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Abstract

This paper presents some preliminary results in using the formal language
EXPRESS to verify dialogues of Interactive systems. These results demonstrate that many static
verifications can be achievedand that tools integrating EXPRESS verification should be very
useful for a priori interactive system validation
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INTRODUCTION
Formal specification of interactive systems usually consists in defining a model

associated with a formal language (Palanque 1992; Duke and Harrison 1993; Paterno' 1994).
Our approach is slightly different. We have started from an existing model of interactive
systems (the H4 model) with existing tools for interactive systems building. The dialogue
description in the model is made by extended ATN. The whole system has been developped for
Computer-Aided Design (CAD) systems and is really suitable for them. Despite attempting
reasoning upon these transition networks, we decided to use another formal language, in fact the
EXPRESS language, and its associated tools, to verify some properties of the dialogue.

In the first two sections, we give a short description of the CAD domain and its
specificities, and we explain the main characteristics of the H4 approach. In the third section, we
describe the main parts of the EXPRESS language, giving examples which are applied to our
case. In the fourth section, we show how EXPRESS modelling allows us to verify many
concrete propoerties. Last, we explain the limitations of the method and the development we
planned for this work.

1. CAD systems specificity
CAD systems are powerful design systems that allow users to build complex

models, such as mechanical models, architectural models, and so on. We will try, in this section,
to expose the basis of CAD specificities that lent us to our specific model. We begin with tasks
characteristics, and follow by object description. Our examples belong to the technical domain,
but are really very simplified to avoid for readers'lack of background in this domain. We will
describe our problem, related to the Taxonomy for Interactive Graphics Systems (Pierra 1995)
resulting from discussions that took place during the Eurographics Workshop on Design,
Specification and Verification of Interactive Systems’95 (Bonas, France), in the Working Group
on Taxonomy

The major characteristic of technical or architectural design is its preciseness.
Objects are completely and explicitely defined by users (lines are defined by their two end
points, sweeps by their sweeped face and sweeping vectors, and so on). These explicit relations
require users to express them. While relations should apply between distinct objects, users'tasks
have to be multi-object tasks. More, because CAD systems are powerful, they allow users to
perform structured tasks. These two points are illustrated on the following example:
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Assume the goal of a user is: "I want to build a circle whose centre is the end of this
line, and whose radius is the distance between  that point and the end of that line". The expected
result is shown on figure 1:

Point 2Resulting
circle

Distance

Extremity

Line 1

Extremity

Figure 1: The user's goal

Applying Norman's theory of activity (Norman 1986) is straightforward. The
goal/subgoal hierarchy which is expressed above may be mapped to the task/substask hierarchy
shown on figure 2:

Create-Circle-By-Center-And-Radius

Distance

Extremity<Point 2>

<Line 1>

Extremity

<Line 1>

Figure 2: The corresponding task/subtask hierarchy

A classic CAD dialogue might be as shown in figure 3, which reflects this
task/substask hierarchy. Commands are written in bold, and selected objects appeared
between <>:

create_circle_centre_radius
extremity

<line_1>
distance

<point_2>
extremity

<line_1>

Figure 3: A structured task

This example allows us to classify the tasks: the distance subtask is intended to
elaborate 'something' (that we call token) which is used as a parameter for the higher degree
subtask (here the distance), which elaborates itself another token for another task. Producing
any token which is not used as parameter by any task should be considered at least as an error
of the user, and perhaps as a design error of dialogue. At the opposite, the circle creation task
does not produce anything to be used by any higher-level task.

This particular point led us splitting tasks in two main categories: production
subtasks: which produce some token for another task, and terminal tasks , which do not
produce anything for task usage. For example, object management (creating, deleting,
structuring, ...) or window management (zooming, translating, ...) are the realm of terminal tasks,
while expressions (extremity, distance, numerical expressions, ...) are typical production
subtasks. By extension, simple value inputs or object selection must be considered as production
subtasks.
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Conceptual objects are highly structured in CAD area. Solids are the inner part of
closed shells; shells themselves consist of faces, and so on. When selecting a line, does the user
want to select either that line, either the face it belongs, or the solid it limits? Depending on the
dialogue process state, the answer may vary.

Conceptual objects are also relational objects. Hidden surface visualisation is a good
example of this point: each object’s visibility cannot be computed on its own. For all this
reasons, it does not exist any direct mapping between conceptual objects and presentation
objects.

2. The hierarchical interactors solution
According to the taxonomy, these systems support multi-object and structured

tasks, and the conceptual objects are structured and relational objects. It is well known, in
Software Engineering, that these complex systems, even if designed according to object oriented
methods, have to be splitted up into subsystems. The Arch (or Slinky (Bass, Faneuf et al. 1992))
model precisely provides for such a macrostructuring of systems. But Software Engineering
principles also require the interfaces, specification and relationships between these subsystems
to be precisely defined, and require each system to correspond to one unique abstraction.
According to this principle, we will describe our model by use of the Arch model.

We identified four components with hierarchical decomposition. Two components
from the four exactly match with the components of the ARCH model: the functional core, and
the dialogue component. The first one is in charge of conceptual objects hierarchy. The second
one exactly reflects the task/subtask hierarchy. The presentation component is devoted to the
pipeline viewing (both for inputs and outputs), and reflects the hierarchy of space
transformations (PHIGS 1989; Carson 1993). Last, the interaction toolkit component
implements the logical input devices whose hierarchic composition is generally accepted (Duce,
Van Liere et al. 1990; Duke and Harrison 1993; Paterno' 1994). These four hierarchies explain
the name we chose for our model.

The fifth ARCH component has to be detailed. It is the domain adaptor component
that implements the exchange mechanism between the Dialogue Component and the Domain
Specific Component. We propose using the term of questionnaire for modelling such an
exchange mechanism.

For example, assume we want to design the syntactic call of the questionnaire for the
"select entity" subtask. The semantic role of this subtask is to return the nearest entity from a
given position (simple mouse click or elaborated 3D position). It may fall down if the model is
empty. So, the questionnaire may be as follows, in an Ada like formalism:

Selected_Entity ?
Position: IN WC_Coordinate
Entity : OUT Graphical_Entity
Status : OUT BOOLEAN

Figure 4: A questionnaire for a production subtask

The domain adaptor component also insures the feedback of the corresponding
procedures through a direct projection on the rendering functions of the presentation
component. This direct access from the Domain Adaptator Component results from two points:
(1) the decoupling of domain obects and tasks, and (2) the need for projecting the domain
objects (alone or not) on the presentation area.

The following figure summarize the H4 architecture model for interactive graphic
application that support multi-object structured tasks and whose the objects are both structured
and relational objects. The formal definition of this model may be found in (Guittet 1995).
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Figure 5: The H4 model

The H4 architecture model has been used to develop a complete Computer Aided
Design system for mechanical purpose that uses the Motif toolkit. The dialogue interactors are
specified in an ATN-based specification language and the complete dialogue component is
generated as an Ada program.

The application structure can be synthesized as in figure 6, which focusses on the
dialogue component: we can see the hierarchy of interactors, and the monitor that manages
tokens. This structure will be modelized in the EXPRESS language in the next sections.
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Figure 6: The hierarchical interactors

3. The EXPRESS Language
The EXPRESS language has been developed to describe the information required to

design, build, and maintain products (Schenk and Wilson 1994). The langage, described in
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(EXPRESS 1994), is since September 1994 an international standard. In this section, after
having given a short overview of the EXPRESS language, we explain some of its feature using
examples of our system.

3.1. Overview

This modelling language, used in STEP (Standard for the Exchange of Product
Model Data), is object-based (as opposed to Entity-Relationship modelling language) and
syntactically compilable but yet, non-executable. EXPRESS has been developed in parallel with
its usage, which gave it a pragmatic flavour. This language only deals with the specification of
the static aspects of data.

The major concepts used to describe models are entity types, supertypes or subtypes,
and constraints.

Entity types describe collections of entity instances with similar properties,
common relationships and semantics. Entity instances belonging to the same entity type have the
same attributes. Each entity instance is uniquely identifiable by definition (two entity instances
with the same attribute values can be distinguished).

Attributes describe the properties of entity types. Attribute values are either values
of simple or defined types, or instances of entity types (a "has-a" relationship). The three kinds
of attributes are:

• explicit: this property has a static value, which is independent from other attribute
values.

• derived: the value is a result of a function over other attribute values.
• inverse: the value represents the coupling between "subject" entiies and "user"

entities that refer the subject (Schenk and Wilson 1994).

Supertypes define a "is-a" relationship between entity types and one or more refined
versions of them. Refined entities are called supertypes and every refined versions are called
subtypes. Subtypes inherit attributes and constraints from their supertype (in direct and
transitively indirect mode), and also add specific attributes or restrict supertype properties.
Inheritance refers to the mechanism of sharing properties and constraints using the supertype
structure. The supertype relationship is transitive.

Constraints, used to restrict entity instances or values, are local rules (applied to
every individual instance) or global rules (applied to entity instances of different entity types or
to particular entity types). Unlike most data modeling formalisms that only capture cardinality or
set-oriented constraints on data conforming to data models, EXPRESS enables modeling any
kind of constraints. Thanks to several built-in functions, and to a pascal-like procedural
language, functions may be defined. These functions, in turn, may be used to define constraints.
Uniqueness constraints restrict attributes or set of attributes to have unique values within the
extent of entity types. Inverse attributes constrain the existence dependencies between entity
instances of different entity types.

3.2. Simplified example

3.2.1. The token tree

The following example shows the main features that can be found in an EXPRESS
specification.
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ENTITY token  ; ABSTRACT
SUPERTYPE OF (ONE OF(command, parameter));

END_ENTITY ;

ENTITY command
SUBTYPE  OF (token) ;

name : STRING ;
UNIQUE name;

END_ENTITY ;

ENTITY parameter;  ABSTRACT
SUBTYPE  OF (token) ;
SUPERTYPE OF (

ONE OF(number, position,object)) ;
END_ENTITY ;

ENTITY number
SUBTYPE  OF (parameter) ;

value : REAL ;
END_ENTITY ;

ENTITY position
SUBTYPE  OF (parameter) ;

point : Coordinate ;
END_ENTITY ;

ENTITY object;
SUBTYPE  OF (parameter) ;
SUPERTYPE OF (ONE OF(line, circle,...)) ;
reference : BINARY ; -- in the data base

END_ENTITY ;

Figure 7 : The EXPRESS specification of the token hierarchy

In this EXPRESS specification, the ENTITY token is the root of an inheritance tree
(Fig 8).

token

command parameter

number position object

Figure 8 : The token hierarchy

This tree, which results form the SUPERTYPE and SUBTYPE clauses, describes the
lexical elements ot the language. Commands have a name which is an attribute. They should be
considered as the keywords of the language. Their unicity is assumed by the UNIQUE clause.
The parameters, which are specialized in numbers, positions or system objects (here, lines and
circles), have each a specific attribute: their associated value.

3.2.2. System description

ENTITY system;
tokens: SET [0:?] OF token ;
base_production: SET [0:?] OF token ;
hierarchy: LIST [0:?] OF interactor ;

WHERE
    base: base_production IN tokens ;
    production:QUERY ( i <* hierarchy / i.token_in IN
 base_production+production_behind(SELF,i)) = hierarchy ;
END_ENTITY ;

FUNCTION  production_behind(
     s: system ;i : interactor ):SET OF token ;

LOCAL tokens: SET OF token := [] ;
               ni :INTEGER := 1; END_LOCAL;

REPEAT UNTIL (i=s.hierarchy[ni]) ;
tokens := tokens+ s.hierarchy[ni].product;
ni:=ni+1;

END_REPEAT;
RETURN tokens ;
END_FUNCTION;

Figure 9 : The system entity

The system entity is composed of a set of used tokens (SET[0:?] OF token), a
subset of producible tokens by basic I/O, and an ordered list of interactors (LIST[0:?] OF
interactor). This order is defined by the production/consummation logic of tokens. The strict
respect of the so-called ‘production’ rule (WHERE) ensures every interactor
(QUERY()=hierarchy) to be able to receive tokens produced by lower interactors or by basic
I/O. This rule uses the result of a function (FUNCTION production_behind) which calculates
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the whole set of produceable tokens from the interactors which are lower than the one which is
given as parameter.

3.2.3. Interactors

ENTITY interactor  ;
name : STRING ;
states : SET [0:?] OF state ;
transitions : SET [0:?] OF transition ;
initial_state : state ;

DERIVE
    token_in :  QUERY ( t <* syst.tokens  /SIZEOF ( QUERY ( 

tr <* transitions / tr.token=t) #0) ;
   product :  QUERY ( t <* syst.tokens  /SIZEOF ( QUERY ( 

tr <* transitions / tr.action.production=t) #0) ;
INVERSE syst : LIST [1:1] OF system for hierarchy ;
UNIQUE name ;
WHERE initial_state IN states;
END_ENTITY ;

Figure 10 : The interactor, system component

Every interactor is composed of his name and the states and transitions of its
associated ATN. Two main characteristics are calculated by derivation (DERIVE) : the
consumed tokens (token_in) and the produced parameters (product).

3.2.4. States, transitions and questionnaires

ENTITY state  ;
name : STRING ;
prompt : OPTIONAL STRING ;

INVERSE inter : LIST [1:1] OF interactor for states ;
UNIQUE inter ,name ;
END_ENTITY ;

ENTITY questionnaire  ;
in_list : LIST [0:?] OF parameter ;
production : OPTIONAL parameter ;

END_ENTITY ;

ENTITY transition  ;
s_begin, s_end : state ;
key : token ;
action : OPTIONAL questionnaire  ;

INVERSE inter : LIST [1:1] OF interactor for transitions ;
WHERE
    inter_coherency :inter=begin.inter AND inter=end.inter ;
END_ENTITY ;

Figure 11: States, transitions and questionnaires

States are the stable states of interactors. Optional prompts are sent to users before
inputs. Transitions, which connect initial states (s_begin) to terminal states (s_end), and which
are associated with optional actions (OPTIONAL), are fired when the current token is the key
attrobute. When the action is present, it is triggered by the functional core. Input parameters
which have not been concumed are given to the action. Coherency verification between given and
expected parameters will be detailed later.

3.3. System instances

The EXPRESS language is a data-oriented modelling language. So, it allows
defining models. The above description is a partial view of the Hierarchical Interactors model.

The power of the EXPRESS environment is to provide for verifications against
EXPRESS models. What is to be verified is called "instances" or "physical files". Next figure
presents such a physical file, which supports the definition of the dialogue conforming to the
task/subtask hierarchy of section 2.   
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-- the parameters
#1=number()
#2=position()
#3=line()
#4=circle()
-- the questionnaires
#5=questionnaire((#3),#2) --extremity of a line
#6=questionnaire((#2,#2),#1) --distance p1,p2
#7=questionnaire((#3,#1),$) --circle construct
-- the commands
#11=command(‘extremity’)
#12=command(‘distance’)
#13=command(‘circle_center_radius’)
--the information interactor
#100=interactor(‘inform’,(#101,#102),(#110,#111),#101)
#101=state(‘initial’,$)
#102=state(‘extremity_of’,$)
#110=transition(#101,#102,#11,$)
#111=transition(#102,#101,#3,#5)

--the calculator interactor
#200=interactor(‘calcul’,
     (#201,#202,#203),(#210,#211,#212),#201)
#201=state(‘initial’,$)
#202=state(‘distance_of’,$)
#203=state(‘distance_of_p_and’,$)
#210=transition(#201,#202,#12,$)
#211=transition(#202,#203,#2,$)
#212=transition(#203,#200,#2,#6)
--the creation interactor
#300=interactor(‘calcul’,
     (#301,#302,#303),(#310,#311,#312),#301)
#301=state(‘initial’,$)
#302=state(‘circle_by’,$)
#303=state(‘circle_by_center_and’,$)
#310=transition(#301,#302,#13,$)
#311=transition(#302,#301,#3,$)
#312=transition(#303,#300,#2,#7)
-- and the system
#1000=system(
  (#1,#2,#3,#11,#12,#13),(#2,#3),(#101,#102,#103))

Figure 12 : Physical file

The following table establishes the correspondance between actions an numbers in
the physical file (#301 for example)

création action 7
state 301 302 303 301
product 1

calcul action 6
state 201 202 203 201
product 2 2

inform action 5 5
state 101 102 101 102 101

user sentence 13 11 3 12 2 11 3

4. Verifications and Validation
Our goal was to use the EXPRESS language to verify the correctness of dialogues.

Checking physical files against well-written EXPRESS models ensures properties. In this
section, we explain what kinds of properties we have checked with our models, and then, we
present the first results that validate our approach.

4.1. Verifications

Our EXPRESS model of hierarchical interactors verifies two kinds of properties:
individual properties on each interactor, and global properties on the whole hierarchy, over token
exchanges.

4.1.1. Individual properties

Different levels of verifications can be achieved. Some of them have been yet detailed
in the previous section:

• at structural level, it is easy to ensure the connectivity and the state reachability in the
automata. The "WHERE" rules ensure such verifications,

• at lexical level, we can verify that every command and parameter which are defined in
its input list is actually used in each interactor,

• at syntactical level, we can verify the absence of ambiguity (for example, two
transitions starting from the same state must have different keys),
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• at semantic level, input parameter lists for actions must be consistent with the
parameters stored into the interactors. The following description (nxt figure) must be
added to the description of figure 11:

ENTITY state  ;
...
DERIVE params:BAG [0:?] OF parameter =calcule(trans);
INVERSE trans : SET [0:?] OF transitions for s_end;
END_ENTITY ;

ENTITY transition  ;
...
WHERE
action_coherency :BAG(action.in_list)= s_begin.params+key
;
END_ENTITY ;

Figure 13: Coherency between actions and parameters

Each state maintains, in its ‘params’ attribute, the set of parameters that have not
been yet concumed. When transitions with action are fired, coherency verifications can be made
between the action parameters, the set of parameters in the initial state of the transition, and the
token used to fire the transition.

We shall notice that this kind of verifications is rarely stated by authors, because
most work do not concern multi-object dialogues.

4.1.2. Global properties

Some global properties may easily be verified using EXPRESS. For example, every
consumable token in one interactor has to be producible by the subhierarchy of interactors
below itself. In the same way, the opposite property is: every producible token in each interactor
must potentially be consumed by the subhierarchy of interactors upper itself.

4.2. Validation

We validated our approach using the EXPRESS tool ECCO Toolkit (Staub and
Maier 1992). We built a whole EXPRESS model (bigger in this paper) and wrote an instance
generator. The ECCO toolkit has been able to check every rule we mentionned above.

5. Future works
The preliminary results we have presented in this paper demonstrate that verification

of interactive dialogue may is possible using an EXPRESS modelisation. Nevertheless, lot of
work has to be done... We can verify physical files, but we cannot use these files to generate
interactive applications (as we do with ATN files). So, we have either to modify our dialogue
compiler to let it accept EXPRESS instances as input, or to create a translator from ATN files to
EXPRESS physical files.

In a more general way, we only verify the dialogue. This must be extended to the
presentation of the application.

Last, every verification we made is static. No dynamic verification is possible.
Enhancing verifications with dynamic aspects would make necessary using another part of
EXPRESS definition, the EXPRESS-C procedural language.
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