
AN ONTOLOGY-BASED APROACH FOR EXCHANGING DATA
BETWEEN HETEROGENEOUS DATABASE SYSTEMS

Mourad El-Hadj Mimoune, Guy PIERRA, Yamine AIT-AMEUR
LISI-ENSMA BP 40109 – Site du Futuroscope 86961 FUTUROSCOPE Cedex France

 Tel: +33 5 49 49 80 60 Fax: +33 5 49 49 80 64
Email: {mimoune, pierra, yamine }@ensma.fr

Keywords: Heterogeneous databases integration, meta-modelling, database federation, ontology based database, event-
based programming, PLIB, data exchange.

Abstract: This paper presents an approach which allows data exchange between heterogonous databases. It targets at
simultaneously semantic and structural heterogeneity. From the semantic point of view, this approach
proposes an ontology based approach. On the one hand this ontology can be referenced by universal
identifiers and acceded by queries; on the other hand, it can be exchanged between heterogonous databases
systems. From the structural point of view, this approach is based on the use of a generic meta-schema,
formalised in the EXPRESS language, and allowing the exchange of any instance of any database schema.
Exchanged instances reference, as much as needed, the global unique identifiers defined by the ontology.
However, the conversion of exchange files to the various target systems can be achieved in a generic
manner (e.g. independently of the particular exchanged model). The interest of the EXPRESS language to
achieve directly such a program is presented as well.

1 INTRODUCTION

Any design of database goes through a
conceptual or semantic modelling level. Several
Object oriented languages and methods of analysis
and design, such as UML (Rambaugh, 1999) OMT
(Rumbaugh, 1991) or Merise-2 (Panet, 1994), may
be used for that purpose. All those methods are
based on the entity-relationship decomposition to
which instances identification, and
generalisation/specialisation mechanisms are added.
The model, or conceptual schema, obtained by this
modelling is intended to be implemented in various
DBMS. Currently, several systems coexis t. Some of
them are purely relational (RDBMS), and the
classical notion of object (like in O-O languages)
doesn’t exist, and some of them hold some notions
of the object oriented paradigm (ex: Postgres or
ORDBMS). There exists a third category which
handles exclusively objects and all the material they

rely on like in O2 or ObjectStore. Therefore, when
the same design method is used to build the logical
schema of a database or even when it is based on a
common object model, the implementation is often
largely different. This approach of design generates
heterogeneous databases between which data
exchange is difficult.

Difficulty for exchanging data between
heterogeneous target databases results from:

1 difference between the application domains of
the database,

2 (conceptual) difference between the
conceptual model designed for the same model, and

3 structural difference between several
implementation of the same conceptual model.

Our work tries to address the second and the
third issues . We specially address domains for which
ontologies can be described. Indeed, the ontology
allows to define, in a single and consensual
framework, categories of entities which can be
represented and their fundamental attributes (Gruber,
1993). This situation often occurs when the universe
of discourse consists of real world objects (like the

various types of electronic components for which the
IEC 1360-4 standard defines both a reference
categorisation and relevant attributes) or when it
consists of entities occurring in a business processes
(client, supplier, bill, order…). Moreover, we
assume that the actors involved in the exchange
process (source and target systems designers) have
agreed on referencing an existing ontology. Note
that referencing the ontology does not require to use
exactly the same conceptual model nor to imp lement
it in the same DBMS. The use of the same ontology
suggests a technique for exchanging between two
different systems.

Our proposed approach for the exchange of data
between heterogeneous databases is based on the
ontology sharing and it consists in:

? defining and agreeing on globally unique
identifiers (GUIs) for essential concepts
(entities, attributes and relations) corresponding
to the universe of discourse,

? using a generic meta-schema, formalised
in the EXPRESS language (ISO10303-11,
1994), to represent exchanged data instances in
a neutral format,

? when some of the used concepts in the
source database are not known by the target
database, using a generic meta-schema,
formalised in the EXPRESS language as well,
to exchange the corresponding part of the
ontology,

? using an EXPRESS physical file format
(ISO10303-21, 1994) or the Standard Data
Access Interface (SDAI) (ISO 10303-22, 1997)
to achieve the effective exchange of data, and if
necessary of ontology,

? exploiting one of the many mapping
technologies available within the EXPRESS
concept (ISO TC184/SC4/WG11, 1999) to
achieve standard data conversions between
receiving and sending systems.

The origin of our interest in exchanging data
between heterogeneous databases is the need to
represent and exchange in computer-sensible manner
of catalogues of industrial components. Such a
catalogues contain not only static aspects (properties
of components) but also dynamic aspects (for
example functions which describe components
behaviour according to the particular environments
where they are inserted).

The aim of our work in this application domain
is to represent the whole information in a meta-
model used like a central (federated) model to
achieve data exchange regardless of the particular
used conceptual schema, and of the particular used
database systems for implementation.

In this domain, catalogue schema (i.e. its
structure of classes) depends on the catalogue itself.

So, exchange should involve not only components
instances but also schema itself. The generic meta-
schema developed, standardised in ISO (ISO 13584-
24, 2002) (ISO 13584-25, 2002) and known as PLIB
is used to represent the catalogue.

The goal of this paper is to present how this
generic meta-schema can be used in other exchange
domains, and to outline the approach we developed
to achieve a bridge from the generic meta-schema to
specific database schemas.

This paper is organised as follows. Section 2
analyses various sources of diversities encountered
in databases targeted at the same domain. In section
3, we situate our approach among the work allowing
data exchange and sharing. We will present briefly,
in section 4, the EXPRESS modelling language used
to define our models of data exchange. Techniques
and tools usable to achieve models transformations
in the EXPRESS environment are also discussed in
this section. Section 5 gives the details of the
modelling approach we developed to allow data
exchange between heterogeneous databases using
EXPRESS generic meta-schemas. We discus in
section 6 the process of exchange itself, the stages it
involves and the various techniques that can be
implemented. Finally, section 7 gives the details of
the implementation we proposed to restore
exchanged data in receiving systems.

2 VARIOUS DIMENSIONS OF
DIVERSITY

Even when targeted at the same domain, two
database schemas may be very different. We analyse
below the various dimensions of diversity.

Denotation diversity: in each database, entities
(when represented), tables and attributes are
identified by names. Various names can be assigned
to a same concept, or inversely, various concepts can
have a same name.

Semantic diversity: in a same domain, assuming
that same names are used, the modelled concepts
may be different. One model may present particular
specialisations regarding to concepts existing in
another model. Moreover, if some specialisation
occurs, it may be based on different specialisation
criteria. For example for a car one can specialise
according to origin (French, foreign), type (racing
car, van, convertible…). Concerning choice of
attributes, each category of user and thus each
schema may use a particular subset of the possible
attributes of one entity.

Structural diversity: in the same domain and
assuming that the same concepts (entities and

attributes) are used, final database schema may be
different from each other. This diversity results from
three causes: need to avoid redundancy
(normalisation rules), order of table’s attributes, and
finally DBMS particularities.

Normalisation is intended to remove data
redundancy by splitting tables that contain
functional dependencies in separate tables. This
process may generate structural diversity because
tables and relations may be different. Indeed, we can
represent address of organisation in the same table :
organisation (name, number, street, town, zip_code,
country, phone, fax) or in separated tables:
organisation (name, add_id) and address (add_id,
number, street, town, zip_code, country, phone, fax).
Removing redundancy has also been considered in
the field of industrial components modelling where
two schemas have been defined (El-Hadj Mimoune,
2001). Thus leading to structural diversity.

When the same tables are chosen there is no
reason why attributes should be arranged in the same
order, or all attributes should be used in all databases
(example: one can use fax attribute other not).

Finally, implementation diversity is due to
existence of various DBMS, each one having their
own particularities. It is obvious that imp lementation
of a conceptual model described in an Oriented-
Object paradigm will not be the same one in a
RDBMS as in an OODBMS. For example , for
representing a set of first names of one person one
would use a relation in a RDBMS and an aggregate
in O-O databases. The same applies for inheritance.
It will be implemented by relations in RDBMSs, and
the ORDBMS which cannot support this mechanism
(e.g. Oracle), and by inheritance of classes and
tables in O-O systems and O-R supporting the
inheritance mechanism (example: Postgres).

3 RELATED WORKS

Several work on database addressed ease of
exchange, sharing, integration and interoperability
between heterogeneous databases

The difficulties that the various contributions
aim at addressing relate, on the one hand, on
structural heterogeneity which results from the
various languages, systems and models that can be
used to represent similar information, and, on the
other hand, on semantic heterogeneity which results
from different denomination and definitions of the
concepts taken into account.

For handling semantic heterogeneity, there exist
two main approaches (Lakshmanan, 1993):

1- the approach based on a common data model
consists in defining a federated data meta-model

covering all the concepts involved in one databases
at least and then to establish a mapping between
each model and the federated model. This approach,
which also solves the structural heterogeneity
problem, allows a user to access to a set of
databases, known as federated database, in a unique
language and according to a common schema
described in the federated meta-model (Arens,
1993)(Ahmed, 1991)(Landers, 1982). One
disadvantage of this approach is the considerable
cost of centralized integration of all models, and of
the maintenance of the federated data model
(Lakshmanan, 1993) (Arens, 1993) (Ling Ling,
2001).

2- the approach based on higher order logic
(Krishnamurthy , 1988) (Lakshmanan, 1993) allows
simultaneous interrogation of several databases
using different ontologies, schemas, and possibly
different formalisms. The query languages allow to
write requests not only on the data but also on the
schema and on databases themselves. The
disadvantage of this approach is the difficulty for a
user to master of each concept of each database and
to be able to formulate its request.

The approach proposed in this paper uses:
? for semantic integration, an ontology-

based approach where each database may either
reference a priori the common ontology or may
be mapped, a posteriori, on the common
ontology,

? for denotation integration, each concept in
the common ontology is associated with
Globally Unique Identifier (GUI),

? for structural integration, translation
through a meta-model is used.

Moreover, we have proposed a meta-model of
ontology, which can be referenced. It allows
databases designers to refer a priori , in a non-
ambiguous way to the existing ontology. This model
also provides possibility for exchanging ontology
specific to each database thus, making them easily
accessible to a user at the federated level.

The following section briefly presents the
EXPRESS language and the way we propose to use
it for exchanging data between heterogeneous
databases.

4 THE EXPRESS LANGUAGE

4.1 EXPRESS concepts

EXPRESS is a data specification standard
language (ISO10303-11, 1994). It was developed

initially to define data models of industrial products.
It is now used for the modelling data in various
domains (Plantec, 1999) (Ait-Ameur, 2000).
EXPRESS build on previous work on data models ,
such as the entity/relationship approach (Peter,
1976), OMT (Rumbaugh, 1991), NIAM (Habrias,
1988) etc. It was defined to make such models, more
precise and computer sensible, and to offer a
powerful representation of constraints on data.
EXPRESS was developed within the framework of
the STEP project (Standard for Exchange of
Products dated) (Bouazza, 1995). It is not only a
conceptual modelling language defining the
information tokens to be exchanged, but it is also a
data specification language (DDL) (Herbst, 1994)
that specify the data to be generated and validated by
computers. EXPRESS allows a two levels of
representation of information:

? an intentional description. This
description, called schema, corresponds to the
conceptual schema of one database. It is
defined in term of a set of entities, modelled
according to an object oriented approach
(inheritance, oid, attributes, derivation…).
Entities are associated to a set of typed
attributes. Lastly, constraints, functions and
attribute derivation allow to associate a set-
based semantics to the intentional description.
Moreover, derivations of attributes can be
expressed,

? an extensional description. This
description corresponds to the population of
one database, for which a specific of
representation format has been defined
(ISO10303-21, 1994). A population
represented in such a format is named physical
file. It constitutes of a set of instances in the
structure of which conforms to the schema.
This description constitutes a particular
interpretation, in the logical meaning, of the
intentional description (Ait-Ameur, 2000).

In an EXPRESS schema, an entity represents a
set of objects having common properties. These
properties are modelled by attributes and constraints.
The whole entities are gathered in a schema which
can be referenced by other schemas. The attributes
fields can also be modelled by types.

In the example below, A and B are entities. They
have typed attributes ai, bi. The data types are either
simple types (real, integer), collections of a given
types (a4 attribute), named types (user defined type
mytype) or entity (bn attribute). The a6 attribute is a
derived attribute computed from the values of the
two attributes a1 and a3. This derivation function
allows expression of data invariants in a functional
form. Such a derivation function expression can be
replaced by a more complex function written using

the imperative part of the EXPRESS language, close
to the PASCAL language. This can be used to
describe either derivation functions or logical
constraints. Logical constraints represent another
class of data invariants. They are introduced by
WHERE and RULE clauses which respectively
describe local entity invariants and global schema
invariants.

ENTITY A;
 a1: REAL;
 a2: OPTIONAL NUMBER;
 a3: INTEGER;
 a4: SET OF mytype1;
 a5: mytype2;
 DERIVE
 a6: REAL: = a1*a3;
 INVERSE
 a6: B FOR bn;
 UNIQUE
 a3;
 WHERE

 Wr1: EXISTS (a2) OR (a1 * a2 >
0);

 END_ENTITY;

 ENTITY B;
 b1: mytype;…
 bn: A;
 END_ENTITY;
 TYPE mytype = INTEGER;
 WHERE
 Wr: SELF >0;
 END_TYPE;

Inheritance links are expressed by the
SUPERTYPE and SUPTYPE keywords.

 Entity E1
 SUPERTYPE OF (E11 ANDOR E12)
 SUBTYPE of (E);
 ….
 END_ENTITY;

In the previous example, E1 is the mother class
of E11 and E12 and it is a daughter of E. Only the
SUBTYPE clause is mandatory. It allows to specify
that one instance can belong simultaneously to one
or several super-classes.

The SUPERTYPE clause is less usual. It allows
to specify, e.g., that an instance of E1 may be, at the
same time, instance of E1 and of E12 (ANDOR).

In the physical file entities instances are
described by the values of their explicit attributes.

 #1 = A(Va1, ……, Vai) ;
 #2 = B (Vb1,……, #1) ;

Vai and Vbi represent respectively explicit
attribute values of ai and bi. Each instance is
associated with an identifier which allows to
reference it (#1 and #2). The derived and inverse
attributes are not represented in the physical files
because they can be directly computed from the
EXPRESS schema by the receiving system.

4.2 EXPRESS-based tools and
technology

Since EXPRESS is associated with a formal
syntax and a precise semantics, it has been possible
to develop a set of tools to handle EXPRESS models
and data. With any EXPRESS schema, are
associated:

? a standardised access interface to data
conforming with this EXPRESS schema: the
SDAI (Standard Data Access Interface),
available in several language binding,

? and a file format for exchanging data
conforming with this schema.

Moreover, tools are available that allow the
following:

? to generate an SDAI confirming to any
APIs access,

? to create a physical file from the content
of any database associated with an SDAI,

? and to populate a database associated with

a SDAI from any exchanged physical file.

EXPRESS is a set-oriented specification
language; it allows to handle collections and sets.

Moreover, the EXPRESS technology also
includes the following:

-the (non standard) EXPRESS-C language which
allows to program data manipulation by using
directly EXPRESS notations,

- the standard EXPRESS-X language which
allows to express, in a declarative way, the
correspondences between two schemas. It generates
automatically a program capable of transforming all
the data conforming to one schema into data
conforming to another schema.

Finally, the capability to express derived
attributes using functions allows event-based
programming within the data model (Plantec,
1999)(El-Hadj Mimoune, 2001). We use precisely
this approach for implementing data conversions in
our proposed approach for heterogeneous databases.

4.3 EXPRESS-G

EXPRESS-G is the graphical representation of
EXPRESS. It allows a synthetic representation of an
EXPRESS schema . This formalism can be used, e.
g., in the preliminary phases of data model designs.
EXPRESS-G represents the structural and
descriptive constructs of the EXPRESS language
(classes and attributes) but the procedural constructs
(derivation and rules) are not represented. The
following example illustrates an EXPRESS-G
representation of a simple data model relating to
geometrical entities (see figure 1).

In this example geometric_entity can be either a

circle or a point . A circle has a centre and a radius,

Entity Representationlabel

label Atomic Type Inheritance link

Association

(DER) label

(INV) label Inverse attribute

Derived attribute

label Union of Type

Geometric_entities

X

Y

Real

Z
Centre

(INV) is_centre_of[1 :2]

(DER) Perimeter

1

Real_or_null_valueReal
Real

Radius

Null_value

Figure 1: EXPRESS-G representation of geometric entities

Point Circle

label User-defined Type Unordered one-to-many association (cardinality n:m) S[n:m]

Ordered one-to-many association (cardinality n:m)
L[n:m]

Entity Representationlabel

label Atomic Type Inheritance link

Association

(DER) label

(INV) label Inverse attribute

Derived attribute

label Union of Type

Geometric_entities

X

Y

Real

Z
Centre

(INV) is_centre_of[1 :2]

(DER) Perimeter

1

Real_or_null_valueReal
Real

Radius

Null_value

Figure 1: EXPRESS-G representation of geometric entities

Point Circle

Entity Representationlabel

label Atomic Type Inheritance link

Association

(DER) label

(INV) label Inverse attribute

Derived attribute

label Union of Type

Geometric_entities

X

Y

Real

Z
Centre

(INV) is_centre_of[1 :2]

(DER) Perimeter

1

Real_or_null_valueReal_or_null_valueRealReal
RealReal

Radius

Null_value

Figure 1: EXPRESS-G representation of geometric entities

PointPoint CircleCircle

label User-defined Type Unordered one-to-many association (cardinality n:m) S[n:m]

Ordered one-to-many association (cardinality n:m)
L[n:m]

and a derived attribute perimeter. A point has
coordinates X, Y, Z but Z may have either a real
value or a null value introduced by the SELECT type
real_or_null_value. A SELECT type represents a
union of types. Finally in this model, a point can be
the centre of two circles at the maximum. This is
specified by the inverse attribute is_centre_of.

We described above the concepts necessary for
understanding the remainder of this paper. For more
information on the EXPRESS language, the reader
may consult (Schenk, 1994) (ISO 10303-11, 1994).

5 OUR APPROACH FOR
INTEGRATION

The approach we propose is summarized by
three (simplified) EXPRESS models. We present
initially these models, and then we discuss how the
various aspects of diversity are taken there into
account.

5.1 Data models to support exchange

5.1.1 Identification of concepts: definition
of globally unique identifier (GUI)

In order to avoid the problems of denotation
diversity (see 2), a schema defining GUIs has been
defined. This Schema allows to identify, through a
particular BSU (Basic Semantic Unit) three
categories of concepts: sources of concept definition
(supplier_BSU), entities (class_BSU) and properties
(property_BSU).

The identifier of each concept inherits code
attribute (it also embeds a version number not
discussed here). Identification of the information
source is a simple code, but the manner to assign it,
defined in the ISO13584-26 standard, ensures its

unicity. The complete identifier of one entity
constitutes of a code and of a reference to its
information source (by the defined_by attribute).
Thus, each information source shall ensure unicity
of its entity codes to ensure a global unicity of
class_BSU instances.

Finally, property identification constitutes of a
code and a reference to a class_BSU. To ensure
unicity of this identifier, its information source shall
assign unique codes for the attributes of each class it
defines.

In the remainder of this paper, it is assumed that
shared ontologies are susceptible to exist (or to be
developed) for the entities and the attributes of the
universe of discourse. It is also assumed that entities
and attributes defined in the ontology are identified
according to the above schema. In the particular case
of the industrial components libraries, such
ontologies effectively exists (example: the IEC
1360-4 standard), or are under development for
various application domain. The structure of our
identification model allows to gather in the same
database concepts coming from various ontologies.

5.1.2 Exchange of instances: a generic
meta-schema

The model used for exchanging instances is an
other generic schema allowing to represent any
instance of any database, whose entities and
attributes are identified by a GUI defined according
to the previously presented identification model.

In addition to a reference to the GUI of its class,
an instance is represented, by a set of couples
(attributes, values).

An attribute is identified by its GUI, and a value
is represented like in an EXPRESS physical file.

In order to increase the readability of this paper,
the schema below (figure 3) simplifies this model by
supposing that the basic types are only string,
integer, null_value and entity data types .

defined_by name_scope

1

(ABS)Basic_semantic_unit

(ABS) property_BSUclass_BSUsupplier_BSU

STRING
code

Figure 2: universal identification of concepts

defined_by name_scope

1

(ABS)Basic_semantic_unit

(ABS) property_BSUclass_BSUsupplier_BSU

STRING
code

defined_by name_scope

1

(ABS)Basic_semantic_unit

(ABS) property_BSU(ABS) property_BSUclass_BSUclass_BSUsupplier_BSUsupplier_BSU

STRINGSTRING
code

Figure 2: universal identification of concepts

This schema is illustrated by an implementation
example in the section 6.

5.1.3 Exchange of models: a generic meta-
schema

Two exchange scenarios may be considered.
First, if all the actors involved in an exchange

agree on ontology and on the GUI of the ontology
concepts; then using the generic meta-scheme
defined in figure 3, it is not necessary to exchange
the source system model to be able to interpret
exchanged data on the target system.

Second, if the source system contains additional
attributes, and/or additional entities, it is necessary
to exchange their identifications and their definitions
to allow their interpretation and/or storage on the
receiving system.

For example, assume that entity A, belonging to
the shared ontology, has been subtyped as A1 in the
source system. In this system, each instance of A1 is
described by the attributes p1, p2., pn inherited from
A and belonging to the shared ontology and by
attributes q1, q2, qn defined by the source system. In
this case, the receiving system can decide:

? either to project the A1 instances on the
definition of A and to store them in the
population of A,

? or to create a new entity A1 subtype of A
and conforming with the exchanged definition.
The definition of A1 itself may (and should)

also be stored in the destination database.
The above schema (figure 4) presents a

simplified version of the generic meta-schema
allowing to exchange models. For simplicity and

value

NULL_value

STRING

INTEGER

attribute_valueproperty_BSU

Entity_instance

Entite_populationpopulation class_BSU

id

attributes
S [0 :?]

population
S [1:?] (INV)

Belongs_to

Entities
S [1:?]

id

Its_value

Figure 3: generic meta-schema for instances exchange

valuevalue

NULL_valueNULL_value

STRINGSTRING

INTEGERINTEGER

attribute_valueattribute_valueproperty_BSUproperty_BSU

Entity_instanceEntity_instance

Entite_populationEntite_populationpopulation class_BSUclass_BSU

id

attributes
S [0 :?]

population
S [1:?] (INV)

Belongs_to

Entities
S [1:?]

id

Its_value

Figure 3: generic meta-schema for instances exchange

SUPER
S[0:?]

attributs L [0:?]

NameIs_optional

its_type

Its_type

nameis_ABS

Integer_type string_type type_entite

(ABS)
Attribute_type

Attribute property_BSU

class_BSUEntityBoolean

Figure 4: generic meta-schema for models exchange

SUPER
S[0:?]

attributs L [0:?]

NameIs_optional

its_type

Its_type

nameis_ABS

Integer_type string_type type_entite

(ABS)
Attribute_type

Attribute property_BSU

class_BSUEntityBoolean

SUPER
S[0:?]

attributs L [0:?]

NameIs_optional

its_type

Its_type

nameis_ABS

Integer_typeInteger_type string_typestring_type type_entitetype_entite

(ABS)
Attribute_type

(ABS)
Attribute_type

AttributeAttribute property_BSUproperty_BSU

class_BSUclass_BSUEntityEntityBooleanBoolean

Figure 4: generic meta-schema for models exchange

readability, we assume that only integer, and string,
and entity data types exist.

In this schema each entity data type is associated
with a GUI (i.e. class_BSU defined in figure 2) and
with a list (ordered) of attributes. The super attribute
allows representation of inheritance and an entity
can be defined as abstract (attribute is_ABS). Each
attribute is associated with (property_BSU defined
in figure 2 as well) and with a type its_type. An
attribute can be mandatory or optional (is_optinal
attribute).

5.2 Taking into account the
diversities

This section outlines how the various sources of
diversities are taken into account in our proposed
approach.

Diversity of names: our GUI schema allows to
reach the following objectives:

? the same concept, entity or attribute, is
always identified the same way,

? a new concept cannot be confused with
another concept, and the source of its definition
is clearly identified, and

? for a new concept, the definition can be
exchanged at the same time as the data which
reference it.

Semantic diversity:
? any instance belonging to a shared entity

data type (i.e. defined in the same ontology)
and associated with attributes whose definitions
are shared, can be interpreted without any
ambiguity on the receiving system whatever be
the represented attributes and whatever be the
order in which they appear,

? if an entity has been specialised from a
shared entity, and if its model is exchanged, it

is possible to represent its exchanged instances

either like instances of the shared entity which
was specialized, or instances of the specialized
entity.

Structural diversity:
? each entity being represented explicitly

and independently of table structure, the
particular structure of tables of the source
database schema does not appear in the
exchange file,

? attribute values being identified by a GUI
and not by their position, attributes order has
no importance,

? lastly, if the source and the target systems
do not use exactly the same sub set of shared
attributes for some entity instances, the strategy
programmed on the receiving system may, for
instance, neglect the additional attributes and
associate a null value the missing attributes.

6 THE EXCHANGE PROCESS

The exchange process always includes entity
instances and possibly entity models , if models are
also exchanged.

The exchange process includes five different
stages at the maximum, presented on figure 5. Three
of them are always present (1, 3 and 5). The most
complete process supposes that three EXPRESS
models are available:

? the generic meta-schema discussed in
section 5.1,

? an EXPRESS model, called "EXPRESS-
source", representing the internal schema of the
source database in the EXPRESS language
(whatever be the DBMS and internal schema)

? an EXPRESS model, called "EXPRESS-
target", representing the internal schema of the

target database also in the EXPRESS language.

DBMS
source

1

DBMS
target

5

EXPRESS-source

2

Afederated meta-model

3
EXPRESS_cible

4

Figure 5: Data exchange process between heterogeneous systems

DBMS
source

1

DBMS
target

5

EXPRESS-source

2

Afederated meta-model

3
EXPRESS_cible

4

DBMS
source

1

DBMS
source
DBMS
source

1

DBMS
target

5

DBMS
target

DBMS
target

5

EXPRESS-source

2

EXPRESS-source

2

Afederated meta-model

3

Afederated meta-modelAfederated meta-modelAfederated meta-model

3
EXPRESS_cible

4

EXPRESS_cible

4

Figure 5: Data exchange process between heterogeneous systems

Then, data pass though five steps taking (at the
maximum) five forms (figure 5 above):

1. source data of the source system in the
source format (e.g. tuples of RDB,
instances of OODB, …),

2. EXPRESS instances of the EXPRESS-
source model representing the same content
as 1,

3. EXPRESS instances of the federated
data meta-model,

4. EXPRESS instances of the EXPRESS-
target model,

5. target data of the target system.
The translation from the source database to the

EXPRESS-source model is imple mented in a
programming language supported by the source
database. The needed program, generic in nature,
exploits the system catalogue of the database (also
named metabase). The result is a physical file of the
EXPRESS-source model. This file is then converted
thanks to one of the conversion techniques available
in EXPRESS technology (e.g. EXPRESS-X
mapping). Once the instances of the federated meta-
model are available, generation of the target data
may be achieved either directly, or through a tow
step process, using a physical file of the EXPRESS-
target model.

In both cases, the last translation from an
EXPRESS model instances to data in the target
system requires the generation of the suited
instructions of data manipulation (INSERT) and
possibly, in case of model exchange, of data
definition (CREATE).

In order to implement these translation
processes, three techniques may be applied:

1. for generating EXPRESS-driven data
from source data base native data, using a
database-specific language to generate
EXPRESS instances confirming to
EXPRESS-source or to federated meta-
model,

2. for generating DML and DDL
instructions in the target database from
either EXPRESS-target model or
EXPRESS federated meta-mode, using an
event-based programming within an
EXPRESS data management system, or

3. using the EXPRESS-C language to
program the browsing of the EXPRESS
population and then generate instructions in
the associated DML and DDL (the same
statements are generated as in 2).

This last method will be illustrated in section 7.
Notice that this approach addresses structural

and descriptive aspects of the databases integration.
There is no description of how procedural aspects
(queries) are integrated. This work has been
addressed in (Ait-Ameur, 2000).

7 IMPLEMENTATION EXAMPLE

If the exchanged data correspond only to shared
entities and attributes, then, according to the
previous sections, the exchange between
heterogeneous databases only consists of instances
conversion.

In the following, we discus a simplified example
of instances conversion. The used instances
correspond to the car rental example defined in
figure 6.

This schema describes a service of car rental
where each service is managed by an organization
and has a set of cars that can be rented. Entities
organization and car are described by a set of
attributes.

The approach we propose for converting the
EXPRESS federated meta-model instances to target
database statement consists in adding derived
attributes to the federated meta-model defined on
figure 3. These derived attributes do not appear in

the exchanged physical files (since they are
computed by the system at each exchange phase).
Their role is to generate SQL statement following an
event-based programming approach. Thus the same
exchanged file represents licit instances either for
the initial schema , defined in figure 3, or for the
modified schema that includes derived attributes. If
the exchanged file is regarded as a set of instances of
the modified schema, it is possible, to compute for
each instance the value of the associated derived
attribute using an EXPRESS data management
system.

Hiring_car

Organisation

car
Have S[0 : ?]

Power Colour Type

Genre

Name Address

Managed_by

Figure 6: car rental data model

Hiring_car

Organisation

car
Have S[0 : ?]

Power Colour Type

Genre

Name Address

Managed_by

Hiring_car

Organisation

car
Have S[0 : ?]

Power Colour Type

Genre

Name Address

Managed_by

Figure 6: car rental data model

In this approach, the whole set of DDL and
DML SQL statement needed to convert of the whole
set of instances can be generated (Ait-Ameur,
2000). The next figure presents an example of this
approach.

 ENTITY entity_population;
 Id : class_BSU;

 Population : set [1:?] of
entity_instance;

 DERIVE
 SQL_table_name : STRING :=
SELF.Id ;

 SQL_schema : STRING := 'CREATE
TABLE ' + SELF.SQL_table_name +
'(' +
compute_attributes(SELF.population
) + ');' ;

 SQL_population : STRING :=
concatenate_SQL_population
(SELF.population);

 END_ENTITY ;

 ENTITY entity_instance;

 Att_value : LIST [1:?]of
atribute_value;

 DERIVE
 SQL_population : STRING :=
‘INSERT INTO ‘ +
SELF.belongs_to.SQL_table_name +
‘values ‘ + assemble_att_value
(SELF.att_value) + ‘);’ ;

 INVERSE
 Belongs_to : population_entity
FOR population ; ……

 END_ENTIY ;

 ENTITY population;

 Entities : set[0:?] of
population_entite;

 END_ENTITY;

The name of the representation (i.e. the table) is
the same as the name of the concept that it
represents (i.e. the entity car). The attribute
SQL_schema of the entity entiy_population allows
to generate the CREATE TABLE statements which
correspond to the entity car. The compute_attributes
function computes the attributes and their types,
necessary to create SQL tables, by browsing
attributes att_value (a couple attribute; value) of the

entities. It is supposed here that each instance is
defined by the same attributes. The attribute
SQL_population , of the entity entity_population ,
allows to gather all the insertion orders of the
various instances of the population by performing
the concatenation of the content of the
SQL_population attribute of each instance_entity
referenced by the attribute population.

The population to be exchanged is represented
by the following EXPRESS physical file:

 #1 = entity_population (#2, (#3)) ;
 #2 = class_bsu (‘car’) ;
 #3 = entity_instance ((#6, #7)) ;
 #4 = property_bsu (‘genre’, #2) ;
 #5 = property_bsu (‘color’, #2) ;
 #6 = attribute_value (#4,

‘Peugeot’) ;
 #7 = attribute_value (#5, ‘red’) ;
 #8 = entity_population (#10, (#9)
 #9 = entity_instance ((#13, #14)) ;
 #10 = class_bsu (‘car_rental’) ;
 #11 = property_bsu

(‘managed_by’,#10) ;
 #12 = property_bsu (‘have’, #10) ;
 #13 = attribute_value (#11, #15) ;
 …….. ;
 #14 = attribute_value (#12, (#2)) ;
 #15 = entity_instance (#16, (#19

,#20)) ;
 #16 = class_bsu (‘organisation’)
 #17 = property_bsu (‘name’, #16) ;
 #18 = property_bsu (‘address’,

#16) ;
 #19 = attribute_value (#17, ‘ADA’) ;
 #20 = attribute_value (#18, ‘9 wool

street 86000’) ;

In this case, the representations of entities names
(car, organisation…) and of the attribute names
(name, address…) are simplified to increase
readability. In practice, they should be replaced by
their GUIs. These identifiers would be defined by
the ontologies. Let us note that such ontology
already exists in a number of domains such that
electronic components (IEC 61360-4 standard) and
for products and services classification (UNSPSC
for Universal Standard Products and Services
Classification). Figure 7 shows a part of the IEC
61360-4 ontological dictionary which identifies at
the same time entities and attributes.

 In our example one could reference the
UNSPSC ontology to define identifiers for the
entities car and car_rental. Products and services
classification in the UNSPSC is illustrated in figure
8. It allows to universally associate the code
/0111/4/UNSPC-1.25-10-15-03 to concept "car" and
the code /0111/4/UNSPC-1.78-11-18-06 to the
concept "car rental" where "/0111/4/UNSPC-1" is
the identifier of the UNSPSC classification itself.

Moreover, in the domain where such ontology
does not exist, a similar description of concepts is
accomplished. In this manner the use of the generic
schemas presented in this paper would be possible.

8 CONCLUSION

Data exchange between heterogeneous databases
encounters difficulties mainly due to heterogeneity:
structural heterogeneity and semantic heterogeneity.
Structural heterogeneity results from the diversity of
the used databases management systems and
normalisation processes. Semantic heterogeneity
results from differences of denomination and of the
conceptual models being able to be defined for the
same field.

In this paper we proposed an approach allowing
the take into account the two difficulties outlined
previously (i.e. structural and semantic
heterogeneities). Data exchanged between databases
are related to application domains. Concerning
semantic heterogeneity, we proposed an ontology-
based approach. A shared ontology allows both to
reference it in existing database (a priori
integration), and, if needed, to exchange it together
with their instance if it is not already shared. To

Segment Family Class Commodity BTI Title

2 5 0 0 0 0 Commercial and Military and Private Vehicles and their
Accessories and Components

2 6 0 0 0 0 Power Generation and Distribution Machinery and Accessories

2 5 10 0 0 0 Motor vehicles

2 5 11 0 0 0 Marine transport

2 5 12 0 0 0 Railway and tramway machinery and equipment

2 5 10 15 0 0 Passenger motor vehicles

2 5 10 15 1 0 Minibuses

2 5 10 15 2 0 Busses

2 5 10 15 3 0 Automobiles or cars

2 5 10 15 4 0 Station wagons

2 5 10 15 5 0 Minivans or vans

2 5 10 15 6 0 Limousines

2 5 10 15 7 0 Light trucks or sport utility vehicles

2 5 10 15 8 0 Sports car

2 5 10 16 0 0 Product and material transport vehicles

7 8 11 18 6 0 Vehicle rental or leasing

Figure 8: Cars and hiring car classification in UNSPSC

Segment Family Class Commodity BTI Title

2 5 0 0 0 0 Commercial and Military and Private Vehicles and their
Accessories and Components

2 6 0 0 0 0 Power Generation and Distribution Machinery and Accessories

2 5 10 0 0 0 Motor vehicles

2 5 11 0 0 0 Marine transport

2 5 12 0 0 0 Railway and tramway machinery and equipment

2 5 10 15 0 0 Passenger motor vehicles

2 5 10 15 1 0 Minibuses

2 5 10 15 2 0 Busses

2 5 10 15 3 0 Automobiles or cars

2 5 10 15 4 0 Station wagons

2 5 10 15 5 0 Minivans or vans

2 5 10 15 6 0 Limousines

2 5 10 15 7 0 Light trucks or sport utility vehicles

2 5 10 15 8 0 Sports car

2 5 10 16 0 0 Product and material transport vehicles

7 8 11 18 6 0 Vehicle rental or leasing

Figure 8: Cars and hiring car classification in UNSPSC

IEC dictionaries(1) Product / property dictionaries

26-17-16-02-OO
Identifier

45-25-16-05-OO

Figure 7: Concepts definition (entities and attribute) In IEC dictionary and their GUIs.

IEC dictionaries(1) Product / property dictionaries

26-17-16-02-OO
Identifier

IEC dictionaries(1) Product / property dictionaries

26-17-16-02-OO
Identifier

45-25-16-05-OO

Figure 7: Concepts definition (entities and attribute) In IEC dictionary and their GUIs.

solve denomination diversity, we proposed to
associate each concept of the ontology with a GUI
(basic semantic unit) (if models are exchanged).

For structural aspects, we proposed a generic
meta-schema susceptible to be used for any
exchange between any databases . To identify the
exchanged entities and attributes, this meta-schema
references the shared ontology. If the ontology is not
already shared data and its ontology are exchanged
simultaneously. Our three meta-schemas are
expressed in the EXPRESS language. This allows to
use the various programming techniques available in
the EXPRESS technology to perform all the
necessary translations. Our approach allows both a
simple data exchange (instances level) and exchange
of ontologies (if these ontologies need also to be
exchanged).

If the meaning and GUI of all the entities and all
the attributes on the sending system are known by
the receiving system, an instances exchange would
be enough. In the opposite case (sending system
contains additional entities and/or additional
attributes); this proposed approach allows to
exchange the ontologies themselves to allow their
interpretation and their storage in the receiving
system.

The translation from the source database to the
federated meta-model can be carried out directly, or
by using an intermediate model that is an EXPRESS
representation of the source database internal
schema. The translation from the federated meta-
model to a target database can be carried out either
directly, or by using an EXPRESS representation of
the target database content. In both cases , this would
require generation of the instructions of data
manipulation (INSERT) and possibly, of data
definition, (CREATE…). In EXPRESS technology
various techniques may be used to generate the
statements of data definition and data manipulation
statements necessary to restore the exchanged
content on the target system. In this paper, following
(Plantec, 1999) (Ait-Ameur, 2000), we proposed to
use the EXPRESS derived attributes technique to
carry out this generation. This technique allows to
reduce the complexity of the generation programme
by splitting it up into elementary fragments where
each one is in charge of converting one or a reduced
number of entities type.

The approach we proposed in this paper was
validated in the field of the industrial components
libraries exchange. For this application field we
designed a specific DB schema for POSTGRES
RODBMS (Stonebraker, 1990). We then showed
how an EXPRESS physical file could be
automatically converted into data definition and data
manipulation statements of this DBMS thanks to use

of derived attributes added to the EXPRESS data
model.

Future extensions, we plan to study the
integration of the procedural aspects already studded
in (Ait -Ameur, 1995) (Ait-Ameur, 2000) in order to
exchange also constraints .

REFERENCES

Ahmed, R., Smedt, P. D., Du, W., Kent, W., Ketabchi, M.
A., Litwin, W. A., Rafii, A., and Shan, M. C., 1991 .
The Pegasus Heterogenous Multidatabase System.
IEEE Computer.

Ait-Ameur, Y., 2000. Développements Controlés de
Programmes par Modélisation et Vérifications de
Propriétés, Habilitation à diriger les recherches,
Université de Poitiers.

Ait-Ameur, Y., Besnard, F., Girard, P., Pierra, G., Potier,
J.C., 1995. Specification and Metaprogramming in the
EXPRESS Language. In SEKE'95, Conference on
Software Engineering and Knowledge Engineering,
IEEE-ACM Sigsoft.

Ait-Ameur, Y., Pierra, G., Sardet, E., 2000. An object
oriented approach to represent behavioural knowledge
in heterogeneous information systems. In OOIS 2000,
Proc. of the 6th International Conference on Object
Oriented Information Systems, Springer.

Arens,Y., Chee, C., Hsu, C.-N., and Knoblock, C.A.,
1993. Retrieving and Integrating Data from Multiple
Information Sources. International Journal on
Intelligent and Cooperative Information Systems, Vol.
2.

Atzeni, P. Torlone, R., 1997. MDM: a Multiple-Data-Tool
for the Management of Heterogeneous Database
Schemes. Proceeding of International Conference on
Management Data and Symposium on Principales of
Database Systèmes. ACM SIGMOD, Tucson.

Bouazza, M., 1995. la Norme STEP. Hermes.
Castano, S., De Antonellis, V., , 1997. Semantic

Dictionary Design for Database Interoperability.
Proceeding of the 13th International Conferce on Data
Engeneering, IEEE Computer Society Press.

Dittrich, K. R. and Geppert, A, 1997. Object-Oriented
DBMS and Beyond. In proceeding of the Conference
on Current Trends in Theory and Practice of
Informatics, .

El-Hadj Mimoune, M. Ait-Ameur, Y. Pierra G. and Potier,
J.C, 2000. Integration of component description in
product data management systems. In CE 2000, 7th
ISPE International Conference on Advance in
Concurrent Engineering, , Technomic Publ. Co..

El-Hadj Mimoune, M., Ait-Ameur, Y., Pierra, G., 2001.
Modélisation du contenu des catalogues de
composants industriels : de la représentation implicite
à la représentation explicite. IN ISPS’2001, 5th

International Symposium on programming and
Systems, SERIST.

Gruber, T.~R., 1993. Towards Principles for the Design of
Ontologies Used for knowledge sharing. In Formal
Ontology in Conceptual Analysis and Knowledge
Representation, N.~Guarino and R.~Poli, Eds.,
Kluwer Academic Publisher's.

Habrias, H., 1988. Le modèle relationnel binaire. La
méthode NIAM. Eyrolles.

Herbst, A., 1994. Long-Term Database Support for
EXPRESS Data. In 7th Int'l. Working Conf. on
Scientific and Statistical Database Management, IEEE
Computer Society Press.

ISO 10303-11, 1994. Industrial Automation Systems and
Integration -- Product Data Representation and
Exchange -- Part 11: Description methods: The
EXPRESS language reference manual.

ISO 10303-21, 1994. Industrial automation systems and
integration - Product data representation and exchange
- Part 21: Implementation methods: Clear text
encoding of the exchange structure (Physical file).
ISO document.

ISO 10303-22, 1997. Industrial automation systems and
integration — Product data representation and
exchange – Part 22: Implementation methods:
Standard Data Access Interface.

ISO 13584-25, 2002. Industrial automation systems and
integration -- Parts library -- Part 25: Logical resource:
Logical model of supplier library with aggregate
values and explicit content.

ISO TC184/SC4/WG11, 1999, Industrial Automation
Systems and Integration -- Product Data
Representation and Exchange, The EXPRESS-X
Language Reference Manual.

Krishnamurthy R. and Naqvi, S., 1988. Towards a Real
Horn Clause Language. In Proceedings of the
International Conference on Very Large Data Bases,
Morgan Kaufmann Publishers.

Lakshmanan, L.V.S., Sadri, F., and Subramanian, I.N.,
1993. On the logical foundation of schema integration
and evolution in heterogeneous database systems.
Proc. Int. Conf. on Deductive and Object-Oriented
Databases, Springer-Verlag, Phoenix.

Landers, T., and Rosenberg, R., 1982. An overview of
multibase. Distributed Databases. Proc. 2nd Int'l Conf.
on Distributed Databases, H-J Schneider.

Ling Ling, Y., Renee M., and Laura H., 2001. Data-driven
understanding and refinement of schema mappings.
Proc. ACM SIGMOD Conference, ACM Press.

Panet, G., Letouche, R., 1994. MERISE/2, MODELES ET
TECHNIQUES MERISE AVANCES. Les éditions
d'organisation.

Peter Pin-Shan Chen, 1976. The Entity-Relationship
Model. Toward Unified View of Data. ACM
Transaction on Database System.

Pierra, G. Ait-Ameur Y. and Sardet, E, 2002. Industrial
Automation Systems and Integration, Parts Library,
Logical Model of Supplier Library. ISO 13584-24.

Pierra, G. Wiedmer, H. U., 1998. Industrial Automation
Systems and Integration, Parts Library, Met hodology
for Structuring Parts Families. ISO 13584-42.

Pierra, G., 1994. Modelling classes of prexisting
components in a CIM perspective: The ISO
13584/ENV 400014 approach. Internationale revue of
CAD/CAM and Infographie.

Pierra, G., 2000. Représentation et Echange de données
techniques, Mécanique et Industrie, Mec Ind, 1.

Plantec, A, 1999. Utilisation de la norme STEP pour la
spécification et la mise en œuvre de générateurs de
code, thèse, Université de Rennes 1.

Rambaugh, J., Jacobson, I., and Booch, G. , 1999. The
Unified Modeling Language Reference Manual.
Addison-Wesley.

Rumbaugh, J. Blaha, M. Premerlani, W. Eddy,F. and
Lorrensen, W, 1991. Object-Oriented Modelling and
Design. Prentice Hall, International Edition.

Sardet, E., Pierra, G., Murayama, H., Oodake, Y. and Ait-
Ameur, Y., 2001. Simplified Representation of Parts
Library : Model, Practice and Implementation.IN
proceeding of PDT Days, QMS edition.

Schenk, D. A. and Wilson, P. R, 1994. Information
Modeling: The EXPRESS Way. Oxford University
Press.

Schreuber, T., Wielinga, B. and Breuker, J., 1992. KADS:
A Principled Approach to Knowledge-based System
Development. Academic Press.

Stonebraker, M., Rowe, M., and Hirohama, L., 1990. The
implementation of Postgres. IEEE Trans. on
Knowledge and Data Engineering.

Sudarshan Chawathe et al., 1994. The TSIMMIS Project:
Integration of Heterogeneous Information Sources. In
Proceedings of IPSJ Conference.

Vermeer, M. W. W. and Apers, P. M. G.,1996. On the
Applicability of Schema Integration Techniques to
Database Interoperation. In ER'96, Proceedings of
Fifteenth International Conference on Conceptual
Modelling, Cottbus.

