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0 Abstract
We present a methodology based on Fifo nets, for the  transformation of flowcharts modeling
sequential programs into flowcharts integrating all semantically equivalent behaviours, both
sequential and parallel. The model of fifo nets is appropriate   since fifo nets model the test to
zero problem (required for the modeling of loops of not predined size), and integrate
scheduling (required since some actions must occur in a given order). We describe the
complete transformation, and show that the fifo nets got provides a concise representation of the
set of the behaviours semantically equivalent to the behaviours of the sequential flowchart.

Proc. of 15th International Conference on Computing and Information
Petersborough, Ontario, Canada, 7/1995
pp 177-190

mailto:ageniet@diane.univ-poitiers.fr
mailto:dgeniet@diane.univ-poitiers.fr
mailto:schott@loria.fr


1 Introduction
The design of a parallel program can be got in two ways: either one specifies directly the
parallelism, using a parallel language; or one first writes a sequential program, and then
transforms it into a parallel one, with the help of appropriate tools. Since the design of a
sequential program is much easier as the design of a parallel one, the second approach appears
as more attractive, and efficient tools are still needed.
Our investigation field corresponds to this approach. We present a methodology for
transforming the flowchart modeling a sequential program into a flowchart which collects all its
semantically equivalent behaviours (sequential as well as parallel). This approach is based on
Fifo nets.
Others approaches have been developed, e.g. [C91][C92][CP93][F92]: in all of them, the first
step consists of the construction of a semantic graph of precedence of the tasks; in addition,
[C91] uses scheduling tools; in [F92], the graph is used in order to transform the control
structure of the program, the parallelisation is then performed on the transformed program.
[C92] and [CP93] uses the trace monoid. One must notice that the programs concerned by
these papers are composed of basic statements and for loops (i.e. of pre-defined size). Finally,
the goal of these approachs is the production of one particular parallel version of the initial
sequential program.
We are interested in an exhaustive modeling of all the behaviours generated by a sequential
program, i.e. all the behaviours which are semantically equivalent.
Several tools for modeling parallel programs have been developed. Among them, let us mention
synchronised automata [AN82], Petri nets [P62], and Fifo nets [M83].
Our aim is to provide a tool for transforming the sequential flowchart of a program into a
parallel one, for programs composed of elementary statements and while loops (the number of
iterations is not pre-defined). This model must collect both sequential and parallel behaviours of
the program. Once built, it can be studied off-line (for example, the marking graph can be built)
for the generation of code; or on-line, for driving the software. We have chosen the model of
fifo nets, for they integrate the notion of scheduling (respect of the order) and the test to zero. If
we use an operational semantics which allows one firing at once, the model generates the set of
sequential behaviours of the program. A vectorial operational semantics gives the set of parallel
behaviours. This approach goes back to [R86]. We extend and precise it.
This paper is organized as follows: in section 2, we present the modeling of sequential
programs, and we defined the set of semi-equivalent programs, with the help of a conflict
relation; in section 3 two examples are proposed; in section 4 we present the model of fifo net,
and describe the construction of the fifo net modeling the set of semi-equivalent behaviours.
Finally,  section 5 gives the main properties of the model.

2. Sequential programs
1. Modeling
A sequential program can be classically represented by the use of a finite automaton [E76],
called sequential flowchart. Each transition of the automaton is labelled by an atomic statement.
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An imperative statement a is represented by the scheme a , If Cond Then…Else… by

CondCond
, and a loop by  

CondCond

.

Example
Get (x) ;
Get (y) ;
If x>y
Then

While x>y
Loop

x:=x-1 ;
End Loop ;

Else
Put (x+y) ;

Get(x)

Get(y) x>
y

x≤y Put(x+y)

x>y

x≤y

x:=x-1

Figure 1: Sequential program
Notations

We denote    by ξ the set of test statements of a program, and by I the set of imperative statements.

Each test p∈ξ generates two transitions, labelled by p1 and p2, corresponding respectively to

pTrue and pFalse. Let ξ1 and ξ2 be the sets generated in this way. We define two mappings

hi:ξ→ξi,p→pi. The alphabet of the flowchart is Σ = I ∪ ξ1 ∪ ξ2. We denote the fact that a is an

internal statement of loop B by a ∈ B (the test p of B is considered as an internal statement

too).

2. The conflict relation
We are interested in whether the temporal order of two statements in the execution of the
algorithm is essential for the correctness of the program. If not, the statements can be performed
in parallel, or their order can be commuted. We express this by relations on the statements of
the program.

The dependence relation D (Bernstein relations)
Within a program, some actions act on common variables and may not therefore occur
simultaneously, or be permuted. Meanwhile, some others may, since they act on separate

variables. This is represented by the dependency relation (which is symmetric) defined on (ξ ∪

I) × (ξ ∪ I).

Let s be a statement, Ws (resp. Rs) the set of variables of the program modified by s (resp. read
by s). s and t are independent if and only if s neither reads or writes on any variable modified
by t, and conversely.
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Definition 1 : s D t ⇔ ( Ws ∩ ( Wt ∪ Rt ) ) ∪ ( Wt ∩ ( Ws ∪ Rs ) ) ≠ ∅

The dependency graph represents the dependency relation combined with the effective order of
occurrence of conflicting actions : a → b means that a and b are conflicting and a occurs
before b in the sequential program. The dependency relation is the symmetric closure of the
non symmetric relation represented by the graph.
Example

(a) Get ( x ) ;
(b) Get ( y ) ;
(p) While x > 0

Loop
(c) x : = x - 1 ;
(d) y : = y + 1 ;

End Loop ;
(e) Put ( y ) ;

For this program, the flochart is given in figure 2a. The
dependency relation D is {(a, p), (p,a), (a, c), (c, a), (b, d), (d, b),
(b, e), (e, b), (c, p), (p, c), (d, e), (e, d)}. The associated
dependency graph is given in Figure 2b.

ba p2 e

p1

c

d
a p c

b d e

Figure 2a Figure 2b
Sequential flowchart Dependency graph

Figure 2: Dependency graph

This relation, defined on ξ × (ξ ∪ I), is not symmetric. Let p be the test statement of a loop P

(we say that P is governed  p), and a an internal statement of P. The ith occurrence of a cannot
be performed before the ith occurrence of p has been performed (even if they are independent in
the sense of D) ; however, if there is no dependency between a and p in the sense of D, a can
be delayed after the jth occurrence of the test p, if j ≥ i :

p…p
Beginning of 
the program

End of the 
programa … p… a … p… a … p… a …

Occurrences of the loop

Possible commutationsNon allowed 
commutations

Figure 3: The delay relation

Definition 2 : Let P be a loop governed by p and a a statement : p S a ⇔ a ∈ P

Remark

Since p ∈ P, we have p S p. This corresponds to the fact that every positive occurrences of the

test must occur before the negative one.
Example

Again with the program of Figure 2, we have S = {(p, c), (p, d), (p, p)}. Here, d can be delayed
after the next occurrences of the test p.

The precedency relation P
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This relation can be viewed as an extension of the dependency relation, where loops are seen as
meta-actions. Such a point of view enables a modular representation of the program (and thus a
modular processing of the flowchart).

1. Let P and Q be two loops respectively governed by p and q. p P q ⇔ an action of P

conflicts with an action of Q (according to D). This means that P and Q cannot commute.

2. Let P be a loop governed by p and a an imperative statement. (p,a) ∈ P ⇔ an internal action

of P conflicts with    a (according to D): P and a cannot commute.

Definition 3 : Let p and q be two test statements governing P and Q, and a an imperative
statement. P is defined by p P q ⇔ ∃ a ∈ P, b ∈ Q | a D b, and

p P a ⇔  ∃ b ∈ P | a D b

Here again, we represent by a graph, called precedency graph, the relation P, combined the the
order of occurrence of the loops in the program.
Example
Let us consider the following program :

a p2 q2

p1 q1cb

P = {(p, q), (p, c), (q,p), (c,p), (b, q), (q, b)}

(a) Get ( x ) ;
(p) While Even ( x )

Loop
(b) Get ( x ) ;

End Loop ;
(q) While Odd ( x )

Loop
(c) x : = x / 2 ;

End Loop ;

Figure 4 : The precedence relation

The complete conflict relation is D ∪ S ∪ P, denoted DSP. The commutation relation is

(DSP)c, where .c is the complementary operator.

3. Class of semi - equivalence of a program
We are interested in all sequences of statements that can be derived from some executions of
the sequential program by the commutation (or parallelisation) of statements whose order is not
essential.
For technical reasons, we consider not only complete, but also partial executions of the
sequential program, i.e. each state of the flowchart is terminal.

We extend in a natural way DSP to a relation DSPextended, defined on ∑ = I ∪ ξ1 ∪ ξ2 : let h

be the morphism defined by 
   

h: I ∪ T 1 ∪ T 2 → I ∪ T ,
p i ∈ T i → p

a ∈ I → a
 : (a, b) ∈ DSPext ⇔

(h(a), h(b)) ∈ DSP. We still denote DSPextended by DSP.
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We denote by L(A) the language of the flowchart.

Let w be a word of L(A), and w' ∈ ∑*. w and w' are semi-equivalent ⇔ w' is obtained from w
by a sequence of allowed commutations :
Definition 4 : Two words w and w' are semi-equivalent if there exists a sequence
wo = w, w1, …, wn = w' such that wi = viabv'i, wi+1 = vibav'i, with (a, b) ∉ DSP. We denote it by

w ≡ w'

The set of allowed behaviours of the program, denoted by B(A), is the set of words which are
semi-equivalent to a word of L (A). B(A) is a semi partially commutative monoid.

Remark

The set B(A) contains all the programs which have the same denotational semantics as the
sequential program.

3 Examples
1. Let us consider the following program

a

p1

p2 c

b
a b c
p

Figure 5a Figure 5b
Sequential flowchart Dependency graph

(a) x := 0
(p) While odd(Random(100))

Loop
(b) x := x+1 ;

End Loop ;
(c) Put(x) ;

Figure 5

The language of the sequential flowchart (Fig. 5 a) is L(A)=Pref(a.(p1.b)*p2c).
We have

B(A)=Pref

  

p 1
n 1.a.b q 1.p 1

q 2.b q 2…p 1
n i.b q i.p 2.b q i+1.c,

∀ j∈ 1 , i , n kΣ
k = 1

k = j

< q kΣ
k = 1

k = j

n kΣ
k = 1

k = i
= q kΣ

k = 1

k = i+1

We can notice that this language is not a language of Petri net.

2. Let us consider the following program, which computes x +y [R82]. We get :

ba p2 e

p1

c

d
a

p
c

b

d
e

Figure 6a Figure 6b
Sequential flowchart Dependency graph

(a) Get ( x ) ;
(b) Get ( y ) ;
(p) While x > 0 Loop
(c) x : = x - 1 ;
(d) y : = y + 1 ; 

End Loop ;
(e) Put ( y ) ;

Figure 6

4 Fifo nets
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We want to find a concise representation of B(A). The choice of fifo nets is motivated by the
fact that they integrate the notion of order and the test to zero.

The requirement of respect of the order is yielded by the relation DP. The test to zero appears
because of the relation S: in the example of Figure 6, the occurrences of d could be delayed, but
the remaining number of occurrences of d must be null before e occurs.

1. Definition
Fifo nets [F82][M83][CF88][VC92] are extensions of Petri nets : places are replaced by fifos
(queues running in the First In First Out mode) and integers by words.

Definition 5 : A marked fifo net is defined by (N, Mo), with N = (F, T, A, W), where F is a finite
set of fifos, T a finite set of transitions, A a finite alphabet,

W :  F × T ∪ T × F → A* the valuation function and Mo :  F → A* the initial marking.

The firing rules for fifo nets are very similar to the firing rules of Petri nets : the order relation
on integers is replaced by the left factor (or prefix) relation, denoted by <g, the addition is
replaced by the concatenation (denoted by. ) of a right factor, and the subtraction by the deletion
of a left factor.
Definition 6 : Let (N, Mo) be a marked fifo net and t a transition. t can occur (or is fireable) from
Mo iff :

∀ f ∈ F, W(f, t) <g Mo(f). The firing of t leads to the marking M defined by :

∀ f ∈ F, W(f, t). M(f) = Mo(f). W(t,f). We denote it by Mo ( t > M.

The notion of occurrence can, as for Petri nets, be extended in a quite natural way to sequences
of transitions.

x

y

uz

t f 3

f2f1
a b

b a

ba

ab
ba

a

b

ba

a

ab

ba

Example

Here, F = {f1,f2,f3}, T = {x,y,z,t,u}. For
example, we have W(y,f3) = ab.
The initial marking is Mo = (a,b,ε), and

we have Mo(xu> M = (ε,ba,a).

Figure 7: A fifo net

2. From the flowchart to the fifo net
We suppose that A is a flowchart modeling a sequential program and ∑ its alphabet.

We suppose the relation DSP computed. For simplicity, we reduce statements to atomic actions
and loops only, i.e. we consider the conditional statements as meta-actions. The construction
presented here is modular: loops are first considered as meta-actions, then, they are unfolded.
The first step, before the effective construction of the net, consists of a slight modification of the
dependency graph, and of the definition of two functions defined on the set of tests statements,
which express quantitatively, in a modular way, the relation G.
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1. Reduction of the dependency graph and of the precedence graph
Let G1 be the dependency graph. We denote by G the reduced dependency graph, which is a
smallest graph having the same transitive closure than G1. We procede is the same way with the
precedence graph.
2. Meta-dependence and meta-precedence relations
For the purpose of modularity, we consider the general frame of the program
u1B1u2B2…unBnBn+1, where Bi are loops governed by tests pi, and ui sequences of imperative
statements. The loops Bi are of same level and we call meta-precedence graph the restriction of
the reduced precedence graph to {p1, …, pn}. In the same way, we associated a meta-
precedence graph to each inner program of each loop.

The meta-dependence graph is the reduced restriction of the relation DP to the set

R = {a ∈ I, ∃ i ∈ {1,…, n+1}, |ui|a ≠ 0} ∪ {pi , i=1,…, n}

(again combined with the order of occurrences).
3. Weights of an action
Let B be a loop  governed by p.
We define the past-weight of p as the number of predecessors of p in the meta-precedence
graph containing p. This is the number of loops of the same level as B, whose termination
enables B to start. These loops are independent, and can be performed in parallel.

pw=2

iw=3
Figure 8: Weighs

The inner-weight of an action is determined from the meta-precedence graph
of the inner program of the loop. It is the number of vertices without
successor in this graph. This is the number of independent loops whose
termination is followed by the next occurrence of the loop.
Remark
Since we deel with undefined and thus possibly infinite loops, we will not
delay inner loops after the termination of the including loop, even if the
Bernstein relation would allow it. Indeed, the next occurrence of the
including loop is conditioned by the termination of every inner ones.

We extend the past-weight function to the set of imperative statements: pw(a) is the number of
tests such that pi→*a in the meta-dependency graph, and there is no other test along the path. It
is the number of independent loops whose termination is followed by an imperative segment
containing a.
Example
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(a) get(x) ;
(p) while odd(x)

loop
(b) get(y) ;
(c) get(z) ;
(q) while odd(y)

loop
(d) get(u) ;
(t) while y mod 3 = 0

loop
(e) get(y) ;

end loop ;
(u) while u mod 5 /= 0

loop
(f) get(u) ;

end loop ;
end loop ;

(r) while (z < 0 ) or (z > 1000)
loop

(g) get(v) ;
(v) while prime(z)

loop
(h) get(z) ;

end loop ;
(w) while not prime(v)

loop
(i) get(v) ;

end loop ;
end loop ;

(s) while z mod y /= 0
loop

(x)  while y < 0
loop

(j) get(y) ;
end loop ;

(y) while z mod 3 = 0
loop

(k) get(z) ;
end loop ;

(z) while not odd (u + v)
loop

(l) get(u) ;
(m) get(v) ;

end loop ;
end loop ;

end loop ;

The program consists of
only one loop. The inner
program is composed of 3
loops, their dependence
graph is

rq

s

The loop (q) is composed
of 2 independent loops, the
same holds for the loop (r).
And the loop (s) consists
of 3 independent loops.
The past and the inner
weight functions are :
pw(p)=0, iw(p)=1 ;
pw(q)=0,iw(q)=2 ;
pw(t)=0, iw(t)=1, pw(u)=0,
iw(u)=1 ;
pw(r) = 0, iw(r) = 2 ;
pw(v)=0, iw(t)=1,
pw(w)=0, iw(w)=1 ;
pw(s)=2,iw(s) =3 ;
pw(x)=0, iw(x) = 1 ;
pw(y)=0, iw(y)=1,
pw(z)=0, i(z)=1 ;

Figure 9: Past-weight and Inner weight
We can now present the effective structure of the net
a. The transitions
The set of transitions corresponds to the set of actions of the flowchart, i.e. T≈∑. For each
statement a of the flowchart, there is exactly one transition labelled by a.
b.Places and fifos
A place Cp is associated to each test p.
A place Ca is associated to each imperative statement a, of past-weight not equal to zero.
To each pair (a,b) of the reduced depedency relation G, we associate a fifo Fa,b.
c.Valuation function and initial marking
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Lcm denotes an extension of the classical definition : lcm(m,n) is the least common multiple if
m and n are positive, lcm(0,m)=m if m≠0, lcm(0,0)=1.
The control structure

p1 and p2 are output transitions of Cp, with W(Cp,p1)=W(Cp,p2)=plcm(iw(p),pw(p)). This insures
the synchronisation both with the precedent loops and with the inner loops. If the control place
Cp contains lcm(pw(p), iw(p)) occurrences of the letter p, then, either all the past loops have
terminated and the first occurrence of the test can occur, or all the inner loops have terminated,
and the next occurrence of the test

P a s t    L o o p s

In Loops

p3

p4

Cp

Figure 10

may occur. Thus, we do not need to distinguish between the
different messages send by the different loops. If B contain
no internal loop, then p1 is an input transition of Cp :
W(p1, Cp) =   pW(Cp, p1) = ppw(p). The output transitions of Cp
are determined from the different loops of the program,
according to the following rules:
Connexions between loops of the same level
Let {B1, B2, …, Bn} be the set of loops of the same level,
governed by p1, p2, …, pn. If pj is a predecessor of pi  in the
precedence graph,

  
W pj 2 , C pi = pi

W C pi, pi1

pw pi = pi
lcm iw pi pw pi

pw pi .

Role of internal loops
Let P be a loop governed by p, and L1, L2, …, Lm the internal loops of P (which may contain
themselves some other loops), governed respectively by q1, q2, …, qm.
1. For each Li such that qi  has no predecessor in the meta-precedence graph defined on the set
{q1,q2,…,qm}, W(p1, Cqi) = qilcm(pw(qi),iw(qi)) (here, pw(qi) = 0).
2. If qi  has no successor in the precedence graph, then

  
W qi 2 , C p = p

W C p, p 1

iw p = p
lcm iw p , pw p

iw p .

Examples
The next figures illustrate these different cases :

1. For the program of Figure 1, we get : 
Cp

p1 p2

p

p p
 Figure 11

2. A program with a loop included in an other :
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(a) c : = 3 ;
(p) While c ≠ 25

Loop
(b) d : = c + 2 ;
(q) While d ≠ Random

Loop
(c) Put ( d ) ;
(d) Skip_Line ;

End Loop ;
(e) c : = Random ;

End Loop ;

a p2

p1

b q2

d

c
eq1

a

p

d b

q c

Program Flowchart Reduced dependency graph

The associated control net is 

Cq

q1 q2

q

q q

Cp
p1 p2

p

p
p

Figure 12
3. Two consecutive dependent loops

a p q22

p1 q1b c

(a) Get ( x ) ;
(p) While Even ( x )

Loop
(b) Get ( x ) ;

End Loop ;
(q) While Odd ( x )

Loop
(c) x : = x / 2 ;

End Loop ;

a p b q c

Program Flowchart Reduced dependency graph

We have p P q. We get the control net 
Cq

q1 q 2

q

q q

Cp
p2 p 1

p

p

pq

Figure 13
4. A program with a loop containing two consecutive independent loops :
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(r) While x > 0
Loop

(a) Get ( x ) ;
(b) y : = Random ;
(c) z : = Random ;
(p) While x ≠ y

Loop
(d) y := Random ;

End Loop ;
(q) While x ≠ z

Loop
(e) z:=Random;

EndLoop;
EndLoop ;

p

p1 q1d e

r2

r 1

a b c 2
q2

c q e

b p d

a

Program Flowchart Reduced dependency graph

The control net associated is 

Cp

p1 p2

p

p p

C r
p1 p 2

rr

r
rr

Cq

q1 q 2

q

q q

pq

r

Figure 14
5. With synchronisation. For the program of Figure 8, we get the control structure

Cq q2q1

C t t 1t 2 t

tt

Cu u2u1 u

u u

q2

t u
q2

q
q

C r r2r1

Cv v1v2 v

vv

Cw w2w1 w

w w

r2

v w
r2

rr

Cs s2s 1

Cx x1x2

xx

Cy y2y1 y

y y

s 6 s 6

x Cz z2z 1 z

z z

z
y

x

s 2

s 2

s 2

Cp p2p1 pp
q2 r 2

p

s3
s 3

Figure 15
The scheduling structure
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Let Fa,b be a fifo. Two configurations can be met:

1. a and b are imperative statements, (a, b) ∈ D. The scheduling pattern is a bPa,b

a b
: a and

b are the only output transitions of Pa,b.

2. a is an imperative statement, b is a test (associated with the transitions b1 and b2), (a, b) ∈ D.

In this case, the scheduling pattern contains three transitions:
b bPa,b

b b
aa

.

Remark
There is no fifo Pa,b with a and b test statements, since two test statements cannot be conflicting
in the sense of the relation D.
The input transitions of Fa,b, their valuation and the initial marking of Fa,b are described by the
following algorithm:

Let pa denotes the deepest loop (i.e. its test action) governing an action a∈ξ∪I, i.e. pa≠a, and
let pa=0 if a belongs to the main program u1p1…unpnun+1. Furthermore, let pa>pb denote the
fact that the loop governed by pa is an inner loop of the one governed by pb.

1st Case : (a,b)∈I2.

We makes the distinction between the following situations (where W(p,Pa,b)=x has to be
replaced by MO(Pa,b)=x, if p=0):
1. pa>pb: Let p be such that pa≥p>pb, and p≥p'>pb implies p=p'. Then, we add the
backwards arcs W(pa2,Pa,b)=b, and W(pa1, Pa,b)=a.

2. pa=pb: Let W(pa1, Pa,b)=ab.

3. pb>pa, or pa, pb incomparable: Let W(pa1, Pa,b)=a, and W(pb1, Pa,b)=b.

2ndcase :  a∈I and b∈ξ
Itcorresponds exactly to the first case extended to an additional backword arc W(b1, Pa,b)=b.

3rd case: a∈ξ and b∈I

We consider five subcases, including in each case the arc W(pa1, Pa,b)=a (recall the special case
p=0):
1. pa≥p>pb (with p as above): Let W(a1, Pa,b)=a, and W(p2, Pa,b)=b.
2. pa=pb: Let W(a1, Pa,b)=a, and W(a2, Pa,b)=b.
3. (pb>pa, and pb<a), or pa,pb incomparable: Let W(a1, Pa,b)=a, and W(pb1, Pa,b)=b.

4. pb≥…≥p>a (with p≥p'>a, implying p=p'): Let W(b1, Pa,b)=b, and W(p2, Pa,b)=a
5. pb=a: Let W(a1, Pa,b)=ba.
Synchronisation structure
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Each place Ca, with a imperative statement, admits a as only output transition. The place Ca
takes the synchronisation into account, i.e. it enables the firing of transition a only if every loop
which directly precedes a (in the sense of DSP) has occurred. We have : W(Ca, a) =
alcm(0,pw(a)).
The control place of a is filled by the output transitions of the loops which directly precede a,
and emptied by transition a. The content of such places determine the behaviour of the net. In
the following, we describe how to fill these places.
Starting sequence
We first extract a subset of actions of the program, containing the actions (imperative or test
statements) which can occur first, i.e. which do not use any result provided by any loop. We
then order these actions according to their order of appearance in the program, so we get a word
called the initial segment, denoted so :

a occurs in so ⇔ a occurs in u1p1u2p2…pnun+1 and pw(a)=0

Remarks
The sequence u1p1 is a prefix of so.
The set of actions which occur in so can be deduced from the meta-dependency graph: a occurs
in so iff there is a source r of the graph (i.e. a vertex without predecessor) such that there exists
a path from r to a which contains no test statement (except a eventually).
Contextual sequences
Each occurrence of a test gives rise to a sequence of actions. We associate to each test p two
segments, denoted by p+ and p- , which correspond respectively to the positive and to the
negative alternative of p.

1. In order to get the negative segment p- , we proceed in the same way as for so, with the
restriction of the meta-dependency graph to the sub-tree with source p. This segment contains
the actions which can occur just after the loop governed by p has terminated.

2. In order to get the positive segment p+ and the segments associated to the inner tests of the
loop B governed by p, we unfold B, and we proceed in the same way as described above with
the inner program of the loop.
Remarks
If an action must occur after the termination of several loops, i.e. it depends of internal actions
of several loops, then the past-weight of this action is the number of such loops, and this action
appears in the negative segment of each test.
We get in this way 2m + 1 segments, if m is the number of loops of the program.
Examples
1. Let us consider again the program of Figure 2. There is one loop, so we get 3 segments:
so = abp, p+ = cd, p- = e.
2. If we consider the program of Figure 12, we get 5 segments:
so = ap, p+ = bqe, p- = ε, q+ = cd, q- = ε.

3.- If we consider the program if Figure 13, we get 5 segments:
so = ap, p+ = b, p- = q, q+ = c, q- = ε.
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4. If we consider the program of Figure 14, we get 5 segments:

so = r, r+ = abcpq, r - = ε, p+ = d, p- = ε, q+ = e, q- = ε.

5. Let us consider the next program:
(a) get(x) ;
(b) get(y) ;
(c) get(z) ;
(p) while x < 0 loop
(d)  x : = x + 4 ;  end loop ;
(q) while y < 0 loop
(e) y : = y + 2 ;  end loop ;
(r) while odd(z) loop
(f) z : = z/2 ;  end loop ;
(g) x : = x + y ;
(h) x : = x + z ;

We get 7 segments :

so = abcpqr, p+ = d, p- = gh,

q+ = e, q- = gh, r+ = f, r- = h,
and we have pw(g) = 2, pw(h) = 3.

We can now define the initial marking as well as the missing valuations.
Remark

∀ a ∈ I, if a occurs in so, there is no control place Ca.

The initial marking is defined by Mo(Ca) =  a s0 a, where |so|a denotes the number of occurrences

of a in so. So, we have Mo(Ca) = 

   ε if a ∈ I
a if a ∈ T and a occurs in s 0

ε otherwise

.

p1 p2
pp

p

Pb,d

d
Pd,e e

b

Ce

Pa,p

a c

Pc,pa c

p
pap

p

p

p
p

cp

Cp

p

d

d

e e

d

b
b

d e e

Let P be a loop, p1 and p2 its two associated actions, p+

and p- the segments associated to the test p. For each
place Ca (a imperative action), we have W(p1, Ca) =  a p+

a

and W(p2, Ca) =  a p–
a .

Example
We consider again the program of figure 6. The past-
weights of the actions a, b, c, d are null (no control place
for these actions) and the past-weight of e is equal to 1
(there is a control place Ce). The whole net is as follows:

Figure 16: A complete fifo net

5. Properties of the model
In this section, we present the relation between the behaviours of the fifo net and the behaviours
of the flowchart. Frst, we do not lose any information in the sense that the fifo net's behaviours
contain the flowchart's behaviours. Then, every behaviour which is semi-equivalent to a
behaviour of the flowchart is also a behaviour of the fifo net. Conversely, the behaviours of the
fifo nets are only these ones. The model meets thus our requirement. The detailed proofs are
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rather technical, we do not present them here. They can be found in the detailed version of this
paper.
From the flowchart to the fifo net
Every word accepted by the automaton (where each state is terminal) is a sequence of the net.
Let Prog be a program, represented by the flowchart A, and (N, Mo) be the associated fifo net.
The set of behaviours of A is the language of A, L(A), and these of the fifo net the language of
the fifo net, L(N, Mo).

Proposition 1 : L(A) ⊆ L(N, Mo)

We prove this result by induction on the length of the sequence of L(A).
Furthermore, every word which is semi-equivallent to a word of L(A) is also a behaviour of the
fifo net.

Proposition 2 : B(A) ⊆ L(N, Mo)

a b

b a

…

u≡
≡

v

…

w1

wn

c d

d c

Figure 17

We consider two words u∈L(A), and v such

that u ≡ v; we prove by induction on the length
of the commutation chain which leads from u to
v, that v also belongs to L(N, Mo). Therefore,
we consider a sequence of commutations.
The discussion lays then on the nature of the
permuted transitions (imperative or test
statements).
From the fifo net to the flowchart
Conversely, we have the following inclusion,
where LF(E) is the set of left factors, or prefix
of E:

Proposition 3 : L(N, Mo) ⊆ LF(B(A))

We prove that ∀ u ∈ L(N,Mo), ∃ v, w | u.v ∈ L(N,Mo), w ∈ L(A) and u.v ≡ w. This result is
showed by induction on |u|.
Thus, we have the following theorem :

Theorem : LF(B(A)) = L(N, Mo)

6 Conclusion
We have presented a methodology for transforming the flowchart of a sequential program into a
flowchart (named object flowchart in the following) which collects all its possible behaviours.
This construction can be applied to programs which contain basic statements, and loops whose
iteration numbers can be not pre-defined.
The object flowchart must integrate scheduling (collect all the possible behaviours) and the test
to zero (not pre-defined number of loop iterations): it is a fifo net. Its construction is based on
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the conflict relation induced by the semantics of the sequential program. This flowchart collects
exactly the set of possible behaviours of the program semantically equivalent to its sequential
behaviours.
Two main directions are natural for further developments of this work. The fifo-net obtained
can be analyzed by marking graph tools. Such analysis should help the optimization step when
compiling onto a parallel object code. On an other hand, the fifo-net contain the whole
scheduling control of the program. So, it can be used in in-line mode to drive the software,
whatever the physical topology of the used machine (time-sharing, parallel) is.
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