A Methodology for Transforming Sequential Flowcharts
into Parallel OnesUsing FIFO Nets

Annie Choquet-Geniet, L.1.S.1., EN.SM.A., 86960 Futuroscope Cedex, France
Tel 334949 8068 - Fax 3349 49 80 64 - E Mall ageniet@diane.univ-poitiers.fr

Dominique Geniet, L.1.S.1., EIN.SM.A., 86960 Futuroscope Cedex, France
Tel 3349498062 - Fax 3349 49 80 64 - E Mail dgeniet@diane.univ-poitiers.fr

René Schott, C.R.I.N., Université de Nancy 1, 54506 VandoamelesNancy Cedex, France
Tel 3383593041 - Fax 33 83 27 83 19 - E Mail schott@loriafr

0O Abstract

We present a methodology based on Fifo nets, for the transformation of flowcharts modeling
sequential programs into flowcharts integrating all semantically equivalent behaviours, both
sequential and parallel. The model of fifo nets is appropriate  since fifo nets model the test to
zero problem (required for the modeling of loops of not predined size), and integrate
scheduling (required since some actions must occur in a given order). We describe the
compl ete transformation, and show that the fifo nets got provides a concise representation of the
set of the behaviours semantically equivalent to the behaviours of the sequential flowchart.

Proc. of 15t International Conference on Computing and Information
Petersborough, Ontario, Canada, 7/1995
pp 177-190



mailto:ageniet@diane.univ-poitiers.fr
mailto:dgeniet@diane.univ-poitiers.fr
mailto:schott@loria.fr

1 Introduction

The design of a parallel program can be got in two ways: either one specifies directly the
paralelism, using a paralel language; or one first writes a sequentia program, and then
transforms it into a parallel one, with the help of appropriate tools. Since the design of a
sequentia program is much easier asthe design of a parallel one, the second approach appears
as more attractive, and efficient tools are still needed.

Our investigation field corresponds to this approach. We present a methodology for
transforming the flowchart modeling a sequentia program into a flowchart which collects all its
semantically equivalent behaviours (sequential as well as parallel). This approach is based on
Fifo nets.

Others approaches have been developed, e.g. [C91][C92][CP93][F92]: in all of them, the first
step consists of the construction of a semantic graph of precedence of the tasks; in addition,
[C91] uses scheduling tools; in [F92], the graph is used in order to transform the control
structure of the program, the parallelisation is then performed on the transformed program.
[C92] and [CP93] uses the trace monoid. One must notice that the programs concerned by
these papers are composed of basic statements and for loops (i.e. of pre-defined size). Finaly,
the goal of these approachs is the production of one particular parallel version of the initia
sequential program.

We are interested in an exhaustive modeling of all the behaviours generated by a sequential
program, i.e. al the behaviours which are semantically equivalent.

Several tools for modeling parallel programs have been developed. Among them, let us mention
synchronised automata [AN82], Petri nets [P62], and Fifo nets [M83].

Our aim is to provide a tool for transforming the sequential flowchart of a program into a
parallel one, for programs composed of elementary statements and while loops (the number of
iterations is not pre-defined). This model must collect both sequential and parallel behaviours of
the program. Once built, it can be studied off-line (for example, the marking graph can be built)
for the generation of code; or on-ling for driving the software. We have chosen the model of
fifo nets, for they integrate the notion of scheduling (respect of the order) and the test to zero. If
we use an operational semantics which allows onefiring at once, the model generates the set of
sequential behaviours of the program. A vectorial operational semantics gives the set of parallel
behaviours. This approach goes back to [R86]. We extend and precise it.

This paper is organized as follows: in section 2, we present the modeling of sequential
programs, and we defined the set of semi-equivalent programs, with the help of a conflict
relation; in section 3 two examples are proposed; in section 4 we present the model of fifo net,
and describe the construction of the fifo net modeling the set of semi-equivalent behaviours.
Finaly, section 5 givesthe main properties of the model.

2. Sequential programs

1. Modeling

A sequential program can be classically represented by the use of a finite automaton [E76],
called sequential flowchart. Each transition of the automaton is labelled by an atomic statement.



An imperative statement a is represented by the scheme Oi>O’ If Cond Then...Else... by
Cond Cond

Cond Cond O—0
O<—0O—-andaloopby — A e} i

Example
Gt (X) ;

IC?t Wy
X
Then>y Get(x)i)

Wi | e x>y
Loop Get(y)J+
Xi=x-1; )
End Loop ;
H se
Put (x+y) ;

_ Figure 1: Sequential program
Notations
We denoteby ¢ the set of test statements of a program, and by | the set of imperative statements.
Each test plJ& generates two transitions, labelled by p1 and pp, corresponding respectively to
PTrue @d prase. Let {1 and &2 be the sets generated in this way. We define two mappings
h;:& - &j,p— pi. The alphabet of the flowchartisZ =1 [0 &1 0 2. We denote the fact that aisan

internal statement of loop B by a [ B (the test p of B is considered as an internal statement
t00).
2. The conflict relation

We are interested in whether the temporal order of two statements in the execution of the
algorithm is essentia for the correctness of the program. If not, the statements can be performed
inparalel, or their order can be commuted. We express this by relations on the statements of
the program.

The dependence relation D (Bernstein relations)

Within a program, some actions act on common variables and may not therefore occur
simultaneoudly, or be permuted. Meanwhile, some others may, since they act on separate

variables. Thisis represented by the dependency relation (which is symmetric) defined on (§ O

x@Eol.

Let s be astatement, Ws (resp. Rs) the set of variables of the program modified by s (resp. read
by s). sandt areindependent if and only if s neither reads or writes on any variable modified
by t, and conversely.



Definition1:sDt « (Wsn (W ORy) )0 (W n (WsORg) )# 0O

The dependency graph represents the dependency relation combined with the effective order of
occurrence of conflicting actions: a — b means that a and b are conflicting and a occurs

before b in the sequential program. The dependency relation is the symmetric closure of the
non symmetric relation represented by the graph.
Exarple For this program, the flochart is given in figure 2a. The

dependency relation D is{(a, p), (p.2), @ ©), (c, a), (b,d), (d, b),

() Gt (x); (b, €, (& b), €p) (p, 0, (d, €, (gd)}. The associated
() Gt (vy); dependency graph is given in Figure 2b.
(p) Wilex >0 c

Loop a—p—C
ggg X: =X- i ; d P, L A

=y +1; :f

End Lo):)p : Y _)C)ai Ob; P Oe; O b—>d—e¢€

(& Rt (y); . 2 L4
Figure 2a Figure 2b
Sequential flowchart Dependency graph

Figure 2: Dependency graph
Thisrelation, defined on & x (& O 1), is not symmetric. Let p be the test statement of a loop P

(we say that Pis governed p), and a an internal statement of P. The ith occurrence of a cannot
be performed before the ith occurrence of p has been performed (even if they are independent in
the sense of D) ; however, if thereis no dependency between a and p in the sense of D, a can

be delayed after the jth occurrence of thetest p, if j =i :
Occurrences of the loop

End of the
program

Beginning of
the program

[—

Non allowed Possible commutations
commutations

Figure 3: The delay relation

Definition 2 : Let P be aloop governed by p and a astatement: p Sa = aJ P

Remark

Sincep [ P, we havep Sp. This corresponds to the fact that every positive occurrences of the
test must occur before the negative one.

Example

Again with the program of Figure 2, we have S={(p, ©), (p,d), (o, p)}. Here, d can be delayed
after the next occurrences of the test p.

The precedency relation P



Thisrelation can be viewed as an extension of the dependency relation, where loops are seen as
meta-actions. Such a point of view enables a modular representation of the program (and thus a
modular processing of the flowchart).

1. Let P and Q be two loops respectively governed by p and q. p P g = an action of P
conflicts with an action of Q (according to D). This means that P and Q cannot commuite.

2. Let P be aloop governed by p and a an imperative statement. (p,a) 0 P = an internal action
of P conflicts witha (according to D): P and a cannot commute.

Definition 3: Let p and g be two test statements governing P and Q, and a an imperative
statement. Pisdefinedby p P q -« DadP,b 0 Q|aD b, and

pPa-0ObOpP|aDb

Here again, we represent by a graph, called precedency graph, the relation P, combined the the
order of occurrence of the loops in the program.

Example
Let us consider the following program :

Ea)) \%"t'( )EV) ;( )
ile Bven ( x
P Loop b| [p,c] [,
(b) Gt ((x); »(P;[—»QE—»O—I—

End Loop ; a —p, q,
(@ Wileadd ( x)

Loop P={(p,q), (.0), @p), €p), b,q), @ b)}
(o) X:=x/2;

End Loop ;

Figure 4 : The precedencerelation
The complete conflict relation is D O SO P, denoted DSP. The commutation relation is
(DSP)c, where .Cisthe complementary operator.
3. Class of semi - equivalence of a program

We are interested in al sequences of statements that can be derived from some executions of
the sequential program by the commutation (or parallelisation) of statements whose order is not
essential.

For technical reasons, we consider not only complete, but also partia executions of the
sequential program, i.e. each state of the flowchart isterminal.

We extend in anatural way DSP to arelation D SPeytended, definedony =1 0 &1 0 & let h
piUT,-p

‘(a,b) O DSPeyt =
alll - a @b) et
(h(a), h(v)) 0 DSP. We still denote D SPextenged by DSP.

be the morphism definedby h: 1 0T, 0T, - | DT,{



(a)
(P

(b)
()

We denote by L(A) the language of the flowchart.

Let w beaword of L(A),andw' O $*. w and w' are semi-equivalent = w' is obtained from w
by a sequence of allowed commutations :

Definition 4 : Two wordsw and w' are semi-equivalent if there exists a sequence
Wo =W, W1, ..., Wp = W' such that wj = vjabVv, wi+1 = vibavi, with (a, b) O DSP. We denote it by
WEA

The set of allowed behaviours of the program, denoted by B(A), is the set of words which are
semi-equivalent to aword of L (A). B(A) isasemi partially commutative monoid.

Remark

The set B(A) contains al the programs which have the same denotational semantics as the
sequential program.

3 Examples

1. Let us consider the following program

x:=0 b! !pl
Wi | e odd( Randong 100)) OH a—b—cC
Loop -3 p, ~C p-

X 1= X+l ; . .
End Loop ; Figure 5a Figure 5b
PUt (%) : Sequential flowchart Dependency graph
Figure5
The language of the sequential flowchart (Fig. 5 a) is L(A)=Pref(a.(p1.b)*p2c).
We have
kij kfj

0jO[1,i], 2 ng< 2 dy

B(A-Pefp ,"tab9ip, d2b%. . .p NibYp,bTine | . [ k;|i+|1(:l k=1
&Mk 2y A

We can notice that this language is not alanguage of Petri net.
2. Let us consider the following program, which computes x +y [R82]. We get :

c
(a) Gt (x); a b
gb; @ (y): d\ /P, ¢\ ﬁ\
P 1He x > oop
(¢ Xi=x- 1y _>Oa Ob pZO?O_F F;C "
‘@ End Lo)gp. . Y Figure 6a Figure 6b
(e Put (y); Sequential flowchart Dependency graph
Figure 6
4 Fifonets



We want to find a concise representation of B(A). The choice of fifo nets is motivated by the
fact that they integrate the notion of order and the test to zero.

The requirement of respect of the order isyielded by the relation DP. The test to zero appears
because of therelation S in the example of Figure 6, the occurrences of d could be delayed, but
the remaining number of occurrences of d must be null before e occurs.

1. Definition

Fifo nets [F82][M83][CF88][V C92] are extensions of Petri nets: places are replaced by fifos
(queues running in the First In First Out mode) and integers by words.

Definition 5 : A marked fifo net isdefined by (N, Mg), with N = (F, T, A, W), where F is a finite
set of fifos, T afinite set of transitions, A afinite alphabet,

W: FxTOT xF - A" thevaluation function and Mg : F - A" theinitial marking.

Thefiring rulesfor fifo nets are very similar to the firing rules of Petri nets: the order relation
on integers is replaced by the left factor (or prefix) relation, denoted by <g, the addition is
replaced by the concatenation (denoted by. ) of aright factor, and the subtraction by the deletion
of aleft factor.

Definition 6 : Let (N, M) be amarked fifo net and t atransition. t can occur (or is fireable) from
Mg iff :
Of OF, W(f, t) <g Mo(f). Thefiring of t leads to the marking M defined by :

O OF, W(f, t). M(f) = Mo(f). W(L,f). We denote it by Mg (t> M.

The notion of occurrence can, asfor Petri nets, be extended in a quite natural way to sequences
of transitions.

Example

Here, F= {fq,fo,f3}, T = {x,y,zt,u}. For
example, we have W(y,f3) = ab.

The initidd marking is Mg = (absg), and
we have Mg(xu> M = (g,ba,a).

Figure 7: A fifo net

2. From the flowchart to the fifo net
We suppose that A is aflowchart modeling a sequential program and 3 its alphabet.

We suppose the relation DSP computed. For simplicity, we reduce statements to atomic actions
and loops only, i.e. we consider the conditional statements as meta-actions. The construction
presented here is modular: loops are first considered as meta-actions, then, they are unfolded.

Thefirst step, before the effective construction of the net, consists of a dight modification of the
dependency graph, and of the definition of two functions defined on the set of tests statements,
which express quantitatively, in amodular way, the relation G.



1. Reduction of the dependency graph and of the precedence graph

Let G; be the dependency graph. We denote by G the reduced dependency graph, which is a
smallest graph having the same transitive closure than G1. We procede is the same way with the
precedence graph.

2. Meta-dependence and meta-precedencerelations

For the purpose of modularity, we consider the genera frame of the program
u1B1uzBs...unBnBn+1, Where B are loops governed by tests pj, and uj sequencesof imperative
statements. The loops B are of same level and we call meta-precedence graph the restriction of
the reduced precedence graph to {p1,...,pn}. In the same way, we associated a meta-
precedence graph to each inner program of each loop.

The meta-dependence graph is the reduced restriction of the relation DP to the set
R={aOl,di0{1,..., n+1}, Jula# O} O {pi,i=1,...,n}

(again combined with the order of occurrences).
3. Weights of an action
Let B bealoop governed by p.

We define the past-weight of p as the number of predecessors of p in the meta-precedence
graph containing p. This is the number of loops of the same level as B, whose termination
enables B to start. These loops are independent, and can be performed in parallel.

The inner-weight of an action is determined from the meta-precedence graph
of the inner program of the loop. It is the number of vertices without
successor in this graph. This is the number of independent loops whose
termination is followed by the next occurrence of the loop.

Remark

Since we dedl with undefined and thus possibly infinite loops, we will not
delay inner loops after the termination of the including loop, even if the w=3
Bernstein relation would alow it. Indeed, the next occurrence of thejgure 8: Weighs
including loop is conditioned by the termination of every inner ones.

We extend the past-weight function to the set of imperative statements. pw(a) is the number of
tests such that pj — *a in the meta-dependency graph, and there is no other test along the path. It
is the number of independent loops whose termination is followed by an imperative segment
containing a.

Example




(f)

(r)

(9)
(v)

(h)
W
(i)

(s)
(x)
)
()
(k)

oet(x) ;
whi | e odd(X)
[ oop
get(y) ;
oet(2) ;
vhi | e odd(y)
| oop
get(u) ;
wileynod 3=0
I oop
get(y) ;
end | oop ;
wileunod5/=0
I oop
get(u) ;
end | oop ;
end | oop ;
wile (z<0) or (z > 1000)
| oop
get(v) 5
whi | e prine(z)
I oop
0et(2) ;
end | oop ;
vhile not prine(v)
I oop
get(v) ;
end | oop ;
end | oop ;
vwileznody /=0
| oop
;/\hiley<0
get(y) ;
d | oop ;
wileznod 3=0
I oop
0et(2) ;
end | oop ;
:/\hilenot odd (u + V)
get(u) ;
get(v) ;
end | oop ;
end | oop ;
end | oop ;

Figure 9: Past-weight and Inner weight
We can now present the effective structure of the net

a Thetransitions

The program consists of
only one loop. The inner
program is composed of 3
loops, their dependence

graphis
N,
s

The loop (q) is composed
of 2 independent loops, the
same holds for the loop (r).
And the loop (s) consists
of 3 independent loops.

The past and the inner
weight functions are :

pw(p)=0, iw(p)=1;
pw(q)=0,iw(q)=2;
pw(t)=0, iw(t)=1, pw(u)=0,
Iw(u)=1;

pw(r) =0, iw(r) =2;
pw(v)=0, iw(t)=1,
pw(w)=0, iw(w)=1;
pw(S)=2,iw(s) =3 ;
pw(x)=0, iw(x) = 1;
pw(y)=0, iw(y)=1,
pw(z)=0, i(z)=1;

The set of transitions corresponds to the set of actions of the flowchart, i.e. T=). For each
statement a of the flowchart, there is exactly one transition labelled by a.

b.Places and fifos

A place Cp is associated to each test p.

A place Cyis associated to each imperative statement a, of past-weight not equal to zero.
To each pair (ab) of the reduced depedency relation G, we associate afifo Fap.

c.Valuation function and initial marking




Lcm denotes an extension of the classical definition : Ilcm(m,n) is the least common multiple if
m and n are positive, Icm(0,m)=m if mz0, lcm(0,0)=1.

The control structure

p1 and pp are output transitions of Cp, with W(Cp,p1)=W(Cp,pp)=p!cm(w(p).pw(p)). This insures
the synchronisation both with the precedent Ioops and with the inner loops. If the control place
Cp contains lcm(pw(p), iw(p)) occurrences of the letter p, then, either al the past loops have
term| nated and the first occurrence of the test can occur, or all the inner loops have terminated,
and the next occurrence of the test

may occur. Thus, we do not need to distinguish between the
different messages send by the different loops. If B contain
no internal loop, then p1 is an input transition of Cp:

W(p1, Cp) = p?V(CoPD) = ppw(p). Theoutput transitions of Cp
are determlned from the different loops of the program,
according to the following rules:

Connexions between loops of the same level

Let {B1, Bo, ..., Bn} bethe set of loops of the same level,
governed by p1, P2, ..., Pn. If pj isa predecessor of pi in trrlle
precedence W (Cy, piy) lem (iw (pi) pw (pi)) Feph Figure 10
W (pi2,Cu)=pi “pw (P =pi iy

Role of internal loops

Let Pbealoop governed by p, and L1, Lo, ..., Lm the interna loops of P (which may contain
themselves some other loops), governed respectively by q1, 92, ..., gm.

1. For each L such that gi has no predecessor inthe meta-precedence graph defined on the set
{0142,....qm}, W(py1, Cqg) = gilem(pw(@i).iw(ai)) (here, pw(qi) = 0).
2. If qi has no  successor in  the  precedence  graph, then

_ W (Cyp, p1) lem (iw (p) , pw (p))
WIQI p\ P iwfdy =p iw (p) .
Examples
The next figuresillustrate these different cases :

C
1. For the program of Figure 1, we get : p, D(—_EC)p—p’D p, Figure11
p

2. A program with aloop included in an other :

-10-



@ c:=3;

) Wilec 225 AZ/Q i‘
Loop

(b) d: =c+2; bql R p

@) Wi l e d # Random l

d

Loop Py d
© At (d) ; — <P
d i p_Line ; 2 y/‘\
End Loop ; q C
® ¢ : = Random;
End Loop ;
Program Flowchart Reduced dependency graph
pS
P1 D P2
The associated control net is q P
Q1 q 42
q Cq
Figure 12
3. Two consecutive dependent |oops
@ Gt (x);
(p) WHile Bven ( x )
0 Loop @t (x)
X);
( \%dl '-Oggd; pAba, a— p— b—>qgq—>c
C] Loz)pe ( x) — > 2( —
(0 X =x/2;
End Loop ;
Program Flowchart Reduced dependency graph
9 vCq a | pCep
Wehave p P q. We get the control net g1 a2 P2 mﬂpl

Figure 13
4. A program with aloop containing two consecutive independent |oops :



(9] Wile x >0

Loop
(@) Gt (x) ;
(b) y : = Random;
(© Zz : = Random;
P) Wile x £y
Loop
d y := Random;
End Loop ;
9 Wiile x £z
Loop
(® z: =Random
EndLoop;
EndLoop ;
Program

c—>q—>e

ql
r1
b—> p—d
Flowchart Reduced dependency graph
C
rrr

P1 I“. P2
The control net associated i |s r
P1 I-‘. [|P2
g Cq Co P r

Figure 14

5. With synchronisation. For the program of Figure 8, we get the control structure

pl P ppp2 P
q° I:‘ g > r2

The scheduling structure

Figure 15

-12-



Let Fap be afifo. Two configurations can be met:

i a e b
1. aand b are imperative statements, (a, b) O D. The scheduling pattern is 'z B, @: a and
a,

b are the only output transitions of Py p.
2. aisan imperative statement, b is atest (associated with the transitions by and by), (a,b) O D.

9,Ma
: . . " b L b
In this case, the scheduling pattern contains three transitions: E‘—(;:ll__]l .
Rib

Remark
Thereisno fifo P;p with a and b test statements, since two test statements cannot be conflicting
in the sense of therelation D.

The input transitions of F4p, their valuation and the initial marking of F5 are described by the
following agorithm:
L et pa denotes the deepest loop (i.€. its test action) governing an action ad¢l, i.e. ps#a, and

let p=0 if a belongsto the main program u1p;1...Unpnun+1. Furthermore, let pa>pp denote the
fact that the loop governed by p4 isaninner loop of the one governed by pp.

18t Case: (ab)0l2
We makes the distinction between the following situations (where W(p,Pap)=x has to be
replaced by Mo(Pab)=X, if p=0):

1. pa>pp: Let p be such that pa=p>pp, and p=p'>pp implies p=p'. Then, we add the
backwards arcs W(pa,,Pab)=b, and W(pa,, Pyp)=a.

2. pa=pb: Let W(pg, Pap)=ab.

3. Pp>Pa, OF Pa, Pp incomparable: Let W(pg,, Pap)=a, and W(py,, Pap)=b.

2ndcase : adl and b€

Itcorresponds exactly to the first case extended to an additional backword arc W(b1, P p)=b.
3d case: adJ& and bl

We consider five subcases, including in each case the arc W(pg,, Pap)=a (recall the special case
p=0):

1. pa=p>pp (With p asabove): Let W(ay, Pap)=a, and W(pp, Pab)=b.

2. pa=pb: Let W(ay, Pap)=a, and W(ap, P;p)=b.

3. (Pb>pa, and pp<a), or pa,Pp incomparable: Let W(ay, Pap)=a, and W(py,, Pap)=b.

4. pp=...=p>a (with p=p'>a, implying p=p'): Let W(by, Pap)=b, and W(py, Pap)=a

5. pp=a: Let W(ay, Pap)=ba

Synchronisation structure

- 13-



Each place Cg with a imperative statement, admits a as only output transition. The place Cy
takes the synchronisation into account, i.e. it enables the firing of transition a only if every loop

which directly precedes a (in the sense of DSP) has occurred. We have: W(Cg @) =
acm(0,pw(a)).

The control place of a is filled by the output transitions of the loops which directly precede a,
and emptied by transition a. The content of such places determine the behaviour of the net. In
the following, we describe how to fill these places.

Sarting sequence

We first extract a subset of actions of the program, containing the actions (imperative or test
statements) which can occur first, i.e. which do not use any result provided by any loop. We
then order these actions according to their order of appearance in the program, so we get a word
caled theinitial segment, denoted 5 :

aoccursin sy = aoccursin uplugp?2...pnunp+1 and pw(a)=0
Remarks

The sequence u1pl isaprefix of .

The set of actions which occur in sy can be deduced from the meta-dependency graph: a occurs
in s iff thereisasourcer of the graph (i.e. avertex without predecessor) such that there exists
apath fromr to a which contains no test statement (except a eventualy).

Contextual sequences

Each occurrence of atest gives rise to a sequence of actions. We associate to each test p two

segments, denoted by p* and p~, which correspond respectively to the positive and to the
negative aternative of p.

1. In order to get the negative segment p- , we proceed in the same way as for s, with the
restriction of the meta-dependency graph to the sub-tree with source p. This segment contains
the actions which can occur just after the loop governed by p has terminated.

2. In order to get the positive segment p* and the segments associated to the inner tests of the
loop B governed by p, we unfold B, and we proceed in the same way as described above with
the inner program of the loop.

Remarks

If an action must occur after the termination of several loops, i.e. it depends of interna actions
of several loops, then the past-weight of this action is the number of such loops, and this action
appears in the negative segment of each test.

We get in thisway 2m + 1 segments, if m isthe number of loops of the program.
Examples

1. Let us consider again the program of Figure 2. There is one loop, so we get 3 segments:
So=abp,pt=cd,p=e

2. If we consider the program of Figure 12, we get 5 segments:

So=ap,pt=bge, p=¢,q"=cd,qg=¢.

3.- If we consider the program if Figure 13, we get 5 segments:
So=ap,p*=b,p=q,d"=c,g=E¢.

-14 -



4. 1f we consider the program of Figure 14, we get 5 segments:

So=r,rr=abcpq,r=¢,pt=d,p=¢,g"=e q==¢.
5. Let us consider the next program:

(a)
(b)
(c)
(p)
(d)
(q)
(e)
(r)
(f)
(9)
(h)

get(x) ;
get(y) ;
get(z) ;
vwhile x < 0 | oop

X: =X+4;

vwhile y <0 | oop

y: =y+2,;

vhil e odd(z) | oop
z:. =12/2;

X =X+y;

X =X+2z;

end | oop ;
end | oop ;

end | oop ;

We get 7 segments :

So = abepar, pt=d, p = gh,
gr=eq=gh,rr=f,r=h,

and we have pw(g) = 2, pw(h) = 3.

We can now define theinitial marking as well as the missing valuations.
Remark

Oall,if aoccursin s, thereisno control place Ca,

Theinitial marking is defined by M(Cg) = alsls, where |sp|4 denotes the number of occurrences

of ain sy. S0, we have M(Cp) =

Let Pbealoop, p1 and pp its two associated actions, p*
and p" the segments associated to the test p. For each alp, clp,
place C, (a imperative action), we have W(py, Cg) = aP’la P P

gifadl
aifal T andaoccursinsg.

€ otherwise

- a~N P BAp
and W(pz, Cg) = aP'la. pJAP P
P1) > P2
Example >(p D
We consider again the program of figure 6. The past- prp €e
weights of the actions a, b, ¢, d are null (no control place Po.a (o b
for these actions) and the past-weight of eis equal to 1 d
(thereisacontrol place Cg). The whole net is as follows: d d e___e Ce
d—¢ Pae €

5. Properties of the model

Figure 16: A complete fifo net

In this section, we present the relation between the behaviours of the fifo net and the behaviours
of the flowchart. Frst, we do not lose any information in the sense that the fifo net's behaviours
contain the flowchart's behaviours. Then, every behaviour which is semi-equivalent to a
behaviour of the flowchart is also a behaviour of the fifo net. Conversely, the behaviours of the
fifo nets are only these ones. The model meets thus our requirement. The detailed proofs are

-15-



rather technical, we do not present them here. They can be found in the detailed version of this
paper.

From the flowchart to thefifo net

Every word accepted by the automaton (where each state is terminal) is a sequence of the net.
Let Prog be a program, represented by the flowchart A, and (N, M) be the associated fifo net.
The set of behaviours of A isthelanguage of A, L(A), and these of the fifo net the language of
the fifo net, L(N, My).

Proposition 1: L(A) O L(N, Mg)

We prove this result by induction on the length of the sequence of L(A).
Furthermore, every word which is semi-equivallent to aword of L(A) is also a behaviour of the
fifo net.

Proposition 2 : B(A) O L(N, Mg)

We consider two words uJL(A), and v such u [ |c]g] |
that u= v; we prove by induction on the length \|I|\|/

of the commutation chain which leads from u to SR |
v, that v aso belongs to L(N, Mo). Therefore, : :

we consider a sequence of commutations. W TaTe ]
The discussion lays then on the nature of the i

permuted transitions (imperative or test

statements). v [Bfa] |
From thefifo net to the flowchart Figure 17

Conversely, we have the following inclusion,
where LF(E) is the set of left factors, or prefix
of E:

Proposition 3: L(N, Mg) O LF(B(A))

We provethat 0 u O L(N,Mg), Ov, w | uv O L(N,Mg), w O L(A) and u.v = w. This result is
showed by induction on |ul.
Thus, we have the following theorem :

Theorem : LF(B(A)) = L(N, Mo)

6 Conclusion

We have presented a methodology for transforming the flowchart of a sequential program into a
flowchart (named object flowchart in the following) which collects al its possible behaviours.
This construction can be applied to programs which contain basic statements, and loops whose
iteration numbers can be not pre-defined.

The object flowchart must integrate scheduling (collect all the possible behaviours) and the test
to zero (not pre-defined number of loop iterations): it is a fifo net. Its construction is based on

-16-



the conflict relation induced by the semantics of the sequential program. This flowchart collects
exactly the set of possible behaviours of the program semantically equivalent to its sequential
behaviours.

Two main directions are natura for further developments of this work. The fifo-net obtained
can be analyzed by marking graph tools. Such analysis should help the optimization step when
compiling onto a parallel object code. On an other hand, the fifo-net contain the whole
scheduling control of the program. So, it can be used in in-line mode to drive the software,
whatever the physical topology of the used machine (time-sharing, parallél) is.

7 References

[AN82] A.Arnold, M. Nivat, Comportements de processus, LI TP Rapport nr 82-12, 1982

[C91] M.Cosnard, Parallélisation d'algorithmes. une méthodologie, L1P tech. report, 1991

[C92] C. Cerin, Automatic parallelization of programs with tools of trace theory, |EEE International
processing Symposium (IPPS), Beverly Hills, March 23-26 1992, pp 374-379

[CF88] A.Choquet, A. Finkel, Fifo nets without order deadlock, Acta Informatica 25, pp 15-36, 1988

[CPI93] C. Cerin, A. Petit, Speedup of recognizable trace languages, MFCS 93, GDANSK, Poland

[E76] S.Eilenberg, Automata Languages and machines, vol. A Academic press 1976

[F92] P.Feautrier, Techniques de parallélisation, chap. 17, in Y .Robert Ed., Ecole de printemps du LITP,
Masson, 1992

[F82] A. Finkel, Deux classes de réseaux a files: les réseaux monogenes et les réseaux préfixes PhD
Thesis, L.I.T.P. report nr 83-03, October 1982, Paris

[M83] G. Memmi, Méthodes d'analyse de réseaux de Petri, réseaux a files et application aux systémes
tempsréel, Thése d'état, University of Paris 6, June 1983

[P62] C.A. Petri, Kommunication mit automaten, Institite fir Instrumentelle Mathematik, Schriften des
IMM, nb 2, 1962

[R82] W. Reisig Petri nets, an introduction, Springer Verlag, 1982

[R86] G. Roucairol, Fifo nets, Advanced course in Petri nets, Badhonnef, 1986, LNCS 254, p 436 - 459

[VC92] G. Vidal-Naquet, A. Choquet-Geniet, Réseaux de Petri et systémes paralléles, Ed. Armand Calin,
Paris, 1992

-17 -



