TASK AND MESSAGE PRIORITY ASSIGNMENT IN
AUTOMOTIVE SYSTEMS

Michaél Richard, Pascal Richard, Francis Cottet

Laboratory of Applied Computer Science, ENSMA
BP 40198 Téléport 2
F-86960 Futuroscope
{richardm,richardp,cottet} @Qensma.fr

Abstract: We study in this paper the priority assignment problem for a multiple
fieldbus computer architecture in automotive systems. In such systems, tasks and
messages are on-line scheduled according to fixed priorities given by the designers. We
present a branch and bound algorithm that automatically searches a set of priorities
so that all tasks will meet their deadlines. The schedulability analysis is based on
the computation of the worst-case response times of the tasks and the messages. The
method uses the holistic analysis, that has been modified in order to be integrated
in our branch and bound. The method has been applied to an industrial case: the
multiple networked in-vehicle embedded system. Numerical results are presented
and show the efficiency of the presented approach for complex distributed real-time

systems.

Keywords: Multiple Fiedlbus Architecture, Fixed-Priority Scheduling, Priority
Asgsignment, Branch and Bound, Automotive Distributed Systems.

1. INTRODUCTION

The use of communication networks in modern
factories or in embedded real-time applications is
rapidly increasing. Although the communication
device adds a critical resource to the system, the
distributed approach for a real-time application
is the main key to handle the complexity of a
large system and to improve fault tolerance in
safety critical applications (Kopetz, 1997). These
applications are composed of tasks distributed on
different nodes, that communicate by exchang-
ing messages across a communication device; no
common memory is available. In such application
domains, a distributed hard real-time application
is an application that must return coherent results
in a fixed delay, namely a strict timing constraint.
All application tasks must meet their deadlines,
and the exchanged messages have to be sent in
a bounded delay in order to be consumed by
the destination tasks in time. Particularly, in the

area of embedded process automation, the most
stringent demands have their origin in the require-
ments of the control loops. The duration of the
real-time transaction between the sensor nodes
and the driver nodes is an uppermost important
parameter for the quality of control.

Under this framework, the used networks, named
fieldbuses, have been developed with the spe-
cific requirements of tight real-time capabilities
(Thomesse, 1999). Fieldbuses have to strive to
respect deterministic response times. Prominent
European fieldbus examples, targeted for auto-
motive real-time applications, are the CAN (Con-
troller Area Network) and the VAN (Vehicle Area
Network) (ISO, 1994a; ISO, 1994b). Both cor-
respond to the medium access control protocol,
based on the CSMA/CA (Carrier Sense Multiple
Access Collision Avoidance) protocol. Although,
our work can be applied to other real-time com-
munication protocols, we focused this presenta-

tion on these two fieldbuses, used in the considered
example car application. In some cases, the max-
imum communication capacity can be reached or
the application, including both critical and non-
critical system functions, must ensure that non-
critical nodes cannot affect the correct operation
of critical ones. To solve these problems, a node
can be transformed into a gateway node to open
a way to a new fieldbus; so we obtain a multiple
network architecture. This solution offers a much
more communication potential and/or is able to
support a separation between critical and none
critical communications.

Schedulability analysis of hard real-time dis-
tributed systems can only be done using a
worst-case analysis since no necessary and suffi-
cient schedulability condition is known for fixed-
priority-driven scheduling of such systems. When
priorities are a priori known, the schedulability
analysis is usually based on the computation of
the worst-case response times of the tasks and
the messages in order to guarantee the end-to-
end deadlines (Buttazzo, 1997). In that way, the
holistic analysis (Tindell and Clark, 1994; Sjédin
and Hansson, 1998; Richard et al., n.d.) leads to a
sufficient schedulability condition for distributed
systems with totally defined schedulers on each
processor and each network. The priorities are
input data of the holistic analysis when a fixed
priority scheduler is considered.

An important issue is the assignment of the pri-
orities to the tasks and the messages in order to
enforce the schedulability of the system. Choosing
a set of priorities for a small system is a simple
job and does not required any computation tool.
But for large system, as such considered in today’s
automotive systems, defining the set of priorities
becomes very difficult. Bad choice leads to an
unschedulable system that enforces the design-
ers to overdimension components. Consequently,
the cost of the system increases and that is not
acceptable in the automotive industry. Several
heuristics have been proposed in the literature
for solving this problem (Gutierrez-Garcia and
Gonzalez-Harbour, 1995; Tindell et al., 1992; Silva
and Fraga, 2000; Dipippo, 2001). But from the
best of our knowledge, no optimal method has
been proposed in the literature. Next we propose
such a method, based on the holistic analysis as
a schedulability test. So, in the remainder of the
paper we limit to ”holistic schedules” (i.e., sched-
ules that will be validated by the holistic analysis).
Our algorithm always find a set of priorities for
the tasks and the messages, if a feasible holistic
schedule exists.

The rest of the paper is organized as follow: in
section 2, we present the industrial application
that will be used throughout the text. The section

3 presents the branch and bound algorithm that
optimally assigns priorities to the tasks and the
messages. Section 4 presents the computational
results. Section 5 summarizes the conclusions of
the paper and indicates some future works.

2. COMPUTER ARCHITECTURE OF
AUTOMOTIVE SYSTEMS

Even if introducing real-time techniques in vehi-
cle industry is still rare (Norstrém et al., 2000),
nowadays car manufacturers integrate more and
more micro-controllers that manage the breaks,
the injection, the performance, and the passen-
ger fitness (Cavalieri et al., 1996; Castelpietra et
al., 2000; Song et al., 1999). For instance, the aims
of the engine control system are to manage the
engine performance in terms of power, to reduce
consumption and to control the emission of ex-
haust fumes. This control is obtained by sending
computed values to the actuators: electronic injec-
tors, electromagnetic air valve for managing idling
state of the engine (i.e. the driver do not acce-
larate) and fuel pump. The ABS system prevents
the wheels from blocking when the driver brakes.
The system must also take into account sudden
variation in the road surface. This regulation is
obtained by reading periodically the rotation sen-
sors on each front wheel and this one for the back
wheels (usually measured from the differential). If
a wheel is blocked, then the ABS system directly
acts on the brake pressure actuator. Table 1 de-
scribes the functions of the different processors.
Complementary information on the process con-
trol functionalities can be found, for instance, in
(Cavalieri et al., 1996).

These processors are interconnected with differ-
ent fieldbuses such as CAN and VAN. In order
to improve reusability of software components,
the processors run common operating systems, as
OSEK/VDX (Osek, 1997). Such approach dras-
tically reduces the software development costs.
The operating system defines task modules that
are scheduled by a fixed priority scheduler. These
priorities are given by the designers of software.
In the same way, the messages sent in the net-
works CAN and VAN are scheduled according to
fixed priorities, defined by the designers. Figure 1
presents the software architecture and relations
among tasks considered throughout the paper
(Castelpietra et al., 2000). The software has 44
tasks distributed among the nine processors and
19 different messages go through the two net-
works.

Fixed-priority and static scheduling can be used
in this field of applications (Lonn and Axels-
son, 1999). In static scheduling, a pre-run time
scheduler calculates a cyclic schedule that is in-

VAN

5
o
- S,
>
M7

1

5

3
Cope

CAN

Fig. 1. Software architecture of the application

Processor sites Number
Engine Controller 1
Automatic Gear Box 2
Anti-Blocking Brake System/
Vehicle Dynamic Control 3
Wheel Angle Sensor/
Dynamic Headlamp Corrector 4
Suspension controller 5
Bodywork 6
X 7
Y 8
Z 9

Table 1. Number of each processor

finitely repeated at run-time. The pattern of this
cyclic schedule is stored in tables (one per pro-
cessor or network), that is used by the run-time
dispatchers. This approach can be extended in or-
der to handle interrupts (Sandstrom et al., 1998).
The first drawback is the size of the table that
is directly related to the least common multiple
of the task periods (but, methods have been pro-
posed in order to limit this problem (Cavalieri et
al., 1995; Liu, 2000)). Secondly, such scheduling
approach is based on a strong synchronization as-
sumption of the physical clocks of the processors.
The third problem is that commercial software
components do not incorporate such dispatching
strategies. Such problems are not encountered in
fixed-priority systems. Furthermore, the operating
system OSEK/VDX, used in automotive industry,

has a fixed-priority scheduler. That is why we only
focus on fixed priority scheduling.

We assume that tasks are periodic, preemptive
and synchronously released at the beginning of
the application (i.e., at time 0). Each task 7; is
defined by three parameters:

e (; is the worst-case execution time.

e D, is the relative deadline to the arrival of
the task.

e T; is the period between two successive ar-
rivals of the task in the system.

The communications of the periodic tasks gener-
ates periodic traffic on the networks. A message is
modelled like a task by three parameters. So, for a
given message ¢, C; is the worst-case propagation
delay of the message and the deadline D; and the
period T; are inherited respectively of its receiver
and sender. Without loss of generality, we next as-
sume that deadlines are not greater than the peri-
ods in order to simplify the mathematical relation
of the worst-case response times. In this embedded
vehicle application, the first arrival time is fixed
to zero for every task. The mapping of the tasks
on the processor is static and known before the
beginning of the application. For a processor, or
network, numbered p there are n, tasks mapped

on it. So the total number of tasks and messages
isn=> n,.

From the schedulability point of view, networks
are viewed as additional processors and messages
as new non-preemptive tasks with completion
times defined by the worst-case propagation de-
lays. In next sections, we neither distinguish tasks
and messages, nor networks and processors. From
this model of the software system, the communi-
cation constraints are modeled with simple prece-
dence constraints among distributed tasks.

3. ASSIGNING PRIORITIES TO TASKS AND
MESSAGES

We present a branch and bound algorithm that
solves the priority assignment problem. The search
of a solution is performed with a search tree that
stores all possible permutations to priority assign-
ments to the tasks. Each vertex in the tree assigns
a priority to a given task. The assignments are
done processor by processor and every underlying
sub-trees are separated by a fictitious root vertex.
Processors and networks are order in the search
tree in increasing order of the workload of their
mapped tasks. Such ordering is in fact an heuristic
since any ordering can be implemented, but it
affects the performance of the method (i.e., the
number of backtracks). For each processor, the
priorities are assigned from the lower one to the
higher one. So, the levels of a sub-tree define
the priority levels of tasks on the corresponding
processor. The global structure of the search tree
is presented in figure 2. When a goal vertex is
reached, each task has been assigned a priority
on a processor. The algorithm stops when such
assignment is validated by the holistic analysis.
As consequence, the method limits the search to
feasible holistic schedules.

Table 2 presents the pseudo-code of the branch
and bound algorithm. The unexplored vertices
are stored in the Active Set A. The root vertex
of a sub-tree (dedicated to a given processor) is
initialized with all possible tasks eligible to the
lowest priority level. We now describe the different
rules that define the branch and bound search
strategies.

e The vertex selection rule selects the next vertex
to be explored. Different strategies are commonly
used in the literature: First-In-First-Out (FIFO)
and Last-In-First-Out (LIFO). The LIFO strategy
performs a depth-first search in the tree, FIFO
a breadth-first search. Since breadth first search
focus on searching a solution in the lowest possi-
ble vertex level, it is inadequate for solving our
problem (complete solutions are always in goal
vertices). Furthermore, the breadth-first search is

known to be inefficient for multiprocessor schedul-
ing (Jonsson and Shin, 1997). So, LIFO strategy
has been implemented.

e The vertex branching rule generates child ver-
tices of the explored vertex and stores them in the
set B. Two cases have to be considered according
to the development of the current sub-tree. If
there is some task without priority in the current
sub-tree, then a vertex is generated to each of
these tasks with the next priority level in the sub-
tree. If every task has a priority, then the first
priority level of the next processor is generated
(eligible tasks to the lowest priority level). If the
last processor is already considered, no new vertex
is generated. The set B is sorted with the Dead-
line Monotonic rule (i.e. non-decreasing order of
the relative deadlines). Thus with the depth-first
search strategy, the first goal vertex reached is this
one that assigns priorities according to the Dead-
line Monotonic scheduling rule for each processor
or networks.

e The Lower Bound cost functions are used to
estimate lower bounds of the worst-case response
time of the tasks. For every explored vertex, a
lower bound is computed for every task (having
or not a priority). For that we have modified
the holistic analysis in order to take into account
tasks without priorities. The release jitter J; of
a task 7; is the difference between the release
of a task and its arrival in the system. It mod-
els the worst-case phasing of a task due to its
incoming communications. This worst-case phas-
ing for a task 7; depends directly of the worst-
case response times of its immediate predecessors,
noted hereafter Pred(i). Lower bounds (LB) of
the worst-case response times are evaluated for
fixed values of release jitters. After that, release
jitters are updated according to the new values of
the worst-case response times. This fundamental
loop is done until two successive iterations lead to
the same worst-case response time for every task.
The system of recurrent equations associated to
the vertex v of the search tree is:

79 =0

1<i<nd R =1LB (i7‘]i(k71) (1)
JR — R
¢ j Enzl)?z(d(i)(J)

R; = R¥ = R{*Y
Obviously, the LB functions must be non de-
creasing to enforce the convergence of the whole
system. These functions depend on the schedulers,
that may be different from one processor to an-
other. For instance, the processor modeling the
CAN network uses a non-preemptive fixed priority

fictitious
root

Fig. 2. Structure of the search tree

> proc1 increasing priorities
in the sub tree

> proc 2

Algorithm Branch and Bound

While A # ¢ Loop

Calculate the lower bounds for each vertex in B.

NSOk W e

If it exists a goal vertex in B STOP

®

End Loop

Initialise Active Set A with vertices 1..n; corresponding to tasks with lower priority level for the first processor

Select a vertex in A according to the vertex selection rule
Generate a set B of child vertices according to the vertex branching rule.

Eliminate vertices in B according the vertex elimination rule.

Else moves all remaining vertices in B to the active set A.

Table 2. Pseudo-code of the Branch&Bond algorithm

scheduler and a processing unit allows preemption
for running tasks. We now successively detail the
lower bounds for processing units and networks.

- Lower bounds of worst-case response times for
processing units:

The current vertex defines a set of priorities for
all its ancestors, but all the other tasks have not
been assigned priority levels. Note that [4] is the
index of the tasks having the priority level i.
Worst-case response time of a task is obtained
in a processor busy period where all the higher
priority tasks are simultaneously released at the
beginning of the period. Such scenario defines the
worst-case computational interference of higher
priority tasks. At a given iteration of the system
1, J; is a lower bound of the worst-case release
jitter. According to this scenario, a lower bound of
the worst-case workload of the processor running
tasks with priority levels greater or equal than
i in the interval [0,¢) is given by (Tindell and
Clark, 1994):

If the task 7; has no priority, then we cannot
evaluate the interference of higher priority tasks
since priority levels are assigned in increasing
order in the search tree. So, a lower bound is
obtained by assuming that the task 7; is assigned

the highest priority level. The lower bound of the
workload in the interval [0,1) is:

W(t) = C (3)
In both cases, the length L; of the busy period is

defined by a recurring equation that computes the

length of the i-level busy period (Lehoczky, 1990).

Computations stop when L; = Likfl) = Lgk).

1

© _

L =3y
j=1

L = w (1)

(4)

The response time of 7;, while considering the
explored vertex, is: R; = J; + L;.

- Lower bounds of worst-case response times for
the networks:

The only difference is due to the non-preemptive
dispatching strategy. Messages are scheduled us-
ing the fixed priorities defined in the explored
vertex. Two cases must be considered according
to whether the messages have been assigned a
priority or not in the current vertex. The tech-
nique presented in the preemptive case can be
applied for computing a lower bound of the worst-
case response time of the messages, but it must
be adapted in order to take into account the

fact that a lower priority messages can be sent
just before the beginning of the i-level busy pe-
riod. This worst-case phasing is bounded to the
longest message among lower priority ones. If n,
is the number of messages defined for the network
number p, then the message with priority level 4
suffers interference from messages with higher or
equal priority that is lower bounded by (Tindell
et al., 1995):

i—1
t+ T
W®=%+Z[ﬂﬁkh (5)

j=1
(Crwy)

+ max
k=i+1..n,

If the priority of a message number i is not known,
a lower bound of its worst-case response time is
obtained by considering that it should be assigned
the highest priority level. That is to say:

W(t)=Cy+ max_ (C)) (6)

J=1..mp,j#i

These lower bounds can lead to the worst-case
response time of the messages using the system
of equations (4). As in the preemptive case, the
worst-case response time is R; = J; + L;, associ-
ated to the current explored vertex in the search
tree. According to these lower bounds, we prove
that the Branch&Bound method is optimal (in
respect to holistic schedules). That is achieved
if, and only if, the lower bounds of the worst-
case response times are non-decreasing in every
directed path in the search tree.

Property 1. Let T = (V,E) be the search tree
built by the branch and bound algorithm, V' be
the set of vertices and E be the set of edges, then
Va,b € V2 such that a < b in the search tree then
R < R, 1 <i <mn, where R} (resp. R?) denotes
the lower bound of the worst-case response time
of task 7; while considering the vertex a (resp. b).

Proof: We consider an arbitrary path in the search
tree, let a and b be two vertices of this path.
Without loss of generality, we assume that a < b.
We consider two cases according to whether a and
b belong to the same sub-tree or not.

If @ and b do not belong to the same sub-tree,
then the response time R? can only depend on the
release jitters. The system (1) is used and enforces
release jitters to be non-decreasing for every task.
So lower bounds of the worst-case response times
are also non-decreasing. So we observe that R{ <
RL1<i<n

If a and b belong to the same sub-tree, then
vertices a and b model the priority assignment
of tasks on the same processor. Without loss of
generality, we consider an arbitrary task ;. If ;

has a priority for vertices a and b, then worst-
case response times can only change due to the
increase of some release jitters. Since in (1) the
LB functions are non-decreasing according to the
release jitters, we verify that R} < Rf, 1< <n.
Now, if 7; has a priority in vertex b and not in
vertex a, then the lower bounds of 7; are not
computed using the same formula. In preemptive
case, bounds (3) is necessarily lower than or equal
to this one computed using (2). In non-preemptive
case, if a task 7 leading to a blocking effect in
(6) is not the same than in (5), then 74 have an
higher priority than 7;. So bounds computed by
these computed by (6) is necessarily lower than
or equal to (5). Finally, we verify that:

R{ <R}, 1<i<n (7)

e The vertex elimination rule is applied after
computing the lower bounds of the worst-case
response times of the child vertices of the ex-
plored vertex. A child vertex would lead to a fea-
sible schedule (according to the holistic analysis
performed on the goal vertices) if, and only if:
R; < D;,1 <1 <n.If one task has a lower bound
of its worst-case response time greater than its
relative deadline, then no successor vertex will im-
prove its response time since the lower bounds are
non-decreasing functions (i.e., property 1). The
considered child vertex can be pruned (deleted).

4. SOLVING EFFICIENCY

In order to prove the performance of the algorithm
we have randomly generated workload for tasks
and messages, while exactly respecting the global
architecture presented in section 2 (i.e. number
of tasks and messages, number of computers and
networks, precedence relations between tasks and
messages are definitely fixed). The parameters of
each task or message have been randomly gener-
ated according the classical uniform law in order
to reach a given workload of the processors and
the networks, fixed by the utilization factors. De-
pendent tasks have been assigned the same period
and end-to-end deadline. Because, if dependent
tasks do not work at the same rat, sooner or later,
the slowest task will miss its deadline. Thirty
problems have been generated for each interval of
workload of the processors and networks ([0.2-0.3]
to [0.8-0.9]). The branch and bound was stopped
after one hour of computation.

Figure 3a reports the number of problems (among
the thirty generated in each workload interval)
that leads to a feasible/unfeasible schedule or that
has not been solved after one hour of computation.
Furthermore, this chart shows that some systems

have been shown schedulable with a workload be-
longing to the interval [0.5, 0.6] on each processor
(site). The sufficient schedulability test performed
in the branch and bound procedure does not lead
to an overly pessimistic estimation of the behavior
of the distributed application.

Figure 3b shows the average resolution times of
the branch and bound algorithm. As it can be
remarked, the worst-case computation times are
obtained for intermediate workloads of processors
and networks. These results show that the priority
assignment, problem is ’easy’ to solve when the
utilization factors are low or high on the networks
or the processing units. But in the intermediate
cases of workload, the method needs high compu-
tational time in order to find a feasible solution.
It illustrates the interest of our branch and bound
since optimality cannot be achieved using heuris-
tic methods.

5. CONCLUSION

We have presented an optimal priority assignment
for fixed-priority tasks and messages in a auto-
motive computerized system. The architecture is
based on multiple fieldbus networks connecting
uniprocessor computation units. Tasks and mes-
sages are on-line scheduled according to fixed pri-
orities. The priority assignment is performed with
a branch and bound algorithm. Goal vertices are
proved schedulable or not using the holistic analy-
sis (i.e. a sufficient schedulability condition). The
solution space is modelled with a tree explored
using a depth-first search strategy. For every ex-
plored vertex, lower bounds of worst-case response
times are computed . These lower bounds are used
to prune unfeasible vertices (i.e., vertices that will
never lead to a feasible holistic schedule). The
lower bound scheme is based on the adaptation
of the holistic analysis for tasks without a priori
known priorities.

The perspectives of this work are first to extend
the method to the mapping of task for multi-
processor computation units simultaneously with
the calculation of the priorities for the tasks and
messages on every processor or network. In second
we want to take into account more complex rela-
tion among tasks as additional real-time traffic in
the networks, communication of tasks working at
different rates (generalized precedence constraints
(Richard et al., 2001)) and resource access proto-
col.

Last, we also want to compare our approach
with known heuristic methods on the number of
problems solved. It is an important issue, since
when a method do not find a set of priorities, the
system must be overdimension in order to meet
its timing requirements.

6. REFERENCES

Buttazzo, G.C. (1997). Hard real-time comput-
ing systems: predictable scheduling algorithms
and applications. Kluwer Academic Publish-
ers.

Castelpietra, P., Y.Q. Song, F. Simonot-Lion and
0. Cayrol (2000). Performance evalutation of
a multiple networked in-vehicle embedded ar-
chitecture. proc. Workshop on Factory Com-
munication Systems, Porto.

Cavalieri, S., A Di-Stefano and O. Mirabella
(1995). Pre-run-time scheduling to reduce
schedule lenght in the fieldbus environment.
IEEE Transactions on Software Engineering
21, 865-880.

Cavalieri, S., A Di-Stefano and O. Mirabella
(1996). Mappind automotive process control
on iec/isa fieldbus functionalities. Computers
in industry 28, 233-250.

Dipippo, L.C. (2001). Scheduling and priority
mapping for static real-time middleware. J.
Real-Time Time Systems 20, 155—182.

Gutierrez-Garcia, J.J. and M. Gonzalez-Harbour
(1995). Optimized priority assignment for
tasks and messages in distributed hard real-
time systems. proc. Workshop on Parallel and
Distributed Hard Real-Time Systems, Santa
Barbara.

ISO (1994a). Road vehicles - low speed serial data
communication - part 2: low-speed controller
area network. ISO 11519-2.

ISO (1994b). Vehicle area network, serial data
communication - road vehicle, serial data
communication for automotive application.
ISO 11519-3.

Jonsson, J. and K.G. Shin (1997). A parametrized
branch and bound strategy for scheduling
precedence-constrained tasks on a multipro-
cessor system. proc. Int; Conf. on Parallel
Processing (ICPP’97) pp. 158-165.

Kopetz, H. (1997). Hard real-time systems.
Kluwer Academic Publishers.

Lehoczky, J.P. (1990). Fixed priority scheduling
of periodic task sets with arbitrary deadlines.
proc. IEEE Real-Time Systems Symposium.

Liu, J.JW.S. (2000). Real-time systems. Prentice
Hall.

Lonn, H. and J. Axelsson (1999). A comparison of
fixed-priority and static cyclic scheduling for
distributed automotive control applications.
proc. Euromicro on Real-Time Systems.

Navet, N. and Y.Q. Song (1999). Reliability im-
provement of the dual priority protocol under
unreliable transmission. Control Engineering
Practice 7, 975-981.

Norstrom, C., M. Gustafsson, J. Maki-Turja and
N-E. Bankestad (2000). Findings from intro-
duding state of the art real-time technics in
vehicle industry. proc. Euromicro on Real-
Time Systems, Stockohlm.

#problems
35

30

\ g L

25

20

15
10

| FAAN

0 ——

0,1-02 0,2-03 03-0,4 0,4-05 05-0,6 06-0,7 0,7-0,8 0,8-0,9

—«&—schedulable Workload
—@— Unschedulable

—aA— Not solved (1h)

Resolution Time(seconds)

400

350

300

250

200

150

100

50

0

0,1-0,2 0,2-0,3 0,3-0,4 0,4-0,5 0,5-0,6 0,6-0,7 0,7-0,8 0,8-0,9

workload

Fig. 3. Number of problems solved in 1 hour (3a) and Average resolution time in seconds (3b)

Osek
(1997). Osek operating system, version 2.0r1.
http:/ /www-iiit. etec.uni-karlsruhe.de/ osek/.

Richard, P., M. Richard and F. Cottet (2001).
On-line scheduling of real-time distributed
computers with complex communication con-
straints. proc. 7th IEEE Int. Conf. on En-
gineering of Complex Computer Systems
pp- 26-34.

Richard, P., M. Richard and F. Cottet (n.d.).
Analyse holistique des systmes temps rél dis-
tribus : principes et algorithmes. Calculateurs
Paralléles,Réseaux et Systémes Répartis , to
appear.

Sandstrom, K., C. Eriksson and G. Fohler (1998).
Handling interrupts with static scheduling
in an automotive vehicle control system.
proc. Int. Conf. on Real-Time Computing
Systems and Applications (RTCSA’98), Hi-
roshima (Japan).

Silva, R. and J. Fraga (2000). Fixed priority
scheduling of tasks with arbitrary prece-
dence consrtaints in distributed hard real-
time systems. Journal of System Architecture
46, 991-1004.

Sjodin, M. and H. Hansson (1998). Improved re-
sponse time analysis calculation. proc. IEEE
Real-Time Systems Symposium.

Song, Y.Q., F. Simonot-Lion and N. Navet
(1999). De I’évaluation des performances du
systemes de communication a la validation de
I’architecture opérationnelle - cas du syseme
embarqué dans ’automobile. Summer school
on Real-Time Systems, Poitiers (France).

Thomesse, J.P. (1999). Fieldbuses and interoper-
ability. Control Engineering Practice 7, 81—
94.

Tindell, K.W., A. Bruns and A.J. Wellings (1995).
Calculating controller area network (can)
message response times. Control Engineering
Practice 3, 1163—-1169.

Tindell, K.W., A. Burns and A.J. Wellings (1992).
Allocating hard real-time tasks: an np-hard

problem made easy. J. Real-Time Time Sys-
tems 4, 145-165.

Tindell, K.W. and J. Clark (1994). Holistic
analysis for distributed hard real-time sys-
tems. Microprocessors and Microprogram-
ming 40, 117-134.

