
Bringing Robustness to End-User Programming

Mickaël Baron, Patrick Girard
Laboratoire d’Informatique Scientifique et Industrielle, ENSMA,

1 rue Clément Ader, 86961 Futuroscope Chasseneuil
http://www.lisi.ensma.fr/ihm
{baron, girard}@ensma.fr

Abstract

In some cases, end-user programming allows the design
of stand-alone applications. But none of the existing
approaches is concerned by safety aspects of
programming. Heavy techniques exist to develop safe
applications, particularly in non-interactive domains.
They involve software engineering techniques, and
sometimes, formal methods. All these techniques are very
far from end-users. Our idea is to let this part to
experts, and to connect end-user programming onto this
safe conventional development. Starting from an existing
functional core, we built an interactive end-user
programming environment called GenBuild, which
allows designing interactive stand-alone applications.
GenBuild  allows the verification of some properties that
are a first step towards the development of safe end-user
programming.

1. Introduction

Development tools used for end-users have expanded
rapidly. A lot of research tools, but also some
commercial products, allow end-users to develop stand-
alone applications. The main characteristic of "end-users”
in this context is that they do not have programming
knowledge. They program occasionally, and this is not
the most important part of their activity. They may be
experienced computer users, but they are not experienced
in conventional programming languages, such as C, Ada,
or Java. They may use end-user programming to assume
some development tasks, such as Visual programming
and Programming by example. They authorize a fast
design of application. Moreover, they permit automating
repeated tasks[1].
In fact all these techniques reduce the complexity of
interactive application programming, but they do not
necessarily ensure the correctness of the resulting
applications. Most works on end-user programming focus
on expressive power of such techniques, and on
intuitivity and simplicity of use for end-users. None of

them, at our knowledge, is concerned with safety aspects
of end-user development. Is the resulting program correct?
Can we ensure that it gives a right solution? Does it
crash? Is it complete?
Answering these questions is very difficult in a general
way. Nevertheless, we think that researches on end-user
programming must be concerned by giving help to end-
users in order to program correct applications.
End-user programming deals with highly interactive
programs. One of the major assumptions of the end-user
programming field is that users can do many things with
their applications, and end-user programming can be seen
as an optimization of interactive application usage. In the
Human-Computer Interaction (HCI) field, separating the
interface from the functional core is considered as the
basis of a good design. If we split the application
development into two stages, one for the functional core,
and the other for the interactive part, we can consider the
second one in the perspective of end-user programming.
Our approach is the following. Heavy techniques exist to
develop safe applications, particularly in non-interactive
domains. They involve software engineering techniques,
and sometimes, formal methods. All these techniques are
very far from end-users. Our idea is to let this part to
experts, and to connect end-user programming onto this
safe conventional development. Starting from an existing
functional core, we built an interactive end-user
programming environment that allow the design of
interactive stand alone applications.
The purpose of our contribution is to show that end-user
programming is not incompatible with safety
requirements.
The summary of this paper is the following. In section 2,
we define the properties that concern safety in interactive
applications. Section 3 deals with the GenBuild tool we
developed. We present the first module, created by the
domain expert, which is connected to a second module
allowing an end-user to build interactively a complete
application. Section 4 permits to compare our work to
some products from research laboratories or commercial
products. Last, we give some perspectives of our work.

Baron, M. et Girard, P. Bringing Robustness to End-User Programming. In Proceedings of 2001 IEEE
Symposia on Human-Centric Computing Languages and Environments (September 5-7 2001, Stresa, Italy),

Entergraphica, 2001, pp. 142-149.

142



2. Safety for interactive applications

What is software safety? In critical systems, safety has
been defined as a collection of properties only related to
software design. In interactive systems safety may be
defined differently [2]. Because of the specificity of
interactive system architectures, where functional core is
generally separated from the user interface, we can
distinguish two aspects in safety properties: functional
core safety and user interface safety. The security
properties that concern the functional core allow ensuring
that the functional core primitives execute the required
result and that there is no execution conflict.
Among the security properties concerning the interface,
we can find some that are linked to the system
visualization, such as observability, insistence and
honesty [3].
• Observability: The system makes all pertinent

information potentially available to the user;
• Insistence: The dialog structure ensures that

necessary information is perceived;
• Honesty: The dialog structure ensures that users

correctly interpret perceived information;
Many other properties may be elected for interactive
systems. However, this set of properties seems consistent
in our context, and we will restrict our analysis to them.
Following our main idea of separating application
programming between an expert domain and an end-user
domain, we will show in the next section how different
methods can be used to ensure these properties.

3. The GenBuild tool

We realized an application called GenBuild which means
"Generator – Builder". Its main goal is to allow end-users
to build interactive application from existing functional
cores, with respect of safety. We opted for separating our
application into two modules, the first one is called
"Generator" and the second one is called "Builder". We
made that choice to distinguish the safety aspects of the
application concerning the functional core from the safety
aspects concerning the interface of the application.
Furthermore, the separation permits to distinguish the
actors of these tools who have different knowledge. The
first actor is a domain expert who understands
conventional programming. He/she knows how to
implement all the aspects of software design. The second
actor is the end-user who has a little or no prior
experience in programming. This is a final user who
normally uses computer applications, and whose habits
are personal works. For example, he/she wishes a unique
interface for all the software he/she uses, e.g. the same
behavior and the same philosophy. This may lead to a
definition of pleasure of working: “Not to learn again a
new concept of using for each working tool”.

The domain expert uses the “Generator” tool. He/She may
write a functional core with a high level of safety. Then
an entirely automatic stage allows the Generator tool to
extract information from the functional core in order to
generate a file. This stage interfaces the functional core
with an interactive building environment.

Figure 1. GenBuild architecture

The second module is called "Builder". It results from the
compilation of the functional core with the interfacing file
that comes from the generator module. It is in fact an
interface editor, which allows the realization of the final
interactive application. The builder user is able to test the
functional core by using a default presentation, and more,
may  alternate the stages of design and test of the final
interactive application.
The Figure 1 is a representation of the GenBuild
architecture. The places for each actor, either the expert
programmer or the end-user, are clearly defined

3.1. Generator

This module generates standard interactive interfaces from
functional cores. So doing, it builds a comprehensive
interactive representation for end-users. Firstly, we
explain the reason why we chose to let a domain expert
develop the functional core and why we want it to write
this part in a classical language. To be more concrete, we
then detail our example of target application: the
TicTacToe game. In the second part, we deal with the
generation itself.

The domain expert : the first step consists in designing a
functional core in some classical language. For example
this language may be C++, Java or Ada, that are all
classical languages. We made this choice for functional
core robustness reasons. Classical languages have a more
important expressive power than any visual language,
then it can easily describe the required model. It is

Baron, M. et Girard, P. Bringing Robustness to End-User Programming. In Proceedings of 2001 IEEE
Symposia on Human-Centric Computing Languages and Environments (September 5-7 2001, Stresa, Italy),

Entergraphica, 2001, pp. 142-149.

143



important to ensure that the functional core may be used
as the basis of interactive development. So, in a first
approach, we defined a semi-formal way to modelize the
interface of the functional core [4]. So doing, we can
exploit this semi-formal description to generate a standard
representation, and to have a good basis for end-user
development.

The functional core: in order to illustrate this
explanation, let us describe a concrete example on which
we can rely. We chose a well-known simple game, the
TicTacToe. This game involves two competitors who
play in turns. Winning consists in aligning three symbols
on a grid. We restrict our domain to an interactive game
between two human players. Figure 2 shows a potential
interface for the final application.

Figure 2. Interface of TicTacToe game

The game area is composed of a 3x3 grid, each place
contains a symbol corresponding to some player (a plain
square or a dot). Users can play by two means. One of the
methods consists in clicking directly on the square where
the player wants to put down one piece. The other one
consists in moving directly the piece onto the grid, using
in fact direct manipulation. The application state (Who is
playing? Is there a winner?) is represented by textual
messages. Two buttons may modify the state of the
functional core. A first button puts the application back
to its initial state. The second button consists in allowing
the user to cancel the last operation he/she made (the
UNDO function). In our case it is a matter of canceling
the action of selection of one grid square.
Let us concentrate on the functional core. As any
functional core, it is a good policy to develop it in an
independent way from any HCI perspective. That is to
say we must only find into the functions of the
application. We chose a classical language, C++, which is

a popular object-oriented language. We created a class that
defines completely the game. We did not define any
subclass (squares for example), in order to keep the model
very simple, even if such a decomposition would have
been better for object-oriented criteria. Beyond the class
constructor and an Initialize function, we defined the
following services, in respect to Fekete’s rules [5]:
• The automatic administration of the players.

Players are represented by two integer values (one or
two). At initialization, the game still allows gamer
one to play, then it alternates between the two until
the end of the game. The number of turns is also
administrated by the functional core. The functions
are token_state() and turn_count();

• The game itself. It consists in playing in some
given square. The function play(int i, int j) permits
to modify the functional core according to the active
player; the result of this action is that the square
(identified by i and j) contains an active player piece.

• Several functions return the state of the functional
core. They are win_state(), end_state(),
turn_player_state() or token_type(i,j);  the last
function result indicates the content of the i,j grid
square.

• Canceling. We implemented a systematic canceling
of actions on the functional core, with no limitation
of the number of undos.

The whole functional core is described with semi-formal
specifications. The model uses pre- and post-conditions.
For example, Figure 3 gives the specification of the
token_type  function, which returns the state of the square
defined by i and j.

1 int token_type(int i, int j)
2 // requires: i >= 1 & i <= 3 & j >= 1 & j <= 3
3 // initial value : 0
4 // out value : 0, 1, 2

Figure 3.  Semi-formal Specification

On line two, it shows the pre-condition on in-parameters,
which says that i and j must belong to the right interval,
in order to ensure not using values out of field. Notice
that the syntax must conform the C++ language syntax for
boolean expressions. It is used just as it is written by the
Builder tool. Then, the method initialization is indicated
(line 3). Finally, to check the good result of the method,
we control the out value (line 4). 0 stands for no piece in
the square, while 1 and 2 stand for a piece of the first or
the second player, respectively. By applying this formal
description to every method of the functional core class,
we have elements for verifying the correctness of the
interface. The functional core is assumed to respect these
conditions on out values.

Baron, M. et Girard, P. Bringing Robustness to End-User Programming. In Proceedings of 2001 IEEE
Symposia on Human-Centric Computing Languages and Environments (September 5-7 2001, Stresa, Italy),

Entergraphica, 2001, pp. 142-149.

144



Interfacing file: the "Generator" module generates an
interfacing file which represents a standard interactive
interface of the functional core. We have seen that it was
composed of a class and semi-formal specifications. The
module interprets this information in an interface with
which the end-user may manipulate the core function.
This interface generation is completely automatic: to
extract data from the functional core, the generator uses
Lex and Yacc tools. Analysing C++ and semi-formal
specifications from the “.h” file, the generator extracts
information written by the domain expert. He/She starts
by extracting information connected to the functional core
class and then every function. It retains syntactical data
such as name, type of out value and eventually in-
parameters.
Then pseudo-formal information ensures the safe level of
the core. We made the choice of representing this
information visually as it is shown on Figure 4b. This
interface is the result of the compilation of the interfacing
file and the functional core. We find it in the Builder
module. This window is called inspection window. Each
function is associated to a button, which may activate it
interactively. Buttons are set on the left column, with
function name inside. On the right column is indicated
the type and the return value of the function. The type of
the function determines whether it is a function which
modify the functional core or a function that asks the
functional core for its state. To characterize the
identification of the functions, we classify them into two
categories, action and state types.
Action functions are functions that modify the functional
core state. For example, they can be called by the dialog
control when the user wants to act on the final
application. Action functions always have Boolean return
value for feedback information onto the call.
To know the state of the functional core, the final
application asks for state functions. Information state is
returned by out values. The state functions may be
evaluated by the final application at each action function
call.
The Generator module determines the function type with
the presence (action) or absence (state) of post-conditions
in the pseudo-formal specification. For example, the
function of Figure 3 is a state function because the
pseudo-formal description does not contain any post-
condition.
This distinction between action functions and state
functions is not fundamental at this analysis level; it only
helps in giving information to end-users about the
functional core.
At this stage, an interactive application which permits to
activate the functions that are usable according to the state
of the functional core has been generated automatically.
Functions without in-parameters may be activated in a

way as simple as pushing a button. When there are in-
parameters, they must be provided when calling the
function. For that reason the generator builds for each
function with parameters a dialog box that allows giving
its parameters interactively (Figure 4f). With the pseudo-
formal specification of each function, the generator checks
for the validity of these conditions before calling the
function.
At this step, we have a tool that allows testing the
functional core and checking for correctness. This tool is
completely automatically generated by the Generator tool.
With help of semi-formal specifications we guarantee an
important safety level. The part of the domain expert is
now finished. The end-user may test the functional core
with no fear of "crashing" it. More, he/she can now
enhance the application by using the Builder module we
study now.

3.2. Builder

The role of the "Builder" is to offer end-users a tool for
developping easily their interactive application. This
application uses the interfacing file generated by the
Generator module and apply programming by
demonstration and visual programming techniques. In
this part we describe this module. Firstly we explain our
choice concerning development tools of Builder
application. Then, we deal with the tool itself by giving
details about all the parts it is composed of. In a third
part, we explain the way interface programming is done,
with the example of the TicTacToe game. Finally we give
the mechanisms which permit end-users to have some
guarantees about safety.

Tools: The realization of our Builder tool needs an
adapted toolbox with very strong interactive features. In
fact, it must be able to create new interactive objects
which hold direct manipulation, allowing at the same
time direct activation of functional core actions. More
precisely, the toolbox must authorize canceling any stage
of compilation to test the final application. We chose the
AMULET [6] toolbox. AMULET allows a dynamic
administration of objects. In fact all is represented by
objects with dynamic slots. Each slot has a name and
may contain a typed value. It is possible to change
dynamically the value or the type of any slot, and to add
or cancel slots to any object. The second advantage of
AMULET, for our purpose, is the administration of direct
manipulation. It is possible to associate operations to
each object, which correspond to different typical direct
manipulation actions. These actions are represented by
objects called interactors. AMULET has been realized to
design easily an highly interactive interface for Win32,
Unix and Macintosh systems. GenBuild has been

Baron, M. et Girard, P. Bringing Robustness to End-User Programming. In Proceedings of 2001 IEEE
Symposia on Human-Centric Computing Languages and Environments (September 5-7 2001, Stresa, Italy),

Entergraphica, 2001, pp. 142-149.

145



developed first under Win32 system but was also tested
on MacOS system and on Unix system.

Figure 4
(a) Tool bar – (b) Inspection window – (c) Working zone – (d) Tools box – (e) View window

(f) Evaluate window – (g) State window – (h) Programming by example window

Builder module : the Builder brings a tool to end-users
that allows hime/her to easily generate his/her interactive
application from a code generated by the Generator
module. At this stage, the generation provides a model
that permits testing the standard application, and then to
avoid compilation (or interpretation) stage of traditional
tools. This first approach simplifies yet the application
design by end-user programming. End-users do not have
to correct errors that would occur during compilation.
They directly test the application. Then this method
allows testing the application even if the program is not
finished. Instead of leaving the automatically realized
representation to modify it, we chose to furnish a design
space that is independent from the inspection window.

This solution permits to keep a visualization of the
model state during the design. Another particularity of
our tool is that the running context (during test phase) is
not reinitialized or lost when the user switches to the
design mode. So, it is easier for him/her to understand
the state of his/her application.
The Builder is a graphic design tool, which proposes a
friendly graphic working environment. It is composed of
four windows, and one main toolbar (Figure 4a).
• The inspection window previously described
(Generator module) remains active (Figure 4b);
• The working zone (Figure 4c) is the designer
reserved space, for interface design. The end-user puts

a

b c

d

e

f

g

h

Baron, M. et Girard, P. Bringing Robustness to End-User Programming. In Proceedings of 2001 IEEE
Symposia on Human-Centric Computing Languages and Environments (September 5-7 2001, Stresa, Italy),

Entergraphica, 2001, pp. 142-149.

146



objects from the tools palette on it. When this window is
active, GenBuild is in design mode. The designer
modifies the widgets appearance, size and position.
He/She can program objects by displaying a popup menu
with help of the right button of the mouse;
• The tools palette (Figure 4d) gives tools for
manipulation and some AMULET widgets. The selection
arrow takes the control of working zone objects. Then
there are four AMULET objects which are widgets that
the designer can put inside the working zone. Button is a
classical object which modifies its appearance when the
user clicks on it. Label is a text object allowing to show
some text. Rectangle is a graphic object representing a
rectangle and dialog button is a simple button followed
by a confirmation dialog box;
• The visualization window (Figure 4e) represents the
final application. When the design phase is on, all the
objects which are created in the working zone are
connected. For example, if the end-user moves an
existing object into the working zone, the object is
moved at the same time in the visualization window.
Switching from the design stage to the test stage is done
by clicking on the execution button on the tools palette.
The working zone is then grayed, and it is not possible to
modify the application anymore. During the execution
stage the visualization window is connected to the
inspection window. Any transformation will be
transmitted to the inspection window. To come back to
design mode, the user must push once again the execution
button.
This is a first version of the Builder tool. It does not
allow using all usual widgets, which would permit to use
the Builder in order to develop any kind of application.
For example it is not possible to create more than one
application screen. The application may only be
composed of one screen.
Let us now focus on the programming mechanisms, in
order to see which techniques are given to end-users to
develop safe interactive applications.

Programming: Application programming can be made
into the working zone. The end-user puts widgets in the
working zone and “programs” each of them. Two aspects
may be programmed. The first is the interaction, and the
second is the result that represents the state of the object
after this interaction. For each of these two aspects, the
end-user associates a functional core function by end-user
programming. In fact, we used two programming
techniques: the first one is visual programming, and the
second one is programming by demonstration, with direct
manipulation of the running example in the visualization
window.
In all cases, effects of programming are the same. We
used an important characteristic of AMULET, the

dynamic administration of objects by adding or canceling
slots. Programming consists in modifying a slot value,
or in adding a new slot to an object.
• Interaction programming by visual programming.
The Builder proposes to end-users many interactions on
the objects of the interface: inputs from the mouse (left
click, direct manipulation…) and inputs from the
keyboard. Programming consists in choosing an
interaction and associating it to an action function of the
functional core by indicating the value of in-parameters.
This development uses visual programming techniques
and asks the end-user to repeat the same tasks. We
established programming technique by demonstration in
order to program more easily the interaction.
• Interaction programming by programming by
demonstration. In order to explain the technique of
programming by demonstration let us take an example on
the TicTacToe game construction. The end-user wants to
program the move of a piece on a grid element by direct
manipulation. Because the behavior is the same for the
nine squares, we have only to program one element with
this technique. Its duplication may be done by simple
copy/paste actions. At the beginning, the designer puts a
rectangular object that represents a grid element, and
he/she creates another rectangular object to assign a player
piece. Then the end-user changes from GenBuild in
programming by demonstration mode. This closes all
windows but the design window. A new window appears
(Figure 4h). This one controls the programming by
demonstration process. It is a control panel, with buttons
and textual information. A first button called record
changes from a waiting state to record state. To cancel the
programming by demonstration process when recording,
the end-user pushes on the stop button. Then, a close
button returns to classical programming. During the
recording, GenBuild records intelligently all the
interactions the designer wants to realize. The designer
demonstrates to the system how to move a piece
(Rectangular object) on the grid. The system detects the
"collision" between objects, and warns the designer with
a confirmation box. It asks him/her if the interaction
found is the interaction the designer wanted to
demonstrate. If the user confirms, the Builder asks for
information about the function and about parameters to
associate with this interaction. This is an intelligent help
for interface programming. Completing the whole
TicTacToe game consists in duplicating eight times this
behavior.
• Action result programming. Finally the end-user
must program the visualization of the actions result,
which depends on the call result of state functions. This
may be done with the dialog box (Figure 4g) which
groups information to be modified. It is in fact the same
procedure as the first method of interaction programming

Baron, M. et Girard, P. Bringing Robustness to End-User Programming. In Proceedings of 2001 IEEE
Symposia on Human-Centric Computing Languages and Environments (September 5-7 2001, Stresa, Italy),

Entergraphica, 2001, pp. 142-149.

147



(associating a state function to AMULET object slots).
The end-user chooses a state function among the whole
functions of the functional core and for each return value,
gives objects slots which are modified. For example the
designer associates the type token function on a grid
object. What the end-user wants to express is the type of
the piece to be displayed in an element of the grid.
He/She chooses firstly the type token function, the
function parameters or for each return value he/she
modifies the slots. By establishing this description we
obtain the complete program.

Safety aspects: Let us now deal with the safety aspect of
the application being developed with GenBuild. Security
is omnipresent. It permits end-users to have a safe
application development. First of all, we lead on a
functional core defined in a semi-formal way. If it is well
designed, we can be sure that the function calls are done
without errors. The Insistence property may be checked
on each function usage. Each function parameter is
followed by an inspection post-condition which prevents
from bad calls. It may also be tested whether each aspect
of the semi-formal description results in modifying a
slot.
The inspection window in the Builder environment gives
a colored feedback about the function usage. So, the end-
user can easily check if all functional core functions are
used in the interface. This interface property is important
because it permits to know if the interface the end-user
has made is correct. This points deal with Honesty and
Observability properties.

4. Related works

Many tools allow end-users to create interactive
applications. For our purpose, we focus on tools that
allow the design of stand-alone applications such as
simulations or games. Some of them allow rather
complex results. Firstly we can consider the Clickteam
products which all share the same fundamentals, and
more precisely The Games Factory tool [7]. Designing
application consists in putting objects on a setting and
defining the behavior of each of them. In fact, each object
is able to send out a fixed number of events. The designer
must choose which events he/she wants to take into
account and associate them to actions, which modify the
interface state. This tool is laid out by a fixed set of
events, objects and actions. When the user wants to
program an event/action set that exceeds the tool
capacities, he does not have any solution with end-user
programming. The Games Factory only allows adding
objects called "extension". These objects must be written
in classical language.
The Game Maker [8] is similar to The Games Factory
environment but the creation of interfaces is done through

an object/instance approach. Each object is created using a
frame. It has a fixed number of events and actions. The
end-user chooses the actions he/she wants to associate to
events and parameterizes each action. Actions use
variables and functions inside the system and, similarly,
the only way to improve programming is to create new
functions in classical programming language. We can see
clearly the interest to allow adding classical language
functions in this kind of application. These two products
own originally a fixed number of objects that permit to
build applications. But if the conception has to be more
customized, the lack of expressive power becomes a
handicap. Moreover, the added code is not validated for
safety. This solution might be compared with ours. The
main difference can be found in the fact that no
mechanism is given to the end-user in order to understand
and to validate extensions usage. Our system of semi-
formal descriptions was designed to solve this problem.
We can explore other tools which confine only to the
interface programming by visual programming with no
use of classical languages. Stagecast Creator [9] [10] [11]
and even Agentsheets [12] are systems designed to create
games or small simulations. The user creates worlds that
contain objects with rules. A rule is defined by a starting
context, and a final context. Programming consists in
grouping several rules. At each time, the system checks
the rules and apply the rule that matches the current
context. These systems suffer from the problem of size: it
is difficult to create large applications. The maintenance
becomes quickly more and more complex. In fact the
simple modification of the visual programming implies
the modification of a whole part of the code. Moreover,
the program visualization becomes harder and harder as
the program size increases. Another example of this type
of application is Toontalk [13]. The application
development takes place as if the end-user played to make
an application. The end-user visualizes the zone of
development in 3D environment to the third person.
Toontalk tools look like real construction tools (i.e.
hammer) to simplify its comprehension. But this kind of
application cannot elaborate high level interfaces and nor
guarantee safety. If we rely to our work, we might
consider the rules as a variant of our pre and post-
conditions. The main difference is that rules are the only
way to express programming in these tools, while it is
only a part of our system. Adding events, either on
simple objects or on couples of objects, enriches largely
the end-user programming possibilities. Gamut is an
environment of development which authorizes the
complete design of an application by using techniques of
programming by demonstration and programming by
inference. The aim of Gamut [14] is to provide a tool that
allows a complete development of interactive applications
using programming by demonstration. Inference is largely

Baron, M. et Girard, P. Bringing Robustness to End-User Programming. In Proceedings of 2001 IEEE
Symposia on Human-Centric Computing Languages and Environments (September 5-7 2001, Stresa, Italy),

Entergraphica, 2001, pp. 142-149.

148



used, with its strengths (usability) and its weaknesses
(what can be done when inference does not find the right
solution?). In fact, some options we offer to users rely to
limited inference. It is the case, for example, when the
system deduces the program from the direct manipulation
of the example. Nevertheless, we do not address the same
problem. Our main interest is safety. PBD systems
generally prevent the user from making wrong actions,
but is the action chain correct? This is the problem we
focus on.
PDGen [15] is not devoted to game construction, but it
may be related to our goals. It generates a complete stand-
alone program, with a graphical interface to edit scientific
data from files. From an analysis of C++ code, and more
especially on an analysis of classes definition, PDGen
generates an interface that allows accessing data,
navigating among them, and modifying them. The only
aim of the program is this access to data, it is just
possible to save modified data in a new file. PDGen may
be viewed as a first step of our work. But, while our goal
is to deal with any application domain, the semantic of
PDGen applications is fixed. This system does not
examine the member functions of classes, and does just
know how to operate limited actions on data.

5. Conclusion and perspectives

We have presented the GenBuild tool, which permits an
end-user to develop safe interactive applications. We are
just in the first stage of our work. We have taken one
limited example to experiment GenBuild feasibility. In
the future we plan to extend this application to other case
studies, for example in the process control domain.
GenBuild is composed of two distinct modules. The
Generator is the first one. It is a specialized tool
developped for a domain expert who sets out a safe
functional core. By now, we are studying the eventuality
of leading on a completely formal specification to realize
our first generation. We are currently studying the use of
a formal language (the B language) [16] to develop a
proved functional core which would prevent the user from
breaking application rules.
The Builder is the second module. It is a purely
interactive tool that allows an end-user to develop a
complete interactive application among an existing
functional core. It allows the verification of some
properties that are a first step towards the development of
safe end-user programming. We have to improve this
step, and also to consider task analysis as an help to
usability checking. At this step, we must also pay
attention to purely PBD systems such as Gamut [14] and
examine how inference may be taken into account in our
approach. It seems obvious that pre and post-conditions
might help inference mechanisms in some cases.

6. References

[1] T. Lau, S. Wolfman, P. Domingos, and D. S.
Weld, “Learning Repetitive Text-editing Procedures with
SMARTedit,” in Your Wish is My Command, H.
Lieberman, Ed., 2001, pp. 209-226.
[2] Y. Aït-Ameur, “Développements Contrôlés de
Programmes par Modélisations et Vérifications de
Propriétés,” in LISI/ENSMA. Poitiers: Université de
Poitiers, 2000, pp. 146.
[3] C. Gram and G. Cockton, Design Principles for
Interactive Software: Chapman & Hall, 1996.
[4] Pierra, Les bases de la programmation et du
Génie Logiciel. Paris: Dunod informatique, 1991.
[5] J.-D. Fekete, “Les trois services du noyau
sémantique indispensables à l'IHM,” presented at
Journées Francophones sur l'Ingénierie de l'Interaction
Homme-Machine (IHM'96), Grenoble, 1996.
[6] B. A. Myers, R. G. McDaniel, R. C. Miller, A.
S. Ferrency, A. Faulring, B. D. Kyle, A. Mickish, A.
Klimovitski, and P. Doane, “The Amulet Environment:
New Models for Effective User  Interface Software
Development,” IEEE Transactions on Software
Engineering,, vol. 23, pp. 347-365, 1997.
[7] Clickteam, (1996), "The Games Factory 1.06" ,
Clickteam & Europress Software,
http://www.clickteam.com.
[8] M. Overmars, (2000), "Game Maker 3.2" ,
http://www.cs.uu.nl/~markov/kids/gmaker/.
[9] D. Canfield Smith, A. Cypher, and L. Tesler,
“Novice Programming Comes of Age,” in Your Wish is
My Command, H. Lieberman, Ed., 2001, pp. 7-20.
[10] A. Cypher and D. C. Smith, “KidSim: End
User Programming of Simulations,” presented at Human
Factors in Computing Systems (CHI'95), Denver,
Colorado, 1995.
[11] D. Smith and A. Cypher, “KidSim : Child
Constructible simulation,” presented at Imagina'95,
Monte-Carlo, Février, 1995.
[12] A. Repenning and C. Perrone, “Programming by
Analogous Examples,” in Your Wish is My Command,
H. Lieberman, Ed., 2001, pp. 351-370.
[13] K. Kahn, “How Any Program Can Be Created
by Working with Examples,” in Your Wish is My
Command, H. Lieberman, Ed., 2001, pp. 21-44.
[14] R. G. McDaniel and B. A. Myers, “Getting
More Out Of Programming by Demonstration,” presented
at Human Factors in Computing Systems (CHI'99),
Pittsburg, 1999.
[15] V. Engelson, D. Fritzson, and P. Fritzson,
“Automatic generation of user interfaces from data
structure specifications and object-oriented application
models,” presented at ECOOP96, Linz Austria, 1996.
[16] Steria Méditerranée, (1997), "Atelier B 3.5" .

Baron, M. et Girard, P. Bringing Robustness to End-User Programming. In Proceedings of 2001 IEEE
Symposia on Human-Centric Computing Languages and Environments (September 5-7 2001, Stresa, Italy),

Entergraphica, 2001, pp. 142-149.

149


