
Extended version of Girard P., Pierra G., & Potier J.-C. Customizing by Demonstration Generic
Systems to Specific Tasks. UI4ALL, 3rd ERCIM Workshop on User Interfaces for All, Ortrott, France,
3-4 November 1997. p. 189-196.

The EBP system: bringing programming to end-users

P. Girard, G. Pierra, J.C. Potier
Laboratoire d'Informatique Scientifique et Industrielle

Ecole Nationale Supérieure de Mécanique et d'Aérotechnique
Site du Futuroscope - B.P. 109  -  86960 FUTUROSCOPE Cedex  -  France

e-mail : {girard,pierra,potier} @ensma.fr

ABSTRACT

Programming by Demonstration has proved to be an interesting research area.
Nevertheless, despite many experimental systems, it did not find any field area where it
should be used extensively. In this paper, we describe a Computer Aided mechanical
Design system which incorporates Programming by Demonstration capabilities, named
EBP, for Example-Based Programming in Parametrics. EBP is intended to bring to
mechanical draughstmen a complete environment for programming by demonstration
without any textual interaction. It follows technical draughstmen habits, for example by no
use of inference, and offers many programming goodies (intelligent undo/redo, visual
debugging, fully integrated PbD user interface, and so on.              
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Introduction

Over the last few years, lots of advances have been achieved to reduce the programming
skills and the abstraction level which are required for computer using and programming.
Visual programming [9] permits users to graphically select both the functions and the
variables which constitute programs. Programming by Demonstration, or PbD [4], allows
direct interaction with example values that represent the program variables instead of their
abstract names, or iconic presentations. Many experimental systems have proved both the
usability and the interest of the latter approach. Nevertheless, no PbD system, to our
knowledge, has reached the same expressive power as conventional programming in its
application area. The goal of this paper is to present a system, the EBP system (Example
Based Programming in Parametrics), which is intended to enable Computer Aided Design
(CAD) system users to generate every program that describes the geometric shapes of a
collection of parts through the interactive graphic design of one example of this collection
("Variant Programming" [35]). Compared with CAD systems, the EBP system is able to
describe every collection of shapes that might be described by conventional programs,
even if they contain repetitive or alternative shape aspects. Compared with the existing
PbD systems, (1) users may specify on the example every kind of conditional or
recurrence-based loop structure without any textual manipulation, (2) the system does not
use any inference mechanism but explicit dialogue conventions which are fully integrated
within the usual dialogue of the CAD system, and (3) the system generates neutral forms
of programs that may be run, later on, on every other CAD system that supports a standard
Application Programming Interface (API).

The structure of this paper is as follows: section 1 briefly outlines the application of the
PbD approach in modern CAD systems. Section 2 describes the requirements stated for
EBP. Section 3 presents the EBP system itself. Last, section 4 relates PbD facilities of
EBP to existing PbD systems.
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1. PBD AND CAD

In her book, A small matter of programming, perspectives on end-user computing [25],
B. Nardi has identified CAD as a natural candidate for end-user programming, because
these systems "allow end users to create useful applications with no more than a few hours
of instruction". We will see in this section how this can be extended to complete PbD
features. After a small description of PbD, we describe the application field of PbD in
CAD, named Parametrics programming . Last, we describe two approaches; called
variational and parametric approaches, and we relate them to the PbD terminology.

1.1. From Visual programming to Programming by Demonstration

In the 1980s, several projects laid foundations for visual programming (reprinted in [9]).
The main idea of this new approach is to replace words by pictures. While textual
programming offers no more help for understanding programs than meanings of words,
visual programming uses pictures as a much more intuitive representation of this meaning.
Visual programming has introduced, in different fields, pictorial representations for both
variables and program functions. Commercial products like LabVIEW®1, or experimental
ones, like HI-VISUAL [11] proved the approach's validity. Nevertheless, visual
programming mainly addresses static representations of programs. The remaining
question is: What will actually occur when the program runs?

Using examples to design programs makes up the second step towards end-user
programming environments. Instead of selecting functions and choosing variables to
which each function shall apply, users (programmers) do functions on values which stand
for program variables. This programming paradigm was born in Pygmalion [38]. It has
been largely analysed in Halbert's PhD Dissertation [10], and has been formalised in
Myers' works [23] under the name of Example-Based Programming. Then, various
workshops took place, and have led to state of the art reports on end-user programming
[22, 4]. Cypher’s compilation [4] introduced the term of Programming by Demonstration
(PbD), which seems to be largely accepted today. The main idea is to avoid the abstraction
level of variables by enabling the user to deal only with specific values of these variables.
During example design, PbD systems analyse inputs, and build the program able to
generate the example, and some variants of this example. This analysis may be done by
immediate action recording (programming-with-example in Myers terminology) or by
inferencing mechanisms over the example value (programming-by-example).

PbD opens the door to new generations of programming environments. In the fields where
some visual appearance may be assigned to variable values, direct manipulation of these
values allows implicit programs design. So, Halbert’s SmallStar [10] for iconic desktop
programming, Myers’ PERIDOT [20] and GARNET [24], Olsen’s MACROS BY
EXAMPLE [28] for UIMS programming, Cypher’s KidSim [6] for simulation, Wilde’s
WYSIWYC Spreadsheet [42] or Geometer’s Sketchpad [12] and Sassin’s ProDeGE+
[36] in drawing systems, have proved in different fields the validity of this approach.
Despite this success, most systems seems to be mainly at a prototype stage. In the CAD
area, PbD, under the name of "Parametrics", really found some commercial market.

1.2. CAD, a suitable area for PbD

Designing new products often consists in assembling pre-existing components intended to
be used in different products. These components, named "standard parts" are gathered into
families described by a part family model. According to [37] "a part family model
represents a collection of parts exhibiting some variation in dimensions, tolerances, and
overall shape that nevertheless are considered similar from the viewpoint of a certain
application". The context of some part family corresponds either to some product standard

                                                
1 National Instruments, USA
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(e.g., the family of ISO 1014 hexagonal screws), either to some supplier's environment
family, or to some family of firm-specific components, which are described by end-users
for internal use. Because of the often large number of members of these collections, some
unique part family shall describe the whole collection of corresponding shapes.

In the first generation of CAD systems, part family models were described as parametric
programs. In these conventional CAD systems, such programs were textually described,
often in FORTRAN or in the C language. When triggered, they create geometric entities
by means of API. A lot of these systems have been developped on end-user sites where
draughtsmen were trained on CAD modelling. So, a strong requirement exists in the CAD
area for end-user-oriented programming paradigm.

The second reason why the PbD approach may be easily implemented in the CAD area is
the kind of dialogue language CAD systems support. CAD models, or technical drawings,
are very different from pictures or artistic drawings: they shall conform to strong rules
depending on the application area (mechanical design, architectural area, and so on). When
designing such drawings, draughtsmen perfectly know the relationships that must exist
between the entities of their model, and they want to have the capability of expressing these
constraints in their design process. Since the early beginning of CAD, every CAD system
provides commands which enable the expression of such constraints. Geometric
constraints are so specified by means of geometric operators (e.g., middle_of,
starting_point, projection_of ... onto...). Numerical constraints are specified by display
calculators which provide both algebraic operators (e.g., +, -, *, /) and geometric
functions. These functions (e.g. distance_of, angle_between, radius_of, ...) take
references to model entities as parameters, and return numerical values which, in turn, may
be involved in numerical expressions. Therefore, CAD system interfaces enable users to
explicitly specify every constraint that shall hold between objects, and CAD users are
accustomed to specifying such constraints. Just recording these constraints builds the
basis of sequential imperative program recording.

1.3. Parametrics

While every modern CAD system supports this kind of constraint-based definition of
entities, constraints recording appeared much more recently. Beside the MEDUSA system
[26], that provided for constraint-recording capabilities in 1983, the generalization of this
feature appeared in the late 80's. At this time, a new generation of systems appeared on the
market; they were able to record these constraints, to change the numerical values involved
in these constraints, and to compute the new model resulting from these values. These
systems, often called Dimension-driven systems [35] have a twofold data structure and a
twofold behaviour. On the one hand, users may build (or may change, or may compute)
the displayed model. On the other hand, users may ask for visualization of the constraints
and the numeric values which are involved in the example design. This information, which
stands for the program in the PbD terminology, is displayed in some conventional
symbolic way, for instance through dimensionning. Then, users select the values they want
to change, enter new values, and the system automatically computes the new model which
corresponds to the same constructive process, or to the new solution of the same set of
constraints.

In fact, dimension-driven systems proceed from two different approaches (declarative
approach and imperative approach) [33]. Variational systems hide the declarative
program. Users build the example, specify the constraints, either explicitly or implicily.
These constraints are recorded as a set of equations, and some solver derives the solution.
Variational geometry lies in geometric problem solving. The solution may be unknown
from the user. Once constraints are stated, with some approximate geometric description,
the solver tries to compute a solution. This approach corresponds to the popular sketchers
which are available on most recent CAD systems: users draw some free-hand sketch of a
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2D model, and the solver computes the exact model after constraints are stated. The user
interface is very friendly. Lots of methods have been used to solve these constraints. Most
efficient methods are based on graph reduction [29, 1]. Despite an actual progress, this
approach suffers from three intrinsic weaknesses. (1) The set of equations has generally
many solutions (exponential number), and only system specific heuristics have been
defined so far to guess the "user intent". Very simple examples have been published [1]
where the computed solutions were obviously not intended to be the right ones. (2)
Because of the heuristic-driven nature of solving processes, different systems should
provide different solution for the same model. (3) Pure variational systems are unable to
capture the purely procedural constructs, such as Boolean regularized operations or
sweeping. Therefore, every so-called "variational system" is in fact an hybrid system
which is variational in 2D and mainly procedural in 3D.

Procedural systems, often called Parametrics, address a very different problem: "given a
class of shapes whose design process is well known and may be supported by the
interface of some CAD systems, we want every instance, characterized by its parameter
values to be generated automatically in a deterministic way". Parametric systems hide an
imperative program. This program is often captured using the example design process:
the CAD system “spies on” draughtsmen while they are designing their example. As
long as the example model grows, the constructive logic of draughtsmen is captured.
Afterwards, the CAD system is able to replay the constructive logic, possibly with new
input values. The internal representation of programs may be textual, but it is more
generally based on data structures [33, 39] such as directed acyclic graphs [2]. The Pro-
Engineer® system2 is the most popular example of this approach.

In the CAD area, the dimension-driven approach is so attractive that, at the present time,
every competitive CAD system must provide such capabilities. This large diffusion proves
the practical interest of the approach. It also proves that draughtsmen, end-users, are able
to generate parametrized shapes, i.e. real visual programs, without programming
knowledge. That is not to say without any modification of their working process.
Effectively, drawing shapes  is slightly different from drawing families of shapes .
Nevertheless, this activity does not stand at the abstract level of conventional programming
activity. Dimension-driven systems, or parametrics for short, largely facilitate the design of
part family models. For collection or single shapes, just designing one shape provides for
generating every family's shape.

2. REQUIREMENTS FOR EBP

Most choices which have been made for the EBP system are governed by the goals of the
PLUS project and the habits of the users, i.e. technical draughtsmen. In this section, we
describe the Project context of our work, and we enhance the main choices for EBP’s
design.

The portability of parts libraries between different CAD systems is a major economic
concern for CAD system users, for component manufacturers, and for CAD systems
vendors. This portability would drastically increase the number of available part families
on the different CAD systems, and therefore would increase the quality and the
productivity of the design process for assembly modelling. To allow such a portability, a
whole set of concerns, known as the CAD-LIB approach, has been developed [31]. They
constitute the agreed basis of European and International standardisation works
(CEN/TC310-pr ENV 40004 and ISO/TC184/SC4-ISO 13584 P-LIB).

The goals of the PLUS project, which is funded by the European Union (EU) as part of
the ESPRIT R&D program, are:

                                                
2 Parametric Technology Inc. USA.
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• to develop, on the basis of these concepts, a complete specification of the exchange
format intended to be published as ISO 13584 (P-LIB),

• to validate this specification through the development of a complete set of pre-industrial
tools which either generate or reuse this exchange format.

Beside object oriented data model for the exchange of parts library data, the project has to
develop an approach for the exchange of part family geometric models. When the project
started (in 1993), the parametric technology did not appear mature enough to be able to
commit to the development of a standard exchange format for parametric data models.
Therefore, the selected approach has been rather conservative. It consisted in developing a
standard API (now available as ISO DIS 13584-31) associated with a FORTRAN
binding. Every CAD system which supports some implementation of this standard API
would be able to execute FORTRAN programs referring to this API.

However, this approach was in fact less conservative at it might appear at the first glance:
the project also included the development of a PbD system that was intended to be able to
generate these variant programs through pure graphical interactions.

This context defines the requirements that governed the EBP system design. (1) The
generation process should be deterministic and fully controlled by the designer: one and
only one shape should be generated for every allowed value of the input parameters, and
precisely the shape which corresponds to the part. (2) Every kind of shape family which
might be described using some conventional way of programming should be able to
design using this system. (3) The system should be able to generate an external
representation of its internal data structure in the format of a FORTRAN program
conforming to the standard API.

Note that if the first requirement enforced to follow a procedural approach without any
implicit inference or heuristic mechanism, none of the two last requirements were fulfilled
neither by the existing parametric systems nor by the existing prototype of PbD systems.
While several systems support pre-defined repetitive pattern structures, none of them, as
far as we know, supports general purpose program/subprogram structure with graphical
parameter passing mechanisms and recurrence-based iterations where each loop is defined
through explicit recurrence relationships within the previous branch.

3. THE EBP SYSTEM

In this section, we describe the EBP system, from a standard CAD point of view to a more
specific EBP viewpoint. Snapshots from the actual system are provided in Annexes.

3.1. EBP: a classic 2D CAD system

The EBP system [34] is a 2D CAD system. It manipulates simple geometric entities
(points, unbounded lines, trimmed lines, circles, curves, and so on) and structured entities
(composite curves, planar surfaces, and structured sets). Most constraints that result from
technical drawing rules are supported. EBP provides a powerful display calculator that
enables graphical inputs of both numerical and graphical expressions. Last, EBP allows
model definitions through the use of menus and graphical interactions, over the X-MOTIF
interface, and runs on Sun-Solaris3 and DEC-Alpha4 platforms.

Annex 1 shows a snapshot from the "classic" CAD system EBP. But this snapshot also
shows a less usual feature on a CAD system: the logical display calculator. This feature,
that shares some commonalities with some mechanism presented in the Smith's Pygmalion
system [38] (bottom, left), enables already CAD users, trained in using some numerical

                                                
3 Sun Inc., USA
4 Digital, USA
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display calculator, to graphically specify the control predicate of their alternative or
repetitive shape aspects. For instance, a fillet may be defined as dependent onto the
constraint :

val (line_1) > 2 x dist (point_1, point_2)
where val means length (of a line), and where line_1, point_1 and point_2 are graphically
selected on the example.

3.2. Ambiguity removal and system determinism

The ambiguity of geometric constructs is not specific to variational systems: it is in fact
intrinsic to geometry where every constraint that involves a circle or a distance
corresponds, in general, to two different solutions.

For example, building a line which starts on a given point, and which ends tangential to a
circle, leads to two possible solutions, as pointed out in figure 1.

Figure 1: The two
possible solutions for a
line tangential to a circle

Figure 2:  pointing
solving

Figure 3 : Consistent
orientation

This problem is perfectly solved in interactive geometric design. Most CAD systems use
the mouse-click position of each input object to discriminate the possible constructs. They
assume that the designer approximately knows the expected solution. For example, in the
case of figure 1, the pointing click position results in the choice of the upper line solution
(figure 2).

If this user-friendly dialogue convention shall be maintained at the user interface level, i.e.,
to design the example/program, it cannot be stored in the parametric program where, for
different values of the parameters, the position might correspond to a different solution.
But, this problem of constraint-based geometric constructs is also well-known in variant
programming [35] where programming languages were used for defining part family
models.

In such parametrics programs, context-free ambiguity removers are defined. In the target
API, ambiguity removal is defined by topological informations: geometry entity
orientation, and in/out for circles. For example, figure 3 shows the unique solution of the
function Line_by_Point_and_Circle from figure 2.

Therefore, EBP ensures the translation from the context-sensitive information captured at
the user interface level (the position of the mouse click) into a context-free information
recorded in the program.

In EBP, every entity is oriented according to the way it was constructed. Lines are oriented
from their origin to their extremity, circles are oriented counter clockwise and so on.
During program recording, the system translates the proximity disambiguity mechanism
into the orientation mechanism as follows:
• With the proximity mechanism, the system calculates the right construction,
• Then, the system checks for the circle orientation.
• If this orientation is consistent whith the solution (as in figure 3), the system records

the drawing without modification.
• If not, the system records the following sequence: change circle orientation, draw the

line, and change the circle orientation again.
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This mechanism, which remains unknown from users, is perfectly determinist.

3.3. EBP: a fully integrated PbD system

Visual Programming by Demonstration is achieved by “command recording” mode. This
means that, unlike some parametrics systems where "programs" are directly related to
example values (e.g., the function line_2_points directly refers to the example point), in
EBP, programs (which are named "instances") are separated from examples. Relationships
between example values and program variables are given through the dynamic context of
the program. This mechanism, usual in programming languages, ensures an indirect
reference from the program variables to their current values (in the example). It provides
more independance between the PbD manager that deals with variables and the CAD
system where example values are CAD database pointers. When the program is re-run
(e.g., during modification), the EBP variables are not changed, but their addresses, stored
in the dynamic context, are up-dated.

After recording mode activation (Record Instance), the EBP system "spies on" the user
and builds an instance. Switching to running mode allows the system to run this instance
(Apply Instance).

The only additional commands from traditional CAD systems are designed to RECORD /
NAME / LOAD / APPLY instances and to DEFINE / READ / WRITE / ENTER
parameters. Adding control structures requires more specific commands that are described
in the following section.

A typical session of EBP would be as follows: after piece analysis (What are the
parameters? Where are the dependencies? ... Every task that draughtsmen are used to do
even without EBP, every time they plan to build some CAD model) the user begins PbD
recording. He/She defines the parameters, and then, he/she draws an example, using the
parameters instead of "direct values". The DEFINE command opens a window, where a
name is given (it is displayed every time the program is run). The ENTER command
enables entering the values of the parameters for the example. These values are entered
through the CAD system interface, and their types define the parameter's types. The
WRITE/READ command enables recording/getting values on/from a file which will be
linked to the program instance. This is used for recording the allowed sets of parameter
values for part families. As soon as parameters are defined, they are displayed in a menu
where the user can pick them up, for example when defining expressions using the display
calculators.

When the example is complete, the user can save the resulting instance, change some
parameters, and try a new run. Recording in files values for parameters is very easy; this
allows rapid testing. Recorded instances are included into a pop-up menu, and are usable
with minimal effort.

The LOAD command selects an instance and the APPLY command runs it. Note that
these commands may be selected both outside and inside the recording mode. In the first
case, a model will be created into the CAD system database. EBP appears as a macro-by-
example facility. In the second case, the APPLY command is recorded as a call routine in
the embedding instance, and EBP ensures parameter passing. In both cases, after the apply
command has been selected, EBP displays each parameter name and waits for a value.
This value is defined using the whole CAD system user interface. This means that, when
applying the instance in recording mode, parameter value definition consists of every
expression that involves entities or parameter values of the embedding instance. These
expressions are stored in the embedding instance the actual parameter value for the
embedding instance.
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3.4. Full control structure support

EBP includes full control structure support. More precisely, conditionals, iterations and
subroutines are fully supported. The program context consistency is managed by the
system [7, 8], and allows a consistent use of these structures.

Conditionals and iterations require Boolean expression definition, which is made through
both numerical and logical calculators. The two alternate branches of conditionals may be
defined either in a consistant way (running again the instance with alternate parameter
values) or in some unconsistant way (drawing the two solutions with the same parameter
values).

Several iteration features are provided: set iterations over rubber-band rectangle selections
and multiple geometric transformations are straightforward in CAD systems, and are
supported by EBP. As for ambiguity removal, context dependent information (the two
corners of the rubber-band rectangle) are translated into context-free information (the set
of entity names which were referenced by this shortcut). But much more general features,
such as Repeat n times, While loops and Repeat ... until loops are also provided. They
allow recurrence-based definitions, in a pure interactive way.

Let us illustrate an interactive REPEAT - UNTIL definition: assume we want to design the
drawing shown in figure 4. It is made of circles decreasing by a rate of one half radius at
each loop, to reach a given minimum. The program to be constructed might be defined as
an iteration (to obtain one column of circles) and a symmetry (to obtain the other one).
Any loop but the first might be defined as follows: build a first circle, tangential to the
corresponding circle in the previous loop, tangential to the central vertical axis, and with
a radius half that of corresponding circle in the previous loop; then create a second
circle whose centre is the same as the first circle, and whose radius is half the previous
circle. As shown in figure 4, the first loop has a slightly different specification because the
constraints that define the first circle refer to entities of the embedded context (the
horizontal line)

Figure 4: A (complex) figure

Three points are to be underlined: (1) in one loop, objects are defined from objects created
during the previous loop and during the current loop; (2) actions performed during the
first loop are the same as actions performed during the next ones; the only difference
concerns the reference to the objects belonging to the previous loop, which must be found
in the embedding context (in the example, the first circle is tangential to both existing
lines); (3) recurrence relationships may be fully defined during the second execution of
the first loop actions, just by asking the user for the actual object that shall be used for
every referenced object in the first loop: it may be the same object (the vertical line in our
example) or any object which has been created during the first loop (in our example, the
horizontal line must be replaced by the first circle of the first loop).

These three remarks are the basis of the user interface and the dialogue conventions of the
EBP system. Two commands are provided (REPEAT, and UNTIL). The user selects the
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REPEAT command, and defines the first loop, with full access to the embedding context.
Then, he/she selects the UNTIL command.

The system automatically switches to running mode, in order to perform the second loop.
Every command performed during the first loop is run. While running each command, the
system echoes the embedding context objects, asking the user for either picking the same
(which defines a constant reference during the loop run) or picking another object which
has been created during the previous loop (which defines a recurrence relationship, re-
evaluated for any loop). Every other entity selection is refused by the system. The same
mechanism is provided for any expression, allowing the definition of new expressions (in
our example, the expression for the radius of the first circle).

Once each object reference has been confirmed or changed by some reference to entities
from the first or the current loop, the system asks the user for the definition of the control
expression. This solution implicity defines a recurrence-based relation which is consistent
for the whole iteration. Using the display calculators, users can access every object from
both branches of the iteration and from the embedding context. After that, the system runs
the remaining loops until the controlling expression fires. Each recurrence relation is
evaluated from any loops.

3.5. An actual programming environment

EBP is a complete programming environment, that provides every usual debugging facility,
in a programming with example style. Every interaction with programs is done through
example interaction. Generated programs are shown in some specific window which is
only displayed on user request. A special menu, the visit menu, allows re-running the
instance.

3.5.1. Intelligent UNDO/REDO and program modification
Both during program recording and debugging, every modification may be done into the
program. Successive UNODOs enable returning to previous steps. Then, some additional
constructs may be done, and some steps may be modified or deleted. EBP manages the
program dynamic context to ensure that addition/deletion does not change references to
variables. When REDOing some command which references some deleted entity, EBP
asks the user for a new entity to replace the previous one.

3.5.2. Visual debugging
Because the textual representation of programs is never supposed to be displayed,
debugging "virtual" programs might appear difficult. Fortunately, the example always give
an input/output interface with the program.

Like every debugging environment, the EBP manager enables programs to be run step by
step or until their end, or to be reinitalized. It also provide the possibility to visit the
program until one entity is drawn. The user graphically selects this entity, and the
program run until it is drawn. The user may then make every modification on the
example/program, before REDOing the remainder of the program.

3.5.3. Program generation
EBP was designed to produce standard parts portable program libraries (ISO13584
compliantFORTRAN programs reference the ISO 13584-31 API.

4. EBP AND PBD SYSTEMS

In this section, we use the summary sheet which has been proposed in [5] for PbD system
characterization. We explore Uses and users (4.1), User interaction (4.2), Inference (4.3.),
Program constructs coverage (4.4), and we conclude by evolving consideration over the
EBP project (4.5).
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4.1 Uses and Users

Application domain
EBP addresses mechanical 2D CAD. While Metamouse [18], Chimera [13], the
Geometer’s Sketchpad [12] and Mondrian [14] relate to the graphical area, none of these
systems specifically addresses CAD. The only experimental PbD CAD system is
Geonode [41].

Tasks within the domain
EBP is designed for producing standard programs to be run over different CAD systems.
It may be related to Pygmalion [38], Tinker [15] and Smallstar [10] for its programming
goal, but explicit programming or textual modification of programs is never required. It
should also be compared with some systems which produce programs, like Peridot [20] or
Mondrian [14] (LISP code), LEMMING [27] (specific NIC code), and Geonode [41]
(C code). Unlike these systems, EBP produced standard API codes and provides
computationaly completeness of generated programs.

Intended users
EBP addresses trained end-users, without programming knowledge. This is completely
different for example from KidSim [6] where intended users are kids, or from the
Geometer’s Sketchpad [12] where users are geometer’s students. EBP users are expert
CAD users, who perfectly know how to build CAD models. EBP is built on this
background to provide them implicit programming capabilities.

4.2. User interaction

EBP is a macro-like system. In contrast with Metamouse [18], Tels [43] or Tinker [15], it
does not interleave program creation with program execution. Data description is always
explicit. However, users are not required to give them a posteriori, as in Smallstar:
constraint-based constructs avalaible on the CAD system allow a priori definitions.

Interactive program constructs definition
Like Pygmalion [38], EBP has special commands for program constructs definition.
Unlike Smallstar [10], users are never required to modify their textual program. Loops,
conditionals and subroutines definition and usage are built with only interactive
programming-with-example techniques.

Moreover some predefined control structures, which are implicit in CAD systems, are fully
integrated in EBP (set iteration over rubber-band rectangle selection, multiple geometrical
transformations).

Modifying and debugging
Debugging facilities in EBP may be related to Zstep 94 [16]. Lots of fonctionalities are
similar: EBP’s Visit menu looks like the ZStep 94’s "video recorder", and ZStep 94’s
graphical step is very close from EBP’s Visual Debugging. However, main objectives
differ in the fact that EBP does not require users to read the FORTRAN program, while
ZStep 94 is intended to help the programmer understand the correspondence between
static program code and dynamic program execution.

EBP provides for textual visualization of programs, like Smallstar [10] or GeoNode [41].
Nevertheless, it does not require nor allow any interaction over it. While Chimera [13] and
Pursuit [19] allow graphical visualization of programs, and direct interaction with it,
modifying and debugging is achieved in EBP on the example itself. When modifications
are made by the user, EBP maintains the consistency of the program by asking the user
for no longer valid entity reference. This is to be compared with Pygmalion [38] which
requires that the remainder of a program be re-demonstrated, and Smallstar [10] or
Chimera [13] which do not check for validity.
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4.3. Inference and Domain Knowledge

As already underlined, and unlike most PbD systems, EBP does not use any inference. It
provides explicit commands for control structure definition, and implicit built-in program
constructs. It does not require any supplementary information from the normal interactive
use of the system, as for example the Voice Input solution [40]. It only uses predefined
orientation rules to translate proximity disambiguity mechanism.

4.4. Program constructs coverage

Program constructs, and more precisely subroutines, conditionals and iterations, is the
most important challenge for PbD systems. In fact, they are largely restricted in the
existing systems. In 1990 [23], this fact was considered as a major drawback for PbD
systems. Cypher’s ‘Watch what I do’ has a good summary on these features in existing
PbD systems, that we will summarise below. In current PbD systems, subroutines with
parameters are proposed in Chimera [13], Geometer’s Sketchpad [12], Macros-by-
example [28] and AIDE [30]. Nevertheless, parameters are limited to input parameters; so
doing, we should consider them as ‘macros’, instead of real subroutines. In EBP, the
whole set of geometric entities which is generated by a subroutine may be referenced as a
unique set in the embedding context. It may therefore be used, for example in symmetry
actions. Recursion may only be found in Geometer’s Sketchpad [12], but the lack of
control expressions in that system makes the recursive definition incomplete: users are
required to give the recursion depth they want the system to apply at any run.

Conditionals are frequently supported (Peridot [20], Turvy [17], Metamouse [18], TELS
[43], Pursuit [19]), but they are often restricted to exception handling (object existence test,
geometrical constraint satisfaction, ...). Last, iterations are mainly set iterations [10] which
consist of repeating actions on object lists (Peridot [20], Eager [3], Pursuit [19]) or in texts
(TELS [43]). Some systems search for repetitive patterns in user actions, and infer
repetitive tasks (Eager [3], Turvy [17], Metamouse [18], Peridot [20]), or allow predefined
number of object creations (Peridot [20]). General recurrence-based iterations are not
supported. The only system that introduces restricted forms of recurrence relations
(chosen from predefined classes of recurrence patterns) is Peridot: ‘the constraint in all
items after the first is made to refer to the corresponding item in the previous cycle‘ [21].
No existing system or prototype is able to generate the repetitive structure proposed in
Figure 4.

Finally, the systems which may be considered to be the most complete drop out the major
characteristic of PbD, that is directly interacting with the example: they ask users for
textual modifications when introducing control structures (Tinker [15], Smallstar [10],
Geonode [41]).

4.5. Evolving considerations

EBP has been implemented in Ada language, for about 200,000 documented lines. It runs
on X-MOTIF platforms, Sun-Solaris and Dec-Alpha.

Within the PLUS project, EBP is already used to generate the library of a bearing and
linear system supplier. Some other exchange formats are planned to be generated,
including AutoLISP and a STEP-compliant data model oriented parametric exchange
format which was recently proposed [32]. Future work includes the development of an
industrial product for ISO 13584-compliant file generator, and 3D extension.

CONCLUSION

In this paper, we have presented the EBP system, which constitutes a complete PbD
environment for CAD parametric design. This system:
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• does not use any inference mechanism to ensure full user control onto the (implicit)
program;

• supports every control structure of imperative programming without any direct
interaction with the program;

• is able to generate conventional programs that may be used on different CAD systems.

From the PbD point of view, the EBP system proves that, at least in some application area
where system users have particular skills, complete PbD environments may be developped.
Complete PbD environment means both computational-completeness of generated
programs and real debugging with example facilities.

From the CAD systems point of view, the EBP system proves that parametrics CAD
systems, which are already very successful for sequential (or simple repetitive pattern-
based) parametric design, may be extended to support the parametric design of every
conditional or repetitive shape aspect.

From a user interface viewpoint, usual interactive systems are generally only sequential
systems. The EBP system suggests extending the dialogue command language towards
recurrence-based repetitive command constructs. It also proves that very powerful macro-
with-example recorders may be developped.
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