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Abstract : The purpose of this work is to provide to the designer a graphical method for
taking design decisions for enhancing the temporal performance of the application in terms of
fault tolerance, task response time, etc. We have introduced a graphical representation of the
schedulability analysis based on a classical temporal model in a given scheduling
environment. This methodology is extremely useful for supporting both control applications
and multimedia systems, in which the execution times or rates of some computational
activities can vary significantly, and for which the timing fault tolerance must be evaluated in
order to prevent failures. Copyright © 2000 IFAC.
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1. INTRODUCTION

A real-time system is, by definition, a system that
must satisfy explicit response-time constraints, or
risk severe consequences including failure (Laplante,
1993). Since most of the mission-critical and
human-critical systems operate in real-time, these
also require a high degree of dependability. It can
then be sustained that two of the most important
characteristics of real-time systems are the capability
to fulfill strict timing requirements and to guard
against imperfect execution environments.

In real-time systems, the time is a main point,
unlike the definition for non-real-time systems,
where time is only a performance matter. So an
appropriate approach is a temporal analysis and
validation of the system before its execution in order
to guarantee the timing constraints of the
application. One method, increasingly used, is based
on schedulability analysis. Various methodologies
are founded either on specific real time languages
(Stoyenko, 1992), or on a temporal modeling of
software written with a classical high level language
associated with a real-time kernel (Cottet et al.,
1994; Zhou et al., 1998), or on formal methods that
lead to exhaustive computation of the scheduled task
execution sequences (Geniet et al., 1996).

This operational validation by schedulability
analysis forces the mathematical characterization of
the task set according to a precise temporal model.
In the simplest widely accepted model, a task Ti,
assumed to be periodic and independent, is
represented by the quadruple (ri,  C i, D i,  P i) where r i

is the first request of the execution of the task, Ci is
the computation time, Di is the deadline and Pi is
the period. We have the basic obvious conditions (1)
(Ci ≤ Di ≤ P i ) where Di ≤ P i means that the task
deadline is lower than the next execution request (the
task must be completed before a new invocation) and
Ci ≤ Di the necessary condition for the execution.

Three of these parameters (ri, D i, Pi) are elicited from
the timing requirements giving the temporal
characteristics of the input/output operations and the
process behavior. The temporal parameter Ci

corresponds to the execution time of each task in the
intended hardware and software execution
environment. It can be evaluated by different ways :
either from an analysis of the program code
(Puschner et al., 1993) or from a direct measurement
of execution time (Babau et al., 1995). It is usually
fixed and depends only on the algorithmic
implementation in a given hardware context. It is
possible to estimate a variation range from a
minimum run-time Ci,0  to the worst case execution
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time C i,m of a task. The others parameters can be
adjusted by the designer to obtain a system that
matches as closely as possible the timing constraints
of the application. Particularly, this adjustment of
the deadline and the period of the task is extremely
important because, in relation to the formal
scheduling algorithms such as Rate Monotonic and
Earliest Deadline (Liu and layland, 1973), it
corresponds to a priority mapping that takes into
account the importance of tasks.

The purpose of this work is to provide to the
designer a graphical method of task temporal
parameter adjustment in order to greatly improve the
temporal behavior of a hard real-time system. This
approach is particularly useful to enhance the
performance of the application in terms of quality of
temporal service (task response time, processor idle
time, number of processor context switches, etc.).
Moreover this graphical method can be used to
provide tolerance of timing faults caused by the effect
of the parameter variation as the period jitters or the
computational time uncertainty. It provides an
approach to reliable real-time systems. The main
investigations for improving fault tolerance of hard
real-time systems were realized by modifying task
model (Kim et al., 1998). The paper is organized as
follows. In section 2, we present the graphical model
of a task. In particular, we choose to describe more
precisely the plane “deadline versus period”. In
section 3, we introduce the schedulability condition
in the graphical representation. A simple example
ends this section. Section 4 presents the graphical
analysis of the plane “execution duration versus
period”. A speediness increase of this methodology
and a real industrial example are presented in the
section 5. Conclusion are given in section 6.

2. GRAPHICAL MODELING OF TASKS

2.1 Scope and assumptions

This work is focused on one-processor and
preemptive real-time systems. Concerning the tasks,
we simply identify two different kinds of activation
signals. The first concerns the periodic signals,
characterized by a period P, which activate hardware
periodic tasks. The second class contains the non-
periodic signals that occur at arbitrary times without
a fixed time interval. In this situation, we need a
classical specification that is given by the minimum
interval dmin between two occurrences of such signals

For this latter case, we have adopted the simplest
approach very practical in real-world applications :
the immediate periodic server (the server task
services any pending non-periodic requests, if no
non-periodic requests are pending, the server
suspends itself until its next period and the released
time is instead used for periodic tasks) (Homayoun
and Ramanritham, 1994; Spuri and Buttazzo, 1996;
Buttazzo, 1997). So from now on, we will consider
that a periodic server is created and dedicated to each
non-periodic request. Therefore we assume that a
real-time software is depicted by periodic task set.

2.2 A three-dimensional general model of a task

Assuming that each task has a known initial
invocation ri, the key point is to skillfully determine
the other temporal parameters (Ci, D i,  P i) according
to the non-functional requirements such as the
timing properties of the application.
First, the parameters of the task temporal model (Ci,
Di,  P i), as previously presented, must satisfy the
relations (1). Therefore, in a set of axes (run-time,
deadline, period), the three-dimensional graphical
representation of the volume corresponding to the
allowed values of task parameters has a trihedral
shape. If we draw the projections of this sphere on
the different planes, we obtain the areas of the
allowed values of task attributes : plane projection
(period versus run-time), front elevation (deadline
versus period) and side elevation (deadline versus
run-time). All theses surfaces come in the form of an
opened wedge. The vertices of these acute angle
wedges correspond to the equality of the parameters:
Ci =  R i =  P i = Ci,0 . So, if we assume that the
computational time varies in the range [Ci,0 ,  C i,m],
then, in the deadline versus period plane for
example, the allowed zone changes as described on
the figure 1. The more the run-time increases, the
more the possible surface of task parameter values
shrinks.

We confine our attention here to two of these
projections that seem quite interesting for our
purpose of temporal analysis of task behavior :
deadline-period and period-execution time co-
ordinate planes. We first assume that each task has a
known worst case upper bound to the execution time
that can be computed (Ci=C i,m). So the free other
parameters (Di,  P i) can be studied according to the
timing requirements of the task itself, derived from
the global timing properties of the application. The
effect of relaxing the first assumption
(Ci=C i,m=constant) will be discussed in section 4.

2.3 Graphical temporal modeling of periodic tasks

Up to now, the task was considered as a theoretical
model of periodic task without taking into account
some timing requirements of the application.

D : Deadline

P : Period

Run-ability constraint

(line D=P)

Ci,0

Ci,0

Ci,mCi

Fig. 1 : A graphical representation of the possible
values of temporal parameters of a task.



From these temporal constraints related to the
controlled process, different temporal characteristics
of a task can be deduced and imposed ; for example,
we can have the following requirements :
• a maximum period Pi,max (Pi≤Pi,max),
corresponding, for instance, to a sampling rate limit,
• a minimum period Pi,min (Pi≥Pi,min), corresponding
to a useless repetition rate (for instance the period of
a polling task with a value much greater than the
physical signal change rate),
• a maximum deadline Di,max (Di≤Di,max), in order to
get a better response time.

The graphical representation of figure 2 shows the
previously determined area of the allowed values of
task attributes located inside the shaded wedge,
named zone A. On the other hand we obtain a more
restricted surface (zone B), included in the first one,
that corresponds to the set of potential couples (Di,
Pi) of a given periodic task satisfying its timing
constraints.

2.4 - Temporal modeling of server tasks

A non-periodic event is assumed to be specified by
at least a minimum time interval between two
invocations, dmin, and if necessary a maximum
deadline, Dev. So we have to find the temporal
parameters (Dsi, Psi) of the periodic server that offers a
correct service to any of those non periodic
invocation signals, that is to say : to respond with a
delay less than its deadline Dev. As before, we
assume that the computation time Csi allocated to
the immediate server is known. Given that there is of
course no synchronization between the periodic
server activation and the occurrences of the non
periodic events, we are going to consider the worst
case. Suppose that the non periodic event occurs just
after the release time of the periodic server and that it
suspends immediately since there is no pending non-
periodic signal. Therefore the non periodic request
event will be served during the next period of the
server but before the server deadline attached to this
new period. Due to that, the temporal parameters
must meet the following condition :

Psi + Dsi ≤ Dev ≤ dmin (2)

This condition, involving Psi and Dsi, offers a certain
choice of the periodic server parameters : either a
long period server with a short deadline that
strongly constraints the schedulability of the task set
or a short period with a deadline equal to the period
that is prejudicial to the processor load.

3 - SCHEDULABILITY HANDLING IN THIS
GRAPHICAL MODELING

The temporal model representations so far show the
allowed main temporal parameters of the task with
the effect of the timing requirements, but without
taking into account the influence of other tasks, or,
in others words, the concurrent execution context.

D : Deadline

P : PeriodCi,0

Ci,0

Pi,maxPiPi,min

Di,max

Ci

: zone A

: zone B

Fig. 2 : A graphical representation of the possible
values of temporal parameters (Di,  P i) for periodic
tasks corresponding to the temporal requirements.

The aim of this work is to provide a methodology of
task set analysis for determining the well adapted
temporal parameters. The best fitting parameters are
considered with respect to the global timing
requirements of the application. This property
requires a framework that incorporates the execution
environment, especially the scheduling algorithm.
We have first chosen a static scheduling algorithm
(the priorities are not changed once they are assigned
to the tasks) namely the Rate Monotonic (RM)
algorithm. This scheduling algorithm is a simple
rule that assigns priorities to tasks according to their
request rates. Specifically, tasks with shorter periods
will have higher priorities.

Let us consider a real-time system with k tasks
(basic periodic task and/or server task). The worst-
case computation time C i of each task Ti is assumed
to be known in a deterministic manner. Our
approach to fixing temporal task parameters of the
task set works according to an iterative process. At a
given step, we assume that the parameters of k-1
tasks have been determined, that is to say, their
point (Di,  P i) or (Dsi,  P si) has been chosen in the
allowed areas. From these assumptions, we can
build the graphical representation (Dk, Pk) of the task
k with its proper restricted surface and the boundaries
representing the interference of the concurrent
execution context caused by the k-1 existing tasks.
This methodology can be seen according to two
different points of view. Either, in a design process,
the k-th task must be added to the others or, in a re-
design or analysis process, the k-th task is one
among the others whose temporal characteristics one
wants to improve.

The first obvious bound is given by the maximum
processor utilization factor, that is to say 1 in a one-
processor context. Therefore, Pk has a minimum
value Plim  which is given by :

Pk Plim Ck (1
Ci

Pi
i 1

k 1

(3)

But the main limitation that we have to take into
account is the schedulability constraint. For a RM
scheduling and a task set where each task must be
completed before the new invocation, a whole task
set is schedulable if [Liu and Layland, 1973] :
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Pk
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In this particular assumption (run-ability constraints
for all the tasks) the preceding condition gives us a
minimum period PLL,lim located on the "D = P" line.
It should be noted that this condition is sufficient
but not necessary. It should be pointed out that these
different limitations are often very pessimistic. To
improve efficiency of this computer aided design
methodology, we have to do a simulation of the RM
scheduling of the task set. Then the designer can
choose the appropriate pair of temporal parameters
(see figure 3). This simulation must cover
scheduling for a length of time equal to the major
cycle corresponding to the least common multiple of
the task periods LCM{P i}.

In the case of a server task (example of the figure 3),
a very important limit can be defined : the maximum
response time TR of the task that corresponds to the
sum of the deadline and the period. In that case also,
this limit is an upper bound, the server task can be
replied more quickly to the aperiodic interruption in
a specific execution sequence. So, for a given
scheduling algorithm, the direct computation of
valid sequences permits us to draw the real and
complete limits of the allowed zone for a given task
in a concurrent scheduling environment. This final
zone (C), that is included in the zone B (previously
inside the zone A), can be much more restricted than
the previous surfaces. The borders of this surface are
constituted by of different lines : the D=P line where
we find the analytical results for the period, the
specification upper value of the deadline, the
maximum response line, the minimum deadline that
can be irregularly shaped. The final zone C
emphasize the capability of the system to tolerate
timing fault related to the deadline and the period of
this particular task.

First representing the results of an simple example in
the D-P plane is slight different from the preceding
theoretical graphs because the D and P variables are
integers and therefore the D-P plane is discrete. Let
the test example be a periodic task set with two
tasks characterized by the following temporal
parameters : (0, 2, 8, 10) and (0, 2, 8, 8).

D

P

Dsi

Di,max

Csi,0

PsiPi,lim dmin

dmin/2

PLL,lim

TR

: zone A

: zone B

: zone C

maximum response time : 
D + P = TR

minimum deadline Dlim

Csi,0 Pmax

Fig. 3 : The allowed temporal attributes of the
periodic server in a multitasking environment.

Assume that we want to add a periodic server task
created in order to deal with a non-periodic event,
characterized by a needed computation time C3 of 3
and a minimum occurrence interval dmin of 15. We
can calculate the minimum period corresponding to
the fully used processor according to the equation (3)
: P lim  = 6. To obtain the complete graph, the RM
scheduling has been applied for the predetermined
range of P3. The figure 4 shows the final results with
the allowed zone of temporal parameters of this task.
The designer can chose among all the points the
possible values of D and P. There is no better choice
among all these possible parameters. Different criteria
can be used to select the task temporal characteristics
such as minimizing the processor load : point A(10,
5). Another way is to optimize two criteria like
processor utilization and response time. In this case,
the point, referenced B(8, 7) on the figure 4, seems
to be a very interesting compromise between the
highest available period and a correct response time.

In all the above execution simulations, we consider a
RM scheduling. Before modifying the temporal
parameters of a task, a designer could also want to
analyze how a more efficient scheduling policy can
widen the valid zone. So we now turn our attention
to obtaining valid area corresponding to another
scheduling algorithm: Earliest Deadline (ED) (see
figure 5). Referring to the previous results about the
valid area obtained with a RM scheduling, the use of
ED algorithm really offers new choices of task
parameters : 23 points instead of 13). For example,
with a strongly constraint deadline equal to 3, the
period can be varied over a range as wide as 5 :
P∈[7, 12]. For the choice of parameters, our server
can be implemented with parameters D=3 and P=12
which unload the processor considerably while
keeping the required response time for the aperiodic
event.

C3

C3

P3,min

3 4 5 6 7 8 9 10 11 12 13
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B

P : Period

D : Deadline

dmin- C3

Fig. 4 : Example with a RM scheduling.
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Fig. 5 : Example with ED scheduling.



4 - TEMPORAL ANALYSIS IN THE PERIOD VS
RUN-TIME REPRESENTATION

In previous interpretation of the D-P plane mapping,
the goal was focused on the evaluation and the
improvement of the temporal characteristics of a task
set. With a period versus run-time plane, the
purpose is to analyze the ability of the system to
undergo temporal faults (period jitters, run-time
variation) without jeopardizing the schedulability of
the whole task set. In the previous case, we assumed
that the computational time was constant and equal
to a known worst case execution time (Ci =  C i,m).
But, in fact, the maximum value of the run-time of a
task is quite difficult to estimate with a high
accuracy because of the laborious analysis of the
execution paths of the software, the compiler effects,
the hardware environment (caching, paging).
Another reason to study a task with a variable run-
time is that some algorithms, used in task software,
contain loops that yield more accurate results with
an increasing number of iterations. So, it should be
very useful to know the upper limit of the execution
time that a task can possess. Assuming that the
deadline Di was set earlier and the possible variation
range of the run-time was also determined (Ci ∈
[Ci,0 ,  C i,m]), we can construct the valid area of the
task. First we plot the opened wedge corresponding
to the initial model described in section 2.2. (zone
bounded by the two lines : C=Ci,0and P=C). Then
the temporal requirements of the application reduce
the allowed parameters. And finally the
schedulability analysis gives the final possible
temporal characteristics of the task. From that result,
it is quite easy to evaluate the possible variation of
the execution time at a given period or the inverse.
Under this framework, periodic tasks can change
their execution rate or their execution times to
provide different quality of service (fault tolerant,
system load, etc.). This will be developed in details
for a real example in the next section.

5 - ANALYZING A REAL EXAMPLE

5.1 - Speediness improvement of this graphical tool

A tool, based on this computer aided design
methodology, was developed with a user-friendly
interface that assists real-time designers in fixing the
parameters of a task set of an application. And we
can remark that each point of the graphical
representation corresponds to a complete simulation
of the application scheduling, even if the point
parameters lead to a non-schedulable result.
Furthermore this duration of simulation can be
extremely large. So, we take care to minimize the
number of parameter cases to check by using
analytical conditions and properties of scheduling.
We want to strongly reduce the simulated area from
a number of point that is theoretically proportional
to Pmax

2 in a periodic task case with a maximum
period of Pmax. First, we have established some
graphical properties coming from scheduling
characteristics. These properties permit us to draw a

line of feasible points without any schedulability
calculations. For example, in RM scheduling
context, we have the following results :
• property 1 : if the schedulability test is positive for

the value couple (Dx,  Px), it will be correct for the
other value couples such as (Dx + α, Px).

• property 2 : if the schedulability test is positive for
the value couple (Px,  Cx), it will be correct for the
other value couples such as (Px, Cx - α).

• property 3 : if the schedulability test is positive for
the value couple (Dx,  Px), it will be correct for the
other value couples such as (Dx, Px + α) if the task
keeps the same priority.

• property 4 : if the schedulability test is positive for
the value couple (Px,  Cx), it will be correct for the
other value couples such as (Px + α, Cx) if the task
keeps the same priority.

Using these properties, associated to a dichotomic
analysis among the possible couples of task
parameters, the number of points to simulate is
limited to number of point proportional to
log(Pmax) Pmax  in the RM scheduling context and to
log(Pmax)+log(Pmax) with DM scheduling.

5.2 – An industrial case study

To illustrate the methodology presented in previous
sections and to experiment the graphical approach,
we analyze a realistic example. This industrial case
study is based on an aluminum cold rolling mill
application. The studied application concerns the
software dedicated to the real-time check of the
product quality (specially the thickness regularity).
The control process software is supported and
managed by another computer. The system
architecture is based on both Motorola 2600 board
and LynxOS™ real-time operating system. There are
ten tasks presented in the Table 1 where the
temporal parameters are given in milliseconds. The
task set parameters used for the example denote the
actual or nominal characteristics (period and
execution time). The processor utilization is 0.84.
The schedulability must be studied over a duration
of 200 s corresponding to the LCM of task periods.
The processor is idle in the remaining time 32 s.

Table 1 : A real-time application with ten tasks

Task C (ms) D (s) P (s)
T1 250 1 2
T2 500 4 4
T3 250 4 4
T4 500 4 4
T5 250 4 4
T6 500 3 8
T7 1,250 10 20
T8 2,500 50 100
T9 12,500 200 200
T10 12,500 200 200

We confine our attention here to the data processing
task 3 that is constrained to be in the period range
[1s, 4s], the actual period being 4 s. On the other



hand, the computational time of this task can be
varied from an execution to another because of the
calculations depending of the data number.

Using the presented methodology, we obtain the
graphical result of the schedulability domains with
RM and DM scheduling algorithms (see figure 6).
For the period 2 s, the computational time can vary
from 250 ms to 370 ms for a RM priority
assignment and from 250 ms to 500 ms for a DM
priority mapping. The major conclusion in this case
is that the timing fault tolerance of the system is
increased by a factor 2 concerning this task 3. If the
task period can be set to the upper value of the
specified period range (P3,max = 4 s), the execution
time is in the range [250 ms, 750 ms] for RM
scheduling and [250 ms, 1.1 s] for DM scheduling.
In this latter case (P3,max = 4 s, DM scheduling), the
application is schedulable for a processor utilization
varying from 0.78 to close to 1 due to the task 3
execution time variation.

250 500 1000750

1

2

4

C(ms)

P(s)

3

5

RM scheduling DM scheduling

Fig. 6 : The allowed temporal parameters of the task
3 of the example described in Table 1.

6 - CONCLUSION

In this paper, we have introduced a graphical
representation for tasks based on a classical temporal
model. The elaboration of the valid zone for a given
task is computed in three steps which take into
account the intrinsic characteristics of the periodic
task, the timing requirements of the application for
this particular task and finally the schedulability of
the task set. These successive surfaces are of course
smaller and smaller. At the end, the user has to take
design decisions and to chose the right parameters of
the task in the way to improve the temporal
performances of the task itself and more globally of
the application.

With a representation in deadline-period co-ordinate
plane, this approach is particularly useful in
situations in which the designer has to determine
parameters of a task set, either to add a task to a set
of tasks with already fixed parameters or to modify
the task parameters in order to analyze and improve
some temporal characteristics (response time,
processor load, …). With a specific representation
(period versus run-time plane), the purpose is to
analyze the ability of the system to tolerate temporal

faults (period jitters, run-time variation, …) without
risking the schedulability of the whole task set.
Moreover, we have shown how this graphical model
permits us to compare the different scheduling
algorithms : RM, DM and ED.
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