
Paper published in: New Advances in Computer Aided Design & Computer
Graphics, X. Zhang, Ed., International Academic Publishers, Beijing, China, 1993,
pp. 368-373

A Multiple Perspective Object Oriented

Model for Engineering Design1

 G. Pierra
 Laboratoire d'Informatique Scientifique et Industrielle - ENSMA
 20 rue Guillaume VII - 86034 Poitiers Cédex
 Tél. (33) 49-60-50-50 - Fax : (33) 49-60-50-00
 e-mail : PIERRA@ENSMA.UNIV-POITIERS.FR

Abstract

When using the object oriented paradigm to model real world objects, the perspective adopted by the
modeller influences greatly both the class hierarchy (classification) and the features defined at the class level
(characterization). This problem is crucial in engineering design which involves very different varieties of
experts and where the use of the scientific methodology, based on simulation through "models", leads to distinct
kinds of characterizations for the same technical object. Besides the name conflict problem, and the combinatorial
explosion of the number of classes, multiple inheritance makes it difficult, for one expert, to work with a single
perspective. In particular, when creating an instance, he must deal with a vast amount of information
concerning other disciplines.

We propose to introduce the is_view_of relationship. It consists in modelling real world objects through
two types of class simple hierarchies. The general_model class hierarchy carries only the properties that identify
a technical object and whose perspective-specific properties may be derived by means of static data structures.
The set of functional_model class hierarchies carries the different categories of representations that correspond to
the different perspectives.

The is_view_of relationship is an instance connection that shall be supported by the software system.
When a functional_model class is_view_of a general_model class, this means that for each instance in the latter
there exists one instance in the former that is a "model" of it, and which provides services corresponding to one
perspective. The concepts of category and level of representations are also discussed.

Introduction

The engineering design process is the process of specifying, designing,
simulating, manufacturing and maintaining technical products that fulfill some
specific requirements. This process is basically an information process [SYV 92], and
computer systems are extensively used to support it. The generic term Computer
Aided Engineering systems (CAE) may be used to denote these systems.

1 This research was partially supported by the French Ministère de l'Industrie et de l'Aménagement du

territoire (grant 90.1.3134).

9211/47 2

The design process is a complex and iterative process that involves several
experts with different perspectives about the product. Hence, the CAE systems
should provide efficient mechanisms and tools to permit each expert to work on its
own perspective, while ensuring coordination and feedback between the various
perspectives.

In several engineering design fields, the technical products to be designed are
essentially assemblies of preexisting technical objects. It is the case, for instance, in
electronic [FLA 92], in piping [SYV 92], but also in mechanics [GUI 89], particularly
in machine design [MOR 86]. In such fields, the CAE systems shall provide libraries
of computerized representations of these preexisting technical objects, in order to
avoid to define the same object repeatedly. Each expert category having its own
perspective on the technical object, several representations are to be available in a
library to represent, e.g., its mechanical properties, its cost, its geometry, its electric
behavior and so on. Some of these representations may be described by simple data
(e.g., the price, the supplier...) but other ones either require (e.g., transfer function in
analogic simulation model), or generally use (e.g., parametric program for geometric
representation) both data and programs. When one designs a product model,
technical objects are selected in the libraries and various representations of them are
to be created inside the modelling structure of the CAE system, and then to be
managed by it.

In recent years, the Object Oriented Paradigm (OOP) has emerged as a
pervasive and useful concept in many areas of computer science. Its flexibility and
expressiveness are easily demonstrated by the wide spectrum of applications based
on the concept of object, including programming language [GOL 83] [STR 86] [MEY
88], database management system [ATK 89] [KIM 90], knowledge-based systems
[MAR 90]. For modeling technical objects, OOP provides two very attractive
features. First, its class/instance modeling approach allows for the factorization of
the description of cognate technical objects, for instance family of parametrized
components. Second, by gathering data and programs, its instance concept permits
to model any king of representation, wether it may be done by simple data, or it
requires programs. Several CAE systems based on OOP recently appeared on the
market [BEE 89] [BEZ 92] [TOU 92]. In spite of its power, the OOP still presents one
important problem [MAR 90] [CAR 90]: it provides no adequate tool to structure an
object model in different perspectives, even if the multi-expert manipulation of this
model requires such a structure.

To introduce multi-representation capabilities inside a software system
requires, first, that the needs about this facility be precisely stated, and, second, that
adequate concepts to support these needs be available in the earlier stage of the
software design process: namely during the analysis phase. It is the goal of this
paper to contribute towards an extension of the existing object oriented analysis
(OOA) methodology to support multi-representation of real world object.

In the first section of this paper, we discuss the requirements for the support of
a multi-expert engineering design process. The focus is on the design processes that

9211/47 3

mainly consist of assembling preexisting objects. In section 2, we review the different
approaches proposed to provide multi-representation facilities in the framework of
the OOP, either at the programming language level, or during the system design
stage. In section 3, we study the abstraction mechanisms that play a major role in
engineering design. In section 4 we propose a multiple perspective approach for
modelling engineering design objects. We use the Coad and Yourdon OOA
formalism [COA 91] to model this problem domain, and we introduce some
extensions to support multi-representation of the same real world product. Finally,
the paper discusses about some implementation issues.

1. Multi-representation in engineering design

Different interpretations have been given to the notion of perspective. Two of
these are pertinent for the engineering design process.

The first one is the multi-expert one. A perspective of a world is the perception a
category of experts of a particular discipline has of this world [MAR 90]. Each expert
category (e.g., stress analysis engineer, thermal analysis expert, value analysis
expert) is interested only about a small subset of the complete set of possible product
characteristics. Different categories of representation (e.g., geometry representation,
thermal simulation representation, kinematics representation) shall be provided and
supported by the CAE system. A powerful multi-expert model must allow each
expert to work with a simple category of representation: he must be able to focus
only on the class structure corresponding to its particular perspective, and to
consider for each instance only the relevant attributes [MAR 90].

The second one is the multi-level perspective. When dealing, for instance, with
the geometric representation of a product, a mechanical designer needs different
levels of geometric representation of the same technical object according to the precise
problem he is trying to solve [MIN 86], and the stage of its design process. A simple
axis line is sufficient to represent a screw in several stages of the design of a specific
machine. The solid model of this screw may be needed during collision checking. 2D
standard representations have to be represented in the final drafting. Structured
methodologies [DEM 78] [GAN 79] [SCH 77] provide extensive examples of
multilevel representations.

The difference between categories and levels of representations is based on the
notion of interchangeability. Of course, categories are not predefined and their
choice depends on the system designer. For instance, the kinematics joints between
the components of an assembled object may be embedded inside its geometric
representation, or they may be separated as a different category of representation.
But, in the latter case, to exchange a kinematics representation with a geometric
representation within the same product model representation is without any
meaning. On the contrary, to exchange a simplified geometric model with an
extended one, or even to exchange a solid geometric model with a 2D one [BEZ 92],
or to exchange a thin-mesh-based finite element model with a thick-mesh-based one
are both meaningful and useful.

9211/47 4

Besides these representation categories and level distinction, the system shall
also provide for "sharing". In fact, different categories of representation refer to the
same technical object. The fundamental characteristics of this object, and, in
particular, its identity, are of interest for all the experts and shall be observable from
each category of representation. Interchangeability of various levels of
representation shall be possible inside a specific product model, then some insertion
characteristics (e.g., positioning, visualization attributes, whole-parts relationships)
shall be shareable between the representations of the same category belonging to
different levels.

The needs for multi-representation in the engineering design process may be
summarized as follows.

1) Capability to characterize each representation.

2) Capability to add or to suppress categories of representation.

3) Capability to work with a single category of representation, both at the
atomic technical object level and at the assembly or product level.

4) Capability to change efficiently between two levels of representation
belonging to the same category.

5) Capability to share common features:
 - between categories
 - between levels of the same category.

2. Current multi-representation facilities in OOP based systems

2.1. Multiple inheritance

Most object-oriented systems do not provide with particular tools for managing
multi-representation of objects. They models the different perspectives in a hierarchy
and aggregate the different representations through multiple inheritances. Besides
the problem of name conflict, extensively analyzed in [CAR 90], multiple inheritance
offers no independence of the different representation embedded in the same
instance. Each expert of one discipline must cope with a vast amount of non relevant
information. Some systems, such as LOOPS [BOBR 87], introduce a multi-
representation facility at the instance level: the attributes of the instance are split up
into disjoint subsets, but this approach does not permit to share attributes between
several subsets. A much more powerful approach is proposed in the ROME
language. On the one hand, a class may be used to specify a perspective on one of its
subclass [CAR 90]. This solves the name conflict problem. On the other hand, the
capability for one instance in belonging at the same time to one I-class (which may
carry the identity of the object) and to several parallel hierarchies of R-class (which
provides for multiple representations) [CAR 88] makes the ROME language an
integral part of the other approaches discussed in the next section.

2.2. Parallel hierarchies of classes

9211/47 5

To ensure a greater independence between the different representations of the
same object, several recent systems [MAR 90] [WOL 91] [PER 92], or models [STY
92], propose to model each perspective on a real world object as an instance of a
different class.

The TROPES system [MAR 90] [MAR 91] used to represent and classify
knowledge, is a frame-based system that allows to associate to the same concept
various class trees corresponding to the various expert perspectives. A semantic link,
called a bridge, permits to specify that two classes describe the same set of objects.
This link is operated by the software systems. The set of attributes that identify a
concept is shared by all the representation. The SYSTALK system [WOL 91] [PER 92]
is a Smalltalk system that allows multiple perspective representations of complex
assembled objects, namely robots. Each representation, called a facet, is an instance
of a different class. Another category of classes, called the links, permits to build up
the various representations of an assembled object from the representation of its
components. The Generic Object Model (GOM) is a conceptual metamodel [SYV 92]
which proposes to model technical objects through specific class instances, called
subjects, which carry the identify of technical objects, and through role objects that
carry the various representations of the technical objects. It also proposes to model
the relationships between subjects or between role objects by instances of other
categories of classes, called relationships.

The object oriented analysis and the resulting Object Model for Engineering
(OME), proposed in the next sections, belong to this current of thinking. Like
TROPES, ROME or GOM it distinguishes the identity of a technical object from its
various representations, each one being modelled as a class instance. Like SYSTALK,
both the atomic object representations and the relationships between atomic object
representations required to build assembled object representations are modelled as
class instances. But, unlike the TROPES system, it is based on the class/instance
approach, and it is directed toward the engineering design process. And, unlike the
SYSTALK system, and ROME language and the GOM model, OME tries to separate
the information model of the product that supports the design process, and the
system that aids to this design process. The goal is both to be able to use the OME
model on any kind of CAE system, whether it is object oriented or not, and to allow
the exchange between different CAE systems of multiple perspective information
model of the product.

3. Abstraction mechanisms in engineering design

3.1. Instance and occurrence

The concept of technical object is the first abstraction mechanism used in
engineering design. A technical object is an abstraction that allows to represent a set
of (possibly unknown) physical objects considered, from a certain point of view, as
interchangeable. We call such an abstraction a technical object instance. Technical
objects may be defined at different levels of abstraction representing more or less wide
sets of physical objects. An SKF 6200-ZNR bearing is a technical object that

9211/47 6

represents a set of interchangeable supplier parts. An ISO 30 BC 02 XE bearing is a
more abstract (i.e., representing a wider set) technical object, it may be called an
abstract part. A sphero-cylindrical bearing is a more abstract technical object that may
be dealt with during the kinematics analysis stage of a design process (it fixes only
three degrees of freedom).

Each technical object is defined by some human organization (e.g., SKF, ISO...)
who gives to it a name, that identifies the abstraction, and who specifies some
(generally few) features that shall apply to all the physical objects represented by the
instance.

When an instance is selected, and inserted in a design, some additional
informations are linked with the instance that becomes an occurrence. Some of these
informations, called the insertion characteristics, characterize the positioning of the
occurrence in the CAE modeling structure (e.g., coordinate space, placement, set
structuring, layer...). Some other informations, called context parameters, may
characterize the elements of the context of insertion that modify the occurrence
properties (e.g., the compressed length of a spring, the dynamic load of a bearing)
and other ones, called representation attributes, the reaction of the occurrence to this
context (e.g., distance between whorls of the spring, lifetime). A complementary
identification schema is required, at the occurrence level, to carry these additional
informations.

3.2. The concept of models

Even if they are used in the other domains of knowledge [MIN 86], the
systematic and formal use of (technical) models is the main characteristic of the
engineering and of the scientific process. An old definition from MINSKY, quoted in
[MEL 67], directly leads to a multiple perspective point of view: "for an observer O,
an object M is a model of an object A if M helps O to answer some questions he
wonders about A."

The first point that results from this definition is that a model is a dynamic
object. Providing answers to some set of related questions it shall encapsulate both
specific data and dynamic operations. This feature precisely fits with the (object
oriented) concept of object. The second point is that a model only exits as a structure
that may provide answers to some questions about some objects. It may be
characterized by the questions it supports, and by the objects of which it is an
abstraction. The third point is that a model depends on the observer, or, from our
analyst point of view, from the designer of the information model: very different
models may answer to the same kind of questions (e.g., finite element models or
abaci for stress analysis, geometric constraints or mathematics equations for
kinematics, parametric programs or set of geometric entities for geometry), and very
"different" questions may be supported by the same model. It is a non predefined
designer choice depending on the problem domain. The last point is that a model
preexists to any occurrence in any engineering design. It is an abstraction mechanism
that stays at the instance level… and which is mainly used to provide answers about

9211/47 7

occurrences of this instance. The simplest example is the one of geometric
representation. The model of each technical object, wether it is system defined (e.g., a
circle) or it is defined in some external library (e.g., a bearing) is basically a dynamic
object (a program). Geometric representations of occurrences are created by this
model, often as a set of data.

3.3. Models and views

The engineering design process always consists in selecting more or less
abstract preexisting object instances, and putting them, as occurrences, inside the
information model of the product under design. In a CAE system, the need for
"representations" refers to both the instance and the occurence level. A major
difference is that instances preexist to the design process. Their representation may
(in fact: should) also be preexistant. Occurrences are dynamically created during the
design process. Hence, the same shall apply to their representations.

The concept of model discussed in the previous section provides a
straightforward approach for modelling instance representation. An instance
representation, called a model, is a dynamic object, (i.e., a class instance), which:

– refers to a technical object instance,

– answers to some precise questions about this technical object instance.

Besides information retrieval, the main questions from the CAE system user are
to create occurrence representations inside a product information model. Hence, the
questions a model has to answer may be formalized by the name of the category of
occurrence representation, and, possibly, the level of occurrence representation
required by the user for some well-defined occurrence.

The results of this question, called (occurrence) view, generally has a very
different structure from the model one. It refers to a technical object occurrence, it is
caracterized by the question that it is an answer to, it is often only made up of data
(with possibly a reference to the model that created it).

insertion
characteristics

technical
object

occurence

simulation
model

context
parameters

technical
objet

context
parameters

Models
geometry

model

F_E_mesh
thin

geometry
2D, top
extended

Views

Fig. 1: Models and views

9211/47 8

4. Multiple perspectives modelling of the engineering design world

The three kinds of abstractions discussed in the previous section: technical
objects, models and views, are to be represented inside a CAE system. They are
represented by different class hierarchies.

4.1. Modelling technical objects: general model classes

The technical objects are naturally apprehended through classes and class
hierarchies. It is a basic method of organizing knowledge for human beings [MIN 86]
[COA 91]. A major controversy in the object oriented community is about the unicity
of the class hierarchy. Each time we adopt a different perspective about a set of
classes, it suggests a different classification hierarchy. For instance, electronic
components may be classified according to their functional characteristics, their

technological characteristics, their
manufacturing characteristics, and so
on. We assert that this problem arises
when we try to represent several
representation categories in the same
hierarchy: all the component
catalogues, all the standards, all the
technical books follow a simple tree
structure. Modelling each perspective
through a different simple hierarchy
vanishes this problem from a
generalization/specialization point of
view. To distinguish the user access
hierarchies from the is_a hierarchy (and
to make the former customizable)
vanishes this problem from the
classification point of view.

We call general_model classes the
classes which model technical objects. Technical objects being abstractions, these
classes basically describe the identification of these abstractions, and, possibly, the
fundamental and multiperspective properties associa-ted with them by the entity
that defines it.

Constraints more complex than Cartesian product of type domains generally
restrict the legal instances of classes [PIE 90]. These integrity constraints are to be
defined, and ensured, at the class level. The new instanciation class method shall
ensure that a created instance fulfills these constraints. Another class method,
change_object, shall permit to modify an instance under the control of the class.

A general_model instance supports the two corresponding methods for
occurrence representation. The create_general_view allows to create an occurrence of
the technical object instance in the CAE modelling structure. The method requires
the insertion characteristics of the occurrence and creates a representation, called

general
models

SKF_parts ISO_parts

SKF_ball_bearings

SKF_single_ball_bearings

Fig. 2: Simple hierarchy
of General model classes

9211/47 9

general_view, that carries the identity and the fundamental properties of the technical
object as they are defined in its general_model class. The change_general_view creates
an occurrence by re-using the insertion characteristics of a preexisting occurrence
provided as parameter of the method.

The interpretation of the sub-superclass is_a relationship is the strict set
inclusion. Hence, all the properties associated with a class (and in particular, the
is_view_of relationship, see § 4.2) apply to any of its subclass.

Two kinds of non completely defined instances may be allowed by a CAE
system. On the one hand, some non-terminal classes may be allowed for
instanciation (e.g., a "bearing", instance of the superclass of several bearing classes).
Such an instance is called a generic technical object. On the other hand, it may be
possible to create terminal classes'instances of which some attributes have the
predefined null value. This allows the CAE system user to define only those
characteristics of the technical object that are relevant for the stage of its design.

4.2. Hierarchies of functional model classes

Parallel hierarchies of classes, called functional_model classes, permit to represent
the various categories of technical models necessary in the problem domain. A class
of functional_models:

– refers to one or several classes of general_models for which it provides
technical models,

– declarates the attributes of an instance of a general_model class which shall
exist and have a non null value in order, for this instance, to be allowed as value for
the predefined ref. attribute,

– defines the (possible) context parameters whose values shall be provided to
create the occurrence views it is able to create,

– defines the representation attributes which are attributes of its instances,

– contains the derivation functions which allow to derive representation
attributes from the general_model class instance attributes, and, possibly, from the
context parameters values (these functions may be defined through some static data
structure defined within the class),

– describes the view creation methods supported by its own instances.

9211/47 10

ISO_xxx_bearings
bearing_inertia
ref : parts
...

bearing_inertia
...
inertia origin : ..
...

ISO_xxx_bearings

functional models

ref : parts
...
bearing_geometry

geometry level : 2D...solid
...

general
models

SKF_single_ball_bearings ...

ref.: general_models

Fig. 3: Parallel hierarchies of general model and functional model classes

(represents the is_view_of relationship)

Although it is declarated at the class level, the relationship between a
general_model (i.e., an instance of a general_model class), which represents a technical
object, and a functional_model (i.e., an instance of a functional_model class), which
represents a technical model of this object, is an object/object instance connection
[COA 91]. It is called the is_view_of relationship. When a class is linked by the
is_view_of relationship to another class, this means that there exists one legal
instance of the former corresponding to each instance of the latter.

The role of a functional_model is to create various representations, called
functional_views, of occurrences of the general_model it is view_of. A
functional_model contains representation attributes that represent the data needed
to create some category of functional_views. It supports methods that create these
functional_views.

The methods of functional models are activated through message passing.
These messages are called view creation message. The selector of a view creation
message is the name of the representation category required. The possible
parameters describe the level of representation. The result of the method is to create
a functional view of the occurrence of the instance of which the functional model is
view_of. The different hierarchies are independent, and the is_view_of relationship is
inherited through the is_a hierarchy.

When a general model receives a view creation message, it generates a
search_for message. The system follows the is_view_of / is_a lattice and searches for a
class that supports the view creation message. It sends a new message to this class,
then it sends the view creation message to the resulting instance.

9211/47 11

geometry
solid ; extended

ISO_screws

Fig. 4: Message passing for view creation

For instance, a class of geometry functional model that is view_of a class of
springs contains:

– the attributes which describe all the geometric characteristics of this spring
class;

– the derivation functions which describe the functional dependencies between
these attributes and the attributes defined in the general model class of springs ;

– the context parameter (compressed_length) type and integrity constraints ;

– the parametric program(s) which allow(s) to create one or several levels of
geometric representation of the various springs of the general_model class.

4.3. Hierarchy of view classes

The views are the occurrence representations that are created inside the
information model of the CAE system. Hence, the structure of each category and
level of views shall be independent of the technical object that the view refers to, and
shall be known by the CAE system. The different categories of views are defined by
a third class hierarchy. The specific class general_view describes the information
model of technical object occurrence. The other views (functional_views) describe the
information model of each category of views. The values of view attributes are
produced by functional_model methods. According to the CAE system structure,
they may be accessed by the CAE modelling software either through message
passing, or directly.

4.4. Whole-Part Structure

The aggregation relationship is_part_of permits to describe an assembly that is
made up of simpler technical objects (e.g., a bolt = a screw + a nut) which may be
generic. The general_model class that defines the assembly describes the integrity
constraints (e.g., the_bolt.thread_diameter = the_nut.thread_diameter). The

9211/47 12

functional model classes, which are view_of the assembly class, create functional
views of the assembly through message passing to the general model of the assembly
parts. Such a view may be either an atomic functional view that refers to the
assembly occurrence, as it is the case in the CAD-LIB standard [PIE 90]. It may also
be a set of functional views, one for each part of the assembly and one more which
describes the functional relationship between the view of the parts, like in the
SYSTALK system [WOL 91].

xx_screw

x_bolt

xx_nut

bolt_geom

nut_geom

screw_geom

xx_H_screw H_geom

Fig. 5: Modelling assemblies

5. Implementation issues

The model, presented in this paper, has been designed to allow for portability
of libraries of technical objects on different kinds of CAE system. The first version of
this model [PIE 88], has been extensively studied and refined in a project involving
three CAD system suppliers, and one software house. Four prototypes were
implemented in this project [PIE 92] and are able to operate on the same library. One
prototype was based on both a general purpose object oriented (OO) database
management system (DBMS) and an OO CAD system (MTEL from Caroline
Informatique), the second one was based on a general purpose OO DBMS (ECCI
from IDEC) and a non OO CAD system (STRIM 100 from CISIGRAPH), the two
last ones were based on specific DBMS and on non OO CAD systems (EUCLID
from MatraDatavision and DMT from MECASOFT). A fifth implementation, which
will become a product, is based on a relational DBMS and uses an object layer similar
to PENGUIN [BAR 90]. The diversity of these implementations demonstrates the
feasibility of the implementation of the proposed model in very different
environments.

At the standardization level, this model makes up the basis of the European
CAD-LIB standard (pr ENV 40 004), and of the work of ISO/TC184/SC4/ WG2. The
goal of this later is to allow for portability of complex libraries of objects in
connection with STEP. The hierarchies of general_model classes and of
functional_model classes that constitute a supplier library are described in the formal
language EXPRESS (ISO DIS 10303-11). This allows the use of the STEP physical file

9211/47 13

structure (ISO DIS 10303-21) to exchange complex libraries. The different parts that
compose these Standards have been approved by their respective standardization
committee.

Conclusion

A major challenge of the CAE technology is to be able to integrate the various
"islands of automation", each one with its own representation, which already exist in
the engineering design process. Such an integration requires a robust model able to
support multi-representation of the product components, and which may be
implemented in various environments. Object Oriented technology provides a
straightforward approach for modelling the concept of "technical model" that is a
major characteristic of the engineering process, but it does not provide adequate
tools to deal with different perspectives.

The information items involved in the engineering design process may be
captured at three levels of abstraction: the class level, the instance level and the
occurrence level. A multi-representation problem exists at each one of these three
levels. The is_view_of relationship presented in this paper proposes a solution for
these three problems. It permits a distinction between what a product is, which may
only be defined by names, and some fundamental predefined properties (e.g.,
positioning), and what a product has: an unlimited number of representations. Hence
it provides, at each level, a root to which all the representations may be connected.
Initially designed to model and exchange libraries that contain classes of multi-
represented technical objects, the is_view_of relationship defines a mechanism, which
may also be used, at the occurrence level, to improve the multi-representation
capabilities of the present CAE systems, whether they are object-oriented, or not.

REFERENCE

[ATK 89] M. ATKINSON, D. DEWITTE, D. MAIER, F. BANCILHON, K. DITTRICH and S.
ZDONIK: "The Objet-Oriented database system manifesto", Proc. of the First
International conference on Deductive and Object-Oriented Databases, W. Kin,
J.M. Nicolas, S. Nishio, Eds., Kyoto Research Park, Kyoto 1989, pp 40-57.

[BAR 90] T. BARSALOU, G. WIEDERHOLD: "Complex objects for relational databases", Computer
Aided Design, 22, 8, 1990, pp. 458-468.

[BEE 89] E. BEEKER: "Application de la programmation orientée objet à la CAO", Proc. of
MICAD'89, Hermes, Paris, 1989, pp. 121-132.

[BEZ 92] P. BEZIAT: "Assemblages et composants mécaniques", Proc. of MICAD'92, Hermes, Paris
1992, pp. 615-625.

[BOB 77] D.G. BOBROW, T. WINOGRAD: "An overview of KRL, a Knowledge Representation
Language", Cognitive Science, 1, 1, 1977.

9211/47 14

[CAR 88] B. CARRE, G. COMYN: "On multiple classification, point of view and object evolution",
In: Artificial Intelligence and Cognitive Science, J. Demongeot, T. Herve, V. Rialle, C. Roche,
Eds., Manchester University Press, Manchester, UK, 1988.

[CAR 90] B. CARRE, J.M. GEIB: "The point of view notion for multiple inheritance", Proc. of
ECOOP/OOPSLA'90, October 21-25, 1990, pp. 312.

[COA 91] P. COAD, E. YOURDON: Object-Oriented Analysis, Prentice-Hall, Englewood Cliffs, N.J.,
1992.

[DEM 78] T. DEMARCO: Structured Analysis and System Specification, Prentice Hall, 1988.

[FLA 92] J.F. FLANIGAN: "Business Issues Concerning Electronic Data Books", Proc. of the Test
and Design Expo Conference, May 1992, USA.

[GAN 79] C. GANE, T. SARSON: Structured Systems Analysis: Tools and Techniques, Prentice Hall,
1979.

[GOL 83] A. GOLBERG, D. ROBSON, Smalltalk 80: The language and its implementation, Addison
Wesley, 1983.

[GUI 89] J. GUILLOT, J.Y. ROUSSELOT, J.C. VIGNAT: "Conception assistée par ordinateur
d'ensembles mécaniques avec recherche d'une bonne solution: le logiciel: SICAM", Proc.
of MICAD'89, Paris, Hermès, 1989, pp. 197-215.

[KIM 90] W. KIM: "Object-Oriented databases: definition and research directions", IEEE Trans. on
Knowledge and Data engineering, Vol. 2, n° 3, september 1990, pp. 327-341.

[MAR 90] O. MARINO, F. RECHENMANN, P. UVIETTA,: "Multiple Perspectives and Classification
Mechanism in Object-Oriented Representation", Proc. of ECAI Conf. Stockolm, July 1990,
pp. 425-430.

[MEL 67] J. MELESE: La pratique de la Recherche Opérationnelle, Dunod, Paris, 1967.

[MEY 88] B. MEYER: Object-Oriented Software Construction, Prentice Hall, Hemel Hempstead, UK,
1988.

[MIN 86] M. MINSKY: The Society of Mind, Simon & Schuster Inc., New York, 1986.

[MOR 86] J.M. MORANNE: "La CFAO en Construction mécanique, Bibliothèque de standards et
cadre d'application, la démarche du groupe St Gobain", Proc. of MICAD'86, Hermès,
Paris 1986, pp. 41-71.

[PER 92] J.F. PERROT, F. WOLINSKI: "Modélisation par objets en robotique", Technique et Science
Informatique, 11, 1, 1992, pp. 97-115.

[PIE 88] G. PIERRA: "Proposition de modèle de référence pour une bibliothèque de composants
standard multifournisseurs et multifonctions", Actes du Colloque Bibliothèque de
composants pour la CAO et applications, AFNOR, Paris, 6-7 Sept 1988, pp. 4-30 (English
transl.: CEN/CENELEC/CAD-LIB/N.24, Sept 1988).

[PIE 90] G. PIERRA: "An object oriented approach to ensure portability of CAD standard parts
libraries", Proc. of Eurographics'90, Montreux, Sept. 1990, pp. 205-214.

[PIE 92] G. PIERRA: "Report on the contract N 90.1.3134" French Ministery of Industry, Paris, May
1992.

9211/47 15

[SCH 77] K. SCHOMAN, D.T. ROSS: "Structured analysis for requirements definition", IEEE Trans.
Software Engineering, SE-3, 1, pp. 6-15.

[STR 86] B. STROUSTRUP: The C++ Programming Language, Addison Wesley, 1986.

[SYV 92] G. SYVERTSEN, F. LILLEHAGEN, M. LOVSTAD: "A generic object model for
engineering design", Proc. of TOOLS EUROPE'92, Dortmund, March 30-April 2, 1992.

[TOU 92] P. TOURON, D. BRUNIER-COULIN, T. NGUYEN: "CAS. CADE, un environnement
logiciel pour bâtir des applications CFAO", Proc. of MICAD'92, Hermes, 1992, pp. 379-
391.

[WOL 91] F. WOLINSKI, J.F. PERROT: "Representation of Complex Objects: Multiple Facets with
Part-Whole Hierarchies", ECOOP'91, Genève, pp 288-306.

	Introduction
	1.	Multi-representation in engineering design
	2.	Current multi-representation facilities in OOP based systems
	2.1.	Multiple inheritance
	2.2.	Parallel hierarchies of classes

	3.	Abstraction mechanisms in engineering design
	3.1.	Instance and occurrence
	3.2.	The concept of models
	3.3.	Models and views

	4.	Multiple perspectives modelling of the engineering design world
	4.1.	Modelling technical objects: general model classes
	4.2.	Hierarchies of functional model classes
	4.3.	Hierarchy of view classes
	4.4.	Whole-Part Structure

	5.	Implementation issues
	Conclusion

