
Integration of component descriptions in product data management systems

M. El-Hadj Mimoune
Y. Ait-Ameur, G. Pierra and J.C. Potier

LISI/ENSMA, BP 109, Téléport 2, F-86960 Futuroscope cedex, France
e-mails: {mimoune, yamine, pierra, potier} @ensma.fr

Abstract

This paper addresses two fundamental aspects of
concurrent engineering processes. It suggests the
integration of component and product data. On the one
hand, the Parts Library standard, denoted P-Lib, has
been described for exchanging part libraries between
CAD systems, which use a big amount of heterogeneous
data related to components or parts. Its data model allows
the capability to exchange complex data between library
management systems : data schemas, queries, constraints,
domains and methods are described in this P-Lib data
model. On the other hand, Product Data Management
systems, denoted PDM, have been defined, in the last
decade, in order to manage thousands of heterogeneous
data (CAD/CAM data, BoM etc.) related to products.
Technical data management permits the management of
the all-informational patrimony of a product starting from
its design until its discharge.

Products are essentially composed of pre-existing
components stored in component or part libraries. This
paper presents the approach we developed to integrate
component data and product data. This approach has
been applied with the particular standardised P-Lib data
model for representing components and a particular PDM
system namely SmarTeam. It will allow the automatically
storage of component data in a PDM and the easy
referencing of these data in the products during their
whole lifecycle.

Keywords: Parts Library (PLib), PDM, data
integration, meta-data, tracability, EXPRESS
language.

1 Introduction

The growth, the heterogeneity, the security of data
motivates the creation of information processing systems
to facilitate heterogeneous products data management
during their whole lifecycle (CAD-CAM Files, Quality
folders, BoM etc.). These systems are named PDM
(Product Data Management Systems). In a number of
industrial fields, products are constituted with pre-existent
components stored in component or parts libraries.

The capability to refer to component data from a PDM,
in order to allow the use of PDM to represent and to
manage product data in parallel with component data,
permits to represent both product and component data in
the same design environment. As a result of this
referencing capability, the development and management
costs would decrease.

Moreover, the possibility to refer to and to manipulate
component knowledge and data as well as the reason for
choosing this component in a given product facilitate the
maintenance of those products when, for example failing
components are to be replaced.

Two main approaches can be used for describing
several data models. The first one, called multi-modelling
approach, consists in describing several data models.
Integration of these data models requires a translation
from a data model to another. The second one is the meta-
modelling approach where each data model is a particular
instance of a data meta model.

 The multi-modelling approach may be used for
representing product data models in PDM (it is the one
followed in the STEP standard for example in the
Application protocols). The meta model approach has
been followed by P-Lib standard for representing
components (or parts library) data model.

Therefore, the integration of both approaches is a
crucial issue when addressing both product data and
component data. So, the goal of this paper is to present an
approach to integrate both component and product data
and knowledge in a common framework.

In the context of our approach, component data models
are defined by means of instances of the P-LIB data
model, developed in the Parts Library ISO-13584
standard. The P-LIB model is a formal data model
allowing to represent and to exchange part libraries.

Product data are represented in a particular PDM. For
implementation purposes, we have chosen the SmarTeam
PDM, developed by the Smart Solutions Company. So,
the goal of our approach is the representation of P-LIB
data in a PDM.

The integration of these models requires the
description of a common language allowing to represent
them. For this purpose, we have used the EXPRESS data

modelling language and its graphical representation. This
choice was motivated by the fact that this language allows
the representation of all the knowledge categories related
to both components and products.

 So, our approach uses the EXPRESS language and its
graphical representation as specification language for
representing all the data models presented in this paper.

The approach we developed is a mixed (or hybrid)
approach. Indeed it does not totally use a meta modelling
nor a multi modelling approach. It uses the capabilities of
both approaches and their ways of representation. It
consists in representing the P-Lib data components in two
different representation levels: the meta level
representation for component families descriptions
(component classes) and the hard encoded (or the direct
representation) for representing data stored in tables. The
first represents component families while the second
represents the components themselves. So, some P-Lib
descriptors are represented by the PDM objects
(representation at the meta level) and the other entities
representing tables are represented by the PDM tables
(direct representation). This choice allows to use the
capabilities of both the LMS (Library Management
System) for selecting components and PDM for managing
product data. Therefore, the PDM becomes capable to
refer directly to the components data.

This paper is structured as follows. Next section
presents an overview of the formal data modelling
language EXPRESS and its associated graphical
representation : EXPRESS-G. Section 3 gives an
overview of P-Lib data models and its specifications. The
overview of a PDM systems and description of a
particular PDM (SmarTeam) is presented in section 4.
Finally, last section presents the integration approach of
the P-Lib data model in the selected PDM system.

2 Overview of the EXPRESS language

Knowledge modelling and automatic data processing
have a great importance in different kinds of engineering
knowledge. Several formal representations are used to
formalise these knowledge models among them, we can
cite the NIAM method, OMT[1], UML[2] etc. These
formalisms were developed to allow a real world
modelling (a universe of discourse) by semantic entities.

The use of CAD/CAM systems in engineering domains
has begot an earnest problem, which concerns data
exchange and sharing between contractors and
subcontractors. This situation is due to their use of
heterogeneous systems. Moreover, several formats were
developed to allow this exchange. Among the different
developed standards we can quote the STEP (STandard

for the Exchange of Product data model) international
standard which has developed the EXPRESS formal data
modelling language (ISO 10303-11). The goal of this
language definition is to allow data models description in
order to exchange and to share data compliant with these
models [3]. Moreover, it defines an exchange format for
any data model specified in EXPRESS.

In the following, we will focus on the EXPRESS
language constructs necessary to understand this paper.
More details on the EXPRESS language can be found in
[3] and [14].

2.1 General structure and EXPRESS concepts

EXPRESS is an object oriented data modelling
language handling the important characteristics of object
oriented language like abstraction, encapsulation,
modularity and hierarchy [4].

In EXPRESS a data model is represented by a set of
modules, called SCHEMAs. Each SCHEMA describes a
set of entities, which represent the objects we want to
model. Each entity is defined by a set of characteristics
called attributes. Finally, each attribute has a data type
where it takes its values. A SCHEMA may also contain a
set of functions and procedures, which allow data
coercion (integrity constraint) and derived attributes
expressions (behavioural knowledge).

Entities represent, in the real world, objects that have
physical existence (screw, bearing) or conceptual
existences (address, course). In EXPRESS the entity
represent a class of objects, which share common
properties and behaviours. Inheritance between entities,
representing structural knowledge, is allowed.

Attributes represent the properties which characterise
an entity. They allow descriptive knowledge modelling.
An attribute is defined by an identifier and a data type
which can be simple (integer, real, character), structured
(lists, sets, bags, arrays which are rigorously defined in
EXPRESS), or user defined like in programming
languages (C++; ADA etc.). Attributes can refer to
entities (aggregation); i.e. attribute value can be an
instance of this entity.

Three kinds of attributes are distinguished: Explicit
attributes, Derived attributes and Inverse attributes.

Constraints: the EXPRESS language supplies the
capability to describe constraint expressions. Constraints
on data models are introduced by two different rules
types: local rules which are applied on each entity
instance separately , and global rules which are globally
applied on several entity instances at the same time.

Local rules shall be checked against for each instance
of a constrained entity. They are declared, at the same

time as the attributes. Local rules are applied on the value
domains of set of attributes.

Inheritance: An EXPRESS data model is composed of
a great number of entities, which are connected by
father/son relationship (is_a relationship). If an entity A is
a subtype of another entity B then A contains the
properties of A more its own properties. A inherits all its
parent properties entity.

In EXPRESS the inheritance can be simple, when an
entity inherit only one entity, or multiple when an entity
inherits several entities at the same time.

2.2 EXPRESS-G

EXPRESS-G is the graphical representation of textual
EXPRESS data models. It allows synthetic presentation of
textual EXPRESS data models, which are hard to read by
human being. The graphical representation permits to
make a partial representation of the full data model.
Moreover, this formalism may be used to design a data
model in preliminary modelling stages. EXPRESS-G
allows structural and descriptive data representation with
a graphical annotation. This format helps to have a global
view of a data model. It should be noted that a graphical
model increases readability and comprehensibility.

We have used the EXPRESS-G to model both the
meta-model of P-Lib and the multi-representation model
of PDM (SmarTeam) to confront the integration of their
different approaches. So, the EXPRESS-G representation
allows us to make a sort of interface between the two
systems that will allow us to use components data (P-Lib)
in PDM systems. We have chosen this formalism instead
presenting program sources that we have developed.

Example
To illustrate the EXPRESS representation we will

present, in the following, an example of a simple
EXPRESS data model. We take the example of the
geometry. Circle and point are both geometric entities.
The entity Point has the attributes X, Y, Z representing
co-ordinates and the inverse attribute is_centre_of, which
allows expressing the following constraint: a point can be
a centre to the maximum of two circles. The entity Circle
has the following attributes: centre, radius and perimeter.
The last one is a derived attribute.

The textual data model of this example can be
represented as follow:

ENTITY Geometric_entities
SYPERTYPE OF (point, circle);
END_ENTITY;

ENTITY POINT
SUBTYPE OF (Geometric_entities);
X, Y, Z : REAL;
 INVERSE
Is_centre_of: SET [1:2] of circle for centre;
END_ENTITY;

ENTITY Circle;
SUBTYPE OF (Geometric_entities);
 Centre : Point;
 Radius : REAL;
 DERIVE
 Perimeter : PI*2.0*(SELF.Raduis)
END_ENTITY;

The representation of this example in EXPRESS-G is
given on figure 1.

Figure 1 Example of EXPRESS-G model

Legend :

3 P-Lib : the parts libraries data model

The lifecycle of a product is a complex track. It
requires different knowledge and involves several experts
that work on the same product but with different
perspectives and points of views.

The resulting process includes specification, design,
manufacturing, and maintenance etc. [5]. Those activities
are essentially informational processes and need to be
handled by models, documents, computers etc.

The Computer Aided Engineering (CAE) area studies
computer systems that allow to support these processes
[6]. These computer systems supply efficient tools and
mechanisms to represent different knowledge categories
and to make it available for each expert in the suited
format.

Ideally, these systems should allow each expert to
work on his own perspective and should ensure co-
ordination and interaction between the narrows
perspectives.

Entity representation label

 label Atomic Type
Inheritance
Relationship

Association
relationship

(DER) label (INV) label Inverse
attribute

Derived

Point

Geometric_Entities

X
Y

Real

Z Center

(INV) Is_centre_of [1 :2]

Real

(DER) Perimeter

1

Circle

Often, products to be designed are made of pre-existent
technical objects [7]. It is the case for several domains of
engineering such as electronic, mechanic etc. Hence, in
such domain, a very significant part of design knowledge
is related to components design. This knowledge

corresponds to the capability to select a component, to
evaluate its behaviours and to create different
representations related to each discipline.

The goal of P-LIB-based digital catalogues is to allow
exchange of component knowledge between suppliers and
designers. These catalogues should be able to transmit
both component characteristics and their representations.
It also should include the various information element
included in catalogues like figures, documents, tables etc..
Notice that, in practice, these catalogues are used by
product designers to choose the components to be inserted
in products.

In order to represent catalogues and component
knowledge, the P-Lib data model has been described and
standardised. The next sections give an overview of this
data model. More details can be found in [8], [9], [10],
[17]

3.1 P-Lib architecture

The general architecture of P-Lib is shown on figure 2.
Suppliers describe components they supply within library
(suppliers library) according to the formal P-Lib data
model defined in EXPRESS and documented in the ISO
13584-24 and ISO13584-42 [8], [9]. Users recover these

data and store them in their own libraries. The data
contain at the same time the component descriptions
(general models) ant their representations (functional
models).

Figure 2 general Architecture of parts library

Library data are structured into classes according to the
object-oriented paradigm. Three kinds of classes are
considered in P-Lib:

General model classes enable library data suppliers to
provide the definition of parts represented by a hierarchy
of part family classes.

Functional model classes enable library data suppliers
to provide various representations (e.g. Geometric,
schematic, procurement data etc.) for these collections of
parts.

Functional view classes enable the specification of the
kind of representation provided in different functional
model classes.

Figure 3: class hierarchy in P-Lib

The figure 3 summarises the description given above.
It gives an overview of the whole P-Lib data model.

These classes shall be defined as a dictionary. It
consists of a set of entries associated with a human-
readable and computer-sensible representation of the
meaning associated with each entity. This dictionary

Component
Class

Functional
Model class

Class extension Class Extension

Functional
View Class

created_viewis_view_o

The propertyClass
PropertySuppl

type

Is_part_ofIs_a

defined_by

Transmission

 interface

0RGHO

���

Functional
Model class

General model
class

Conceptual Model

SupplierUserCAD

user

Library content
D

IC
T

IO
N

A
R

Y
*View
exchange
Models

Part

Parts 101
102

Part 42

Methodology

Part 10

*logical
description

provides a referencing mechanism between library data
obtained from different suppliers and enables the user to
obtain an understandable view of parts held in the library.

3.2 Fundamental principles

The international standard P-Lib is based on different
principles [10]:

- It separates the representation of information held
in a parts library from the implementation methods used
in data exchange.

- It separates information about the structure of a
parts library from the information relating to the different
representations of each part or part family which belongs
to the parts library.

- It uses a formal data specification language,
EXPRESS to specify information about the structure of a
library.

- It permits the information about the different
representations of each part or family of parts within the
library to be specified by different standards. The
information is referenced within the information
specifying the structure of the library.

3.3 P-Lib specification

The P-Lib standard was developed to allow designers
to recover component data together with their different
representations. A designer can, thus, choose component
based on the properties supplied in P-Lib. The selection
process consists of the following stages:

- the first stage is to choose a particular component
family (component category), which corresponds to the
desired functionality ,

- the object of the second stage is to choose, in the
family, one or several accurate component instances
which are adapted to the requirements expressed by the
insertion context. Notice that this insertion context is
usually a PDM or a CAD system.

- the end of this process is to choose a component
well defined which we can precisely identify. This method
of selection enables us to define a design problem to be
solved. This process allows interchangeability in a
maintenance context for example.

The users can access to suppliers' libraries across the
interfaces, which exist between each system and P-Lib
models. In this manner designers can use component data
in their CAD or PDM systems.

As it was stated previously P-Lib uses the EXPRESS
language to model and formalise component data. These
data are stored in EXPRESS exchange format it provides
and are encoded in ASCII files.

3.4 Conclusion

In conclusion we can say that the P-Lib standard has
provided an approach and information models to facilitate
components data exchange and their sharing between
suppliers and designers systems. It allows exchanging
digital component catalogues which integrate the supplier
knowledge on the components he/she supplies (intelligent
catalogues).

The P-Lib data model is a meta-model, which allows
intentional and extensional description of component
catalogues for their exchange between heterogeneous
systems. This model characters both the structure and the
characteristics of components (structural and descriptive
knowledge), and the mathematical relations existing
between different characteristics (procedural knowledge).

Use of P-Lib component data in CAD systems is
possible using the interface which have been defined
between P-Lib data and CAD systems. But such
interfaces do not exist yet between P-Lib and PDM
systems. This is the main motivation of our work.

Components are largely used in industry to design and
manufacture new products. Companies use PDM systems
(Product Data Management) to manage data related to the
products they manufacture (CAD/CAM files, quality
folders etc.). So, it is crucial to offer some capability to
use component data defined in P-Lib in PDM systems.

4 PDM systems description

With the use of computers in more and more activities,
a company needs to manage efficiently thousands of
heterogeneous data created each year. These data are
related to CAD/CAM files, Specification files, Numerical
Command (NC) programs etc. Because of the big volume
of information, of the various actors using this
information and of the diversity of data processing tools,
controlling this information generates several problems.
Among these problems, we can cite:

- incoherence between various document and file
versions used by different actors in development phases,

- delivery of incomplete manufacturing data for
production,

- delay between product manufacturing and the
delivery technical document.

To address these problems and subject to control the
various technical information, involved in product
development, in production, in marketing and in logistical
support of industrial product, a new data management
method was developed: the Product Data Management.
This field is subject to an active standardisation work:
STEP (STandard for the Exchange of Product model

data); CALS-CE that is an initiative of the American
Department of Defence aiming at defining methods and
tools to manage and exchange technical information

related to weapon manufacturing.

4.1 Technical data

Technical data are data concerning product and process
definition, which are used during the whole of product
life. They include all the data that allow product
description throughout its lifecycle. These data can be
structured or not structured. They can have either
electronic or hardcopy support. These data are necessary
to identify and to describe state and configuration of a
product, to manufacture a product, to control product
evolution, to use and maintain the product.

These data are generated by different computer tools:
CAD/CAM systems (Computer Aided Design/
manufacturing), CAE (Computer Aided Engineering),
QFD (Quality Function Deployment) etc. and they are
related to design, to engineering, to the manufacturing, to
quality management, to the logistical support etc.

Technical data are associated with product during its
whole lifecycle (starting from its design until its
discharge). These data have particular characteristics.
Each datum is associated to a particular computer system,
which allows to interpret its content.

Lifecycle encompasses several phases. It includes the
following: requirement definition, concept design,
production, operation, maintenance and discharge.

4.2 PDM definition

A PDM is a system which allows to organise and to
manage all the heterogeneous data described in the
previous section. It also allows to give the right data to the
right person and, to provide to everyone his/her own view
of the project. A PDM manages technical data access,
modification and sharing. It permits multiple access at the
same datum and/or at the same time. It ensures interfacing

between all computer systems used inside the company.
The following figure shows existing interaction between
PDM and various other systems.

Figure 4: PDM systems interfacing with computer
company systems.

Figure 4 shows how a PDM manages various data
relating to a product. This management is done at two
levels [12]. each set of product data (content) is recorded
in a container associated with meta data. A PDM stores
the content and manages the container.

Container management: supports the BoM (Bills of
Material). It encompasses two functions: description of
element components (Object ID, attributes etc.), and
composition links that exist between different elements
(component/composite relation). The composition link,
between the component object and the composite object,
is defined as another object.

Content storage: is a storage system with a great
capacity: the vault. Vault content represents for example
the drafting files, pictures digitised by a scanner, ASCII
files etc. Visualisation of such object is not be possible
without the engines that generated them and without PDM
viewer. Without these engines we can't interpret their
content. These objects are called BLOB (Binary Large
Object). Objects, which are put in the vault, are controlled
by the PDM. Any creation or modification is submitted to
the validation by an ECO number (Engineering Change
Order).

4.3 SmarTeam: description and structure

For our experimentation, we used a particular PDM
system supplied by Smart solution called SmarTeam.

SmarTeam is founded on the principle of object-
oriented databases.

We used this tool for study any feasibility of
integration of P-Lib in a PDM. In the following, we will
outline the structure of SmarTeam this will help us to

• database management

• doc. Configuration management.

• data archiving

• data structuring

• quality management

Electronic Publishing

 Project Management

CAD

Logistical Support

 Production Manag. Sys.
Maintenance Manag. Sys.

 Stock Management

 Electronic Doc. Manag.

PDM

present the solution we propose to achieve this
integration.

The structure of SmarTeam database is based on the
concept of a project that represents the main class of the
database. This global structure is constituted by a set of
parallel class hierarchies where the first hierarchy
represents the main classes. This structure permits to
access data easily because they are generally bound to the
instances of a main class and one can reach them through
objects of this class (by the Browser or by the associated
Application Programming Interface API).

4.3.1 Classes
In SmarTeam data are regrouped in several hierarchies

of classes that represent categories of objects and then
support simple inheritance. These classes are hierarchised
to permit simple inheritance. In SmarTeam classes are
classified in the following manner:

a) The main class: as stated above, the structure of
data is organised around a hierarchy of main classes that
plays a particular role in the database. It represents
described product(s). Instances of the main class are
displayed when SmarTeam is launched. This class has
links with the other classes. Via these links, the user can
reach the other objects directly.

Example: we can put the class Projects in the main
class. Instances of this class can be motors, or gearbox for
example. Others objects, such as parts of motors or
gearboxes, will have a link with the instances of the class
Projects.

b) Super-classes: they are the higher level classes in
the hierarchies of which the first described is the main
class. They are used to regroup classes in a specialisation
hierarchy, and they constitute a separate tree. To every
Super-class, it is necessary to associate indexes that allows
the system to verify the uniqueness of objects in the class
and that play the primary key role in a database.

Super-classes permit the construction of link classes
between all classes that are in the hierarchy. The link
between two classes is an object of the link class that
binds their super-classes.

c) Leaf classes: Leaf Classes are classes of the lower
level in all parallel hierarchies. In SmarTeam objects are
only instances of leaf classes. The other classes are not
instanciable (super-classes and intermediate classes).

d) Intermediate classes: intermediate classes are those
classes that are between super-classes and leaf classes in
the parallel class hierarchies. They permit common
attribute factorisation. Both intermediate classes and
super-classes are abstract classes.

e) Internal classes: In SmarTeam, predefined classes
are used by the system to manage the database. For
example the identification of users (their names,
passwords etc.) is recorded in the internal class USERS.
The other classes are used for the management of
documents (identification of applications that are applied
to each type of file to permit its visualisation for
example).

f) Link classes: we distinguish two types of links in
SmarTeam: aggregation link and association link.

Aggregation (or composition) link classes: aggregation
is an association between a parent object and one or
several son objects. This type of link is used typically to
bind an object with its components. For example a wheel
is composed of a tire, of an air room and of a rim. We can
associate to the wheel these components through the use
of the composition link. The composition link classes are
created automatically for every super-class. These classes
permit to stock aggregation links between the different
objects (the link composite-component between two
objects is an object of the composition link class).

Association (or logical) link classes: SmarTeam
permits to bind between two classes (an instance of these
classes) without taking into account their place in the
hierarchy. We can make this link by the association link
classes. For example, we can bind a screw CHc10 that is
an instance of screws class with a document describing
this screw.

g) Lookup table classes: they contain a list of strings
and they are used only to define an enumerated type of
data for an attribute that can only take its values in this
list.

The general structure of the described classes is
illustrated by the EXPRESS-G diagram of figure 5.

Figure 5 : general structure of classes in
SmarTeam

All classes have some predefined common attributes
called class attribute. They allow the definition and the
characterisation of classes (class_name, class_ID etc.).
They take the same values for all class instances.

4.3.2 attributes
In object oriented paradigm, a class has a number of

attributes that permit to distinguish objects in one class. In
SmarTeam, these attributes, themselves, have a certain
number of properties that distinguishes them from some
others attributes. Figure 6 illustrates properties of
attributes in SmarTeam.

Figure 6: attribute properties

SmarTeam distinguishes four types of attributes
- class Attributes : are attributes that allows the

definition of classes (CLASS_NAME, ID etc.) and they
take the same values for every class instances.

- obligatory attributes: are predefined attributes
assigned with each class and their values are managed by
the system.

- mechanism Attributes : there are two mechanisms
in SmarTeam: file management and revision management.

The first one allows documentation management (in a
file-managed class, each object is associated with a

document and has file management attributes), the last
one allows revision management and verification
(register, checkin, checkout, approval etc.)

- user defined Attributes.

4.3.3 objects
Objects are instances of classes. They differ from each

other by their object identification id (OID) and by their
attribute values. For example, for classes Screw and
Drawing, a Screw CHc10 will be an object of class Screw,
its representation would be an object "Draw_screw",
instance of the Drawing class, and link between these two
objects would be an object of the corresponding link class.

Objects have attributes of the class to which they

belong (predefined attributes and attributes defined by the
user). Values of predefined attributes are assigned directly
by the system. Object_ID value is assigned by the system
and it takes an unique value used by the system to identify
the object in the database.

4.4 PDM specifications

PDM systems are used to manage heterogeneous data,
which describe enterprise products (CAD files, Production

 Association_Link_Classes

 (INV) Is_part_of S[0 :?]

Is_composed_of S[0 :?]

 Loock_up_classes Internal_classes (ABS)Link_Classes

 (INV) Is_part_of S[0 :?]

Is_composed_of S[0 :?]

 Composition_Link_Classes

 1

Main_Class

 User_defined_Classes

Int_16 Class_P

 Char

Super_Class-

Class_Type

Class-ID

Prefix

Table_Nam

Class-Name
Description

(ABS)General_Classes
Meta-data

 1

Name Attributes

Size
Sensitive

Language

Display

Integerenumeration

string
Type

Data_type

Description

Boolean
mandatory

enumeration

string

Management System (PMS) data, BoM etc.). These data
represent the static characteristics of products. Bill of
Material (BoM) is the decomposition of a product in
standard components purchased or in components
manufactured in the enterprise from raw materials. It is
well-known in mechanics and it is the point of departure
of the PDM. In the PDM, at the physical components, the
maps, the technical draws, the quality folders which allow
the better description of the products, were appended.
This decomposition is called METADATA. In the PDM
the link between product and its components is an object
of composition link class. So, both the OID of parent
object (composite) and the child object (component) are
stored in the link class. The same approach is used for the
association links, which are used typically to link the
physical components with their technical draws.

4.5 Conclusion

PDM systems are software developed in the last years
to allow management of heterogeneous data, which
describe products. These systems support products
lifecycles including: requirement description, concept
design, production, operation, logistical support,
maintenance and discharge. They also permit quality
management. This is very important to have ISO 9000
certificate to support concurrent engineering process. It is
well known that using pre-existing components to design
and to manufacture a new product is very useful. It allows
to considerably decreasing prices of products. Pre-existing
component data are recorded in a P-Lib's models
manager. So, it is useful to reference directly from PDM
component data. We will present the approach we
developed to integrate P-Lib in a PDM system in the rest
clause.

5 Integration approaches

5.1 Convergence and difference between PLib
and PDMs

P-Lib describes component families by meta models.
So, the data models, which hold the component (Physical
files) are instances of the meta models. It has been defined
so as to be easily extensible and to be very general. PDM
systems describe products and manage BoM and
documents which are related to these products. The
modelling approach used in PDM is called the multi-
modelling approach, because a specific model is
developed for each BoM. Each software editor chooses a
model which fits with its needs. In STEP a generic PDM
data model has been defined from which everyone can

derive its own specific data. So, the main difference
between both approaches is due to the representation
levels. Meanwhile, both approaches are intended to
describe technical components and products. This is the
reason which lead us to study integration of P-Lib in a
PDM.

5.2 Aims of integration

The aim of integration of P-Lib in PDMs is specially to
allow designers manufacturers and users to benefit from
the suppliers' knowledge on components, as it is
embedded in electronic catalogues. This knowledge,
described by suppliers on components, must be available
for use by designers, manufacturers and users and
workable by constructors. So, this integration should
allow storage of P-Lib component data in a PDM and
should provide referencing those data in product data,
therefore an efficient maintenance of products.

5.3 Integration approaches

a) Direct representation: in the PDM, data are stored
in tables where each line represents an object of the class
represented by this table and each column represents
values of an attribute. One needs model not only table
content but also table schema. Instead, in P-Lib another
approach has been developed to represent tables because
this approach requires that the table schema are defined
before population such table. This approach consists in
representing them by a list of lists representing each
attribute in a column of a table. So, tables are represented
by a number of EXPRESS entities. Moreover, in P-lib
models, the classes representing families of components
and their properties are also represented separately (meta-
representation).

So, the direct representation consists in extracting
component families from the meta model and in
representing them by PDM objects. As stated before,
component class properties are represented by separated
entities in P-Lib. These entities contain a set of attributes
that are common to all the instances. In SmarTeam class
attributes are predefined, so to avoid the redundancy of
data we have opted to represent the common attributes
which describe a class by a description classes and to link
the two classes. For example, for a Screw_family class we
associate directly the object attributes: diameter, length
etc. and then we create a class Screw_family_description
that is associated with the Screw_family class. In
SmarTeam dynamic creation of classes is not allowed, so
this approach does not enable us to make an automated
integration.

b) Meta levels representation approach: this
approach consists in representing each P-Lib entity, such
as it is defined in the EXPRESS model and represented in
an exchange file, by PDM objects. Every P-Lib entity will
be represented as a class in the PDM. For example, each
of the entities supplier, class, component class,
functionnal view class, etc. will be represented by PDM
objects. The weakness of this approach is the
impossibility to represent, in SmarTeam, aggregate data
types (used to encode P-Lib tables). It is also the
complexity to browse and to query such a meta model.

c) Hybrid or mixed representation approach: this
approach consists in using both approaches in parallel. It
allows us to benefit of the advantages of both approaches.
We separate the representation of tables and the
representation of classes. On the one hand, we represent
tables that contain component attribute values by
relational tables provided by the PDM (direct
representation). On the other hand, classes such as
supplier, class, component class, functionnal view class,
and so on are represented by PDM objects (meta-
representation). In the meantime link classes will be
created to link objects with tables that contain their
attribute values.

This approach has been implemented on the Smarteam
PDM system and several examples have been processed.

6 Summary and Conclusions

In this paper we presented the approaches we
developed to integrate P-Lib defined component
cataloguesin in to PDM system. We have discussed the
possible approaches and we have proposed to merge two
approaches: the direct representation and the meta level
representation. The resulting approach is named hybrid or
mixed approach. It allows us to represent in the same
model P-Lib descriptors, which characterise component
families and suppliers, and P-Lib entities representing
tables by PDM relational tables. The advantage of this
approach is the possibility to make a completely
automated integration of P-Lib defined catalogue and to
keep the specificity of P-Lib data model, which contains a
complete description of component families. Notice that
no changes on the PDM system are required. As a result,
this integration will allow the use of a PDM systems to
manage at the same time component and product data. It
allows the easy recovery of any component data as well as
the knowledge on these components from its reference. It
will also allow the integration of LMS's (Library
Management System) and PDM's functionalities. This
integration leads to increasing the productivity and to
simplification of the component selection and their

referencing within products. It makes also easier products
maintenance by making possible the automatic exchange
of component referenced when some components become
e.g. obsoletes.

7 References

[1] J.Runbaugh, M.Blaha, W.Premerlani, F.Eddy,
W.Lorensen, Object oriented modelling and design,
Prentice-Hall International edition, 1991.

[2] I. Jacobson, G. Booch and J.Runbaugh, The unified
Software development process, Addision-Wesley Eds,
1999.

[3] M. Bouazza, Le langage EXPRESS, Editions Hermès,
1995.

[4] G. Booch, Object Oriented Design, Redwood City, Calif:
Bejamin/Cummings, 1991.

[5] G. Pierra, Intelligent electronic component catalogues for
engineering and manufacturing, International symposium
on global engineering networking Antwerp, Belgium, pp.
331-352, 1997.

[6] G. Pierra, Modelling classes of prexisting components in a
CIM perspective: The ISO 13584/ENV 400014 approach,
revue internationale de CFAO et d'Infographie, vol 9, pp.
435-454, 1994.

[7] J.M Moranne, conception assistée par ordinateur
d'ensembles mécanique avec recherche d'une bonne
solution: le logiciel SICAM, Proceedings of MICAD'86,
Paris, Hermès, pp. 41-71, 1986.

[8] G. Pierra, Y. AIT-Ameur and E. Saedet, Parts library:
Logical resource: Logical model of supplier library, ISO
document: ISO/IS 13584-24,1999.

[9] G. Pierra, H. U. Wiedmer, description: methodology for
structuring parts families, ISO document, ISO/IS 13584-
42, 1997.

[10] P. Harrow, M. West, Parts library: overview and
fundamental principles, ISO document, ISO/DIS 13584-1,
1997.

[11] T. Schreuber, B. Wielinga, J. Breuker, KADS: A
Principled Approach to Knowledge-based System
Development, Acadimic Press, London, Forthocoming,
1992.

[12] J.M Randoing, Les SGDT, Edition Hermès, 1995.
[13] M Maurino, La gestion des données techniques, Edition

Masson, 1993.
[14] ISO 10303-11, Industrial automation systems and

integration -- Product data representation and exchange --
Part 11: Description methods: The EXPRESS language
reference manual, 1994.

[15] F. Feru, C. Viel, Echanger avec le protocole d'application
203 de STEP: Echange et partage de données CAO et
GDT, Aerospatiale & Goset, 1998.

[16] CIMdata, Product Data Management, http://CIMdata.com,
December 11, 1998.

[17] E. Sardet, G. Pierra, Y. Ait-Ameur, Formal Specification,
Modelling and Exchange of components according to
P-Lib, A case study, International symposium on global
engineering networking Antwerp, Belgium, pp. 179-200,
1997.

