
Patry G. & Girard P. From Adaptable Interfaces to Model-Based Interface Development: The GIPSE Project. ERCIM
Workshop on User Interfaces for All (UI4ALL'97), Ed. N. Carbonell, Pub. INRIA Lorraine, Obernai, France, 3-4 november
1997, pp. 127-133.

From Adaptable Interfaces to Model-Based Interface
Development: The GIPSE Project

G. Patry, P. Girard

Laboratoire d’Informatique Scientifique et Industrielle
École Nationale Supérieure de Mécanique et d’Aérotechnique

Site du Futuroscope - BP 109 - 86960 Futuroscope Cedex - France
email: {patry, girard}@ensma.fr

Abstract: Developping specialized versions of applications is usually made by computer experts.
The GIPSE system has been designed to allow end-users to specialise their application by creating
new functions. As it allows this task by Programming by Demonstration techniques, without any
use of textual programming language, GIPSE can be used by non computer literates.

Starting from GIPSE, we propose to rely two approaches which, at a first glance, seem very
different: model-based interface development and user-adaptable applications. We argue that these
two approaches may converge, bringing user enpowerment to formal approaches, and conversely,
bringing formal insurance to end-user developments.

Introduction

With the advent of personal computing, computer programming trend is to design applications
for the widest possible user groups. They try to address needs of a large population with very
different requirements. The same drawing package may be intended to be used for designing
the outline of a mechanical structure, the appearance of a building, or the disposal of a flat. To
accommodate such different purposes, these applications usually provide a large number of
low level functions that can be combined by end users to fulfil their needs. This allows
multiple uses, but is also very tedious when the same kind of operations needs to be done over
and over.

The removal of these drawbacks may be done by using the Programming by Demonstration
(PbD) paradigm that can be summarized as follow: while the user uses a PbD system, this
system generalizes the interactive session (the example) to compute a program. For example,
achieving the same task on two objects may be generalized on a whole set of objects. Many
systems have been developped over this idea [Cypher 1993]. In the CAD area, our laboratory
has been involved in major projects that have led to powerful PbD systems [Pierra, Potier, &
Girard 1996].

At the same time, interface development drastically changed. Theories and models have been
developped. Computer-Aided Design of User Interface (CADUI) became a great center of
interest. Model-Based systems [Puerta 1997] seem to be now one of the best approaches to
build powerful interactive applications: from one or different models (user-task model,
dialogue model, presentation model) model-based systems construct powerful interfaces that
may be connected to functional cores in order to build the whole interactive application. The
major strength of these systems is the ability to check the formal description of the models.

Model-based systems allow a user-centered approach of interface design. Nevertheless, two
major drawbacks may be pointed out: (1) they require that their users learn abstract models
and languages, and (2) they only work in one way, from models to the generated application.
When generated, the system has to be tested, and any modification requires a modification of
the models to generate a new system.

The goal of this position paper is to propose a solution to these problems. Using PbD
techniques, we are now able to design a system that allows much more than a simple
adaptability of interfaces: it allows a real interactive definition of new applications. And
because of the underlying models we use, it permits reverse engineering from the interactive

Patry G. & Girard P. From Adaptable Interfaces to Model-Based Interface Development: The GIPSE Project. ERCIM
Workshop on User Interfaces for All (UI4ALL'97), Ed. N. Carbonell, Pub. INRIA Lorraine, Obernai, France, 3-4 november
1997, pp. 127-133.

application -on which no formal evaluation may be done- to the model level -which allows
formal evaluation.

This paper is organized as follows: the first section gives a short description of the underlying
models of our approach, called the the H4 Model. Section two describes the GIPSE project,
and section 3 relates our approach to other works.

1. The H4 Model

Presented by L. Guittet [Guittet 1995], the H4 model has been designed to be a suitable model
for CAD systems. These systems are well-known to possess several characteristics : using the
taxonomy proposed in [Pierra 1995], they can be described as supporting multi-object and
structured tasks, reflecting a goal/subgoal hierarchy [Norman 1986]. Their conceptual objects
are highly structured (the user may access several levels of objects, such as sets of entities, or
only one component of a given set), and relational (the state of one object may depend on the
state of another domain’s object).

The H4 model belongs to the ARCH family [Bass, et al. 1992]. It’s dialogue controller is
composed of a hierarchic set of agents, named interactors, relatively to the theory of
Interactors ([Duke & Harrison 1993 ; Faconti & Paterno' 1990 ; Paternó & Faconti 1994]).
Each of these corresponds to a task level, and is defined by the nature of the information it
accepts as input. They produce output informations that are the result of the task. Common
interactors in drawing applications include designation (picking graphical entities),
information (giving information such as center or extremity of entities), calculus (projection,
distance), and creation. Communications between interactors are managed by a Monitor.
Interactors may accept information from any lower interactor in the hierarchy, via the Monitor.
The communication unit is a typed element, named Token, that may either be commands
(order to initiate actions) or data (parameters of actions). Tokens are transmitted by the
monitor to the next interactor waiting for such a token, conforming with the interactor
hierarchy.

The H4 model describes the dynamic behaviour of an application as an advanced automaton.
Each Interactor has a current state and accepts or refuses tokens that are proposed by the
Monitor. Acceptation fires a transition and allows the storing of the token in a register.
Transitions may have actions as attributes. Such actions are called when their associated
transition is triggered, using the register content ‘s as parameters.

The H4 model has been implemented in an application generator that allows the complete
generation of interactive systems from formal descriptions of both the user-task model and the
dialogue model. It is, in fact, a model-based system.

2. The GIPSE System

GIPSE (Generateur d’Interface par Programmation Sur Exemple, for Programming by
Example Interface Generator) is a major enhancement of the above generator. Moreover the
above functionalities, it is a run-time environment allowing the extension of the application’s
kernel by the way of adding new functions, as well as new kinds of entities that can be
manipulated by the system as native entities. The motivation behind our system is to allow end
users to customise their generic applications into task-specific ones. Some applications
already allow this, by the way of simple macro recorder facilities (Microsoft Word or Excel

are good examples here), but most of complex tasks, involving loops or conditional
statements, must be expressed in an interpreted language that must be already masterised by
users. In contrast, the goal of GIPSE is to create, implement and integrate whole new
functionnalities to applications without actually coding them.

The goals of GIPSE can be stated as following:

Patry G. & Girard P. From Adaptable Interfaces to Model-Based Interface Development: The GIPSE Project. ERCIM
Workshop on User Interfaces for All (UI4ALL'97), Ed. N. Carbonell, Pub. INRIA Lorraine, Obernai, France, 3-4 november
1997, pp. 127-133.

• GIPSE should allow the extension of existing applications.

• The intended targets are either developers who want to specialise their generic system,
either CHI experts who want to design interactive applications from some functional
core, or end-users who want to extend/customise their application. None should have to
be a computer specialist to do this.

• Dialogue extension should be specified by means of Programmation by Demonstration
(PbD) rather than conventional textual programming.

As it has been underlined, GIPSE implements the H4 model. It is mainly structured in two
components. The first one is responsible for the dynamic behaviour of the application, while
the other is responsible for the creation and execution of actions recorded by the user.

2.1. Dynamic behaviour

In order to allow indifferent use of regular (hard coded) and extended (macro) actions by the
user, the dialogue controller responsible for the dynamic behaviour of the application has itself
to be dynamic and extensible. As it is unknown at compile time which actions will (or will not)
be included in the application, and the exact stucturation of the actions into interactors, the
dialogue controller has to allow adjunction and removal of dialogue threads (that is,
successions of command and parameters leading to one action call). The GIPSE system is
based on a dynamic version of the H4 model. Monitor and Interactors are loaded/created at
run time via a textual description of their structure and representation. They are maintained in
the system as a set of interpreted data rather than a set of functional calls.

The dynamic nature of the controller force the existence of a general dispatcher, responsible
for the actual call of the function when requested by an interactor. Interactors call the
dispatcher by the way of a message identifying the action to be performed and the parameters.
The dispatcher sends back the response of the action with a report indicating success or
failure. From the Interactor's point of view, there is no difference between regular actions and
extended ones, both being described as triplets (action reference, parameters, return) and sent
to the dispatcher.

The effort made for differentiating macro-actions from hard-wired ones is put on the
dispatcher. Separation is done by the way of a database (cf Fig. 1) created during the
initialisation of the application: during application's launch, regular actions send their
description, while a macro component gives the description for all recorded macros. Later,
when the dispatcher gets a message referencing an hard-wired action, it calls the
corresponding function in the domain adaptator component, passing the arguments the
function needs. When the action is a macro, a dialogue is established between the dispatcher
and the Macro-recorder, resulting in the sequential execution of actions given by the latter to
the former.

Macro
Functions

Hard-wired
Functions

Functionnal
Core

Task Database

DispatcherInteractorsMonitor

User Entries

Fig. 1 : the GIPSE System architecture

Patry G. & Girard P. From Adaptable Interfaces to Model-Based Interface Development: The GIPSE Project. ERCIM
Workshop on User Interfaces for All (UI4ALL'97), Ed. N. Carbonell, Pub. INRIA Lorraine, Obernai, France, 3-4 november
1997, pp. 127-133.

2.2. Adding new functionalities

Our experience with PbD in CAD allowed us to easily include a powerful PbD system in
GIPSE. Once any PbD function is recorded, it can be integrated seamlessly in the application.
This is done by an Integrate command, that prompts (1) for the action to be integrated, (2) for
the nature of the action, in terms of task level (thereby identifying an interactor), and (3) for
the representation associated with the action. This representation is composed of a label to be
displayed on a menu button (which position depends on the chosen interactor), and a help
line. As an alternative to (2) it is possible to create a new interactor. In this case, the user is
prompted for the name of the new component and its position in the hierarchy. From this
point, the new component(s) will behave as if it was created at initialisation time.

Similarly, but with the opposite effect, it is possible to remove any action from any interactor.
This may be necessary if the goal of the user is not to expand his/her application, but to
specialize it. In this case, removing some functions using no-more-to-be-used parameters or
performing no-more-to-be-used actins is essential. This is done with a Disintegrate command
that prompts either for the action or the command to be removed. The removal is done at the
dialogue controller level and actions still exist at their own level (macro for an PBD-Macro,
Domain Adaptator level for hard-wired ones). Any command/action uniquely associated with
the action/command to be removed will also be removed.

It should be noticed that any action can be (Dis)integrated from the controller. This operation
is done at the dialogue controller level, whereas identification of the nature of an action is done
by the dispatcher.

2.3. Adding new kinds of objects

The couple made by the dynamic implementation of H4 model and a macro-recorder allows
the adjunction and removal of functionalities to a preprogrammed kernel. Using extended
actions to define new kinds of interaction objects makes up for the second step towards a
complete CADUI. Such a goal can be achieved by two steps. First it must be possible to
create new categories of model objects, new types. Second, these types, to be useful, should
also be usable as parameters for new functions.

Any PBD-program creating objects in the application model can be used as the basis for the
definition of a new type. The new kind of object is defined as a named group of every object
created as a result of the execution of the PBD program. This PBD program can be
considered as the type definition, while instances of this type are the result of this action with
effective associated parameters. Defining new kinds of objects also involves the automated
definition of some functionalities that are associated with this type, such as designation or
geometric transformations. They can be inherited from the components of the object:
translation of such an object, for example, is a set iteration of the translation on all its
components.

New object typing implies the use in the application model of a special set that we call a
extended set (x-set for short). Such a set, once created, has a unmodifiable name. Instances of
the type are multiples x-set using the same name. Any PBD program resulting in an instance
of a new type (that is, used as type definition) begins with creating a x-set with the type as
name. During its execution, it add any created object to this set. These objects still exist on
their own (independently from the typed object), and may even be part of a user defined set.

The use of new types as function parameters is straightforward. As the parameters are
graphically designed, the developer uses the designation function to provide an object of the
type of interest. The Macro recorder will then record an x-set along with the name of that
particular x-set, as the formal parameter of the action being recorded. From a (macro's)
developer's point of view, there is no difference between the use of a standard type or a new

Patry G. & Girard P. From Adaptable Interfaces to Model-Based Interface Development: The GIPSE Project. ERCIM
Workshop on User Interfaces for All (UI4ALL'97), Ed. N. Carbonell, Pub. INRIA Lorraine, Obernai, France, 3-4 november
1997, pp. 127-133.

one in creation of a new action. In fact, if the developer is not the end user, the latter may not
know that there is different kind of objects and actions. If the commands of the macro system
are removed from the application, he/she may not even know that there is a macro system.

3. Related works

GIPSE is a development and run-time environment based on programming by demonstration
technique. The development part is expressed in terms of actions and action-tasks levels. In
the following, we summarise the main differences between our work and previous works in
the related domains.

GIPSE may be assimilated to task-oriented systems. While the creation of new functionalities
is straightforward, it does not eliminate the needs for analysing the intent of these actions: how
will end-users use them? What tasks are to be used as subtasks? What is the task level for this
action? … There are the questions the developer must answer while extending his application.

The absence of more advanced descriptions, such as presentation model or user model, as well
as the absence of advanced tools (design critics for example), would make GIPSE a low-end
Model Based system [Szekely 1996 ; Wilson & Jonhson 1996] compared to existing ones such
as Janus [Balzert 1995 ; Balzert, et al. 1996], Humanoid [Szekely, et al. 1995], Trident
[Bodart, et al. 1995] …

Nevertheless, the goal and method of GIPSE differ from the ones of these systems. GIPSE
has been designed as a specialisation/extension system from an existing, programmed, kernel,
whereas these systems have been designed with the goal of easing the whole development
process. They generate the code of an application (MasterMind [Szekely et al. 1995]) or a file
description that can be used by existing UIMS generators (FUSE [Lonczewski & Schreiber
1996]), via a formal description of various aspects of the application. In contrast, GIPSE does
not need a formal textual description of the task to be added to the application nor it does
generate compilable code. GIPSE allows the modification, during execution of the target
application, of the existing dialogue structure and components. These modifications are then
stored as description of the new dialogue, and restored the next time the application is run.
GIPSE is interpreting the task model of the application at run time, much like ITS [Wiecha,
Bennet, & al 1989 ; Wiecha, et al. 1990] and Humanoid do for their model.

What is completely new in GIPSE is the dual access between resulting applications and
underlying models: we can generate applications from models, and we can see, and best,
evaluate, the models that are generated by customized applications as well as entirely new
applications coming from interactive design.

Conclusion

In this paper, we have described a system using Programming by Demonstration to allow end-
users to customize their applications. More, without any programming knowledge, end-users
are able to create powerful applications from existing ones.

Because of the undelying models of our system, we think that it is possible to rely two
approaches, which seem, at a first glance, very different: the model-based interface
development approach and user-adaptable applications. Despite their obvious difference, we
argue that these two approaches may converge, bringing user enpowerment to formal
approaches, and conversely, bringing formal insurance to end-user developments.

Bibliography
[Balzert 1995] Balzert H. From OOA to GUI : The JANUS-System. InterAct95, 1995. p.

319-324.

Patry G. & Girard P. From Adaptable Interfaces to Model-Based Interface Development: The GIPSE Project. ERCIM
Workshop on User Interfaces for All (UI4ALL'97), Ed. N. Carbonell, Pub. INRIA Lorraine, Obernai, France, 3-4 november
1997, pp. 127-133.

[Balzert et al. 1996] Balzert H., Hofmann F., Kruschinski V., & Niemann C. The JANUS
Application Development Environment-Generating more then the User Interface.
CADUI'96, Namur, 1996. p. 183-206.

[Bass et al. 1992] Bass L., Faneuf R., Little R., Mayer N., Pellegrino B., Reed S., Seacord
R., Sheppard S., & Szczur M.R. A Metamodel for the Runtime Architecture of an
Interactive System. SIGCHI Bulletin, 1992. vol. 24, n° 1, p. 32-37.

[Bodart et al. 1995] Bodart F., Hennebert A.-M., Leheureux J.-M., Provot I., B. Sacré, &
Vanderdonckt J. Towards a systematic building of software Architectures : the Trident
Methodological Guide. DSV-IS'95, 1995. p. 262-278.

[Cypher 1993] Cypher A. Watch What I Do: Programming by Demonstration. Cambridge,
Massachusetts : The MIT Press, 1993. p. 604.

[Duke & Harrison 1993] Duke D.J. & Harrison M.D. Abstract Interaction Objects.
Computer Graphics Forum. 1993. vol. 12,n° 3, p. 25-36.

[Faconti & Paterno' 1990] Faconti G.P. & Paterno' F. An Approach to the Formal
Specification of the Components of an Interaction. European Computer Graphics
Conference and Exhibition, Montreux, Switzerland, 3-7, September 1990. p. 481-494.

[Guittet 1995] Guittet L. Contribution à l'Ingéniérie des Interfaces Homme-Machine -
Théorie des Interacteurs et Architecture H4 dans le système NODAOO. Thèse de
Doctorat : Université de Poitiers, Poitiers, 1995.

[Lonczewski & Schreiber 1996] Lonczewski F. & Schreiber S. The FUSE-System: an
integrated User Interface Design Environment,. CADUI'96, Namur, 5-7 Juin 1996 1996.
p. pp. 37-56.

[Norman 1986] Norman D. User Centered System Design. Lawrence Erlbaum Associates,
1986.

[Paternó & Faconti 1994] Paternó F. & Faconti G.P. A semantics-based approach for the
design and implementation of interaction objects. Computer Graphics Forum. 1994. vol.
13,n° 3, p. 195-204.

[Pierra 1995] Pierra G. Towards a taxonomy for interactive graphics systems. Eurographics
Workshop on Design, Specification, Verification of Interactive Systems, Bonas, June 7-9
1995. p. 362-370.

[Pierra, Potier, & Girard 1996] Pierra G., Potier J.-C., & Girard P. The EBP system :
Example Based Programming for Parametric Design. Modelling and Graphics in
Science and Technology, Springer-Verlag, 1996.

[Puerta 1997] Puerta A.R. A Model-Based Interface Development Environment. IEEE
Software. July-August 1997. vol. 14,n° 4, p. 40-47.

[Szekely 1996] Szekely P. Retrospective and challenge for Model Based Interface
Development. CADUI'96, Namur, 1996. p. xxi-xliv.

[Szekely et al. 1995] Szekely P., Sukaviriya P., Castells P., Muthukumarasamy J., & E.
Salcher. Declarative interface models for user interface construction tools : the
MASTERMIND approach. ECHCI95, 1995. p. 120-150.

[Wiecha, Bennet, & al 1989] Wiecha C., Bennet W., & al e. Generating Higly Interactive
User Interfaces. CHI'89, Austin, USA, 30 April-4 May 1989 1989. p. 277-282.

[Wiecha et al. 1990] Wiecha C., Bennet W., Boies S., Gould J., & Greene S. ITS: a tool for
rapidly developing interactive applications. ACM Transactions on Information Systems.
July 1990. vol. 8,n° 3, p. 204-236.

[Wilson & Jonhson 1996] Wilson S. & Jonhson P. Bridging the Generation Gap : From Task to User
Interface Designs. CADUI'96, Namur, 1996. p. 77-94.

