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Abstract. We present a methodology of o�-line analysis of real-time systems,

composed of periodic, synchronous or asynchronous precedence and resource con-

strained real-time tasks. As there is no polynomial optimal scheduling technique for

such tasks sets, we present an enumerative method based on the construction of the

state graph of a Petri net. The time is modeled by the Petri net through the earliest

�ring rule.
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1. Introduction

1.1. Real-time systems

Real time applications, most of the time dedicated to the process

control, are characterised by the existence of temporal constraints,

induced by the dynamics of the controlled process (Stankovic, 1988).

The correctness of such applications does not only rely on the functional

correctness, which we assume to be proven, but also on the temporal

correctness, because an exact result provided out of time can be as bad

as a false result.

For the sake of proving its correctness, the application is modeled

by a set of periodic, aperiodic and sporadic tasks (Stankovic et al.,

1998) which can communicate and share critical resources. This set is

supplied by a more or less formal study of the speci�cations of the

application. Each task is implemented using classical instructions of a

high-level algorithmic language, and speci�c real-time primitives. These

primitives insure the interactions between tasks and are provided by the

real time kernel. The tasks are furthermore characterized by temporal

parameters (Liu and Layland, 1973).

In this paper, we only consider periodic tasks, and we assume that

non periodic tasks are carried out by a periodic server, or processed in

the background (Buttazzo, 1997).

Each task is characterized by a period, a �rst release time, a pro-

cessor load, which is its worst case computation time, and a relative

deadline, which is the maximum delay from the release of an instance
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of the task, to its completion. The time at which the instance has

to be completed is its (absolute) deadline. If the �rst release times

are all equal, the application is said synchronous, otherwise it is said

asynchronous.

1.2. Real-time scheduling

We are concerned with the problem of the temporal validation as well

as with the e�ective computation of feasible schedules, satisfying all

the structural (critical resources, precedence constraints) and temporal

constraints of the tasks. We assume that the applications run in a pre-

emptive uniprocessor environment, and we deal only with deterministic

real time applications: the temporal parameters are a priori known,

since such applications are the only ones for which the respect of the

temporal constraints can be guaranteed.

The temporal validation of the application relies on the opportu-

nity of choosing an appropriate scheduling policy. Two approaches are

usually considered in order to solve the schedulability problem:

1.2.1. On-line method

The scheduling policy is implemented within the scheduler. On-line

scheduling algorithms are usually priority based: the processor is as-

signed to the pending task with the highest priority. The priority as-

signment is either empirical, or deduced from the temporal parameters

of the tasks (Rate Monotonic (RM), Earliest Deadline (ED), and Least

Laxity (LL) (Liu and Layland, 1973; Leung and Merrill, 1980; Mok and

Dertouzos, 1978)). In restricted contexts these algorithms are optimal

in the sense that if a feasible schedule exists, the schedule computed

by the algorithm is feasible. Furthermore, if the tasks are synchronous,

there exists polynomial time analytical criteria for testing feasibility.

But if critical resources are used, the scheduling problem is NP-hard

(Mok, 1983; Baruah et al., 1990; Leung and Merrill, 1980), and only

suÆcient feasibility conditions are still ahead (Kaiser, 1982; Sha et al.,

1990; Chen and Lin, 1990; Baker, 1991). In this context, there is no

optimal on-line algorithm (Mok, 1983).

1.2.2. O�-line method

A schedule, already computed, is stored in a table used by the dis-

patcher, avoiding the cost caused by the execution of the scheduling

algorithm. The main bene�t comes from the raise of the scheduling

power compared to the on-line method: on-line scheduling algorithms

make decision according to the instantaneous state of the system, mean-

while o�-line methods are clairvoyant (they are based on a complete
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knowledge of the task system). It follows that o�-line methods are not

reduced to work-conserving schedules (in a work-conserving schedule,

a task never intentionally waits). This is mandatory in order for an

algorithm to be optimal, since in some cases where critical resources

are involved, all the pending tasks have to wait in order to avoid a

future blockage of an urgent task on a resource. Another advantage of

o�-line scheduling is that it gets rid of the problem of the instability:

the behaviour of the application becomes deterministic, since every

action is planned within the schedule. Therefore, o�-line methods have

been developed for the sake of highly constrained task systems. The

methods that can be found in the literature are usually exponential in

time. Most of them rely on exhaustive branch-and-bound enumeration

techniques, or on non deterministic algorithms. They all consider re-

stricted context: either they consider a �nite set of aperiodic tasks, or,

what is equivalent, a set of synchronous periodic tasks (only the set of

instances occurring within the time interval [0::lcm(Pi)i=1::n] has to be

considered (Leung and Merrill, 1980)); or they consider independent

tasks in a non preemtive environment.

(Zamorano et al., 1997) deals with systems of independent tasks, and

proceeds by induction on the set of tasks: once all the valid schedules for

a set of k tasks are computed, a (k + 1)th task is added to the system,

and its possible locations within the previous schedules are considered.

(Xu and Parnas, 1990) presents the more general method, and deals

with non periodic task systems, with only one instance of each shared

resource, and precedence constraints. Initially, the ED schedule is com-

puted. Then it is corrected if a task does not meet its deadline. For that

purpose, tasks are sliced in several sub-tasks, and new precedence and

preemption constraints are added. This process is iterated until either

failure is established, or a valid schedule is computed.

Tree structured methods have been proposed in (Baker and Su,

1974; Bratley et al., 1975), they consider uni- and multiprocessor non

pre-emptive environment, and independent tasks. In both uni and mul-

tiprocessor cases, their methods consist in computing all the permuta-

tions of the tasks, and in eliminating those which induce lateness. In

the multiprocessor case, the placement is jointly considered. Analysis

methods based on time or timed Petri nets (Ramchandani, 1974; Mer-

lin and Farber, 1976) have also been developed. Their main goal is

to establish diagnoses (Tsai et al., 1995; Menasche and Berthomieu,

1983; Berthomieu and Diaz, 1991).

Approximated methods of least cost have also been considered: ge-

netic algorithms, simulated annealing...(Monnier et al., 1998) deal jointly

with the scheduling and the placement problems, according to the Least

Laxity policy, in a multiprocessor environment.



4 Emmanuel Grolleau, Annie Choquet-Geniet

1.3. The proposed method

Our approach deals with highly coupled applications, dealing with crit-

ical resources as well as with reader/writer problems, with interleaved

critical sections (generalising the assumption of overlapping critical

sections, required for the use of the resource management protocols),

and including communications, in a uniprocessor environment. More-

over, our method deals with synchronous as well as with asynchronous

tasks. It is, as far as we know, the most general framework for studying

uniprocessor schedulability for periodic task sets that can be found in

the literature. Our method is optimal, since it consists in an exhaustive

enumeration of the feasible schedules.

The method is implemented in a tool called PeNSMARTS and deals

with realistic task systems. Our �rst goal is to provide a diagnostic

of schedulability for the application, especially when analytical criteria

cannot be used, and when the classical on-line algorithms fail. Our

second goal is to help the designer for the choice of a valid schedule

according to some quality criteria. For that sake, we propose the con-

struction of schedules that are optimal with respect to some further

criteria, that cannot be expressed with the only help of the temporal

parameters. E.g., we can extract the feasible schedules that minimize

the average response time for a subset of tasks, or that minimize the

reaction rates of some tasks... An other point of interest concerns the

location of the idle slots. This location does particularly matter when

non periodic tasks have to be scheduled in the background, and when

the designer uses an o�-line schedule for periodic tasks, jointly with an

on-line scheduling algorithm which handles non periodic tasks: since the

schedules are known in advance, idle slots can be accurately managed

by an on-line scheduler, particularly if those idle slots are thoroughly

distributed over the pre-run-time schedule. Our method enables the

user to locate them a priori, and to choose a speci�c arrangement, e.g.

a distribution which is as uniform as possible, or where idle slots occur

as late as possible (priority driven or work conserving algorithms). Let

us �nally notice that, even if a classical on-line algorithm produces

a valid schedule, it is not necessarily the best one according to the

considered criteria.

The used method relies on modeling the application by a Petri net.

The set of tasks is modeled by a classical autonomous Petri net (Petri,

1962; Peterson, 1981; Murata, 1989). The power of this net is increased,

on the one hand by a behaviour which obeys the earliest �ring rule

(Starke, 1990), which allows the implementation of a logical clock; and

on the other hand by the adjunction of terminal markings, which take

relative deadlines into account. From this net, we can build the marking
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graph, which represents exactly the set of feasible schedules. Then it

is possible to extract optimal schedules according to some performance

criteria of the application. This extraction is performed by the use

of shortest paths algorithms in the marking graph, labeled according

to the desired criteria. Up to now, we only know an upper bound of

the size of the marking graph, which is exponential in the number of

tasks. But this bound is very pessimistic, since it takes into account

neither the interactions between tasks, nor the deadlines, which both

greatly reduce the size of the graph. Furthermore, in order to decrease

the size of the graph, we use some heuristics, as e.g. the limitation of

the number of context switches, by forbidding multiple pre-emptions

between independent parts of tasks. Furthermore, we reduce the time

used for the construction of the state graph with an eÆcient cut of

states leading to non feasible schedule as soon as it can be detected.

These heuristics are described in Sec. 4.3 and allow our tool implement-

ing this method to cope with realistic task systems (our prototype has

successfully scheduled task systems with up to 20 complex tasks).

The sequel of this paper is organized as follows: in section 2, we

introduce the task model, including the idle task, which is of great

importance for the completeness of the method, in section 3, we present

the modeling step of our methodology, in section 4, we present the

analysis step, heuristics used in order to reduce the state graph, and

we show how to get optimal feasible schedules. Finally, in section 5 we

present a case study through the use of our tool PeNSMARTS, which

implements the presented method.

2. The task model

2.1. The temporal model

The application is decomposed into a set of tasks f�i : i = 1::ng,
supposed to be periodic (Stankovic et al., 1998), coming from a pre-

liminary design based on the study of the speci�cations. The temporal

model mostly used in real-time scheduling theory is an extension of

the model of (Liu and Layland, 1973) (see �g. 1) where each task �i is

characterized by four parameters:

� ri: �rst release date of �i

� Ci: run-time of �i (or worst case execution time), which is always

supposed to be predictable

� Di: relative deadline of �i, the maximal time elapsed between the

release of an instance of �i and its completion



6 Emmanuel Grolleau, Annie Choquet-Geniet

r
i D

i

P
i

First release Deadline

+

C
i

Time

Release

Figure 1. Temporal parameters of a periodic real-time task �ihri; Ci; Di; Pii.

� Pi: release period of �i. �i is released at the dates ri+kPi for k 2 IN

In the sequel, a task is denoted �ihri; Ci;Di; Pii and a task sys-

tem S = f�ihri; Ci;Di; Piigi=1::n. Without loss of generality, we sup-

pose mini=1::nfrig = 0, and the latest release date is denoted r =

maxi=1::nfrig. A task �i is said synchronous if ri = 0, and asyn-

chronous if ri > 0 for some i. Finally, we call the hyperperiod of a

task system S the least common multiple of the periods of the tasks:

P = LCMi=1::nfPig.
Moreover, we assume that tasks can communicate: the communica-

tions are modeled by one to one mailboxes, under the assumption that

the emission rate to a mailbox is equal to the reception rate. Tasks

also use critical resources, that can be accessed either in write mode,

or in read-only mode (i.e. several read-only accesses can occur simul-

taneously). Moreover, some parts of the tasks can be non-preemptible.

In the sequel, we consider tasks as sequences composed of sequential

blocks (written in a high level language), the worst case duration of

each block is known, and of real-time primitives (lock/unlock resources,

emission/reception of messages), of which the durations are included

within the duration of the preceding block.

Example 1. A task sending a message and using a resource

Task �1 is

ri=3;

Di=8;

Pi=12;

Begin

Bloc1 duration 2;

Send(mailboxj,a message);

Bloc2 duration 1;

Lock(a ressource);

Bloc3 duration 1;
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Unlock(a ressource);

End;

2.2. The idle task

A characteristic measure of the task set is its processor load, U =
Pn

i=1
Ci
Pi
. It represents the utilization rate of the processor by the whole

application. A trivial necessary feasibility condition on a uniprocessor

system is that U � 1.

If U < 1, it can be shown that the processor remains idle P (1� U)

units of time each hyperperiod. These idle times, called cyclic idle times,

since they arise regularly, are collected within a new task, called idle

task, �0 = hr0; P (1 � U); P; P i. We will come back later on its release

time r0. Notice that this task is purely �ctitious, since it does not

appear e�ectively within the design of the application. Note that this

task can be used to allow execution of aperiodic or sporadic. It can be

of great interest since if the idle slots are periodically distributed in

the schedule, it can be guaranteed that an urgent aperiodic or sporadic

task never has to wait more than a delay related to the period of the

idle slots.

The bene�ts provided by the consideration of this idle task are mul-

tiple: �rst, one needs to consider only a task system with a processor

load equal to 1, which in many ways is much easier to deal with. For the

purpose of on-line scheduling, such a task is of little interest, since it

will always have the lowest priority. But, if the study can be enlarged

to non work conserving scheduling policies (which can be useful in

order to avoid deadlock situations or some priority inversions), this

task becomes necessary, and it can be processed even if other tasks

are pending. Furthermore, the explicit modeling of the cyclic idle slots

enables the control of their number within schedules, and guarantees

that they will occur in proper amount.

If the tasks are synchronous, no other idle slots can occur. On the

other hand, if some tasks are asynchronous, a �nite number of idle

slots, called acyclic idle slots (since they do not appear regularly), may

appear (Grolleau, 1999). They are induced by the system loading of the

task system. We assume that these acyclic idle slots are processed only

when no task (including the idle task) is pending. As evidence of the

possible appearance of acyclic idle slots, let us consider the following

system, constituted of three independent tasks: S = f�1hr1 = 0; C1 =

1;D1 = P1 = 4i; �2hr2 = 1; C2 = 3;D3 = P3 = 6i; �3hr3 = 3; C3 =

1;D3 = P3 = 4ig. The processor load of S is equal to 1
4
+ 3

6
+ 1

4
= 1,

thus no cyclic idle slots will occur. The �g. 2 shows the schedule of S

according to the ED policy.
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Figure 2. EDF schedule for the task system S = f �1hr1 = 0; C1 = 1; D1 = P1 = 4i;
�2hr2 = 1; C2 = 3; D3 = P3 = 6i; �3hr3 = 3; C3 = 1; D3 = P3 = 4ig.
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Figure 3. The process request diagram of the application depicted on �g. 2.

We can notice the occurrence of a unique idle slot, although the

processor load is U = 1. No other idle slot appears within the schedule,

this one is the only one. Furthermore, we can notice that the system

is in the same state at times 7 and 19. The part between those two

dates will be in�nitely iterated: it is the cyclic part of the schedule.

The �g. 3 shows the processor request diagram of the application. It

gives, at each time, the total remaining computing time units. This

request diagram is equivalent whatever the work-conserving scheduling

policy is since there is no distinction between the tasks: if there is at

least one pending task, then one unit of time of a task is computed,

else there is an idle slot.

The results concerning the acyclic idle slots (Grolleau, 1999) are

summarized hereafter:

� the number nc of acyclic idle slots is bounded, and can be deduced

from the processor request diagram.

� the last acyclic idle slot occurs before the time r + P .
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� let tc be the occurrence date of the last acyclic idle slot, (with by

convention tc = -1 if there is no acyclic idle slot at all), the system

is in the same state at the dates tc+1 and tc+P +1. This means

that after the last acyclic idle slot, the system behaves cyclically

over the hyperperiod.

� the date tc does not depend on the scheduling policy (provided

acyclic idle slots are processed as late as possible)

� without loss of generality, the �rst release time of the (cyclic) idle

task �0 can be chosen such that the application enters its cyclic

part as soon as possible : r0 = tc + 1.

The proof is based on the fact that the positions of the acyclic idle

slots are independent from the work-conserving scheduling algorithm.

Then we show that after the last acyclic idle slot, the system behaves

cyclically thanks to a consideration of the processor requests. Finally,

we bound the date of the last acyclic idle slot.

The acyclic idle slots are collected within a further non periodic

task, the acyclic task �c = hrc = 0; Cc = nc;Dc = tci.

3. Petri net model of allowable schedules

This section introduces the model used to schedule real-time task sys-

tems. The model is a constrained marking colored Petri net (Valk and

Vidal-Naquet, 1981), under the earliest �ring rule (EFR). Sec. 3.1.2

shows that this rule can model time progress in the behavior of the

Petri net. The expressiveness of Petri nets under the maximal �ring

rule is equivalent to the expressiveness of T-timed Petri nets under the

earliest �ring rule (Starke, 1990).

The modeled applications are composed of a set of tasks as depicted

in example 1, and of both idle and acyclic tasks. In this way, the pro-

cessor is fully loaded. As the interactions of the tasks are complex, the

expressiveness of a Petri net (PN) model is appropriate. Furthermore,

the operational semantic involving the time must be associated to the

PN modeling the task system. We assume that a quantum of preemp-

tion is de�ned: a running task can be preempted by any pending task

at each preemption point. Therefore, the scale used to express the time

is given in terms of preemption points, and a preemptible task can be

preempted each time unit.



10 Emmanuel Grolleau, Annie Choquet-Geniet

Clock

P
e
-r

e
+1

Time Release

Activ
P

e

e

(b)

Clock

Time Release

Activ
P

e

e

r
e
-P

e
-1 (c)

Clock

Time Release

Activ
P

e

e

(a) Wait

Figure 4. (a) Petri net model for a periodic action e (b) e is delayed by re � Pe+1

(c) e is delayed by re > Pe + 1.

3.1. Modeling the time

3.1.1. The earliest �ring rule (EFR)

A PN obeys the EFR if each time a �ring of transitions occurs, a

maximal set of simultaneously enabled transitions �res: let I be the set

of enabled transitions for a marking M (note that I is not a multiset,

since a transition t cannot �re more than once in the same �ring step). A

maximal set of simultaneously enabled transitions I 0 � I is de�ned by:

8t 2 InI 0, t is in con
ict with some transitions of I 0 (i.e. the transitions

of I 0 are not in con
ict with each other, and any other enabled transition

is in con
ict with some transition of I 0).

A PN with EFR behaves exactly like a timed PN at maximal speed

where all the durations of the transitions are one, nevertheless, their

implementation is easier since the residual �ring vector does not have to

be taken into account. Furthermore, the expressiveness of PN with the

EFR is equivalent to the expressiveness of a Turing machine, therefore

it can model the whole set of interactions between tasks.

3.1.2. Modeling the periodic actions
Fig. 4.a presents the basic PN component which models the periodicity

of an elementary action e, occurring with period Pe (with Pe > 1).

The transition Clock is a source transition which is always enabled

without any con
ict. It follows that each time a maximal set of tran-

sitions �res, the transition Clock �res, producing a token in the place

T ime which acts like a local time marker. Thus we assimilate the �ring

of Clock to a time unit in our scale of time. As soon as Time holds Pe
tokens, the transition Release �res (simultaneously with Clock which

is always �red), so that a token is produced in the place Activ each

Pe units of time, i.e. at the dates kPe � 1 for k 2 IN . Finally, as soon

as Activ contains a token, the transition e �res, the action e occurs at

the dates kPe. The same principle is used to model a delayed periodic

action (�rst release date greater than 0). If the �rst release date of the

action e is re � Pe+1, the model di�ers from the previous model only

by the initial marking (see �g. 4.b), and if re > Pe + 1, a place and a
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Figure 5. Modeling of an application S = f�1hr1 = 1; C1 = 2; D1 = 3; P1 = 4i;
�2hr2 = 0; C2 = 1; D2 = 2; P2 = 2i; g by means of a Place/transition net composed

of two parts: a net which models the task system and a temporal structure which

includes a global real time clock RTC and clocks local to the tasks (T imei and

Releasei)). In the following the arcs from/to the processor are not drawn in order

to increase the readability of the Petri nets.

transition are added to the model (see �g. 4.c). On �g. 4.c, transition

Wait �res during the re � Pe � 1 �rst units of time. Then the place

T ime needs Pe units of time to enable Release, which �res at the date

re � 1, so e �res for the �rst time at the date re.

3.2. The complete model

The model which we propose includes two parts, both modeled by a

place/transition net (see �g. 5): the task system, which is obtained

through a classical modeling of the functional description of the tasks,

and the clock system, which models time. The periods of the tasks

are modeled within the clock system as explained in sec. 3.1.2, the

release times are taken into account by the initial marking, the relative

deadlines are dealt using terminal markings and �nally, if the EFR is

used, the computations times can be deduced from the task system.
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3.2.1. The clock system

The clock system models the behavior of the time like the clock system

of section 3.1.2: there is a unique Clock transition counting the time in

each place timei (one for each task �i) which acts as a local clock used

to release periodically the related task (see Fig. 5). The body of the

tasks can be complex and is described in the next section, but remark

that the transition Releasei produces a token of color a (for activation)

in the place Activi, and that when the task completes its execution, a

b-token is produced in Activi. This token expresses the fact that we

consider non reentrant tasks: an instance of a task cannot start if the

previous one is not completed.

In addition, some constraints on the allowed markings are introduced

in order to model the relative deadlines of the tasks. We thus introduce

a terminal set de�ned by:

� 8i 2 1::n;M(T imei) > Di ) M(Activi) = b

� 8i 2 1::n;M(T imei) = 1) M(Activi) = a+ b or M(Activi) = b

The �rst equation, used when relative deadlines are less than the peri-

ods (Di < Pi), expresses the fact that an instance must be completed

when its deadline occurs: no token a remains in the place Activi, thus

the instance has started its execution, and there is a token b, which

says that the execution has run until completion. The second equation

concerns tasks with deadline equal to the periods (Di = Pi). Just after

the task has been released, the place Activi must contain one single

token a, indicating that current instance has started execution, and

one token b indicating that the previous instance has been completed.

But it is possible that T imei contains one token when the task has never

been released (it is possible when ri > 0), in this case, M(Activi) = b.

3.2.2. The task system

Each task body of duration Ci of the task system is modeled by a series

of at most Ci transitions (it can be less than Ci since a series of m > 3

transitions can be compressed into a series of 3 transitions, see Fig.

6). Each transition of the task system uses a common resource: the

processor. Accordingly, only one transition of the task system can be

�red at a time. Interactions between the tasks are modeled in a classical

way by mailbox places, and resource places (in exclusion mode or in

read/write mode). The beginning of a non-preemptible part is modeled

by the fact that the �rst transition of the part locks the processor but

does not unlock it; the processor is liberated by the last transition of

the non-preemptible part.
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Figure 6. Modeling d � 3 units of time with a series of 3 transitions.

3.2.3. Initial state and language

We complete the de�nition of the model by the description of its initial

marking.

If a task �i is synchronous (ri = 0), then the place Activi holds an

a-token because �i is active at the beginning plus a b-token in order

to �t the marking constraints. The place T imei contains one token,

therefore �i is reactivated by the production of an a-token in Activi at

the date Pi.

If a task �j is asynchronous (rj > 0), the place Activj contains only

a b-token because the task is not released initially. The marking of the

local clock T imej is Pj � rj + 1 in order to release �j at the date rj .

Note that if Pj � rj + 1 < 0, then it is possible to add a place used to

delay �j after Pj + 1 (see Fig. 4.c).

Since we focus on the generation of valid schedules, each transition

of �i is labeled with �i, and the other transitions are labeled with the

empty word.

The language of the Petri net model where all the reachable mark-

ings meet the terminal constraints, and where each word is in�nite,

is given by the enumeration of the state graph of the Petri net. This

language is called the center of the terminal language (Valk and Vidal-

Naquet, 1981). Since a marking meeting the terminal constraints corre-

sponds to a state of the task system where no temporal constraint is vi-

olated, the center of the terminal language of the Petri net corresponds

to feasible schedules of the modeled task system.
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Figure 7. (a) A Petri net whose language contains the work-conserving schedules

of S = f�1h0; 2; 4; 4i; �2h0; 1; 1; 5ig.(b) The idle task has been added to the model.

Then the language contains the whole set of feasible schedules thanks to the ad-

junction of an idle task �0h0; P (1 � U) = 6; P = 20; P = 20i. Note that there is

no work-conserving feasible schedule for S, therefore, the Petri net on (a) does not

produce any schedule. Finally, note on the modelization of �0 on (b) how a series of

3 transitions can model a long duration.

Recall that the �ring rule is the EFR, therefore the language corre-

sponds only to the whole set of feasible work-conserving sequences. But

since an idle task including the cyclic idle slots is always added to the

task system, the language of the Petri net computes the whole set of

non work-conserving sequences too since the idle task may be processed

even when there are other pending tasks. This is a crucial point since

if some tasks share resources, the work-conserving sequences are not

optimal. Fig. 7a presents a Petri net whose language consists only of

work-conserving schedules, and Fig. 7b presents the Petri net with the

idle task, whose language is the whole set of feasible schedules (see Fig.

8).

Finally, in order for the model to generate schedules where the

acyclic idle slots are not necessarily placed as late as possible, a place

and a transition modeling the acyclic idle task (see Sec. 2.2) is intro-



15

duced in the model. The place holds as many token as the possible

number of acyclic idle slots, and the transitions linked to this place use

the processor like the transitions modeling the body of the tasks.

Therefore, the whole set of feasible schedules is given by the center

of the terminal language of the Petri net model. The Petri net model

can be viewed as a very 
exible enumeration method of feasible sched-

ules because it can easily model mailboxes, multi-instance resources,

read/write resources, preemptive and non-preemptive parts...

4. Analysis tool: PeNSMARTS

The model is implemented and analyzed by a tool, called PeNSMARTS

for Petri Net Scheduling, Modeling and Analysis of Real-Time Systems.
This section presents how the tool extracts optimal schedules from the

PN model, and how we cope with the exponentially large state graph

for realistic task systems.

4.1. The state graph

The feasible schedules are obtained through the construction of the

state graph. Sec. 4.3 discusses the heuristics used to cope with the

state explosion problem. As in practice, we cannot deal with in�nite

state graph, we focus now on the cyclicity of the schedules in order to

bound the depth of the state graph to be computed. As an example, let

S = f�0h0; 6; 20; 20i; �1h0; 2; 4; 4i; �2h0; 1; 1; 5ig be a task system where

�1 and �2 share a resource R during their execution (see Fig. 7b).

The Fig. 8 presents the set of feasible schedules (i.e. the state graph)

obtained from the simulation of the Petri net given on Fig. 7b. The ini-

tial marking of this graph is a home marking (all the paths of the graph

reach this state in�nitely often), and a valid schedule (obtained by a

path from the initial marking to itself) can be repeated in�nitely often.

As an example, (�2�1�1�0�0�2�1�1�1�1�2�0�0�1�1�2�1�1�0�0)
�, where � is

the Kleene star, is a feasible schedule.

Since the length of each word is in�nite, we have to show that each

word w of the PN language can be written waw
�

c .

In the case of synchronous task systems, at the date 0, all the tasks

are simultaneously released. One hyperperiod P = lcmi=1::nPi later,

all the tasks are in the same state as at the date 0. It follows that

in this case, the marking of the PN at the date P is the same as the

initial marking M0. Thus, in the state graph of the PN, M0 is an home

marking, and each word can be written as w�

c where jwcj = P (jwj
denotes the length of w).
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Figure 8. The state graph of the Petri net given on Fig. 7b and equivalently the set

of all feasible schedules for the modeled task system.

In the case of asynchronous task systems, we have presented a cyclic-

ity result in sec. 2.2 that claims that for all feasible schedules, a date

tc can be computed, with �1 � tc < r + P . This date is unique for a

task system, and the state of a system at the date tc + 1 is the same

as at the date tc + P + 1. It follows that each word can be written in

the form waw
�

c where jwaj = tc + 1 � r + P and jwcj = P . Thus the

state graph contains a marking at the depth tc which is a unique home

marking. Fig. 9 presents a state graph of an asynchronous task system.

As an example, let S = f�1h0; 3; 6; 8i; �2h6; 2; 8; 8i; �3h7; 4; 16; 16ig
be a task system where �2 and �3 share a resource, and a part of

�1 precedes �2 (see Fig. 10). Since the tasks are not synchronous, we

have to compute the date of the last acyclic idle slot : this date is

obtained through a simulation of the processor request diagram, that

is tc = 3 (see Fig. 11). This date is obtained according to this rule

(Grolleau, 1999): the processor load of the task system is U = 7
8
, and

its hyperperiod is P = 16. It follows that for each time window of size

P = 16 there are 7
8 � 16 = 2 cyclic idle slots. Fig. 11 shows that there

are 3 idle slots in the window [0::P ]. It follows that one of them is

an acyclic idle slot. It follows that the number of acyclic idle slots is

nc = 1. We could choose arbitrarily one of the three idle slots to be the

acyclic idle slot, but the one minimizing the schedule length is always

the �rst one. Therefore we choose tc = 3 and �nally, the parameters of

the (cyclic) idle task are �0htc + 1 = 4; P (1 � U) = 2; P = 16; P = 16i
and the parameters of the acyclic task are �ch0; nc = 1; tc = 3i. The
Petri net model for this task system is given on Fig. 10.
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Figure 9. A state graph of an asynchronous task system

S = f�1h5; 3; 7; 7i; �2h0; 8; 14; 14ig. The marking Mc follows the last acyclic

idle slot (labeled tc on the graph). The �rst diamond corresponds to the initial load

of the system, from M0 to Mc at the depth tc+1. The second diamond corresponds

to the cyclic part of the schedules from Mc to the same marking Mc at the depth

tc + P + 1.

4.2. Extraction of optimal schedules

The depth of the state graph is bounded for synchronous and asyn-

chronous task systems, and contains a unique home marking. The state

graph contains the entire set of feasible schedules, thus each path is a

permutation of another, and the graph has a diamond shape.

The diamond shape of this graph is very interesting in order to �nd

schedules optimal in the sense of minimizing the average response time

of a set of tasks. In order to get the set of sequences (i.e. the sub-graph

of the state graph) minimizing the average response time of �1 in the

example given on Fig. 12, the arcs corresponding to the termination of

�1 are weighted by the response time of �1 corresponding to the arc. In

other words, if the depth of an arc corresponding to the termination of

�1 is h, its weight is h� P1b
h�r1
P1

c � ri. The other arcs are weighted by

0.

Then the schedules minimizing the average response time of �1 are

the paths in the graph minimizing the cost (i.e. the dates of termina-

tion of �1). On Fig. 12, there is only one path minimizing the average

response time of �1, that is �1�1�1�2�2�2�2�1�1�1�2�2�2�2. The average

response time of �1 for this path is 6
2 = 3.

Thus, in order to �nd optimal schedules, we just have to search in

the graph the shortest path regarding these weights. As the graph is
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Figure 12. Re�nement of a state graph in order to minimize the average response

time of �1 in the graph of feasible schedules for S = f�1h0; 3; 7; 7i; �2h0; 8; 14; 14ig.
Each node N is labelled by the minimal cost up to the last marking, which is given

by the formula Cost(N) = minN02Children(N)fWeight(Arc(N;N 0)) + Cost(N 0)g.

a diamond, this search is performed in a time linear in the number of

nodes plus the number of arcs by a reverse topological pass through

the state graph. We call this extraction of a sub-graph from the state

graph a re�nement. Several re�nements can be applied recursively on

sub-graphs.

The extraction technique is based on a weight function depending

on criteria. E.g., if we are interested in minimizing the response time

of the tasks of a subset S0, each arc of the graph is weighted as follows:

� if the arc corresponds to the termination of a task in S
0, then

its weight is the associated response time (e.g. if an instance of

�i terminates at height h, the weight of the corresponding arc is

h� ri � Pib
h�ri
Pi

c)

� if the arc does not correspond to any termination of a task in S
0,

then its weight is null.

Similar weighting techniques of the arcs can be used to consider the

reaction rates, the importance, the lateness,... Note that each feasible
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schedule contains the same number of non-zero weights since each con-

tains the same number of instances of the tasks. Therefore, the paths

minimizing the cost are optimal with respect to the response time. In

order to minimize the average response time, we consider the function

Cost(N) = minN 02Children(N)fWeight(Arc(N;N 0)) + Cost(N 0)g used

to weight the nodes (see Fig. 12). We use the function Cost(N) =

minN 02Children(N)fmaxfWeight(Arc(N;N 0)); Cost(N 0)gg in order to

minimize the worst case response time.

The same re�nement techniques are used in order to extract, from a

diamond graph, optimal schedules minimizing the average (or the worst

case) maximal tardiness, or the maximal reaction rates of a set of tasks.

In these cases, the only di�erence is the way the arcs are weighted.

Therefore, once the state graph is obtained, the designer can get

optimal schedules by several re�nements of the state graph. Another

way to get interesting schedules, is to apply constraints on the schedules

like: "response time of �i must lie between Ci and Ci+ 2", in order to,

e.g., bind the jitter of �i. This kind of constraints can be applied prior

to the construction of the state graph, reducing its space requirements.

Similarmethods can be used in order to accurately distribute the idle

slots. This can be useful in order to handle sporadic requests accepted

on-line.

4.3. Optimizations of the state graph generation

The fact that a �nite word w reaches only valid markings does not imply

that there exists an in�nite word in the center of the terminal language

whose pre�x is w. Thus, the construction of the state graph of the

center of the terminal language implies backtracking (i.e. some reached

markings have to be given up). This phenomenon can be reduced thanks

to optimization: a necessary condition for schedulability can be tested

for each marking reached (see Sec. 4.3.1). Several heuristics are used

in order to reduce the (non polynomial) size of the state graph. One

of them signi�cantly reduces the graph by forbidding unnecessary pre-

emptions: two concurrent parts of tasks, independent from each others,

cannot interleave (see Sec. 4.3.2). The main advantage of this heuristic

is that it does not reduce the scheduling power of the model (i.e. if

there exists a feasible schedule, then this heuristic preserves at least

one schedule). Finally, a appropriate data representation is useful in

order to eÆciently represent the state graph (see Sec. 4.3.3).
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4.3.1. Reduce the backtracking

Recall we focus on the center of the terminal language (see Sec. 3.2.2)

of the Petri net which is the whole set of feasible schedules for the

considered task system. The property of the center of a language is

that each word obtained is in�nite. It follows that, in the construction

of the state graph, some reached marking cannot lead to an in�nite

word (i.e. the reached state cannot be part of a feasible schedule).

Therefore some time and space are lost in the exploration of states

which do not lead to a feasible schedule. In this case, as soon as the

sterility of the node is established, it has to be cut, and in this case, its

parent state could be cut, and so on. This necessary backtracking of the

state graph generation has to be reduced by a good prune technique.

Our technique is, given a state, to consider the best possible response

time of the current instance of each task (without consideration of any

resource or precedence constraint). Let S = f�ihri; Ci;Di; Piigi=1::n a

task system and M a marking corresponding to a state. Our goal is

to give a lower bound on the response time of the current instance

of the tasks after this state. Let Crest;i;M the remaining processing

time for �i and di;M the remaining time to its deadline. We verify that

8i;
P

dj;M<di;M
Crest;j;M+Crest;i;M � di;M . The idea behind this formula

is that when the deadline of a task �i occurs, the deadlines of the more

urgent tasks will have occured. It follows that the remaining time to

the deadline of �i has to be suÆcient to process �i and the more urgent

tasks. This condition can be tested for all the tasks in linear time in the

number of tasks. In order to illustrate the gain, consider a task system

S = f�1h0; 10; 10; 20i �2h0; 10; 20; 20ig. Fig. 13 shows in dotted line the

markings studied if the cut are made only on non terminal markings,

in normal line the studied markings when pruning, and in bold line

the �nal state graph. The arrow shows a state M where the graph is

pruned: d1;M = 9, Crest;1;M = 10, therefore, �1 cannot meet its next

deadline, and M can be pruned.

4.3.2. Discarding unnecessary schedules

If two parts of tasks are independent, if a feasible schedule exists, then

it can be shown that a feasible schedule exists where a part precedes the

other (without preemtions of the parts of the tasks). It follows that it is

possible to signi�cantly reduce the size of the state graph in forbidding

unnecessary preemptions. These conditions are handled in our model

by successor constraints re
ecting the following constraints:

� A released task can preempt

� A task which was waiting for an event (message or resource) which

has just arised can preempt
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Figure 13. Gain obtained by pruning

� If the running task needs to lock a resource, it can be preempted

by the other tasks

This optimization does not reduce the scheduling power of the model

since it lets at least one feasible schedule if the system is feasible. But it

signi�cantly reduce the space and time used for the state graph. Fig. 14

shows the gain for the trivial example S = f�1h0; 10; 20; 20i �2h0; 10; 20; 20ig.
With the successor constraints, the part of the graph in dotted line is

not built. To illustrate the gain on a larger example, the state graph

corresponding to the example of the mine pump presented in Sec. 5

does not �t in a memory of 128 MO.

4.3.3. Construction of the state graph

The state graph can contain thousands of markings. It follows that

PeNSMARTS needs an eÆcient internal representation of the markings.

First, each place of our model can be bounded in the maximal number of

each token it can contain. Then for a place Pk of the Petri net, bounded

by bk, PeNSMARTS uses dlog2(bk)e bits. Moreover, the state graph can

be obtained in a depth �rst construction (to get only a feasible schedule)

and stopped as soon as a feasible schedule is obtained; or in a breadth

�rst construction (to get an optimal schedule).

Finally, in order to minimize the insertion and deletion of markings,

we use AVL-trees to represent them. We use one AVL-tree per unit of

time (i.e. there are H AVL-trees for a synchronous task system). This

representation facilitates hierarchical pass in the state graph.
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5. Case study

Consider a task system dedicated to the control of a mine pump : a mine

has to be irrigated, the level of water must remain between a lower and

an upper level, in�ltration irrigates the mine in a natural way, and the

task system has to ensure that the upper level is never exceeded (this

example is a free adaptation of an example of (Joseph, 1996)). When

the water level becomes too high, a pump is triggered until a lower

level is reached. Simultaneously, the methane level has to be controlled

in order to trigger an alarm when a high level of methane is reached,

and to disable the pump if a dangerous level of methane is reached.

The entire process is displayed on a control terminal. Moreover, an

additional task traces the levels of methane and water and stores the

values on a hard disk drive.

The task system is implemented with seven interacting tasks and

three heavily loaded used shared resources (the control terminal, a

bu�er used to share the methane level, and a bu�er used to share

the water level). No on-line scheduling algorithm can be validated for

this task system.

Studying the tasks, we get the task system given in Fig. 15, where

durations are given in milliseconds. Acq Water (resp. Acq Methane)

uses a shared bu�er in order to store the level of water (resp. methane).
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Figure 15. Task system of the mine pump. The temporal parameters of the tasks

are given under their name. Note that Info Display and Trace use Sem Water

and Sem Methane for reading.

The bu�er is used for reading by both Info Display and Trace. It fol-

lows that these two tasks can simultaneously access the shared bu�ers.

This kind of task system has the following characteristics: asyn-

chronous tasks (to the best of our knowledge, no other o�-line method

deals with asynchronous task systems), processor load equal to 99:4%,

high shared resources utilization (which implies that it cannot be sched-

uled by an on-line algorithm) and read/write access to some resources.

Using our tool PeNSMARTS on this system, we get a graph of

all feasible schedules containing 218346 nodes and more than 18:1028

feasible schedules (note that in order to choose the optimal schedules,

we never deal with the paths, but only with the nodes). The depth of

the state graph is 500 time units. Using the method described in section

4, we obtain 5 di�erent schedules optimizing the average response time

of all the tasks but the idle task.

6. Summary

The enumeration method based on a Petri net implementation is very


exible and allows the modeling of complex real-time tasks: commu-

nication by means of mailboxes, resources in exclusive or read/write

access, preemptive and non preemptive sections. To our knowledge,

this o�-line method handles a wider class of real-time systems than

other methods currently available.

This method is exponential in time and space, and several heuristics

are used in order to reduce the state graph of the Petri net. The
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usefulness of the Petri net model has been studied through a tool,

called PeNSMARTS for Petri Net Scheduling, Modeling and Analysis

of Real-Time Systems, which has been developed. It is able to �nd

optimal schedules for synchronous and asynchronous task systems. The

algorithms used in order to extract optimal schedules are linear in the

size of the state graph.

Furthermore, the study of the cyclicity of schedules in the case of

asynchronous task systems allows the use of o�-line scheduling method-

ologies to take asynchronous task systems into account.
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