
5th International Eurographics Workshop on Design, Specification, and
Verification of Interactive Systems (DSV-IS'98), Cosener's House, Abingdon, UK,

June, 3-5 1998, pp 333-352.

A Uniform Approach for Specification and Design
of Interactive Systems: the B Method

Yamine AIT-AMEUR, Patrick GIRARD, Francis JAMBON

LISI / ENSMA
BP 109, Téléport 2

F-86960 Futuroscope cedex, France
Tel.: +33 5 49 49 80 63, Fax: +33 5 49 49 80 64

E-mail: {yamine, girard, jambon}@ensma.fr
Web: http://www.lisi.ensma.fr/cao.html

Abstract : We have experienced the B Method on a case study
which was defined by the French working group on formalisms for
interactive systems, i.e. a Post-It® Notes like collaborative
application. This experience showed that the B approach allows to
cover the description, the formal specification, and the design of
each component of basic architecture models, i.e., the five
components of the Arch model. Moreover, it has shown that the
proposed approach is capable to formally handle large case studies
and generate proof obligations which, when proved –automatically–
allows to assert the correctness of the development, and the
checking of several user requirements.

Keywords : B method, specification refinement, software
architecture, interaction properties verification, case study,
specification of interactive system.

1. Introduction
The past four editions of DSV-IS Workshops have largely focused on formal

specification for Interactive Systems. The first approaches attempted to define
new semi-formal notations for parts of interactive system design, such as UAN
[Hix & Hartson 1993] or MAD [Scapin & Pierret-Golbreich 1990] without defining
specific models. The expressive power of these notations is clearly correlated to
the domain they are planned to cover, but their formal semantics remains
undefined. Conversely, the major researchers' efforts during the past few years
have been to endeavour the use of well-known formalisms in interactive system
design, such as the Z-notation [Johnson 1995], Petri nets [Accot, Chatty, &
Palanque 1996], or functional approaches, whose semantics is clearly defined.
However, most of these approaches lead on interactive models such as the York
Interactors [Duke & Harrison 1993b], Interactive Cooperative Objects [Palanque
1992] or the CNUCE model [Paterno' 1994 ; Paterno' & Faconti 1992].

Our goal in this work is to explore a third approach: we suggest using a well-
defined formal method in interactive design context, without defining or using any
interactive model. We propose the B Method [Abrial 1996] which is a model

description oriented formalism, such as VDM [Bjorner 1987] or Z [Spivey 1988].
The choice of this method was motivated by the existence of a complete software
development tool supporting it [Steria méditerranée 1997]. We tried it out on a
case study which has been defined by the French working group on formalisms for
highly interactive systems [Palanque & Girard 1996]: a Post-It® Notes like
collaborative application.

This paper is organised as follows. The first section discusses some formal
approaches that have been studied in the design of interactive systems context.
We particularly focus on the scope and the goal of these approaches
(specification, validation, or verification) and on the tools that support these
methods. The second section describes the case study we have chosen. The third
section presents the B method and illustrates it with one abstract machine of the
functional core of our case study. Then, the fourth section details the B expression
of specific interactive features from the case study. Last, we conclude this paper
giving briefly our results either from the formalisation or the verification point of
views.

2. formal approaches overview
As we stated in the introduction, a lot of ad hoc formalisms have been defined

for Interactive System description or verification.

MAD (Méthode Analytique de Description des Tâches) [Scapin & Pierret-
Golbreich 1990] is first and foremost a method for task analysis. The typical user
of the MAD method is a human factors specialist. The goal of a MAD study is to
collect the set of user's tasks –computerized or not. Recently, the method has
been extended to the logical presentation level of user interfaces by the
MAD*/SSI models [Gamboa Rodrígez & Scapin 1997]. Supported by a set of
tools, IMAD*/ALACIE, the method now bridges the gap from tasks to interaction.
UAN (User Action Notation) [Hix & Hartson 1993] proposed another approach: it
focus on the description of the interaction level of graphic user interfaces. For
example, a basic action of a UAN description is pointing an object with the
mouse. In XUAN [Gray, England, & McGowan 1994], the temporal relationships
of UAN have been extended, and a subset on XUAN descriptions, eXUAN
[McGowan 1995] may be partially executable. UAN may express the same
temporal relationships as MAD, but does not provide any methodology to extract
them. The well-known GOMS model (Goals, Operators, Methods, Selections)
[Card, Moran, & Newell 1983] is meant for the predictive evaluation of
interaction between the final system an expert user. The GOMS' tasks are ranked
among their duration and complexity. Duration is also one of the main results of a
GOMS evaluation.

On the opposite, strongly correlated to Interactive Model definition, several
approaches have used well-known formal systems or notation in order to address
validation and verification issues. Classical Petri net formalism has been adapted
to interactive needs in the ICO model [Palanque 1992], and model oriented Z
notation has been used in the York Interactors [Duke & Harrison 1993a ; Duke &
Harrison 1993b]. LOTOS has been used in the CNUCE model [Paterno' 1994 ;
Paterno' & Faconti 1992]. The last edition of DSV-IS Workshop discussed the
actual use of formalisms. Two major needs emerged: verification and validation

[Fields, Merriam, & Andy 1997], also called ‘verification of implementations
against their specifications’ and ‘verification of specification properties’ [Campos
& Harrison 1997]. In fact, most of the results focused on the second problem, that
is ensuring the correctness of specification. In the review of Campos and Harrison,
a framework for the classification of user interface properties has been defined.
The current tendency seems today to attempt to correlate different formalisms to
cover the aspects of interactive systems. In fact, while the major part of these
approaches addresses the validation of specification, using tools appears to be
difficult: they do not exist, or are limited in use. When using different formalisms,
articulating them together is also very difficult.

In opposite to these options, we will explore the way of using a unique formal
notation, suitable for proving, and, so doing, to fulfil verification requirements: the
B method. It provides a uniform setting to describe all the parts of an interactive
system.

3. The case study
Our case study is a cooperative version of a Post-It® Note software. It appears

on the screen as a Block which can be iconified, but cannot be moved. Clickable
areas allow direct manipulation of the block, for iconification, and close (quit). It
is possible to enter text into the Post-It® Note on the block, which always exists.
Last, it is possible to detach the upper Post-It® Note from the block, and then to
drag it anyway. The Post-It® Notes themselves have a similar behaviour, that
differs in four ways: (1) the detach area is restricted to a drag command area, (2)
the close area becomes a kill area, (3) a resize area is defined in the lower-right
corner, corresponding to a standard resize behaviour, and (4) a send behaviour is
defined. This behaviour consists in emitting the Post-It® to a receiver which is
visualized as a special icon. The interactive trigger is a drop (mouse up event)
onto the icon.

name

Iconify Bloc Detach Post-It

Text

Iconify Drag Kill

Text

Resize

Close

Figure 1: From the left to the right, The Post-It® block, the three icons
(Post-It® block, User, and Post-It®), and the Post-It® itself, together with

their active areas.

In this work, we study more particularly the interactive behaviours of the block
and the Post-It® Notes. We focus on direct manipulation of these two classes of

objects, and we do not expand the "receivers" point of view. We leave the text
inputs, that are restricted to "string input". On the opposite, we focus on the mouse
actions and their relations with the representation and the behaviour of objets.

4. The B-Method
Among the increasing number of formal methods that have been described

during the last decade, model oriented methods, such as VDM, Z or B, seem to
have a good place. These methods are based on model description. They consist
in defining a model by the variable attributes which characterize the described
system, the invariants that must be satisfied and the different operations that alter
these variables. Starting from this observation, Z method uses set theory notations
and allows to encode the specifications in a structure named schema. Like VDM,
it is based on preconditions and postconditions [Hoare 1969 ; Hoare, et al. 1987].
Moreover, VDM allows the generation of a set of proof obligations which simplify
the use of the method regarding to Z. In opposite, B is based on the weakest
precondition technique of Dijkstra [Dijkstra 1976]. Starting from this method, J.R.
Abrial has defined a logical calculus, named the generalized substitutions
calculus. Notice that our choice is B. This choice is motivated by the fact that B
is supported by tools which allow a complete formal development. Moreover,
since it is based on the weakest precondition calculus, B helps to prove the
termination.

4.1 The abstract machine notation

The abstract machine notation is the basic mechanism of the B method. J.R.
Abrial defined three kinds of machines identified by the keywords MACHINE,
REFINEMENT and IMPLEMENTATION:

• MACHINES represent the upper level of a program development.
They represent the higher level of abstraction. They describe the
formal specification of a system.

• REFINEMENT machines are intermediate steps. They are less
abstract than the MACHINES. They are used to refine the
MACHINES into structures that are approaching more and more
the programming language level.

• Finally, IMPLEMENTATIONS are the last development level.
They represent the algorithms that implement the specification
described at the MACHINE level. When proved,
IMPLEMENTATIONS can be translated into a program written in
a given programming language.

Note that the development is considered to be correct only when every
refinement is proved to be correct with respect to the semantics of the B
language. Gluing invariants between the different MACHINES of a development
are defined and sets of proof obligations are generated. They are used to prove the
development correctness.

4.2 Description of abstract machines

Several important clauses have been described by J.R. Abrial for the definition
of abstract machines. Depending on the clauses and on their abstraction level,
these clauses can be used at different levels of the program development. In this
paper, a subset of these clauses has been used for the design of our specifications.
We will only review these clauses. A whole description can be found in the B-
Book [Abrial 1996]. The following table shows the syntax of the machines we are
using in our case study. Other syntax possibilities are offered in B, and we do not
intend to review them in this paper, in order to keep its length short enough.

MACHINE
EXTENDS
SETS
CONSTANTS
PROPERTIES
VARIABLES
DEFINITIONS
INVARIANT
INITIALISATION
OPERATIONS

END

Briefly, these clauses mean:

• EXTENDS is a clause that allows to import instances of other
machines. Every component of the imported machine becomes
usable in the current machine. This clause allows modularity
capabilities.

• SETS defines the sets that are manipulated by the specification.
These sets can be built by extension, comprehension or with any
set operator applied to basic sets.

• CONSTANTS defines all the constants that are used in the
machine. Notice that the constants described can have any type
(naturals, elements of sets, constant functions and so on).

• PROPERTIES are logical expressions that are satisfied by the
constants described in the previous clause.

• VARIABLES is the clause where all the attributes of the
described model are represented. In the methodology of B, we
find in this clause all the selector functions which allow
accessing the different properties represented by the described
attributes.

• DEFINITIONS is a set of definitions introduced by the user. They
are rewritten everywhere they are used in a machine. It allows
simplification of machine notation.

• INVARIANT clause describes the properties of the attributes
defined in the clause VARIABLES. The logical expressions
described in this clause remain true in the whole machine and
the represent assertions that are always valid.

• INITIALISATION clause allows to give initial values to the
variables of the corresponding clause. Note that the initial values
must satisfy the invariant.

• OPERATIONS clause is the last clause of a machine. It defines
all the operations (functions and procedures) that constitute the
abstract data type represented by the machine. Depending on the
nature of the machine, the OPERATIONS clause authorizes
particular generalized substitutions to specify each operations.
The substitutions used in our specifications and their semantics is
described below.

4.3 Semantics of generalized substitutions.

The calculus of explicit substitutions is the semantics of the abstract machine
notation. It is based on the weakest precondition approach of Dijkstra. Formally,
several substitutions are defined in B. If we consider a substitution S and a
predicate P representing a postcondition, then [S]P represents the weakest
precondition that establishes S after execution. The substitutions of the abstract
machine notation are inductively defined by the following equations. Notice that
we did not give the whole substitutions, we restricted ourselves to the ones used
for our development. The reader can refer to the literature [Abrial 1996 ; Lano
1996] for a more complete description:

[SKIP]P <==> P
[S1 || S2]P <==> [S1]P and [S2]P
[PRE E THEN S END]P <==> E and [S]P
[ANY v WHERE E THEN S END]P <==> ∀ v (P =>[S]P)
[x:=E]P <==> P(x/E)

The lst one represents the predicate P where all the free occurrences of x
are replaced by the expression E.

4.4 An example: Post-It®-mess

Based on the definitions, and for the case study previously exposed, a first
abstract machine is defined. It is related to the management of messages written
on a given Post-It®. This simple machine is used to illustrate the abstract
machine notation. In fact, this machine represents the heart of our application,
i.e., the functional core. In our case study, it only contains the message written
onto the Post-It®. Additionally, a state variable has been defined, which
represents different state possibilities for the Post-It® itself (read, destroyed,
stored, etc.). Notice that most choice in this specification do not relate to the
initial requirements of our case study (which was very unprecise). We give
comments over this machine where necessary:

MACHINE POSTIT_MESS
SETS

POST_MESS;
MESS_STATUS = { read, unread, destroyed, stored}

CONSTANTS
max_post_mess

PROPERTIES
 max_post_mess=card(POST_MESS)

The set POST_MESS represents the set of all the possible messages to be
written. This set behaves as a type for messages. The properties clause
asserts that its cardinal is given by the constant max_post_mess. Finally,

the set MESS_STATUS enumerates the possible states of a message which
are interesting for the application we are currently specifying.

VARIABLES
the_post_it_mess, message_status, post_it_mess_creation,

the_message
INVARIANT

the_post_it_mess <: POST_MESS &
the_message : the_post_it_mess --> STRING &
message_status : the_post_it_mess --> MESS_STATUS &
post_it_mess_creation: the_post_it_mess --> BOOL

INITIALISATION
the_post_it_mess :={} ||
message_status :={} ||
the_message :={} ||
post_it_mess_creation :={}

Variables define the model; the Invariant clause allows the typing of these
variables and finally, the Initialisation clause gives their initial values. In
this machine, the_post_it_mess is the set of the effectively created
messages. It is included (<:) in the set of all the messages. Three functions
the_message, message_status and post_it_mess_creation are functions
which return the string corresponding to the message content, the status of
the message and a Boolean attesting that the message is effectively
created. Notice that these functions represent the properties of a message.
Moreover, this is a specification based on the definition of selectors.

Below, a set of operations are defined using the PRE THEN substitution
which was described before.

OPERATIONS

The create_post_it_mess operation allows the creation of message
containing a String mess, with an unread status.

pp <-- create_post_it_mess(mess)=
PRE

the_post_it_mess /= POST_MESS &

Because of the limit, we must ensure that we can create another Post-It.

mess : STRING
THEN
ANY

tt
WHERE

tt : POST_MESS - the_post_it_mess
THEN

the_post_it_mess := the_post_it_mess \/ {tt} ||
the_message(tt) := mess ||
message_status(tt) := unread ||
post_it_mess_creation(tt) := TRUE ||
pp := tt

END
END ;

The read_message operation allows the reading of a message represented
by pp. Its precondition says that the message is created (since it belongs to

the set the_post_it_mess) with an unread status and updates its status when
reading is achieved.

read_message (pp)=
PRE

pp : the_post_it_mess&
message_status(pp= unread

THEN
message_status(pp:= read

END

The destroy_message operation allows the destruction of a message
represented by pp. Its precondition says that the message is created (since
it belongs to the set the_post_it_mess) with an unread or read status. This
means that an eventually unread message can be destroyed. The status is
then updated to become destroyed.

destroy_message (pp) =
PRE

pp : the_post_it_mess &
(message_status(pp)=unread or message_status(pp)=read

)
THEN

message_status(pp):=destroyed
END ;

The store_message operation allows the storage of a message represented
by pp. Its precondition says that the message is created (since it belongs to
the set the_post_it_mess) with an unread or read status. This means that an
eventually unread message can be stored. The status is then updated to
become stored.

store_post_it(pp) =
PRE

pp : the_post_it_mess &
(message_status(pp)=unread or message_status(pp)=read)

THEN
message_status(pp):=stored

END
END

Some choice realized here should be discussed. They are independent from
any interactive activity, and can be clearly explained. Hence, it is not possible to
read twice a Post-It®: reading it lead it to the read status, while being unread
belongs to the precondition of "read_post_it". As we will see later, the B
method will ensure these choice in the whole application. Notice that all the
abstract machines presented in the case study of this paper are designed following
this one. It can be used as a template for the description of the other machines.

4.5 Strengths of B

The B Method is based on sound and well known semantics since it is based
on predicate logic and on the weakest precondition calculus. But one of the major
advantages of this approach is the uniform description of the whole development.
Indeed, we will show in the reminder of this paper that the same notation is kept
to describe every part that constitutes an interactive system. Moreover, this

method gives a technique for proof obligation generation, proving, and refining to
code.

4.5.1 Proof obligations (PO)

The calculus of generalized substitutions outlined above is applied for each
abstract machine defined in the development. Rewriting techniques are applied to
achieve this calculus and they lead to a set of proof obligations which need to be
proved in order to have a sound and consistent specification and development.

4.5.2 Proofs and proving

When the proof obligations are generated, they have to be proved. For this
purpose, a set of proof rules are provided and the developer can achieve the proof
of the PO's if they are provable. Moreover, the tools implementing the B Method
have an automatic prover which allows to prove a major part of these PO's. The
remaining PO's are proved "by hand" using the interactive prover. This approach
allows to check the correctness of the specifications with respect to the user
needs. Indeed, some of the PO's are definitely not provable if the abstract
machine is not well defined. For example, in the previous abstract machine, we
cannot store a message which is destroyed. Finally, in our case study, the 17 PO
of the POSTIT_MESS abstract machine have all been proved automatically using
the "Atelier B" tool [Steria méditerranée 1997].

4.5.3 Refinement: from the specifications to the code

As stated above, the B Method allows not only to support specifications
through abstract machines, but it allows the support of refinement and
implementations as well. Indeed, it is possible to set the whole development in a
common language, with a common semantics and a common proof technique.
This is very important since it provides a uniform approach for the description of
program developments.

5. Experimenting the B-Method
In this section, we explain how the interactive viewpoint can be taken into

account during a B design. We base our modular decomposition on the ARCH
model [UIMS 1992]. In the B terminology, the architectural modules are called
"abstract machines". The figure 2 shows the architectural decomposition, with
dependencies between machines.

Domain or
Functional

Core

Domain
Adapter

Dialogue
Controller

Presentation

Toolkit

Mouse

Visu

Users
with mouse

Visu
with mouse

Visu
without
mouse

Post-It
Mess

Post-It
Emiss

Users

Final
Post-It

Figure 2: architectural ARCH-like decomposition of cooperative Post-It®
Notes application, with the reference to the ARCH model

We illustrated the previous section with a machine (Post-It-Mess) which
belongs to the functional core. This is the normal use of the B-method. In the
following subsections, we explain how B can be used to take into account more
specific interactive features. Section 5.1. explains the non-interactive aspects of
Post-It® visualization. It includes visual states (iconified or not, greyed, hidden,
and so on) and is splitted into two "abstract machines", for B convenience (Visu
and Visu-without-mouse). The links with the graphical toolbox is not detailed
here. Section 5.2. exposes the necessary reverse engineering of the mouse. It is
obvious that the existence of a B mouse "abstract machine" would have skipped
this phase. Section 5.3. details the integration of mouse and visualization in order
to define the dialogue controller of the Post-It®. Section 5.4. shows how functional
core requirements and dialogue requirements can mix to build the whole
application. Positioning this machine conforming to the ARCH model is not
straightforward. It is concerned with domain adaptation, but also with dialogue
control. So, using "slinky" facilities of the ARCH model, we propose including it
at the boundary of the domain adapter and the dialogue controller. Lastly, we
expose in section 5.5. the practical use of B-Tools, and demonstrate the proving
process. Notice that names in figure 2 do not match actual names in the B
development, for graphical space reasons. We will ensure the correspondence as
needed.

5.1 The Post-It® Visualization: the POSTIT_VISU_WITHOUT_INT
machine

Two machines were specified for the visualization of the windows. The first
one is the POSTIT_VISUALIZATION abstract machine (visu in fig. 2) which
manages the state of the windows from display point of view. Indeed, a set named
SCREEN_STATE={displayed, hidden, iconified, eliminated} allows recording all

the possible states of the windows. Moreover, this abstract machine contains
operations like update_hidden which specifies the refreshment of the screen. The
second machine (visu without mouse in fig 2), extends the previous one and
allows to manage the windows without dealing with any kind of interaction. It is a
high level abstraction of a subset of the toolkit.

MACHINE POSTIT_VISU_WITHOUT_INT
EXTENDS

POSTIT_VISUALIZATION
SETS

POST_VISU;
COLOUR = {yellow, green, white, black, red,grey};
BLINK = {blinking, non_blinking};
SOUNDS = { anormal_sound, emit_sound, no_sound };
REACTION = {greyed, enabled, disabled} ;
BLOCK_VISU = {block_iconified, block_open}

The previous sets describe all the values of the possible states of a window
starting from colours, blinking, emitting sounds, reaction and the state of
the whole block of Post-It®'s.

CONSTANTS
* max_post_visu,

max_post_it_wide,
max_post_it_high,

PROPERTIES
* max_post_visu=card(POST_VISU) &
* max_post_it_wide=300 &
* max_post_it_high=250 &
VARIABLES

the_post_it_visu,
get_new_post ,
block_state,
post_it_window_status,

These variables describe the accessors to the different components of a
window. The the_post_it_visu is the set of all the windows effectively
created, and get_new_post, block_state and post_it_window_status are the
function which respectively imports a window from the
POSTIT_VISUALIZATION machine, gives the state of the block and
computes the status of the window from the one on the imported window.

INVARIANT
the_post_it_visu <: POST_VISU &
get_new_post : the_post_it_visu --> post_new &
block_state : block_VISU &
post_it_window_status : the_post_it_visu -->SCREEN_STATE &
(!xx. (xx : the_post_it_visu =>

(x_post_it_position(xx) : 1..max_post_it_wide &
y_post_it_position(xx) : 1..max_post_it_high)))

The previous logical expression is an important invariant. It states that all
(!) the windows of the set the_post_it_visu have their upper-left corner in
the screen. This invariant is conserved and proved for all the operations.

We will now describe the "move_window_position" action, and every
elements it uses. In this machine, move_window_position is not strictly
constrained. For example, it is possible to partially quit the visualization window

while moving a Post-It®. This constraint will be put later on. We only take into
account the constants, variables and invariants that are needed by
move_window_position.

OPERATIONS
move_window_position(pp, aa, bb)=
PRE

aa : NAT &
bb : NAT &
aa : 1..max_post_it_wide &
bb : 1..max_post_it_high &
pp : the_post_it_visu &
block_state = block_open &
(post_it_window_status(pp)= displayed or
post_it_window_status(pp)= hidden)

The previous preconditions say that the new coordinates of the upper-left
corner of a window (aa,bb) must belong to the screen, that the window pp
is effectively created (belongs to the_post_it_visu set), that the block of
Post-Its is effectively open and that the window can be displayed or hidden.

From these previous precondition, we can infer the following properties:

• a window is never moved if it is iconified,
• a window is never moved if the block is not open,
• a window will never have its upper-left corner outside from the

screen. This is very important for the window manipulation.

THEN
ANY

ppold
WHERE

ppold : the_post_it_visu &
ppold = pp

THEN
x_post_it_position(pp):= aa ||
y_post_it_position(pp):= bb ||
update_hidden(get_new_post(pp))

END
END;

Here, a parallel substitution is used. It says that after executing this
operation the new coordinates of the upper-left corner become (aa, bb) and
that the operation update_hidden is called. This last operation is called in
order to update the status of the windows that become hidden or displayed
after the current window has been moved.

5.2 Reverse engineering of the mouse: the POSTIT_MOUSE machine
(mouse in fig 2)

In order to allow the interaction using a mouse, thanks to reverse engineering
techniques, we have extracted a set of specifications which describe the
behaviour and the actions performed on the mouse. Let us briefly summarize
them.

MACHINE POSTIT_MOUSE

SETS

POST_MOUSE;
MOUSE_STATE ={up, down , clicked}

The mouse can be in three states. Without loss of generality, we have
voluntarily omitted the other states because they are not used in our
application. Notice that they could have been included.

CONSTANTS
max_post_mouse,
x_mouse_position_default,
y_mouse_position_default,
max_mouse_position_wide,
max_mouse_position_high

PROPERTIES
max_post_mouse =card(POST_MOUSE) &

 x_mouse_position_default=20 &
y_mouse_position_default=20 &
max_mouse_position_wide = 300 &
max_mouse_position_high =250

These constants define the size of the screen for the window together with
the default position for a mouse.

VARIABLES
the_post_it_mouse,x_post_it_mouse_position,y_post_it_mouse_p

osition, post_it_mouse_state,post_it_mouse_creation
INVARIANT

the_post_it_mouse<: POST_MOUSE &
x_post_it_mouse_position : the_post_it_mouse --> NAT &
y_post_it_mouse_position : the_post_it_mouse --> NAT &
post_it_mouse_state: the_post_it_mouse --> MOUSE_STATE &
post_it_mouse_creation : the_post_it_mouse --> BOOL

For a given mouse in the set the_post_it_mouse, the previous accessors
define a set of functions which allow to retrieve the coordinates of a
mouse, its state and its creation. Several operations on the mouse
(creation, moving, clicking, and so on ...) are defined below.

OPERATIONS
pp <--create_mouse_position=

...
Move_mouse_with_drag(pp, aa,bb)=

...
move_mouse(pp, aa, bb)=

...
mouse_up(pp)=

...
mouse_down(pp)=

...
mouse_clicked (pp)=

...
END

This reverse engineering task to re-design the mouse specification is a crucial
phase in our work. It allows to use the B language in a uniform manner even for
already designed programs. However, this steps of development needs to be
achieved for other parts of an interactive application (e.g. keyboard).

5.3 The interaction: Post-it-visu-with-int

The following abstract machine, named POSTIT_VISU_WITH_INT_MOUSE
(visu with mouse in fig 2), allows the use of mouse interaction on the windows.
Therefore, this machine extends the two machines corresponding to windows and
mouse.

MACHINE POSTIT_VISU_WITH_INT_MOUSE

EXTENDS
POSTIT_MOUSE , POSTIT_VISU_WITHOUT_INT

SETS
POSTIT_VISU_WITH_MOUSE

CONSTANTS
max_post_it_visu_with_mouse

PROPERTIES
max_post_it_visu_with_mouse = card(POSTIT_VISU_WITH_MOUSE) &
screen_wide = max_mouse_position_wide &
screen_high = max_mouse_position_high &
max_post_it_wide=max_mouse_position_wide &
max_post_it_high=max_mouse_position_high

The previous properties express that the screen for the mouse and for the
windows are of the same dimensions. These properties are mandatory to
prove the correctness of the development from the positions point of views.

VARIABLES
the_post_it_visu_with_mouse,
post_it_visu_with_mouse_creation,
get_the_mouse,
get_the_post_it_visu

INVARIANT
the_post_it_visu_with_mouse <: POSTIT_VISU_WITH_MOUSE &
post_it_visu_with_mouse_creation:the_post_it_visu_with_mouse

-->BOOL &
get_the_mouse : the_post_it_visu_with_mouse --

>the_post_it_mouse &
get_the_post_it_visu :the_post_it_visu_with_mouse-->

the_post_it_visu

The set the_post_it_visu_with_mouse records all the windows manipulated
by a mouse. The selectors define a set of functions which allow to extract
the properties of a given window which is manipulated by a mouse. It gives
the window using the get_the_post_it_visu function and the mouse using
the get_the_mouse function.

INITIALISATION
the_post_it_visu_with_mouse :={} ||
get_the_mouse :={} ||
get_the_post_it_visu :={} ||
post_it_visu_with_mouse_creation :={}

OPERATIONS
pp<-- create_post_it_and_mouse(pp_visu, pp_mouse) =

...

Let us give the details of the action move_window_with_mouse which allows
to move a window combining the interaction of the mouse. This action has a set

of preconditions which needs to be valid before the action is performed. They are
commented below.

move_window_with_mouse(pp, aa, bb)=
PRE

aa : NAT &
bb : NAT &
aa : 1..max_post_it_wide &
bb : 1..max_post_it_high &
pp : the_post_it_visu_with_mouse &

The new coordinates of the upper-left corner of the window must define a
point in the limits of the screen.

block_state = block_open &

The block of post'its must be open, otherwise the window of a post'it
cannot be moved.

post_it_visu_with_mouse_creation(pp)=TRUE &
post_it_visu_creation(get_the_post_it_visu(pp))=TRUE &
post_it_mouse_creation(get_the_mouse(pp))=TRUE &

The different elements manipulated by the operation (mouse, a window, a
window with mouse interaction) must be already created.

post_it_window_status(get_the_post_it_visu(pp))=displayed
&

post_it_mouse_state(get_the_mouse(pp))= down &

The mouse must be in a state down and the window must be displayed.

x_post_it_position(get_the_post_it_visu(pp))+5 :
1..max_mouse_position_wide &

y_post_it_position(get_the_post_it_visu(pp))+5 :
1..max_mouse_position_high &

x_post_it_window(get_the_post_it_visu(pp))-5 :
1..max_mouse_position_wide &

The coordinates delimiting the moving zone of the window must belong to
the screen i.e. must appear in the screen.

x_post_it_mouse_position(get_the_mouse(pp)):
x_post_it_position(get_the_post_it_visu(pp))+5..
x_post_it_window(get_the_post_it_visu(pp))-5 &

y_post_it_mouse_position(get_the_mouse(pp)):
y_post_it_position(get_the_post_it_visu(pp))..
y_post_it_position(get_the_post_it_visu(pp))+5

The mouse position must be in the moving zone delimited previously.

THEN
move_window_position(get_the_post_it_visu(pp),aa,bb) ||
Move_mouse_with_drag(get_the_mouse(pp),aa, bb)

The window is moved by calling the move_window_position action present
in the POSTIT_VISU_WITHOUT_INT and the mouse is also moved bt the
action move_mouse_with_drag of the machine POSTIT_MOUSE. Notice,

that this action is one of the actions which combines the mouse toolkit and
the window manager tool kit.

END

The previous abstract machine gives supplementary preconditions on the
objects. These preconditions imply the ones of the corresponding operations in the
machines imported by extension. Therefore, the prover is capable to complete the
proof of correctness. This is an important issue of the B method which shows that
B is not only capable to structure the development of specifications, but it allows
the structuration and the modularization of the proofs. Finally, this mechanism of
weakest precondition conserves the coherence of the whole specification.

This previous machine has shown that it is not possible to :
• move a window with a mouse whose position is not in the

moving zone,
• move a window if there is no mouse,
• move a window if it is eliminated. Note that this property is

inherited form the imported machine.
• …

5.4 Complementary machines: POSTIT_EMISS and POSTIT_USERS

Two other machines are necessary to have a complete development of the
specifications.

• the POSTIT_EMISS abstract machine defines a simple protocol
allowing to emit, receive and create messages. These messages
are intended to be linked to a Post-It window in the final
application. In this machine, the messages have the state
emitted, received, non_emitted and so on. Operations like
emit_post, receive_post and create_post are described in this
machine.

• the POSTIT_USERS abstract machine is devoted to the
management of the users. Each user is defined by an icon of
constant dimension, which can be moved on the screen.

Notice that we have restricted these two machine to simple operations. The
management of the protocol of emission and users is not a main part of this
application.

5.5 The final application: POSTIT_FINAL

After having defined all the different components of our application, extracted
from figure 2, we are capable to describe the whole application. This application
is an extension of all the machines described above. It defines the set of Post-Its
and variables –selectors– which extract the objects coming from each sub-
machine, i.e., extended machines.

MACHINE POSTIT_FINAL

EXTENDS
POSTIT_EMISS, POSTIT_VISU_WITH_INT_MOUSE,

POSTIT_MESS,POSTIT_USERS
SETS

POST

CONSTANTS
max_post

PROPERTIES
max_post=max_post_emiss &
max_post=max_post_visu &
max_post=max_post_mess

VARIABLES
the_post_it,
get_the_post_it_emiss,
get_the_post_it_visu_with_mouse,
get_the_post_it_mess,
post_it_creation

The set the_post_it is the set of all the effectively created Post-Its. The
other functions are used to access the different components of the objects.
We omit describing the invariants of this machine.

Let us describe the use of the emission of a Post-It. The user creates a Post-It,
drag it on the icon corresponding to the user and then it is emitted.

OPERATIONS
pp <-- create_post_it (pp_emiss, pp_visu,pp_mess)=

...
emit_post_it(receiver,icon_receiver,sender,pp)=
PRE

receiver : NAT1 &
sender : NAT1 &

The sender and the receiver are valid. They are defined as a positive
integer.

icon_receiver : the_post_it_users &
post_it_user_creation(icon_receiver)=TRUE &

The icon corresponding to the receiver must be created. This precondition
invokes an operation of the POSTIT_USERS abstract machine.

x_post_it_user_position(icon_receiver):
1..max_post_it_wide &

y_post_it_user_position(icon_receiver):
1..max_post_it_high &

The icon is effectively visible in the screen i.e. it is not outside the limits
of the screen.

pp : the_post_it &
the_post_it /= POST &
post_it_creation(pp)=TRUE &

The Post-It, the corresponding mouse, the corresponding window associated
to the mouse and the corresponding window without mouse are effectively
created.

post_it_mouse_creation(get_the_mouse(
get_the_post_it_visu_with_mouse(pp)))=TRUE &
post_it_visu_with_mouse_creation(
get_the_post_it_visu_with_mouse(pp))=TRUE &
post_it_visu_creation(get_the_post_it_visu(
get_the_post_it_visu_with_mouse(pp)))=TRUE &

user_adr_sender(get_the_post_it_emiss(pp))=sender &

The user which sends the Post-It is the one who created this post-it.

message_status(get_the_post_it_mess(pp))=unread &

The message contained in this Post-It must be unread.

emission_status(get_the_post_it_emiss(pp))=non_emitted &

The status of the message to be sent is not emitted.

block_state=block_open &

No Post-It can be sent if the block of Post-Its is not open.

post_it_window_status(get_the_post_it_visu(
get_the_post_it_visu_with_mouse (pp)))=displayed &

The current Post-It to be sent must be displayed.

post_it_mouse_state(get_the_mouse(
get_the_post_it_visu_with_mouse (pp)))=down &

The associated mouse must be in a down state.

x_post_it_position(get_the_post_it_visu(
get_the_post_it_visu_with_mouse (pp)))+5 :

1..max_mouse_position_wide &
x_post_it_window(get_the_post_it_visu(

get_the_post_it_visu_with_mouse (pp)))-5 :
1..max_mouse_position_wide &

y_post_it_position(get_the_post_it_visu(
get_the_post_it_visu_with_mouse (pp)))+5 :

1..max_mouse_position_high &
x_post_it_mouse_position(get_the_mouse(

get_the_post_it_visu_with_mouse (pp))) :
x_post_it_position(get_the_post_it_visu(

get_the_post_it_visu_with_mouse (pp)))+5
 x_post_it_window(get_the_post_it_visu(

get_the_post_it_visu_with_mouse (pp)))-5 &
y_post_it_mouse_position(get_the_mouse(

get_the_post_it_visu_with_mouse (pp))):
y_post_it_position(get_the_post_it_visu(

get_the_post_it_visu_with_mouse (pp)))
 y_post_it_position(get_the_post_it_visu(

get_the_post_it_visu_with_mouse (pp)))+5

The positions of the Post-It and of the mouse must be in the screen.
Moreover, the moving zone of the Post-It must be visible in the screen.

THEN
ANY

pp_emiss
WHERE

pp_emiss= get_the_post_it_emiss(pp)
THEN

emit_post(pp_emiss, receiver,sender) ||
eliminate(get_the_post_it_visu_with_mouse(

get_the_post_it_visu(pp)))||
move_window_with_mouse(

get_the_post_it_visu_with_mouse (pp),
x_post_it_user_position(icon_receiver),
y_post_it_user_position(icon_receiver)
)

END
END
;

The Post-It is emitted and the window is moved using the move to the
position of the receiver identified by the icon_receiver user. The message
becomes emitted, the window Post-It is eliminated and the mouse stays on
the position of the receiver.

All the other operations have been described in this machine. The complete
case study is available on our web site. We cannot insert it in whole in the
present paper.

5.6 Proofs

For all the development, the proof obligations have been generated. They all
have been automatically proved. However, this specification has not been built at
the first attempt. We had to enrich the preconditions and to remove other
preconditions. Indeed, the prover behaves following:

• preconditions are not complete, therefore the proof cannot be
achieved,

• preconditions are contradictory, then the user has to make new
choices and to check the requirements.

Finally, about 160 proof obligations are generated for this application. We had
to prove only 4 proof obligations using the interactive prover, i.e., "by hand". This
shows that when the application is well specified following sound software
engineering concepts, the proof phase can be considerably reduced.

6. Conclusion and future work
In this paper, we expose the use of the B method in the area of HCI. We relate

it to other approaches in this area: it can be considered as a third approach
between the definition of ad hoc new formalisms and the use of well defined
formal notations through HCI models. It consists in giving a model-independent
method that can be customized to specific HCI models.

The great strength of the B method is its ability to refinement. That is the
possibility to finally derive concrete programs form abstract specifications. While
doing that, one part of the main objective of formal method can be achieved: it is
to say the verification that implementation satisfies its specification. This work
has shown, that interaction properties can be expressed a priori at any level of the
chosen architecture model —ARCH in our example. We show in this work that
interactive specific properties, like visualization or dialogue properties can be
expressed, and, so doing, ensured. For example, ensuring that a Post-It® cannot
leave its visualization screen is possible. This is made via formal proofs
established by the use of tools.

This work exposes preliminary results. We do not claim that the B method is
able to solve every problem we may encouteer in DSV-IS. Nevertheless, it seems
to be a promising way of investigations. We have now to work in three directions:
first, defining a specific method to help designers to build interactive applications
is essential; second, and probably linked to the first point, it seems important to
relate our process to HCI models, such as these we noticed upper. Correlations
with other formalisms should be very important too, in order to help to validate
our B-specification against users needs. This step, which is obviously out of the
scope of formal method senso strictu, supposes translations between B-formal
semantics and understandable users’ needs representation. Last, there is a strong
need for building reusable abstract machines once for all in the HCI area. The
possibility to reuse these machines would considerably reduce testing and
verifying costs.

7. References
[Abrial 1996] Abrial J.-R. The B Book: Assigning Programs to Meanings. Cambridge

University Press, 1996.
[Accot, Chatty, & Palanque 1996] Accot J., Chatty S., & Palanque P. A formal

description of low level interaction and its application to multimodal interactive
systems. Third International Eurographics Workshop on Design, Specification,
and Verification of Interactive Systems, Namur, Belgium, 5-7 June 1996. p. 92-104.

[Bjorner 1987] Bjorner D. VDM a Formal Method at Work. VDM Europe
Symposium'87, 1987.

[Campos & Harrison 1997] Campos J.C. & Harrison M.D. Formally Verifying
Interactive Systems: A Review. Eurographics Workshop on Design,
Specification, Verification of Interactive Systems, Granada, Spain, June 4-6 1997.
p. 109-124.

[Card, Moran, & Newell 1983] Card S., Moran T., & Newell A. The psychology of
Human-Computer Interaction. Lawrence Erlbaum Associates, 1983.

[Dijkstra 1976] Dijkstra E. A Discipline of Programming. Englewood Cliff (NJ),
USA : Prentice Hall, 1976.

[Duke & Harrison 1993a] Duke D.J. & Harrison M.D. Abstract Interaction Objects.
Computer Graphics Forum. 1993a. vol. 12,n° 3, p. 25-36.

[Duke & Harrison 1993b] Duke D.J. & Harrison M.D. Towards a Theory of
Interactors. Amodeus Esprit Basic Research Project 7040, 1993b System
Modelling/WP6.

[Fields, Merriam, & Andy 1997] Fields B., Merriam N., & Andy D. DMVIS:
Design, Modelling and Validation of Interactive Systems. Eurographics
Workshop on Design, Specification, Verification of Interactive Systems, Granada,
Spain, June 4-6 1997. p. 29-44.

[Gamboa Rodrígez & Scapin 1997] Gamboa Rodrígez F. & Scapin D.L. Editing
MAD* task description for specifying user interfaces, at both semantic and
presentation levels. Eurographics Workshop on Design, Specification and
Verification of Interactive Systems (DSV-IS'97), Granada, Spain, June 4-6 1997.

[Gray, England, & McGowan 1994] Gray P., England D., & McGowan S. XUAN:
Enhancing the UAN to capture temporal relation among actions. Department of
Computing Science, University of Glasgow, February 1994. Department research
report IS-94-02.

[Hix & Hartson 1993] Hix D. & Hartson H.R. Developping user interfaces:
Ensuring usability through product & process. Newyork, USA : John Wiley &
Sons, inc., 1993.

[Hoare 1969] Hoare C.A.R. An Axiomatic Basis for Computer Programming. CACM.
1969. vol. 12,n° 10, p. 576-583.

[Hoare et al. 1987] Hoare C.A.R., Hayes I.J., Jifeng H., Morgan C.C., Sanders
A.W., Sorensen I.H., Spivey J.M., & Sufrin B.A. Laws of Programming. CACM.
1987. vol. 30,n° 8.

[Johnson 1995] Johnson C.W. Using Z to support the design of interactive, safety-
critical systems. IEE/BCS Software Engineering Journal, March 1995. vol. 10, n°
2, p. 49-60.

[Lano 1996] Lano K. The B Language Method: A guide to practical Formal
Development. Springer, 1996.

[McGowan 1995] McGowan S. From UAN to eXUAN: Specifying simulations of the
temporal properties of interaction. University of Glasgow, Department of
Computing Science, March 1995. Technical report TR-1995-5.

[Palanque 1992] Palanque P. Modélisation par Objets Coopératifs Interactifs
d'interfaces homme-machine dirigées par l'utilisateur. PhD : Toulouse I, 1992.

[Palanque & Girard 1996] Palanque P. & Girard P. Groupe de travail GP3-FLASHI
(Formalismes et Langages Appliqués aux Systèmes Hautement Interactifs). GDR-
PRC Communication Homme-Machine, 1996. Rapport d'activité.

[Paterno' 1994] Paterno' F. A Theory of User-Interaction Objects. Journal of Visual
Languages and Computing. 1994. vol. 5,n° 3, p. 227-249.

[Paterno' & Faconti 1992] Paterno' F. & Faconti G.P. On the LOTOS use to
describe graphical interaction. Cambridge University Press, 1992. p. 155-173.

[Scapin & Pierret-Golbreich 1990] Scapin D.L. & Pierret-Golbreich C. Towards a
method for task description : MAD. Work with display units 89, Elsevier Science
Publishers, North-Holland, 1990.

[Spivey 1988] Spivey J.M. The Z notation: A Reference Manual. Prentice Hall,
1988.

[Steria méditerranée 1997] Steria méditerranée. Atelier B version 3.0. 1997.
[UIMS 1992] UIMS. The UIMS Workshop Tool Developers: A Metamodel for the

Runtime Architecture of an Interactive System. SIGCHI Bulletin, 1992. vol. 24,
n° 1.

