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Abstract 

When using the object oriented paradigm to model real world objects, the perspective adopted by the 
modeller influences greatly both the class hierarchy (classification) and the features defined at the class level 
(characterization). This problem is crucial in engineering design which involves very different varieties of 
experts and where the use of the scientific methodology, based on simulation through "models", leads to distinct 
kinds of characterizations for the same technical object. Besides the name conflict problem, and the combinatorial 
explosion of the number of classes, multiple inheritance makes it difficult, for one expert, to work with a single 
perspective. In particular, when creating  an instance, he must deal with a vast amount of information 
concerning other disciplines. 

We propose to introduce the is_view_of relationship. It consists in modelling real world objects through 
two types of class simple hierarchies. The general_model class hierarchy carries only the properties that identify 
a technical object and whose perspective-specific properties may be derived by means of static data structures. 
The set of functional_model class hierarchies carries the different categories of representations that correspond to 
the different perspectives. 

The is_view_of relationship is an instance connection that shall be supported by the software system. 
When a functional_model class is_view_of a general_model class, this means that for each instance in the latter 
there exists one instance in the former that is a "model" of it, and which provides services corresponding to one 
perspective. The concepts of category and level of representations are also discussed. 

 

Introduction 

The engineering design process is the process of specifying, designing, 
simulating, manufacturing and maintaining technical products that fulfill some 
specific requirements. This process is basically an information process [SYV 92], and 
computer systems are extensively used to support it. The generic term Computer 
Aided Engineering systems (CAE) may be used to denote these systems.  
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The design process is a complex and iterative process that involves several 
experts with different perspectives about the product. Hence, the CAE systems 
should provide efficient mechanisms and tools to permit each expert to work on its 
own perspective, while ensuring coordination and feedback between the various 
perspectives. 

In several engineering design fields, the technical products to be designed are 
essentially assemblies of preexisting technical objects. It is the case, for instance, in 
electronic [FLA 92], in piping [SYV 92], but also in mechanics [GUI 89], particularly 
in machine design [MOR 86]. In such fields, the CAE systems shall provide libraries 
of computerized representations of these preexisting technical objects, in order to 
avoid to define the same object repeatedly. Each expert category having its own 
perspective on the technical object, several representations are to be available in a 
library to represent, e.g., its mechanical properties, its cost, its geometry, its electric 
behavior and so on. Some of these representations may be described by simple data 
(e.g., the price, the supplier...) but other ones either require (e.g., transfer function in 
analogic simulation model), or generally use (e.g., parametric program for geometric 
representation) both data and programs. When one designs a product model, 
technical objects are selected in the libraries and various representations of them are 
to be created inside the modelling structure of the CAE system, and then to be 
managed by it. 

In recent years, the Object Oriented Paradigm (OOP) has emerged as a 
pervasive and useful concept in many areas of computer science. Its flexibility and 
expressiveness are easily demonstrated by the wide spectrum of applications based 
on the concept of object, including programming language [GOL 83] [STR 86] [MEY 
88], database management system [ATK 89] [KIM 90], knowledge-based systems 
[MAR 90]. For modeling technical objects, OOP provides two very attractive 
features. First, its class/instance modeling approach allows for the factorization of 
the description of cognate technical objects, for instance family of parametrized 
components. Second, by gathering data and programs, its instance concept permits 
to model any king of representation, wether it may be done by simple data, or it 
requires programs. Several CAE systems based on OOP recently appeared on the 
market [BEE 89] [BEZ 92] [TOU 92]. In spite of its power, the OOP still presents one 
important problem [MAR 90] [CAR 90]: it provides no adequate tool to structure an 
object model in different perspectives, even if the multi-expert manipulation of this 
model requires such a structure. 

To introduce multi-representation capabilities inside a software system 
requires, first, that the needs about this facility be precisely stated, and, second, that 
adequate concepts to support these needs be available in the earlier stage of the 
software design process: namely during the analysis phase. It is the goal of this 
paper to contribute towards an extension of the existing object oriented analysis 
(OOA) methodology to support multi-representation of real world object. 

In the first section of this paper, we discuss the requirements for the support of 
a multi-expert engineering design process. The focus is on the design processes that 
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mainly consist of assembling preexisting objects. In section 2, we review the different 
approaches proposed to provide multi-representation facilities in the framework of 
the OOP, either at the programming language level, or during the system design 
stage. In section 3, we study the abstraction mechanisms that play a major role in 
engineering design. In section 4 we propose a multiple perspective approach for 
modelling engineering design objects. We use the Coad and Yourdon OOA 
formalism [COA 91] to model this problem domain, and we introduce some 
extensions to support multi-representation of the same real world product. Finally, 
the paper discusses about some implementation issues. 

1. Multi-representation in engineering design 

Different interpretations have been given to the notion of perspective. Two of 
these are pertinent for the engineering design process. 

The first one is the multi-expert one. A perspective of a world is the perception a 
category of experts of a particular discipline has of this world [MAR 90]. Each expert 
category (e.g., stress analysis engineer, thermal analysis expert, value analysis 
expert) is interested only about a small subset of the complete set of possible product 
characteristics. Different categories of representation (e.g., geometry representation, 
thermal simulation representation, kinematics representation) shall be provided and 
supported by the CAE system. A powerful multi-expert model must allow each 
expert to work with a simple category of representation: he must be able to focus 
only on the class structure corresponding to its particular perspective, and to 
consider for each instance only the relevant attributes [MAR 90]. 

The second one is the multi-level perspective. When dealing, for instance, with 
the geometric representation of a product, a mechanical designer needs different 
levels of geometric representation of the same technical object according to the precise 
problem he is trying to solve [MIN 86], and the stage of its design process. A simple 
axis line is sufficient to represent a screw in several stages of the design of a specific 
machine. The solid model of this screw may be needed during collision checking. 2D 
standard representations have to be represented in the final drafting. Structured 
methodologies [DEM 78] [GAN 79] [SCH 77] provide extensive examples of 
multilevel representations. 

The difference between categories and levels of representations is based on the 
notion of interchangeability. Of course, categories are not predefined and their 
choice depends on the system designer. For instance, the kinematics joints between 
the components of an assembled object may be embedded inside its geometric 
representation, or they may be separated as a different category of representation. 
But, in the latter case, to exchange a kinematics representation with a geometric 
representation within the same product model representation is without any 
meaning. On the contrary, to exchange a simplified geometric model with an 
extended one, or even to exchange a solid geometric model with a 2D one [BEZ 92], 
or to exchange a thin-mesh-based finite element model with a thick-mesh-based one 
are both meaningful and useful. 
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Besides these representation categories and level distinction, the system shall 
also provide for "sharing". In fact, different categories of representation refer to the 
same technical object. The fundamental characteristics of this object, and, in 
particular, its identity, are of interest for all the experts and shall be observable from 
each category of representation. Interchangeability of various levels of 
representation shall be possible inside a specific product model, then some insertion 
characteristics (e.g., positioning, visualization attributes, whole-parts relationships) 
shall be shareable between the representations of the same category belonging to 
different levels. 

The needs for multi-representation in the engineering design process may be 
summarized as follows. 

1) Capability to characterize each representation. 

2) Capability to add or to suppress categories of representation. 

3) Capability to work with a single category of representation, both at the 
atomic technical object level and at the assembly or product level. 

4) Capability to change efficiently between two levels of representation 
belonging to the same category. 

5) Capability to share common features: 
     - between categories 
     - between levels of the same category. 

2. Current multi-representation facilities in OOP based systems 

2.1. Multiple inheritance 

Most object-oriented systems do not provide with particular tools for managing 
multi-representation of objects. They models the different perspectives in a hierarchy 
and aggregate the different representations through multiple inheritances. Besides 
the problem of name conflict, extensively analyzed in [CAR 90], multiple inheritance 
offers no independence of the different representation embedded in the same 
instance. Each expert of one discipline must cope with a vast amount of non relevant 
information. Some systems, such as LOOPS [BOBR 87], introduce a multi-
representation facility at the instance level: the attributes of the instance are split up 
into disjoint subsets, but this approach does not permit to share attributes between 
several subsets. A much more powerful approach is proposed in the ROME 
language. On the one hand, a class may be used to specify a perspective on one of its 
subclass [CAR 90]. This solves the name conflict problem. On the other hand, the 
capability for one instance in belonging at the same time to one I-class (which may 
carry the identity of the object) and to several parallel hierarchies of R-class (which 
provides for multiple representations) [CAR 88] makes the ROME language an 
integral part of the other approaches discussed in the next section. 

2.2. Parallel hierarchies of classes 
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To ensure a greater independence between the different representations of the 
same object, several recent systems [MAR 90] [WOL 91] [PER 92], or models [STY 
92], propose to model each perspective on a real world object as an instance of a 
different class.  

The TROPES system [MAR 90] [MAR 91] used to represent and classify 
knowledge, is a frame-based system that allows to associate to the same concept 
various class trees corresponding to the various expert perspectives. A semantic link, 
called a bridge, permits to specify that two classes describe the same set of objects. 
This link is operated by the software systems. The set of attributes that identify a 
concept is shared by all the representation. The SYSTALK system [WOL 91] [PER 92] 
is a Smalltalk system that allows multiple perspective representations of complex 
assembled objects, namely robots. Each representation, called a facet, is an instance 
of a different class. Another category of classes, called the links, permits to build up 
the various representations of an assembled object from the representation of its 
components. The Generic Object Model (GOM) is a conceptual metamodel [SYV 92] 
which proposes to model technical objects through specific class instances, called 
subjects, which carry the identify of technical objects, and through role objects that 
carry  the various representations of the technical objects. It also proposes to model 
the relationships between subjects or between role objects by instances of other 
categories of classes, called relationships. 

The object oriented analysis and the resulting Object Model for Engineering 
(OME), proposed in the next sections, belong to this current of thinking. Like 
TROPES, ROME or GOM it distinguishes the identity of a technical object from its 
various representations, each one being modelled as a class instance. Like SYSTALK, 
both the atomic object representations and the relationships between atomic object 
representations required to build assembled object representations are modelled as 
class instances. But, unlike the TROPES system, it is based on the class/instance 
approach, and it is directed toward the engineering design process. And, unlike the 
SYSTALK system, and ROME language and the GOM model, OME tries to separate 
the information model of the product that supports the design process, and the 
system that aids to this design process. The goal is both to be able to use the OME 
model on any kind of CAE system, whether it is object oriented or not, and to allow 
the exchange between different CAE systems of multiple perspective information 
model of the product. 

3. Abstraction mechanisms in engineering design 

3.1. Instance and occurrence 

The concept of technical object is the first abstraction mechanism used in 
engineering design. A technical object is an abstraction that allows to represent a set 
of (possibly unknown) physical objects considered, from a certain point of view, as 
interchangeable. We call such an abstraction a technical object instance. Technical 
objects may be defined at different levels of abstraction representing more or less wide 
sets of physical objects. An SKF 6200-ZNR bearing is a technical object that 
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represents a set of interchangeable supplier parts. An ISO 30 BC 02 XE bearing is a 
more abstract (i.e., representing a wider set) technical object, it may be called an 
abstract part. A sphero-cylindrical bearing is a more abstract technical object that may 
be dealt with during the kinematics analysis stage of a design process (it fixes only 
three degrees of freedom). 

Each technical object is defined by some human organization (e.g., SKF, ISO...) 
who gives to it a name, that identifies the abstraction, and who specifies some 
(generally few) features that shall apply to all the physical objects represented by the 
instance. 

When an instance is selected, and inserted in a design, some additional 
informations are linked with the instance that becomes an occurrence. Some of these 
informations, called the insertion characteristics, characterize the positioning of the 
occurrence in the CAE modeling structure (e.g., coordinate space, placement, set 
structuring, layer...). Some other informations, called context parameters, may 
characterize the elements of the context of insertion that modify the occurrence 
properties (e.g., the compressed length of a spring, the dynamic load of a bearing) 
and other ones, called representation attributes, the reaction of the occurrence to this 
context (e.g., distance between whorls of the spring, lifetime). A complementary 
identification schema is required, at the occurrence level, to carry these additional 
informations. 

3.2. The concept of models  

Even if they are used in the other domains of knowledge [MIN 86], the 
systematic and formal use of (technical) models is the main characteristic of the 
engineering and of the scientific process. An old definition from MINSKY, quoted in 
[MEL 67], directly leads to a multiple perspective point of view: "for an observer O, 
an object M is a model of an object A if M helps O to answer some questions he 
wonders about A."  

The first point that results from this definition is that a model is a dynamic 
object. Providing answers to some set of related questions it shall encapsulate both 
specific data and dynamic operations. This feature precisely fits with the (object 
oriented) concept of object. The second point is that a model only exits as a structure 
that may provide answers to some questions about some objects. It may be 
characterized by the questions it supports, and by the objects of which it is an 
abstraction. The third point is that a model depends on the observer, or, from our 
analyst point of view, from the designer of the information model: very different 
models may answer to the same kind of questions (e.g., finite element models or 
abaci for stress analysis, geometric constraints or mathematics equations for 
kinematics, parametric programs or set of geometric entities for geometry), and very 
"different" questions may be supported by the same model. It is a non predefined 
designer choice depending on the problem domain. The last point is that a model 
preexists to any occurrence in any engineering design. It is an abstraction mechanism 
that stays at the instance level… and which is mainly used to provide answers about 
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occurrences of this instance. The simplest example is the one of geometric 
representation. The model of each technical object, wether it is system defined (e.g., a 
circle) or it is defined in some external library (e.g., a bearing) is basically a dynamic 
object (a program). Geometric representations of occurrences are created by this 
model, often as a set of data. 

3.3. Models and views 

The engineering design process always consists in selecting more or less 
abstract preexisting object instances, and putting them, as occurrences, inside the 
information model of the product under design. In a CAE system, the need for 
"representations" refers to both the instance and the occurence level. A major 
difference is that instances preexist to the design process. Their representation may 
(in fact: should) also be preexistant. Occurrences are dynamically created during the 
design process. Hence, the same shall apply to their representations. 

The concept of model discussed in the previous section provides a 
straightforward approach for modelling instance representation. An instance 
representation, called a model, is a dynamic object, (i.e., a class instance), which: 

– refers to a technical object instance, 

– answers to some precise questions about this technical object instance. 

Besides information retrieval, the main questions from the CAE system user are 
to create occurrence representations inside a product information model. Hence, the 
questions a model has to answer may be formalized by the name of the category of 
occurrence representation, and, possibly, the level of occurrence representation 
required by the user for some well-defined occurrence. 

The results of this question, called (occurrence) view, generally has a very 
different structure from the model one. It refers to a technical object occurrence, it is 
caracterized by the question that it is an answer to, it is often only made up of data 
(with possibly a reference to the model that created it). 

insertion 
characteristics

technical 
object  

occurence

simulation 
model

context 
parameters

technical 
objet

context 
parameters

Models
geometry 

model

F_E_mesh 
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geometry 
2D, top 
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Fig. 1: Models and views 
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4. Multiple perspectives modelling of the engineering design world 

The three kinds of abstractions discussed in the previous section: technical 
objects, models and views, are to be represented inside a CAE system. They are 
represented by different class hierarchies. 

4.1. Modelling technical objects: general model classes 

The technical objects are naturally apprehended through classes and class 
hierarchies. It is a basic method of organizing knowledge for human beings [MIN 86] 
[COA 91]. A major controversy in the object oriented community is about the unicity 
of the class hierarchy. Each time we adopt a different perspective about a set of 
classes, it suggests a different classification hierarchy. For instance, electronic 
components may be classified according to their functional characteristics, their 

technological characteristics, their 
manufacturing characteristics, and so 
on. We assert that this problem arises 
when we try to represent several 
representation categories in the same 
hierarchy: all the component 
catalogues, all the standards, all the 
technical books follow a simple tree 
structure. Modelling each perspective 
through a different simple hierarchy 
vanishes this problem from a 
generalization/specialization point of 
view. To distinguish the user access 
hierarchies from the is_a hierarchy (and 
to make the former customizable) 
vanishes this problem from the 
classification point of view. 

We call general_model classes the 
classes which model technical objects. Technical objects being abstractions, these 
classes basically describe the identification of these abstractions, and, possibly, the 
fundamental and multiperspective properties associa-ted with them by the entity 
that defines it. 

Constraints more complex than Cartesian product of type domains generally 
restrict the legal instances of classes [PIE 90]. These integrity constraints are to be 
defined, and ensured, at the class level. The new instanciation class method shall 
ensure that a created instance fulfills these constraints. Another class method, 
change_object, shall permit to modify an instance under the control of the class. 

A general_model instance supports the two corresponding methods for 
occurrence representation. The create_general_view allows to create an occurrence of 
the technical object instance in the CAE modelling structure. The method requires 
the insertion characteristics of the occurrence and creates a representation, called 

general 
models

SKF_parts ISO_parts

SKF_ball_bearings

SKF_single_ball_bearings

 

Fig. 2: Simple hierarchy  
of General model classes 
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general_view, that carries the identity and the fundamental properties of the technical 
object as they are defined in its general_model class. The change_general_view creates 
an occurrence by re-using the insertion characteristics of a preexisting occurrence 
provided as parameter of the method. 

The interpretation of the sub-superclass is_a relationship is the strict set 
inclusion. Hence, all the properties associated with a class (and in particular, the 
is_view_of relationship, see § 4.2) apply to any of its subclass. 

Two kinds of non completely defined instances may be allowed by a CAE 
system. On the one hand, some non-terminal classes may be allowed for 
instanciation (e.g., a "bearing", instance of the superclass of several bearing classes). 
Such an instance is called a generic technical object. On the other hand, it may be 
possible to create terminal classes'instances of which some attributes have the 
predefined null value. This allows the CAE system user to define only those 
characteristics of the technical object that are relevant for the stage of its design. 

4.2. Hierarchies of functional model classes 

Parallel hierarchies of classes, called functional_model classes, permit to represent 
the various categories of technical models necessary in the problem domain. A class 
of functional_models: 

– refers to one or several classes of general_models for which it provides 
technical models,  

– declarates the attributes of an instance of a general_model class which shall 
exist and have a non null value in order, for this instance, to be allowed as value for 
the predefined ref. attribute, 

– defines the (possible) context parameters whose values shall be provided to 
create the occurrence views it is able to create, 

– defines the representation attributes which are attributes of its instances,  

– contains the derivation functions which allow to derive representation 
attributes from the general_model class instance attributes, and, possibly, from the 
context parameters values (these functions may be defined through some static data 
structure defined within the class), 

– describes the view creation methods supported by its own instances. 
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ISO_xxx_bearings
bearing_inertia
ref : parts 
...

bearing_inertia
...
inertia origin : .. 
...

ISO_xxx_bearings

functional models

ref : parts 
...
bearing_geometry

geometry level : 2D...solid 
...

general 
models

SKF_single_ball_bearings ...

ref.: general_models

 
Fig. 3:  Parallel hierarchies of general model and functional model classes 

( represents the is_view_of relationship) 

Although it is declarated at the class level, the relationship between a 
general_model (i.e., an instance of a general_model class), which represents a technical 
object, and a functional_model  (i.e., an instance of a functional_model class), which 
represents a technical model of this object, is an object/object instance connection 
[COA 91]. It is called the is_view_of relationship. When a class is linked by the 
is_view_of  relationship to another class, this means that there exists one legal 
instance of the former corresponding to each instance of the latter. 

The role of a functional_model is to create various representations, called 
functional_views, of occurrences of the general_model it is view_of. A 
functional_model contains representation attributes that represent the data needed 
to create some category of functional_views. It supports methods that create these 
functional_views.  

The methods of functional models are activated through message passing. 
These messages are called view creation message. The selector of a view creation 
message is the name of the representation category required. The possible 
parameters describe the level of representation. The result of the method is to create 
a functional view of the occurrence of the instance of which the functional model is 
view_of. The different hierarchies are independent, and the is_view_of relationship is 
inherited through the is_a hierarchy. 

When a general model receives a view creation message, it generates a 
search_for message. The system follows the is_view_of / is_a lattice and searches for a 
class that supports the view creation message. It sends a new message to this class, 
then it sends the view creation message to the resulting instance. 
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geometry 
solid ; extended

ISO_screws

 
Fig. 4: Message passing for view creation  

For instance, a class of geometry functional model that is view_of a class of 
springs contains: 

– the attributes which describe all the geometric characteristics of this spring 
class; 

– the derivation functions which describe the functional dependencies between 
these attributes and the attributes defined in the general model class of springs ; 

– the context parameter (compressed_length) type and integrity constraints ; 

– the parametric program(s) which allow(s) to create one or several levels of 
geometric representation of the various springs of the general_model class. 

4.3. Hierarchy of view classes 

The views are the occurrence representations that are created inside the 
information model of the CAE system. Hence, the structure of each category and 
level of views shall be independent of the technical object that the view refers to, and 
shall be known by the CAE system. The different categories of views are defined by 
a third class hierarchy. The specific class general_view describes the information 
model of technical object occurrence. The other views (functional_views) describe the 
information model of each category of views. The values of view attributes are 
produced by functional_model methods. According to the CAE system structure, 
they may be accessed by the CAE modelling software either through message 
passing, or directly. 

4.4. Whole-Part Structure 

The aggregation relationship is_part_of permits to describe an assembly that is 
made up of simpler technical objects (e.g., a bolt = a screw + a nut) which may be 
generic. The general_model class that defines the assembly describes the integrity 
constraints (e.g., the_bolt.thread_diameter = the_nut.thread_diameter). The 
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functional model classes, which are view_of the assembly class, create functional 
views of the assembly through message passing to the general model of the assembly 
parts. Such a view may be either an atomic functional view that refers to the 
assembly occurrence, as it is the case in the CAD-LIB standard [PIE 90]. It may also 
be a set of functional views, one for each part of the assembly and one more which 
describes the functional relationship between the view of the parts, like in the 
SYSTALK system [WOL 91]. 

xx_screw

x_bolt

xx_nut

bolt_geom

nut_geom

screw_geom

xx_H_screw H_geom

 
Fig. 5: Modelling assemblies 

5. Implementation issues 

The model, presented in this paper, has been designed to allow for portability 
of libraries of technical objects on different kinds of CAE system. The first version of 
this model [PIE 88], has been extensively studied and refined in a project involving 
three CAD system suppliers, and one software house. Four prototypes were 
implemented in this project [PIE 92] and are able to operate on the same library. One 
prototype was based on both a general purpose object oriented (OO) database 
management system (DBMS) and an OO CAD system (MTEL  from Caroline 
Informatique), the second one was based on a general purpose OO DBMS (ECCI  
from IDEC) and a non OO CAD system (STRIM 100  from CISIGRAPH), the two 
last ones were based on specific DBMS and on non OO CAD systems (EUCLID  
from MatraDatavision and DMT  from MECASOFT). A fifth implementation, which 
will become a product, is based on a relational DBMS and uses an object layer similar 
to PENGUIN [BAR 90]. The diversity of these implementations demonstrates the 
feasibility of the implementation of the proposed model in very different 
environments. 

At the standardization level, this model makes up the basis of the European 
CAD-LIB standard (pr ENV 40 004), and of the work of ISO/TC184/SC4/ WG2. The 
goal of this later is to allow for portability of complex libraries of objects in 
connection with STEP. The hierarchies of general_model classes and of 
functional_model classes that constitute a supplier library are described in the formal 
language EXPRESS (ISO DIS 10303-11). This allows the use of the STEP physical file 
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structure (ISO DIS 10303-21) to exchange complex libraries. The different parts that 
compose these Standards have been approved by their respective standardization 
committee.  

Conclusion 

A major challenge of the CAE technology is to be able to integrate the various 
"islands of automation", each one with its own representation, which already exist in 
the engineering design process. Such an integration requires a robust model able to 
support multi-representation of the product components, and which may be 
implemented in various environments. Object Oriented technology provides a 
straightforward approach for modelling the concept of "technical model" that is a 
major characteristic of the engineering process, but it does not provide adequate 
tools to deal with different perspectives. 

The information items involved in the engineering design process may be 
captured at three levels of abstraction: the class level, the instance level and the 
occurrence level. A multi-representation problem exists at each one of these three 
levels. The is_view_of relationship presented in this paper proposes a solution for 
these three problems. It permits a distinction between what a product is, which may 
only be defined by names, and some fundamental predefined properties (e.g., 
positioning), and what a product has: an unlimited number of representations. Hence 
it provides, at each level, a root to which all the representations may be connected. 
Initially designed to model and exchange libraries that contain classes of multi-
represented technical objects, the is_view_of relationship defines a mechanism, which 
may also be used, at the occurrence level, to improve the multi-representation 
capabilities of the present CAE systems, whether they are object-oriented, or not. 
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