A Solution to the Time Jitter Removal

in Deadline Based Scheduling of Real-time Applications

F. Cottet and L. David

LISI / ENSMA - B.P. 109 - 86960 Futuroscope – France / e-mail : cottet@ensma.fr
Abstract

We deal with real-time systems including tasks that necessitate a strict periodicity, i.e. free of jitter about the execution task time. Given the dramatic effect of a time jitter on an application and how easily the scheduling strategies can generate time jitter, our approach of making a real-time system with jitter-free tasks is based on three steps. First it consists of determining the shifts of the release times of all the regular tasks in order to guarantee that there are no coincident execution requests. The second step deals with fixing the deadlines of these tasks in order to ensure the highest priority when they are requested. At last, since the task parameters have been modified, it is necessary to check if the derived task set is schedulable.

1. Introduction

Typically, a real-time computer controlling a physical device or a process involves following basic functions : sampling readings from sensors at periodic intervals and responding to different scenarios by sending signals to actuators with a time-bound. In this work, we investigate a real-time system including tasks that strictly observe periodicity. We refer to them as regular or jitter-free tasks. Application examples can be found in data acquisition applications with the strict observance of the sampling rate, in multimedia applications where the maximum jitter of the voice or sound signal in the traffic stream is defined precisely [8].

On the other hand, the use of real-time scheduling algorithms based on the temporal task parameters not only helps in producing a valid sequence, but may also aid the temporal validation of the application, either by analytic checks or by simulation [11,10]. Such preemptive priority-based schedulings are based on a classic periodic task model Ti characterised by the quadruple (ri, Ci, Ri, Pi), where ri is the first request of execution, Ci the computation time, Ri the deadline and Pi the period. In this context, the priority assignment is either in inverse order to the deadline (Deadline Monotonic - DM) or to the dynamic deadline (Earliest Deadline First - EDF). However, they do not allow control over the regular execution of some tasks of the application.

In this work, we propose an adjustment of task parameters which allows the consideration of a regular execution constraint described above. Thanks to these temporal modifications, it can be shown that the time jitter can be controlled and, in some situations, completely eliminated for a subset of tasks scheduled by DM or EDF algorithms.

2. Time jitter effect on signals

As an example, consider the task of data acquisition which is a very typical task in many real-time applications (test and measurement applications, control and monitoring of industrial processes). In order to properly acquire the signal, the sampling frequency is chosen at least twice the maximum signal frequency. If the sampling epochs are subject to jitter more than 10 % of period, the distortion can be so important that the interpretation or the treatment of the signal could be meaningless. Some results show the disastrous effect of the time jitter on the spectrum analysis, filtering efficiency, linearisation function (for transducer such as thermocouples), and so on [9].

3. Time jitter in real-time scheduling

The execution of two successive instances of a task will not be separated exactly by the period Pi. Letting Sik be the start time of the k'th instance of the task Ti, we get the following time interval :

Sik([ri+(k-1)Pi, ri+(k-1)Pi+Ri-Ci] with k(N
 (1)

The start times Si of two consecutive instances of a task Ti are separated by at least ∆i,min and at most ∆i,max. Using Figure 1, these values can be easily expressed in function of the task basic parameters as :

 ∆i,min= min(Sik)-max(Sik-1)=Pi-Ri+Ci

and ∆i,max= max(Sik)-min(Sik-1)=Pi+Ri-Ci

 (2)

Let (i,min and (i,max be respectively the actual minimum and maximum time intervals between two consecutive instances of a task over an execution sequence of the application. Let us define the relative jitter Ji of task Ti as :

[image: image1.wmf]
Figure 1. Evaluation of the minimum and maximum separation times between two consecutive instances of a task.

[image: image2.wmf]

 (3)
Therefore, we can estimate the upper bound of the relative jitter Ji of the task Ti from (2) when the task must be completed before its next request (run-ability constraint about the deadline : Ri=Pi), and we obtain :

Ji,max=2 EQ \F(Pi - Ci;Pi) =2(1- EQ \F(Ci;Pi))

 (4)
In order to highlight the problem, we note that the maximum relative jitter can reach a value close to 200 % when an instance of a task has been executed at the beginning of the period and its successor at the end of the next period.

In the remainder of this paper, we study a simple but real problem, coming from a control process application. Consider a set of six tasks T, shown in Table 1. These tasks are assumed to be periodic, independent and synchronous at running time ((i, ri=0). Two tasks, named Acq1 and Acq2, are acquisition tasks and, therefore, have to respect the regularity constraint of execution period. As a first step, we have simulated the behaviour of three scheduling algorithms (Rate Monotonic - RM, DM, EDF) on this task set T. Then, from the obtained execution sequences we have calculated the jitter Ji of the two specific tasks (see Table 2). Two important observations from these results are :

Table 1. Example of periodic task set.

task
Ci
Ri
Pi
Task type
Comments

Acq1

Treat1

Cont1
1

2

1
8

8

7
8

8

8
acquisition

treatment

control
set of 3 tasks involved in a rapid control (ex. : fluid stream control)

Acq2

Treat2
1

4
18

17
18

18
acquisition

treatment
tasks for measuring a slowly variable signal (ex. : temperature)

Cont3
1
6
6
control
task of fast control (warning)

Table 2. Jitters obtained with the different scheduling algorithms.

Tasks
RM
DM
EDF

Jitter of acquisition task Acq1
25 %
25 %
25 %

Jitter of acquisition task Acq2
11%
44 %
33 %

. the minimum obtained jitter 25 % leads to a severe signal spectrum distortion of more than 60 % ;

. in the case of the EDF algorithm, which is considered as an efficient algorithm with respect to capability and optimality, the jitter reaches 33 %.

The jitter problem can be handled in different ways. Previous results have been mainly based on three following methods :

. an over-sampling technique in the acquisition task case;

. an off-line exhaustive analysis [6,7] ;

. a scheduler taking into account the specific constraint of regularity by improving scheduling algorithms [1] or by integrating this parameter into the task model [3].

The first approach leads to an unfavourable increase of the processor utilisation factor due to decrease in the period of acquisition tasks by a factor 5 to 10. The second method requires a lengthy analysis of the exhaustive search method and a fixed priority scheduling for executing the selected sequence. The jitter, studied in the third approach, is defined as the uncertainty in the arrival time of individual instances. In this context, researchers propose solutions in a static or dynamic on-line scheduling context, either by elaborating strategies to minimise the jitter or by extending existing scheduling algorithms to include jitter constraints. In our approach we consider the issue of integrating the regularity constraint into the simple task model for a given scheduling algorithm, either static DM or dynamic EDF.

4. Time jitter handling in real-time scheduling

We assume that parameters Ci and Pi are given and non alterable : Ci may be interpreted as the worst case execution time of task and the period Pi is defined by the application requirements. Therefore, in order to modify the execution sequence of an application, we can alter only the two other parameters ri and Ri. Note that, in order not to contradict the initial requirements, the modified parameters ri* and Ri* must satisfy : ri*≥ri and Ri*≤Ri. If the application includes aperiodic events to deal with, we assume that they are handled either by aperiodic tasks with no deadline falling within the idle time of the processor, or by polling tasks with parameters related to the minimum separation between any two successive events.

Our proposed way of constructing a real-time system including jitter-free tasks is based on three main steps. The first step consists of determining asynchronised release times of all the instances of regular tasks. In fact, if two regular tasks have conflicting execution requests, undoubtedly, one of them will get a time jitter. The second step deals with fixing the deadlines of these tasks in order to assure the highest priority when they require the processor. An implication of that is to use a scheduling algorithm based on task deadline such as DM and EDF. Since the task parameters have been modified during the previous steps, it is necessary in the last phase to check whether the derived task set is schedulable.

In Section 4.1 we first assume that all jitter-free tasks have a computational time equal to 1 and they are independent. In Section 4.2, we will extend the analysis to allow regular task execution time to be different than 1. Section 4.3 will relax the independence constraint imposed on the regular tasks.

4.1 Time jitter handling

Let T1, T2, …, Tm denote a set of regular periodic tasks belonging to a task system of n tasks (n > m), with the values of execution times C1, C2, …, Cm equal to 1, corresponding to the temporal granularity of the scheduling process. First we desire to find r1, r2, …, rm of those regular tasks so that no activation dates of all their instances are identical over the whole simulation duration. This specification can be formally written as :

((i,j)([1,m]2 and i≠j, ri mod(Pi)≠rj mod(Pj)
 (5)
where mod means the modulo function : ri mod(Pi) that can be replaced by (ri+kPi) with k(N

This arithmetic problem can be solved by using the Bezout theorem that is expressed in the following general form :

 (a, b)(Z2 and HCF(a,b)=1 / ((u, v)(Z2 / ua+vb=1

where HCF denotes the highest common factor.

From this basic theorem, we can now establish the feasible solutions in a straightforward manner :

• case I/ if HCF(P1,P2,...,Pm)=1,

 (6)
then the specification (5) cannot be satisfied and there are no solution that leads to tasks being free of jitter.

• case II/ if HCF(P1,P2,...,Pm)=H0≥m,
 (7) then a tuple (r1,r2,...,rm) satisfying the specification (5) can be found if ((i,j)([1,m]2 and i ≠ j, |ri-rj|=1mod(H0)

To test the practicality of this approach, consider the example described in Table 1. The number of regular constraint tasks is 2 (m=2) and HCF(P1,P2) is 2. So the example agrees with (7).

Then we have to be concerned with the instantaneous execution of the task. This is done by giving the highest priority to it by the means of the deadline parameter. Let us separately analyse the two scheduling algorithms :

• case DM. The derived deadline parameter is then determine such that :

Ri*([Ci=1, min(Ri,min((Rj-1))]
 with j([m+1,n] (8)

• case EDF. Obtain the highest priority for a task implies to set the deadline to the minimum :

Ri*=Ci=1

 (9)

It should be pointed out that we do not get one solution but a set of modified parameters from the equations (7) and (8) or (9). Given these derived task sets, we have to check the schedulability. Again, let us consider the test example with the two acquisition regular tasks. The task parameters are determined from the following :

• for ri : r1*([0,7], r2*([0,17] and |r*1 - r2*|=1mod(2)

• for Ri : case DM : R1*≤5, R2*≤5

 case ED : R1*=R2*=1

In the case of the Rate Monotonic scheduling algorithm, even if we cannot modify the priority by the means of the deadline, we then observe that the time jitter of the two regular tasks can be reduced significantly: Acq1 task free of jitter and Acq2 task with a jitter of 16% for r1=3 and r2=11. This jitter reduction is all the more important since the processor utilisation will be low, and, as a result, competition by tasks for processor time becomes more manageable. In the case of DM and EDF schedulings, the time jitter of the two acquisition tasks is completely neutralised.

4.2 Relaxing the unit execution duration

We now consider a set of m regular periodic tasks of execution times Ci not necessary equal to 1. It is always possible to localise in the task code the element that needs to be regularly executed. Let Ci,(be the execution duration of the regular task Ti corresponding to the jitter-free part with Ci,((N and 1 ≤ Ci,(≤ Ci. Since it is infeasible to control the execution instant of an inner section of a task, we consider that the whole first portion of the task of Ci,(duration is non-preemptable and must be executed without jitter. Then we have to verify the relation (5) for each couple of regular tasks. Moreover, these tasks must be executed with the highest priority all along the jitter-free part in order to get a zero jitter : a task Ti must not request processor during the jitter-free part Cj,(of a task Tj, and vice versa.
If a solution is found, then we have to assign the highest priority to these tasks when they are requested. In the case of the DM scheduling algorithm, this can be done as previously by minimising Ri :

Ri*([Ci,min(Ri,min((Rj-1)] with j([m+1,n] (10)

But this condition implies that the deadline of the other tasks must be greater than the maximum execution duration of the jitter-free tasks. So we are able to solve this relation (10) only if we have the condition min(Rj)≥max(Ci).

Consider the case of our example problem described earlier in the Table 1 with different values for time parameters and particularly for the computational time of the regular tasks (Cacqu1= Cacqu2=3 and Ctreat1=Ctreat2=4). The analysis of the execution sequences gives jitters of 19 % for task Acq1and 25 % for task Acq2 for the scheduling strategy DM. Using the presented methodology leads to cancel out the jitter of these tasks.

4.3 Relaxing the task independent assumption

The problem of scheduling dependent tasks on a single processor has been received much attention. The precedence constraints are taken into account by an adequate modification of timing parameters (ri,Ri) of every task [5]. So we compute these new temporal parameters for each task of a given task set with a partial order < on it (Ti<Tj means that Ti must be executed before Tj). The preceding sections have shown that the time jitter handling requires the adjustment of the same timing parameters. So we have to check the compatibility between the two modifications. Moreover, a question arises as to the order of these transformations. In fact, for the release time adjustment, there is absolutely no correlation between the position of a task in a dependence order and the shift of the release times of two.

Assume, as a simplification, that the regular tasks have no predecessors. This assumption perfectly corresponds to acquisition tasks in control process applications where those regular periodic tasks are situated at the beginning of the data flows. In that particular case, no modifications are required on the release times ri by the dependent handling method. The modification of the second timing parameter Ri is compatible because the task that has no predecessors must get the highest priority in the two transformation methods.

Consider the case of our example problem described earlier (see Table 1). Suppose that precedence constraints are imposed according to the following partial order : Acqu1<Treat1<Cont1, Acqu2<Treat2, Cont3 alone. The example now satisfies the assumption above concerning the regular tasks Acq1 and Acq2 (no predecessors). First the shift of the first release times is calculated as previously. Let the couple (rAcq1=7, rAcq2=16) be the chosen solution. Secondly, the adjustment of the deadlines is performed according to the precedence relationships. The complete adjustment of temporal parameters of this task set is presented in Table 3 for the two scheduling strategies. Then a valid sequence is produced in both algorithms and the analysis shows that the objectives about specific constraints have been met : the precedence partial order is exact and the regular acquisition tasks Acq1 and Acq2 get a jitter equal to zero.

Table 3. Adjustment of temporal parameters of the task set presented in the Table 1.

case DM

case ED

Task
ri*
Ri*
ri*
Ri*

Acq1

Treat1

Cont1
7

7

7
5

7

7
7

8

10
1

8

7

Acq2

Treat2
16

16
5

17
16

17
1

17

Cont3
0
6
0
6

5. Conclusion

We dealt with real-time systems including tasks that necessitate a strict observance of the periodicity. On one hand, we have shown how dramatic a time jitter effect is on an application and, on the other hand, how easily the DM and ED scheduling strategies can generate time jitters. Our proposed way of constructing real-time systems including jitter-free tasks is based on three main steps : de-synchronising of regular tasks by the shifts of the first release, fixing the deadlines of these tasks in order to ensure the highest priority when they are requested using of deadline based scheduling algorithms (DM and EDF), finally checking whether the derived task set is schedulable. Under the assumption of independent jitter-free tasks of one-tick execution duration, the proposed method can find a solution in the cases of both scheduling algorithms. This work has then been extended to regular tasks of any execution duration in a DM scheduling environment and to dependent tasks that have no predecessors. In both cases, positive results have been obtained.

6. References

[1] Audsley (N.), Burns (A.), Richardson (M.), Tindell (K.) and Wellings (A.) - Applying new scheduling theory to static priority preemptive scheduling - Software Engineering Journal, 8(5), p. 285-292, 1993.

[2] Balakrishnan (A.V.) - On the problem of time jitter in sampling - I.R.E. Trans. on Inf. Theory, vol. IT8, p. 226-236, 1962.

[3] Baruah (S. K.), Chen (D.) and Mok (A. K.) - Jitter concerns in periodic task systems - Proc. of the 18th Real-Time Systems Symposium (San Francisco, CA, 1997).

[4] Blazewicz (J.) - Scheduling dependent Task with Different Arrival Time to Meet Deadlines - Modelling performance Evaluation Computer Systems , E. Geslende ed., 57-65, 1976.

[5] Chetto (H.), Silly (M.), Bouchentouf (T.) - Dynamic Scheduling of Real-Time Task under Precedence Constraints - Real Time Systems, 2, 181-194, 1990.

[6] Cheng (S.-T) and Chen (C.-M.) - A cyclic Scheduling Approach for Relative Timing Requirements - Proc. of the 3rd IEEE Real-Time Applications Workshop, p. 160-163, 1996.

[7] Choquet-Geniet (A.), Geniet (D.), Cottet (F.) - Exhaustive Computation of the Scheduled Task Execution Sequences of a Real-Time Application, Proc. of 4th International Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems, Uppsala, Sweden, 11-13/9/96.

[8] Ferrari (D.) - Client requirements for real-time communications services - IEEE Communications, 28(11), 1990.

[9] Jery (A.J.) - The Shannon sampling theorem: its various extensions and applications a tutorial review - Proc. of the IEEE, vol. 65, n° 11, p. 1565-1596, 1977.

[10] Leung (J.Y.T.) and Merril (M.L.) - A note on preemptive scheduling of periodic real-time tasks - Information Processing Letters, vol. 11, n° 3, p. 115-118, 1980.

[11] Liu (C.L.) and Leyland (J.W.) - Scheduling algorithms for multiprogramming in a hard real-time environment - Journal of the ACM, vol 20, n° 1, p. 46-61, 1973.

_987427488.unknown

