
Towards a taxonomy for
interactive graphics systems1

G. Pierra

LISI/ ENSMA
B.P. 109 - 86960 FUTUROSCOPE Cédex

 e-mail : pierra@ensma.fr

Abstract. It has often been pointed out that the different architecture
models proposed for interactive computer graphics were too much
imprecise. Global architecture models intended to define the macro-
modules that constitute such systems do not precise the functional
description nor the interface of these modules. Multi-agent models,
intended to define the micro-structure of the building blocks of such
systems, do not precise the criteria to be used for agent identification
and structurization, nor the complete set of relationships that exists
between these agents and the domain-specific component that
represents the semantic part of the system.
In this report we propose a taxonomy for interactive graphics systems
through seven orthogonal criteria. These criteria enable to classify every
systems during the analysis phase. The possible uses of this taxonomy
include the following:

- facilitating the selection process of a suitable architecture
model for a system under design,

- enabling the architecture model designers to precise the classes
of systems that constitute the target application domain of their models,

- promoting the emergence of precise architecture models that
address the requirements of the different categories of interactive
graphics systems.

1 paru dans les Proc. of Design, Specification Validation of

Interactive Systems, Palanque, P., Bastide R., Eds Springer Computer Science
Series, Spronger, 1995, pp. 362-370.

Towards a taxonomy for
interactive graphics systems

G. Pierra

LISI/ ENSMA
B.P. 109 - 86960 FUTUROSCOPE Cédex

 email : pierra@ensma.fr

Abstract. It has often been pointed out that the different architecture
models proposed for interactive computer graphics were too much
imprecise. Global architecture models intended to define the macro-
modules that constitute such systems do not precise the functional
description nor the interface of these modules. Multi-agent models,
intended to define the micro-structure of the building blocks of such
systems, do not precise the criteria to be used for agent identification
and structurization, nor the complete set of relationships that exists
between these agents and the domain-specific component that
represents the semantic part of the system.
In this report we propose a taxonomy for interactive graphics systems
through seven orthogonal criteria. These criteria enable to classify every
systems during the analysis phase. The possible uses of this taxonomy
include the following:

- facilitating the selection process of a suitable architecture
model for a system under design,

- enabling the architecture model designers to precise the classes
of systems that constitute the target application domain of their models,

- promoting the emergence of precise architecture models that
address the requirements of the different categories of interactive
graphics systems.

1 Introduction

The goal of architecture models for interactive graphics systems is, or should be, to
provide guidelines to system designers, both for modular decomposition of their
system, and for selection of the suitable software tools. In fact, a lot of models have
been proposed. Therefore, the first designer's choice is to select the suitable
architecture model for the system under design.

The UIMS Tool developers Workshop [22] already pointed out that the suitable
architecture of the application may depend on the designer's goals (e.g., maximising
runtime performance vs. buffering the remainder of the system from the effects of

evolving Interaction Toolkits). In this report we suggest that such an architecture is
heavily dependent on the specific requirements of the target application and we
propose seven orthogonal criteria that enable to classify systems during their analysis
phases.

This paper results from the discussions that took place during the Eurographics
Workshop on Design, Validation and Specification of Interactive Systems (DVS-
IS'95) in the Working Group on Taxonomy. The members of this working group were
the following: B. David (ECL, Fr), P. Girard (LISI/ENSMA, Fr), F. Jensayer
(Roskilde Univ., Dk), J. Munoz (LIS/Toulouse 1 Univ., Fr), G. Pierra (LISI/ENSMA,
Fr), M. Rautenberg (ETHZ, Ch), J. Vanderdonckt (FUNDP/Namur, Be). The starting
point of these discussion was a position paper [19].

The content of this report is as follows. In the first section, we recall the content of
the Arch model [22] that provides a useful framework for describing the runtime
architecture of interactive systems. In the second section, we discuss the goal of the
taxonomy and the meta-criteria used to select the relevant criteria. In section three we
present the criteria that define the proposed taxonomy.

2 Architecture models for interactive graphics system

A lot of models exist for the design of interactive systems. Each model focuses on a
different point and is intended to solve a different problem. Static architecture models
mainly address the modular structure of the system. Some of them, such that the
Seeheim model [12], or the Computer Graphics Reference Model [2, 7] suggest a top-
down approach. They define the macro-modules that should constitute the system.
Some others, like MVC [11] or PAC [4], suggest a bottom-up approach. They define
the structure of the building blocks that should constitute the complete system.
Dynamic architecture models are intended to capture the behaviour of interactive
systems. Once again some of them are more top-down oriented, such that the models
based on the linguistic approach [9, 23], some others, often called multi-agent
models, define the fine-grain reactive units that should be used to model this
behaviour [6, 8, 13, 17, 21]. It is not clear how the top-down-oriented and the bottom-
up-oriented models fit together. And it does not exist any consensus about when, and
even how, the different models should be used [5, 20].

In order to get a common understanding and terminology about the runtime
architecture of these systems, a series of workshops took place in 1990 and 1991. The
result of these workshops, known as the Arch model, was published in 1992 [22]. The
Arch model defines five components (sub-systems) for the architecture of interactive
systems. The two ends of this architecture are the Domain-Specific Component and
the Interaction Toolkit Component that may be considered, for some applications, as
pre-existent (see fig 1)

The Interaction Toolkit Component implements the physical interaction with the end-
user (via hardware and software). The Domain-Specific Component controls,
manipulates and retrieves domain data, and performs other domain-related functions.
Between these two ends, the Dialogue Component has responsibility for task level

sequencing and for mapping back and forth between domain-specific formalisms and
user-interface-specific formalisms. Two more components are defined for buffering
an operational system from changes in technology. The Presentation Component
buffers from changes in user interface toolkit by providing an abstract view of user
Interaction Objects. The Domain-Adaptor Component is a mediation between the
Dialogue and the Domain-Specific Components. In this report, the Interaction Toolkit
Component and the Presentation Component will sometimes be referred to as the
user-side components, the Domain-Specific Component and the Domain-Adaptor
Component as the domain-side components.

Dialogue
Component

Domain
Adaptor
Component

Domain
Specific
Component

Presentation
Component

Interaction
Toolkit
Component

Domain
Objects

Domain Objects

Presentation
Objects

Interaction Objects

Fig. 1. The Arch model

To acknowledge the diversity of real-world applications, the Arch report points out
that the same functionality may be shifted from one component to another one of the
architecture. It uses the term "Slinky" to emphasise that the Arch model is in fact a
meta-model that may be differently tailored both regarding the component to which is
assigned some particular functionality (functional specification), and regarding the
data flow between the various components (interface specification). Besides, the Arch
model does not consider, but implicitly for the Interaction Toolkit Component, the
internal structure of each component.

It shall be noticed that, unlike most of the other proposed models, the Arch model is
not intended to be a prescriptive model. In particular, the model itself does not specify
neither how to separate an interactive system into the different identified subsystems,
nor the internal structure of each subsystem. The main interest of this model is to
substantially define a framework within which any interactive system or prescriptive
model for such systems may be described and/or compared. This framework may thus
be used to discuss the criteria that significantly affect the software architecture of
interactive systems.

3 Goals of the taxonomy

The goal of the proposed taxonomy is to identify the characteristics of interactive
graphics systems that have a major impact on the design of these systems. The
intended uses of such a taxonomy include the following

- facilitating the selection process of a suitable architecture model for a system
under design,

- enabling architecture model designers to precise the classes of systems that
constitute the target application domain of their models,

- promoting the emergence of precise architecture models that address the
requirements of the different categories of interactive graphic systems.

In order to support the first usage, the values of the characteristics used as taxonomy
criteria shall be known before the beginning of the design process, i.e., during the
analysis phase.

Regarding the criteria that should be used in the taxonomy, the Arch (meta-) model
enables to assess the impact of given characteristics on the system architecture. Every
characteristics may be considered as relevant criteria for the taxonomy if their values:

- affects the functionalities which are assigned to some Arch component
(functional specification) and/or,

- affects the data flow between the different Arch components (interface
specification), and/or

- affects the internal structure of some Arch component (detailed design).

4 The proposed taxonomy

We assume that the system analysis is done using some object oriented analysis
(OOA) method, (e. g., the COAD&YOURDON OOA method [3]).

The result of such an analysis is twofold. First, the Domain Objects are modelled. In
our proposed taxonomy, two criteria address the Domain Objects structure. Second,
the system's responsibilities are defined. In interactive systems the fundamental
system responsibility is to support the user tasks [1]. Two criteria address the task
structure. In order to cover a large spectrum of applications, two other criteria address
the actor model and characterise the control source (the user, the Domain-Specific
Component, both) and the number of simultaneous users. The last criteria address an
operational constraint on the system that results from multi-modal interactions.

All the criteria, but the control source criteria, identify orthogonal degrees of
complexity for the system under design. For each criterion, only two values are
discussed: the simplest case and the most complex case. Actual systems are often in
between, and ad-hoc practices are sometimes used to remove some degrees of
complexity.

The proposed criteria are the following.

4.1. Tasks arity

An application supports mono-object tasks if each user task involves only one (simple
or structured) Domain Object. It supports multi-object task if a task involves several
Domain Objects. Mono-object tasks may be encapsulated into Domain Object
representation. They may be supported by direct manipulation techniques. In the
simplest case, the dialogue component may not exist on its own. Multi-object tasks
shall be represented independently from the Domain Objects. Direct manipulation
techniques are not possible. Some dialogue component, of which the structure is
independent from the object structure, shall exist. A typical ad-hoc solution to avoid
this degree of complexity consists in providing multi-object selection (e.g., rubber
rectangle) and enabling the user to do the same task on the set of objects (set traversal
[14]). As an example, Mac DrawTM only supports mono-object tasks. Example of
multi-object tasks are provided by the drafting systems that enable to create lines as ,
e. g., tangential to two circles.

4.2. Tasks structuring

An application supports atomic task if the user must specify each of its tasks
independently, the result of this task being recorded in the state of the Domain-
Specific Component. An application supports structured tasks if the user may input in
pre-order its task/sub-task hierarchy [16], the result of the overall tasks being only
recorded in the application domain component when the whole task hierarchy has
been input. The support of structured tasks needs to record the state of the dialogue
independently from the state of the Domain-Specific and of the Interaction Toolkit
components. Atomic tasks may be encapsulated either in Domain Object or in
Interaction Objects. Typical ad-hoc solutions to avoid this degree of complexity
consists in providing modal dialogue variables that may be recorded in the Interaction
Toolkit Component and in designing some predefined structured task patterns
associated with a specific set of interaction objects (e.g., structured sets of dialogue
boxes).

An example of structured task is provided by graphic expressions such expressions
enable to specify an operand of some high level task by means of a function which
the domain are other objects (e.g., to define the centre of a circle as the middle-point
of some line).

4.3. Domain Objects autonomy

The Domain Objects are autonomous if the presentation of each Domain Object is
only (or mainly) dependent on the state of the corresponding Domain Object. The
Domain Object are relational if the presentation of each Domain Object is dependent
on the state of other Domain Objects. If the Domain Objects are autonomous, each
Domain Object may be mapped onto one Interaction Object that supports its
rendering function [6]. If the Domain Objects are relational, the Interaction Toolkit
Component shall provide rendering spaces that are used by a global rendering feature
of the domain-side components. Graphics Standards, such that GKS [10], PHIGS [18]
or CGRM [7] provide high-level mechanisms for rendering (geometric) related
objects. Models like MVC [11] or PAC [4] are straightforward for rendering
autonomous objects. Moreover, when Domain Objects are autonomous, high level

semantic feedback may be shifted from the domain-side components to the user-side
components. It is not possible when objects are relational.

4.4. Domain Objects structuring

Domain Objects are structured when several levels of objects, structured by
aggregation, may be accessed by the user. They are simple when one Domain Object
is not part of another Domain Object. When Domain Objects are (highly) structured,
the designation of one Domain Object may only be interpreted by the domain-side
components. It requires a complete traversal of the system by the user-defined events.
When Domain Objects are simple enough, the pick identifier may be interpreted, and
echoed, by the user-side components. A typical ad-hoc solution to avoid this degree
of complexity consists in providing some "association" function that enables
gathering several objects in an aggregate object, the internal object being no longer
pickable. This is done, for instance, in Mac DrawTM.

4.5. Control source

The fifth criterion characterises the source of the events of which the type changes the
dialogue component state. It may be either the user (interactive application) or the
Domain (conversational application) or both (dialogue application). The dialogue
component should offer asymmetric functionalities in the two first cases. It offers
symmetric functionalities in the last one.

4.6. Mono/Multi user interactive system

A mono-user interactive system correspond to a system where only one user
dialogues with a Domain Specific Component. This category of systems belongs to
the scope of the Arch model. Multi user systems enable several users to interact with
the same Domain-Specific Component. Multi-user interactive systems require an "Y"
runtime architecture where several instances (with possible links) exist for some Arch
components.

4.7. Sequential Vs Real Time interactive system

An interactive system is sequential if the behaviour of the system is only dependant
on the order of the sequences of events and values input by the user-side and the
domain-side components. It is a Real Time interactive system when the behaviour is
also dependent on the time where an event or a value occurs. A Real Time system
needs to have a timer within its Dialogue Component. It has been proved that multi-
modal Interactive systems were Real Time Systems [15]. The following table
summarises the proposed taxonomy.

criteria

tasks arity

mono-object tasks
• Task representation may be
encapsulated in object
representation.
Example: Mac DrawTM

multi-object tasks
• Tasks shall be represented
independently from objects.

Example: Database graphical
interface

tasks
structuring

atomic tasks
• no (or few) dialogue context.

Example: Mac DrawTM

structural tasks
• A structured dialogue context shall
be explicitly modelled.
Example: use of a display calculator to
input some real value to a current task

objects
autonomy

autonomous objects
(the presentation of Domain
Object depends only on the state
of the corresponding Domain
Object)
• One object in the user-side
components reflects each
Domain Object
Example: Mac DrawTM

relational objects
(the presentation of a Domain Object
depends on the state of the other
Domain Objects).

• No one-to-one relationship between
Domain Objects and presentation
objects
Example: process control interface

objects
structuring

simple objects
• object designation may be done
in the presentation component

Example: Mac DrawTM, GKS

(highly) structured objects
• only Domain-side components are
able to identify the Domain Object
selected by a pointing device
Example: solid modelers

control source

user: interactive
application

• asymmetric dialogue
- control events come
from the user
- Domain reports to the
Dialogue component
(e.g., semantic error)
- Domain reports by
rendering to the user

Example: graphic
editor

Domain:
conversational

application

• asymmetric
dialogue
- control events
come from the
Domain
- data flow from and
to the user

Example: login
process

user + Domain: dialogue
application

• symmetric dialogue

- control events come
from both the user and
Domain
- data flow from and to
both the user and Domain
the user

Example: process control
interface

mono/multi
user

mono user
• The run time architecture
corresponds to the Arch model

multi user: Y model
• The designer shall decide which
components are shared and which ones
are not
Example: CSCW systems

sequential/Real
Time

sequential
• no timer
Example: usual Business
applications

Real Time
• A timer shall exist in the Dialogue
Component
Example: multi-modal systems

Table 1: Taxonomy of interactive graphic system

Conclusion

In this report we have proposed a taxonomy of interactive graphics systems that is
based on seven orthogonal criteria. We have shown that each of these criteria has a
significant impact on the suitable architecture of the system to be designed. The
values of these criteria are known during the analysis phase of a system. Therefore,
they may be used to evaluate the suitability of a particular prescriptive architecture
model for a system under design.

In this report, we have not discussed the suitability of any existing prescriptive
architecture model for the various categories defined by the taxonomy. Nevertheless,
it is hoped that reference to this taxonomy will contribute to the emergence of new
and more precise prescriptive architecture models for the different categories of
interactive systems we have identified.

References

1. Bass, L., Coutaz, J.: Developing software for the user interface, Addison-
Wesley (1991).

2. Carson, G.: Introduction to the Computer Graphics Reference Model, Computer
Graphics, 27, 2, 108-118, (1993).

3. Coad, P., Yourdon, E.: Object Oriented Analysis, Prentice Hall (1991)

4. Coutaz, J.: Interface homme-machine : un regard critique. Journées d'étude
AFCET: Interface Homme-Machine, Paris, 21 oct. 1992,1-24 (1992)

5. Coutaz, J.: PAC: an implementation Model for Dialog Design. Proc.
Interact’87, North Holland Publ., 431-436 (1987).

6. Duke, D., Harrison, M.: Abstract Interaction Objects. Computer Graphics
Forum, 12, 3, 25-36 (1993).

7. Faconti, G.: The Reference Model of Computer Graphics. in: D.A. Duce et al.
(eds): User Interface Management Design. New York, Berlin Heidelberg New
York Tokyo: Springer-Verlag 1990, 7-14 (1990).

8. Faconti, G., Paterno, F.: An Approach to the Formal Specification of the
Components of an Interaction, EUROGRAPHICS’90, 481-494 (1990).

9. Foley, J., Wallace, V.L.: The Art of Natural Graphic Man-Machine
Conversation. Proc. of IEEE G2, (1974).

10. ISO/IS 7942, Information Processing Systems, Computer Graphics, Graphical
Kernel System - Functional Description (1985).

11. Goldberg, A.: Smalltalk-80: The Interactive Programming Environment,
Addison-Wesley (1984).

12. Green, M.: Report on on Dialogue-Specification Tools. In: G.E Pfaff (eds.):
User Interface Management Systems. New York, Berlin Heidelberg New York
Tokyo: Springer-Verlag 1985, 9-20 (1985).

13. Green, M.: A survey of three dialogue models, ACM Trans Graph. 5, 3, 244-
275 (1986).

14. Halbert, D.: Programming by example, PhD. Thesis, Berkeley, California
(1984).

15. Nigay, L.: Conception et modélisation logicielle des systèmes interactifs :
application aux interfaces multimodales, PhD. Thesis, Université Grenoble 1
(1994).

16. Norman, D.: User Centered System Design, Lawrence Erlbaum Associates
(1986).

17 Paterno', F.: A Theory of User-Interaction Objects, Journal of visual languages
and computing, 5, 3, 227-249, (1994).

18 ISO/IS 9592:1989, Information Processing Systems, Programmers Hierarchical
Interactive Graphics System - Functional Descritpion (1989).

19. Pierra, G., Girard, P., Guittet, L.: Towards precise architecture models for
computer graphics: The H4 architecture, position paper, in: Pre-Proceeding of
Eurographics Workshop on Design, Validation and Specification of Interactive
System, Bonas, France, June (1995).

20. Ten Hagen, P.: Critique of the Seeheim Model. in: D.A. Duce et al. (eds): User
Interface Management Design. New York, Berlin Heidelberg New York Tokyo:
Springer-Verlag 1990, 3-6 (1990).

21. Ten Hagen, P., Derksen, J.: Parallel input and feedback in dialogue cells. In:
G.E Pfaff (eds.): User Interface Management Systems. New York, Berlin
Heidelberg New York Tokyo: Springer-Verlag 1985, 109-124 (1985).

22. The UIMS Developers Workshop - A Metamodel for the run time Architecture
of An Interactive System; SIGCHI Bulletin, 24, 1, 32-37 (1992).

23. Woods, W.: Transition network grammars for natural langage analysis. Comm.
ACM,13, 10, 591-606 (1970).

