distinct priority, and the scheduling algorithm
chooses for execution the currently active job (if any) with the highest priority.
Some scheduling algorithms permit that periodic tasks�� and �� both have
active jobs at time	 and	� such that at time	, ��’s job has higher priority than
�� ’s while at time	�, �� ’s job has higher priority than��’s. Algorithms that
permit such “switching” of priorities between tasks are known asdynamic
priority algorithms. An example of dynamic priority scheduling algorithm is
the earliest deadline first scheduling algorithm [8].
By contrast,static priority algorithms satisfy the property that for every pair of
tasks�� and��, whenever�� and�� have both active jobs, it is always the case
that the same task’s job has higher priority. An example of a static-priority
scheduling algorithm for periodic scheduling is the rate-monotonic scheduling
algorithm [8].

This research The focus of our current research is the scheduling of peri-
odic task set using a fixed priority assignment which (if any) meets all the
deadlinesand optimizes (minimizes or maximizes) an optimization criterion.
Our contribution is threefold: (i) we propose a Branch & Bound algorithm
which is generic in the sense that the technique is not dedicated to a par-
ticular optimization criterion nor a specific periodic task (sub-)model (im-
plicit/constrained/arbitrary deadlines), (ii) we resolve the following specific
case: minimizing the average response time for constrained deadline periodic
task sets. This performance measure aims to minimize work-in-progress in the
system [9]. In particular we propose an efficient lower bound based on the

work of Redell [10], (iii) we also complete the iterative process (considered
in [10]) to compute the best case response time.

Organization of the document The remainder of the document is organized
as follows. In Section 2, we shall present our generic Branch & Bound algo-
rithm. In Section 3, we apply our generic technique to a specific case: mini-
mizing the average response time for constrained deadline periodic task sets.

2 Generic algorithm: B & B algorithms for fixed pri-
ority schedulers

Branch & Bound algorithms are very used to solve combinatorial problems.
These algorithms are based on the idea of cleverly enumerating all feasible
solutions [3]. Such algorithms are also used to schedule tasks subjected to
hard deadline constraints. In [5] a parameterized Branch & Bound that sched-
ules precedence-constrained tasks on a multiprocessor system, to minimize
the maximum lateness of tasks is considered. Recently, Pan [9], proposed a
Branch & Bound algorithm that schedules non recurring and non-preemptive
deadline constrained tasks and minimizes total weighted completion time of
jobs.
In this research, we focus our study to static priority algorithms (also known
as fixed priority assignments). Partial solutions are partial priority assignment
(i.e., there exist prioritized and unprioritized tasks). The enumeration principle
is based on the exploration in a search tree. Each vertex in the search tree cor-
responds to a task priority assignment. Vertices are partial priority assignments
and they are stored in a search tree. Leaves of the search tree define feasible
solutions of the problem: all tasks have been assigned a priority. Since the
number of feasible solutions is exponential due to the computational complex-
ity of the problem, the only way to find a solution in an acceptable amount of
time is to detect as soon as possible vertices that will not lead to an improve-
ment of the best known solution for the optimized criterion.
Without loss of generality, we only minimize performance measures (since
maximizing an objective function
 is equivalent to minimizing�
). A pre-
liminary step is needed before starting the Branch & Bound algorithm: an
heuristic have to compute anupper bound of the objective function. Imple-
mentation of a Branch & Bound method is usually based on a set of non ex-
plored vertices, called theActive Set. At each step of the main loop of the

Algorithm 1: Generic Branch & Bound algorithm
Compute theupper bound;
Initialize ActiveSet� with vertices� � � � � (the first level of the search
tree);
while � �� � do

Select a vertex in A according to thevertex selection rule;
if it is a leaf vertex and the criterion is improved (using the lower
bound) then

update the best solution;

else if it is not a leaf vertex then
Generate a set of child vertices according to thevertex
branching rule;
Calculate the lower bounds for each vertex in;
Eliminate vertices in according the vertexelimination rule;
Sort the vertices in in non-decreasing order of thevertex
selection rule;
Moves all remaining vertices in to the active set�;

Remove the selected vertex from�;
end

Branch & Bound algorithm, the explored vertex is separated, that is to say its
children are defined by assigning a priority to one task in the previous partial
solution. To each of them is computed alower bound of the objective function.
These vertices are pruned (deleted) if the lower bound of the criterion is not
smaller than the best known solution (the upper bound) or if the constraints
of the problem are not satisfied. Algorithm 1 presents the pseudo-code of the
Branch & Bound algorithm.
The Branch & Bound algorithm is based on the following characteristics:

� vertex selection rule: this rule selects the next candidate vertex in the
Active Set.

� vertex branching rule: this rule defines the traversal strategy in the
search tree.

� upper bound: it is an upper bound of the objective function, computed
first, in order to obtain a reachable value of the criterion while respecting

all constraints of the problem. The upper bound is then updated during
the search when a leaf leads to an improvement of the best known solu-
tion.

� lower bound: it is used to evaluate a partial solution. Every time a lower
bound is not smaller than the best known solution (upper bound), then
the candidate vertex is pruned (i.e., its children will not be created in
the search tree). When a leaf is reached, then the objective function is
exactly computed, e.g., by building up the schedule using a simulator of
the fixed-priority scheduler.

� elimination rule: this rule checks that generated children will lead to a
feasible solution (i.e., all constraints are satisfied). Moreover, the rule
checks if thelower bound is not smaller than the best known solution
(upper bound). Every time it is not the case, then these vertices and
all their successors will not be considered during the search (they are
pruned of the search tree).

We now detail the generic features of these components.

2.1 Vertex selection rule

The vertex selection rule defines the next candidate vertex in the Active Set.
Classical rules are FIFO (First-In First-Out), LIFO (Last-In First-Out) and
LLB (Least Lower Bound first). This rule is closely related to the vertex
branching rule to defines the traversal of the search tree.

2.2 Vertex branching rule

The branching rule defines the order of vertices in the Active Set. Different
ordering techniques of the Active Set lead to different searching strategies in
the tree. Well-known strategies are depth-first search or breadth-first search.
From an algorithmic point of view, a depth-first search strategy is obtained by
managing the Active Set as a stack, while a breadth-first search is obtained by
implementing the Active Set as a queue. For convenience, we consider next the
search tree rather than a list of unexplored vertices that stores partial priority
assignments.
According to our priority assignment problem, a vertex is characterized by
task index. Levels of the vertices in the tree are interpreted as priority levels

of tasks. The first level in the tree defines the tasks assigned to the highest pri-
ority level, and in the same way, the leaves define tasks assigned to the lowest
priority level. The number of vertices in a search tree is clearly exponential
in the size of the problem. Since the number of vertices at level� is the num-
ber of permutations of� elements among�, then the number of vertices at
level � is: ��

������ . Thus, the total number of vertices in the search tree is:����
���

��
������ ��.

The traversal strategy has an important impact on the largest size of the Active
Set. The most commonly used strategy to solve scheduling problems is the
depth-first search one. The main interest of the latter method is the size of the
Active Set which is polynomially bounded by the size of the problem (which
is not the case for other strategies, especially when a breadth-first search is
used). In that way, the maximum number of vertices stored simultaneously
in the Active Set is��� � ����, generated while reaching the first leaf of the
search tree. In order to implement a depth-first search strategy in our Branch
& Bound, the vertex selection rule is the LIFO strategy.

2.3 Upper bound

The first step of the Branch & Bound procedure consists in applying an heuris-
tic algorithm to compute a feasible priority assignment. The value of the per-
formance measure for an initial solution defines an upper bound. This value is
used until a better one is found during the optimization stage.
The performance of a Branch & Bound method is clearly related to tightness
of upper bounds. The upper bound must be as tight as possible. Otherwise,
most of vertices in search tree will be explicitly enumerated. For that reason,
the choice of the upper bound and consequently the efficiency of the Branch &
Bound is closely related to the specific objective function.

2.4 Lower bound

Lower bounds is used to evaluate a partial priority assignment. This function
is specialized to the minimized objective function. But, every lower bound
function must be non-decreasing, i.e., lower bounds of children must be not
smaller than the one of the father. Otherwise, the Branch & Bound algorithm
cannot be an optimal method. A specific objective function will be detailed
for the average weighted response time of tasks in the Section 3. Once again,

the choice of the upper bound and consequently the efficiency of the Branch &
Bound is closely related to the specific objective function.
When a leaf is reached, then in order to allow the computation of any objec-
tive function, the schedule is built up from time 0 to lcm���������, since we

know that we know that the schedule itself is periodic with a period�
���
�

lcm����� � �� � � � � �� (see for instance [4], Corollary 2.49, p. 47 for a proof).

2.5 Elimination rule

Elimination rule is of prime interest in Branch & Bound methods because they
can drastically prune the search tree. We next detail three generic conditions
to prune a vertex:

� immediate selection;

� a deadline is not met;

� the lower bound is greater than the best known solution (upper bound).

2.5.1 Immediate selection

The immediate selection rule detects some children that will not lead to a fea-
sible solution, before generating them. The following result leads to such a
rule.

Theorem 1 [11] For all pair ��, �� of tasks, if:�
��
��

�
	 �� � �� � �� (1)

then the priority of �� must be higher than the priority of ��

According to this result, we can define a set of constraints that must be sat-
isfied during the branching step. For instance, if we detect that�� must have
a higher priority than�� according to Theorem 1, then task�� must be gener-
ated before�� in the search tree. Furthermore,�� can be assigned a priority
if, and only if, �� has already been assigned one in a predecessor vertex. In
practice, a matrix is defined before starting the Branch & Bound algorithm
that stores precedence constraints, associated to Theorem 1. These precedence
constraints will be enforced while generated children in the search tree. They
are obviously computed and checked in polynomial times.

2.5.2 Checking deadlines

We now detail the feasibility of deadlines for the current vertex. The vertex
branching rule generates children of the vertex currently explored while re-
specting the immediate selection rule. If the vertex of level�� � is separated,
then all its children are assigned to the priority level�. The first step is to ver-
ify that the task assigned to this priority level (�	�
) meet their deadlines. Since
the vertex is newly generated, then we always know that tasks assigned to the
priority levels� � � � � are feasible. The other tasks do not interfere with the ex-
ecution of�	�
. We can check the feasibility of�	�
 by calculating the worst-case
response time of the task.
The worst-case response time of a task can be computed in pseudo-polynomial
time by using the method presented in [6] for constrained deadline tasks. We
consider tasks with arbitrary deadlines. An extension has been proposed to
calculate the worst-case response times of tasks for this kind of task set [7, 12].
This method is still running in pseudo-polynomial time since it is related to
the length of the level-� busy period (an interval of time where the processor
executes only tasks having a priority higher than or equal to�). But, as far
as we know, checking feasibility of given priorities cannot be performed in
polynomial time (i.e., the computational complexity status of this problem is
unknown). Let��� denote the index of the task at priority level�. The worst-
case response time of a task�	�
 depends on the workload of the higher priority
tasks. The time demand of tasks having a priority higher than� at time	 in a
busy period containing� releases of�	�
 is� �	�:

� �	� � �� � ���� �
����
���

�
	

�	�

�
�	�
 (2)

The worst-case response time of�� is then obtained by considering� � �� � � � �
and for each value of� the recurrent equation	 � � �	� is solved, that is to
say:

�
�

���
� � ��

�
���
� � � ��

�����
� �

(3)

�� � �
���
� � �

�����
� (4)

Computations stop when the following inequality is satisfied:�� � �� � ����
To summarize, we use the following rule:

If �� � �� for a vertex, then it is pruned, as well as all its successors.

We now have to consider unprioritized tasks associated to the current vertex.
Whatever the priorities are for prioritized tasks, the interference due to these
tasks is still the same for unprioritized tasks. One can check that there exists
at least one feasible schedule by assigning priority levels using the Deadline
Monotonic rule. Feasibility can then be checked by using the previous feasi-
bility test.

2.5.3 Lower bound constraint

The last way to prune a vertex is performed when the best known solution
(i.e., an upper bound) is lower than the lower bound of the current vertex.
Generation of the children can only increase lower bounds. So, when a leaf
should be reached, the value of the objective function will not be improved,
and it will be greater than or equal to the best known upper bound.
To conclude, one can remark that all these tests are performed in pseudo-
polynomial time. This complexity is only due to the computation of worst-case
response times of tasks.

3 The specific case of the average response time

In this section, we shall apply our generic technique to the following specific
case: we consider the scheduling of constrained deadline periodic task sets for
which we would like to minimize the (weighted) average response time. In
a previous paper, we studied the problem of minimizing the weighted sum of
worst-case response times of tasks [11]. This criterion only captures the aver-
age performance of a real-time systems by taking into account only worst-case
response times. In the remainder, we exactly computes the average response
time of tasks (i.e., we consider all jobs of all tasks).
As mentioned in the introduction, this performance criterion aims to minimize
work-in-progress in the system [9]. Minimizing the average response time of
jobs is equivalent to minimize the average completion time of jobs, since these
two performance measures only differ by an additive term : the sum of re-
lease dates of jobs. Furthermore, minimizing the average response time leads

to minimize the average number of uncompleted jobs in the system and it also
minimizes the average waiting time of jobs to start their executions [2]. Thus,
the system is more responsive. When jobs are not subjected to deadlines, min-
imizing the average response time of jobs upon a single processor is achieved
by scheduling jobs according to the SRPT rule: Shortest Remaining Process-
ing Time first [2]. Obviously, this rule is not optimal to meet deadlines of jobs.
Lastly, we must notice that is inserted idle-times in the schedule are not useful
to minimize the average response time of jobs [2].
In Section 3.1 we shall present our optimization criterion, in Section 3.2, the
priority assignment procedure, in Section 3.4 the lower bound used to elimi-
nate vertex and experimental results in Section 3.5.

3.1 The optimization criterion

In the remainder���� denote the response time of the��� request of the task��,
	�� denote the average response time for the requests of task��. In this section,
we shall apply our technique to minimize the weighted average response time
with the following definition:

	�
���
�
��

���

�

��
���

��
���

��
���� (5)

We shall first simplify equation 5. Since the tasks are periodic, we know that

the schedule itself is periodic with a period�
���
� lcm����� � �� � � � � ��.

Consequently, the sum of the response times during the interval��� �
 ��
(� � �) can be defined as follows:

����	��
���

���� � �

��	��
���

���� (6)

Consequently, for	�� (the average response time for the jobs of task��) we get

	�� �
��
���

��
�
�

����	��
���

���� �
��
�

��	��
���

���� (7)

Hence, our optimization criterion is:

	� �
��

���

�
���
 ��

�

��	��
���

����

�
	 (8)

3.2 The priority assignment

Our algorithm assigns priorities from the higher to the lowest priority. A node
in our search tree corresponds to a task, its level corresponds to its priority. For
each node (leaf excepted) we evaluate a lower bound for our criterion (with a
pseudo-polynomial algorithm). For the leaves, we compute the exact value of
our criterion (e.g., by simulation).

3.3 The upper bound

We consider synchronous and constrained deadline task sets for which the
deadline monotonic algorithm is an optimal priority assignment regarding the
feasibility of the system. But such a priority ordering is of course not optimal
while optimizing an arbitrary objective function.
Nevertheless, this priority ordering leads to a feasible schedule (if the system
is feasible), and can be used to compute the upper bound.
A better approach is to use the priority ordering defined in [1]. This priority
ordering always leads to a better solution in comparison to the Deadline Mono-
tonic schedule. We assign priorities in reverse order. Such backward priority
ordering is based on an interesting property of fixed-priority schedules.

Lemma 1 [1] if a task �� is lowest-priority viable(i.e., �� is assigned the low-
est priority, the remaining tasks are assigned higher priorities in an any arbi-
trary order and jobs generated by �� may not miss any deadline) then there is
a feasible static priority assignment for � iff there is a feasible static priority
assignment for � � ����

The heuristic assigns priorities to tasks from the lowest priority to the high-
est one, and at each step it chooses a task that increases as less as possible
the objective function among all tasks that are feasible for the current priority
level. At a given step, the algorithm selects the task having the smallest weight
among unprioritized tasks. As a direct consequence of Lemma 1, the heuristic
always finds a feasible priority assignment if one exists. In Algorithm 2, we
give the pseudo-code of the heuristic.

3.4 The lower bound

In this section, we shall characterize a lower bound (and an iterative process
for its evaluation) for our criterion. We have to distinguish between two kinds

Algorithm 2: Upper Bound pseudo-code
Let� be the set of tasks and� be the number of tasks ;
Let � � � be the objective function;
while � �� � do

Let� � the tasks feasible at priority level� among tasks belonging
to�;
Let a be the task with the lowest weighted contribution to the opti-
mized criterion in��;
Assign priority level� to �;
� � �� �;
� � � � ��� ;

end
Compute the objective function associated to the defined priority or-
dering;

of tasks: tasks which have already a priority and tasks which have no priority
yet.

3.4.1 Prioritized tasks

We consider the task�� and assume that the task�� has already a priority as-
signed.
Let us define, on the interval�����:

� ���
� the largest response time among the jobs of��.

� ���
� the smallest response time among the jobs of��.

We consider the pessimistic case where��	�
� �� jobs of �� have a response

time equal to���
� and a single job of�� has a response time equal to���

� ,
consequently:

	�� �
��
�

�
�

��
� ��
���

� ����
�

�
Notice that since we know all highest priority tasks than��, ���

� is the mini-
mal positive solution of the equation (see [6] for a proof)

���
� � �� �

�
�������

�
���
�

��

�

 �� (9)

The computation of���
� is more complex, from [10] we define a lower bound

for the best case response time (better than��), we denote by���
� this lower

bound, which is the largest positive solution to the equation

���
� � �� �

�
�������

�
������

� � �� � ��

��

�

 ��

An iterative process can be defined to find the largest positive solution:

�� � ����

�� � �� �
�

�������

�
������� � �� � ��

��

�

 ��

In [10] no value for init is given, we shall here fill the gap.
First, observe that init must be not greater than���

� :

���� � �� �
�

�������

�
������

� � �� � ��

��

�

 ��

�
��

��
�

�������

�

	�

Consequently we propose the following iterative process

�� �
��

��
�

�������

�

	�

�� � �� �
�

�������

�
������� � �� � ��

��

�

 ��

3.4.2 Unprioritized tasks

We consider the case where the task�� has not priority already assigned.
The priority of an unprioritized tasks will be chosen in the interval�� � �� ��
(� is the number of prioritized tasks). It may be noticed that decreasing the
priority of a task can only decrease its response time. More formally, we have:

Lemma 2 Let ����
��� � � � � � be the response time of the ��� request of the

task �� assuming that the priority level of �� is � then

� � �� �
���
��� � �

���
��� � � � �

Consequently, the average response time cannot increase by decreasing the
priority level of a task:

Theorem 2 Let 	�
���
� be the average response time of the requests of task ��

assuming that the priority level of �� is �, then

� � �� 	�
���
� � 	�

���
�

It is easy to see that���
� and���

� are also non decreasing in regard to the
priorities.
Consequently, in our priority assignment we assign the priority� � � to all
unprioritized tasks.
Now, we have the material to give the lower bound of our criterion for unpri-
oritized tasks:

��
���

��
 ��
�

�
�

��
� ��
���

� ����
�

�
(10)

3.5 Experimental results

We experimented this method on randomly generated problems. For a given
number of tasks, we randomly generated 25 instances. Problems have between
5 and 25 tasks (step 5) and the utilization factor of the processor is 0.5 for all
instances. A uniform law has been used by the random generator and the char-
acteristics of the generation are�� � �� � � � ���,�� � �� are computed in order
to have a utilization factor close to 0.5, and�� � �� � � � ���. Numerical experi-
mentations have been performed on a Pentium IV/2 GHz personal computer. A
time limit has been fixed to ten minutes for solving every instance of problems.
This time is very short, but in must applications, Branch & Bound algorithms
spend a lot of time to prove the optimality of the best known solution.
Figure 1 presents the average resolution time for every size of problem. For
instances having less than 20 tasks, the resolution time is very short. But, for
instances with 25 tasks, the time limit has been reached for every generated
instances.

Mean performance of the method within 10 min

0

100

200

300

400

500

600

700

5 10 15 20 25

number of tasks

se
co

n
d

s

mean elapsed time

Figure 1: Resolution times over 25 instances (Time limit 600sec. per instance).

Solved Instances within 10 minutes

0

5

10

15

20

25

5 10 15 20 25

Number of tasks

#I
n

st
an

ce
s

Not Solved

solved

Figure 2: Solved instances versus Unsolved Instances

Figure 2 presents the number of instances solved versus of unsolved instances
for each size of problems. We can see that no instance with 25 tasks has been
optimally solved within the time limit.
Figures 3 indicates the average number of vertices explored while solving 25
instances of a given problem (i.e., for a fixed number of tasks). From 20 to 25
tasks, the number of explored vertices decreases. When the size of the prob-
lem increases, then the method spends more time to evaluate each separated
vertex. This is a direct consequence of calculating the worst-case response
times of tasks in the elimination rule (these computations are done in pseudo-
polynomial time).

Mean number of explored vertices

1

10

100

1000

10000

100000

1000000

10000000

100000000

5 10 15 20 25

Number of tasks

N
u

m
b

er
 o

f
ve

rt
ic

es

Figure 3: Average number of vertices explored over 25 instances

4 Conclusion

Many real-time systems must simultaneously handle hard real-time constraints
and Quality of Service constraints. Thus, a performance criterion must be op-
timized while meeting all deadlines for hard real-time tasks. For that purpose,
we have presented a generic Branch & Bound method dedicated to hard real-
time fixed-priority schedulers. Our approach is based on a generic algorithm
that used common functions to any optimization criteria. Only few functions
need to be specialized to a specific criterion. We have presented such a special-
ization for minimizing the weighted average response time of synchronously
released and constrained deadline tasks.
Perspectives of this work is to develop a tool based on two modules:

� a toolbox, that allows developers to add specific functions needed to
consider new performance criteria;

� a Graphical User Interface that allows users to specify problems, to up-
load functions that are specialized to new criteria in the Branch & Bound
procedure, to define numerical experimentations and lastly to exploit
numerical results. All these interactions must be independent of perfor-
mance criteria.

References

[1] AUDSLEY, N. Optimal priority assignment and feasibility of static pri-

ority assignment with arbitrary start times.YCS 164, University of York
(1991).

[2] BAKER, K. Introduction to sequencing and scheduling. John Wiley and
Sons, 1974.

[3] BRUCKER, P. Scheduling algorithms. Springer Verlag, 2001.

[4] GOOSSENS, J. Scheduling of Hard Real-Time Periodic Systems with
Various Kinds of Deadline and Offset Constraints. PhD thesis, Universit´e
Libre de Bruxelles, Belgium, 1999.

[5] JONSSON, J.,AND SHIN, K. A parametrized branch and bound strategy
for scheduling precedence-constrained tasks on a multiprocessor system.
In proc. Int. Conf. on Parallel Processing (1997), pp. 158–165.

[6] JOSEPH, M., AND PANDYA , P. Finding response times in a real-time
system.The Computer Journal 29, 5 (Oct. 1986), 390–395.

[7] L EHOCZKY, J. P. Fixed priority scheduling of periodic task sets with
arbitrary deadlines.proc. IEEE Real-Time System Symposium (1990),
201–209.

[8] L IU, C., AND LAYLAND , J. Scheduling algorithms for multiprogram-
ming in a hard real-time environment.Journal of the ACM 20, 1 (1973),
46–61.

[9] PAN, Y. An improved branch and bound algorithm for single machine
scheduling with deadlines to minimize total weighted completion time.
Operations Reseach Letters 31 (2003), 492–496.

[10] REDELL, O., AND SANFRIDSON, M. Exact best-case response time
analysis of fixed-priority scheduled tasks. InEuromicro Real-Time Sys-
tems (2002).

[11] RICHARD, P. Controlling response time in real-time systems. InCom-
puter Performance Evaluation: Modelling Techniques and Tools, LNCS
2324, Springer Verlag (2002), pp. 339–348.

[12] TINDELL , K. Fixed-Priority Scheduling of Hard Real-Time Systems.
PhD thesis, University of York, UK, 1994.

