
HAL Id: tel-03167657
https://tel.archives-ouvertes.fr/tel-03167657

Submitted on 12 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting Data Partitioning for Scalable RDF Graph
Processing

Jorge Armando Galicia Auyon

To cite this version:
Jorge Armando Galicia Auyon. Revisiting Data Partitioning for Scalable RDF Graph Processing.
Other [cs.OH]. ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d’Aérotechique - Poitiers,
2021. English. �NNT : 2021ESMA0001�. �tel-03167657�

https://tel.archives-ouvertes.fr/tel-03167657
https://hal.archives-ouvertes.fr

THÈSE
pour l’obtention du Grade de

Docteur de l’Ecole Nationale Supérieure de Mécanique et
d’Aérotechnique

(Diplôme National - Arrêté du 25 mai 2016)

Ecole Doctorale : Sciences et Ingéniérie pour l’Information et Mathématiques
Secteur de Recherche : Informatique et Applications

Présentée par :

Jorge Armando GALICIA AUYÓN

Revisiting Data Partitioning for Scalable RDF Graph
Processing

Directeur de thèse : Ladjel BELLATRECHE
Co-encadrant de thèse : Amin MESMOUDI

Soutenue le 12 Janvier 2021
devant la Commission d’Examen

JURY

Président :
Emmanuel GROLLEAU Professeur, ISAE - ENSMA, Poitiers

Rapporteurs :
Yannis MANOLOPOULOS Professor, Open University of Cyprus, Chypre
Farouk TOUMANI Professeur, Université Blaise Pascal, Clermont-Ferrand

Membres du jury :
Genoveva VARGAS-SOLAR Chargée de Recherche, CNRS, Grenoble
Carlos ORDONEZ Associate Professor, University of Houston, USA
Patrick VALDURIEZ Directeur de Recherche, INRIA, Montpellier
Amin MESMOUDI Mâıtre de Conférences, Université de Poitiers, Poitiers
Ladjel BELLATRECHE Professeur, ISAE - ENSMA, Poitiers

ii

It always seems impossible until it’s done.

— Nelson Mandela

iii

iv

Acknowledgements

This thesis would not have been possible without the inspiration and support of so many indi-

viduals:

- I would like to thank my supervisors Prof. Ladjel Bellatreche and Dr. Amin Mes-

moudi for their guidance, patience, and support during my thesis. The insightful dis-

cussions I had with each of you definitely enlightened my way while exploring new ideas.

Their careful editing contributed greatly to the production of this manuscript. You have

helped me learn how to do research.

- I would also want to show my sincere gratitude to Professors Yannis Manolopoulos

and Farouk Toumani for taking their precious time to be rapporteurs of my thesis. I

greatly appreciate your feedback that I carefully considered to improve the quality of my

work. In addition, I would like to thank Professors Genoveva Vargas-Solar, Patrick

Valduriez, Carlos Ordonez, and Emmanuel Grolleau who have honored me to be

part of the examination committee and whose questions have enriched my study from

many different angles.

- I also thank all the members of the LIAS laboratory who welcomed me and with whom

I shared so many moments of conviviality throughout these three years. Many thanks

to Allel Hadjali, Brice Chardin, Henri Bauer, Michael Richard, and Yassine

Ouhammou for mentoring me during the first steps of my teaching career. I wish to

extend my special thanks to Mickaël Baron for the technical support throughout my

work, for his availability and enthusiasm. I sincerely thank Bénédicte Boinot for her

kindness, generosity, and all the administrative assistance to coordinate my thesis project.

- I want to thank my past and present Ph.D. colleagues and friends. Abir, Amna, Anäıs,

Anh Toan, Chourouk, Fatma, Houssameddine, Ibrahim, Ishaq, Issam, Khe-

didja, Louise, Matheus, Mohamed, Nesrine, Réda, Richard, Sana, Simon, and

v

Soulimane. Many thanks to everyone for all the shared moments in which we exchanged

ideas of our academic works and for the diverse conversations that cleared my mind when

I needed it most.

- Many thanks to my group of friends, Anita, Abril, Gad, Gledys, Laura, Lina, Mar-

cos, Mariana, Melissa, Moditha, and Suela on whom I was able to unload a lot of

pressure thanks to so many shared laughs. Your sense of humor was the ray of sunshine

for many cloudy days during this journey.

- Finally, my deep and sincere gratitude to my family for their unconditional and unpar-

alleled love, help, and support. Many thanks to my parents, Veronica and Jorge, my

sisters Daniela and Jimena, brother José, and aunt Carmen for always being there

to restore my optimism when I was missing. I am forever indebted to Régis, Marie

France, Caroline, Thomas, and Marie José who became my family and I never felt

alone while being so far from my loved Guatemala. Finally, I would like to express my

deepest gratitude to Gabriel, who encouraged, supported, and loved me without fail and

stood by my side every time. I will be forever grateful to you, this journey would not have

been possible if not for all your support.

¡Muchas gracias a tod@s!

vi

Table of Contents

Table of Contents vii

Introduction 1

I Preliminaries 17

1 Data Partitioning Foundations 19
1.1 Introduction . 21
1.2 Data Partitioning Fundamentals . 22

1.2.1 Partitioning definition and development overview 23
1.2.2 Partitioning concept evolution . 24

1.3 Partitioning dimensions . 27
1.3.1 Type . 27
1.3.2 Main objective . 29
1.3.3 Mechanism . 30
1.3.4 Algorithm . 31
1.3.5 Cost Model . 31
1.3.6 Constraints . 32
1.3.7 Platform . 33
1.3.8 System Element . 33
1.3.9 Adaptability . 33
1.3.10 Data model . 33

1.4 Partitioning approaches . 34
1.4.1 Partitioning by type, platform and mechanism 35
1.4.2 Partitioning by data model . 41
1.4.3 Partitioning by adaptability . 47
1.4.4 Partitioning by constraints . 51

1.5 Partitioning in large-scale platforms . 53
1.5.1 Hadoop ecosystem . 53
1.5.2 Apache Spark . 55
1.5.3 NoSQL stores . 56
1.5.4 Hybrid architectures . 58

1.6 Conclusion . 58

2 Graph Data : Representation and Processing 61
2.1 Introduction . 63
2.2 Graph database models . 63

2.2.1 Logical graph data structures . 64

vii

TABLE OF CONTENTS

2.2.2 Data storage . 65

2.2.3 Query and manipulation languages . 66

2.2.4 Query processing . 69

2.2.5 Graph partitioning . 71

2.2.6 Graph databases . 77

2.3 Resource Description Framework . 80

2.3.1 Background . 80

2.3.2 Storage models . 82

2.3.3 Processing strategies . 86

2.3.4 Data partitioning . 87

2.4 Conclusion . 91

II Contributions 93

3 Logical RDF Partitioning 95

3.1 Introduction . 97

3.2 RDF partitioning design process . 97

3.3 Graph fragments . 99

3.3.1 Grouping the graph by instances . 99

3.3.2 Grouping the graph by attributes . 104

3.4 From logical fragments to physical structures . 107

3.5 Allocation problem . 109

3.5.1 Problem definition . 109

3.5.2 Graph partitioning heuristic . 111

3.6 RDF partitioning example . 112

3.7 Dealing with large fragments . 116

3.8 Conclusion . 117

4 RDFPartSuite in Action 119

4.1 Introduction . 121

4.2 RDF QDAG . 121

4.2.1 System architecture . 122

4.2.2 Storage model . 123

4.2.3 Execution model . 125

4.3 Loading costs . 128

4.3.1 Tested datasets . 128

4.3.2 Configuration setup . 129

4.3.3 Pre-processing times . 129

4.4 Evaluation of the fragmentation strategies . 130

4.4.1 Data coverage . 130

4.4.2 Exclusive comparison of fragmentation strategies 131

4.4.3 Combining fragmentation strategies . 134

4.5 Evaluation of the allocation strategies . 136

4.5.1 Data skewness comparison . 136

4.5.2 Communication costs study . 137

4.5.3 Distributed experiments . 140

4.6 Partitioning language . 143

4.6.1 Notations . 143

4.6.2 CREATE KG statement . 144

4.6.3 LOAD DATA statement . 144

4.6.4 FRAGMENT KG statement . 144

viii

TABLE OF CONTENTS

4.6.5 ALTER FRAGMENT statement . 145
4.6.6 ALLOCATE statement . 145
4.6.7 ALTER ALLOCATION statement . 146
4.6.8 DISPATCH statement . 146
4.6.9 Integration of the language to other systems 146

4.7 RDF partitioning advisor . 147
4.7.1 Main functionalities . 147
4.7.2 System architecture . 148
4.7.3 Use case . 149

4.8 Conclusion . 152

Conclusions and Perspectives 153

Résumé 159

References 179

A Logic fragmentation example I
A.1 Raw data & encoding . I
A.2 Forward graph fragment . II
A.3 Backward graph fragment . II

B Queries V
B.1 Watdiv . V

B.1.1 Prefixes . V
B.1.2 Queries . V

B.2 LUBM . VIII
B.2.1 Prefixes . VIII
B.2.2 Queries . VIII

B.3 DBLP . IX
B.3.1 Prefixes . IX
B.3.2 Queries . IX

B.4 Yago . X
B.4.1 Prefixes . X
B.4.2 Queries . XI

List of Figures XV

List of Tables XVII

ix

TABLE OF CONTENTS

x

Introduction

Context

Nowadays, we live in a hyper-connected world in which large amounts of data and knowledge
are issued from several providers such as social media, mobile devices, e-commerce, sensors,
the Internet of Things, and many others. Much of this data is produced and available on
the Internet. To date, the Web holds more than 1.8 billion websites1 and its size is steadily
expanding. The data on the Web is characterized, among others, by its volume (e.g., 4PB of
data created by Facebook daily), variety of sources with different formats (e.g., text, tables,
blog posts, tweets, pictures, videos, etc.), veracity, where the following issues have to be dealt:
data origin, authenticity, uncertainly, imprecision, completeness, data quality, ambiguity, etc.
and velocity (the fast generation of data must correspond to the speed of its processing). The
information and knowledge associated to this data, if well prepared, can be valuable to consumers
(companies, governments, private users, etc.) who can obtain relevant knowledge and eventually
useful wisdom.

However, the availability of the data on the Web does not imply its direct and straightforward
exploitation. Tim Berners-Lee, the inventor of the World Wide Web, was aware of this since the
mid-1990s. His vision was that computers could manipulate and, more importantly, interpret
the information published on the Web. The concept flourished in the following years and the
Semantic Web emerged from this vision. It seeks to organize the Web, composed of hyperlinked
documents and resources, based on semantic annotators described and formalized in ontologies.
The presence of ontologies offers reasoning capabilities over this data. These annotations let
different actors such as scientific communities, companies, governments, end-users, etc. to link,
exchange, and share data on the Web.

To satisfy these noble objectives, the data on the Web must be represented and queryable
in an intuitive and clear way. With this motivation in mind, the World Wide Web Consortium
(W3C) led many efforts to specify, develop and deploy guidelines, data models, and languages
that lay the foundations for the semantic interconnection of Web data. Among the set of guide-
lines, the W3C published a recommendation [W3C04] presenting some principles, constraints,
and good practices for the core design components on the Web. In this document, the W3C
established how to identify Web resources using a single global identifier: the URI (Unique Re-
source Identifier). URIs, whose generalization in IRIs (International Resource Identifiers) was
defined later in [W3C08], are the base component of the Semantic Web architecture [iIaC05].
When it comes to data models for the Semantic Web, the W3C proposed and largely promoted
the Resource Description Framework (RDF) [RC14] to express information about resources. This
data model is the cornerstone of other W3C’s models and languages such as (i) RDF Schema
(RDFS) [DB14] providing classes and vocabularies to describe groups of related resources and
their relationships, (ii) SKOS (Simple Knowledge Organization System) [AM09] a common data

1https://www.internetlivestats.com/

1

https://www.internetlivestats.com/

Introduction

Airbus

Aircraft

Airbus

Aerospace

Guillaume

Person

Engineer

22 February 1962

builds
name

industry is a

profession
born on

works in

http://dbpedia.org/ http://example.org/

(a) RDF Graph

@prefix db:<http://dbpedia.org/> .

@prefix ex:<http://example.org/> .

SELECT ?x ?y WHERE {

?x ex:works_in db:Airbus .

?x ex:profession ?y .

}

(b) SPARQL query

Figure 1: Examples for RDF and SPARQL

model to represent knowledge systems like taxonomies and classification schemas, and (iii) the
Web Ontology Language (OWL) [Gro12] giving means to define and represent ontologies.

All the previous models and languages are built using RDF triples. A triple is the smallest
unit of data in RDF. A triple models a single statement about resources with the following
structure ⟨subject, predicate, object⟩. It indicates that a relationship identified by the predicate
(also known as property) holds between the subject and the object depicting Web resources
(things, documents, concepts, numbers, strings, etc.).

Example 1. The statement“Airbus builds aircrafts” can be represented by a triple as ⟨Airbus,
builds, Aircraft⟩2. This triple can be represented logically as a graph where two nodes (subject
and object) are joined with a directed arc (predicate) as shown in Figure 1a.

Besides, the interconnection characteristic gives RDF the ability to link triples from different
datasets via their IRIs. The result of merging triples constitutes a Knowledge Graph (KG). For
instance, our triple ⟨Airbus , builds, Aircraft⟩ can be easily linked to ⟨Guillaume, works in,
Airbus⟩3 through the predicate works in (Figure 1a).

To query KGs and RDF datasets, the W3C defined SPARQL [SH13a] as the standard query
language for RDF. SPARQL allows expressing queries across diverse datasets. The simpler
SPARQL queries are those formed as a conjunction of triple patterns (known as Basic Graph
Patterns BGP). Triple patterns are similar to RDF triples except that the subject, predicate,
or object may be a variable.

Example 2. The query in Figure 1b asks for all the engineers working at the Airbus company.
The solution of this query is a subgraph of the queried graph(s) in which the variable terms are
mapped to the values of the resulting subgraph. Processing a SPARQL query can be viewed as
a subgraph matching problem. The results for the previous query are the mappings of ?x →
<http://example.org/Guillaume> and ?y → <http:// example.org/Engineer>.

The popularity of RDF is due to its flexibility, simplicity, and availability of a query language.
Therefore, several organizations and governments spent a lot of effort to publish their data on
the Web in RDF. This phenomenon is known as the Linked Open Data (LOD). The LOD
cloud is one of the most well-known initiatives that allows available data sets on the Web to be
referenced. The number of datasets in the LOD cloud has increased rapidly. Currently, it counts
more than 1260 datasets, where a large subset of them contains several billions of triples4 as
shown in Figure 2. These datasets are accessed via SPARQL endpoints (RESTful web services
to expose RDF data queried with SPARQL) or downloading the data as data dumps.

Furthermore, the spread of RDF and SPARQL is evidenced by their usage to process and
query recent valuable data to increase the decision power and crisis management. For example,
with the recent Covid-19 pandemic, different organisms, local health authorities, press struc-
tures, research laboratories, etc. generated large amounts of data on a daily basis. The U.S.

2This triple is a part of DBpedia’s Knowledge Graph.
3A part of a KG: http://example.org/Guillaume
4https://lod-cloud.net/

2

https://lod-cloud.net/

Introduction

2007 2010 2012 2015 2018

0

500

1 000

Date

N
u
m
b
er

of
d
at
as
et
s

Dataset
Number of triples

(Millions)
DBLP 207
Yago 284

Freebase 2 000
DBPedia’14 3 000

Wikidata 12 000

Figure 2: Linked Open Data (LOD) evolution

Government’s open data portal published daily stats in RDF format to facilitate their integra-
tion5. Another example is the work developed by the INRIA research team Wimmics6. They
developed a Knowledge Graph named Covid-on-the-Web [WRT20] merging academic articles
from the COVID-19 Open Research Datasets. The graph counts more than 674 million triples
describing parts of scientific publications (title, abstract, and body), and information that is
enriched by annotations obtained from other sources like DBpedia.

Today, Knowledge Graphs (KGs) have become popular means for academia and industry
for capturing, representing, and exploring structured knowledge. The pioneer KG, DBpedia
[LIJ+15], was released in the beginning of 2007 by a group of academia. It aims at collecting
semi-structured information available on Wikipedia. It was followed by Freebase [BEP+08]
which served as the basis for Google’s KG, Yago [SKW07], Wikidata [Vra12], and many other
academic graphs. The launch of the first commercial KG by Google in 2012 coined the term
Knowledge Graph and established its crucial role in web data management. Google’s team uses
it to enhance its search engine’s results with infoboxes (presenting a subset of facts about people,
places, things, companies, and many other entities that are relevant to a particular query). The
information in Google’s KG is harvested from a variety of sources and today it relates facts from
billions of entities that are exploited not only by their search engine but also by smart devices
like Google Assistant and Google Home. Since then, several Web contenders have presented
their KG. Among them we can mention, the Yahoo KG [Tor14] in 2013, the Bing KG [Tea15],
the LinkedIn KG [He16], and many more. This large panoply of KGs can be divided into three
main classes [BSG18]:

(i) Generalized KGs whose sources cover a variety of topics, here we find KGs such as Freebase,
Wikidata, NELL, DBPedia, YAGO, MetaWeb, Prospera, Knowledge Vault, GeoNames,
ConceptNet, etc.;

(ii) Specialized KGs gathering information from similar subject matters, such as the Facebook
KG (social graph with people, places, things combined with information from Wikipedia),
Amazon Knowledge Graph (which started as product categorization ontology), Wolfram
Alpha (linking world facts and mathematics), LinkedIn KG, Recruit Institute of Technol-
ogy (connecting people, skills, and recruiting agencies);

(iii) Enterprise KGs like those developed specifically for some companies such as Banks and
Credit Rating Agencies.

This variety and the wealth of KGs motivate researchers from other Computer Science fields
to integrate them in different phases of their life cycles. Recently, KGs have been used in
recommendation systems for explanation purposes of recommended items [GZQ+20]. In Business
Intelligence systems, KGs have also been used to cure the data and augment data warehouses to

5https://catalog.data.gov/dataset/covid-19-daily-cases-and-deaths
6https://team.inria.fr/wimmics/

3

https://catalog.data.gov/dataset/covid-19-daily-cases-and-deaths
https://team.inria.fr/wimmics/

Introduction

reach high-value [BBKO20]. In Question-Answering Systems, KGs are used in several phases of
their life cycle [SRB+18]. In [BBB19], they are used for handling ambiguity problems of Natural
Language queries.

The Ecosystem of Knowledge Graphs

The above presentation shows the complexity of the environment of the KG. From research
and learning perspectives, it has become urgent to deeply understand this environment in order
to identify its different elements. Making explicit these elements contributes in understanding
some research issues. The main elements of a KG are: actors, requirements, constraints, services,
storage and deployment infrastructures. In Figure 3, we propose a detailed ecosystem of a KG
using the Entity-Relationship Diagram.

The following comments this diagram: A KG is the entry point of our diagram. It has a
name (KG Name) and a nature (certain/uncertain like NELL [CBK+10] and Knowledge Vault
[DGH+14]). A KG concerns one or several domains/topics (Medicine, Environment, Education,
etc.), and it is built from one or several data sources. It is defined and designed by one or
multiple creators. A creator owns the intellectual property of the KG. It can be any organization
or user. A creator has a name (Creator Name) and a type (academic/ industrial). A KG is
administered by a manager that can be different from its creator. The manager is in charge
of implementing internal (e.g., storage, loading, maintenance, archive, security) and external
(e.g., access, availability, extraction) services. Each service has a name (Service Name) and a
means to manipulate and reach this data (using either a SPARQL endpoint or data dump in
the case of external services). The KG is stored in a Storage Infrastructure (Triple Store). It
has a name (Store Name) and information about its internal storage (native, non-native). This
store is deployed in a given platform that may be either centralized, distributed, or parallel.
Finally, a KG is designed to be exploited by consumers using the external services that extract
fragments/views of the referred KG. The extracted data can be materialized at the consumer

Knowledge Graph

- KG Name
- Nature

Stored

Created by

Triple Store

- Store Name
- Storage

Query
- View

Creator

- Creator Name
- Creator Type

Managed by

Deployed

Platform

- Platform Name
- Platform Type

Service

- Service Name
- Mean

Manager

- M Name

Offers

Belongs

Domain

- DName

Has

Source

- SName

Consumed by

Consumer

- Cons Name

Stores in

0,n

1,n

1,1 0,n

0,n

0,n0,n

0,n

0,n

0,n

1,1

0,n

1,1 0,n

0,n

1,1

0,n

1,1

0,n

1,1

0,n

Figure 3: Knowledge Graphs Ecosystem

4

Introduction

Knowledge Graph

- Yago

- Certain

Stored

Created by

Triple Store

- Virtuoso
- Non-native

Query
- View

Creator

- Max Planck Institute
- Academic

Managed by

Deployed

Platform

- P1
- Centralized

Service

- Access
- Endpoint

Manager

- Telecom ParisTech

Offers

Belongs
Domain

- Economy

Domain

- Geography

Has

Source

- Wikipedia

Source

- Geonames

Consumed by

Consumer

- LIAS Lab

Stores in

Triple Store

- RDF QDAG

- Native

Deployed

Platform

- P2
- Centralized

Figure 4: An Example of an instantiation of our Model: The Case of the Yago KG

level in a different triple store. A consumer can be any entity covering normal users, bots,
learning institutions, researchers, industrials, etc.

Figure 4 gives an instantiation of our model for the Yago’s KG, where we assume that the
LIAS Laboratory is one of its consumers.

Triple Stores with some numbers The storage infrastructure that includes triple
stores is an important element of the KG ecosystem, since it has to provide the following
services:

• A scalable storage of the Web data deluge (e.g., Academic KG: Yago2→ 284 million
triples, DBLP→ 207 million triples, DBPediaEN→ 538 million triples, Commercial
KG: eBay product KG→ 1 billion triples, Google’s KG → 500 billion triples),

• A quick response time of SPARQL queries to meet consumer requirements,

• A high availability of this data and services (e.g., DBpedia SPARQL endpoint re-
ceives more than 177k queries per day) [VHM+14].

The Race for Efficient Triple Stores

As suggested in the above sections, it is important to notice that the Triple Store is at the heart
of the KG’ ecosystem. This situation motivates and pushes researchers from the Core Databases,
Semantic Web, and the Infrastructure for Information Systems to develop triple stores that can
be classified into two main groups: non-native and native as illustrated in Figure 5.

Non-native Systems The managers of these systems choose existing storage solutions to
build their triple stores. The Relational Database Management Systems (RDBMSs) were widely
used to design such systems. Virtuoso [EM09] is one of the most popular triple stores adopting
this strategy. Its storage model consists of a single table including naturally the three columns
for the attributes of the RDF triple (subject S, predicate P, and object O). At query run-time,

5

Introduction

Triple Stores

Non-native Native

Centralized Distributed

Type

Platform

Figure 5: Triple stores classification

any SPARQL query is translated to SQL. This strategy generates multiple self-joins (one for
each triple pattern) of the single table that significantly degrades the system’s performance. To
reduce the number of self-joins induced by this type of approach, Jena [Wil06] proposed a new
storage of the traditional triple as a flat table (called property table) including the subject and
all predicates as attributes. This storage strategy generates the problem of NULL values and
stresses to represent multi-valued properties.

To overcome the above drawbacks, other systems used one of the oldest optimization tech-
niques known under the name of data partitioning. SW-Store [AMMH09] is one of these systems.
It vertically partitions the above-cited property table into L fragments (where L represents the
number of predicates). Each fragment is associated to one predicate and composed of two
columns (subject, object), known as Binary Tables. This strategy solved the storage problems
caused by NULL values, but suffered overhead costs when many predicates were involved in a
single SPARQL query. The emerging schemas generated by a strategy proposed in [PPEB15]
are the result of splitting the triple table into several three-column tables according to induced
predicate’s sets.

Summary Non-native systems are considered as naive solutions to store RDF data
thanks to different services offered by RDBMSs in terms of storage, optimization, mainte-
nance, etc. Due to the limited schema in a triple (having only three attributes), indexing
techniques were widely used to speed up SPARQL queries. Despite this, few attempts
were proposed to vertically partition the triple table. This partitioning is performed in
the structure of triples and surprisingly ignores the graph structure of the KG that repre-
sents its logical schema.

Native systems The managers of these systems do not rely on existing RDBMSs and build
the infrastructure of RDF stores from scratch. Two main storage strategies are used in these
systems: table- and graph-driven strategies. Systems using table-driven strategies store triples
in tables. Contrary to non-native storage systems, the data in native systems is encoded and
eventually compressed. RDF-3X [NW08] is the most representative system in this category. It
stores triples in three-column tables in compressed clustered B+trees. For performance issues,
intensive indexes are built considering all the permutations of the columns (e.g., SPO, OPS,
PSO) and more others. Systems following graph-driven strategies, like gStore [ZÖC+14] use
physical implementations of graphs such as adjacency lists. The optimizations of these systems
are strongly dependent on the graph implementation structures (e.g., V*-tree indexes in gStore).

Summary Native systems follow the same philosophy as the non-native ones in using
intensive indexing techniques to speed up SPARQL queries. In both systems, optimiza-
tions are performed at the physical level. Logical optimizations (such as data partitioning)
that have been widely used in relational databases did not have their rightful place.

Researchers and managers of triple stores have grasped the great opportunity offered by
the large availability of new programming paradigms, big data frameworks, cloud computing

6

Introduction

platforms to develop scalable stores. Unfortunately, this opportunity was not available in the
golden age of Relational Databases. In the following, a short introduction is given for distributed
and parallel triple stores.

Distributed and Parallel Triple Stores

For scalability issues, a large panoply of distributed and parallel triples stores exists. The life
cycle of developing such a store can be easily inspired by the one used for designing traditional
distributed and parallel databases [BBC14]. It has the following steps: (1) choosing the hardware
architecture, (2) partitioning the target KG (that we call the fragmenter), (3) allocating the
so-generated fragments over available nodes (called allocator), (4) replicating these fragments
for efficiency purposes, (5) defining efficient query processing strategies, (6) defining efficient
load balancing strategies, and (7) monitoring and detecting changes. Data partitioning is a pre-
condition to ensure the deployment, efficiency, scalability, and fault tolerance of these systems
[ÖV11]. The sensitivity of RDF data partitioning and its impact on the performance of RDF
stores has been recently discussed in a paper presented in a SIGMOD Workshop in 2020 [JSL20].

Data partitioning has to be transparent for the consumers of triple stores, in the sense
that they should not care about how the data was partitioned. In contrast, for the managers,
data partitioning is not transparent. This is because they have to define, evaluate, and tune
different data partitioning techniques that fit their data. By analyzing the major distributed
and parallel triple stores, we propose to classify them into two main categories based on the
degree of transparency granted to the designers of these systems: transparent7 and opaque
systems. In transparent systems, the data partitioning is delegated to the host (like a cloud
provider) offering services to manage the triple store. For instance, the Cliquesquare system
[GKM+15] is built on top of the Hadoop framework who is in charge of performing the data
partitioning. In these systems, the RDF data partitioning is hidden from local managers. In
contrast, in opaque systems, all elements of the data partitioning environment are mastered
by the managers. The different partitioning modes of RDF data are part of this environment
(e.g., Hashing, Graph partitioning, and Semantic hashing [JSL20]). These systems are usually
deployed in a master/slave architecture in which a fragment of triples is distributed on each
slave (e.g., RDF-3X). At the query runtime, the master node (which has a catalog of the data)
sends queries to each slave and if necessary, combines the results to produce the final answer.

From the above presentation including centralized, distributed, and parallel triple stores,
three main lessons are learned:

1. A strong demand from managers and consumers for developing triple stores by exploiting
the technological opportunity in terms of software and hardware is noticed. More con-
cretely, the DB-Engine website8 ranks 19 RDF stores in October 2020. These stores span
centralized and parallel triple store systems.

2. Any initiative to use data partitioning in triple stores should benefit from the large ex-
perience of academia, commercial DBMSs editors, and Open Source developers (e.g., the
case of PostgreSQL that supports nicely data partitioning) in defining and using data par-
titioning in the context of traditional databases. This experience has to be capitalized to
augment the reuse and reproducibility of the findings of data partitioning in RDF data.
This capitalization is done by an exploitation process of the whole environment of data
partitioning.

3. The necessity for developing an RDF data partitioning framework for managers willing to
design centralized and parallel triple stores.

7Transparency is associated to the data partitioning
8https://db-engines.com/en/ranking/rdf+store

7

https://db-engines.com/en/ranking/rdf+store

Introduction

Range
Hash
Range-Hash

List Range-List

Global Indexing
Hash Local Indexing

1997 1999 2001

2003 2007

8 8i 9i 9i R2

10g 10gR2 11g ?

Range-Range
List-Range
List-List
List-Hash
Reference Virtual Column
Partition Advisor

Figure 6: Horizontal partitioning evolution in Oracle RDBMS

Data Partitioning in Triple Stores: Why reinvent the wheels?

To explicit the different elements of RDF data partitioning, let us overview data partitioning
in the context of traditional databases in order to reuse its success stories. Data partitioning
has been first considered as a logical technique for designing relational databases and then as a
physical optimization after the amplification of physical design motivated by the arrival of the
data warehousing technology [ANY04]. It is used either in centralized and distributed/parallel
databases. Three main types of data partitioning exist (vertical, horizontal, and hybrid). These
types will be largely discussed in Chapter 1. Several partitioning modes have been proposed
and evolved after each generation of databases. Two types of modes exist single (range, list,
and hash partitioning) and composite (combining the single ones) modes. Figure 6 shows the
spectacular adoption and services offered by editors of DBMSs such as Oracle. Native data
definition language support is available for horizontal data partitioning (e.g., CREATE TABLE ...

PARTITION BY RANGE(...)). The decision of partitioning a table is delegated to the database
administrator. The main characteristic of data partitioning is its ability to be combined with
some redundant optimization techniques such as indexes and materialized views. This implies
that the declaration of the partitions of a table is performed before deploying a given database.

Two versions of horizontal partitioning are available [CNP82]: primary and derived horizontal
partitioning. Primary horizontal partitioning is performed to a single table T using simple
predicates defined on T . A simple predicate has the following form: Attr θ value, where Attr
is an attribute of T , θ ∈ {<, >, =,≤,≥} and value ∈ domain(Attr). It can be performed
using the different fragmentation modes above cited. Derived horizontal partitioning is the
result of the propagation of a partitioning schema of a table T on a table R. The derived
horizontal partitioning is feasible if a parent-child relationship exists between T and R. Due
to the difficulty of selecting an optimal data partitioning scheme for a given database, several
algorithms with different strategies (including affinity-based [NCWD84], graph-based [NR89],
minterm-based [ÖV11], cost model-based [RZML02]) have been proposed to satisfy a set of
non-functional requirements such as query performance, network transfer cost, number of final
fragments, etc. Two main classes of these algorithms are distinguished:

(i) Query-driven algorithms: that require an a priori knowledge of a representative workload
as an input [ÖV11, NR89];

(ii) Data-driven algorithms: which are independent of the representative query workload.

Due to the complexity of performing data partitioning, several academia and DBMS editors
have proposed wizards for assisting designers (database administrators) in their day-to-day tasks
when managing partitions. The most important advisors are shown in Table 1. From this table
we can figure out that data partitioning and indexes are available in all mentioned advisors.
This is due to their quality in improving queries.

8

Introduction

Name Type
Supported optimizations

Pa Ib MVc Cd

SQL Database Tuning Advisor (DTA)
Commercial

✓ ✓ ✓

Oracle SQL Access Advisor ✓ ✓ ✓

DB2 Index Advisor tool [RZML02] ✓ ✓ ✓ ✓

Parinda [MDA+10]
Academic

✓ ✓

SimulPh.D [BBA09] ✓ ✓
aPartitioning, bIndexes, cMaterialized views, dClustering

Table 1: Partitioning advisors in [Bel18]

The abundance and the popularity (in terms of research and education) of data partitioning
in traditional databases allow us to propose its environment described in an Entity-Relationship
diagram in Figure 7 that is commented as follows:
Data Partitioning (DP) is the entry point of our diagram. A DP has a name (Part Name),
a type (Part Type, i.e. horizontal, vertical or hybrid), a version (i.e. primary or derived) and
an inventor described by either the title of her/his published paper(s) describing this method
or the name of the system implementing it. A DP strategy is applied to one or many Entities.
An Entity is identified by a schema (e.g., table, class) and an extension (e.g., tuples in a table,
instances of a class) stored in a given Entity Store (e.g., DBMS) that is deployed in a platform.
A DP strategy is designed to meet one or many Objective functions measured by mathematical
cost models [OOB18]. Each Cost Model has a Name (Cost Name) and a Metric corresponding,
for instance, to CPU, Inputs/Outputs, and Transfer costs. A DP strategy has to satisfy one
or several Constraints and must be implemented by a set of algorithms. An Algorithm has a
name (Algo Name) and a type (Algo Type, i.e. Data-driven or Query-driven). Finally, a DP
strategy has one or many partitioning modes (Mode). A Mode has a name (Mode Name) and
a type (Mode Type, i.e. simple or composite).

Data partitioning

- Part Name
- Part Type
- Version

Meet

Objective

- Obj Name

Created with

Algorithm

- Algo Name

- Algo Type

Restricted by
Constraint

- Constr Name

Has

Mode

- Mode Name
- Mode Type

Applied to

Entity

- Schema
- Extension

Evaluated with

Cost model

- Cost Name
- Metric

Stored in

Entity Store

- Store Name

Platform

- Type Platform

Deployed in

Invented by

Inventor

- Title

1,n

0,n

1,n

1,1

0,n

1,1

0,n0,n 1,n

1,n0,n

0,n

1,1

0,n

1,1

0,n

1,1 0,n

Figure 7: Partitioning environment in relational databases

Figure 8 gives an excerpt instantiation of our model for the Horizontal Partitioning method
defined in [BBRW09]. The authors in this paper proposed primary and derived horizontal
partitioning schemes for a relational data warehouse schema stored in a centralized RDBMS. A
cost-driven algorithm is given to generate a number final fragments of a fact table (which must
not exceed a threshold fixed by the data warehouse administrator). The obtained fragments
have to minimize the number of inputs-outputs (I/Os) when processing a set of OLAP queries
known in advance. The traditional modes (range, list, and hash) are applied to the obtained
final fragments of fact and dimension tables.

9

Introduction

Data partitioning

- Der. Horiz. DW
- Horizontal
- Derived

Meet

Objective

- Minimize
response

time

Created with

Algorithm

- Cost-driven
- Data-driven

Restricted by

Constraint

- Number of
fragments

Has

Mode

- Hash
- Single

Applied to

Entity

- Table
- Tuple

Evaluated with

Cost model

- CM1
- I/Os

Stored in

Entity Store

- RDBMS

Platform

- Centralized

Deployed in

Invented by

Inventor

- [BBRW09]

Figure 8: Horizontal partitioning in [BBRW09]

The Reuse of Data Partitioning in Relational Databases in other Generations

The lessons of relational databases served as basis for many other data models that came after.
Let us take for example the object-oriented model whose partitioning (of classes) was initially
explored by [CWZ94] and then implemented in [KL95, KL00]. Later, horizontal and vertical
partitioning methods for classes were proposed in the literature by [BKS97] (referential horizontal
partitioning [BKL98]) and [FKL03] respectively. Similar examples can be mentioned in data
warehouses (e.g., horizontal fragmentation of the fact table in a star schema [SMR00] and the
use of referential partitioning in the dimensional data model [BBRW09]) and semi-structured
models like XML (e.g., [BLS09]).

So, we wonder, why this type of approach has not been seen so far in RDF databases?
Because without a doubt, data partitioning is currently at the center of the debate regarding its
great influence on the performance of triple stores. Making a partitioning environment explicit
for triple store managers can help not only to understand current strategies but also to set the
grounds for future extensions. The Entity-Relationship diagram shown in Figure 7 does not have
any component related to the physical storage structure of the data. Indeed, DP strategies are
performed to the entities that logically represent the data. The manager of a relational database
should not worry about how exactly the data are physically represented on the disk. In fact,
the physical storage structures are proper to each RDBMS. The key of data partitioning in
these models is their logical layer. This layer allowed the definitions of algorithms, cost models,
constraints, etc. that are independent of particular system implementation. In the following,
we address how this layer could be introduced for RDF datasets.

The Logical Layer as a Key to RDF Partitioning

To analyze what was the factor that allowed many models to take ideas, techniques, algorithms,
etc. from the relational model and adapt them to their liking let us consider the example
illustrated in Figure 9. In this Figure, we compare the partitioning of a table, a class, a document,
and a set of RDF triples. In Figures 9a, 9b, and 9c we see that data partitioning is applied first
from a the logical level, regardless of the tuples inside the table, the instances of the class or
the values inside the tags of the XML document. Data partitioning is then applied to high-level
entities (such as a table, a class, or the schema of the XML document). This characteristic
allowed to naturally reuse/map/adapt the partitioning strategies of relational databases to all
these other models.

In contrast, in RDF, the data are partitioned at a much finer granularity (as shown in Figure
9d). Let us remember that the triple is the basic representation unit in RDF. This gives the

10

Introduction

Company
ID Name Product Industry

1 Airbus Aircraft Aerospace
...

Data Partitioning

(a) Relational model

Company
ID: Integer
Name: String
Product: String
Industry: String

CompanyInstance: Company

ID: 1
Name: Airbus
Product: Aircraft
Industry: Aerospace

Data Partitioning

(b) Object oriented

<company>

<id>

<name>

<product>

<industry>

</company>

1 </id>

Airbus </name>

Aircraft </name>

Aerospace </industry>

Data Partitioning

(c) XML

<Airbus><name>"Airbus"

<Airbus><product><Aircraft>

<Airbus><industry><Aerospace>

...

Data Partitioning

(d) RDF

Figure 9: Partitioning example by data model

model a lot of flexibility, but it certainly complicates the reuse of data partitioning techniques
as it has been done in other models. In RDF, the data are partitioned with merely physical
strategies using the triple as fragmentation unit. This does not mean that RDF triples do not
have any schema. This schema exists, but contrary to the models illustrated in Figures 9a, 9b,
and 9c, it is implicit. This implicit schema can be identified with various techniques based on
the hierarchy of classes and ontologies (using the RDFS and OWL schemas for example) of the
predicates, or relying only on the structure of the data. So, if logical entities can be detected,
why not using/adapting them to propose partitioning techniques inspired by the relational model
so widely studied?

This motivates us to provide triple store’s designers with a framework to partition RDF data
from a logical level first. We do not seek to change the features that made RDF flourish but to
incorporate a common logical layer to the design process of RDF partitions. The logical layer
will allow designers to work on structures with a higher level of abstraction than that offered
by the triples. To regroup the triples, we propose two strategies: by instances and attributes.
These structures are defined in Chapter 3 of this thesis. The first strategy analyzes each node
of the RDF graph and its outgoing edges. The set of predicates of a subject node characterize it
[NM11]. In the example of Figure 9d, the Airbus node is characterized by the predicates has_-
name, has_product and industry. We refer to a node and its outgoing triples as a forward
data star. Making an analogy with the object-oriented model, a forward data star is an instance
of some class. To identify to which high-level entity a forward data star belongs, we can apply
two types of techniques that use structural or semantic clustering. The groups of forward data
stars form a forward graph fragment and they harmonize with the notion of horizontal partitions.
Vertical partitions on the other side are identified by grouping the nodes with their ingoing edges
in backward data stars. The backward stars are further grouped in Backward graph fragments.
These structures allow defining an explicit schema for RDF data. They are the baseline of our
framework allowing triple store managers to partition RDF graphs based on logical structures.
Our framework allows managers (designers) to partition in an informed way, considering the
inherent graph structure of the data, their connectivity, and other constraints related to the
partitioning environment (e.g., system’s constraints). In the following sections, we describe the
components of this partitioning framework.

11

Introduction

Knowledge Graph
Universe

Data Partitioning in
Relational Databases Universe

Strengths

Constraints

Figure 10: Fusing data partitioning to both worlds

Thesis Vision

In this thesis, we position ourselves as a manager of a triple store to satisfy the creator needs
described in a manifest (Figure 11). This manifest contains the KG, nonfunctional requirements,
constraints, and offered services imposed by the creator. We favor the usage of data partitioning
in designing triple stores by reusing its strong points identified in the traditional databases. Our
RDF data partitioning is proposed to be used either in new triple stores (the case of our RDF -
QDAG store currently developed in our LIAS Laboratory) or in already designed ones (such as
gStoreD).

We claim that the implementation of our vision passes through the following tasks:

1. A deep understanding of data partitioning proposed in the context of centralized/paral-
lel/distributed traditional databases.

2. The reuse of its strong points in terms of techniques and tools. To reach this objective, an
establishment of a concise and complete survey of data partitioning is required followed
by a reproduction of its principles and strong aspects to RDF data. Figure 10 shows the
connection between data partitioning and KG environments.

The objectives that we set in our thesis are:

(i) The definition of a common framework for centralized and parallel triple stores with com-
prehensive components implementing our vision.

(ii) The proposal of efficient data-driven partitioning algorithms defined on logical structures
of RDF as in relational databases.

(iii) The instantiation of our framework in the centralized and parallel triple stores by taking
into account the requirements of consumers in terms of constraints and nonfunctional
requirements such as the performance of SPARQL queries.

(iv) Making tools available for designers including a fragment manipulation language and a
wizard (an advisor) to assist them in their tasks. Both are based on the logical fragments
that we previously defined.

Contributions

The main contributions of our work are:

• With the motivation of increasing the reproduction and the reuse of important findings
of the data partitioning in the of traditional centralized and parallel databases in mind,
we propose a complete survey of this problem covering the important generations of the
database world.

• The definition of a Framework, called RDFPartSuite illustrated in Figure 11. It supports
our vision in designing centralized and parallel triple stores. RDFPartSuite can be person-
alized to the type of the platform. One of the main characteristics of our RDFPartSuite

12

Introduction

Figure 11: RDFPartSuite Framework

is that it follows the paradigm outside a DBMS [Ord13], in which all technical efforts
are performed externally from the triple stores. Based on the type of the platform two
scenarios are possible:

1. If the platform is centralized, our framework activates the module fragmenter in
charge of partitioning triples based on their logical representation. The definition of
these fragments is sent to the target triple store. After that, triples of the creator
KG are loaded in this store (in our case RDF QDAG).

2. When the platform is distributed or parallel, the fragmenter sends the obtained frag-
mentation schema to the allocator component. This latter role is to assign the differ-
ent fragments to nodes of the target platform. This allocation is performed based on a
data-driven approach (i.e. considering the inherent connectivity between fragments).
Once the allocation schema is obtained, the dispatcher component sends the detailed
description of this schema to different nodes and then loads the triples according to
their definitions.

3. Assistance tools are proposed to help managers in their tasks. These tools take into
account the expertise level of the manager. If she/he is an expert in the studied prob-
lems, she/he can easily perform different tasks offered by the framework. For that
she/he needs a language to describe and define the different schemes (fragmenta-
tion/allocation/dispatcher). In the case, she/he is not an expert, we propose her/him
an advisor as in traditional DBMS editors.

• The definition of a set of logical entities (named graph fragments) used to perform the
fragmentation of RDF datasets at a logical level in centralized and parallel environments.
This is a step forward with respect to the current strategies used by the triple stores that
use merely physical fragmentation strategies that depend on the specific storage structure
used to represent the triples.

• The deployment of this framework to the loading module of a centralized system (RDF -
QDAG) and of a distributed triple store (gStoreD). [PZÖ+16]).

13

Introduction

Thesis Outline

The reminder of our manuscript is composed of two main parts as illustrated in Figure 12.

First part: State-of-the-art and Objectives

The first part presents our state of the art and background concepts revolving around two
chapters. In Chapter 1, we develop a complete survey of data partitioning. We conduct a com-
prehensive review of the literature on the data partitioning problem with the aim of letting the
reader get a complete overview of the problem in terms of definitions, variants, and constraints.
We define the data partitioning foundations along with ten dimensions to classify the spectrum
of works related to this manner. It sets the reader in the whole history of the evolution of the
data-partitioning concept.

Then, Chapter 2 starts giving a general overview of the graph data model. We detail its
logical and storage structures, query processing strategies, and languages. Next, to better delimit
our work, we focus on the many existent RDF systems. We start by giving some background
concepts about RDF storage, processing, and partitioning strategies. We classify the existent
systems according to their fragmentation, allocation, and replication strategies. We conclude
this section by comparing the partitioning strategies seen in Chapter 1 and those of RDF systems
discussed in Chapter 2. This comparison serves as the basis for setting out the objectives of our
contributions.

Second Part: Contributions

We detail in this section our two main contributions.
In Chapter 3, we describe the fragmenter and allocator components of our framework. We

start by formally defining the logical entities used to partition a KG. We detail the algorithms
to generate them from raw RDF datasets. Then, we defined the allocation problem of the
fragments identified previously. We showed that the connectivity of graph fragments can be
expressed in a graph. Thereby, we proposed some heuristics to partition the fragments based on
graph-partitioning techniques.

In Chapter 4, we implement our framework in a centralized and parallel triple store. We
integrate first our findings into the loading module of a graph-based centralized triple store.
This system, RDF QDAG [KMG+20], stores the triples using the logical structures defined in
the previous chapter. We start by giving an overview of this system describing its storage,
optimization, and processing modules. Then, we evaluate RDF QDAG in three main stages:
data loading, fragmentation, and allocation. We compared its loading costs and query perfor-
mance with respect to other representative systems of the state of the art. We use real and
synthetic datasets with variable sizes to test the system’s scalability. Then, we show the inte-
gration process of our framework to the loading stage of the data to gStoreD[PZÖ+16]. Finally,
we describe the present Assistance tools as extensions to our Framework. These tools include a
Data Definition Language and an RDF partitioning advisor.

Last Part: Conclusions and Perspectives

This chapter concludes the thesis by providing a summary and an evaluation of the presented
work. Lastly, this chapter discusses several opportunities for future works.

14

Introduction

Graph Data :
Representation and Processing
− Graph database models
− RDF background
− RDF partitioning strategies

Chapter 2

Data Partitioning Foundations
− Fundamentals
− Partitioning dimensions
− Approaches

Chapter 1

RDFPartSuite in Action
− Integration to RDF QDAG
− Integration to gStoreD

Chapter 4

Logical RDF Partitioning
− Motivation
− Graph fragments
− Allocation problem

Chapter 3

Objectives

Stre
ngth

s

Strengths

Part I: State-of-the-art and Objectives Part II: Contributions

Figure 12: Breakdown of thesis chapters

Publications

International journals

1. Abdallah KHELIL, Amin MESMOUDI, Jorge GALICIA AUYON, Ladjel BELLATRECHE,
Mohand-Säıd HACID, Emmanuel COQUERY. Combining Graph Exploration and Frag-
mentation for RDF Processing. Information System Frontiers (Q1), Springer, (2020), DOI:
10.1007/s10796-020-09998-z.

International conferences

1. Ishaq ZOUAGHI, Amin MESMOUDI, Jorge GALICIA AUYON and Ladjel BELLA-
TRECHE. Query Optimization for Large Scale Clustered RDF Data. Proceedings of the
22nd International Workshop in Design, Optimization, Languages and Analytical Process-
ing of Big Data - DOLAP (Core B), Copenhagen, Denmark, (2020), pp. 56–65, URL:
http://ceur-ws.org/Vol-2572/paper18.pdf.

2. Jorge GALICIA AUYON, Amin MESMOUDI and Ladjel BELLATRECHE. RDFPart-
Suite: Bridging Physical and Logical RDF Partitioning. Proceedings of the 21st Interna-
tional Conference in Big Data Analytics and Knowledge Discovery - DaWaK (Core B),
Vienna, Austria (2019), pp. 136–150, DOI: 10.1007/978-3-030-27520-4 10.

3. Jorge GALICIA AUYON, Amin MESMOUDI, Ladjel BELLATRECHE and Carlos OR-
DONEZ. Reverse Partitioning for SPARQL Queries: Principles and Performance Analy-
sis. Proceedings of the 30th International Conference in Database and Expert Systems
Applications – DEXA (Core B), Vienna, Austria, (2019), pp. 174–183, DOI: 10.1007/978-
3-030-27618-8 13.

4. Abdallah KHELIL, Amin MESMOUDI, Jorge GALICIA AUYON andMohamed SENOUCI.
Should We Be Afraid of Querying Billions of Triples in a Graph-Based Centralized System?
Proceedings of the 9th International Conference in Model and Data Engineering -MEDI,
Toulouse, France, (2019), pp. 251–266, DOI: 10.1007/978-3-030-32065-2 18.

National conferences

1. Abdallah KHELIL, Amin MESMOUDI, Jorge GALICIA, and Ladjel BELLATRECHE.
EXGRAF: Exploration et Fragmentation de Graphes au Service du Traitement Scalable

15

Introduction

de Requêtes RDF, 16e journées EDA ”Business Intelligence & Big Data”, Lyon, France
(2020), pp.47-60

2. Jorge GALICIA AUYON, Amin MESMOUDI and Ladjel BELLATRECHE. RDFPart-
Suite: Bridging Physical and Logical RDF Partitioning. Actes de la 35th Conférence
Internationale sur la Gestion de Données – Principes, Technologies et Applications -BDA,
Lyon, France, (2019).

Submitted papers

1. Ishaq ZOUAGHI, Amin MESMOUDI, Jorge GALICIA AUYON and Ladjel BELLA-
TRECHE. GoFast: Graph-based Optimization for Efficient and Scalable Query Evalu-
ation. Information Systems (Q1).

2. Jorge GALICIA AUYON, Amin MESMOUDI, Ishaq ZOUAGHI and Ladjel BELLA-
TRECHE. The Wisdom of Logical Partitioning as a Foundation for Large-Scale RDF
Processing. Data and Knowledge Engineering (Q2), Elsevier.

16

Part I

Preliminaries

17

Chapter 1
Data Partitioning Foundations

Contents

1.1 Introduction . 21

1.2 Data Partitioning Fundamentals . 22

1.2.1 Partitioning definition and development overview 23

1.2.2 Partitioning concept evolution . 24

1.3 Partitioning dimensions . 27

1.3.1 Type . 27

1.3.2 Main objective . 29

1.3.3 Mechanism . 30

1.3.4 Algorithm . 31

1.3.5 Cost Model . 31

1.3.6 Constraints . 32

1.3.7 Platform . 33

1.3.8 System Element . 33

1.3.9 Adaptability . 33

1.3.10 Data model . 33

1.4 Partitioning approaches . 34

1.4.1 Partitioning by type, platform and mechanism 35

1.4.2 Partitioning by data model . 41

1.4.3 Partitioning by adaptability . 47

1.4.4 Partitioning by constraints . 51

1.5 Partitioning in large-scale platforms 53

1.5.1 Hadoop ecosystem . 53

1.5.2 Apache Spark . 55

1.5.3 NoSQL stores . 56

1.5.4 Hybrid architectures . 58

1.6 Conclusion . 58

19

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

Summary In our Introduction, we have discussed the importance of describing in detail the
partitioning environment for designing opaque systems. In this chapter we conduct a compre-
hensive survey of the literature regarding the partitioning problem in relational databases. We
look at the fundamentals of the problem and its evolution over all the database generations. Our
aim is to give a complete overview of how the problem was treated in these systems identifying
its main elements and strong points. The chapter is organized as follows. We start in Section 1.2
citing the works that led to the explicit definition of partitioning stating the data partitioning
foundations. Then, in Section 1.3 we define the problem and its main dimensions that are ergo
used to classify the surveyed works. Next, Section 1.4 organizes the works according to these
dimensions giving a high-level comparison and classification of existing partitioning approaches.
We introduce the partitioning approaches in the most recent large-scale platforms in Section 1.5.
Finally in Section 1.6 we give insights to open problems and compare the approaches presented
in this chapter.

20

1.1. INTRODUCTION

1.1 Introduction

Within the most studied optimization techniques in databases, data partitioning occupies a very
important spot not only for its effectiveness to improve the performance of the database, but
also because in modern large-scale parallel and distributed architectures it is a mandatory stride.
Data partitioning notions were introduced in the seventies in [HS75] shortly after the definition
of database indexes. Along with materialized views and indexes, data partitioning was at an
early stage part of the same pool of optimization strategies sketched during the physical design
phase [LGS+79]. These strategies seek to improve the speed of retrieval operations reducing the
data transferred in the network in a distributed database, or between primary and secondary
storage in a centralized system.

In relational databases, partitioning refers to splitting what is logically one large table into
smaller physical pieces. Similar to indexes, the data partitioning problem has been covered in all
generations of databases from deductive [Spy87, NH94], objected-oriented [BKS97] to data ware-
houses [SMR00]. Still, contrarily to other optimization strategies and before the introduction of
dynamic partitioning techniques, partitions are created during the declaration of the database
tables. This feature distinguishes data partitioning from other optimization techniques that can
be created on-demand while the database is running. Recreating partitions after its definition
is costly and unpractical. Numerous tools have been developed to facilitate the creation of par-
titions, for instance physical design advisors (e.g [RZML02], DB2 advisor [ZRL+04]) and data
definition languages offered by some Database Management Systems (e.g., Oracle, PostreSQL,
MySQL).

For example, let us consider the table Airplane in Figure 1.1 which will be used throughout
this chapter. This table partitioned on attribute Dev is declared in PosgreSQL with following
Data Definition Language (DDL) as:

CREATE TABLE Airplane

(

ID integer PRIMARY KEY,

Model varchar(15),

Dev varchar(15),

Length real,

Cost real

)

PARTITION BY LIST (Dev)

In this statement, the table Airplane is partitioned listing the key values for each partition
creating two groups based on the airplane’s developer (Dev): Airbus and Boeing. The PARTITION
statement in this DDL should not be confused with the SQL operator PARTITION BY used in
OLAP window functions. Although declaring partitions can be done very simply, choosing the
attribute(s) and the partitioning method that optimizes the performance and the efficiency at
query runtime is a very complex problem due to the large number of variables and possible
solutions to consider.

ID Model Dev Length Cost

1609 A320 Airbus 37.57 101
1752 A350-900 Airbus 64.75 317.4
1909 A340-600 Airbus 75.36 300.1
1912 B737-800 Boeing 39.5 102.2
2212 B777-300 Boeing 73.86 361.5

Figure 1.1: Aircraft table

21

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

We characterized the partitioning problem according to its:

• Maturity: the problem has existed almost since the definition of the first database systems
and has been largely explored,

• Coverage: it has been implemented for all generations of databases,

• Evolution: it has been adapted to the different architectures, needs and constraints, and

• Complexity: finding an optimal partition scheme needs to consider several alternatives
and sometimes mutually exclusive objective functions.

The research devoted to this topic has been very rich and extensive. Some surveys exist in
the literature devoted to specific partitioning types. For example, [GDQ92, MS98] are devoted
to certain partitioning strategies whose main objective is called declustering.

In this chapter we conduct a comprehensive review of the literature of the partitioning
problem with the aim of letting the reader get a complete overview of the problem. We start
in Section 1.2 citing the works that led to the explicit definition of partitioning stating the data
partitioning foundations. Then, in Section 1.3 we define the problem and its main dimensions
that are ergo used to classify the surveyed works. Next, Section 1.4 organizes the works according
to these dimensions giving a high-level comparison and classification of existing partitioning
approaches. We introduce the partitioning approaches in the most recent large-scale platforms in
Section 1.5. Finally in Section 1.6 we give insights to open problems and compare the approaches
presented in this chapter.

1.2 Data Partitioning Fundamentals

In this section we recall the main features and characteristics of the partitioning problem to unify
the terminology used throughout the thesis. We first mention the works that led to the definition
of what we called the core partitioning problem. Then we give definitions and examples of the
different variants of partitioning in relational databases. Each variant is motivated highlighting
its performance impact at query runtime. Finally, we explain the dimensions used to classify
the partitioning algorithms.

The database community strives to provide systems that store, update, administrate and
retrieve information ensuring the integrity, consistency and security of the stored data and
transactions offering a reasonable performance. Performance optimization strategies for database
systems have been largely studied especially the ones applied during the database design stage.
Three optimization strategies for centralized systems were clearly distinguished already in 1976
in [ES76]:

1. Hardware: physically increase the speed at which data are transferred between primary
and secondary memory,

2. Encoding : improve data encoding strategies to increase logically the information content
transferred to main memory,

3. Physical design: selectively transfer only those physical records or data attributes which
are actually required by the application.

Even if originally these strategies targeted centralized database systems, they fit to the parallel
and distributed contexts when the network constraint is considered as well at each point. The last
category of techniques (Physical design) comprises indexes, materialized views and partitions all
being part of the physical design process conceived by the database designer. Partitioning was
defined as an optimization stage that evolved into a mandatory design step in distributed and
parallel systems. Next, we introduce the definition and evolution of the partitioning problem.

22

1.2. DATA PARTITIONING FUNDAMENTALS

1.2.1 Partitioning definition and development overview

Let us define the partitioning process in general as the action or state of dividing or being
divided into parts1. In the database context the data are divided to form partitions. The
earliest partitioning studies in information systems dealt with the optimal distribution of entire
files to nodes on a computer network. These works (e.g., [Chu69, Esw74]) solve the problem
which arises in the design of distributed information systems where the data files are shared by
a number of users in remote locations.

Partitioning in relational databases was introduced later disclosing how partitioning a rela-
tion contributes to improve the system’s performance and implicitly describing how partitions
are built. In 1975 an article by Jeffrey Hoffer and Denis Severance [HS75] motivated data par-
titioning as a technique to reduce the query execution time and implicitly introduced two types
of partitioning configurations. These configurations use clustering notions to distribute the data
in subfiles. They showed that the query response time in a centralized database is minimized
if each relation is partitioned either at the attribute or at the record level, presenting the first
notions of horizontal and vertical partitions. Their main motivation is the awareness that the
query’s retrieval time is dominated by the time spent to transport data from the disk to main
memory before processing. They formalized their ideas and proposed an algorithm clustering
the attributes of a relation in a centralized database system. This first formal definition to a
partition is shown in Definition 1.1.

Definition 1.1 Partition [HS75] Given a set of attributes A of a relation R, consider the
collection of subfiles S = {(Ai, Ri)} and Ai ⊆ A, Ri ⊆ R, specifying the attributes and entities
represented in a subfile i. S clusters the data in two basic forms:

1. By attributes in which Ri = R and
⋃︁n

i=1 Ai = A for i = 1...n.

2. By records in which Ai = A and
⋃︁n

i=1 Ri = R for i = 1...n.

A cluster S in which Ai ∩ Aj = ∅(Ri ∩ Rj = ∅) for all i ̸= j is named an attribute (record)
partition for the database.

The same team of researchers extended its work proposing an integer programming for-
mulation for the problem considering the case when the database is shared by a group of users
[Hof76, ES76, MS78]. The terms horizontal and vertical partitions were adopted by the database
community to define partitions performed at the record and attribute level of a relation respec-
tively. The works of Eisner M., Hoffer J. and Severance D. described previously were the first
efforts towards creating partitioning algorithms for centralized database systems.

The previous findings work for both centralized and distributed database systems. In both
cases the main objective is to benefit data locality by clustering the records or attributes ac-
cording to a defined degree of togetherness. Centralized and distributed partitioning strategies
promote data locality, a strategy in which related records/attributes are often stored in close
proximity to minimize performance overhead in access path navigation. In centralized systems,
attribute and record clustering are used to gather in main memory the most frequently accessed
records or records subsets to reduce the number of input/output (I/O’s) to the primary storage.
In a distributed database system, the objective is as well to cluster attributes or records but with
the aim of decreasing the number of distributed transactions considering that for these systems
the network traffic is the bottleneck of query processing.

A special kind of distributed database systems that exploit the parallelism to deliver high-
performance and highly available systems was introduced not long after the boom of distributed
databases in the eighties. This kind of database system, named parallel is formed by a set of
processing units connected by a very fast network to process large databases efficiently. Three

1Taken from the Oxford dictionary

23

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

Table 1.1: High-level variants of the partitioning problem

Stage Platform Type Mechanism System element

Optional Centralized
Horizontal

Vertical
Clustering

Memory & Disk

Mandatory
Distributed Memory, Disk

& Network
Parallel Horizontal De-clustering

forms of parallelism are exploited in these systems: i)inter-query parallelism which enables the
parallel execution of multiple queries, ii)intra-query parallelism making the parallel execution of
independent operations in a single query and iii)intra-operation parallelism in which the same
operation is executed as many sub-operations [ÖV96]. Contrarily to distributed databases, lo-
calizing the query execution in a single node is not the preferred solution. In this case, the
performance might be degraded due to excessive queuing delays at the node and the parallelism
will not be exploited. Data partitioning for parallel databases implements the so-called declus-
tering, a strategy which spreads the data among the processing nodes to ensure parallelism and
load balance. The declustering term was introduced in 1986 in [FLC86] to solve the multi-
disk data allocation problem. This term was later used in the early parallel database systems
(e.g., Gamma [DGG+86]) that horizontally partitioned and distributed the data across multiple
processing nodes.

Still, in many situations the system is really a hybrid between parallel and distributed,
specially in shared-nothing architectures. As mentioned in [ÖV96], the exact differences between
parallel and distributed database systems are somewhat unclear. In this thesis we distinguish the
partitioning strategies in both systems, but as seen in the next sections, it is the main objective
of the system which guides the choice for the best distribution strategy. Table 1.1 organizes the
information formerly described. In the following section we explain the evolution of the problem
and the dimensions that we applied to describe the partitioning environment.

1.2.2 Partitioning concept evolution

Partitioning a relational database implies dividing tables into parts (or partitions). As we
previously mentioned, the partitions are subsets of the relation at the attribute or record levels.
The core definition of the problem has not changed over time, however, the problem has evolved
with the consideration of additional constraints, different platforms and ergo new objectives. The
first notions of data partitioning are related to the distribution of entire files in a centralized or
distributed system. Then, as a result of the work of [HS75], the notion of partition as a subset of
a relation starts being considered. Formerly, partitioning was used as a strategy to optimize the
system in the same way as indexes in a non-mandatory process. With the introduction of parallel
systems, the partitioning main objective changed and therefore the partitioning algorithms were
adapted to this type of systems. In this section we detail the works leading to the definition of
partition and its types. We mention as well the first algorithms for each partitioning type.

1.2.2.1 File allocation

Partitioning has its origins in file allocation models performed on the basis of entire files. Dis-
tributed computer systems were introduced before the relational databases entered the market.
Optimal file allocation models seek to minimize the overall operating costs of storage and trans-
mission of distributed files across the nodes of a computer network. In 1969 W. Chu modelized
file allocation in a computer network as an integer programming problem [Chu69], his work was
later enriched by K. P. Eswaran in [Esw74]. These works, along with others, served as bases to

24

1.2. DATA PARTITIONING FUNDAMENTALS

develop the very early works on partitioning algorithms for relational databases.

1.2.2.2 Implicit partitioning definition

The work of J. Hoffer and D. Severance published in 1975 [HS75] was the first work that in-
tuitively showed that subdividing the relation in sub-files (at the attribute or at record levels)
minimized the retrieval, storage and maintenance costs of data in a centralized database. They
developed a method to cluster the relation’s attributes and vertically partition the relation, but
no method was established to generate sub-files at the record level (i.e. horizontal fragments).
The problem was mathematically formalized by J. Hoffer the next year in [Hof76]. The approach
modeled the allocation of subsets of a relation on different physical areas of the system (i.e. pri-
mary and secondary memory) using a weighted combination of operational costs for secondary
storage, read-only and update requests summed across memory areas. M. Eisner and D. Sever-
ance published in 1976 an article [ES76] with a model using a network graphical representation
of the user’s interactions reducing the retrieval cost in a database shared by multiple users. The
work was extended in [MS77] and a complete mathematical approach of the automatic selection
of database design was presented by the same authors in [MS78].

1.2.2.3 Explicit partitioning definition

Fragments were explicitly defined as the sub-relations used as distribution units among the
nodes of a distributed database system in 1977 in the technical report describing the distributed
system SDD-1 [JG77]. The term was reused by Stonebraker et al.[ESW78] in 1978 to describe
the partitioning stage in the distributed version of INGRES. In the same year a database design
workshop [LGS+79] reunited many database researchers to discuss important issues and future
research problems. The terms horizontal and vertical partitions were established at this work-
shop, defining them as the clustering (or fragmentation using the term introduced in [JG77])
strategies to perform data partitioning and placement. Horizontal partitions refer to record
partitioning while vertical partitions refer to partitions at the attribute level. It is important to
remark that the term fragmentation was used in distributed database systems to separate the
processes of partition creation for a relation and the allocation process of physical files to nodes.
The separation of the data partitioning process in fragmentation and allocation stages is still
carried out in distributed systems [ÖV11, RG00].

Former partitioning algorithms We briefly recall the first algorithms proposed to create
vertical and horizontal partitions. Vertical partitioning algorithms were introduced sooner than
algorithms to partition the database at the record level. The first algorithm using a similarity
measure to group attributes according to their togetherness was proposed by J. Hoffer et al.
[HS75] in 1975. The algorithm measured the attribute’s affinity using the bond energy algorithm
BEA developed in [JSW72]. Based on [HS75]’s findings, S. Navathe et al. published in 1984
[NCWD84], a two phase approach for vertical partitioning. Their algorithm was extended by
Cornell and Yu in [CY87]. The detailed list of vertical partitioning algorithm is found in Section
1.4.1.1 of our work. Here we present only the works that served as the fundamentals for other
approaches.

Horizontal partitioning algorithms were introduced a few years after the definition of hor-
izontal fragments in 1978. In 1982, S. Ceri et al. published their work [CNP82] presenting a
horizontal partitioning algorithm based on the min-term predicates defined in their paper. Given
a relation R with n attributes represented as R(A1, .., An), a simple predicate pj is defined as
pj : Ajθ V alue where θ ∈ {=, ̸=, <,≤, >,≥} and the V alue is chosen from the domain of Aj . A
min-term predicate is a conjunction of simple predicates (or its negation) describing a horizontal
partition (or fragment as called in distributed databases) of the relation R. In general, the
algorithm consists on finding the minimal set of min-term predicates describing the queries of a

25

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

Partitioning CORE

File allocation Implicit definition Explicit definition Declustering models

[Chu69, Esw74]
Data locality:

[HS75]

Centralized system:

[Hof76]

Shared database of

users: [ES76]

Mathematical model:

[MS78]

Data fragmentation:

[JG77, ESW78]

Horizontal and verti-

cal: [LGS+79]

Vertical algsorithms:

[HS75, NCWD84,

CY87]

Horizontal algorithm:

[CNP82]

Multi-attribute files:

[JL74, LY77]

Cartesian product file:

[LLD79]

Declustering defini-

tion: [FLC86]

Declustering applica-

tions: [DGG+86]

Figure 1.2: Database partitioning origins

workload to afterwards create horizontal partitions based on them. This algorithm was extended
by Özsu and Valduriez in [ÖV11]. Before [CNP82], several works were published concerning file
allocation (a complete survey is found in [For83]) but none of them proposed a characterization
of the access patterns defining a horizontal partition. The complete list of horizontal partitioning
approaches is presented in Section 1.4.1.2.

Declustering algorithms In parallel to the works handling horizontal and vertical parti-
tioning in centralized and distributed databases, approaches dealing with the organization and
distribution of data on multiple-disk systems started its development from the seventies. These
works served subsequently as starting point to the development of partitioning approaches for
parallel database systems. Parallel databases exploit hardware architectures in multiprocessor
environments. In general, individual database servers are connected with a fast network con-
nection exploiting parallelism (especially in I/O) by distributing database files across multiple
processors and/or disks. The partitioning problem in parallel systems exhibits similarities with
centralized and distributed database systems. An evident one is that a relation is divided as
well into parts to increase the performance. However, on the contrary of distributed and cen-
tralized systems that privilege data locality, data are rather spread among the nodes to process
in parallel avoiding execution skewness. As it was formalized by Sacca D. and Wiederhold G.
in [SW85] and mentioned by [ÖV11] the partitioning problem in these systems is much more
complex.

Before describing partitioning strategies for multiple-disks systems let us first mention some
multi-attribute file organizations whose fundaments were used to establish the partitioning
strategies for parallel database systems. These file organizations contributed to the develop-
ment of Cartesian product files to which several partitioning heuristics were devoted. Rothnie
et al. introduced in 1974 [JL74], a file organization strategy hashing multiple keys for a record.
In 1976, J.H et al. [LY77] proposed a multi-dimensional file structure together with multi-
dimensional attribute’s indexes to reduce the retrieval, update and storage costs of data in
which the record address is determined by multiple keys. Their proposal combines a multi-
dimensional directory (MDD) and a single key index to find efficiently the solutions for a partial
match-queries in a files with attributes having discrete domains. Let us consider for example a
file storing records like (A1, .., Ad) with d attributes. A partial match query defined on this file
is query q : Ai = ai ∧ Aj = aj ∧ · · · ∧ Ak = ak. The best strategies of some multi-attribute file

26

1.3. PARTITIONING DIMENSIONS

organizations were unified in the specification of Cartesian product files in 1978 [LLD79].

A Cartesian product file, as defined in [MS98], stores records as an ordered d-tuple (a1, .., ad)
of values where each attribute ai has a finite domain. Let us define Di as the domain of the i-th
attribute. A d-attribute file is a subset of D1×D2×· · ·×Dd. When this file is stored on disk, the
records are partitioned into buckets or pages. The file is called a Cartesian product file if when
each attribute’s domain is partitioned into m subsets, the records in D1m1×· · ·×D1md

are stored
in a single bucket. When a multi-attribute query is defined on the file, the buckets containing
records qualified by the query are retrieved from the secondary storage. The query cost depends
then on the number of buckets retrieved from the disk. To improve the performance, a Cartesian
product file is stored on multiple disks, and since each disk is assumed to be independently
accessible, the time to respond a query correspond to the maximum number of blocks retrieved by
a disk of the system instead of the total amount of blocks retrieved. The problem of distributing
files across multiple disks is called declustering. The term was introduced in 1986 in [FLC86]
although parallel systems like Gamma [DGG+86] already used declustering strategies in their
first versions. A more detailed description of the declustering strategies will be given in Section
1.3.3.

It took around 10 years to establish the bases of the partitioning problem. The works
leading to its definition are organized in Figure 1.2 in which we show the structure of the works
we previously described. In the following section we detail the dimensions used to describe the
partitioning features used to organize the partitioning approaches described in Section 1.4.

1.3 Partitioning dimensions

We modeled the partitioning environment using a star-schema diagram shown in Figure 1.3. The
dimensions with a double border in this Figure correspond to ones defining the core partitioning
problem. We organize the partitioning approaches in the following sections by the means of the
ten dimensions detailed below that are used as diversification criteria.

1.3.1 Type

This dimension describes the alternative ways of dividing a table into smaller ones. Two alter-
natives are clearly noticeable: dividing it horizontally or vertically. In brief, logical entities are
represented as relations in the relational model. Each relation groups sets of tuples that are
instances of a logical entity which are depicted by a set of attributes. For example, the entity
Aircraft in Figure 1.1 is defined by the attributes: model, developer, length (in m), cost (im
M$) and an identifier. The table is divided as shown in Figures 1.4a and 1.4b at a record level
(horizontally) or at an attribute level (vertically) respectively.

Partitioning

Data model

Main objective

Type

Cost model

System element

Adaptability

Mechanism

Algorithm

PlatformConstraints

Figure 1.3: A star-schema partitioning environment

27

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

ID Model Dev Length Cost

1609 A320 Airbus 37.57 101
1752 A350-900 Airbus 64.75 317.4
1909 A340-600 Airbus 75.36 300.1

ID Model Dev Length Cost

1912 B737-800 Boeing 39.5 102.2
1212 B777-300 Boeing 73.86 361.5

(a) Horizontal partitions

ID Model Dev

1609 A320 Airbus
1909 A340-600 Airbus
1912 B737-800 Boeing
1212 B777-300 Boeing

ID Length Cost

1609 37.57 101
1909 75.36 300.1
1912 39.5 102.2
1212 73.86 361.5

(b) Vertical partitions

Figure 1.4: Partitioning types for table Airplane

The primary key is replicated on each partition in Figure 1.4b to enable the reconstruction of
the original table if necessary. This condition is known as the reconstruction rule. More details
about the correctness fragmentation rules are found in [ÖV11, RG00, SKS+97] . Horizontal
partitioning has been explored more widely by commercial DBMSs and there are many versions of
it. First, we distinguish horizontal partitions performed in a single table named single horizontal
partitioning. This strategy is supported by most of commercial database systems in their latest
versions. The single-level partitioned methodologies are:

• Range: as stated in [BBRW09], range partitioning is defined by a tuple (c, V), where c is
a column type and V is an ordered sequence of values from the domain of c. A relation is
then split according to a range of values for a given set of columns.

• Hash: this mode decomposes the data applying a hashing function that is provided by the
system to the partitioning columns.

• List: this mode splits a table according to a list of discrete values for the partitioning key
of a column.

Another horizontal type combining the above single-level partitioning modes is named composite
horizontal partitioning. In this strategy, a table is partitioned by one data distribution method
and then each partition is subdivided into sub-partitions applying a secondary distribution
method. This strategy comprises the following strategies Range-Hash, Range-List, List-Hash,
Range-Range, and all possible combination of the single level methods. For example, the Aircraft
table of our example could be partitioned by Developer first (list partitioning) and then apply
a range partitioned on the Length attribute.

The referential horizontal partitioning allows to partition a table by leveraging an existing
parent-child relationship [BBRW09] established according to a foreign key between two relations
named the member and owner. It was introduced by Ceri et al. at the beginning of the eighties
[CNW83, CNP82] to optimize equi-join queries between the member and owner relations. The
drawback of this partitioning mode is the fact that member tables may only be partitioned using
a unique owner, even if its values reference to more than one owner tables. More details about
this strategy are given in Section 1.4.1.2.

The list of partitioning types in this section is not exhaustive, however the missing strategies
are variations of the types already presented. In the Table 1.2 we show the supported parti-
tioning types in the most popular DBMSs. The hybrid partitioning column refers to a virtual
column-based partitioning that allows the partitioning key to be an expression built on the row
partitioning and it is efficient for storing columns individually in partitions.

28

1.3. PARTITIONING DIMENSIONS

Partitioning Strategy
DBMS Version Hash Range List Composite Derivate Hybrid

Oracle 19c ✓ ✓ ✓ ✓ ✓

MySQL 8 ✓ ✓ ✓ ✓

Microsoft SQL-Server 2019 ✓

PostreSQL 9.4 ✓ ✓

IBM DB2 11.5 ✓ ✓ ✓

Teradata 15.1 ✓ ✓ ✓ ✓

Table 1.2: Partitioning type by DBMS

A third partitioning type named hybrid is a combination of the previous partitioning tech-
niques. The hybrid partitioning process can be represented as a tree structure, as seen in [ÖV11]
in which vertical partitioning is followed by an horizontal fragmentation or vice-versa. This par-
titioning strategy creates much finer partitioning files and are a good fit for some applications
needing the information at a lower granularity. A hybrid partitioning applied to the Aircraft
table and its partition tree are shown in Figures 1.5a and 1.5b respectively. This partitioning
strategy is supported by systems like Teradata as described in [ASAB16].

ID Model Dev

1609 A320 Airbus
1752 A350-900 Airbus
1909 A340-600 Airbus

ID Model Dev

1912 B737-800 Boeing
1212 B777-300 Boeing

ID Length Cost

1609 37.57 101
1752 64.75 317.4
1909 75.36 300.1

ID Length Cost

1912 39.5 102.2
1212 73.86 361.5

(a) Hybrid partitioning of Aircraft table

Airplane

σDev=′Boeing′

ΠID,Model,DevΠID,Length,Cost

σDev=′Airbus′

ΠID,Model,DevΠID,Length,Cost

(b) Tree structure

Figure 1.5: Hybrid partitioning example

All of the approaches mentioned above are summarized in Figure 1.6.

1.3.2 Main objective

The problem of optimally partitioning data over a centralized, distributed or parallel database
system could at a first glance seem like the same. Even though if the expected output is a set
of horizontal or vertical partitions, the main objective to create each partition is quite different
according to the system’s requirements. For example, let us consider a partitioning strategy in
a distributed database replicating most of the tables in all sites to ensure a good performance in
terms of retrieval query time. This strategy would produce a very poor result if the partitioning
objective was to partition the system to improve its performance in terms of storage efficiency.
We categorize the partitioning objectives as:

29

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

Partitioning
Type

Vertical

Horizontal

Hybrid

Composite

Single

Referential

Range
Hash
List

Range-Range
Range-Hash
Range-List
List-List
List-Range
List-Hash

Figure 1.6: Type dimension schema

• Response-time: the main objective consists to reduce the query access costs. This is
measured as an average response time to solve a workload (queries and frequencies). We
distinguish approaches that seek to minimize time in the most frequent queries, and others
that look for covering the greatest spectrum of queries with acceptable performances.

• Concurrency: this objective deals with executing the maximum number of transactions in
the minimum time. It is measured in terms of the system’s throughput.

• Maintenance: The storage and update criteria are included in this category. This objective
seeks to maximize the efficiency in terms of the utilization of resources like the hard-drive,
network or primary memory. It also considers for example, the cost reduction of idle
machines in a distributed systems.

• Combined: This objective considers the minimization of custom cost models (e.g., weighted
combinations) of the operational costs and measures of the query response time. They
provide a much more balanced solution but to the cost of complexity.

1.3.3 Mechanism

This dimension refers to the means used by partitioning techniques to accomplish the previously
mentioned objectives. It is comprised of two alternatives:

• Clustering: Partitioning in centralized database systems seeks to minimize the transfer
costs between the primary and secondary memory retrieving the records or attributes
that are pertinent to the user’s request. In distributed database systems the main goal
is to avoid costly network communications by localizing the executions at the distributed
system nodes where the data resides. In both cases, the data is clustered to form groups of
tuples or attributes that are usually retrieved together. For centralized systems the record
or attribute clusters are created in such way that ideally only the clusters containing
the data requested by the user are loaded to main memory avoiding unnecessary disk
access. In distributed systems, the data clusters are created in such a way that distributed
transactions are averted.

• Declustering: In parallel database systems there is no need to maximize local processing
at each node. This strategy could, on the contrary, be self-defeating to the system’s load
balance making one node to perform all the work while all the others remain idle. Data
partitioning in parallel systems come to a trade-off between maximizing the response time
for each individual query but at the cost of execution skewness or maximizing the intra-

30

1.3. PARTITIONING DIMENSIONS

query2 and inter-query3 parallelism by means of partitioning. The partitioning strategy for
these systems is called full partitioning or declustering as its main objective. Declustering
strategies partition each relation across all the nodes of the system letting parallel database
systems to exploit the I/O bandwidth of multiple disks by reading and writing them in
parallel [DG92].

1.3.4 Algorithm

Finding the right set of partitions has been shown to be a very complex problem. The horizontal
partitioning problem was proven to be NP hard [SW85, SW83], likewise the problem of finding
vertical partitions applying an affinity graph [LOZ93]. Horizontal and vertical partitioning were
mathematically formalized and posed as optimization problems whereof solution does not scale
properly without the use of heuristics. We categorize the solution algorithms with the following
classes:

• Exact solutions: integer programming formulations for the partitioning problem. Firstly
introduced to create vertical partitions using attribute clusters measuring their pairwise
affinity [ES76]. Then other mathematical techniques for record partitioning were proposed.
All of these formulations served as basis for heuristics used to prune alternative solutions
and boost the algorithms’ scalability. The objective function and constraints for these
algorithms belong to the categories detailed in Sections 1.3.5 and 1.3.6 respectively.

• Heuristic solutions: these approaches do not guarantee to be optimal but find an approx-
imate solution in a reasonable time.

– Cost based: These algorithms use heuristics to prune the solution space of alternatives
to evaluate in a cost model as detailed in Section 1.3.5. Some alternatives use the
query optimizer cost model to rank solutions to their performance.

– Sophisticated: these methods adapt heuristics from other domains to solve the data
partitioning problem. For instance, graph partitioning heuristics are used by some
partitioning algorithms to create fragments of attributes or records.

1.3.5 Cost Model

To objectively asses if a partitioning strategy improves the performance of the database system
a set of metrics are established to define the criteria that determine a performant system. After
all, without a well-defined metric it is impossible to decide which partitioning alternative is
better than another one. Also, cost models are essential when predicting the real execution
costs of a query a priori, without actually evaluating it. Cost models provide a simplified vision
of a system, and are related to the objectives described above in the main objective dimension.
We categorize the cost models as:

• Response-time: these cost models use the query response time to measure the system’s
performance based on the query access costs. The query response time is usually measured
as the weighted average response time to solve a workload. The response time can be
directly measured or estimated as a linear combination of the processing, I/O and network
costs as shown in the equation[RZML02]:

Cost(Q) = α · CostCP U + β · CostI/O + γ · CostNetwork

This equation assumes that there is some overlap among the three components. To calcu-
late the costs, the number of rows are estimated based on statistics. Among them we found

2Decomposing the query into smaller tasks that execute concurrently on multiple processors.
3Several queries execute concurrently on multiple processors to improve the overall throughput of the system.

31

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

the table cardinality, distinct values per column, number of pages in a table, and more
data collected from histograms. For centralized systems the response time is dominated by
the I/O costs that are estimated by the number of loaded disk blocks. The communication
costs (i.e. CostNetwork) are the bottle neck in distributed database systems. For parallel
database systems, the performance is dominated by the slowest machine of the cluster.

For a given workload, the costs are calculated for each of the queries and the global cost
is given by:

Cost(w) =
∑︂

q∈W

w(q) ∗ Cost(q)

The w(q) corresponds to the weight of each query in the workload which can be for example
the frequency.

• Throughput : the traditional database problem is to maximize throughput subject to con-
straints on response time. As claimed by [GHK92], the problem could be also formulated
as minimizing the response time subject to the constraints of the throughput. In this
context, a sheer use of resources to reduce only the response time can lead to penalize the
overall system’s performance. To limit this phenomenon, some models have been proposed
to limit the resources devoted to reduce the response time. Similarly, [RJ17] proposed the
following relation to be minimized between the assigned and relative performance of the
sites (B):

assignedLoad(B)
load(B)

• Maintenance-based: the storage and update costs are included in this category. These cost
models will penalize replication and measure how efficient in terms of the utilization of
resources like the hard-drive, network or primary memory.

• Global-system: these cost models are weighted combinations of the operational costs for
secondary and primary storage and a measure of the query response time. They provide
a much more balanced solution but to the cost of complexity. Let us consider for example
the cost model in [PCZ12]:

Cost(D,W) = (α× CoordinationCost(D,W)) + (β × SkewFactor(D,W))
α + β

In this case, the coordination cost is combined with a factor measuring the skewness of
the partitioning strategy.

1.3.6 Constraints

The partitioning algorithms seek to optimize an objective function with respect to some variables
in the presence of constraints. The following list summarizes the most common constraints:

• Partition size: this constraint is related to the limit in space, or processing resources.

• Partition number : this value is associated to the number of sites in the distributed or
parallel architectures that will store the final data.

• Redundancy : whether the system allows to have multiple copies of the data to improve
the query performance or ensure fault tolerance.

• Workload : this constraint refers to whether a predefined workload is known a priori to
design the partitions.

32

1.3. PARTITIONING DIMENSIONS

1.3.7 Platform

This dimension considers the three types of database architectures:

• Centralized : only the interactions between the processor, primary and secondary memory
are considered.

• Distributed : this dimensions include the Peer-to-Peer, Client/Server and Multi - Database
Systems.

• Parallel : sub-divided in shared nothing, shared memory, shared disk and hybrid architec-
tures.

1.3.8 System Element

In this dimension we consider whether the hardware element targeted by the partitioning ap-
proach. Among the components we can mention: primary & secondary memory, local area
network, internet, cache and the processor.

1.3.9 Adaptability

This dimension classifies partitioning strategies into static and dynamic. The difference de-
pends on whether the partitioning describes the procedure that is performed when declaring the
database and it never changes, or if it includes describes strategies carried out after executing
several workloads and the system is able to adapt its partitioning. The details of both strategies
are given below.

• Offline: the database designer decides at the creation of the database how the data will
be partitioned. This is achieved thanks to a requirement analysis phase in which the
needs of the final users and the available resources are gathered. Most recently, automatic
physical design advisors automatically select the proper partitioning configuration for a
given workload. These advisors are supported by many commercial and academic database
systems to help non-expert designers to select the most adequate partitions, indexes and
materialized views. As mentioned in the introduction of this chapter, recreating partitions
can be very expensive since the database needs to be disrupted and this is not always
possible.

• Online: approaches following this strategy monitor and periodically adapt the database to
fit the observed workload/incoming data. Ideally the system is able to adapt to changing
workloads and data maintaining the database up-to-date at a reasonable performance.

1.3.10 Data model

In this section we classify the partitioning strategies according to the data model used to logically
represent the data. We include in this category the relational model and the models directly
derived from this. We include then:

• Relational: introduced in the early seventies by Edgar Codd in [Cod70] where the data
are represented as tuples grouped in relations. Most of relational database systems use
the SQL definition query language providing a declarative method for specifying data and
declaring queries. The entity relationship (ER) data model introduced by Peter Chen in
[Che76] is well suited to represent relational data. Its components are readily translated
to relations. ER modelling is based on two concepts:

– Entities: defined as tables that hold information and,

33

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

– Relationships: which are associations or interactions between entities.

• Object-oriented: in this data model information is represented as objects, as it is done in
object-oriented programming. This data model, introduced since the early eighties, is a
hybrid of both the relational and object-oriented programming.

• Deductive: the deductive data model involves the application of formal logic to the prob-
lems of data definition, manipulation and integrity. The model provides the possibility to
retrieve not only explicitly stored data but logically inferred data as well. The model was
introduced in 1984 in the work of [Rei82] which gave the declarative semantics of deduc-
tive databases. The query and declaration language used for this model is based on the
declarative programming language Datalog, a subset of the logic programming language
Prolog. Among the query language we have the language ESQL introduced by Galdarin
and Valduriez in [GV90].

• Dimensional: it is the model embraced in the data warehouse design. Introduced by Ralph
Kimball in [KS95] as a solution to decision support systems and business intelligence in
contrast the entity relationship data modeling already established in the nineties. In this
work, the author claimed that Entity-Relation modelling works fine for Online Transac-
tion Processing (OLTP) workloads but fails to solve analytical queries. As described in
[GMR98], the dimensional data model consists of a set of fact schemes whose basic ele-
ments are facts, measures, dimensions and hierarchies. Facts model an event occurring in
the company (e.g., a sale), measures are typically numerically valued attributes describing
a fact and dimensions are hierarchically organized discrete values to facts.

1.4 Partitioning approaches

This section focuses on describing partitioning approaches organized with the partitioning di-
mensions described in Section 1.3. All of the dimensions are summarized in Table 1.3, in which
dimensions are summarized in two groups: i)dimensions contextualizing the problem and ii)
dimensions describing the solution. We start in Section 1.4.1 (whose schema is given in Fig-
ure 1.7) giving the fundamental algorithms chronologically by Type, each type is subdivided by
platform and by partitioning mechanism. At each subsection we describe the exact and heuristic
algorithms presented on each approach. Then, in Section 1.4.2 we present the approaches by
data model and by constraints. Then in Section 1.4.3 we present the approaches by adaptabil-
ity detailing some partitioning wizards. Finally in Section 1.4.4 we present a summary of the
approaches by constraints.

Table 1.3: Partitioning approaches

Dimension

Platform • Centralized • Distributed • Parallel
Main objective • Response-time • Concurrency • Maintenance • Combined
System element • Disk • Memory • Network
Data model • Relatinal • Object-oriented • Deductive • DimensionalP

ro
b
le
m

Constraints • Partition size • Partition number • Redundancy • Workload

Type • Horizontal • Vertical • Hybrid
Mechanism • Clustering • Declustering
Algorithm • Exact • Heuristics
Adaptability • Offline • OnlineS
ol
u
ti
on

Cost model • Response-time • Throughput • Maintenance-based • Global system

34

1.4. PARTITIONING APPROACHES

Partitioning

Vertical

Horizontal

Centralized

Distributed

Parallel

Clustering

Declustering

Exact

Heuristic

Type Platform Mechanism Algorithm

Figure 1.7: Organization of schema Section 1.4.1

1.4.1 Partitioning by type, platform and mechanism

The schema of this section is given in Figure 1.7. We start explaining the the vertical partitioning
algorithms in distributed and centralized systems. Then we detail horizontal approaches in
distributed and centralized architectures. Finally we discuss horizontal declustering strategies
in parallel platforms. We highlight whether the approach is a heuristic or exact algorithm.
In what follows we use the words fragment and partition indistinctly to denote each of the
sub-relations obtained after a partitioning process.

1.4.1.1 Vertical

This partitioning strategy divides a relation on its attributes. Specifically, given a relation R
vertical partitioning produces the subrelations R1...Rv such that each Ri contains a subset of R’s
attributes and its primary key attribute. Formally, consider C(R) = {c∗1, · · · , cn} as the set of R’s
attributes and c∗1 as the primary key attribute. For simplicity we consider only single attribute
primary key, if there are more keys the c∗1 contains the set of primary key attributes. The set
of sub-tables of R is {g1, ..., gk} such that each g contains a disjoint subset of the non-primary
key attributes as well as the primary key of R [ÖV11, ANY04] and g1 ▷◁ g2 · · · ▷◁ gk = R. The
primary key in each g is used to be able to rebuild the original table. This partitioning strategy
is more complex than horizontal fragmentation because of the bigger number of available choices
[ÖV11]. It is useful when the application queries access only to a small subsets of columns in a
table reducing the amount of data to be scanned to answer the query [ANY04].

Approaches to create vertical partitions exist since the seventies when Hoffer and Sever-
ance [HS75] measured the affinity between pairs of attributes to cluster them according to their
pairwise affinity. They found the attribute’s clusters using a heuristic based on the bond en-
ergy algorithm. Their motivation is to allow queries to deal with smaller relations, loading
sub-relations with only the necessary attributes in main memory when a memory hierarchy is
supported. This approach served later as basis to the algorithm detailed in [ÖV11] and the work
of [MASB18]. Their work was modeled later as an integer programming problem in [Hof76].
The exact algorithm presented in this paper does not use any heuristic to be solved and conse-
quently does not scale for bigger relations. Eisner and Severance proposed in [ES76] a heuristic
technique using a network representation of the interactions of the users with the attributes of
each record. The complexity of the problem was studied by Niamir in 1978 in [Nia78] which
proved that the number of partitions equals to the B(m) (mth Bell number). For instance, a
relation of 10 attributes, can be partitioned in more than 115,000 ways.

Niamir B. and Hammer M. proposed in [HN79] a system to automatically select attribute
partitions using the hill-climbing heuristic to select the candidate partition whose evaluation
cost is minimal. The candidates are obtained using a pairwise grouping-attribute regrouping

35

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

Attributes ID Model Dev Length Cost

ID 15 20 30 40
Model 15 5 4 12
Dev 20 5 2 4
Length 30 4 2 22
Cost 40 12 4 22

Figure 1.8: Affinity matrix of Airplane table

heuristic, named grouping (also known as bottom-up approaches), which starts assigning each
attribute to one fragment and at each step joins some of the fragments to the initial one if the
cost is minimal. Similar to this work, thirty years later the work named HillClimb [HP03] focused
on data layouts proceeds as follows: it starts finding two partitions (initially single attributes)
which, when merged, provide the best improvement in terms of expected query costs. The
algorithm stops iterating when there is no improvement in expected query costs.

Similarly, [SW85] propose grouping heuristics for centralized and distributed databases re-
spectively. A most recent modeling was proposed in [Amo10] in which the costs in terms of read,
written and transferred bytes are estimated with a cost model given a database schema and a
workload. The proposed cost model is extended to handle load balancing as well instead of just
minimizing the sum of transfer/access costs. The author showed that finding the minimum cost
model is an NP-hard problem and proposed two solution strategies: quadratic programming
and simulated annealing. Their experiments performed using the H-Store database showed the
feasibility and effectiveness of the cost model.

The results of the teams of Hoffer and Severance were extended by Navathe et al. in 1984 in
[NCWD84]. In this work the authors propose a two-phase approach to obtain vertical partitions.
The method performs clustering using an affinity matrix of attributes as the one shown in Figure
1.8. The numbers on the table represent the number of transactions in which both attributes
appear together, for example the attributes ID and Model appear together in 15 transactions of
an assumed workload. Then, with this result, the method uses a binary partitioning technique
on the clustered attributes to determine the partitions. The work is used as basis in [CY87]
where it is adapted to relational databases and later in [CPW89] the work was extended decom-
posing the design process into several sub-design problems. These heuristic algorithms, named
splitting (also known as top-down) heuristics, start in general with a relation and partitions it
at each step based on some objective function. Most recently, the grouping approach detailed in
[BCN17] proposes an algorithm that independently of the workload and using only the database
logical scheme derives functional dependencies between the attributes with TANE — a popular
functional dependency extraction algorithm.

More sophisticated approaches to create vertical partitions using graphical algorithms are
found in the works of Navathe et al. in [NR89]. In their work the authors mapped the affinity
matrix to a graph with weighted edges that is partitioned using a technique expanding the
graph’s spanning tree. Similar techniques are applied in [LZ93]. Most recently, more heuristics
have been considered to obtain vertical fragments. A genetic algorithm was used in [DAB06] to
explore the set of candidate solutions. Besides association rules from data mining have been used
to create clusters of partitions in [RG06] for instance. All of the approaches described above seek
to minimize the response time by clustering the attributes according to a workload. A more
recent approach [DPP+19] consider the feasibility of a general machine learning techniques,
specifically deep reinforcement learning, to find the right vertical partitioning scheme matching
a workload.

Some works present automatic database attribute clustering for single and distributed com-
puters. For example, [LG12] proposed an algorithm called AutoClust to automatically vertically
partition a database. Their algorithm is based on closed item sets mined from queries of the

36

1.4. PARTITIONING APPROACHES

workload and their attributes using rule mining. It can be divided in five steps: 1. Attribute
usage matrix generation. 2. Attributes mining. 3. Primary key addition to the proposed parti-
tions. 4. Generate execution tree, with a candidate attribute clustering in the leafs. 5. Submit
solutions to the query optimizer to select the optimal vertical partitioning schema. Their algo-
rithm is optimizer-integrated, meaning that it uses the query optimizer as a black box to perform
the optimization using what-if calls.

A complete experimental survey of some of the work mentioned in this section was done in
[JPPD13]. This work discusses six vertical partitioning algorithms under the same experimental
setting. They concluded that the HillClimb algorithm presented in [HP03] is the best one in
terms of the criteria defined in their paper. Some of the partitioning techniques in this study
are presented in the sections 1.4.3 and 1.5 where we detail online partitioning algorithms and
partitioning in recent large-scale platforms. The results of this section are summarized in Table
1.4.

Table 1.4: Vertical partitioning approaches

Approach Algorithm Strategy Details

[Hof76]
Exact

Splitting Integer programming formulation
[Nia78] Grouping Complexity study
[Amo10] Grouping Global cost model

[HS75]

Heuristic

Splitting

Bond energy algorithm (BEA)
[ES76] Network representation
[NCWD84] Affinity matrix
[NR89] Graph partitioning
[LZ93] Graph partitioning
[BCN17] Functional dependency
[HN79]

Grouping

Hill-climbing
[HP03] Hill-climbing
[DAB06] Genetic algorithm
[RG06] Association rule mining
[LG12] Association rule mining
[DPP+19] Deep reinforcement learning

1.4.1.2 Horizontal

Horizontal partitioning splits a relation along its tuples, it was explicitly defined shortly after
vertical partitioning in 1978. However, contrarily to the works describing vertical partitions, the
algorithms to partition the data horizontally were introduced a few years later.

Centralized and distributed platforms The efforts towards the characterization of hor-
izontal fragments started with Ceri et al. in 1982 in [CNP82] with the introduction of the
min-term predicates. A min-term predicate is the combination of simple predicates whose defi-
nition is given in Definition 1.2. A minterm predicate mj is the conjunction of simple predicates
in their natural or negated form (i.e. ¬pj) such that mj does not contain contradicting simple
predicates.

Definition 1.2 (Simple predicate) [ÖV11] Given a relation R and one of its attributes ci, a
simple predicate pj is defined on R as pj : ci θ V where θ ∈ {=, ̸=, <, >,≤,≥, } and V is any
value chosen from the domain of ci.

The horizontal partitioning process of a relation R is described as the set of tuple groups
G = {g1, · · · , gk} such that each group g ∈ G is defined by a set M = {m1, · · · , mk} of min-term

37

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

predicates. Each gi corresponds to a partition of the relation R if
⋃︁

gi∈G gi = R and
⋂︁

gi∈G gi =
∅. The previous conditions are known as completeness and reconstruction fragmentation rules
respectively. Ideally the partition groups are balanced and they correspond to the application
groups queried by the application, however the selection of the optimal minterm predicates has
been showed to be an NP hard [SW83] problem.

The min-term predicates algorithm was complemented by Özsu and Valduriez in [ÖV11]
where the COM MIN and PHORIZONTAL algorithms are described. In simple words, the
main steps of the algorithm are:

1. Generation of min-term predicates (COM MIN algorithm),

2. Simplification of min-terms eliminating redundant and useless terms (PHORIZONTAL
algorithm), and

3. Generation of partitions (or fragments).

Following the example of Figure 1.4a, the predicates σDev=′Airbus′ and σDev=′Boeing′ are the
min-predicates of the partitions shown in the Figure. To avoid redundancy, in this section we
discuss only the generalities of horizontal partitioning approaches. Specific horizontal strategies
are discussed in Section 1.4.2 to avoid redundancy.

Parallel platforms In parallel processing systems there is no need to localize the query exe-
cution in a single node. The objective of parallel systems is to use partitioning for parallelizing
and load balancing query executions across the nodes of the cluster as a mean to improve the
database performance when answering a workload. The problem was firstly formalized by Sacca
D. and Wiederhold G. in [SW83]. In this work, the differences between parallel and distributed
system were clearly stated. The authors proved that finding a feasible and optimal solution for
the partitioning problem in a parallel environment is NP-hard. An important trade-off should
be considered when only a few tuples satisfy the selection operator of a query. Ideally in this
situation, the partitioning strategy should localize the tuples that satisfy the query across only
a few processors minimizing the communication overhead associated with the synchronization
and scheduling. Conversely, for complex queries a full declustering may seem like the most in-
teresting strategy. This compromise makes partitioning in parallel systems much more complex
[ÖV11]. We distinguish clearly two main horizontal partitioning strategies in parallel platforms:
single-attribute and multi-attribute declustering.

The first high performance DBMS multiprocessor databases introduced in the eighties com-
prise systems like Gamma [DGG+86], Bubba [WB87] and Volcano [Gra94]. In such systems,
relations are generally horizontally partitioned across multiple processors. When the entire rela-
tion is distributed among all the nodes of the cluster the mechanism is called declustering as we
previously mentioned. The most widely single-attribute declustering strategies are the following
[DG92]:

• Round-robin: this strategy sequentially sends the ith tuple to the (i mod n) partition.

• Range: distributes the tuples according to intervals of some attribute.

• Hashing : a hashing function specifying the placement of a tuple in a particular disk is
applied to a tuple’s attribute.

The decision on which hashing function to apply or which range to use in a specific key are left to
the database designer’s criteria. The strengths and drawbacks of each strategy are summarized
in Table 1.5.

A major drawback of the hashing and range strategies supported by parallel systems is that
neither can de-cluster a relation on more than one attribute. Several multi-attribute strategies

38

1.4. PARTITIONING APPROACHES

Table 1.5: Single-attribute horizontal declustering strategies

Strategy Strenghts Drawbacks

Round robin
Sequential access queries. Direct access to individual tuples.
Uniform data distribution.

Hash Exact match queries Range queries

Range
Exact match queries Partition size disparity
Range queries

were proposed to overcome this issue. We classify these approaches based on their objectives as
presented in [GGGK03]. They are organized in Table 1.6, we give an overview of each of the
approaches.

Table 1.6: Multi-attribute declustering

Objective Strategy name Reference

Localize execution to as
few nodes as possible.

MAGIC [GD94]
BERD [BAC+90]

Reduce execution
skewness.

Disk Modulo [DS82]
Fieldwise XOR [KP88]
Error Correcting Codes (ECC) [FM91]
Hilbert Curve Allocation [FB93]

Optimize processing of
join operators.

DYOP [OO85]
Multi-attribute partitioning [HL90]

Let us start with the strategies striving to localize to a few nodes the execution of a query
referencing a partitioning attribute. This group of strategies is appropriate for systems that
suffer from the overhead to coordinate multi-site queries. We describe two of the main works:
the Multi-Attribute GrId deClustering (MAGIC) [GD94] and Bubba’s Extended Range Declus-
tering (BERD) [BAC+90]. MAGIC is an extension of the Hybrid-Range partitioning strategy
published in [GD90] that strikes a compromise between the sequential execution paradigm of
range declustering and the intra-query parallelism achieved with hash and round-robin.

MAGIC builds a grid directory on a relation such that each entry in the two-dimensional
grid represents a relation’s fragment. To determine which attributes and ranges should be used
to build the grid, MAGIC uses the frequencies of queries containing individual attributes and
the average resource requirements (e.g., disk accesses, network). An example of such grid is
shown in Figure 1.9 where each entry of the grid represents a fragment of the relation. Each
partition would be assigned to a single processor if to enhance the system’s throughput.

Developer
Boeing Airbus

C
o
st

0-150 1 2
150-300 3 4
300-450 5 6

Figure 1.9: MAGIC grid example

BERD [BAC+90] fully partitions a relation across the nodes of the cluster using the primary
partitioning attribute value in the first place. Then for each of the secondary attributes an
auxiliary relation is formed from the attribute’s values with their respective identifiers and

39

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

location. The tuples on these relations are range partitioned over multiple locations and the
partitions at each location are indexed in the form of a B-tree index. When a query is submitted
to the system, if it involves the primary attribute it is directed to the relevant location. For any
other attribute, the system uses first the auxiliary relation to determine the appropriate location
of the tuples. A study comparing both BERD and MAGIC is presented in [GDQ92] in which
the superiority of MAGIC over BEARD is manifested.

The second type of approaches is appropriate for workloads in which the overheads due to
parallelism are shaded by the performance gain of splitting the work on different nodes. This
approaches include: Disk Modulo (DM) [DS82], Fieldwise Xor (FX) [KP88], Error Correcting
Codes (ECC) [FM91] and the Hilbert Curve Allocation Method (HCAM) [FB93]. They are
clearly described in [MS98] using Cartesian product files, a multi-attribute file structure for
partial match and best match queries very similar to the grid files presented before.

Let us start with the Disk Modulo method, which assigns a bucket [i1, i2, ..., id] to a disk unit
as:

i1 + i2 + ... + id mod M

where M is the number of available disks. This strategy is optimal for partial match range
queries. For the matrix of Figure 1.9, before adding up the values of each i, the values (or
range) are mapped to an integer.

The XOR declustering is optimal when the number of disks and the size of each field is a
power of two. The assignment formula of this approach applies the bitwise XOR operator ⊗ to
the binary values of the bucket coordinates [i1, i2, ..., id] as:

i1 ⊕ i2 ⊕ ...⊕ id mod M

where M is the number of available disks.
The vector-based declustering generates a pair of integer vetors for a given number of disks

and allignts the buckets in a Cartesian product file with the vectors. The Hilbert Curve Allo-
cation (HCAM) uses the Hilbert space-filling curve to impose a linear ordering on the buckets
in the Cartesian product files. Then it traverses the buckets in the order assigning each bucket
to a disk unit in a round-robin way. As shown in [MS98], this strategy outpeforms the previous
strategies for small range queries and large number of disks.

Finally we mention the group of strategies striving to optimize the processing of the join
operator. The DYOP technique [OO85] partitions the data by repeatedly sub-dividing the tuple
space of multiple attribute’s domains. In order to execute a hash-join query efficiently, the
size of each partition equals the aggregate memory of the processors in the system, the tuple’s
order is preserved as well. [HL90] builds a grid file on the attributes used to join the partitioned
relation with others. For example, let us consider the relations R(A, B, C), S(B, D) and T (C, E).
Building a grid-file on the B and C attributes to partition R would minimize the number of
tuples of R that are redistributed when it is joined with either S or T .

A simulation study of data placement issues in a shared-nothing system is presented in
[MD97]. They performed experiments in a simulation written in CSIM/C++ that was configured
to simulate a SN database of 128 nodes. The drawback of their model is that the cost to shuffle
data on the network is disregarded. They performed experiments to establish the optimal degree
of Declustering (number of partitions). They presented results of declustering, response time for
joins, indexes, skewness and different CPU configurations for parallel and sequential systems.
They concluded that full declustering is a viable strategy for placing relations in a SN parallel
database system. The evaluation is done using the average response time as metric.

Referential horizontal partitioning This strategy uses the database schema, specifically
the member-owner relation between tables to generate partitions. The member-owner relation
is illustrated in Figure 1.10 which diagrams two tables in which a relation called the Member is
linked to the information stored in another relation called the Owner. An integrity constraint

40

1.4. PARTITIONING APPROACHES

Owner

c1o c2o c3o

Member

c1m c2m c3m c4m c5m

Figure 1.10: Owner and member relations

is defined between the two tables using the primary key of the owner relation and an attribute
in the member relation (e.g c1o and c1m in Figure 1.10 respectively). It was first described by
Ceri et al. in [CNW83]. In this partitioning method, the owner relation is initially partitioned
and the partitions of the member relation are obtained with a semi-join operation.

Formally let us consider two linked relations O, M being the owner and member relations
respectively. If O is partitioned and {o1, · · · , ow} are the partitions, the horizontal partitioning
of M is defined as Mj = M ⋉ Oj , 1 ≤ j ≤ w. When the member table has foreign keys pointing
to more than one relation, the choice of the attribute used to partition the member relation is
done according to: i) the attribute that would maximize performance for most applications and
ii) the attribute that minimizes the joins costs between both relations [ÖV11].

This partitioning strategy is supported by the commercial DBMS Oracle since its 11gR1
version. Its implementation is described in [ECS+08] which highlights the key concepts of
referential partitioning, the implementation challenges and an experimental study showing the
performance gain sand other benefits of this partitioning strategy. They also explained how
referential partitioning could be used to simulate vertical partitioning by breaking a table into
two or more smaller tables with less columns in a parent-child relationship.

1.4.1.3 Hybrid

As described previously, this partitioning also known as nested occurs when a table is vertically
partitioned and it is then partitioned horizontally (or vice versa). As mentioned in [ÖV11], the
number of levels of nesting can be large but it stops when each fragment consists only of a single
tuple.

The only commercial DBMS supporting this partitioning strategy is Teradata. Their strategy
detailed in [ASAB16] relies on the file system storage layer which handles either row, column or
combined partitions in the same internal way. Contrarily to the horizontal or vertical systems
which are row or column-based respectively, Teradata file system is row-id based. A row-id
identifies a row or parts of it, and at runtime the data are searched using this id. In this way,
the file system is agnostic to the partitioning scheme. When a row is inserted in a table, a row-id
is generated based on a hash value of the primary index columns.

1.4.2 Partitioning by data model

In this section we present the most relevant approaches by data model. We start chronologically
with the relational data model, presenting the approaches applied to centralized and distributed
platforms since the parallel approaches were described in the previous section. Then we move
to object-oriented and deductive models and finally the dimensional data model.

1.4.2.1 Relational data model

Here we detail the most recent horizontal partitioning algorithms. We do not include vertical
approaches in this section to avoid redundancy since they were fully discussed in Section 1.4.1.1.

41

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

TupleID QueryID

1 1,2,3,6
2 1,4,6
3 1,2,4,5
4 3,5

(a) Workload as inverted table

1

2

3

41

2

2 1

1

(b) Schism graph

Figure 1.11: Schism data representation

For horizontal partitioning, we have already discussed the basic approaches in which the main
concepts and algorithms are introduced. Let us start describing the approaches to deal with
systems characterized by numerous short on-line transactions, in which partitioning seeks gen-
erally to increment the system’s throughput. This is achieved mostly by reducing the number
of distributed transactions. The approaches presented in this section are summarized in Table
1.7 in which we highlight the main strategy, its inputs and main objectives.

A very influent workload-aware partitioning approach named Schism was proposed by Curino
et al. in [CZJM10]. Their system partitions the database using graph partitioning techniques
and decision trees. They first considered an OLTP workload containing read and update queries
and map the database to a graph. In their model, a node corresponds to a tuple and the edges
connect tuples that are used within the same query. The nodes’ weights correspond to the
number of times the tuple is called in the workload or their size in bytes. This is exemplified in
Figure 1.11. The interactions between the tuples 1 to 4 are shown in the inverted table showing
the ID of the tuples and the queries they are part of (Figure 1.11a). The edges weights represent
the number of times in the workload both nodes are connected. They expanded the graph to
consider replication by adding n more copies to each node, where n is the number of edges
connected to the node. When a partition is created, if two nodes of the same tuple are in the
same partition, they are clearly not replicated. Contrarily, if two nodes of the same tuple are
found in two different partitions then the tuples are replicated to ensure data locality. Using this
graph, a partitioning heuristic (e.g., METIS) is applied and the data are divided in partitions. A
decision tree is used to explain the obtained partitions, and to recreate a path leading to the final
partitions using simple predicates. The red dotted line of Figure 1.11b represents the partitions
after applying the graph partitioning heuristic. They evaluated their work using TPC-E and
other databases taken from social networks.

In [PCZ12] Pavlo et al. presented an approach named Horticulture to automatically create
horizontal partitions. Its main objective is to optimize throughput minimizing the number of
distributed transactions and minimizing the access skew across servers. Their workload-aware
partitioning algorithm is based on an adaptation of the large neighborhood search technique in
which a cost model is used to estimate the coordination cost and load distribution for a simple
workload. Their method starts with an initial best solution, obtained using measures from the
workload and access patterns. It generates a set of neighbor solutions (called relaxing the initial
solution) that are evaluated against the cost model (composed of the coordination and skewness
cost). If they improve then the cost model then the solution is considered as best and it continues
iterating.

Consens M. et al. presented divergent designs in [CILP12]. A divergent design installs a
different physical configuration (e.g., indexes and materialized views) with each database replica,
specializing replicas for different subsets of the workload. Queries are routed to the most suitable
replica at runtime. They formalized the problem representing the cost of evaluating the workload
and then using this cost formula to decide the best solution. In their experiments they used the
DB2 Design Advisor to generate candidate solutions, and later each one was evaluated using

42

1.4. PARTITIONING APPROACHES

the total cost formula that considers the trade off between load balance and specialized replicas.
They presented a pruning strategy that was tested with two TPC workloads.

The system HOPE presented in [CGZT14] applies an hyper-graph clustering algorithm to
generate partitions of a database considering a transactional workload. In their work, they
generated tuple groups using the min-term predicates. These groups of tuples are the nodes
of the hyper-graph, weighted with two values: the size of the tuple group and the number of
transactions in the workload accessing the group. Each transaction in the workload is mapped
to a weighted hyper-edge of the graph. HOPE partitions the hyper-graph using the hMetis4

package. The skewness of the partitions was regulated by a skewness factor.

Tran K. et al. proposed a Join Extension, Code-Based Approach in [TNST14]. Their method
examines the workload and the database schema to derive a partitioning strategy. It is called
Code-Based since it inspect the SQL code of stored procedure to define join paths used to
partition. The algorithm leverages partitioning by foreign key relationships to automatically
identify the best way to partition tables using the attributes. After it combines the solution for
each transaction in the workload to find the best global partitioning solution.

Zamanian et al. presented in [ZBS15] a partitioning scheme called predicate-based reference
partition (PREF) that allows co-partition sets of tables. Their method is a modified version of
the referenced horizontal partition, but it ensures full data locality replicating tuples in different
partitions. Besides, they presented two partitioning algorithms (one schema-driven and other
workload-aware) that incorporate PREF to find automatically the best partitioning scheme
for a database. In the schema-driven algorithm they modeled the given database schema as an
undirected graph, having as edges the referential constraints of the schema. Based on this graph,
they decide which relations will be initially partitioned (using a hashing function for instance),
and the other relations that will be partitioned following the same schema. They maximize data
locality, trying to reduce the data replication.

In [DLL+17], the authors present an approach to partition data and exploit the fact that
in many recent database systems, data is replicated to increase the robustness and availability.
Their method replicates data but each replica has a different partition structure. They start
calculating the distance between queries of the workload based on the shared attributes. They
later used a k -medoids to cluster the workload and generate a partitioning plan for each cluster
and organize replicas with these plans. They assumed that the number of cluster is equal to the
number of replicas.

Rabl and Jacobsen presented in [RJ17] an allocation strategy in shared-nothing data clusters.
Their model allows replication to improve the performance of read only queries but it balances
it to avoid low performances in update queries. Their model seeks to maximize the throughput
while secondarily minimizing update and disk consumption overhead due to replication. For
this, each query is run in a single node and replication of data between nodes is needed. Their
model starts classifying the update or read queries of the workload according to the data they
access. Each class is a different type of data fragment (e.g., horizontal or vertical fragment).
Based on this classification, each group of queries is assigned to one or more data nodes. The
allocation is calculated using heuristics to solve a linear programming problem balancing the
load of query classes across the nodes and reducing the overall data replication.

Most recently, authors in [GLL+20] proposed a general strategy named AlCo (AlCo, Allocate
fragments based on Cost) for allocating fragments in a distributed database. AlCo evaluates
multiple candidate allocation plans based on a cost model, which is realized by a modified
genetic algorithm employed by PostgreSQL. Their cost model synthetically considers various
factors to enable a generalization ability. Also, to reduce the risks caused by randomization
of the genetic algorithm, AlCo provides an upper bound computed through current heuristic
methods to improve the algorithm’s robustness.

4http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview

43

http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

T
a
b
le

1
.7
:
R
ecen

t
h
o
rizo

n
ta
l
p
a
rtitio

n
in
g
a
p
p
ro
ach

es

In
p
u
ts

O
b
jectiv

e
A
p
p
ro

a
ch

M
a
in

stra
te
g
y

S
ch

e
m
a

W
o
rk

lo
a
d

R
e
p
lic

a
tio

n
M

a
x

L
o
c
a
lity

M
in

R
e
d
u
n
d
a
n
c
y

M
in

W
o
rk

lo
a
d

sk
e
w

S
ch
ism

[C
Z
J
M
10

]
•

G
ra
p
h
p
artition

in
g.

✓
P
artial

✓

H
orticu

ltu
re

[P
C
Z
12]

•
Iterative

n
eigh

b
or

search
.

✓
✓

F
u
ll

✓
✓

✓

D
iv
erg

en
t
d
esig

n
s

[C
IL
P
12

]
•

Iterative
refi

n
em

en
t.

✓
F
u
ll

✓

•
U
se

of
q
u
ery

op
tim

izer.
S
W

O
R
D

[Q
K
D
1
3
]

•
H
y
p
erg

rap
h
p
artition

in
g.

✓
P
artial

✓

•
R
ep
a
rtition

in
g
tech

n
iq
u
e.

H
O
P
E

[C
G
Z
T
14

]
•

H
y
p
er

g
rap

h
p
artition

in
g.

✓
P
artial

✓
✓

J
E
C
B

[T
N
S
T
14]

•
J
oin

-ex
ten

sion
co
d
e-b

ased
.

✓
P
artial

✓

•
P
a
rtial

solu
tion

s
com

b
in
ation

.
P
R
E
F

[Z
B
S
1
5
]

•
R
eferen

tial
p
red

icate-b
ased

.
✓

✓
P
artial

✓
✓

•
M
ax

im
u
m

sp
an

n
in
g
tree.

R
ep
lica

-aw
are

[D
L
L

+
17]

•
K
-m

ed
ois

to
attrib

u
tes.

✓
P
artial

✓

•
B
ran

ch
an

d
b
ou

n
d
.

Q
u
ery

cen
tric

[R
J
1
7
]

•
L
in
ea
r
p
rogram

m
in
g.

P
artial

✓
✓

•
G
reed

y
a
llo

cation
strategy.

✓

A
lC
o

[G
L
L

+
20]

•
C
u
sto

m
cost

m
o
d
el.

✓
N
o

✓

•
m
o
d
ifi
ed

gen
etic

algorith
m
.

44

1.4. PARTITIONING APPROACHES

1.4.2.2 Object-oriented data model

The partitioning concept was smoothly adapted to this kind of databases in which an entity
corresponds to a class instead of a relation. The partitioning strategies were explored firstly
explored by Cook J. et al. in [CWZ94] investigating methods to improve the performance of the
garbage collector, in which a subset of the entire database is collected independently from the
rest.

A framework for class partitioning in OODB was proposed by Karlapalem K. and Li Q.
in [KL95, KL00]. Their framework devises partitioning schemes based on different types of
methods and their classification. The horizontal fragmentation process in OODB is defined as
a process for reducing the number of disk entries to execute a query reducing the number of
irrelevant objects accessed. Vertical fragmentation strives to reduce the irrelevant attributes
accessed when querying a class.

Horizontal class partitioning: It was pioneered by Bellatreche et al. in [BKS97] and ex-
tended in [BKS00]. In these works the authors presented horizontal fragmentation based on a set
of queries and develop strategies for primary horizontal partitioning. In [BKL98], the problem
of derived class data partitioning has also been studied.

Vertical class partitioning: A cost-driven approach to study the effectiveness of data par-
titioning in OODBs in terms of reducing the number of disk accesses when executing a query
was proposed by Fung C. et al. in [FKL03]. [CG97] proposes a unified view of the vertical
partitioning problem and a set of transformation rules for various vertical partitioning methods.

1.4.2.3 Deductive data model

The partitioning problem in deductive database was covered by Mohania M. et al. in [MS94].
Deductive database addresses the design of distribution of both the database and the rules. In
this work the authors considered the minimization of data communication cost as the primary
rules from allocation. The problem is modeled as a directed acyclic graph, where nodes represent
rules or relations and arcs represent dependencies or usage of relations by rules. A heuristic is
then proposed based on successively combining adjacent nodes.

Another approach was presented by Neumann K. et al. in [NH94]. This paper presents the
algorithms necessary to partition a deductive database represented as an Extended Predicate
connection Graph (EPCG). The objectives that the system seeks to attain are the equalization
of storage and processing costs, distributing the base relation nodes in an effective manner and
preserving the locality.

1.4.2.4 Dimensional data model

As it was mentioned in Section 1.3.10 this data model is embraced by data-warehouses. This data
model illustrated in Figure 1.12 in which a fact table (Maintenance table) is surrounded by the
dimension tables (Aircraft, Developer, Date and Procedure) in a star-schema. Data warehouses
had its boom in the nineties and it was at the end of this decade that the first partitioning
strategy for parallel data-warehouses was proposed by Stöhr T. et al. in [SMR00]. In their
work, the authors presented an allocation that considers relational data warehouses based on
a star schema and utilizing bitmap index structures. Their experiments were developed in a
”Shared Disk” architecture. They proposed a multi-dimensional hierarchical fragmentation of
the fact table based on multiple dimension attributes. To fragment, they used a technique
called ”point fragmentations” that creates one horizontal fragment per value of the dimension.
If it is done with for example two dimensions, having m and n as number of different values
respectively, the maximum number of fragments is n ∗m. Bitmap indexes are fragmented using

45

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

Maintenance

AircraftID
DeveloperID
DateID
ProcID
NbHours
Cost

Aircraft

AircraftID
Model
Developer
Length
Cost

Developer

DeveloperID
Name
Location

Procedure

ProcID
Detail
Duration
CostHr

Date

DateID
Year
Month
Day

Figure 1.12: Star-schema example

the same logic as the fact table. A simple round robin allocation of fact fragments to the disks
is used.

In parallel, [BKMS00] presented an algorithm for fragmenting the tables of a star schema
(e.g., Figure 1.12). They mentioned that during the fragmentation process, the choice of the
dimension tables used to fragment the fact table plays an important role in the overall per-
formance. They develop a greedy algorithm to choose ”best” dimension tables to perform the
partitioning of the fact table.

Bellatreche et al. [BBM07] followed Stöhr’s direction focusing on horizontal partitioning and
bitmap join indexes in the context of centralized data warehouses. They proposed an algorithm
to select simultaneously these structures in order to reduce the query processing cost. The
algorithm uses the horizontal partitioning schema injected to a genetic algorithm to prune the
search space when selecting the bitmap join indexes. Also, they proposed a greedy algorithm to
select bitmap join indexes under a storage bound.

In [BBRW09] the referential horizontal partitioning was formalized for the dimensional data
model. In this study, the authors gave a formalization of the referential fragmentation schema
selection problem in the data warehouses studying its hardness to select an optimal solution.
They proposed as well two heuristics to the selection problem: hill climbing and simulated
annealing with several variants to select a near optimal partitioning schema.

The work of [LMV10] introduces a fined grained virtual partitioner which dynamically adapts
partition sizes, without any knowledge about the database and the DBMS. Their proposal is to
have an initial number of virtual partitions greater than the number of participating nodes. In
this way each cluster node processes a set of small, light-weight sub-queries. In their algorithm,
each node in the shared-nothing cluster contains a copy of the database. The idea is to partition
each query (e.g., by range) on each node, such that each node is in charge of processing one
specific query range. In this way, at query runtime many sub queries of the original query are
produced per node. The goal is to achieve intra-query parallelism in OLAP query processing.
To ensure good performance, there must be a clustered index associated to the partitioning
attribute and also a uniform value distribution on the partitioning attribute.

Finally, a more recent work [NKH18] proposed a novel graph-based database partitioning

46

1.4. PARTITIONING APPROACHES

Table 1.8: Partitioning advisors

Optimization
Strategy

Advisor Pa Ib Mc Cd Se

DB2 Index Advisor [RZML02] ✓ ✓ ✓ ✓

Parallel DB2 Index Advisor [ZRL+04] ✓

Microsoft SQL Server [ANY04] ✓ ✓ ✓

AutoPart [PA04] ✓

Parallel Microsoft SQL Server [NB11] ✓ ✓

Parinda [MDA+10] ✓ ✓

Oracle 11g ✓ ✓ ✓ ✓

SOAP [CZC15] ✓

Deep Reinforcement Learning [HBR19] ✓
aPartitioning, bIndex, cMaterialized views, dClustering, eStorage management

method called GPT that improves query performance with lower data redundancy. The authors
claim that existing partitioning methods, specifically PREF [ZBS15], have a few major draw-
backs such as a large amount of data redundancy and not supporting join processing without
shuffle in many cases despite their large data redundancy. They pointed that this partitioning
strategy is not optimal to treat analytic queries (OLAP) and that GPT is more suited for star
and snowflake schemas in data-warehouses. They elucidate that the drawbacks arise from the
tree-based partitioning schemes in PREF.

1.4.3 Partitioning by adaptability

We enumerate the offline and online partitioning strategies. We start with the offline partitioning
strategies, specifically the available design advisors to initially partition a relational database.
Partitioning wizards are a complement of the strategies previously presented. Then we depict
dynamic partitioning, or on-line data reorganization as called in [SKS+97].

1.4.3.1 Partitioning advisors

Due to the complexity of the problem of selecting the optimal partitioning design for a database,
a number of commercial and academic tools have been proposed to assist administrators and
non-expert users in the task of choosing the most adequate partitioning schema for a workload.
As it was mentioned in Section 1.2.1 data partitioning is not the only optimization technique to
enhance the system’s performance. Indexes and materialized views are suggested as well by some
advisors considering the impact of the interaction and dependencies between these optimization
strategies. The cited works are summarized in Table 1.8 in which we mention for each advisor the
optimization strategies that it proposes. As it is shown in the table, the partitioning technique
is the only optimization technique supported by all advisors.

The first automatic selection of table partitioning in parallel shared-nothing database sys-
tems was presented by Rao J. et al. in [RZML02]. They presented a solution that given a
workload and their frequency of occurrence, determines the most optimal partitioning using an
integrated solution with the query optimizer of the DB2 DBMS. In contrast to what was pre-
viously proposed, they built a partition advisor to automate the process of partition selection
exploring the cost model of the query optimizer itself. To do this, they added two additional
modes to the query optimizer: the recommend partition and evaluate partition modes. In the
first mode, the optimizer will generate candidate partitions for each table involved in a query of
the workload. The candidate set of partitions is not limited to this set, in recommend mode the
optimizer generates candidate partitions considering replication, and combinations of individual

47

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

columns in the tables involved in a query. After, the query optimizer generates a plan based
on these candidate partitions and it stores the plan in a table. The cost of each partition is
evaluated by the optimizer using two different strategies: sampling and deriving. Both strate-
gies adjust the value obtained when applying the cost function to the original statistics of the
database. The evaluate partition mode performs a Rank-based enumeration of the whole set of
partitioning configurations proposed in the candidate partitions table. Then using a customized
cost function proposed the best partitioning model. They explored other ways of combining the
models like genetic and other search algorithms but their results worked better in rank-based
enumerations.

The DB2 advisor presented in [ZRL+04] was the first tool recommending indexes, ma-
terialized views and partitions by considering their interactions. The authors identified two
types of dependencies between indexes, materialized query tables, data partitioning, and multi-
dimensional clustering: weak and strong. A technique ti is ”strongly” dependent on technique
tj , if a change in selection of tj often results in a change in that of ti. Otherwise, we say ti

”weakly” depends on tj . They showed that a weak dependency exists between data partitioning,
indexes and multi-dimensional clustering. In contrast to the strong dependency between data
partitioning and materialized query tables, knowing this interaction allows coupling data par-
titioning and other optimization techniques. For instance, in the case, when data partitioning
cannot optimize all queries (due to the constraint representing the number of final fragments
generated by a data partitioning algorithm), it will be then augmented by other techniques.

The work in Fractured Mirrors by Ramamurthy R. et al. detailed in [RDS02] is not specif-
ically a partitioning advisors. However, their work was used later in the advisor proposed in
[ANY04]. The Fractured Mirrors paper presents a partitioning model that takes advantage of
redundant storage used in some database systems to provide tolerance to disk failures. They
considered two disks in a mirror being logically identical but physically different. In particular,
one copy of each table is stored using the Decomposition Storage Model (or vertical), and one
is stored in a N-ary Storage Model (or horizontal). In their work they first revisited some per-
formance problems associated with the vertical model. After they propose an indexing strategy
to overcome the drawbacks presented in last section, specially the reconstruction algorithms.
Their strategy based on a B-Tree showed a dramatic increase of performance over the naive
implementation. that considered both horizontal and vertical partitions.

Agrawal S. et al. proposed a workload-aware solution to the problem of automating physical
design in a single node in [ANY04]. Their solution takes both performance and manageability
into account. In their paper they presented an integrated approach to automate physical design,
considering horizontal and vertical partitioning, indexes and materialized views. They presented
the complexity proof of the problem and the need to apply pruning techniques to reduce the
large search space of solutions. They defined the physical design problem and presented the
interactions arising from inclusion of horizontal and vertical partitioning. Their system archi-
tecture is composed of 4 main modules: 1) Column group restriction, 2) Candidate selection, 3)
Merging, and 4) Enumeration. In the column group restriction step, the system selects column
groups that are relevant for the workload (a column is relevant if it can be used to answer one
or more queries in the workload). This step eliminates columns that will never help to optimize
the workload. The candidate selection step uses a Greedy (m,k) algorithm to select for each
query a relative optimal configuration. In the merging step, new physical structures are added
to the set of candidates. This new physical structures are generated merging vertical partitions
that are output of Candidate Selection. Next for each vertical partition, they merged all indexes
and materialized views relevant for that vertical partition taking horizontal partitioning into
account. The idea is to avoid over-specialized physical design structures and to build struc-
tures that benefit the entire workload. The Enumeration step takes as input the candidates and
produces the final solution.

Nehme R. et Bruno N. proposed in [NB11] a partitioning advisor for parallel database systems

48

1.4. PARTITIONING APPROACHES

that recommends the best partitioning design for an expected workload. Their tool recommends
which tables should be replicated, and which ones should be distributed according to specific
columns. The developed techniques are deeply integrated with the parallel query optimizer,
having a much more accurate recommendation in a shorter time. They assumed that when a
table is partitioned it is hash-partitioned in a single column and also that the database statistics
for cost estimation are always available. They claim that similar approaches do not use the
query optimizers as they do, since previous works consider it as a black box and only use it to
perform what if analysis (e.g., Rank-Based and Genetic algorithms to generate possible solutions
to be evaluated by the optimizer). In their solution the query optimizer is an active part of the
recommender, they use the physical and logical trees produced for each query to generate a data
structure containing the candidate tables to be replicated and partitioned using the interesting
columns (defined also on the paper).

Parinda [MDA+10] is a partitioning advisor for an open source DBMS (PostgreSQL). As the
previously mentioned advisors, it uses the query optimizer to estimate the benefit of the design
structure simulating the design features efficiently. Their algorithm uses the work of AutoPart
[PA04], an algorithm that automatically partitions the database tables to optimize sequential
access assuming prior knowledge of a representative workload. The simulations are achieved not
achieving by writing the actual optimization features to disk but rather modifying the statistics
used by the optimizer to solve a query. The advisor proposes both partitions and indexes to the
database administrator.

From Oracle 11g a Partition Advisor5 is part of the SQL Access Advisor recommending a
partitioning strategy for a table based on a supplied workload of SQL statements.

Most recently, the work of [HBR19] introduced a learned partitioning advisor for analyti-
cal OLAP workloads based on Deep Reinforcement Learning (DRL). The main idea is that a
DRL agent learns based on experience by monitoring the behavior of different workloads and
partitioning schemes. Their experiments showed that their advisor is able to adapt to different
deployments and it outperforms existing automatic partitioning approaches.

1.4.3.2 Online partitioning

The dynamic partitioning approaches treat the problem that the load on the DBMS does not
remain static fluctuating constantly according to the change on the user’s needs. The changes
come either from the workload or from new data that is being added and that should be assigned
to a specific partition. Next, we present partitioning strategies that allow the creation of elastic
systems automatically re-organizing the data depending on the load or data changes. The
approaches are summarized in Table 1.9.

Let us start with the work of [LMV10] previously detailed in Section 1.4.2.4. This work
depicts a virtual partitioner to efficient OLAP query processing tuning the partition sizes without
requiring any knowledge from the database or the DBMS.

A dynamic partitioning method was proposed by [JD11]. In their work the authors proposed
AutoStore, a system that monitors the current workload and partitions automatically the data
at checkpoints time intervals. They create the partitions based on the data obtained from an
affinity matrix of attributes calculated for each query of the workload. They considered changes
in the workload but no changes in the data. The cost model denote the execution cost of
workload estimated by a cost-based optimizer.

In [LAP+13], the Liroz-Gistau et al. proposed DynPart (introduced in [LAP+12]) and
DynPartGroup, two dynamic partition algorithms for continuously growing datasets. In their
paper the authors formalized the partitioning problem, defining and imbalance factor to leave
some flexibility to the size of each partition. Their partitioning method is workload-aware
defining an operation that based on the relevant fragment for a query, calculates the efficiency of

5https://docs.oracle.com/database/121/VLDBG/GUID-E864E9E2-0456-4FB5-860B-44444337D7D8.htm

49

https://docs.oracle.com/database/121/VLDBG/GUID-E864E9E2-0456-4FB5-860B-44444337D7D8.htm

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

Table 1.9: Online partitioning approaches

Changing
Aproach Details

Workload Data

Virtual part. [LMV10] • Full database replication. ✓

• Specialized partitions for OLAP queries.
Autostore [JD11] • Attribute affinity matrix per query. ✓

• Partition at checkpoints time intervals.
DynPart [LAP+13] • Partition guided by eficiency measure: ✓

#relevantfragments
#fragments accessed

SOAP [CZC15] • Cost-based repartition. ✓

• Trigger system’s throughput threshold.
Cumulus [FMS15] • Time series tools to predict the workload. ✓

• Graph-based heuristic repartitining.
Clay • Identify clumps of tuples to migrate. ✓

GridFormation [DPP+18] • Reinforcement learning. ✓

a partitioning for that respective query. Their defined efficiency is intuitively the ratio between
the minimum number of relevant fragments of the query and the number of fragments that are
actually accessed under the given partitioning. The second method groups the data to be added
before hand. Contrarily to Clay, the workload remains static while the data is added constantly
to the original dataset. They proposed a measure to calculate the affinity between the data
added and the fragments.

The approach named SOAP, a system framework for scheduling online database repartition-
ing for OLTP workloads, was presented in [CZC15]. This system looks to minimize the time
frame of executing the repartition operations while guaranteeing the performance of the cur-
rent transactions running in the system. The repartitioner determines at which moment the
database should be repartitioned extracting periodically the frequency of transactions and the
partitions accessed by them. A cost-based repartition is triggered if the system’s throughput
estimated with the previous information is under a predefined threshold. A repartitioning task
could be to move individual or groups of tuples (based on ranges for instance). To enable the
database to continue running while a data are being moved, the system relies on replication. To
this end, the system generates three types of repartitioning operators: replica creation, replica
deletion and objects migration. Their prototype is built on top of PostgreSQL and conducted
an experimental study on Amazon EC2 to validate SOAP’s significant performance advantages.

Cumulus [FMS15], an adaptive data partitioning approach which is able to identify char-
acteristic access patterns of transactions and use them to initially partition and dynamically
repartition if these access patterns change. This strategy is specifically tailored for applications
that need strong consistency guarantees with OLTP workloads. Partitions in this strategy are
created with the objective to reduce distributed transactions and at the same time distribute
the load across sites. First, Cumulus collects data from the current workload and uses the expo-
nential moving average (time series prediction technique) to anticipate future access patterns.
Then, a filter is applied to only preserve the most frequent access patterns that are organized
in a weighted graph. The graph is partitioned using the METIS [KK98a] heuristic and finally
a cost model is presented to decide if it is worth to repartition based on the gain between the
cost to repartition and the reduced number of distributed transactions.

The online partitioning system called Clay is presented in [STE+16]. This system dynami-
cally creates blocks of tuples to migrate among servers during repartitioning. It does not consider
replication. The system identifies and groups in clumps the tuples that they called hot tuples.

50

1.4. PARTITIONING APPROACHES

These are the tuples that the DBMS wants to migrate to another partition. The clump is en-
larged with the frequently accessed tuples of the hot tuple, and finally it moves the clump to
other node.

Most recently [DPP+18] presented a preliminary work in an online self-managing partitioning
and layout selection system based on reinforcement learning. Their goal isto build a general
solution capable of leveraging experience and mimicking specialized methods. The paper presents
the agents, environments and actions but since it is at an early stage, they do not offer a prototype
or comprehensive evaluations.

1.4.4 Partitioning by constraints

In this section we summarize all of the previously described partitioning techniques by constraint.
The complete list is organized in Table 1.10 in which the main dimensions of the partitioning
problem are mentioned. The approaches whose constraint column is marked with a ✓mean that
they consider the workload, the number of replicas (higher than 1) or the database schema as
part of the problem’s inputs. The schema constraint referes to the database schema, or the
platform schema indicating for instance the number of replicas desired.

Table 1.10: Partitioning approaches

W
or
k
lo
ad

-a
w
ar
e

R
ep
li
ca
ti
o
n

S
ch
em

a

R
es
p
on

se
-t
im

e

C
on

cu
rr
en
cy

L
oa

d
b
al
an

ce

C
om

b
in
ed

C
lu
st
er
in
g

D
ec
lu
st
er
in
g

E
x
ac
t

H
eu
ri
st
ic
s

O
n
li
n
e

O
ffl
in
e

Type
Data model
/ Approach Constraints Main objecive Mech. Alg. Adapt.

Vertical [Hof76] ✓ ✓ ✓ ✓ ✓ ✓

[Nia78] ✓ ✓ ✓

[Nia78] ✓ ✓ ✓ ✓ ✓

[HN79] ✓ ✓ ✓ ✓ ✓

[NCWD84] ✓ ✓ ✓ ✓ ✓

[CY87] ✓ ✓ ✓ ✓ ✓

[CPW89] ✓ ✓ ✓ ✓ ✓

[NR89] ✓ ✓ ✓ ✓ ✓

[LZ93] ✓ ✓ ✓ ✓ ✓

[RG06] ✓ ✓ ✓ ✓ ✓

[DPP+19] ✓ ✓ ✓ ✓ ✓

[Amo10] ✓ ✓ ✓ ✓ ✓ ✓

[BCN17] ✓ ✓ ✓ ✓ ✓

Object oriented
[FKL03] ✓ ✓ ✓ ✓ ✓

[CG97] ✓ ✓ ✓ ✓ ✓

Hybrid [ASAB16] ✓ ✓ ✓ ✓ ✓

Advisors [RZML02] ✓ ✓ ✓ ✓ ✓

[ZRL+04] ✓ ✓ ✓ ✓ ✓

[RDS02] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[ANY04] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[NB11] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[MDA+10] ✓ ✓ ✓ ✓ ✓

[HBR19] ✓ ✓ ✓ ✓ ✓

51

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

W
or
k
lo
ad

-a
w
ar
e

R
ep
li
ca
ti
o
n

S
ch
em

a

R
es
p
on

se
-t
im

e

C
on

cu
rr
en
cy

L
o
ad

b
al
a
n
ce

C
om

b
in
ed

C
lu
st
er
in
g

D
ec
lu
st
er
in
g

E
x
ac
t

H
eu
ri
st
ic
s

O
n
li
n
e

O
ffl
in
e

Type
Data model
/ Approach Constraints Main objecive Mech. Alg. Adapt.

Horizontal Relational
• Parallel [SW83] ✓ ✓ ✓ ✓ ✓ ✓

[DG92] ✓ ✓ ✓ ✓ ✓ ✓

[GD94] ✓ ✓ ✓ ✓ ✓ ✓

[BAC+90] ✓ ✓ ✓ ✓ ✓

[DS82] ✓ ✓ ✓ ✓ ✓

[KP88] ✓ ✓ ✓ ✓ ✓

[FM91] ✓ ✓ ✓ ✓ ✓

[FB93] ✓ ✓ ✓ ✓ ✓

[OO85] ✓ ✓ ✓ ✓ ✓

[HL90] ✓ ✓ ✓ ✓ ✓• Centr.
& Distr. [CNP82] ✓ ✓ ✓ ✓ ✓ ✓

[CNW83] ✓ ✓ ✓ ✓

[ECS+08] ✓ ✓ ✓ ✓

[CZJM10] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[PCZ12] ✓ ✓ ✓ ✓ ✓ ✓

[CILP12] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[CGZT14] ✓ ✓ ✓ ✓ ✓ ✓

[TNST14] ✓ ✓ ✓ ✓ ✓ ✓

[ZBS15] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[DLL+17] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[RJ17] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[JD11] ✓ ✓ ✓ ✓ ✓

[CZC15] ✓ ✓ ✓ ✓ ✓ ✓

[FMS15] ✓ ✓ ✓ ✓ ✓

[STE+16] ✓ ✓ ✓ ✓ ✓ ✓

[DPP+18] ✓ ✓ ✓ ✓ ✓

[GLL+20] ✓ ✓ ✓ ✓ ✓

Object oriented
[CWZ94] ✓ ✓ ✓ ✓ ✓

[KL95] ✓ ✓ ✓ ✓ ✓

[BKS00] ✓ ✓ ✓ ✓ ✓

[BKL98] ✓ ✓ ✓ ✓ ✓

Deductive
[MS94] ✓ ✓ ✓ ✓ ✓

[NH94] ✓ ✓ ✓ ✓ ✓

Dimensional
[SMR00] ✓ ✓ ✓ ✓ ✓

[BKMS00] ✓ ✓ ✓ ✓ ✓

[BBM07] ✓ ✓ ✓ ✓ ✓

[BBRW09] ✓ ✓ ✓ ✓ ✓

[LMV10] ✓ ✓ ✓ ✓ ✓ ✓

[NKH18] ✓ ✓ ✓ ✓ ✓

[LAP+13] ✓ ✓ ✓ ✓ ✓ ✓

52

1.5. PARTITIONING IN LARGE-SCALE PLATFORMS

1.5 Partitioning in large-scale platforms

Back in the early 2000s, the need to incorporate, store and query large amounts of data from
the Web, with different sources, formats and at the lowest cost, contributed to the development
of new kinds of data management tools. Systems based on the relational model, especially
parallel databases, scale and can cope with vast volumes of data as demonstrated in [PPR+09].
However, the relational model is too rigid to adapt to the variability of sources and formats
of current data. Also, since the data schema is rarely available beforehand, it is impossible
to perform the conceptual design stage which is essential when building a relational database.
Therefore, systems applying a schema-later strategy have been largely accepted. These systems
store initially the data in its raw format and parse it at runtime. The pioneer presenting a novel
scalable data management tool was Google, introducing the Google File System [GGL03] and the
processing model MapReduce [DG04]. Their works served as base to Hadoop, one of the most
popular large-scale data framework until today. In this section, we start giving a brief overview
of Hadoop focusing on the partitioning strategy applied by this framework. Then, we explain
and detail the most relevant systems built on top of Hadoop and describe their partitioning
strategies.

1.5.1 Hadoop ecosystem

As defined in [Had], the Apache Hadoop software library is a framework that allows for the dis-
tributed processing of large data sets across shared-nothing clusters of computers using simple
programming models. Inspired by the Google File System and Map reduce papers, it is designed
to scale up from single servers to thousands of machines not relying in main memory to exe-
cute computations. Additionally, the framework runs programs while ensuring fault-tolerance
frequently encountered in distributed environments. Hadoop consists of two main modules: i)
Storage and distribution layer (Hadoop Distributed File System - HDFS) and, ii) Data process-
ing layer (Hadoop MapReduce and YARN). Part of its architecture is shown in Figure 1.13 in
which the systems contoured in blue are the ones part of the Hadoop ecosystem.

H
B
a
se P
ig

H
iv
e

HDFS

YARN

K
ey
-v
a
lu
e

D
o
cu
m
en
t

G
ra
p
h
-b
as
ed

S
p
a
rk

Hadoop ecosystem Other systems

Figure 1.13: Large-scale systems

1.5.1.1 Data storage layer

The Hadoop Distributed File System (HDFS) is a distributed data storage system based on
a master-slave architecture (the nodes are called Name and Data nodes for master and slaves
respectively). HDFS is designed to store structured and unstructured data in a scalable, highly
available, and fault tolerant way. Files are split into blocks of a configurable size (128MB by
default) which are distributed and stored among the data nodes. To ensure fault tolerance and
load balancing, data blocks of the same file are replicated and stored on different nodes. The
name node (master) manages the file system and regulates the access from file blocks to locations
using the file’s metadata.

53

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

In
p
u
t
d
a
ta

Input Map

Input Map

Input Map

Input Map

Results

Tuples
⟨k, v⟩ Reduce

Tuples
⟨k, v⟩ Reduce

Tuples
⟨k, v⟩ Reduce

Figure 1.14: MapReduce schema

Data partitioning When a file is imported into HDFS, it is sequentially split into small blocks
of a fixed storage size. Each block is replicated in a customisable fixed number of copies and
a hash function is used to distribute the data to the nodes. This strategy is quite simple and
allows to distribute the data controlling its balance. However it does not consider the schema
of the data and it may produce some network overheads at retrieval.

1.5.1.2 Data processing layer

Since Hadoop version 2, the processing layer is divided in two main components: MapReduce
and YARN. Both are designed to manage job scheduling, resources and the cluster. However in
version 1 MapReduce provided both resource management and data processing. In Hadoop 2,
the resources of the cluster are managed by YARN to eand the data processing models, including
MapReduce, lean on YARN. In this way, YARN can be used with different processing models
while taking advantage of HDFS functionalities.

MapReduce It is a programming framework following a master-slave architecture to process
in a parallel, reliable and fault-tolerant manner data on large clusters. The programmer designs
a job that must specify custom-built Map and Reduce functions. When the job is executed, the
parallelization of resources and data are transparent to the user. First the Map function splits
some input data into independent chunks that constitute key-values. These results are processed
by the Mapper component in charge of distributing the chunks to the processing nodes, collecting
the intermediate key-value pairs, sorting and grouping them by key before sending them as input
to the Reducer. Next, the Reduce function aggregates the values associated to a key according
to the predefined program. This procedure is illustrated in Figure 1.14. The first version of
MapReduce was based on two components: i) Job Tracker (master) performing the resource
managing and job scheduling, and ii) the Task Tracker (slave) supervising the execution of the
Map and Reduce functions. In the latest version (called YARN), the Job Tracker was split
into two separate daemons: i) A global Resource Manager and ii) a per-application Application
Manager.

YARN Its name stands for Yet Another Resource Negotiator. The purpose of this resource
management and task scheduling technology is to allocate the system’s resources to the differ-
ent applications running in a Hadoop cluster. Before adding YARN, Hadoop could only run
MapReduce applications, adding YARN greatly increased the potential use of the framework. It
separates the resource management and planning of the MapReduce data processing component
enabling Hadoop to support more applications and different types of processing. In concrete, the
JobTracker of Hadoop 1 is separated into two separate daemons: 1) ResourceManager that allo-
cates and manages resources across the cluster, and 2) Application Master designed to schedule
tasks, to match them with TaskTrackers and to monitor their progress.

54

1.5. PARTITIONING IN LARGE-SCALE PLATFORMS

1.5.1.3 Data querying layer

Several projects were built on top of the Hadoop architecture to avoid the implementation of
MapReduce programs to query and analyze data stored in HDFS. If at the beginning MapReduce
sought to be an alternative to relational databases, little by little notions of relational databases
have been incorporated into the framework. For instance, SQL-like languages have been created
to avoid the constraint of programming Map and Reduce functions. Also, other systems built
on top of Hadoop incorporate some of the ACID (Atomicity, Consistency, Isolation, Durability)
properties. In this section we give an overview of some of the most relevant projects, Apache
Hive and Apache Pig, focusing on the partitioning strategy applied by these approaches.

Hive 6 it is a datawarehouse built on top of Hadoop that facilitates reading, writing, and
managing large datasets using a SQL-like declarative language (HiveQL). At execution time,
queries are translated as MapReduce jobs sent to the Job Tracker in a Hadoop cluster. Tables
and databases are declared with a Data Definition Language (DDL) and then the data are
loaded into the specified location. Tables in Hive are either internal or external, the first type
owns its data, meaning that the data are deleted when the table is dropped. Hive supports
only horizontal fragmentation of the data. To partition, it creates subdirectories in the HDFS
reflecting the partitioning structure. For example, horizontally partitioning the Aircraft table
of Figure 1.1 with two attributes will create the following directory in the HDFS:

...

.../aircraft/Dev=Airbus/Model=A320

.../aircraft/Dev=Airbus/Model=A350-900

.../aircraft/Dev=Airbus/Model=A340-600

...

.../aircraft/Dev=Boeing/Model=B737-800

.../aircraft/Dev=Boeing/Model=A777-300

Data in Hive are therefore only fragmented since allocation is controlled by the distributed
file system. The HDFS splits and replicates the files on each directory into blocks that are
distributed among the nodes of the cluster. Partitions are declared in a static (at the creation
of the table) or dynamically (when inserting the data).

Pig! 7: it is an alternative for the use of Hive, introducing an ETL-like language (named
Pig Latin) rather than a query language like HiveQL. Pig Latin statements are transparently
transformed into MapReduce jobs to perform the desired transformations to the data. Pig
does not allow to create partitions on the working files. Still, it allows to read only the relevant
sections for a given job if the data are stored in the HDFS partitioned with a tool like HCatalog8

(a table and storage management layer built on top of Hive and incorporates Hive’s DDL).

1.5.2 Apache Spark

Spark9 is an unified analytics engine for large-scale data processing. It is based in a master-slave
architecture with three main components, the driver program and cluster manager (master) and
the worker nodes. Contrarily to Hadoop, Spark is based on in-memory strategies to improve
performance. The main Spark’s abstraction is a resilient distributed dataset (RDD), which is an
immutable collection of elements partitioned across the nodes of the cluster that can be operated
on in parallel. RDDs are created gathering information from a distributed system, in general

6https://hive.apache.org/
7https://pig.apache.org/
8https://cwiki.apache.org/confluence/display/Hive/HCatalog
9https://spark.apache.org/

55

https://pig.apache.org/
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://spark.apache.org/

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

HDFS, hence data partitioning is not controlled by Spark directly. When the data is already in
main memory, an RDD can be partitioned and repartitioned using different methods, such as
hash, range, and custom partitioning. As Hadoop, the Spark project consists of a core version
and several components were developed on top. The main components are:

Spark SQL This module is specialized for working with structured data. It allows to use
custom SQL commands to query external data sets with complex analytics. Concretely, users
can run queries over both imported data from external sources (e.g., Hive Tables) and data
stored in existing RDDs.

MLlib It is Spark’s machine learning (ML) library providing already implemented classifica-
tion, regression, clustering and other machine learning algorithms. Quite similar to Mahout10

for Hadoop.

GraphX Library for manipulating graphs and executing graph-parallel computations offering
already implemented graph operators (e.g., subgraph and mapVertices and graph algorithms
(e.g., PageRank).

Streaming This component provides automatic parallelization, as well as scalable and fault-
tolerant streaming processing in Spark.

1.5.3 NoSQL stores

As mentioned in the introduction of this section, the increase of the data collected from the web,
social networks, mobile and connected devices motivated the need for other data management
systems. These systems sought to achieve horizontal scalability, high availability fault tolerance
and database schema maintainability. However, achieving all of the above requirements through
the traditional relational database systems is not a simple task and building newer systems with
a different paradigm was necessary. The need was then to create systems that could cope to
the evolution of schemas being able to handle at the lowest cost the massive data volumes.
Some of the above requirements are mutually exclusive, and for some applications one may be
ready to make trade-offs giving up one objective for another. This resulted in the emergence
of NoSQL stores, some built on top of Apache Hadoop, which offer flexibility and relax some
of the traditional RDBMs to boost the performance another(s). The following classification is
taken from the work of [DCL18].

1.5.3.1 Key-value

In this systems the data are represented as (key,value) pairs stored in highly efficient lookup
data structures. They guarantee very fast lookups and are suitable for applications using as
single key to access the data. Data partitioning in these systems is performed in general by
hashing the key.

Redis 11 It is an in-memory data structure store, used as a database, cache and message
broker. It supports data structures like strings, hashes, lists, sets, sorted sets with range queries,
bitmaps, etc. The database keeps the data in main memory but allows to persists it if some
conditions are satisfied.

10https://mahout.apache.org/
11https://redis.io/

56

1.5. PARTITIONING IN LARGE-SCALE PLATFORMS

Key Value

Main Quanty. Others

Model Dev Length Cost

Aircraft Row

Families

Qualifiers

V ersion1 V ersion2 Version

Figure 1.15: Internal structure of HBase row example

1.5.3.2 Column-family

In this type of systems the data are represented as rows and a fixed number of column families.
A column-family is a number of attributes (columns) logically related to each other and that are
mostly accessed together. They are inspired from another Google project, the Bigtable system
[CDG+08]. Data partitioning in these systems is done either horizontally and vertically (by
column families). We describe one of the most popular column-stores: HBase.

HBase 12: it is a distributed and scalable data store in which data are stored with key-value
pair structures. The key is the row identifier and the value contains the row’s attributes. The
row’s attributes are further organized into column families, which are physically stored together
in a single file in the distributed file system. Also, HBase keeps a customizable number of versions
of the attribute’s values of each row. HBase uses HDFS as storage layer but other distributed
file systems could be used. Data are fragmented applying a hybrid approach. Firstly, horizontal
fragments (called regions) are performed on the keys. These fragments are used as balancing
unit by HBase. Then, the row’s attributes are vertically partitioned in terms of column families,
storing each family in a different file. An example of the data organization of HBase is illustrated
in Figure 1.15.

1.5.3.3 Document stores

These systems are more complex key-value tores in which the value is represented in a structure
named a document encoded instandard semi-structured formats such as XML or JSON.

MongoDB 13 This system is the most popular document store which provides a powerful
query language that allows to filter and sort by any document’s field. As key-value stores it
partitions the data based on their key. It uses the key associated to the collection to partition
the data into chunks. A chunk consists of a subset of sharded data and each chunk has a inclusive
lower and exclusive upper range based on the key.

1.5.3.4 Graph stores

These systems store datasets represented as graphs in an efficient manner providing effective
operations for their querying and analysis. These stores represent a graph as a set of vertices
representing entities and edges representing relationships between them. They are divided in
native and non-native graph stores according to whether they are built on top of a non-graph
data store (e.g., relational database, document store, key-value store). The most popular native
system is Neo4j[Web12] which is a highly scalable native graph database, purpose-built to lever-
age not only data but also data relationships. More details about graph-storage will be given in
Chapter 2.

12https://hbase.apache.org/
13https://www.mongodb.com/

57

https://hbase.apache.org/

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

1.5.4 Hybrid architectures

In a traditional relational database management system, a triple is retrieved sending a query
request to the database. The query is forwarded to the file system (controlled by the database)
which retrieves the corresponding disk blocks and sends them back to the system. The DBMS
has a much more direct control over the location and the way the data are partitioned among
the disk(s). In the previous approaches, the file system (HDFS) and the query engine (e.g.,
MapReduce, HBase, Spark) do not form a single unit, and even if some approaches fragment
the data on distinct files, the data allocation and replication tasks are left to the distributed file
system. In this section we overview some hybrid architectures that place the data intentionally
in specific nodes of the distributed file system or another type of storage layer.

HadoopDB [ABA+09] is another hybrid architecture that uses an existing RDBMS to store
the data in each worker, instead of the HDFS which is used by Hive. This allows to exploit
partitioning, indexing, buffering and compression capabilities offered by DBMSs. Partitioning
the data is done using the horizontal approaches presented in last section.

The approach in [ETÖ+11] named CoHadoop, locates data intentionally on specific data
nodes. This is achieved extending the HDFS with a file-level property (locator) in such a way
that all files with the same locator are placed on the same set of Data Nodes. The NameNode
is augmented with an index (i.e. location table) specifying where the data must be placed.
Partitioning is then decided by the user (using the workload for example). Their approach is
similar to [DQJ+10], Hadoop++ supporting as well data copartition.

The Trojan Data Layouts were proposed in [JQD11]. This approach internally organizes data
blocks into attribute groups according to the workload in order to improve data access times.
Their system fully preserves the fault tolerance properties of MapReduce, since they kept the
blocks of replicated data but only adapted the way each block organizes data internally. Their
algorithm applies first a column grouping method to cluster queries in a workload according
to access patterns. Then they map each resulting query group to one data block replica as to
compute the Trojan layout for such replica.

Other approaches have proposed improvements to the Hadoop framework based on the phys-
ical data layouts in the HDFS. Data in HDFS are usually organized using a row-oriented layout
since a pure column store has severe drawbacks as the data for different columns may reside
on different nodes leading to high network costs [DQ12]. Still, some systems proposed to store
the data as columns. Llama [LAC+11] store the data as columnar files. Its performance is
comparable to databases, in which the performance if better in queries involving small number
of attributes. This system was outperformed by [Che10], which also employs a columnar format
to store the data but implements a partition the partitions attributes across (PAX [ADHS01])
layout, in which all data belong to a record are stored in the same block.

In [RHAF15], Romero et al. proposed a system to solve analytic queries with a cost-based
approach. Their system is implemented in a three level architecture running HDFS at the lowest
level, HBase as the storage manager and MapReduce as the query execution engine. In their
approach, the records were indexed and partitioned in HBase.

1.6 Conclusion

With the data deluge and the explosion of deployment architectures, the data partitioning has
become the sole technique that database actors (designers, administrators, architects, analysts,
students, researchers) have to know in detail. At the same time, data partitioning has been
studied from the arrival of databases evolving with its generations. In this chapter we sought
to give a historic overview of the data partitioning problem, its history, evolution, constraints
and how it behaves after the arrival of each new data representation and deployment architec-
ture. To do so, we proposed a data partitioning foundation that includes: implicit and explicit
definitions and types, as well as data partitioning dimensions comprising: (1) partitioning type,

58

1.6. CONCLUSION

(2) algorithm, (3) main objective, (4) adaptability, (5) mechanism, (6) cost model, (7) system
element, (8) platform, (9) constraints and (10) data model. These dimensions offer a graphical
representation (a star-schema like) of data partitioning. For each dimension, we described its
characteristics and depicted its elements and labels.

We have focused on presenting the state-of-the-art of data partitioning in relational databases
and other close models in centralized, distributed and parallel architectures. We cited the works
that led to an explicit definition of the partitioning problem and showed the gradual development
of the main data partitioning forms. Subsequently, we exposed the algorithms, strategies and
heuristics introduced to partition the database according to a set of formerly defined dimensions.
We offer a comprehensive review on data partitioning and can be used as a torchlight for readers
and actors to work in this exciting and durable problem. Finally, we show how the problem has
evolved in the current cloud platforms and how it adapted to cope with large-scale data. In the
following chapter we show how the problem has been treated specifically for treating graphs.

59

CHAPTER 1. DATA PARTITIONING FOUNDATIONS

60

Chapter 2
Graph Data : Representation and Processing

Contents

2.1 Introduction . 63

2.2 Graph database models . 63

2.2.1 Logical graph data structures . 64

2.2.2 Data storage . 65

2.2.3 Query and manipulation languages . 66

2.2.4 Query processing . 69

2.2.5 Graph partitioning . 71

2.2.6 Graph databases . 77

2.3 Resource Description Framework . 80

2.3.1 Background . 80

2.3.2 Storage models . 82

2.3.3 Processing strategies . 86

2.3.4 Data partitioning . 87

2.4 Conclusion . 91

61

CHAPTER 2. GRAPH DATA : REPRESENTATION AND PROCESSING

Summary In the previous chapter we surveyed the partitioning problem in relational databases.
Our goal is to provide a partitioning environment to managers of Knowledge Graphs. To do
this, we cannot disregard how the Knowledge Graphs have been treated in the literature. In this
chapter, we start giving a general overview of the graph data model. In Section 2.2, we detail
the logical and storage structures for graphs , describing the query processing strategies and
languages (Sect. 2.2.1 - Sect. 2.2.4), and reporting some of the most relevant currently available
systems. We dedicate also Section 2.7 to describe the graph partitioning algorithms used by
some parallel systems. Next, in Section 2.3, we focus on the Resource Description Framework
(RDF). We start by giving some background concepts (Sect. 2.3.1), and similarly to what we
did with the pure graph systems, we describe RDF storage (Sect. 2.3.2), processing (Sect. 2.3.3)
and its partitioning strategies (Sect. 2.3.4). We conclude summarizing the presented works and
comparing the strengths of both worlds (relational and graphs).

62

2.1. INTRODUCTION

2.1 Introduction

In the previous chapter we detailed the partitioning problem in relational databases. We showed
its evolution and how it was adapted to the object oriented, deductive and multi-dimensional
data models. We explained the development of large-scale platforms and how they adapted to the
recent need to efficiently deal with big data volumes. However, the data models discussed derive
directly from the relational design so widely studied. In this chapter we detail a data model that
allows describing more complex relationships. Specifically, graph-oriented models representing
the data as graphs whose manipulation is expressed as graph-oriented operations. They have
gain momentum in the past years with the development of the Semantic Web, Social Networks,
and with the increase in the ability to capture data from different disciplines like Biological and
Transportation networks. In these applications, the interconnectivity of the data is a key feature
and it is as important as the data itself. Modeling the data as a graph allows a more natural
way of handling these applications. In graph-based systems, queries refer directly to the original
graph structure and graph operations like finding the shortest path can be directly expressed
with specific query languages. In this chapter we start giving more insights about the graph data
model in general (Section 2.2), discussing their storage, processing and partitioning. Then, in
Section 2.3, we focus on the RDF model introduced to represent the data in the Semantic Web
giving some main definitions and describing the most relevant storage and processing approaches.

2.2 Graph database models

The research around graph database models is not new, actually it had a peak in the late
eighties/early nineties but it was eclipsed by the development of tree-based structures like XML
modeling in the first generation websites. The use of graphs in computer science dates back to
the beginning of relational databases in the mid-1970s in which graph models were proposed to
expand the information stored in databases with semantic networks (firstly defined in [Sim72]).
Also, graphs were used by the legacy data models (hierarchical and network models) to depict
the navigation of its records. The historically influential network data model [TF76] represents
data as physical records that are navigated using a graph-based structure (a network). This
model, also known as CODASYL, browses through the record’s parents (owners) and children
(members) remaining tied to the physical implementation of the data. In what follows we give a
brief overview of the former graph database approaches. The list of approaches is not exhaustive,
we mention only a few of them to give a general idea of the concept evolution. A complete survey
is found in [AG08]. In chronological order and according to the system in which they collaborate,
the first graph database models appeared in the following systems:

Semantic networks The work of [RM75] proposed the use of a semantic network extending
the original Codd’s model to represent knowledge about the database. The semantic network
defines the meaning of the data in a labeled directed graph (described in Section 2.2.1) where
both nodes and edges are labeled. This network contributes to the generation of the relational
schema and to the definition of semantic operators. Similarly, a semantic network was used
by [Shi81] to describe the database schema in their functional data model and language named
DAPLEX. DAPLEX’s basic components are entities and functions, in the graph structure the
nodes correspond to entity types and the arrows depict functions. The work of [KV84] used
a directed graph to represent the database structure before defining a logic and an algebraic
query language generalizing the relational, hierarchical and network data models. In this line,
the system G-Base [Kun87] represented the database in terms of knowledge structures using a
labeled directed graph introducing as well a data manipulation language for the stored graph.

63

CHAPTER 2. GRAPH DATA : REPRESENTATION AND PROCESSING

Object-oriented As it was mentioned in the previous chapter, object-oriented databases
(OODBs) had its boom in the late eighties. Graph-oriented models for OODBs were proposed in
the systems O2 and GOOD described in [LRV88] and [GPdBG94] respectively. A directed graph
is used in both systems to represent the objects and relationships between them. GOOD (graph-
oriented object database) is a theoretical support for systems in which the data representation
and its manipulation are graph-based. GOOD introduces basic operations and a language based
on pattern matching to manipulate graph-shaped object bases. This work served as basis to
several research projects, for example G-Log [PPT95] introducing a declarative query language
for graphs.

Former graph models The GraphDB system [Güt94] proposed a data model and a query
language for graphs in a standard database environment. Their goal is to smoothly integrate
graph notions into the popular database systems of the time (object-oriented specifically). To
achieve this, they defined a graph database and a query language on top of classes and hierar-
chies derived from OODBs. In parallel, the work of [GPST94] presented at the same conference,
introduced Graph Views to define and manipulate graphs independently of the system used to
persist the data (e.g., relational, object-oriented and file systems). To manipulate the graphs,
they proposed derivation operators defining new graph views upon existing ones. Other works
used hyper-graphs to represent the data in a much more general model, for example Hy+ [CM93]
provides a user-interface to formulate queries to a set of graph patterns.

The beginning of the 1990s marked the emergence of the best known aspect of the Internet
today: the Web as a set of pages in HTML format incorporating text, links and images, ad-
dressable via a URL and accessible using the HTTP protocol. The Internet boom undoubtedly
diverted the efforts devoted to graph-based models to semi-structured models originally used
to publish data on the Web. The success and exponential growth of Web content forced the
creation of standards that allowed to order and exploit the information available on the Inter-
net. The World Wide Web Consortium (W3C) founded in 1994 is in charge of developing and
maintaining these standards within which we find HTML, XML, RDF and SPARQL. The Web
is naturally modeled as a graph, Web pages are connected nodes interconnected via hyperlinks.
The famous PageRank search algorithm used by Google apply this modeling to measure the im-
portance of webpages in its search engine. Web data integration standards (e.g., RDF) also use
a graph to model the interconnection of resources on the Web. More recently, the massive use
of social networks and the possibility to recover data from many domains pushed the return and
development of graph models. In the following section, we explain the logical graph structures
used to represent graphs.

2.2.1 Logical graph data structures

As it was previously mentioned, graph data models represent the data as graphs providing
efficient traversal operations to query and analyze them. Graphs are composed of entities repre-
senting something that exists as a single or composed unit, and relations establishing connections
between two or more entities. In this section we describe the data structures used to model en-
tities and relations in the graph data model. These structures are not mutually exclusive, some
structures are a combination of some of them. A few of the structures are illustrated in Figure
2.1.

• Directed/Undirected graphs In an undirected graph like the one shown in Figure 2.1a,
all relationships are symmetric. Contrarily, the edges on directed graphs illustrated in Fig-
ure 2.1b have a single source and a destination vertex. The number of incoming/outgoing
edges define the in/out degree of each node respectively.

64

2.2. GRAPH DATABASE MODELS

(a) Undirected graph (b) Directed graph

a

b c

e

f

g

h

p1

p2

p3

p4

p5

p6

(c) Directed labeled graph

id:1 id:2 id:3

name=’Gabriel’
born=1989

name=’Lisa’
born=1985

name=’Thomas’
born=1990

:knows
since=2014

:worksFor
status:’self entrepreneur’

:knows
since=2006

(d) Property graph

a

b c

e

f

g

h
e1

e2

e3

(e) Hypergraph graph

Figure 2.1: Graph data structures

• Labeled graphs In this type of structure vertices and/or edges are tagged with labels
representing their respective roles, types or some metadata. A particular type of labeled
graphs, named edge-labeled graphs, in which labeled directed edges indicate the different
type of relationships is shown in Figure 2.1c. This amalgam is the one embraced by the
Resource Description Framework described in Section 2.3.

• Multigraph These graphs allow multiple edges between the same vertices and self-loops.

• Attributed graphs In this structure, the nodes and edges have properties expressed as
variable list of key-value pairs. An attributed, directed, labeled multigraph named property
graph is given in Figure 2.1d. The property graph model is implemented by many graph-
based systems and is used as reference model for several research. An in-depth description
of property graphs is given in [BFVY18].

• Hypergraphs This model is said to be a generalization of a graph in which an edge can
join any number of vertices instead of only one. The set of nodes connected with the same
edge is called an hyperedge, when the hyperedge is directed, the set of nodes is ordered.
A simple hypergraph with 3 hyperedges is shown in Figure 2.1e.

2.2.2 Data storage

Whether the system was built specifically to treat graphs or if it was built on top of another plat-
form, each of the structures described previously is stored according to the strategies described
in this section.

• Adjacency matrix This matrix is a 2-dimensional array whose size equals the n × n
where n is the number of vertices in the graph. The matrix stores a 1-bit in cell mi,j

if it exists a relationship between a vertex i to vertex j and a 0-bit otherwise. It is the
representation with the simplest implementation, however it suffers from space overheads
even for sparse graphs. An example of this structure is given in Figure 2.2a. The figure
shows a variation of the adjacency matrix in which the edge’s ids between two nodes are
indicated directly in the cell.

• Adjacency list This representation stores the graph as a set of lists. Each row of the
array corresponds to a vertex paired with a list of its neighboring nodes. Usually, it
stores a node with its out-neighbors, however some systems enable replication storing

65

CHAPTER 2. GRAPH DATA : REPRESENTATION AND PROCESSING

both (in/out)-neighbors for a node. Efficient index structures over vertices and edges are
created so that random access to single elements is fast. This storage scheme is ideal for
graph systems built on top of key-value stores and systems prioritizing online transaction
processing workloads (OLTP) [DCL18]. An outward adjacency list is illustrated in Figure
2.2b for the directed graph.

• Edge list Contrarily to the adjacency list, this storage structure represents a graph as a
list of edges indicating for each edge its corresponding incident vertices. This structure in
which all the information associated to an edge is clustered is useful to the representation of
hypergraphs in which an edge is associated with a set of edges. Some recent popular graph
stores, like Neo4j [Web12] use this representation. This representation is also preferred by
some RDF processing systems. An example of such structure is given in Figure 2.2c.

• Compressed sparse row (CSR) It is one of the most widely used storing structures for
its efficient lookup structure. To store a graph it uses two arrays of integers. More arrays
could be added to encode more information about a node and edges (e.g weights), this is
the representation used by the Metis[KK98a] graph partitioner discussed in Section 2.2.5.
The first array (named array of edges) stores the adjacency lists of all vertices together
storing all edges continuously. The size of the array of edges is therefore the total number
of edges in the graph. The second array, named vertex array, is an index to the previous
array mapping a vertex ID into the ID of the first outgoing edge. Let us consider the
example in Figure 2.2d, in which the nodes and edges labels are encoded before appending
them to the edge and vertices array. In this example, the CSR represents the directed
labeled graph of Figure 2.1c.

• Complex indexes: This category comprises more sophisticated index structure than a
regular adjacency list. We can mention for instance the compressed bitmap indexes used
in the system DEX [MMG+07] used to efficiently combine multiple adjacency lists with
bit operations.

2.2.3 Query and manipulation languages

Among graph data models there are several works on query languages. These works present
collections of operators and inference rules to manipulate and query the graph data structure.
Considering the vast number of approaches available and the scope of this thesis, in this section
we describe only the most recent and popular graph query languages. An in-depth analysis of
query languages for graph databases is given in [AAB+17]. We start describing the main types
of query workloads and then giving an overview of the query languages.

2.2.3.1 Query workloads

Similar to relational databases, the workloads can be divided in transactional and analytical. In
the first type of queries, small fractions of the graph are explored and a quick response time is
needed. They can be classified in:

• Path queries: This type seeks to determine whether a vertex v can be reached from
another vertex w given a set of conditions. A path query has the form P = x

α−→ y where α
specifies the path conditions and x and y can be variables or specific nodes. For example,
satisfying a regular expression over the set of node’s or edge’s labels or finding a shortest
path between both nodes. A path query using regular expressions are known as regular
path queries.

• Navigational/Pattern matching queries: These queries are more complex structures
than the previous ones since their objective is to find sub-graphs in data graph that are

66

2.2. GRAPH DATABASE MODELS

a b c e f g h

a 0 1 0 0 0 0 0
b 0 0 2 0 0 0 0
c 0 0 0 3 4 0 0
e 0 0 0 0 0 5 6
f 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0
h 0 0 0 0 0 0 0

(a) Adjacency matrix

a p1 b

b p2 c

c p3 e p4 f

e p5 g p6 h

(b) Adjacency list

Edge nodeA nodeB

p1 1 2
p2 2 3
p3 3 4
p4 3 5
p5 4 5
p6 4 6

(c) Edge list

Vertex encoding

Vertex ID

a 0
b 1
c 2
e 3
f 4
g 5

Edge encoding

Predicate ID

p1 0
p2 1
p3 2
p4 3
p5 4
p6 5

CSR

edge-array=[1, 2, 3, 4, 4, 5]

node-array=[0, 1, 2, 4, 5, 6]

(d) Compressed sparse row

Figure 2.2: Storage structures for graph of Figure 2.1c

isomorphic to a given query. They are graph-structured queries that should be matched
versus a database.

The other type of graph queries express analytical graph computations, where a significant
fraction of the vertices and edges of the graph are accessed. Similar to SQL in the relational
databases some languages offer aggregation operators offering the possibility to group values and
compute statistics over these groups.

2.2.3.2 Query languages

In this section we give for the most popular modern query languages their main characteristics,
strengths and drawbacks. All of the languages presented here share the graph pattern matching
operations.

• SPARQL [SH13a]: This language was standardized by the W3C in 2008 to query RDF
graphs. Its basic graph structure are triple patterns, which are RDF triples composed
of a subject, a predicate and an object that may be bounded values or variables. Triple
patterns can be combined using conjunctions to form basic graph patterns. Additional to
the evaluation of graph matching queries, it offers graph creating functionality with the
CONSTRUCT operator. The language does not allow query composition (i.e. use the output
of a query as the input of another query without persisting the result). An example query
for the query represented in Figure 2.3a is:

SELECT ?c ?f WHERE {

?c p3 ?e .

?c p4 ?f .

?e p5 ?g . }

• Cypher [FGG+18]: This language developed by the developing team of the Neo4j graph
system to query property graphs using patterns as its main building block. Patterns are

67

CHAPTER 2. GRAPH DATA : REPRESENTATION AND PROCESSING

?c

?e

?f

?g

p3

p4

p5

(a) RDF query

x1 id:2 x3

name=’Gabriel’
born=1989

name=’Lisa’
born=1985

name=’Thomas’
born=1990

:knows
since=2014

:knows
since=2006

(b) Property graph query

Figure 2.3: Graph query examples

expressed giving a graphical intuition to encode nodes and edges with arrows between
them. The MATCH clause specifies the basic graph pattern, nodes and edges expressed
inside parenthesis and brackets respectively. Specific values for properties are specified
inside a node within braces and nodes’ labels are separated with a ":" symbol or can
also be expressed in the WHERE clause. The RETURN clause expresses the projected output
variables. The language supports selection, projection, grouping, aggregation and ordering.
The Cypher query for the property graph query shown in Figure 2.3b is expressed as:

MATCH (x1) - [:knows] -> (id:2 {name:"Lisa"})

MATCH (id:2) - [:knows] -> (x3)

RETURN x1.name AS name1, x3.name AS name2

• Gremlin [Pro19]: This language is part of the Apache TinkerPop31 graph computing
framework. It is originally specified to query property graphs but it is quite different
to the previous languages. Instead of having SQL-like operators forming a declarative
language, it provides a much more programming-like interface focusing on graph traversal
operators. For example in the following query using the property graph of Figure 2.3, the
call G.V() returns the set of all nodes in the graph, then sequences of selections are applied
on the set of nodes. The command out retrieves all nodes that can be reached with the
label knows.

G.V().has(’name’,’Gabriel’).out(’knows’)

.has(’name’,’Lisa’).out(’knows’).has(’name’,’Thomas’)

• Oracle PGQL[vRHK+16]: graph query language built on top of SQL providing pattern
matching capabilities. It is part of the Oracle Spatial and Graph products2. It also allows
to create and manipulate existing graphs. The following query expresses the graph query
shown in Figure 2.3b.

SELECT x1.name AS name1, x2.name AS name2

FROM MATCH (x1) -[:knows]-> (id:2),

MATCH (id:2) -[:knows]-> (x3)

WHERE x2.name = ’Lisa’

• G-Core [AAB+18]:it is a practical language developed by a industry and academia con-
sortium with the aim of providing a natural syntax to express the most important graph
query features. It allows not only to query but to create and compose new graphs. For
example, a nested query combining a constructed graph pattern of Figure 2.1d is shown
here:

1https://tinkerpop.apache.org/
2https://pgql-lang.org/

68

https://tinkerpop.apache.org/
https://pgql-lang.org/

2.2. GRAPH DATABASE MODELS

SELECT id(m), m2

MATCH (id:2)-[:knows]->(h),

(h) -[:knows]-> (m) ON (

CONSTRUCT (h) -[:friendOf] -> (m2),

(m2)-[:knows] -> (m)

)

2.2.4 Query processing

The query processing strategies depend on the type of graph query targeted by the application.
These strategies can be as simple as finding the direct neighbors of a node or finding isomorphic
graphs given a query pattern, or more complex traversal paths used in algorithms like PageRank.
In this section, we give an overview of graph processing strategies used in the subgraph matching
queries which are the core of several query languages. Understanding how this type of query is
solved serves as a base to understand how more complex graph queries are processed. A detailed
description of each algorithm and more complex strategies dealing with reachability is found in
[BFVY18].

Let us give some background concepts that will be used throughout this section. Given a di-
rect labeled graph G = (V, E), a conjunctive query CQ allows to identify substructures/patterns
in G. It asks for all the subgraphs in G matching a given CQ pattern.

Definition 2.1 (Conjunctive query) [BFVY18] Let V be a set of vertex variables. A con-
junctive query graph is the expression:

(z1, ..., zm)← a1(x1, y1), ..., an(xn, yn)

such that:

• x1y1, ..., xnyn ∈ V

• a1...an ∈ L (set of labels).

• ∀zi ∈ {x1, y1, ..., xn, yn}

Now, let us define the mapping function that as indicated by its name maps nodes and edges in
a query to nodes and edges in the graph. More formally:

Definition 2.2 (Mapping) [BFVY18] A mapping is a function µ : V ↦→ V such that ∀1≤i≤n∃ei ∈
E where for each ei = (µ(xi), µ(yi)) and ai are labels of ei. Evaluating a conjunctive query r
over a graph G is expressed as:

JrKG = {(µ(z1), ..., µ(zm))|µ is mapping of r on G}

Two graphs K = (Vk, Ek) and H = (Vh, Eh) are isomorphic if there is a mapping µ : Vk ↦→ Vh

such that (x, y) ∈ Ek ⇐⇒ (µ(x), µ(y)) ∈ Eh. In this case, µ maps edges in K to edges in H
and non-edges in K to non-edges in H. On the other side, non-edges mappings are not enforce
in homomorphic mappings such that (x, y) ∈ Ek ⇒ (µ(x), µ(y)) ∈ Eh.

Let us consider the graph given in Figure 2.1c and the following conjunctive query: q =
(?c, ?f, ?g) ← p3(?c, e), p4(?c, ?f), p5(?e, ?g). The evaluation of the query on the given graph
(named G) is JqKG = {(?c, c), (?e, e), (?f, f), (?g, g)}.

69

CHAPTER 2. GRAPH DATA : REPRESENTATION AND PROCESSING

1 7

2 6

3 5

4

8 9

12

10

11

(a) Depth-first search (DFS)

1 3

2 6

5 10

9

4 7

8

12

11

(b) Breadth-first search (BFS)

Figure 2.4: Nodes visiting order

Subgraph matching The process of finding all subgraphs of a given graph G that are
iso(homo)morphic to a given conjunctive query r is called subgraph matching. In this case,
each subgraph is encoded by a mapping µ of nodes/edges from r to G. In general, the sugraph
matching process consists in combining partial mappings obtained first in order to obtain the
final subgraph match. A partial mapping is formally defined as follows:

Definition 2.3 (Partial mapping) [BFVY18] Given a graph G, a graph pattern r[z1, ..., zm]
and a mapping µ of r on G, a partial mapping is a sequence of pairs ⟨(v1, µ(v1)), ..., (vk, µ(vk))⟩
such that v1...vk is a sequence of distinct vertices of r.

Subgraph matching algorithms are based on depth-first search (DFS) or breadth-first search
(BFS) techniques which are described in the following section.

2.2.4.1 Depth-first search (DFS)

DFS-based algorithms for subgraph matching are based on the backtracking principle. This
principle is illustrated in Figure 2.4a in which starting from an arbitrary node as the root, the
algorithm explores as far as possible along each branch before backtracking. Its implementation
is usually based on recursion, but this implementation fails to treat large graphs in a reasonable
time. Therefore, the implementation is emulated using an iterative graph search based on states.
The searching is guided by a plan, which is an ordered list of vertices indicating the sequence of
query nodes assigned to graph vertices while exploring.

An example of such algorithm is the matrix-based subgraph matching which models the query
and data graph as adjacency matrices and solves a conjunctive query using matrix operations.
For a given query and data adjacency matrices, it defines a permutation matrix P to express
the assignment of query vertices to graph vertices. In this matrix, each row i contains exactly
one cell pij equal to 1 (indicating a mapping between the variable node i and the data node j)
while other entries are equal to 0. A permutation matrix for the graph and queries of Figures
2.1c and 2.3a respectively is shown in Figure 2.5a.

Even if for the previous query there is only a single valid permutation matrix, this is not the
general case since a single query might have multiple valid permutation matrices. To check that
the permutation matrix encodes an isomorphic mapping, the following expression must hold:

AQ = PAGP T

where AQ and AG represent the query and graph adjacency matrices respectively. The algorithm
to find all possible mappings relies on filling P progressively given that the isomorphic condition

70

2.2. GRAPH DATABASE MODELS

a b c e f g h

?c 0 0 1 0 0 0 0
?e 0 0 0 1 0 0 0
?f 0 0 0 0 1 0 0
?g 0 0 0 0 0 1 0

(a) Permutation matrix

▷◁ G1.nodeA = G2.nodeA

▷◁ G1.nodeA = G2.nodeA

σG2.Edge=p3σG1.Edge=p4
σG3.Edge=p5

G1 G2
G3

ΠG1.nodeA,G2.nodeB

(b) Relational logical query tree

Figure 2.5: Examples of Sections 2.2.4.1 and 2.2.4.2

must be fulfilled in partial permutation matrices. A näıve approach would start at the first
row assigning 1 to the first row and column and all the other values to 0. If the isomorphic
condition is fulfilled, it continues to the other row and the procedure is called recursively. If the
isomorphism condition is violated, it backtracks to the previous row and set the next column
to 1 and all the other values to 0. Then it calls the procedure again. It should be noted that
the intermediate results are not stored in any structure making DFS-based algorithms memory
efficient. More details are found in [BFVY18].

2.2.4.2 Breadth-first search (BFS)

Several subgraph matching algorithms are based on a BFS searching strategy illustrated in
Figure 2.4b. Contrarily to DFS, it does not use recursion and its iterative-based making it less
complex. It can even be optimized with dynamic programming. However, it needs a structure to
memorize the partial solutions that when combined could become a subgraph match. Algorithms
based on the relational model follow a BFS graph exploration matching. Considering the query
of Figure 2.3a, and assuming that the data is stored in a single table like the one shown in
Figure 2.2c. Supposing that the data are stored in a relational database, one of the possible
logical execution tree is given in Figure 2.5b. The self joins to the tables are executed pairwise
in an equivalent BFS-like subgraph matching strategy. In this case, the intermediate results are
stored in main memory causing excessive memory consumption. In the example of Figure 2.5b
at least two intermediate result structures must be stored in main memory before projecting the
values in the final result.

2.2.5 Graph partitioning

Over the past years, the data stored as graphs has increased considerably. For example, the
size of the Facebook data graph counts with a billion nodes and about two hundred billion
edges [LNP16]. Distributed and parallel solutions emerged to cope with the demand of efficient
graph storage and processing. In these systems, cutting the graph into smaller pieces is a
fundamental step to enable parallelism. Graph partitioning must find a balance between the
following objectives:

• Minimize communication overhead : The communication between hosts dominates the
query execution on large scale systems, optimizing this factor is key to optimize the per-
formance. In general, this objective is mapped to the minimization of the total edge cuts
(i.e. crossing edges having nodes in different partitions).

• Maximize load balance: this objective refers to avoid data and execution skewness, con-
centrating most of the data in just a few sites.

The problem described previously is also known as the edge-cut partitioning problem in which
the vertices of a graph are divided into disjoint clusters such that each cluster has almost the

71

CHAPTER 2. GRAPH DATA : REPRESENTATION AND PROCESSING

(a) Edge-cut (b) Vertex-cut

Figure 2.6: Partitioning problems

same size whereas the number of edges sharing vertices in two partitions is minimized. A different
approach named node-cut consists in dividing the edges into equal size clusters such that both
vertices of an edge are always assigned to the same cluster. However, in this approach the vertices
are not unique since they might be replicated due to the distribution of the node’s edges across
distinct partitions. In this case, the goal is to: i) Balance the partitions in terms of number of
edges and ii)minimize the number of replicated vertices. Both problems are illustrated in Figure
2.6.

The graph partitioning problem has been proven to be NP-complete [GJS76] and finding
a reasonable solution to the balanced partitioning is very hard to estimate. In this section we
give an overview of the most recent and essential works in graph partitioning. The mathemat-
ical foundations and a in-depth description of each approach is given in the following survey
[BMS+16].

2.2.5.1 Algorithms

In this section we describe the most relevant graph-partitioning algorithms. We divide them into
two groups, the first one considers an initial partitioning of the graph as input, these algorithms
are known as graph growing methods. On the other hand, global partitioning algorithms start
with the entire original graph and directly compute the partitions. This classification presents
a summary of the one presented in [BMS+16]. A schema of the classification of the approaches
described briefly in this section is shown in Figure 2.7.

Global partitioning algorithms As it was previously mentioned, these algorithms start with
an entire graph and compute a solution directly. They are mainly used to partition small graphs
due to its complexity. In fact, some of the approaches are used to produce the initial partitioning
required in graph growing algorithms. We describe first exact approaches finding the optimal
solution to the graph partitioning problem using exhaustive enumeration techniques (e.g., branch
and bound). Due to its complexity, most of the methods are dedicated to bi-partition the graph,
still they can be generalized to a k-way partitioning by recursion. Most of the exact algorithms
use branch and bound to list the candidate solutions. To estimate the bounds of the optimal
solution, the graph partitioning has been modeled as a linear program [BCR97] or quadratic
program [HK00] just to name a few.

All of the previous methods are able to find the optimal partitions for graphs with very
limited size. To speed-up the running time, some heuristics are proposed to find solutions that
approximate the optimal graph partitioning. These solutions comprise:

• Spectral partitioning: This strategy is applied to split a graph in two groups, for this it
analyzes the spectrum of a matrix representing the graph. The spectrum is the set of
eigenvectors order by their magnitude and their corresponding eigenvalues. The strategy
finds the Laplacian matrix of the graph and calculates the second smallest eigenvector
which is proven to be a solution for a simplified version of the graph partitioning problem.

72

2.2. GRAPH DATABASE MODELS

Exact

Heuristics

• Spectral

• Graph growing

• Flows

• Geometric

• Streaming

Heuristics

• Binary node swapping

• K-way swapping

• Tabu search

• K-Flows

• Bubble

• Random walks

• Diffusion

• Multi-level

Global

Graph partitioning algorithms

Graph growing

Figure 2.7: Graph partitioning algorithms

They were introduced in the seventies in [DH72] and later improved in works like [BS93]
for example.

• Graph growing: The algorithms in this category (e.g., [GL81]) and explore the graph using
a breath first search (BFS) assigning each visited node to the same group. The process
stops when half of the original node weights are assigned to one partition and the remaining
nodes are assigned to another.

• Flows: This type uses max-flow min-cut theorem to compute the partitions. The work
of [BCLS87] for instance calculates the maximum flow between the nodes of the same
partition but it ignores the load balance constraint.

• Geometric partitioning : The approaches under this category use the coordinates of the
graph in the space. In these approaches nodes geometrically close are mapped to the same
partition with the aim of reducing the global edge-cut. They comprise for example the
well known space-filling curves [PB94].

• Steaming partitioning: This strategy has gain importance in the past year with the de-
velopment of large-scale streaming applications. These strategies grant more flexibility in
terms of solution’s quality to increase the partitioning speed. Among these strategies we
find [NU13] and FENNEL [TGRV14].

Graph growing algorithms This algorithms iteratively improve starting partitioning solu-
tions. Most of current solvers use this type of heuristics. They can be classified as:

• Binary node swapping : This strategy iterates over a set of nodes and its neighbors and
swaps nodes from each partition. With this action the total number of cuts decreases. The
solution was first presented by Kernighan and Lin in [KL70] and later improved by many
other authors.

• K-way swapping : These approaches are a workaround to the recursive application of the
bisection methods. They propose to directly partition the graph in k parts by using priority
queues [San93] or a global priority queue [KK98a] to control the number of swaps between
nodes.

73

CHAPTER 2. GRAPH DATA : REPRESENTATION AND PROCESSING

1.Seed nodes

2.BFS partition

4.BFS partition

3. Update seeds

(a) Bubble schema

1.
C
O
A
R
S
E
N
IN

G
3
.
U
N
C
O
A
R
S
E
N
IN

G

2. Initial partitioning

Initial graph G

Coarsed graph G′

Partitioned graph

G′ partitioning

(b) METIS schema

Figure 2.8: Graph algorithms schemas

• Tabu search: As its name indicates, these strategies use tabu search to explore the set
of solutions (e.g., [GBF11]). Their calculation is more expensive than the previous k-way
swapping.

• K-Flows: this method presented in [SS11] improves a given bipartition by growing the
area around the boundary nodes/cut edges.

• Bubble: This method presented in [DPSW00] is quite similar to k-means, the method
randomly select k seed nodes that are evenly distributed over the graphs. Then, it uses
BFS to grow each of the k-nodes, the seeds are then recalculated. The algorithm stops
when it is impossible to no more improvement partition is found for more than 10 iterations
or if the seed nodes does not change. A schema of this strategy is shown in Figure 2.8a.

• Random walks and diffusion: these approaches start at a node and choose randomly from
its neighbors another node to visit using a probabilistic transition matrix. The idea of the
approach is to detect dense graph regions based on the intuition that if a region is dense,
it is quite difficult to leave the region after several steps. These intuition is described in
[Sch07].

• Multi-level : The implementation of this partitioning approach (METIS [KK98a] is until
today, one of the most successful and most applied graph partitioning technique. This
technique splits the graph partitioning process in three stages. In the first phase it coarsens
the original graph G to form a condensed representative graph of G. Then it applies a
partitioning algorithm (K-way swapping for instance) to the compressed graph. Finally,
the coarsed graph is goes back to its initial shape and the partitions are refined. A schema
of this procedure is shown in Figure 2.8b.

74

2.2. GRAPH DATABASE MODELS

Table 2.1: Dynamic graph partitioning approaches

System Main technique
Changing

Replication
Workload Graph

ParMETIS [SKK97] • Difussion schemes. ✓

xDGP [VCLM13] • Greedy vertex migration. ✓

Hermes [NKDC15] • Neighboring vertices. ✓

Leopard [HA16] • Neighboring vertices. ✓ ✓

Inc [FLT+20] • Incrementalization. ✓

Fennel [TGRV14] • Stream graphs. ✓

• Neighboring vertices.
Spinner [MLLS17] • Pregel label propagation. ✓

Sedge [YYZK12] • Two-level partition. ✓ ✓

[TÖ15] • Graph access patterns. ✓

TAPER [FM17] • Stability. ✓

• Random walks.
IOGP [DZC17] • Hasing, ✓

• Edge-cut and split.

In current large-scale graphs, the previous methods are unable to produce partitions in a
reasonable time. Some efforts were maid towards parallelizing some of them, for example the
distributed version ParMETIS [KK98b]. It exists other partitioning strategies highly efficient in
terms of loading times and low memory costs, however they do not consider the edge-cut and
load balance constraints. These approaches are mainly based on hashing, like for example the
2D-hash strategy of the GraphX framework [GXD+14].

The approach named Ja-Be-Ja was introduced in [RPG+15] claiming that it outperforms
METIS for large graphs. The algorithm uses local search and simulated annealing to partition
the graph using an edge-cut or vertex-cut strategy (both illustrated in Figure 2.6). The algorithm
does not need to know the entire graph to generate the partitions since it is based on operations
at the vertex level. Each node has information about its neighbors and it is initially assigned
with a color (partition). At each step, a node’s color can change according to the most prevalent
color from its neighborhood.

Another similar scalable graph partitioning algorithm named Spinner was presented in [MLLS17].
It is based on the Label Propagation Algorithm on top of the large-scale graph platform Apache
Giraph [Fou19] (described in Section 2.2.6). If k partitions should be formed, it starts assigning
each vertex to a ki partition randomly. Then, it iterates over a modified k-way balanced label
propagation algorithm to assign the vertices’ labels to its neighbors until it converges. Whenever
data are added or removed from the graph, Spinner reiterates to find the converging assignment.
This type of approaches considering changing workloads or variations to the original graph are
named Dynamic algorithms and are described in the following section.

Dynamic algorithms Current graph-based applications deal with data which is not only
large, but it is also updated. Additionally, the user’s needs may also change leaving the initial
workload out of date. Re-partition the graph is complex and expensive, hence partitioning
the graph from scratch is not always an option. There have been some works in dynamic
partitioning of graphs. The list is not exhaustive, more details on other dynamic algorithms is
given in [DCL18]. All of the works presented in this section are summarized in Table 2.1.

The same creators of METIS introduced in [SKK97] a repatritioning technique for changing
graphs based on diffusion. The works presented previosly on streaming techniques are also
dynamic approaches. In these works the changes occur in the graph and not in the workload.

75

CHAPTER 2. GRAPH DATA : REPRESENTATION AND PROCESSING

A

B

C D

A’

B’

C’

D’

A

B

C D

Initial partitioning Complementary partitioning Secondary partitioning

E’
F’

Figure 2.9: Partitioning in Sedge

The work of Tüfekçi and Özturan in [TÖ15], introduces a framework for changing workload
using access patterns. The proposed system partitions a graph database and provides a fully
functional distributed graph database system.

The dynamic replicated algorithm Sedge (Self Evolving Distributed Graph Management En-
vironment) proposed in [YYZK12] creates new partitions or replicates to cope with variations
on the workload. It proposes a two-level graph partitioning architecture with complimentary
primary partitions and dynamic secondary partitions. The starting point is an initial parti-
tioning, then based on the query workload it creates secondary partitions (as replicas) reducing
the original cross partition edges. The secondary replicas are either full replicas of the initial
partitions or replicas of the cross-partition hotpots. These replicas are either complimentary
created to the initial partitioning or they are created on-demand. It is build to work specially
in the in-memory computation model of Pregel. An illustration of the partitioning strategies
presented in Sedge is shown in Figure 2.9.

In [VCLM13] the authors introduced xDGP, a system that dynamically repartitions massive
graphs to adapt to structural changes in the graph inside a system based on Pregel. The system
adopts an iterative vertex migration algorithm that relies on local information only, making
complex coordination unnecessary. It starts hash partitioning the graph and defining a capacity
constraint to avoid skewness. It uses a greedy vertex migration strategy that buffers the nodes
that should be moved based on local information available to the vertex whose goal is to reduce
the global edge-cut.

Another approach considering evolving graphs is Hermes [NKDC15] which is built on top of
the Neo4j platform. This approach repartitions dynamically and on the fly on multiple servers
the existent partitions of data. Their algorithm is based on the number of neighbors measure to
decide whether a vertex should be moved.

The approach named Leopard [HA16] is lightweight a dynamic graph partitioning approach
which simultaneously considers a replication mechanism to reduce edge-cut. The intuition behind
the proposed method is to assign a vertex to the partition containing most of its neighbors,
penalizing large partitions when they are too large. It continuously revisits vertices and edges
that have already been assigned to keep vertices close to its neighbors.

In [FM17], Firth and Missier present TAPER, a graph partitioning system that is sensitive
to evolving workloads. Their system takes as input any given initial partitioning and iterates
to adjust the partitioning taking the workload into account. For this, it uses the intuition of
stability used in community detection. When a partition is stable, a random walk inside that
partition should remain in the same partition for a long time.

In IOGP [DZC17], the authors presented a partitioning algorithm optimized for transactional
workloads. Its methodology is divided in three stages: quiet, vertex reasoning and edge splitting

76

2.2. GRAPH DATABASE MODELS

stage. In the quiet stage, the vertices are placed using a hashing function. In the vertex reasoning
phase, checks as more vertex are inserted how connected they are to other vertices to re-assign
them if necessary. The last stage named edge-splitting splits edges of high degree into multiple
servers to enable parallelism.

More recently, [FLT+20] proposed to incrementalize current batch partitioners instead of
developing yet another dynamic graph partitioning method. In their work, they formalized
the incremental graph partitioning problem adding an objective to the ones presented at the
beginning of this section: minimizing the changes considering that a full repartition is expensive.
They managed to increment some edge-cut and streaming partitioners and their experiments
verified the effectiveness of their approach.

2.2.6 Graph databases

In the previous sections we characterized the following dimensions of the graph database model:
i) Logical data structure, ii) Data storage, iii) Query and manipulation languages, iv) Query
processing strategies, and v) Graph partitioning. In this section we use these dimensions to
classify some of the most popular graph stores. Our list is not exhaustive, we considered only
the most relevant approaches to show the evolution of the available graph-oriented technologies.
Systems built to manage RDF data will be treated in detail in Section 2.3, hence we will not
describe them in this section to avoid redundancy.

We classify the approaches in two major groups: native and non-native. The first group
consists in systems specifically designed to store and query data represented as graphs. In
contrast, non-native approaches are built on top of existent platforms like relational databases,
key-value stores and other cloud systems. In this section we describe the most relevant systems
from both categories by platform (centralized or parallel). A summary of all the presented
systems is given in Table 2.2.

2.2.6.1 Centralized systems

These systems perform the graph computation only in one machine. The early graph-based
systems described in the introduction of this section enter in this category (e.g., [Güt94]). We
find here the leading graph database system that made the property graph data model popular,
Neo4j [Web12]. Neo4j is a Java based system in which property graphs are represented through
edge lists. Each edge has an entry composed of two linked lists, one for the source s and
another for the destination d vertex, storing the previous and next edges connected to s and
d respectively. The system allows to query the data directly with the Cypher language or via
REST, Java, Javascript or Python APIs.

Before Neo4j a big number of RDF systems had already been developed. The system DEX
introduced in [MMG+07] is an in-memory graph database allowing to query multiple sources.
It was written in C++ (although an API is proposed to facilitate the access to data) and
efficiently process graph operations using bitmaps. Another in-memory system, HypergraphDB
[Ior10], proposed to model the data as hypergraphs. Its structures are stored as adjacency lists
in the BerkleyDB key-value store [OBS99]. Queries are defined as traversal operations using
iterator APIs.

More recently, the system GraphChi-DB [KG14] proposed an efficient data structure which
is basically an immutable flat array named Parallel Adjacency Lists to manage and analyze
graphs with billions of edges in a single machine. The data are stored in a CSR structure
which is partitioned in P intervals such that a single partition Pi could fit into main memory.
Each partition partitioned by destination vertices ID’s and its ordered by source vertex ID. This
strategy guarantees an efficient lookup of vertices when querying with Cypher or SPARQL query
languages.

77

CHAPTER 2. GRAPH DATA : REPRESENTATION AND PROCESSING

Table 2.2: Graph databases mentioned in Section 2.2.6

Graph Query

System T Struct. Storage Part. Mech. Lang. Proc.

DEX [MMG+07] N DLG Bit index ✗ Im API BFS

HypergrDB [Ior10] N Hyp Adj. list ✗ Im API BFS
DFS

Neo4j [Web12] N PG Edge list ✗ D Cypher BFS
API

Graphchi [KG14] N DLG CSR ✗ D Cypher BFS
Sparql

Distributed

Trinity [SWL13] Nn PG Adj. list Hash Im API K-v

TAO [BAC+13] Nn PG Edge list Flex D API Rel

Titan [Dat15] Nn PG Adj. list Hash D Gremlin K-v

GraphX [XGFS13] Nn PG CSR Vertex-cut Im API Spark

Pregel [MAB+10] N DLG Adj. list Hash Im API BSP

Giraph [Fou19] N DLG Adj. list Hash D API BSP
Hadoop

GraphLab [LGK+12] N DLG Adj. list Vertex-cut Im API GAS

D:Disk, DLG: Directed labeled graph, Hyp: Hypergraph, Im: In memory, K-v: key-value
store, N: Native, Nn: Non-native, , Part: Partitioning strategy, Proc: Processing strategy,
Rel: Relational.

2.2.6.2 Parallel systems

The systems in this category can handle extremely large graphs with billions of edges on a cluster
of machines by partitioning the graph so that each machine stores a part of the graph to process
it in parallel.

Non-native The systems in this category are built on top of cloud platforms that avoid
building systems from scratch simplifying the storage and processing. In these systems, the
graph is stored using the specific data structures and operators of the cloud system. Microsoft
Trinity [SWL13] for instance is built on top of an existent shared-memory key-value store. Trinity
represents the graph in adjacency lists that are fully processed in-memory achieving low latency
to solve queries. Similarly, Titan[Dat15] is built on top of HBase and Cassandra a key-value
store and a wide-column system respectively. The system TAO [BAC+13] was introduced to to
treat read-only queries on the Facebook’s social graph. It is built on top of a distributed NoSQL
database adding an intermediary layer to access the data stored in MySQL using caches. GraphX
[XGFS13] is a graph computing library built on top of Apache Spark3. It stores vertices and edges

3https://spark.apache.org/

78

https://spark.apache.org/

2.2. GRAPH DATABASE MODELS

in two RDDs which are Spark’s distributed collections. Graph operations are transformations
applied to the vertices and nodes RDDs.

Native Most of the systems in this category are based on the Bulk Synchronous Parallel (BSP)
programming model which uses a message passing interface (MPI). BSP computation consists on
a series of supersteps that are synchronized when moving from one step to another (in different
machines). Google researchers were the pioneers to use the BSP model in an in-memory graph
system named Pregel [MAB+10]. The programming model used was later known as vertex-
centric since it is based on message propagation from vertex to vertex. At runtime, messages
are received and sent from/to the node’s neighbors that update its current state and also the
edges’ state.

The source code of Pregel was not public, however many systems followed the execution
model described in detail in the Pregel paper. Systems following this BSP are called synchronous.
Apache Giraph [Fou19] is an open source Java implementation of Pregel. It stores the data as
vertex adjacency lists in the Hadoop Distributed File System HDFS and the operations are run
as map jobs. Several approaches have been built on top of Giraph, some extensions are for
instance Giraph++ [TBC+13]. This system proposes a graph-centric paradigm in which the
messages are propagated faster inside a graph close neighbors. An experimental survey about
these systems is found in [HDA+14].

Asynchronous systems claim to be faster than the previous approaches but they are much
more complex [CEK+15]. Graphlab [LGK+12], a system developed in C++ for shared-memory
architectures, belongs to this category. The computation of this system is done through shared
state instead of shared messages. A vertex is therefore read/updated from its own data or that
of its neighbors instead of using messages.

Commercial graph databases The commercial offer of systems able to store and query
graphs has considerably increased in the past years. The most popular graph database system is
Neo4j4 which offers a graph processing compliant with ACID transactions. It offers a reasonable
performance for Cypher and traversal queries in a centralized environment. Distributed solu-
tions comprise systems like DGraph5 introducing a json-based query interface (GraphQL). Also,
other distributed graph systems like Virtuoso6 and Stardog7 support RDF queries in SPARQL.
Besides, several systems are part of multi-model databases built on top of recent cloud platforms,
like for example: CosmosDB8 (Microsoft Azure), Amazon Neptune9 (AWS), OrientDB10 (SAP),
ArangoDB11.

So far we have not discussed the systems specifically designed to store and query Web data
standardized as a graph. In the following section we give an overview of this standard and detail
the systems conceived to treat specifically this data model.

4https://neo4j.com/
5https://dgraph.io/
6https://virtuoso.openlinksw.com/
7https://www.stardog.com
8https://azure.microsoft.com/en-us/services/cosmos-db/
9https://aws.amazon.com/neptune/

10https://orientdb.com/
11https://www.arangodb.com/

79

https://neo4j.com/
https://dgraph.io/
https://virtuoso.openlinksw.com/
https://www.stardog.com
https://azure.microsoft.com/en-us/services/cosmos-db/
https://aws.amazon.com/neptune/
https://orientdb.com/
https://www.arangodb.com/

CHAPTER 2. GRAPH DATA : REPRESENTATION AND PROCESSING

:Airplane1

:Airliner

:Airbus

:A340”75.4”

”4”

:France ”Toulouse”

:Airplane2

:B747

”70.1”

:USA

:Boeing

”Chicago”

”5”

has model

has
length

nb version

nb motors

type

manufacturer

ha
s mod

el

has length

m
anufacturer

nb motors

h
a
s
sea

t

has city

h
a
s
ci
ty

has seat

nb version

type

offi
ce

in

o
ffi

c
e
in

(a) RDF graph

<:Airplane1> <:has_model> <:A340>.

<:Airbus> <:has_seat> <:France>.

<:Airbus> <:office_in> "Toulouse".

<:Airplane1> <:has_type> <:Airliner>.

<:Airplane20> <:has_length> "70.1".

<:Airplane20> <:manufacturer> <:Boeing>.

<:Airplane1> <:has_length> "75.4".

<:Airplane1> <:nb_motors> "4".

<:France> <:has_city> "Toulouse".

<:Airplane1> <:manufacturer> <:Airbus>.

<:Boeing> <:has_seat> <:USA>.

...

(b) RDF document

Figure 2.10: RDF example

2.3 Resource Description Framework

The Resource Description Framework (RDF) [RC14] has been widely accepted as the standard
data model for data interchange in the Web. RDF is flexible enough to facilitate the integration
of data with different schemas. The model uses triples consisting of a subject, a predicate and
an object (s, p, o) as the core abstract data structure to represent information. A set of such
triples forms a directed labeled graph (described in section 2.2.1) called an RDF graph. The
nodes represent IRIs (international resource identifiers), blank nodes (unspecified resources) or
literals. Edges on the other side characterize a resource by linking subject and object nodes by a
predicate edge. An RDF graph is shown in Figure 2.10a. We formalize the previous concepts in
Section 2.3.1, then we present the storage models in Section 2.3.2. The storage models described
are used in centralized and distributed RDF system. Then, in Section 2.3.3 we classify RDF
systems by processing strategy. Finally, in Section 2.3.4 we describe some of the distributed
systems that scale to massive RDF datasets, highlighting the partitioning strategies applied by
these systems.

The purpose of this entire section is to give an overview of RDF, focusing on the storage
and partitioning techniques. Our goal is not to describe in detail each of the current RDF pro-
cessing systems since there are several surveys dedicated to this (e.g., [KM15, Özs16, AHKK17,
WHCS18, ASYNN20]). In this section, we mention only some of the most relevant systems.

2.3.1 Background

An RDF statement is a triple representing a relationship between the subject and object. It is
defined as follows:

Definition 2.4 RDF Triple [KM15] A triple (s, p, o) is a tuple from (U∪B)×U×(U∪L∪B)
where s is known as the subject, o the object and p is a relationship between s and o known as
the predicate. U, B, L are the sets of IRIs, blank nodes and literals respectively.

As it was previously mentioned, IRIs are the identifiers of Web resources which can be reused in
other datasets to represent the same resource and avoid redundancy. We will not delve further
into its construction, more details are given in [W3C08]. Blank nodes represent anonymous
resources in the subject or object position of the triple. Its syntax is not regulated by the RDF
standard, its identification varies according to specific datasets. Literals are values like strings,
numbers and dates. A literal is composed of a lexical form, a datatype IRI and a language tag
even though some syntaxes may support simple literals with just the lexical form.

80

2.3. RESOURCE DESCRIPTION FRAMEWORK

:Airplane1

:Airliner :Airplane

:Vehicule

:Airbus :France

:Country

:PopulatedPlace

type

subClassOf

subClassOf

manufacturer has seat

type

subClassOf

RDFS

RDF

Figure 2.11: RDF-Schema associated to graph of Figure 2.10a

The IRI’s of the nodes of the RDF graph shown in Figure 2.10a where simplified by adding
a ”:” representing the complete IRI. Also, the datatypes were omitted in the literal nodes. For
example, the triple (:Airplane1,has_length,"75.4") is actually:

(http://example.org#Airplane1,http://example.org#has_length>,"75.4"^^xs:decimal).

A set of RDF triples forms an RDF graph defined in [Özs16] as follows:

Definition 2.5 RDF Graph [Özs16] An RDF graph is a six-tuple G = ⟨V, LV , fV , E, LE , fE⟩
such that:

• V and LV are the set of vertices and their labels respectively. V corresponds to all subjects
and objects in the data.

• E and LE are the collection of directed edges connecting subjects and objects and their cor-
responding labels respectively. The label of an edge corresponds to the property connecting
a subject and object in the data.

• fV : V → LV and fE : E → LE are bijective functions assigning vertices and edges with
their respective label.

An RDF graph is encoded in a document using concrete syntaxes such as N-Triples, Turtle,
TriG and JSON-LD. The most basic syntax is N-Triples representing one triple per line as shown
in Figure 2.10b.

The RDF data model was extended with annotators like the RDF Schema (RDFS)[DB14]
and OWL [Gro12]. The RDFS language allows to define more precisely the schema of RDF data
inspired in object-oriented programming models. It provides a vocabulary to describe resources
with classes, class hierarchies and properties, adding semantics that enable reasoning over the
data. Resources are divided in groups called classes, the members of a class are known as class’
instances. Classes are themselves resources represented as triples which can be seen as a graph.
The principal built-in class definitions are rdfs:Class, rdfs:subClassOf, rdfs:domain and
rdfs:range. An example of RDFS annotations to the data of Figure 2.10a is given in Figure
2.11. If a more complete schema is needed, ontology languages offering more expresiveness like
OWL [Gro12] could be a good solution.

The standard language to query RDF is SPARQL [SH13b] which supports to query required
and optional graph patterns, using conjunctions, disjunctions, subqueries and aggregations.
An example of a SPARQL query and its representation as a query graph is given in Section
2.2.3.2. SPARQL is based on graph pattern matching. The Basic Graph Patterns (BGP)
queries are the most commonly used. A BGP query is a set of triple patterns (s, p, o) of the
form (U ∪ B ∪ V) × (U ∪ V) × (U ∪ L ∪ B ∪ V) where V is a set of variables. A sequence of
triple patterns, with optional filters comprises a BGP query, its syntax (not considering FILTER

constraints) is expressed in [KM15] as :

SELECT ?v1 ... ?vm WHERE {t1 ... tn}

81

CHAPTER 2. GRAPH DATA : REPRESENTATION AND PROCESSING

where {t1, ..., tn} is a set of triple patterns and ?v1...?vm is the set of variables occurring in
{t1...tn}.

An example SPARQL query for the RDF graph of Figure 2.10a finding the airplanes whose
length is greater than 65.0 meters is specified as follows:

SELECT ?a ?m ?l

WHERE {

?a :type :Airliner .

?a :has_length ?l .

?a :has_model ?m .

FILTER (?l > 65.0)

}

In this query, the first tree lines in the WHERE clause consist of three triple patterns having
variables such as ?a, ?l, ?m. The FILTER clause restricts the solutions matching the triple
pattern based on numeric values or strings (with regular expressions). The formal definition of
a SPARQL query match is given in Definition 2.6.

Definition 2.6 (SPARQL match) [Özs16] Considering an RDF graph G and a SPARQL
query Q having {v1, ..., vn} distinct subjects and objects. The set {u1, ..., un} ∈ G is called a
match of Q if there exists a bijective function µ : G(U∪B∪L)→ Q(B∪V) where vi = µ(ui)∀1≤i≤n

and ∀vi the following conditions are fulfilled:

• Literals/IRIs: if vi is a literal or an IRI → ui has the same value in G.

• Variables: if vi is a variable vertex → ui must satisfy the filter constraint (if any) over the
parameter vi.

• Edges: all edges and edge’s labels in Q must have a corresponding mapping in G, ∀(vi, vj) ∈
Q→ (ui, uj) ∈ G. Also, the edge label must satisfy the filter constraint if any.

SPARQL supports more complex operators (e.g., OPTIONAL, ASK, UNION, ORDER BY, LIMIT)
that are not considered in this chapter but whose details are found in [SH13b]. We focus our work
on the core Basic Graph patterns supported by most of the state of the art systems described
in the next section.

2.3.2 Storage models

In contrast to relational databases in which the storage layout is easily represented in a table,
in RDF the storage structure depends on the system and the strategy used to further process
the data. Let us recall the most popular relational databases storage layouts: i) Row-wise or
traditional layout scheme (N-ary storage model NSM), ii) Columnar or decomposition storage
model (DSM) [CK85], and iii) partitioning attributes across (PAX) [ADH02]. All of the previous
layouts derive directly from the core data structure of the relational model, the table. They store
the table’s data row by row (NSM), column by column (DSM), or store first row by row and
finally partition by attributes (PAX). The storage model of early RDF systems is based on the
relational model. Such approaches rely on relational database techniques to efficiently solve
SPARQL queries translated to SQL. These storage approaches are described in Section 2.3.2.1.
More recently, some systems represent directly the data as a graph, not using an intermediate
representation like a table. These approaches are detailed in Section 2.3.2.2.

2.3.2.1 Relational-based

This storage model stores triples (s, p, o) in relational database tables using one of the following
strategies:

82

2.3. RESOURCE DESCRIPTION FRAMEWORK

• Triple table: this approach initially embraced by Sesame [BKvH02] stores the data in a
single table of three columns (subject, predicate, object). An example of this storage is
illustrated in Figure 2.12a. In terms of space complexity it equals the size of the graph
and without indexes lookups require scanning the whole table. This is in fact its major
drawback, the processing of self-joins turns quite expensive when SPARQL queries become
more complex. To improve performance, triple tables are lexicographically ordered in
several optimization strategies have been proposed, for example:

– Indexing : establishing a lexicographical order of the table is possible on single columns.
If the query involves a lookup in one of the unordered columns, it may require to scan
the entire table. The naive strategy to overcome this problem creates a primary
index of the other columns despite replication. A cheaper option in terms of space
are secondary indexes and single-column indexes adding a column to the triple table
with pointers. The popular RDF system Viruoso [EM09] built on top of a relational
database stores the data in a table of 4 columns (graph G, subject S, predicate P, ob-
ject O). It is composed of a main index GSPO and a secondary OPGS bitmap index.
Another popular indexing strategy stores the permutations of the single table (SPO,
OPS, PSO, SOP, POS, OSP). This technique is strongly inspired from the indexing
strategies proposed in the seventies in [Lum70, Shn77]. This techinque avoids a full
scan of the table for any single query pattern. Also, the index could be built only on a
subset of the columns (e.g., SP, PO). This strategy, named projection indexes, allows
to solve queries using only merge joins. The most popular system using a combina-
tion of both strategies (exhaustive and projected indexes) is RDF-3X [NW08] which
indexes all the permutations of the table’s attributes and some of its projections.
More recently, RDFox [NPM+15] uses only three index columns and three secondary
projection indexes.

– Dictionaries & encoding : to reduce the size of a triple table, which can become very
large due to redundancy, several compression techniques are proposed to improve the
reading efficiency. Using dictionary tables mapping each individual value to a dense
domain of positive integers reduces considerably the lookup time, reducing it to a
logarithmic search instead of a full scan. Deeper encoding techniques based on byte
encoding reduce even more the space of the encoded data storing only the increment
(delta) of one row to another. For example, in the triple table of Figure 2.12a, the
subject of the first row will be encoded, while a 0 byte will be assigned to encode
the subject of the second row since it is the same as the first one. The byte delta
encoding technique is embraced by the RDF-3X [NW08] system.

• Binary table: this strategy creates a two-column table (subject, object) per predicate.
It is illustrated in Figure 2.12b The strategy is applied by SW-Store[AMMH09] and
HadoopRDF[DWNY12] for example. It suffers from join overheads when a query involves
several predicates.

• Property table: this approach also known as pivited table aims to reduce the number of
self-joins storing the data in a wider table whose dimensions correspond to the number of
distinct subjects and predicates. The drawbacks of this approach are the great number of
null values in the table causing storage overheads, the complexity to treat multi-valued
properties and its fixed nature not supporting the schema-flexible nature of RDF (e.g.,
complex to add a triple with a new property). An excerpt of a property table is shown
in Figure 2.12c. This strategy is applied by the Jena2 [Wil06] system. Many strategies
have been proposed to alleviate some of the problems described previously within which
we find:

83

CHAPTER 2. GRAPH DATA : REPRESENTATION AND PROCESSING

Subject Predicate Object

Airplane1 has model A340
Airplane1 has length 75.4
Airplane1 nb motors 4
Airplane1 type Airliner
...

(a) Triple table

nb motors

Subject Object

Airplane1 4
Airplane2 4

...

nb version

Subject Object

B747 4
A340 5

(b) Binary tables

has model has length nb motors type nb version . . .

Airplane1 A340 75.4 4 Airliner null
Airplane2 B747 70.1 4 Airliner null
B747 null null null null 5
. . .

(c) Property table

Figure 2.12: Relational-based storage of the graph of Figure 2.10a

– Emerging schemas: this strategy reduces the number of null values in the table by
partitioning it. Each partition gathers the data sharing a similar schema. The idea
is that although RDF data does not define an explicit schema, its schema is implicit
in the data and can be found with diverse approaches. An example of a property
table partitioned using emerging schemas is shown in Figure 2.13a. Some of the most
relevant approaches to find emergent schemas are:

∗ The clustering strategy for RDBMS described by Chu et al. named hidden
schemas in [CBN07] can be very useful to find emerging schemas. In their work,
the authors mapped the table’s attributes to a weighted graph and then used the
k-nearest neighbor partitioning algorithm to create the sub-relations along with
the Jaccard similarity to measure the strength of co-occurrence between the two
attributes.

∗ The term emergent schema for RDF was introduced in [PPEB15]. In this work,
the authors used the characteristic sets cs defined in [NM11] and formally de-
scribed in Definition 2.7 to cluster triples and create the implicit schema tables.
The characteristic sets for the entire table are merged based on a semantic and
structural scores. The structural score identifies discriminating properties on
each cs using an adapted TF/IDF similarity score. The distributed RDF system
EAGRE [ZCTW13] used as well the characteristic sets to distinguish entities and
store the data of similar entities together.

∗ More recently, the approach Cinderella [HVL14] proposed a strategy to partition
partitioned incoming data on the fly based on their similarity schema and in an
existent partitioning which can be obtained with either of the previously described
methods. The system fix the maximum size for partitions and new entities are
assigned to the closest partition.

– Hashing: This technique embraced by DB2 for RDF [BDK+13] maps the predicate
and the object of a triple to a column group using a hashing function. The number
of column groups is given as a parameter, collisions are stored in new rows (named
spill row) adding a flag column as shown in Figure 2.13b. A reverse primary hash
could be applied by hashing the values to groups from the triple’s object.

– Bit encoding: The system BitMat [ACZH10] propose a bit-wise matrix representation
of property tables. In this matrix, each cell is either 0 or 1 representing the absence or
existence of that triple. An example of this strategy is shown in Figure 2.13c. During
query processing, queries are executed on the compressed data.

84

2.3. RESOURCE DESCRIPTION FRAMEWORK

Subject has model has length nb motors type

Airplane1 A340 75.4 4 Airliner
Airplane2 B747 70.1 4 Airliner

...

Subject has seat officie in

Airbus France Toulouse
Boeing USA Chicago

(a) Emerging schemas

Subject 1 2 3 Spill

Airplane1 has model A340 has length 75.4 nb motors 4 1
Airplane1 null null type Airliner null null 1
Airplane2 has model B747 has length 70.1 nb motors 4 1
Airplane2 null null Airliner Airliner null null 1
Airbus has seat France officie in Toulouse null null 0
...

(b) Primary hash

has model has length nb motors type nb version ...

Airplane1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 ...
Airplane2 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 ...
B747 0 1 ...
... ...
∗Each bit sequence represents the object’s sequence (A340, 75.4, 4, Airliner, B747,70.1,5)

(c) Bit encoding

Figure 2.13: Property table optimizations of Figure 2.10a

Definition 2.7 (Characteristic set) [NM11] Each subject s in an RDF graph G has a char-
acteristic set defined as −→cs(s) = {p|∃o : (s, p, o) ∈ G}.

2.3.2.2 Graph-based

This storage strategy maintains the graph structure of RDF representing the data using the
structures representing the adjacency of directed graphs defined in Section 2.2.2 of this chapter.
At query runtime, these approaches exploit the graph nature of RDF and SPARQL reducing
the query execution to a subgraph matching problem. These structures allow efficient lookups
of the neighbording vertices for a given vertex. We will not detail each of the structures again to
avoid redundancy. However, we will describe some of the most relevant optimization strategies
used by some of the graph-based systems:

• Encoding: Similarly to triple tables, data in adjacency structures are compressed and
grouped to streamline the lookup process. In this line, ordering the vertices lexicographi-
cally should be complemented with other ordering strategies that reflect data locality (close
neighbors should be placed close in the data structure). The adjacency list could be en-
coded with dictionaries as in the relational-based approaches, using bit compression deltas
to encode neighbors [BV04] or more complex tree-based structures (K2-trees [BLN09]).
GStore for example.

• Indexing: the simplest strategy indexes the keys of the adjacency lists in a B+Tree if
the vertices are lexicographically sorted. More complex secondary structures concern the
problem of finding all vertices that are reachable from a given vertex useful for long path
and distance queries. Among these strategies we find the 2-Hop indexing scheme [CHKZ03]
and the tree-based index FERRARI[SABW13].

The first system that considered RDF directly as a graph was presented in [BHS03].
This system was was built on top of an object-oriented database. Later, the system BitMap

[ASH08] used an adjacency matrix. The matrix encodes the triples of an RDF graph completely
in a bit matrix that is flattened in two dimensions.

85

CHAPTER 2. GRAPH DATA : REPRESENTATION AND PROCESSING

Both of the optimization strategies described previously are applied in the graph-based RDF
processing system gStore [ZÖC+14]. This system encodes the entities in adjacency lists grouping
the vertex’s and its adjacent edge labels into a fixed length bit string. The encoded data are
stored in a VS∗-tree index (height-balanced tree where each node is a bitstring that corresponds
to an encoded vertex). An incoming SPARQL query is also encoded using a similar structure
and the query problem is reduced to a sub-graph matching problem. Systems built on top
of key-value stores also integrate this category. Trinity.RDF [ZYW+13] is built on top of the
in-memory key-value store Trinity. For each node it stores the adjacency lists of outgoing and
incoming edges helping the query evaluation seen as a graph exploration process. Similarly, the
commercial graph system Stardog12 supports SPARQL of data stored in the RocksDB13 key-
value store. The major issue confronted by these approaches is scalability to large RDF graphs
[AHKK17, Özs16].

2.3.3 Processing strategies

Processing SPARQL queries is a complex task in which a wide variety of approaches are avail-
able. The former systems were built on top of relational databases storing triples in tables as
described in the previous section and directly translating SPARQL to SQL. Later, systems built
specifically to treat RDF data came to light implementing its own physical storage and opera-
tors. More recently, parallel RDF systems follow the same strategy building these systems on
top of cloud platforms transforming SPARQL queries into equivalent operators of the platform
(e.g., MapReduce jobs). In general, RDF systems can be divided into 2 large groups: native
and non-native whose characteristics are given below:

• Native systems are specifically built to treat RDF data (e.g., RDF-3X [NW08], gStore
[ZÖC+14], TriAD [GSMT14]). These systems use custom physical layouts, native index-
ing strategies, efficient communication protocols and explicit replication. They could use
relational-based storage layouts but their execution core is independent from a relational
database. They require certainly a greater effort for development, yet they have proven to
outperform the non-native strategies [AHKK17].

• Non-native systems are built on top of existent technologies like relational databases
(e.g., Virtuoso [EM09]), key-value stores (e.g., Trinity.RDF [ZYW+13]), cloud platforms
like MapReduce (e.g., EAGRE [ZCTW13], SHARD [RS11]) and Spark14 (e.g., S2RDF
[SPSL16]) among others. As it was previously mentioned, the query processing in these
systems consists to transform a SPARQL query to the known operators of the parent sys-
tem. For instance, SPARQL is translated to SQL or to MapReduce jobs if the system is
built on top of a relational database or a Hadoop15 distribution respectively.

Complete surveys on both type of systems exist. For example, [KM15] surveys all the systems
built on top of different cloud platforms. An experimental comparison of both type of systems
was performed in [AHKK17]. More general surveys in which the systems are further classi-
fied according to their storage, indexing strategy, and query execution are [Özs16, WHCS18,
ASYNN20]).

12https://www.stardog.com/
13https://rocksdb.org/
14https://spark.apache.org/
15https://hadoop.apache.org/

86

https://www.stardog.com/
https://rocksdb.org/
https://spark.apache.org/
https://hadoop.apache.org/

2.3. RESOURCE DESCRIPTION FRAMEWORK

Raw
RDF file

-Predicate

-Object

-Subject

Triple groups by:

Triple

Characteristic
Set

Graph
partitioning

Workload-
based

Semantic-
based

Permutation

Combine
fragments

K-hop
guarantee

Cloud platform

Hash

Roud-robin

Cloud platform

Fragmentation

Fragmentation Unit

Replication

AllocationFusion

Mandatory Optional

Figure 2.14: Partitioning Process in RDF Systems

2.3.4 Data partitioning

To cope with the increase in available RDF data and the need to process it efficiently, RDF
systems resorted techniques of distribution and parallel processing extensively explored in rela-
tional databases. Within distributed RDF systems we find two groups, federated and clustered
systems which are described as follows:

• Federated systems run SPARQL queries over multiple SPARQL endpoints. A SPARQL
endpoint is a protocol service which allows to query data stored in RDF using the SPARQL
language. Such systems require to perform data integration on-the-fly of multiple hetero-
geneous RDF sources. Federated systems are out of the scope of our study.

• Clustered RDF systems distribute the data among different data nodes that are part of
a single RDF storage solution. For several years, a large number of distributed systems
offering efficient RDF data processing have come to light. We focus our study in this type
of systems.

In this section we classify these works according to the partitioning strategy applied to distribute
the data. We present a scheme summarizing the process of data partitioning in RDF processing
systems regardless of the execution model. We divide the process illustrated in Figure 2.14
in three phases: Fragmentation, Allocation and Replication. The dashed squares in the figure
represent the optional phases of the process. We use this common framework inspired from the
strategy used for distributed databases described in [ÖV11] to guide our classification. In what
follows we detail the inputs, outputs and algorithms on each one of these stages.

2.3.4.1 Fragmentation

The fragmentation process consists in setting the fragmentation unit to be allocated over the
sites of the distributed system. There is no consensus regarding how RDF data should be
distributed. Most of current solutions use the triple as fragmentation unit. However, it has been
claimed that grouping the triples first might improve the performance by discovering implicit
structures in the input RDF graph [BDK+13, SGK+08]. Consequently, other solutions propose
to group the triples by subject, predicate or object first and use these groups as fragmentation
units. Other solutions go further and group the sets of triples (grouped by subject or object)
in entities identified for instance with characteristic sets [PPEB15, NM11]. Regardless of how
the data are physically represented by each system (e.g., triple table, property table), and of the
execution engine (e.g., relational-based, subgraph matching), the fragmentation units shown in
Figure 2.14 cover all the approaches of our state of the art.

87

CHAPTER 2. GRAPH DATA : REPRESENTATION AND PROCESSING

Fusion This optional stage consists in creating broader groups of triples to be allocated over
the sites of the distributed system. The fragmentation units are merged applying either of the
following techniques:

• Graph partitioning : The fragmentation units are mapped to a graph to apply graph par-
titioning heuristics clustering the fragmentation units. The graph is built mapping the
fragmentation units like triples (in H-RDF-3X [HAR11]), or groups of triples (entities in
EAGRE [ZCTW13]) to nodes of the graph. The edges (which could be weighted) represent
the connectivity within the fragmentation units. A partitioning graph heuristic, mostly
METIS [KK98a] is used to generate the groups of fragmentation units.

• Workload-based : in these techniques the fragmentation units are grouped according to a
given query workload. Triples that are queried together are gathered in the same fragments
to optimize the query execution.

• Semantic-based : this approach gathers fragmentation units based on the semantic similar-
ity (using ontologies for instance) of the concepts represented in the graph.

The fusion process is not applied in all the proposed systems and it is therefore an optional
step (bounded by a dashed rectangle in Figure 2.14). Many systems choose to apply allocation
strategies directly to the fragmentation units (e.g., triples, groups of triples by subject).

2.3.4.2 Allocation

The allocation stage consists in finding the distribution of a set of fragments {F1, ..., Fn} (which
are the output of the previous stage) to a set of sites {S1, ..., Sm}. The distribution of fragments
is done applying the following techniques:

• Hashing : a hashing function is applied to the fragmentation unit or the fragment’s at-
tributes (e.g., gStoreD [PZÖ+16]).

• Round-robin: the fragments from last stage are placed on each site indistinctly. This is
the case of the fragments obtained after a graph partitioning fusion.

• Cloud-platform dependent : in this case the allocation task is left to the cloud platform (e.g
Hadoop, Spark) on which the RDF distributed system was built on top. Most of these
platforms use distributed file systems, partitioning the data by blocks and finally sharding
them to the worker nodes.

2.3.4.3 Replication

Data replication is a frequent yet not a mandatory optimization strategy applied by several
clustered RDF distributed systems. The replication strategies are as follows:

• Permutation: in this strategy copies with different sort orders are maintained in systems
representing the data as a single triple table. In general the copies are not exact replicas
of the data, but encoded and compressed indexed versions. For example, RDF-3X [NW10]
keeps 9 indexes (e.g., subject-predicate-object SPO, object-predicate-subject OPS) corre-
sponding to the extended permutations of the triple table’s attributes (subject, predicate
object).

• Combine fragments: this strategy consists in gathering triples in different fragmentation
units (e.g., grouping by subject, then grouping by object) and creating a copy of the data
for each organization. This fragmentation strategy is embraced by the system RDF QDAG
[KMG+20]).

88

2.3. RESOURCE DESCRIPTION FRAMEWORK

• K-hop guarantee: this strategy is used specifically in systems whose fragmentation units
are merged with a graph partitioning strategy. For any vertex v assigned to a worker
node f , all vertices up to k-hops away and their corresponding edges are replicated in f .
Systems applying this strategy are H-RDF-3X [HAR11] and SHAPE [LL13].

• Cloud platform: this replication strategy takes place in systems built on top of a cloud
platform, in this case the replication rules are established by the cloud platform. For
example, the systems using the Hadoop Distributed File System HDFS replicate by default
with a factor 3. Systems using HDFS as storage layer are Hadoop, Apache Spark or key-
value stores like HBase16. Distributed RDF systems in this category are HadoopRDF
[DWNY12], S2RDF [SPSL16], H2RDF[PKT+13] just to name a few.

Some efforts have also been made to build a system to benchmark partitioning strategies. The
system Koral[JST17], for example, allows the integration of different RDF graph partitioning
techniques to investigate their behavior.

In Table 2.3 we classify the systems of the state of the art based on the partitioning frame-
work introduced previously. In the table we included approaches built on top of cloud platforms
and also systems built specifically to deal with RDF data.

16https://hbase.apache.org/

89

https://hbase.apache.org/

CHAPTER 2. GRAPH DATA : REPRESENTATION AND PROCESSING

T
a
b
le

2
.3
:
S
ta
te

o
f
th
e
a
rt

sy
stem

s

F
ra

g
m
e
n
ta

tio
n

A
llo

c
a
tio

n
R
e
p
lic

a
tio

n

T
G
rou

p
B
y

F
u
sion

R
R

H
C
P

P
erm

C
om

b
K
-H

op
C
P

S
y
ste

m
T
y
p
e

α
,β

S
P

O
G
P

W
A

S

A
p
ach

e
R
ya

[P
C
R
15]

O
n
top

✓
✓

✓

A
d
P
art

[A
A
K

+
16

]
N
ative

✓
✓

✓

C
liq

u
e-S

q
u
a
re

[G
K
M

+
15]

O
n
top

✓
✓

✓
✓

✓

D
ip
loC

lou
d
[W

C
16]

N
ativ

e
✓

✓
✓

✓

D
R
E
A
M

[H
R
N

+
15

]
O
n
top

✓
✓

✓

E
A
G
R
E

[Z
C
T
W

13
]

O
n
top

✓
✓

✓

gS
toreD

[P
Z
Ö

+
16]

N
ative

✓
✓

✓

H
-R

D
F
-3
X

[H
A
R
1
1]

O
n
top

✓
✓

✓
✓

H
2
R
D
F
[P
K
T

+
1
3]

O
n
top

✓
✓

✓

H
ad

o
o
p
R
D
F
[D

W
N
Y
1
2
]

O
n
top

✓
✓

✓

J
en
aH

b
a
se

[K
K
T
C
1
2]

O
n
top

✓
✓

✓

P
a
rto

u
t
[G

H
S
1
4
]

O
n
top

✓
✓

✓
✓

P
ig
S
p
a
rq
l
[S
P
L
11

]
O
n
top

✓
✓

✓

S
2
R
D
F
[S
P
S
L
16

]
O
n
top

✓
✓

✓
✓

S
2
X

[S
P
B
L
15]

O
n
top

✓
✓

✓

S
ed
g
e
[Y

Y
Z
K
1
2
]

N
a
tive

✓
✓

S
em

p
ala

[S
P
N
L
1
4
]

O
n
top

✓
✓

✓

S
H
A
P
E

[L
L
1
3
]

O
n
top

✓
✓

✓
✓

S
H
A
R
D

[R
S
11]

O
n
top

✓
✓

✓

P
R
oS

T
[C
F
L
1
8
]

O
n
top

✓
✓

✓
✓

S
P
A
R
Q
L
G
X

[G
J
G
L
1
6
]

O
n
top

✓
✓

✓

T
riA

d
[G

S
M
T
1
4
]

N
a
tive

✓
✓

✓
✓

T
rin

ity.R
D
F
[Z
Y
W

+
13]

O
n
top

✓
✓

✓
✓

✓

W
A
R
P

[H
S
13]

O
n
top

✓
✓

✓
✓

T
:
T
rip

le,
G
P
:
G
rap

h
p
a
rtitio

n
in
g
,
W

:
W
o
rk
lo
a
d
-b
a
sed

,
S
M
:
S
em

a
n
tic-b

a
sed

,
R
R
:
rou

n
d
-rob

in
,
H
:H

ash
,
C
P
:
C
lou

d
P
latform

α
N
a
tiv

e:
sy
stem

s
b
u
ilt

sp
ecifi

ca
lly

fo
r
R
D
F
d
a
ta
,

β
O
n
to
p
:
sy
stem

s
b
u
ilt

on
top

of
clou

d
p
latform

s.

90

2.4. CONCLUSION

2.4 Conclusion

In this chapter, we gave first a general overview of the graph data model. We detailed its logical
and storage structures, described the query processing strategies and languages, and reported
some of the most relevant current available systems. In addition, we dedicated a section to
describe the graph partitioning algorithms used by some parallel systems. This section allowed
us to understand the number of solutions available within systems merely treating data as
graphs. We saw the advantages of the model but also its limits, especially due the variability
of the methods used to partition and process the data. Next, to better delimit our work we
focused on one of the many existent graph-based data models. Specifically on RDF, the data
model for data interchange in the Web. We start by giving some background concepts, and
similarly to what we did with the graphs in general, we described RDF storage, processing and
partitioning strategies. In RDF, partitioning is dependent on the physical organization of the
data (i.e. stored in a triple table, property table or graph structure). We showed that RDF
partitioning strategies are conditional to a system and contrarily to relational databases, there
is no common logical layer covering all existing partitioning variations. We say that RDF data
partitioning is system-driven, in contrast to partitioning in relational databases that we named
data-driven. In relational databases, there are tools (e.g., advisors, definition languages) giving
comfort the database designer to create partitions according to the structure of the tables or a
partitioning scheme that meets the demands of some workload. This is not the case in RDF,
the data are charged into a system which, in general, automatically partitions the data with
a predefined strategy. The process is similar to what happens in cloud platforms as described
in last chapter, in which the data are split in blocks and hash distributed among the working
nodes.

Table 2.4: Main strenghts relational and RDF partitioning

Relational RDF

− Integration of data not following the same
initial schema is complex.

+ Flexible integration of new data.

+ DBMS-independent : partitioning is inde-
pendent of the database management system.

− System-dependent : the execution system
and the partitioning strategy are coupled.

+ Partitioning at a logical level : Independent
of the physical model used to store the data
(e.g., NSM, DSM).

− Dependent on the physical storage model
(e.g., triple-based, graph-based).

+ Native database definition languages sup-
port to declare horizontal partitions.

− Partitioning performed transparently dur-
ing the loading stage.

+ Several automatic partitioning advisors are
available help the designer to create parti-
tions.

− Data partitioning is mostly imposed by the
triple store.

The partitioning strategies adopted by RDF systems also have several advantages. For
example, most approaches allow for simple data integration. Indeed, one of RDF assets is
its flexibility to integrate data with different underlying schemas. The relational model, on
the other hand, is often too rigid to handle data without giving an upfront schema. This
contributes to tailor partitioning advising tools for the designer creating partitions based on the
data structure and workload needs. Some approaches in RDF tried to model RDF data in a
relational database schema before storing the data in a RDBMS. However, as it is demonstrated

91

CHAPTER 2. GRAPH DATA : REPRESENTATION AND PROCESSING

by surveys, relational-based systems are not optimal when dealing with highly complex queries.
The strengths and drawbacks (mostly mutually exclusive) of both data models are summarized
in Table 2.4.

We consider necessary to provide tools for RDF system designers mimicking the comfort
offered in relational database systems. This led us to fix the objective of this thesis which
consists in proposing an RDF data partitioning framework that is based on implicit logical
structures. The development of this framework will be covered throughout the next chapters.

92

Part II

Contributions

93

Chapter 3
Logical RDF Partitioning

Contents

3.1 Introduction . 97

3.2 RDF partitioning design process . 97

3.3 Graph fragments . 99

3.3.1 Grouping the graph by instances . 99

3.3.2 Grouping the graph by attributes . 104

3.4 From logical fragments to physical structures 107

3.5 Allocation problem . 109

3.5.1 Problem definition . 109

3.5.2 Graph partitioning heuristic . 111

3.6 RDF partitioning example . 112

3.7 Dealing with large fragments . 116

3.8 Conclusion . 117

95

CHAPTER 3. LOGICAL RDF PARTITIONING

Summary Based on the analysis of the literature presented in the first part of this thesis, we
propose a partitioning environment for the design of opaque systems. We draw on the lessons
learned in the relational model that partitions the data based on logical structures. In this
chapter, we give the formal definition and detail the algorithms to create these logical entities
that we named graph fragments (Gf). These entities harmonize with the notion of partitions
by instances (horizontal) and by attributes (vertical) in the relational model. We start giving
an overview of this logical layer in Section 3.2, comparing our strategy to the current state of
the art. Then, we formally define the logical entities in Section 3.3. This section includes the
algorithms to group RDF triples in graph fragments. Next, in Section 3.4 we discuss the usage of
these fragments as physical storage structures. Section 3.5 formalizes the allocation problem of
these fragments in opaque systems. Section 3.6 presents an complete example of the creation and
allocation algorithms described in the previous sections. Then, Section 3.7 presents strategies
to deal with large logical fragments. Finally, Section 3.8 concludes this chapter.

96

3.1. INTRODUCTION

3.1 Introduction

The Resource Description Framework (RDF) has been widely accepted as the standard data
model for data interchange in the Web. Formerly, RDF intended to model exclusively infor-
mation in the Web but its flexibility allowed the standard to be used in other domains (e.g.,
genetics, biology). Currently, collections of RDF triples are extensive sources of information.
The size of many RDF datasets can exceed more than a billion triples (e.g., DBPedia: 3 billion
triples1, Bio2RDF: 5 billion triples2) pushing the development of scalable processing systems.
To this end, several systems rely on parallel and distributed architectures partitioning the data
on distinct processing workers.

Most of the distributed and parallel RDF systems (RDFDS3) partition the data using the
triples as distribution units and apply, for example, hashing functions sharding the triples at
its finest granularity. These strategies do not allow to keep the graph structure of the model or
triples belonging to the same entity together, impairing the system’s performance. Furthermore,
most systems are dependent on a single partitioning strategy.

We draw on the lessons learned in the relational model, in which data partitioning is per-
formed at a logical level, independent of the storage approach. In the following we introduce a
logical layer to the partitioning process of opaque RDFDS. We start giving an overview of this
logical layer comparing our strategy to the current state of the art. Then, we formally define the
logical entities and propose the algorithms to group RDF triples in graph fragments. Next, we
discuss the usage of these fragments as physical storage structures and formalize their allocation
problem. Finally we present a complete example of the creation and allocation heuristics defined
in this chapter.

3.2 RDF partitioning design process

The design of a distributed system entails the distribution of data and programs to the sites of the
computer network in which the system is deployed. We focus on the problem of data distribution
seeking to find and allocate the optimal distribution units. In distributed relational databases,
the design process starts similarly to centralized systems with a requirements analysis specifying
the data and processing needs. The requirements are the input of the conceptual design stage
that maps requirements to entities, attributes and relationships. The result of this stage is the
global conceptual schema which is in turn the input of the distribution design step. This step
determines the distribution units and their location. Entire tables could be used as distribution
units, however it is preferable to use table subsets named partitions or fragments. To make this
process more understandable, the distribution design is subdivided in [ÖV11] in two sub steps.
The first one, named fragmentation, determines the distribution units and then the allocation
step places them to the sites of the network. The previous process is summarized in Figure 3.1a.

The conceptual design phase explicitly declaring the high-level entities like in relational
databases does not occur in RDF systems. Instead, the data are organized in a schema-free
model using triples whose global structure is not explicitly stated. This characteristic gives
RDF more flexibility to integrate data with different schemas but it pays the price during the
physical design [AÖD14]. Furthermore, the data related to the same high-level entity can be
easily scattered through the batch of data. When it comes to the distribution of RDF data,
there is no consensus about how the data should be fragmented and allocated. Currently, the
partitioning strategies are highly dependent on the backend system used to store the data. For
example, the systems built on top of cloud platforms delegate the partitioning choice to the
distributed file system which usually hashes the data by chunks. Specialized systems use triples

1https://wiki.dbpedia.org/about/facts-figures
2https://www.lod-cloud.net/dataset/bio2rdf-pubmed
3From this point we use the abbreviation RDFDS to denote both, parallel and distributed RDF systems

97

https://wiki.dbpedia.org/about/facts-figures
https://www.lod-cloud.net/dataset/bio2rdf-pubmed

CHAPTER 3. LOGICAL RDF PARTITIONING

Requirements
analysis

Conceptual design Partitioning

Logical layer

(a) Relational databases

Raw
RDF file

Schema deduction Partitioning

Fragments

Our logical layer

(b) RDF systems

Figure 3.1: Partitioning design process

as distribution units and usually apply hashing functions to decide the triple’s location.

There have been some efforts to explicitly add a class hierarchy schema to RDF through
annotations (e.g., RDF schema and ontologies). Furthermore, as shown in [PPEB15], i) the
entities in a single dataset can be described with multiple ontologies, ii) not all the entities in a
dataset are annotated with the same metadata and, iii) not all SPARQL query patterns consider
them. Using these annotations in the identification of implicit entities is not very effective.

The identification of higher-level entities in RDF has also been researched in the context
of query optimization. Specifically, to collect statistics to estimate the cardinality of triple
patterns. Instead of collecting statistics on the entire dataset, approaches like the characteristic
set [NM11] for instance, collect statistics on higher-level entities. In [NM11], these entities are
detected using the structure of the original dataset grouping the triples by subject first and
further gathering the data according to their predicates. This strategy does not rely on the
annotations (e.g RDFS) to identify entities and it allows to consider some of correlations missed
by the other optimization approaches based global statistics. This technique has been reused to
detect a relational schema to the data as we will see below.

Grouping the triples in higher level entities has also been explored in relational-based RDF
systems. The goal of these approaches is to build a relational schema and map the triples to
multiple relational tables. For example, the hidden schemas [CBN07] introduced in DB2RDF
inferred an RDF schema to vertically partition a property table via attribute clutering. The
emergent schemas approach in [PPEB15] combines the characteristic set with other clustering
techniques to identify implicit structures within the data. More recently, [HVL14] introduced
Cinderella to incrementally partition bulk data inserts assigning a schema with a similarity mea-
sure between attributes. The techniques described previously could be generalized in a frame-
work allowing the discovery of implicit entities used by optimization strategies (like indexes) or
as data fragments.

Our work introduces a logical dimension to the partitioning process of RDF graphs. We

98

3.3. GRAPH FRAGMENTS

draw on the lessons learned in the relational model, in which data partitioning is performed at a
logical level, independently of the storage approach used to persist the data. This wise strategy
has proven its success due to its great balance between conceptual and intuitive simplicity
[OB19]. The proposed process is illustrated in Figure 3.1b. We borrow some of the techniques
in the literature used to identify higher-level entities in RDF datasets and define logical RDF
fragments. Then, based on these fragments we propose allocation strategies considering the
initial connectivity of the data, keeping the original graph structure and avoiding data skewness.

3.3 Graph fragments

Many studies have shown that grouping triples contributes to improve the performance of cen-
tralized (e.g., [CBN07, PPEB15]) and distributed (e.g., [AHKK17]) RDF systems. In this section
we propose to cluster the data in groups inspired from the partitions in the relational model. In
relational databases, an entity (a table) is partitioned at the instance (horizontal) or attribute
level (vertical). Indeed, horizontal and vertical partitions let to retrieve only relation’s subsets
avoiding full table scans. Considering that in RDF there is no conceptual design stage like in
relational databases, our proposal looks to detect implicit entities based on the structure of the
RDF graph. Such entities represent the implicit schema of an RDF graph

In fact, the characteristic set (defined in Definition 2.7) of a node in an RDF graph allows
to group the instances of the same high-level entity to form a partition. In the following section
we define two kinds of entities, following the idea of fragmenting the entities at the instance or
attribute levels, but with an actual graph connotation.

3.3.1 Grouping the graph by instances

To gather the triples of the same high-level entity we group in the first place the triples by its
subjects. These structures defined in Definition 3.1 are named forward data stars. Let us first
define the functions fs(t) → s, fp(t) → p and fo(t) → o returning the subject, predicate and
object of an RDF triple t = ⟨s, p, o⟩ respectively. Both functions are applied in some of the
definitions of this chapter.

Definition 3.1 (Forward graph star) A forward graph star denoted as
−→
Gs(s) is a subset

of G in which the triples share the same subject s. Formally,
−→
Gs(s) ⊆ G, such that

−→
Gs(s) =

{t|∀i ̸=j(fs(ti) = fs(tj) = s)}. We name the subject s the head of the forward star.

A forward graph star gathers all the properties associated with a node describing a single
occurrence of a certain entity. As shown in Theorem 3.1, a triple can only belong to a single
forward graph star. The entities can be uniquely identified by a subset of their emitting edges
[NM11]. To characterize them we use the notion of characteristic set defined in Definition 2.7.

Theorem 3.1 A triple belongs to one and only one forward graph star. Let t be a triple t ∈ G,

if t ∈
−→
Gsi ⇒ ∀i ̸=j(t /∈

−→
Gsj).

Proof. To prove by contradiction. Let us assume that a triple t ∈
−→
Gsi and t ∈

−→
Gsj. Let us

consider two not equal triples t1, t2, both different from t, such that t1 ∈
−→
Gsi and t2 ∈

−→
Gsj. Based

on the forward entities definition, fs(t1) = fs(t) and fs(t2) = fs(t). Using the transitivity of the

equality, fs(t1) = fs(t2) which is impossible if
−→
Gsi ̸=

−→
Gsj.

A forward graph fragment formally described in Definition 3.2 gathers forward graph stars
according to their characteristic set. As it was previously mentioned, we can characterize an
entity by its emitting edges. A forward graph fragment is a logical structure used to gather the

99

CHAPTER 3. LOGICAL RDF PARTITIONING

s1 o1

o2

s2 o3

o4

s3 o5

o6
p1.

p2

Forward entity
{p1, p2}

(a) Graph

s p1 p2

s1 o1 o2
s2 o3 o4
s3 o5 o6

(b) Table

{ {s1 : {{p1:o1}, {p2:o2}}},

{s2 : {{p1:o3}, {p2:o4}}},

{s3 : {{p1:o5}, {p2:o6}}}

}

(c) Adjacency list

Figure 3.2: Forward graph fragment example

data related to the same high-level entity. As shown in Figure 3.2, this structure is independent
of the storage layer of the systems. A forward graph fragment can be used only as a logical
structure to distribute the data, or used to physically store the data in this format as shown in
Figures 3.2b and 3.2c.

In general, two forward graph stars belong to the same entity if the labels of their emitting
edges (i.e. the predicates) are the same. Yet, sometimes two instances belong to the same entity
but their characteristic sets are not exactly the same. This is the case when two characteristic
sets differ only in non-discriminating predicates. To avoid creating a great number of fragments
with a very strict similarity criteria, we used a similarity score and a threshold. The similarity
scores are described in Sect. 3.3.1.1. The characteristic set of a graph fragment is therefore the
union of the characteristic sets of the graph stars of the fragments. To simplify the notation,

the function cs(
−→
Gf) returns the characteristic set (which is the identifier) of the fragment.

Definition 3.2 (Forward graph fragment) A forward graph fragment is a set of forward

graph stars
−→
Gs that have similar characteristic sets according to a threshold τ . A forward graph

star
−→
Gsi belongs to one and only one forward graph fragment

−→
Gf i.

Formally,
−→
Gf = {

−−−→
Gs(s)|∀−→Gs(si)̸=

−→
Gs(sj)

(︁
Sim(cs(si), cs(sj)) ≥ τ

)︁
, }.

3.3.1.1 Similarity scores

The similarity function Sim(cs(si), cs(sj)) returns a score measuring how similar both charac-
teristic sets are. In its calculation, it can consider just the structure of the characteristic set and
their relationships or more complex semantic features. Among the structural similarity functions
we find:

• Supersets: this similarity strategy merges two characteristic sets if there is a larger set
that contains all the properties of the smaller one. It is calculated as follows:

Sim(cs(si), cs(sj)) = |cs(si) ∩ cs(sj)|
Min(|cs(si)|, |cs(sj)|)

To ensure that only full subsets are merged with supersets, the threshold τ is fixed to 1.

• Jaccard similarity: this measure evaluates only how many predicates both sets have in
common. Contrarily to the previous function, it considers not only the superset case.

Sim(cs(si), cs(sj)) = |cs(si) ∩ cs(sj)|
Max(|cs(si)|, |cs(sj)|)

• Tf-idf [PPEB15]: this criteria used in Information Retrieval expresses the frequency of
a term taking into account how often the term is used in the corpus. The measure is

100

3.3. GRAPH FRAGMENTS

interesting to compare characteristic sets since it could be adapted to weight the predi-
cates according to their discriminatory power, giving less weight to predicates shared by
almost all the characteristic sets of the dataset. The tf-idf measure of a predicate in a
characteristic set is calculated as follows:

tf idf(p, cs) = 1
|p|
· log

(︂ #TotalCSs

1 + #countCSs(p)
)︂

Where the tf factor is always 1 since every property occurs once per characteristic set,
#TotalCSs is the total number of characteristic sets, and #countCSs(p) is the total
number of characteristic sets having property p in the property list. The measure can be
normalized to take into account the length of the characteristic set:

tf idf(p, cs) =
(︂
0.5 + 0.5 ∗ 1

|cs|

)︂
· log

(︂ #TotalCSs

1 + #countCSs(p)
)︂

Finally, the tf-idf values for each predicate are used to calculate cosine similarity as:

Sim(csi, csj) =
∑︁

p∈(csi∩csj) tf idf(p, csi)× tf idf(p, csj)√︂∑︁
pi∈csi

tfidf(pi, csi)2 ×
√︂∑︁

pj∈csj
tfidf(pj , csj)2

On the other hand, if the similarity is based on semantic measures there are two alternatives:

• Same label: this strategy merges two characteristic sets if their semantic label (identified
by the predicate rdfs:label) is the same. This similarity is binary, if both characteristic
sets have the same label the similarity is 1 and 0 otherwise.

• Ancestor-based: This strategy checks at the hierarchy of classes in the ontology and assigns
a similarity 1 if both sets share a common ancestor. However, the similarity score weights
whether the common ancestor is too general in the ontology. Given a common ancestor,
the similarity is calculated as follows:

Sim(csi, csj) = log
(︂#TotalInstO

#InstC

)︂
Where #TotalInstO is the total number of instances covered by the ontology and #InstC
is the total number of instances covered by the ancestor.

Both of the previous similarities are calculated only if a common ontology exists between both
cs, otherwise the structural similarity is preferred.

To assign a forward graph star
−→
Gs(s) to a forward graph fragment, a pairwise similarity is

calculated between the characteristic sets of the forward star and the fragments already assigned
to Gf . The graph star is assigned to the fragment with the highest similarity only if its similarity
score is higher than the given threshold τ . Let us consider for example a forward graph star−→
Gs(si) and the set of forward fragments

−→
Gf = {

−→
Gfj ,
−−→
Gfk}. To calculate the similarity one can

encounter the following cases:

(i) If Sim
(︁
cs(si), cs(

−→
Gf j)

)︁
> Sim

(︁
cs(si), cs(

−→
Gfk)

)︁
> τ then Gsi ∈

−→
Gfj .

(ii) If both scores have the same value, Sim
(︁
cs(si), cs(

−→
Gf j)

)︁
= Sim

(︁
cs(si), cs(

−→
Gfk)

)︁
> τ , then

−→
Gsi is assigned to either of the sets

−→
Gfj or

−−→
Gfk.

(iii) If the forward graph star has not a similarity score greater than the threshold with any of
the graph fragments, formally expressed as:

∀i ̸=j

(︂
Sim

(︁
cs(si), cs(

−→
Gf j)

)︁)︂
< τ)

then the the forward star
−→
Gs forms a forward graph fragment on its own (

−→
Gf = −→Gsi).

101

CHAPTER 3. LOGICAL RDF PARTITIONING

3.3.1.2 Forward fragmentation algorithm

The generation of forward graph fragments is described in Algorithm 1. The inputs of the
algorithm are an RDF file in SPO order and a similarity threshold τ . We consider an ordered
file since many triple stores employ bulk loading techniques that efficiently encode and organize
the data. The algorithm starts initializing an empty graph star, a variable storing the subject
of the first triple and an empty map structure mapping characteristic sets to graph fragments.
Then it makes a single pass through the triples of the dataset (Step 2). The loop creates a graph
star set until it detects a change in the subject of the current triple (Step 3). At this point, it
generates a key combining the set of ID’s of the predicates that co-occur in a graph star with
a hashing function (Step 6). If the key is already in the map of characteristic sets, it assigns
the star directly to the fragment and appends it to the set of graph fragments with the function
appendGf (Step 9). If there is no key in the map with the star’s key then it uses the function
updateGf which applies the similarity functions to decide to which fragment the star should be
appended (Step 11). The functions appendGf and updateGf are described in Algorithms 2 and
3 respectively. The algorithm returns the set of graph fragments, the map of characteristic sets
and fragments, and a map assigning a subject with the corresponding graph fragment (Step 18).

Algorithm 1 Generation of forward graph fragments

Input: RDF file D of {t1, ..., tn} triples t = ⟨s, p, o⟩ in SPO order, threshold similarity τ

Output: Set of fragments
−→
Gf = {

−→
Gf1, ...,

−→
Gfp}, characteristic set map CSM⟨key,

−→
Gfk⟩,

subject map SM⟨si−1,
−→
Gfk⟩

1: Initialize
−→
Gs = ∅, si−1 = fs(t1), CSM⟨key,

−→
Gfk⟩ = ∅,SM⟨si−1,

−→
Gfk⟩ = ∅

2: for each ti in D do
3: if si−1 = fs(ti) then

4:
−→
Gs(si−1) = −→Gs(si−1) ∪ {ti}

5: else
6: key = Hash(cs(si−1))
7: if key ∈ CSM.keySet() then

8:
−→
Gfk = CSM.get(key)

9:
−→
Gf = appendGf(−→Gs(si−1),

−→
Gfk,

−→
Gf)

10: else
11: (

−→
Gf, CSM,

−→
Gfk) = updateGf(−→Gs(si−1),

−→
Gf, τ, CSM)

12: end if
13:

−→
Gs(si−1) = {ti}

14: SM.put(si−1,
−→
Gfk)

15: end if
16: si−1 = fs(ti)
17: end for
18: return

−→
Gf , CSM ,SM

The appendGf (Alg.2) function takes a given graph star, and appends it to the indicated
graph fragment (Step 1). Finally it updates the global set of graph fragments (Steps 2 - 3).
The updateGf function (Alg. 3) uses the similarity functions described in Section 3.3.1.1 to
decide whether to append the graph star to a given fragment or to create a new one. The
algorithm considers the case in which two similarity functions are prioritized. For example,
using a semantic similarity (which is a binary similarity) first and if it does not find any match,
apply a structural similarity. The algorithm makes a single pass through the already assigned
graph fragments (Step 2). It uses the first similarity measure and, if it finds a graph fragment
whose similarity is 1, it assigns the graph star to the fragment and stops the search (Steps 3 - 5).
The second similarity measure is used the case in which the first measure did not find any match

102

3.3. GRAPH FRAGMENTS

(Steps 7 - 9). If after going through all the assigned fragments it still does not find any match,
it creates a new graph fragment (Steps 13 - 15). It returns the set of updated graph fragments,
the updated characteristic set map and the fragment assigned to the graph star (Step 20).

Algorithm 2 appendGf function

Input: A graph star
−→
Gs(s), a graph fragment

−→
Gfk ∈

−→
Gf , a set of graph fragments

−→
Gf

Output: Updated set of graph fragments
−→
Gf

1:
−→
Gfk =

−→
Gfk ∪

−→
Gs(s)

2:
−→
Gf =

−→
Gf −

−→
Gfk

3:
−→
Gf =

−→
Gf ∪

−→
Gfk

4: return
−→
Gf

Algorithm 3 updateGf function

Input: A graph star
−→
Gs(s), a set of graph fragments

−→
Gf , a similarity threshold τ , Map of

graph fragment keys CSM⟨key,
−→
Gfk⟩

Output: (
−→
Gf , CSM⟨key,

−→
Gfk⟩,

−→
Gf tmp)

1: Initialize max = 0,
−→
Gf tmp = ∅, key = Hash(cs(si))

2: for each
−→
Gf i in

−→
Gf do

3: if SimA(cs(s), cs(
−→
Gf i)) = 1 then

4:
−→
Gf tmp =

−→
Gf i

5: break
6: else
7: if SimB(cs(s), cs(

−→
Gf i)) > τ AND SimB(cs(s), cs(

−→
Gf i)) > max then

8: max = SimB(cs(s), cs(
−→
Gf i))

9:
−→
Gf tmp =

−→
Gf i

10: end if
11: end if
12: end for
13: if

−→
Gf tmp = ∅ then

14:
−→
Gf tmp = −→G s(s)

15:
−→
Gf =

−→
Gf ∪

−→
Gf tmp

16: else
17:

−→
Gf = appendGf(−→Gs(s),

−→
Gf tmp,

−→
Gf)

18: end if
19: CSM.put(key,

−→
Gf tmp)

20: return (
−→
Gf, CSM,

−→
Gf tmp)

3.3.1.3 Forward fragments as allocation units

In this section we prove that the set of forward graph fragments
−→
Gf partitions an RDF graph

in a correct set of partitions. This is depicted in Theorem 3.2.

Theorem 3.2 The set
−→
Gf = {

−→
Gf1, ...,

−→
Gf l} of all forward graph fragments for the graph G is a

correct4 partition set of the graph G.

4According to the correctness fragmentation rules in [ÖV11]

103

CHAPTER 3. LOGICAL RDF PARTITIONING

Proof. We will show that the three correctness fragmentation rules mentioned in [ÖV11] are
enforced.

• Completeness: If t ∈ G ⇒ ∃
−→
Gsi such that t ∈

−→
Gsi,

−→
Gsi ∈

−→
Gf i, and

−→
Gf i ∈

−→
C . By

contradiction, if ∀
−→
Gsi, t /∈

−→
Gsi then the triple’s t subject fs(t) does not equal any of the

subjects of the forward stars
−→
Gs. Since the forward stars

−→
Gs are built by grouping first all

triples of the graph G by subject, the triple t’s subject is not equal to the subject of any
triple in G, therefore t /∈ G.

• Reconstruction: It is possible to define an operator ∇ such that G = ∇
−→
Gfi, ∀

−→
Gfi ∈

−→
C . For

the forward fragment classes, the operator ∇ equals the union operator ∪. In other words,⋃︁l
i=1
−→
Gfi = G. By contradiction, if ∃t ∈

−→
Gfi such that t /∈ G, then the subject of any triple

in
−→
Gfi does not belong to G. This is impossible because by definition, the forward stars are

created grouping all triples from the initial graph G by subject. This would be possible only

if t /∈
−→
Gfi and therefore the set of forward entities would not be complete.

• Disjointness: ∀i ̸=j(
−→
Gfi∩

−→
Gfj = ∅). By contradiction, if ∃(

−→
Gfi∩

−→
Gfj = {t}) then t ∈

−→
Gsi and

t ∈
−→
Gsj (

−→
Ei ∈

−→
Gfi,
−→
Gsj ∈

−→
Gfj), which is impossible unless the same triple had two different

subjects.

3.3.2 Grouping the graph by attributes

The organization of an RDF graph in forward graph fragments identifies the set of instances for
implicit entities in the graph using characteristic sets. The fragments created with this strat-
egy resemble the tuple groups generated when horizontally partitioning a relational database.
As in the relational model, fragmenting a graph in forward fragments is useful for a certain
type of queries. For example, if the workload is composed of star-shaped queries, this type of
organization is ideal. However, this single fragmentation strategy does not optimize all query
spectra. Partitioning an entity by its attributes in the relational model, known as vertical par-
titioning, optimizes other types of queries that involve a small number of attributes. Several
RDF processing systems use a similar strategy, where a fragment is created to each property
(e.g., SW-Store [AMMH09], S2RDF [SPSL16]). In relational-based systems, the strategy stores
triples in different tables per property. This strategy is efficient when solving queries with a few
attributes but suffers overheads when several predicates are joined in one query.

In this section we describe the creation of fragments by regrouping the nodes by their prop-
erties. Instead of strictly regrouping each property in a different fragment, we use the notion of
characteristic sets to group the attributes affecting the same node. We name these structures
backward graph fragments, whose construction is very similar to the fragments described in the
previous section. We start defining a backward graph star which groups a node and its incoming
edges. This structure allows to identify properties that affect the same node to later cluster
them. It is formally defined in Definition 3.3. A triple belong to a single backward graph star
as shown in Theorem 3.3.

Definition 3.3 (Backward graph star) A backward graph star denoted as
←−
Gs(o) is a subset

of the original RDF graph G in which the triples share the same object o. Formally
←−
Gs ⊆ G such

that
←−
Gs = {t|∀i ̸=j(fo(ti) = fo(tj))}. We name the object o the head of the backward star.

Theorem 3.3 A triple belongs to one and only one backward graph star. Let t be a triple t ∈ G,

if t ∈
←−
Gsi ⇒ ∀i ̸=j(t /∈

←−
Gsj).

104

3.3. GRAPH FRAGMENTS

o7 s4

s5

o8 s6

s7

o9 s8

s9
p3.

p4

Backward entity
{p3, p4}

(a) Graph

o p3 p4

o7 s4 s5
o8 s6 s7
o9 s8 s9

(b) Table

{ {o7 : {{p3:s4}, {p4:s5}}},

{o8 : {{p3:s6}, {p4:s7}}},

{o9 : {{p3:s8}, {p4:s9}}}

}

(c) Adjacency list

Figure 3.3: Backward graph fragment example

Proof To prove by contradiction. Let us assume that a triple t ∈
←−
G si and t ∈

←−
G fsj. Let us

consider two not equal triples t1, t2, both different from t, such that t1 ∈
←−
G si and t2 ∈

←−
G sj .

Based on the backward entity definition, fo(t1) = fo(t) and fo(t2) = fo(t). Using the transitivity

property of the equality, fo(t1) = fo(t2) which is impossible if
←−
G si ̸=

←−
G sj.

The backward graphs stars are grouped using characteristic sets. We extend in Definition 3.4
the definition given in Chapter 2 to consider the characteristic set of objects. A backward graph
fragment is therefore a group of backward graph stars whose heads (objects) share a similar
characteristic set. This structure allows to gather the predicates that point to the same type of
objects, creating broader groups than the ones obtained when splitting the dataset by predicates.

We can retrieve the characteristic set of a backward fragment with the function cs(
←−
Gf).

The backward graph fragments are illustrated in Figure 3.3a. Similarly, they could be phys-
ically stored in tables (Figure 3.3b) or adjacency lists (Figure 3.3c). They are formally defined
in Definition 3.5.

Definition 3.4 (Characteristic set extension) Each subject s and object o in an RDF graph
G has a characteristic set defined as −→cs(s) = {p|∃o : (s, p, o) ∈ G} and −→cs(o) = {p|∃o : (s, p, o) ∈
G}.

Definition 3.5 (Backward graph fragment) A backward segment
←−
Gf is a set of backward

graph stars
←−
Gs with similar characteristic sets according to a threshold τ .

Formally,
←−
Gf = {←−Gs(o)|∀←−Gs(si)̸=

←−
Gs(sj)Sim(cs(oi), cs(oj})) ≥ τ}.

The similarity functions used to group characteristic sets are the same functions described
in Section 3.3.1.1, although structural functions are mainly used to form backward fragments.

3.3.2.1 Backward fragmentation algorithm

The generation of backward graph fragments is described in Algorithm 4. The inputs of the
algorithm are the same as for Alg. 1 except that the input file must be in OPS (object, predicate,
subject) order. This input file facilitates the creation of backward stars and fragments. The
algorithm starts initializing an empty graph star, a variable storing the object of the first triple
and an empty map structure mapping characteristic sets to graph fragments. Then it makes a
single pass through the triples of the dataset (Step 2). The loop creates a graph star set until
it detects a change in the object of the current triple (Step 3). At this point, it generates a key
combining the set of ID’s of the predicates that co-occur in a graph star with a hashing function
(Step 6). If the key is already in the map of characteristic sets, it assigns the star directly to
the fragment and appends it to the set of graph fragments with the function appendGf (Step
9). If there is no key in the map with the star’s key then it uses the function updateGf which

105

CHAPTER 3. LOGICAL RDF PARTITIONING

applies the similarity function to decide to which fragment the star should be appended (Step
11). The function appendGf is not detailed in an algorithm, since the steps are the same as in 2
but for backward fragments. The function updateGb is described in Algorithm 3. The algorithm
returns the set of graph fragments, the map of characteristic sets and graph fragments, and a
map of objects with their corresponding backward fragment (Step 11).

Algorithm 4 Generation of backward graph fragments

Input: RDF file D of {t1, ..., tn} triples t = ⟨s, p, o⟩ in OPS order, threshold similarity τ

Output: Set of fragments
←−
Gf = {

←−
Gf1, ...,

←−
Gfp},characteristic set map CSM⟨key,

←−
Gfk⟩,

object map OM⟨o,
←−
Gf⟩

1: Initialize
←−
Gs = ∅, oi−1 = fo(t1), CSM⟨key,

←−
Gfk⟩ = ∅

2: for each ti in D do
3: if si−1 = fs(ti) then

4:
←−
Gs(oi−1) =←−Gs(oi−1) ∪ {ti}

5: else
6: key = Hash(cs(oi−1))
7: if key ∈ CSM.keySet() then

8:
←−
Gfk = CSM.get(key)

9:
←−
Gf = appendGf(←−Gs(oi−1),

←−
Gfk,

←−
Gf)

10: else
11: (

←−
Gf, Map,

←−
Gfk) = updateGb(←−Gs(oi−1),

←−
Gf, τ, CSM)

12: end if
13:

←−
Gs(oi−1) = {ti}

14: OM.put(oi−1,
←−
Gfk)

15: end if
16: oi−1 = fo(ti)
17: end for
18: return

←−
Gf , CSM , OM

The updateGf function is described in Alg. 5. The algorithm makes a single pass through the
already assigned graph fragments (Step 2). Based on a similarity measure in the characteristic
set, it searches for the most similar already assigned graph fragment(Steps 3 - 5). If after
going through all the assigned fragments it still does not find any match, it creates a new
graph fragment (Steps 8 - 10). It returns the updated set of backward fragments, the updated
characteristic set map and the graph fragment assigned to the input graph star (Step 15).

The set of backward graph fragments forms also a partitioning set of the RDF graph as
shown in Theorem 3.4.

Theorem 3.4 The set
←−
Gf = {

←−
Gf1, ...,

←−
Gfm} of all backward segments for the graph G is a

correct partition set of the graph G.

The proof follows the same structure as the one for the forward graph fragments.

We have shown that the sets of forward and backward fragments (
−→
Gf,
←−
Gf) induce correct

partitions (i.e. complete, disjoint and rebuildable) of the original RDF dataset G. The elements
on each set correspond to fragments of the RDF graph G that become distribution units during
the allocation step. The allocation problem is described and formalized in Section 3.5. in the
next section we compare the creation of fragments with other techniques commonly used to
persist RDF graphs.

106

3.4. FROM LOGICAL FRAGMENTS TO PHYSICAL STRUCTURES

Algorithm 5 updateGb function

Input: A graph star
←−
Gs(o), a set of graph fragments

←−
Gf , a similarity threshold τ , Map of

graph fragment keys CSM⟨key,
←−
Gfk⟩

Output: (
←−
Gf , CSM⟨key,

←−
Gf tmp⟩,

←−
Gf tmp)

1: Initialize max = 0,
←−
Gf tmp = ∅, key = Hash(cs(oi))

2: for each
←−
Gf i in

←−
Gf do

3: if SimB(cs(o), cs(
←−
Gf i)) > τ AND SimB(cs(o), cs(

←−
Gf i)) > max then

4: max = SimB(cs(o), cs(
←−
Gf i))

5:
←−
Gf tmp =

←−
Gf i

6: end if
7: end for
8: if

←−
Gf tmp = ∅ then

9:
←−
Gf tmp =←−G s(o)

10:
←−
Gf =

←−
Gf ∪

←−
Gf tmp

11: else
12:

←−
Gf = appendGf(←−Gs(o),

←−
Gf tmp,

←−
Gf)

13: end if
14: CSM.put(key,

←−
Gf tmp)

15: return (
←−
Gf, CSM,

←−
Gf tmp)

3.4 From logical fragments to physical structures

The organization of RDF data in graph fragments allows to detect implicit logical entities that
are used as distribution units in RDFDS. Furthermore, using these logical fragments as physical
structures could significantly improve the performance of centralized and distributed systems.
The work of Pham et al. in [PPEB15] showed that explicitly storing the data using a relational
schema automatically discovered boosts the performance of Virtuoso [EM09], a relational-based
triple store. Organizing the data into forward and backward graph fragments, regardless of the
structure used to persist the data (e.g., tables, indexes or adjacency lists), avoids to scan the
whole dataset many times with for a single query as it is done by most of the systems storing the
entire RDF graph in a single data structure. This intuition is illustrated in Figure 3.4 comparing
the query execution in systems with distinct storage structures. Let us start with the execution
in systems storing the data in a single triple table as shown in Figure 3.4a. In these systems,
the execution is in general divided by triple patterns (TPs). The query in this figure is divided
in four triple patterns. The matches for each TP are found by scanning the entire table or index
storing the whole dataset. Then, the matches for each TP are joined to find the final results.
Some systems have optimized this strategy by indexing the data in different orders (e.g., SPO,
OPS, PSO) to join the results of triple patterns using more efficient algorithms (e.g merge-join
in RDF-3X [NW08]). Other strategies, like the property table allow to reduce the number of
joins solving star-shaped patterns with a single scan. For example, the yellow pattern shown
in Fig 3.4b composed of two single patterns is solved with a single scan of the property table.
Still, the property table must be entirely scanned to solve every star-shaped pattern which may
cause overheads.

Partitioning the RDF graph in physical fragments can avoid to scan the whole dataset
with each query pattern. To do this, the relevant partitions must be identified based on the
information available in the query. Forward and backward fragments allow to identify the
relevant partitions based on the query’s predicates, which are known in most SPARQL queries.
The process to solve a query in a system persisting the data with forward graph fragments is
illustrated in Figure 3.4c. We assume that the data are stored in tables, but the storage structure

107

CHAPTER 3. LOGICAL RDF PARTITIONING

SPO SPO SPO SPO▷◁ ▷◁ ▷◁

(a) Triple table

S p1 . . . pm S p1 . . . pm S p1 . . . pm

▷◁ ▷◁

(b) Property table

S p1 p2 p6
S p1 p2 p6

S p8 p9
S p8 p9 S p5 p6

S p5 p6 p7 p8▷◁ ▷◁

Candaidates

(c)
−→
Gf

O p1 p2 p6
O p1 p2 p6

O p8 p9
O p8 p9S p5 p6

S p5 p6 p7 p8 ▷◁ ▷◁

Filter Filter

(d)
−→
Gf,
←−
Gf

Figure 3.4: Query execution by storage

could have been any other (e.g., indexes, adjacency lists). If the data are organized as forward

fragments, the query should be grouped in forward star-shaped patterns too (denoted as
−→
SQ) so

that each pattern group has a candidate set of forward fragments. The candidate set contains
forward fragments in which a match to the query is likely to be found. To obtain them one
could apply simple rules, for example that the characteristic set of the star-shaped pattern must
be contained in the characteristic sets of any of the candidate fragments. More formally, the

set of candidate fragments denoted as C(−→SQ) is defined as C(−→SQ) = {
−→
Gfk|cs(−→SQ) ⊆ cs(

−→
Gfk)}.

Ideally, the total number of triples read from the candidate set is much smaller than the total
number of triples of the dataset. Since not all the data is read at the same time, the system’s
throughput is also improved. In addition, the fragments in the candidate set can be scanned in
parallel, reducing the queries’ response time. The order in which the triple patterns are executed
plays also a very important role in the query performance. Storing the data in physical graph
fragments allows to easily collect statistics about them to estimate the most efficient join order.
Fragmented data also allows more efficient filtering from one pattern to another, as we will
see below, using forward and backward graph fragments simultaneously allows to prune invalid
scans from one triple pattern to another.

Combining forward and backward fragments The integration of horizontal and vertical
partitions in the relational model has been explored by many researchers in the past. For
example, the advisors of a database physical design described in [ANY04] or the Fractured
Mirrors [RDS02]. Meanwhile, many massive processing systems propose replication strategies
not only to recover and support fault tolerance but to improve the response time of queries. The
Hadoop distributed framework for example, stores the data with a default replication factor
of 3. We consider an approach similar to the Fractured Mirrors [RDS02] in which a system

108

3.5. ALLOCATION PROBLEM

stores two copies of the data. One copy organizes the data as forward graph fragments and
another as backward graph fragments. This configuration is useful especially when the workload
is unknown in the initial partitioning stage. Also, as it is shown in Figure 3.4d, considering both
fragments allows to filter the data scanned at each candidate fragment considering the matches
from the previous query pattern. For instance, let us consider that the execution starts finding
the matches for the yellow star pattern in the Figure 3.4d. The matches found in this pattern
could be used as filters to scan the rows (which are the objects) of the candidate backward
fragments of the green and red patterns.

3.5 Allocation problem

The allocation of fragments is a mandatory stride in distributed systems. The problem consists
in finding the optimal distribution of data fragments to the sites of a computer network. The
problem was initially studied in the context of file distribution but later deepen in relational
databases where it was proven to be NP-Complete [Esw74, SW85, LY80]. In the relational model,
the estimation of how optimal a distribution strategy is depends on various criteria which are
evaluated on the basis of cost models. These models estimate the storage and maintenance costs
along with performance metrics like the system’s throughput and response time. Since the com-
plexity of the problem does not allow to calculate exact solutions in a reasonable time, a number
of different heuristics used in operational research (e.g., knapsack problem [CMP82]) have been
applied in RDBMS. These techniques are barely used in modern distributed architectures like
Hadoop, that despite being based on other execution paradigms, face the same problem of data
distribution. These systems split the data by chunks and use hashing functions to distribute
them among the sites of the cluster since the data lacks a defined schema.

Similarly, most of RDFDS opt for very simple distribution solutions. These solutions do not
guarantee that the triples closely related to each other would be in the same site. A query that
merges intermediate results which are not found in the same machine are very inefficient mainly
due to the high transfer costs. As in distributed relational databases, we consider the network
costs as the processing bottleneck at query runtime. Therefore, the strategies to improve the
system’s performance should seek to maximize data locality. This can be achieved through
indexing, partitioning and replication techniques.

As it was shown in the previous section, using graph fragments as physical storage structures
reduces the disk costs and enable parallelism in centralized and distributed systems. In this
section, we consider the use of forward and backward graph fragments to reduce the network
cost in RDFDS. We define the allocation problem and its constraints. We seek to allocate triples
as close as possible to its neighbors to prune the intermediate results generated for a query locally
at each site. We assume that the workload is not available, as it is the case when analyzing RDF
data. We build our distribution model based on innate data connectivity.

3.5.1 Problem definition

Inputs Let V = {V1, ..., Vp} be the set of forward, backward or both graph fragments V =
{
−−→
Gf1, ...,

−→
Gfl} ∪ {

←−−
Gf1...

←−−
Gfm} with cardinality p = l + m. The sites are represented by the set

S = {S1, ..., Sq}. We assume that the size of a single graph fragment is always inferior to the
maximum capacity of a site |Si| ≥ |Vj |. The available space in a site Sk is expressed as |Sk| and
the average size of a triple is expressed as |t|. An imbalance factor denoted by ϵ is used to avoid
high imbalance in the number of triples between partitions.

Problem Let us consider the functions: WV : V → N+ returning the number of triples per
graph fragment and WF : V × V → N returning the number of triples shared by two graph
fragments. The procedure to calculate the values of both functions is described in Section

109

CHAPTER 3. LOGICAL RDF PARTITIONING

3.5.1.1. The allocation function xiSk
: V → {0, 1} is defined as:

xiSk
=

{︄
1 if Vi is stored in site Sj

0 otherwise

And ⊕ : xiSk
→ {0, 1} is the X-OR operator.

The partitioning problem consists then in finding an allocation function XiSk
: V → S that

minimizes the total number of shared triples by two sites. Given a set of fragments V , sites S
and an imbalance factor ϵ:

minimize
∑︂

i,j∈{1,...,p}
k∈{1,...,q}

(︂
(xiSk

⊕ xjSk
) ·WF (Vi, Vj)

)︂
(3.1)

Subject to:

(i) Imbalance constraint:

∀k∈{1..q}

⃓⃓⃓⃓ p∑︂
i=1

(︁
xiSk
·WV (Vi)

)︁
−

p∑︂
j=1

(︁
xjSk

·WV (Vj)
)︁⃓⃓⃓⃓

i ̸=j

≤ ϵ (3.2)

(ii) Replication factor:

∀i∈{1..p}
(︂ q∑︂

k=1
xiSk

= R
)︂

(3.3)

(iii) Available space in sites:

∀k∈{1,...,q}

p∑︂
i=1

xiSk
· WV (Vi)
|t|

≤ |Sk| (3.4)

The objective function seeks to minimize at each site the number of triples whose nodes (subject
or object) belong to graph fragments located in distinct sites. The constraints are expressed
in Equations 3.2, 3.3 and 3.4. They refer to the maximum imbalance allowed per site, to the
number of copies of each fragment in the system (which by default is set to R = 1) and to the
site’s size constraint respectively.

3.5.1.1 Estimation of weights

To find the weights WV and WF it is necessary to make a second pass over the SPO (or OPS)
RDF file to look up the information. The algorithm finding the weights between forward graph
fragments is described in Algorithm 6. The algorithm takes as input an RDF file in SPO order,
the map of characteristic sets and the map of subjects defined in Alg. 1. It iterates through the
file and gets to which forward fragment the subject of the current triple belongs (Step 3). Then,
it increments the map of vertex weights (Steps 4-9). Finally, it checks whether the object of the
current triple is the subject of a triple in another fragment (Step 10). If so, it increments the
counter and updates the map (Steps 12-17).

The procedure to estimate the weights of backward graph fragments is quite similar to the
previous one, using the respective CSM and OM maps defined in Alg. 4. If the system considers
both sets of fragments simultaneously, the weights are calculated according to the cases shown
on Table 3.1.

Finding exact solutions is, as it is the case in relational-based systems, computationally un-
feasible and therefore heuristics producing sub-optimal results are the most convenient strategies.
In the following section we present a heuristic mapping the fragments to the nodes of a graph.

110

3.5. ALLOCATION PROBLEM

Algorithm 6 Generation of weights for forward fragments

Input: RDF file D of {t1, ..., tn} triples t = ⟨s, p, o⟩ in SPO order, characteristic set map

CSM⟨key,
−→
Gfk⟩, subject map SM⟨s,

−→
Gf⟩

Output: WV : ⟨(
−→
Gf src,

−→
Gfdest), count⟩ WF : ⟨

−→
Gf, count(t)⟩,

1: Initialize src =null, dest =null, WV = ∅, WF = ∅, count = 0
2: for each ⟨s, p, o⟩ in D do

3:
−→
Gfsrc = SM.get(s)

4: if
−→
Gfsrc ∈WV .keySet() then

5: count = WV .get(
←−
Gfk)

6: WV .put(
−→
Gf src, count + 1)

7: else
8: WV .put(

−→
Gf src, 1)

9: end if
10: if o ∈ SM.keySet() then

11:
−→
Gfdest = SM.get(o)

12: if (
−→
Gfsrc,

−→
Gfdest) ∈WF .keySet() then

13: count = WF .get((
−→
Gf src,

−→
Gfdest))

14: WF .put((
−→
Gfsrc,

−→
Gfdest), count + 1)

15: else
16: WF .put((

−→
Gfsrc,

−→
Gfdest), 1)

17: end if
18: end if
19: end for
20: return WV , WF

3.5.2 Graph partitioning heuristic

The set of graph fragments is mapped to an undirected weighted graph, transforming the al-
location problem into a graph partitioning problem. The graph partitioning problem has been
proved to be a very complex and computationally expensive problem. However, many efficient
heuristics have been developed as detailed in Chapter 2 (e.g., METIS [KK98a]).

Let us map the set of graph fragments Gf into a directed weighted graph represented by
the quadruple G = (V, E, WV , WE). V corresponds to the set of nodes which are the sets of
forward and backward graph fragments. The node’s weights are represented in the set WV , each
element w(Vi) corresponds to the number of triples on each fragment. E represents the set of
edges and WE the set of weights (w(Eij) between the nodes i and j). The weights are calculated
following the strategies presented in the previous section. An example graph is shown in Figure

Table 3.1: Edge’s weights in fragment graph G

Edge type Conditiona

(
−→
Gfi,
−→
Gfj) object(ti) = subject(tj)

(
←−
Gfi,
←−
Gfj) subject(ti) = subject(tj)

(
←−
Gfi,
←−
Gfj) object(ti) = subject(tj)

(
−→
Gfi,
←−
Gfj) subject(ti) = subject(tj)

(
−→
Gfi,
←−
Gfj) object(ti) = subject(tj)

aThe weight of an edge W (edge) is the number of triples ti such that:
ti ∈ Gi, tj ∈ Gj , and ti ∧ tj fulfill the condition in this column accordingly.

111

CHAPTER 3. LOGICAL RDF PARTITIONING

−−→
Gf1
10

−−→
Gf2
2

−−→
Gf3
2

−−→
Gf4
2

←−−
Gf3
2

←−−
Gf2
3

←−−
Gf4
2

←−−
Gf1
1

←−−
Gf5
2

←−−
Gf6
2

←−−
Gf7
2

←−−
Gf8
2

2

2

22

2

21

11

2

2

2

2

2

2

2

2
2 2

2

2

2

2

2

2

2

1

1
1

Figure 3.5: Graph partitioning example

3.5. In this case the graph is split in two partitions, the goal is to minimize the cuts to implicitly
diminish the data that would be transferred if the fragments are joined.

Given a graph G and a given a number p ∈ N+ indicating the number of partitions, the
graph partitioning problem asks for blocks of nodes V1, ...,Vp such that V1 ∪ ... ∪ Vp = V and
Vi ∩ Vj∀i ̸= j. As it was defined before, a balance parameter ϵ is used to regulate the size
between partitions.

Objective function We seek a partition that minimizes the total cuts.

minimize
∑︂
i<j

w(Eij) (3.5)

Subject to:

∀k ̸=j

(︁
Vi ∈ Vk ∧ Vj ∈ Vl

)︁
(3.6)

|w(Ei)− w(Ej)|∀i ̸=j ≤ ϵ (3.7)

The first constraint refers to the fact that a graph fragment should be assigned to only one block
of nodes (i.e. partition). Replication is therefore not deemed in the graph heuristic approach.
The second constraint refers to the imbalance factor between partitions. The constraint seeking
not to exceed the size of a given partition defined in Eq. 3.4 is not considered by most of the
graph partitioning heuristics. Accordingly, we do not explicitly declare it here. If the size of a
partition exceeds the available space in a site, re-partitioning strategies should be considered.
These strategies are described in Section 3.7.

3.6 RDF partitioning example

:Airplane1

:Airliner

:Airbus

:A340”75.4”

”4”

:France ”Toulouse”

:Airplane2

:B747

”70.1”

:USA

:Boeing

”Chicago”

”5”

has model

has
length

nb version

nb motors

type

manufacturer

ha
s mod

el

has length

m
anufacturer

nb motors

h
a
s
sea

t

has city

h
a
s
ci
ty

has seat

nb version

type

offi
ce

in

o
ffi

c
e
in

Figure 3.6: Miniature of graph G of Figure 2.10

The following example gives an overview of our ap-
proach. Let us consider the RDF graph G illus-
trated in Figure 3.6. This graph is a miniature ver-
sion of the graph presented in the previous chapter
in Figure 2.10. We start identifying forward graph
fragments. Next, we show how physically storing
the data with this structure contributes at query
runtime. Then, we build the backward graph frag-
ments for this graph. Finally, considering forward
and backward fragments, we show an example of
our allocation heuristic.

112

3.6. RDF PARTITIONING EXAMPLE

Forward graph fragments Let us start gathering the triples in forward graph fragments. As
it was described in Section 3.3.1 we group first the triples by its subjects. We obtain 8 groups of
triples (Airplane1, Airplane2, B747, A340, Airbus, Boeing, France and USA). We name

each of these groups a forward graph star
−→
Gs representing instances of higher-level entities (e.g.,

an Airplane, a Manufacturer, an Airplane Model). We observe that two instances of the same
high-level entity share the same (or almost the same) set of predicates. In general, the forward
graph fragments can be uniquely identified by the set of its emitting edges (i.e. characteristic
set). In the example, the forward stars Airplane1 and Airplane2 share the same predicates
(has_model, has_length, manufacturer, nb_motors and type). Consequently Airplane1

and Airplane2 belong to the same group that we name a forward graph fragment
−→
Gfi of G.

There are in total 4
−→
Gf in our example, two of them are illustrated in Figure 3.7b showing

forward graph fragments physically stored in a tabular form.

The query Q1:

SELECT ?a ?m ?l

WHERE {

?a :type :Airliner .

?a :has_length ?l .

?a :has_model ?m .

FILTER (?l > 65.0)

}

could be efficiently solved by looking for the relevant graph fragment whose characteristic set
contains the predicates type, has_length and has_model avoiding a full scan of the data.

Still, an organization of the data in forward graph fragments is non-optimal when solving
queries with a very reduced number of predicates like for instance the query Q2:

SELECT AVG(?y)

WHERE {

?x :nb_motors ?y .

}

To solve this query, all the triples of the forward fragment Airplane must be read, even
the triples with predicates other than has_motors. When exploring the graph for matches, 10
triples in the Airplane forward graph fragment must be scanned when only 2 triples are relevant.

Backward graph fragments The previous problem is quite similar to the one that motivated
vertical partitions in relational databases. Partitioning a table by attributes can be more efficient
for some queries, where they involve few attributes. In our case, we create groups of triples by
attributes which are named backward graph fragments. To build them, we gather first the triples
by its incoming edges. For the graph of Figure 3.6 we obtain 13 groups "5", "4", "75.4",

"70.1", Boeing, Airbus, France, USA, "Toulouse", "Chicago", A340, B747 and Airliner.

We name these groups backward graph stars
←−
Gs. Similarly to what was done for the forward

fragment, we use the characteristic set to identify the groups of attributes. We name them

backward graph fragments
←−
Gf .

For the example graph of Figure 3.6 we obtain 8 backward graph fragments: the group of city
names with the has_city predicate (2 triples), the group of manufacturers (2 triples), lengths (2
triples), locations (2 triples), models (2 triples) and types (2 triples). There is a group gathering
the triples having only the nb_version predicate (1 triple), and another group gathering the
triples with the predicates nb_version and nb_motors (3 triples). The predicates could stored

113

CHAPTER 3. LOGICAL RDF PARTITIONING

Subject has model has length nb motors type

Airplane1 A340 75.4 4 Airliner
Airplane2 B747 70.1 4 Airliner

...

Subject has seat officie in

Airbus France Toulouse
Boeing USA Chicago

(a) Forward graph fragments stored as relations

{ "nb_version,nb_motors" :{

"4" : { "nb_version" :[A340], "nb_motors" :[Airplane1, Airplane2] },},

"nb_version" :{

"5" : {"nb_version" :[B747] }},

"has_city,office_in" :{

"Chicago" :{"has_city" :[USA], "office_in" :[Boeing]}, "Toulouse" :{"has_city" :[

France],"office_in" :[Airbus] }},

... }

(b) Backward graph fragments stored in adjacency list

Figure 3.7: Graph fragments examples

physically in adjacency lists in a json file as shown in Figure 3.7b.

The solution to the query getting the average number of motors in an entity could be solved
by scanning only the backward graph fragment storing triples with the predicate nb_motors.
The execution engine checks which characteristic sets contain the given predicate and scans only

the backward graph fragment (nb_version, nb_motors)
←−
Gb5 that gathers 3 triples. Comparing

to the result obtained when the data are organized as forward graph fragments, the execution
process on the backward fragments is more efficient. The process saves, in this case, the resources
used to scan 7 triples. However, as it is the case for vertical partitions in the relational model,
the performance can be degraded for SPARQL queries joining many single patterns.

Combining forward and backward fragments Some queries require to join several for-
ward or backward graph fragments to find a solution.

For example, let us consider the query Q3:

SELECT ?y ?z

WHERE {

?x :has_model :A340 .

?x :has_length ?y .

?x :manufacturer ?m .

?m :has_seat ?z .

?z :has_city "Toulouse" .

}

If the data are physically stored as forward graph fragments, the query can be solved scanning
at least 3 candidate sets as shown in Figure 3.8a. In this example, we start by scanning the
fragments whose characteristic set contains the predicates has_model, manufacturer and has_-

length. The results of this matches are joined with the candidate fragments assigned to the
nodes with outgoing edges in the query. On the other side, if the data are stored physically as
backward graph fragments, the execution would involve many more joins. A candidate set of
fragments is needed for each node with incoming edges in the query graph as shown in Figure
3.8b. Even if a backward graph fragment would be much more efficient to find the bounded
value in the fifth query pattern of Q3, the great number of joins needed impairs the overall
performance. To fix this problem, a strategy presented in Section 3.4 considers storing the data
using both types of physical fragments. The execution schema for Q3 using this strategy is

114

3.6. RDF PARTITIONING EXAMPLE

?x

:A340

?m

?y

?z ”Toulouse”

has model

has length

manufacturer has seat has city

−→
Gf⋆ ▷◁ −→

Gf⋆ ▷◁ −→Gf⋆

⋆ :Candidate set

(a)
−→
Gf only

?x

:A340

?m

?y

?z ”Toulouse”

has model

has length

manufacturer has seat has city

←−
Gf⋆ ▷◁▷◁▷◁ ←−

Gf⋆ ▷◁←−Gf⋆←−
Gf⋆←−

Gf⋆

⋆ :Candidate set

(b)
←−
Gf only

?x

:A340

?m

?y

?z ”Toulouse”

has model

has length

manufacturer has seat has city

−→
Gf⋆ ▷◁ ←−

Gf⋆ ▷◁ ←−Gf⋆

⋆ :Candidate set

(c)
−→
Gf and

←−
Gf

Figure 3.8: Execution strategies for query Q3

shown in Figure 3.8c. We do not go into more details about the query execution modeling using
the graph structures presented here and the selection of an optimal execution plan, both topics
are out of the scope of this thesis.

Graph fragments allocation As it was seen in Section 3.5, forward and backward graph
fragments can be used as distribution units to allocate triples in a RDFDS. We propose to use
graph partitioning heuristics to find solutions to the allocation problem in a reasonable time.
The graph shown in Figure 3.9a is the weighted graph of forward graph fragments of Figure 3.6.
The graph has four nodes, one for each fragment, whose weight is the number of triples stored
on each of them. An edge is drawn between two nodes if there is a triple on the source fragment
whose object is the subject of the other fragment. The weights of each edge are the number of
triples shared between both fragments. The edge’s weights represent the number of triples that
should be transferred between two fragments when they are joined. Let us consider for example

the edge’s weights between the forward graph fragments
−−→
Gf1 and

−−→
Gf2. The weight in this case

is 2 since the subjects :Airplane1 and :Airplane2 stored in
−−→
Gf1 are connected to the subjects

:A340 and :B747 that are the subjects of triples stored in
−−→
Gf2.

Figure 3.9b illustrates the weighted graph of backward graph fragments for the graph of
Figure 3.6. The node’s weights are the number of triples on each fragment and the edges are
also drawn based on the data shared by triples in two distinct fragments. The cases are detailed
in Table 3.1. The detail of the data on each fragment is found in the Appendix A. We do
not show the weighted graph combining forward and backward graph fragments for readability.
Finally, the allocations is decided using a graph partitioning heuristic like METIS [KK98a]. If
the chosen graph partitioning heuristic works only for non directed graphs, the conversion is
very simple.

115

CHAPTER 3. LOGICAL RDF PARTITIONING

−−→
Gf1
10

−−→
Gf2
4

−−→
Gf3
2

−−→
Gf4
2

has model
2

manufacturer
2

has seat
2

(a) Weighted graph of
−→
Gf

←−
Gb1
2

←−
Gb2
2

←−
Gb3
2

←−
Gb4
2

←−
Gb5
3

←−
Gb6
2

←−
Gb7
4

←−
Gb8
1

2

2

2

1

2

2

2 2

2

2

2

2
2

1

1

1

1

1

(b) Weighted graph of
←−
Gf

Figure 3.9: Extract of weighted graphs of fragments for graph G

3.7 Dealing with large fragments

When the size of a forward or backward graph fragment exceeds a predifined threshold, the
fragment needs to be repartitioned. The threshold can be set to the space available in a single
site of a distributed system because if the size of a graph fragment surpasses the available space
in a site, we will not be able to place it anywhere. To partition within a fragment, we apply
a function that sub-partitions it keeping the data belonging to the same graph star together.
In other words, the function must hold triples with the same subject or object in the same
forward or backward graph fragment respectively. This allows to keep the previously found
logical structure intact so that the allocation methods based on the data connectivity can still
be applied. The re-partitioning function is either obtained by hashing the triple’s subject or
object, or by using a range strategy on the predicates as seen below.

Let us start defining the fragments that need to be re-fragmented. Given a set of sites
{s1, ..., ss} and graph fragments Gf = {Gf1, ...,Gfm}. If the site’s capacity and a graph frag-
ment’s size are defined as |si| and |Gfi| respectively. A graph fragment needs to be re-partitioned
if |Gfi| > |si|. The number of sub-partitions is obtained as:

n =
⌈︃ |Gfi|
|si|

⌉︃

Let us consider that the size of a graph fragment Gfi is bigger than the available space for
a site. The hashing strategy applies a hashing function on every graph star such that:

∀Gs(h) ∈ Gfi : H(Gs(h)) mod (n)

where n is the number of sub-partitions. The advantage of this strategy is the creation of uniform
partitions with similar sizes.

The next sub-partition strategy, named range re-partitioning, maps the forward or backward
fragments to a partition according to the values of a predicate(s). If a fragment involving k
predicates (p1, .., pk) is too large, we propose to repartition it. To do so, we first consider one
of its numerical predicates (having the following form: pnθvaluen, where valuen is an integer or
a float) and then re-split the initial fragment into two new fragments based on the domain of
valuen. We iterate this procedure till having fragments with reasonable size. The information
related to the domain of different predicates could be available in the triple store statistic module
[ZMG+20]. In our case, we compute this information from the KG.

The process is iterative. For example, if after computing the re-partition operations on a
fragment its size is still too large, the user can decide to use either of the previous strategies
again.

116

3.8. CONCLUSION

3.8 Conclusion

In the relational databases world, data partitioning has been identified for a long time as a key
optimization and manageability technique. In this context, data partitioning, characterized by
its simplicity, is independent of the storage approach of the data. Consequently, a user does not
have to deal with the physical storage layer of the system hosting the data, even though the
partitions impact seriously the physical layer. These findings represent a wisdom of traditional
relational data partitioning. In this chapter, we claim to reproduce this wisdom by tackling the
partitioning problem of RDF data. Unlike traditional partitioning techniques, RDF techniques
are dependent on the partitioning strategy and are difficult to generalize for different systems.

We draw on the philosophy adopted by the relational model to address partitioning within
distributed RDF systems. Precisely, we introduced a logical layer to the merely physical distri-
bution process of triples to a set of sites. We formalize and detail the algorithms used to create
the logical entities that we named graph fragments (Gf). Our entities extend the notion of par-
titioning by instances and by attributes in the relational model and offer great balance between
conceptual and intuitive simplicity, in addition to its logic expressiveness. We formalized the
allocation problem and presented a graph-based heuristic to minimize communication costs.

117

CHAPTER 3. LOGICAL RDF PARTITIONING

118

Chapter 4
RDFPartSuite in Action

Contents

4.1 Introduction . 121

4.2 RDF QDAG . 121

4.2.1 System architecture . 122

4.2.2 Storage model . 123

4.2.3 Execution model . 125

4.3 Loading costs . 128

4.3.1 Tested datasets . 128

4.3.2 Configuration setup . 129

4.3.3 Pre-processing times . 129

4.4 Evaluation of the fragmentation strategies 130

4.4.1 Data coverage . 130

4.4.2 Exclusive comparison of fragmentation strategies 131

4.4.3 Combining fragmentation strategies . 134

4.5 Evaluation of the allocation strategies 136

4.5.1 Data skewness comparison . 136

4.5.2 Communication costs study . 137

4.5.3 Distributed experiments . 140

4.6 Partitioning language . 143

4.6.1 Notations . 143

4.6.2 CREATE KG statement . 144

4.6.3 LOAD DATA statement . 144

4.6.4 FRAGMENT KG statement . 144

4.6.5 ALTER FRAGMENT statement . 145

4.6.6 ALLOCATE statement . 145

4.6.7 ALTER ALLOCATION statement . 146

4.6.8 DISPATCH statement . 146

4.6.9 Integration of the language to other systems 146

4.7 RDF partitioning advisor . 147

4.7.1 Main functionalities . 147

4.7.2 System architecture . 148

4.7.3 Use case . 149

4.8 Conclusion . 152

119

CHAPTER 4. RDFPARTSUITE IN ACTION

Summary In the previous chapter we defined a logical layer to partition RDF datasets. This
layer allows partitioning RDF data independently of its physical storage implementation while
preserving its logical graph structure. In this chapter, we present the partitioning framework
RDFPartSuite. This framework is built upon the logical structures that we defined in the previ-
ous chapter. It is composed of three main modules: fragmenter, allocator and dispatcher. These
modules provide functionalities to assist managers (triple stores’ administrators) to partition
Knowledge Graphs based on their requirements. We detail the incorporation of this framework
to a centralized (RDF QDAG) and a distributed (gStoreD) triple store. We conducted several
experiments that demonstrate the virtues and the costs of incorporating our structures while
loading and processing RDF data. Finally, we present a set of assistance tools proposed by our
framework. These tools relieve managers from the partitioning design tasks with a declarative
partitioning language and a partitioning advisor. The following chapter is organized as follows.
We start in Section 4.2 giving an overview of the centralized triple store where we incorporated
our framework. Then, in Section 4.3 we compare the loading costs of our framework with respect
to other fragmentation strategies from the state of the art. Next, in Section 4.4 we evaluate our
fragmentation strategies in terms of data coverage and query performance. The fragmentation
process is evaluated in a centralized and also in a distributed triple store to which we incorpo-
rated our framework. In Section 4.5, we evaluate the allocation strategies of graph fragments.
Then, in Section 4.6 we detail the assistance tools provided by RDFPartSuite. These tools are a
partitioning language (Section 4.6), and an advisor (Section 4.7) . Finally Section 4.8 concludes
this chapter.

120

4.1. INTRODUCTION

4.1 Introduction

In the previous chapter we promoted a logical layer for RDF data partitioning. We defined a set
of structures that allow partitioning RDF data regardless of how it is stored. These structures
preserve the logical graph nature of RDF data and are used as fragmentation units. The logical
fragments are placed to the sites of a distributed system according to data-driven algorithms
that we have also detailed. In this chapter we introduce a framework named RDFPartSuite.
The framework provides generic functionalities build upon the logical structures defined in the
previous chapter. It can be adapted according to the manager’s specifications (creator’s re-
quirements, triple store, available infrastructure, etc.). RDFPartSuite provides a standard way
to build and deploy RDF partitioning schemas in a universal and reusable environment. The
framework is composed of three main modules:

(i) Fragmenter: this component is in charge of partitioning the triples using their logical

representation as graph fragments (i.e.
−→
Gf or

←−
Gf). The fragments can be built using

structural or semantic rules as described in Section 3.3.1.1.

(ii) Allocator: the allocator builds a distribution schema for the fragments built by the frag-
menter component. This schema is built using the data-driven strategies detailed in Section
3.5.

(iii) Dispatcher: this component sends the fragments to the sites of a distributed system fol-
lowing the allocation schema produced the allocator. The dispatcher is also in charge of
loading the data to the target triple store.

In addition to these modules, our framework integrates a set of assistance tools for the admin-
istrators (managers) of triple stores. These tools include a declarative partitioning language, to
fragment, allocate, and dispatch a Knowledge Graph to a target triple store. And, for non-expert
users, it provides a partitioning wizard to help them build a partitioning schema for their data.

This chapter is dedicated to this framework. We start describing how to incorporate our
framework to a centralized triple store (RDF QDAG [KMG+20]). This system uses data par-
titioning and graph exploration techniques to accelerate the execution of SPARQL queries in
a centralized environment. We have also shown how to incorporate our framework to a dis-
tributed triple store (gStoreD [ZÖC+14]). We carried out a significant number of experiments
that showed the feasibility of our partitioning strategies, its effectiveness and its limits. Finally,
we presented RDFPartSuite’s assistance tools.
The sections of this chapter are organized as follows. We start in Section 4.2 detailing the in-
corporation of our framework to RDF QDAG. We describe its main modules along with their

storage and processing strategies. This system uses the logical fragments (i.e.
−→
Gf or

←−
Gf) as

physical storage units. This allows us to compare the performance gain of our model versus
alternative partitioning strategies applied in other systems of the state-of-the-art. We detail our
implementation choices and examine carefully the pre-processing costs (Section 4.3). In Section
4.4, we evaluated our fragmentation strategies in terms of query performance. We performed
these experiments in RDF QDAG, a centralized relational-based system, and a graph-based dis-
tributed triple store (gStore). Then, in Section 4.5 we largely discussed the allocation strategies
supported by our system and the results of our experimental comparisons. Finally, in Sections
4.6 and 4.7 we detail our assistance tools which are the declarative partitioning language and
the partitioning advisor respectively.

4.2 RDF QDAG

Modern RDF processing systems can be distinguished in two groups as it was studied in Section
2.3.2. The first group uses the relational model to store RDF triples in tables with diverse con-

121

CHAPTER 4. RDFPARTSUITE IN ACTION

Data Loader Query optimizer Executor

Fragmenter

Data refiner

Indexer

Dict. builder
Encoder

Plan selector

Plan generator

Parser

Matcher

Aggregator

Sorter

Dict. matcher

Result writer

RDF QDAG

StoragePre-processing

Figure 4.1: RDF QDAG architecture

figurations. The systems under this group are more easily scalable as they can use optimization
strategies such as indexes and partitions available for relational databases. Unfortunately, the
performance in these systems degrades rapidly, specially when dealing with complex SPARQL
queries. The relational model is not suitable for handling RDF data inherently represented as
a graph. The second group comprises RDF processing systems maintaining the graph structure
of RDF data. These systems store the triples in data structures specifically designed to store
graphs (cf. Section 2.2.2). The major issue confronted by these approaches is scalability to large
RDF graphs [AHKK17, Özs16]. They fail to efficiently manage the use of main memory and
are not scalable in infrastructures with limited resources. RDF QDAG [KMG+20] combines
the virtues of data partitioning in relational-based systems with an execution model based on
the exploration of the RDF graph. The system supports Basic Graph Pattern (BGP) SPARQL
queries as well as wildcards, aggregation and sorting operators. The data in RDF QDAG are
physically partitioned in Forward and Backward graph fragments. It is able to prune irrele-
vant graph fragments using the predicate’s bounded values in the query. This feature allows
to explore only the fragments in which a match is likely to be found. As mentioned before,
the query execution in this system is based on graph exploration. To avoid memory overflows,
the execution engine of RDF QDAG is based on the Volcano parallel query evaluation system
[Gra94]. In what follows we give an overview of RDF QDAG describing its general architecture,
storage, optimization and execution layers.

4.2.1 System architecture

The systems is composed of three main modules: Data Loader, Query Optimizer and Executor.
The architecture is illustrated in Figure 4.1. Below we describe each of the system’s components.

4.2.1.1 Data loader

This module prepares, indexes and partitions the raw RDF data received as input. It is composed
of two main components: pre-processing and storage. The first one transforms the RDF data
(stored in N-Triples, N3 or Turtle files) encoding all the strings and arranging the encoded data
in forward and backward graph fragments. The string transformation takes place in the Encoder
unit. The result of this stage is given as input to the Fragmenter component that splits the data
in forward and backward graph fragments using Algorithms 1 and 4. The Data refiner adds to
each triple on each fragment information related to its direct neighbors as it will be detailed later
in Section 4.2.2. The pre-processing module is entirely coded in Java. The storage component,

122

4.2. RDF QDAG

coded in C++, takes the encoded refined file from the pre-processing as input and sets up the
data in indexes. The result of this step are a set of binary files used by the query optimizer and
executor modules.

4.2.1.2 Query optimizer

This module is responsible for finding the optimal execution plan for a SPARQL query. It is
composed of three main sub-modules: parser, plan generator and plan selector. The parser
transforms the SPARQL query to a series of structures that are understandable by the plan
generator sub-component. The plan generator enumerates a series of ”acceptable plans” defined
in Section 4.2.3 that are later ranked based on a cost model in the plan selector component.
The best plan is selected using heuristics that take simple statistics from the fragmented data to
estimate the execution cost of each plan. The optimization strategies applied by this component
are described in detail in [ZMG+20].

4.2.1.3 Executor

This component receives the chosen execution plan from the optimizer and implements it. The
matcher sub-component interrogates the B+Tree index (cf. Section 4.2.2) and gets the encoded
results. This component might interrogate the string dictionary (using the dictionary matcher
sub-component) during the execution to enhance the index search. However, the dictionary
matcher is often called at the end of the query execution decoding the original string values.
The data are aggregated and sorted on the respective sub-components when necessary. The
result’s output (e.g., in console, to a file) is managed by the result writer.

4.2.2 Storage model

As we mentioned previously, the data in RDF QDAG are physically stored as graph fragments.
The system stores two copies of the data, one as forward and another as backward graph frag-
ments. This choice will be justified when presenting the execution model. In this section we
present how the data are compressed and how the triples are physically represented on disk. Let
us start describing the output files from the pre-processing phase. First, the predicates from
the input dataset are gathered in a single file with their identifiers in a file named pred_index.
An example of this file for the graph data of Figure 2.10 is shown in Figure 4.2a. Then, the
identifiers of the forward and backward graph fragments are stored in separate files as shown
in Figures 4.2b and 4.2c respectively. Lastly, the triples assigned to each graph fragment are
stored in separate files. For each graph fragment (identified by a fragment id fid), the data are
separated in three files:

• Dictionary (fid.dic): This file stores a map of the strings with their respective IDs of the
triples assigned to the graph fragment. The strings are sorted in lexicographical order and
the IDs are integer values. An example of this file is given in Figure 4.2d. The dictionary
file is used as input by the Dictionary Builder component to store the data in a compressed
string index.

• Schema (fid.schema): This file stores the list of predicates (encoded with the IDs from the
pred index file) along with the data type of the triple’s object if the schema file corresponds
to a forward graph fragment or the subject otherwise. The first line of the file stores the
data type of the encoded subjects (in case of a forward fragment) or the encoded object
(in case of a backward fragment) stored in the graph fragment. The schema file for the
graph fragment in our running example is illustrated in Figure 4.2e.

• Data (fid.data): This file stores the encoded subject, predicate and object of each triple in
the fragment. Also, since the evaluation method of RDF QDAG is based on the exploration

123

CHAPTER 4. RDFPARTSUITE IN ACTION

Predicate ID

has city 0
has length 1
has model 2
has seat 3
manufacturer 4
nb motors 5
nb version 6
office in 7
type 8

(a) Predicates identifiers

Predicates fid

0 1
6 2
3,7 3
1,2,4,5,8 4

(b) Forward fragments identifiers

Predicates fid

1 5
2 6
3 7
4 8
6 9
8 10
0,7 10
5,6 11

(c) Backward fragments identifiers

4.dic

:A340 10
:Airbus 20
:Airliner 30
:Airplane1 40
:Airplane2 50
:B747 60
:Boeing 70
Chicago 80

(d) Dictionary file

4.schema

int
1:float
2:int
4:int
5:int
8:int

(e) Schema file

4.data

40 0 2 10 6 2
40 0 1 75.4 5 0
40 0 5 4 12 0
40 0 8 30 10 0
40 0 4 20 8 3
50 0 2 60 6 6
50 0 1 70.1 1 0
50 0 5 4 12 0
50 0 8 30 10 0
50 0 4 70 8 0

(f) Data file

Figure 4.2: Storage files examples for graph of Figure 2.10

of the RDF graph, we materialized the information relative to where the direct neighbors
of the subject and object of each triple are stored. The data on each fragment are first
sorted by subject (or object in backward graph fragments). Then, each triple is stored in
a different line of the data file with the following information separated by spaces:

– Node1: it is the encoded subject (or object in a backward graph fragment). It is
represented using 8 bytes.

– Gf : it is ID (fid) of the fragment (if any) storing the incoming (or outgoing edges in
a backward graph fragment) edges of Node1. If there is any this value equals zero.

– Predicate: this value is the predicate’s ID of the triple. It is represented using 4 bytes.

– Node2: it is the encoded object (or subject in a backward graph fragment). It is
represented using 8 bytes.

– Gfin: it is the id (fid) of the fragment storing the incoming edges (if any) of Node2.
It is represented using 4 bytes.

– Gfout: it is the id (fid) of the fragment storing the outgoing edges (if any) of Node2.
It is represented using 4 bytes.

In the example of Figure 4.2f, the first line corresponds to the triple <:Airplane1>

<:has_model> <:A340>, encoded as:

40⏞⏟⏟⏞
:Airplane1

0⏞⏟⏟⏞
��
←−
Gf

2⏞⏟⏟⏞
:has_model

10⏞⏟⏟⏞
:A340

6⏞⏟⏟⏞
←−
Gf

2⏞⏟⏟⏞
−→
Gf

The data file can be very dense and include many redundant information. The compression
strategy for this file are shown in the following section.

124

4.2. RDF QDAG

Indicator Predicate

17 bits 1 bit

Node1 Gf Node2 Gfin Gfout

0-8 bytes 0-4 bytes 0-8 bytes 0-4 bytes 0-4 bytes

Figure 4.3: Compression structure in RDF QDAG

4.2.2.1 Data compression

The files storing the triples and its neighbors described in the previous section gather all the
significant information to traverse the data from one fragment to another. To make the explo-
ration even more efficient, each data fragment is stored in a clustered B+Tree index. To avoid
the storage of redundant data and to limit the size of the indexes, the data are compressed using
very similar techniques to the ones applied in RDF-3X [NW08]. Let us recall some features of
the data stored in graph fragment file: i) First, the triples are sorted by subject (or object in
backward graph fragments)and by predicate id, ii) The triples share the same characteristic set,
iii) The characteristic set is unique for a single subject (or object in a backward graph fragment).
These features allow to devote a single bit per triple (0 or 1) to indicate whether it has the same
predicate as the previous one. Thus, it is not necessary to store the predicate value for each
triple. This idea is reproduced to store Node1 and Node2, where the 0 bit is used to denote
when their values do not change with respect to the previous triple. If the value has changed,
8 bytes are devoted to store the identifier or value for both Node1 and Node2. The 8 bytes are
enough to support Integer → 4 bytes, Long → 8 bytes, Float → 4 bytes and Double → 8 bytes
datatypes.

The values of Gf , Gfin and Gfout are represented using the same state logic. The state 0
indicates that the information does not change with respect to the previous triple or if the value
does not exist (as in the first line of the example in Figure 4.2f). The following 4 bytes are used
to indicate the identifiers of the fragments if any.

An indicator of 17 bits is assigned to each triple to state the number of bytes allocated to
each element of the triples. The compression structure for each triple is shown in Figure 4.3.

4.2.3 Execution model

In this section we present the execution model of RDF QDAG that, as we mentioned in the
previous sections, is depicted as a graph exploration process. Let us start by recalling the
evaluation model used by most of the state-of-the-art RDF systems. In these systems, the
evaluation of a SPARQL query is modeled as a succession of triple patterns. Let us consider,
for instance, the following SPARQL query:

SELECT ?x ?y ?m WHERE{

?x :has_length ?y . #tp1
?x :manufacturer ?m . #tp2
?m :office_in "Toulouse" . #tp3
}

This query is composed of three single patterns, and the execution is modeled as a sequence of
joins:

tp1 ▷◁?x tp2 ▷◁?m tp3

The optimization problem in these systems consists in finding the optimal join order. On the
other hand, the query execution in graph-based systems is modeled as a graph exploration
process. These systems model the query as a graph as illustrated in Figure 4.4. An exploration
plan defines the order in which the query vertices are assigned to graph vertices [BFVY18]. As
with join-based plans, a graph-based plan determines the order of the operations performed by
the executor component of the system to find the query matches.

125

CHAPTER 4. RDFPARTSUITE IN ACTION

?x ?m

?y

”Toulouse”
manufacturer

has length

office in

Figure 4.4: Query graph example

The nodes in the query graph can be grouped with their incoming or outgoing edges. This
simplifies the execution plans and also allows modeling the query exploration with a similar logic
to the one used to group triples in graph fragments in RDF QDAG. We name these structures
Forward Query Stars and Backward Query Stars if they group the query’s nodes by their out-
going or incoming edges respectively. They are formally described in Definition 4.1. The sets of

forward and backward query stars for the query in Figure 4.4 are
−→
QS = {−→QS(?x),−→QS(?m)} and

←−
QS = {←−QS(?y),←−QS(?m),←−QS(”Toulouse”)}.

Definition 4.1 Query Star Let Q be the SPARQL query graph. A Forward Query Star
−→
QS(x)

is the set of triple patterns such that
−→
QS(x) = {(x, p, o)|∃p,o : (x, p, o) ∈ Q}, x is named the head

of the Query Star. Likewise, a Backward Query Star
←−
QS(x) is←−QS(x) = {(s, p, x)|∃s,p : (s, p, x) ∈

Q}. We use
−→
QS,
←−
QS to denote the set of forward and backward graph stars and qs to denote

indistinctly a forward and backward query star.

The query execution is then modeled as a sequence of Query Stars in an Execution Plan that
we depict in Definition 4.2. Indeed, an execution plan for a query is not unique. It is the job of
the query optimizer to rank the execution plans according to a given cost function and choose
the one with the lowest cost.

Definition 4.2 Execution plan An execution plan is an order function applied on a set of
Query Stars. The function denotes the order in which the mappings for each Query Star will be
found. We denote by P = [QS1, QS2, ..., QSn] the plan formed by executing QS1, then QS2,...,
and finally QSn.

In order for an execution plan to be acceptable it must fulfill both of the following conditions:

(i) Coverage: all the nodes and edges in the query graph must be covered by the sequence of
query stars in the plan.

(ii) Bounded heads: the heads of all the query stars in the plan, excepting the first one, must
have a bounded value before emerging in the plan. This condition avoids to perform a
Cartesian product between the matches of two query stars and ensures that the results from
the previous query stars prune irrelevant mappings in the query stars. This is illustrated in
Figures 4.5a and 4.5b showing an acceptable and a non-acceptable query plan respectively.

?x ?m

?y

”Toulouse” ?m
manufacturer

has length

office in

▷◁

(a) [−→QS(?x),←−QS(”T oulouse”)]

?x ?m

?y

”Toulouse”
manufacturer

has length

office in

(b) [−→QS(?x),−→QS(?m)]

Figure 4.5: Query execution plans example

126

4.2. RDF QDAG

The generation and selection of the optimal execution plan is out of the scope of this thesis.
We only give an overview of the most relevant definitions to give the reader an idea of how the
system works. A detailed description of the cost model and the plan selection algorithm is given
in [ZMG+20]. In the following section we explain the execution of a graph-based execution plan.

4.2.3.1 Volcano execution model

Let us suppose that the chosen execution plan for a query is P = [QS(x1), ..., QS(xm)]. For
each query star of the plan, the execution engine must create a list of candidate graph fragments.
The forward query stars admit only forward graph fragments as part of their candidate sets.
Similarly, backward query stars admit only backward graph fragments as candidate sets. This set
of candidates was already introduced in Section 3.6 but here we give a more formal definition. A
graph fragment is part of the candidate set of a given query star if its characteristic set contains
the characteristic set of the query star. More formally, Cand(QS(xi),Gf) = {Gfi|cs(QS(xi)) ⊆
cs(Gfi) ∧ Gfi ∈ Gf}.

For each candidate graph fragment of a query star, the execution engine searches the relevant
triples on the B+tree index used to store the data of each fragment. Since for every triple we
stored the location (fragment identifier) of their incoming and outgoing edges, the engine knows
exactly to which fragment send the intermediate mappings in the next query star. This is

illustrated in Figure 4.6. In this case, the first query star (
−→
QS(?x)) has two candidate forward

fragments (
−→
Gf11 and

−→
Gf12). The matches found in these fragments are sent to the candidate

fragments of the second query star (
−→
QS(?m)). Knowing exactly to which graph fragment should

be sent the result of the query star is possible because we stored the location of the direct forward
and backward neighbors for each triple. Finally, the results are sent to the Result Writer without
needing an extra coordination step (as it is the case in several systems).

−→
Gf11

−→
Gf13

−→
Gf14 Result writer

−→
Gf15

−→
Gf12

−→
QS(?x) −→

QS(?m)

Figure 4.6: Execution pipeline example

The core execution engine is based on the Volcano parallel query evaluation system. The
model presented in [Gra94] allows to control the amount of data loaded to main memory avoiding
any overflow. RDF QDAG uses two memory buffers per query star: input and output buffers.
The input buffers load the data sequentially from the B+Tree indexes of each fragment. The
matching triples are sent to an output buffer that sends the matching data to the following input
buffer. This process is illustrated in Figure 4.7.

127

CHAPTER 4. RDFPARTSUITE IN ACTION

12

11

17

14

13

15

7

4

9

Dataset & Dictionaries

Bufferout1

Bufferin1

−→
QS(?x)

Bufferout2

Bufferin2

−→
QS(?m) Result writer

Figure 4.7: Volcano execution in RDF QDAG example

4.3 Loading costs

The identification and formulation of forward and backward graph fragments in RDF QDAG
is certainly a more complex process than the one applied by other systems loading the data
directly to a single relational table for instance. The dataset is read several times to identify and
encode the data with the desired format. In this section we compare the pre-processing time of
RDF systems with different storage and execution paradigms. We compared the loading module
of RDF QDAG against relational, graph and cloud-based systems. We compared them in terms
of loading time and also in their ability to scale to large scale datasets in architectures with
limited resources. Indeed, we noticed that the experimental comparisons of RDF systems are
usually performed in platforms in which the datasets fit up to 3x times in main memory (e.g.,
in [AHKK17]). The loading module of RDF QDAG is able to partition very large RDF graphs
even when the entire data does not fit in the available main memory. The compared systems are:
i) Virtuoso [EM09], ii) RDF-3X [NW08], iii) gStore [ZÖC+14] and iv) CliqueSquare [GKM+15]
in a single node (from this point represent it as CliqueSquareS). We evaluated them using real
and synthetic dataset described below.

4.3.1 Tested datasets

We used two real and two synthetic datasets with diverse sizes. Within the synthetic datasets
we have LUBM1 [GPH05], a customizable data generator describing information related to uni-
versities, departments and faculties. Similarly, WatDiv2 [AHÖD14] is a data generator offering
the possibility to customize the entities and associations of dataset triples. WatDiv also offers a
SPARQL query generator to vary structural characteristics and selectivities of the tested queries.
Among the real datasets, we have the DBLP dataset collecting an extract of the information
in this computer science bibliography3. This dataset4 is stored in the N-Triples format con-
necting research papers, authors and venues. Lastly, the Yago2 dataset5 gathers information
from Wikipedia, Wordnet and GeoNames. We used the version of this dataset published in
[AHKK17].

The characteristics of the datasets are summarized in Table 4.1. We generated synthetic
datasets with different sizes to test the scalability of the tested loading approaches.

1http://swat.cse.lehigh.edu/projects/lubm/
2https://dsg.uwaterloo.ca/watdiv/
3https://dblp.uni-trier.de/
4Available at: http://dblp.l3s.de/dblp.rdf.gz
5Available at https://github.com/ecrc/rdf-exp

128

http://swat.cse.lehigh.edu/projects/lubm/
https://dsg.uwaterloo.ca/watdiv/
https://dblp.uni-trier.de/
http://dblp.l3s.de/dblp.rdf.gz
https://github.com/ecrc/rdf-exp

4.3. LOADING COSTS

Table 4.1: Experimental datasets

Dataset
Triples
(M)

Size
(GB)

S
(M)

P
(M)

O
(M)

Watdiv100M 109 15 5.21 86 9.76
Watdiv1B 1000 149 52.12 86 179.09

LUBM100M 100 17 16.27 17 12.10
LUBM500M 500 83 81.38 17 60.54

LUBM1B 1367 224 222.21 17 165.29
Yago 284 42 10.12 98 52.37

DBLP 207 32 6.84 27 35.52

M: Millions, GB: Gigabytes

4.3.2 Configuration setup

The tested systems perform the data pre-processing in a single site (the master node in a
distributed system with a master/slave architecture). The master site in our system runs a 64-
bit Linux with 32GB of RAM, an Intel(R) Xenon(R) Gold 5118 @ 2.30 GHz processor and 2TB
of hard disk. As it was previously mentioned, the Data Loading module of RDF QDAG is coded
in Java (only the indexing sub-component loading the data in the B+Tree is coded in C++).
We implemented a fragmentation module on Scala that runs on a Spark cluster. However, the
tests in this section are performed in the centralized version of the fragmentation module that
successfully managed to load all the datasets.

4.3.3 Pre-processing times

The pre-processing results are summarized in Table 4.2 and are illustrated in a bar chart com-
paring their logarithmic times in Figure 4.8. The loading times of RDF QDAG are comparable
to the ones obtained by other systems loading the data directly to triple tables. Clearly Virtuoso
and RDF-3X loaded the data faster, yet the detection and division of data in graph fragments is
not a process that makes the loading process a significantly more expensive step. As we will dis-
cuss later (in Section 4.4.3), partitioning the data in graph fragments enhances the performance
of some queries. In addition, as we have discussed throughout this thesis, the identification of
logical entities brings other benefits such as simpler design of other optimization strategies.

Furthermore, the loading module of RDF QDAG was the only one capable of charging all the
datasets given the limited main memory (32GB). The graph-based system gStore was unable
to load datasets whose size is greater than the available main memory. The relational-based
systems managed to load all the datasets except LUBM1B in which we got a memory overflow
error. In addition, RDF QDAG loaded more efficiently datasets with great number of predicates
compared to Cliquesquare. Let us recall that Ciquesquare groups the triples in different files
inside the Hadoop Distributed File System (HDFS) based on the triple’s predicates. When the
number of predicates augments, the partitioning becomes less efficient.

129

CHAPTER 4. RDFPARTSUITE IN ACTION

Table 4.2: Loading times comparisons

Dataset
Loading times (minutes)

Virtuoso RDF-3X gStore CliquesquareS RDF QDAG

Watdiv100M 45 27 382 107 71
Watdiv1B 188 329 ✗ ✗ 1,080

LUBM100M 284 20 ✗ 143 348
LUBM500M 1,390 114 ✗ ✗ 1,490

LUBM1B ✗ ✗ ✗ ✗ 3,320
Yago 608 520 ✗ ✗ 815

DBLP 97 59 ✗ 184 127

✗: Unable to load

Watdiv100M Watdiv1B LUBM100M LUBM500M LUBM1B Yago DBLP

100

101

102

103

Dataset

L
o
g
a
ri
th
m
ic

ti
m
e

Virtuoso RDF-3X gStore Cliquesquare RDF QDAG

Figure 4.8: Logarithmic loading times

4.4 Evaluation of the fragmentation strategies

In this section we present an evaluation of the use of forward and backward graph fragments
initially as logical entities and then as physical structures in RDF processing systems. We
begin in Section 4.4.1 by verifying that the number of fragments generated for each dataset is
reasonable. We show how many fragments are generated and what percentage of the dataset
they represent. In addition, we show the number of fragments needed to cover the eighty percent
of the data. This is to show that the groups of graph fragments are a large picture of the input
data and could be later used to propose other optimization strategies. Then, in Section 4.4.2, we
compare the performance of systems storing physically the data as forward or as backward graph
fragments. We analyze the types of queries for which each fragmentation strategy works best.
We named the section exclusive comparison since we compare separately forward and backward
fragmentation strategies. Finally, in Section 4.4.3 we compare the performance of RDF QDAG,
which uses both types of fragments simultaneously, with representative systems of the state of
the art.

4.4.1 Data coverage

The results of this section are shown in Table 4.3. The forward and backward graph fragments
are obtained using τ = 1 and considering the structural similarity measure. In this way, we
analyze the boundary cases with the maximum number of graph fragments. For all the real
datasets and for Watdiv, the number of forward graph fragments is greater that the number of
backward graph fragments. This is due to the fact that in average, the outdegree of the vertices
in these datasets is larger than their indegree. Thus, there are more possibilities to combine
predicates as forward fragments and the number of outward characteristic sets is greater than
the inward ones. For both synthetic datasets, the number of graph fragments covering 80% of the
data is almost invariable with respect to the size of the dataset. This makes sense because our

130

4.4. EVALUATION OF THE FRAGMENTATION STRATEGIES

Table 4.3: Data coverage per dataset

−→
Gf

←−
Gf

Dataset
No of fragments No of fragments

Watdiv100M 39,855 (1,028) 1,181 (17)
Watdiv1B 96,344 (1,030) 4,725 (19)
LUBM100M 11 (6) 13 (8)
LUBM500M 18 (9) 17 (9)
LUBM1B 36 (19) 33 (18)
Yago 25,511 (100) 1,216 (24)
DBLP 247 (10) 26 (14)

(): Number of fragments covering 80% of the data

fragmentation strategy allows to detect the seed entities used to generate more data. Actually,
the dataset’s size is increased varying slightly the features of these seed entities identified as
forward graph fragments (≈ 1030 in Watdiv and ≈ 10 in LUBM). LUBM has a very limited
number of predicates, and being a synthetic database, the generated data is not very variable.
This influences definitely the number of forward and backward fragments found for this dataset
(less than 40 fragments in the dataset with more than a billion triples). Overall, the number of
fragments is always finite and reasonable with respect to the size of the dataset they represent.
As we will see later when analyzing the allocation strategies, the use of fragments that hold
80% of the data facilitates the use of graph partitioning algorithms to decide the location of the
fragments in the system.

4.4.2 Exclusive comparison of fragmentation strategies

The objective of this section is to analyze the impact of organizing the data in forward or back-
ward graph fragments and to determine which type of fragmentation strategy is more pertinent
for a query type. Let us recall that RDF QDAG stores the data in forward and backward graph
fragments simultaneously. At query runtime, the system moves through the inward (or outward)
edges of each node in the graph to find matches for a given query pattern. This search is made
very efficiently thanks to data partitioning in forward and backward graph fragments that in-
clude information of the direct neighbors of a node. However, in this section we are interested
in evaluating both partitioning strategies separately. For this we use two scenarios, the first one
described in Section 4.4.2.1 built in a relational database and the second one in Section 4.4.2.2
using a graph-based system.

4.4.2.1 Incorporating our framework to a relational-based centralized store

In this section we evaluate the influence of physically storing the data as backward graph frag-
ments in a relational database. The results described in this section are part of the experimental
study of the article Reverse Partitioning for SPARQL queries [GMBO19]. We stored RDF
datasets into a relational database using three different strategies: i) single big table of three
columns (subject, predicate, object) similar to RDF-3X’s and Virtuoso’s strategy, ii) vertical
partitioning (one table per predicate) similar to the strategy applied by SW-Store [AMMH09]
and iii) applying our reverse partitioning strategy gathering the data by incoming edges. We
implemented a customized query parser transforming SPARQL statements into SQL in accor-
dance with each of the previous schemas. We preferrred to create the query translator instead
of using the systems implementing the previous approaches to evaluate strictly the influence of
the storage configurations. We evaluated on each schema the execution time of queries with
different forms (The tested queries are available in the Appendix B).

131

CHAPTER 4. RDFPARTSUITE IN ACTION

Table 4.4: Experimental datasets in relational-based system

Dataset Size (GB) #S #P #O #
←−
Gf

Watdiv1M 0.148 52,505 87 105,492 222
Watdiv10M 1.54 521,585 87 1,003,136 587
Watdiv20M 3.28 1,042,785 87 2,473,723 641

M: millions

Configuration setup The partitioning module derived from the RDF QDAG loading module
is implemented in Java. The translation module from SPARQL to SQL was implemented also in
Java and the data were stored on PostreSQL 11. The experiments were performed in the master
node of the hardware described in Section 4.3.2. We tested our approach with the WatDiv
framework since it offered a wide variety of queries. We generated datasets of 1, 10 and 20
million triples. More details about the datasets are shown in Table 4.4. For each of them we
generated 80 queries (20 of each query type).

Experimental results The results are shown in Figure 4.9. Creating vertical partitions on
the predicates gives the most performant execution times for the majority of queries considering
that there was not an intense intermediary indexing strategy as it is the case for RDF-3X. The
major drawback of the vertical partitioning strategy is data distribution on the tables. The
performance of the data stored as backward graph fragments is almost as good as the vertical
partitioning, especially when the dataset size is bigger and exploring a single table becomes
more costly. Backward graph fragmentation performance suffers in queries with patterns in
which the subject and object are unknown. In a relational-based system, storing the data in
graph fragments is ideal to prune queries with patterns with bounded values at the object
position. This is the case of queries 9-12.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3

Query

L
o
g
a
ri
th

m
ic

e
x
e
c
u
ti
o
n

ti
m
e Big table Binary table Backward fragments

(a) Watdiv1M

9 10 11 12
101

102

103

Query

L
o
g
a
ri
th

m
ic

e
x
e
c
u
ti
o
n

ti
m
e

Big table Binary table Backward fragments

(b) Watdiv10M

9 10 11 12
101

102

103

104

Query

L
o
g
a
ri
th

m
ic

e
x
e
c
u
ti
o
n

ti
m
e

Big table Binary table Backward fragments

(c) Watdiv20M

Figure 4.9: Performance of partitioning configurations in relational-based system

132

4.4. EVALUATION OF THE FRAGMENTATION STRATEGIES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10

15

20

25 ComplexSnowflakeStarLinear

Query

E
x
e
c
u
ti
o
n

ti
m
e
(s
)

Forward
−→
Gf Backward

←−
Gf

Figure 4.10: Query performance of forward and backward graph fragments

4.4.2.2 Incorporating our framework to a graph-based distributed store

In this section we compare the performance of organizing the data as forward or as backward
graph fragments in a graph-based triple store. We determine for which type of queries organizing
the data as forward graph fragments is more suitable than backward graph fragments and vice
versa. To the best of our knowledge, there is no graph-based RDF system storing the data

exclusively as backward graph fragments. Indeed, RDF QDAG uses both structures (i.e.
−→
Gf

and
←−
Gf) and gStore stores the data in adjacency lists grouping the data by subjects. For the

experiments in this section, we adapted the distributed version of gStore [PZÖ+16] to support
the storage of forward graph fragments first and then of backward graph fragments. The results
in this section are part of the experimental study of our framework: RDFPartSuite: Bridging
Physical and Logical RDF Partitioning published in [GMB19].

Configuration setup gStoreD was deployed on a 5 machine cluster connected by a 10Gbps
Ethernet switch. The cluster runs a 64-bit Linux and each site has a 8GB RAM, a processor
Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz and 100GB of hard disk. The latest version of
gStoreD6 was configured to store the data on adjacency lists on the subjects, and a modified
version storing the data on adjacency lists on the objects. The adjacency lists on the subjects
are the default structures employed by gStore’s V∗-Tree index. At the loading stage, the user
indicates in a file the location for each subject (data star head in our notation, cf. Definition
3.1) and all the triples with that subject are assigned to that location id. We make sure that the
triples belonging to the same forward graph fragment are located in the same partition. Then,
to load the data in adjacency lists by objects we slightly change the input file containing the raw
RDF data. The data is injected to gStore in a file in N-Triples format whose triples are ordered
as (subject predicate object). To force the creation of adjacency lists from the object, we change
the order of the input file to (object predicate subject). We changed the file with the subject’s
location (giving the location for each distinct object) and the SPARQL queries accordingly. For
example, a query pattern ?x p ?y in the original query list is changed to ?y p ?x in the queries
used to test backward fragments. We performed the evaluation with the four query types (linear,
star, snowflake and complex queries) of the Watdiv benchmark with 10 million triples. The list
of queries is found in the Appendix B.

Experimental results The results are shown in Figure 4.10. The system has much better
performance when the data are organized as backward graph fragments when solving linear
queries. It performed in average 1.4x faster than when the data was organized as forward
fragments. For star queries, the use of backward fragments enhanced up to 1.2x in average the
performance. For snowflake shaped queries, there is no strategy that works better than the

6Available at https://github.com/bnu05pp/gStoreD

133

https://github.com/bnu05pp/gStoreD

CHAPTER 4. RDFPARTSUITE IN ACTION

other. We found queries in which backward graph fragments worked better because there was a
bounded value in the object position of the query, but if this condition was not fulfilled forward
fragments worked better. Organizing the data as forward fragment was definitely better to solve
the workload of complex queries (up to 1.2x faster for query 18). Both strategies complement
each other in the processing of certain query types. In the following section we show that
the combination of both structures in RDF QDAG drives RDF data processing in centralized
systems efficient and scalable.

4.4.3 Combining fragmentation strategies

In this section we present the results of an experimental study comparing RDF QDAG with
three representative systems of the state of the art. We compared them in terms of query
performance (for BGP queries) and scalability. The compared systems are:

(i) Virtuoso7 [EM09]: it is the relational-based system by excellence storing the data in a
triple table.

(ii) RDF-3X 8 [NW08]: intensive index-based system able to scale to billions of triples. Used
as baseline of many optimization approaches (e.g., characteristic sets [NM11]).

(iii) gStore9 [ZÖC+14]: graph-based system storing the data in adjacency lists.

To evaluate their scalability we used datasets of several millions of triples. Specifically we
used Watdiv100M, Watdiv1B, LUBM500M, Yago and DBLP whose characteristics are described
in Section 4.3.1. The testes were performed on the master node of our testing platform described
in Section 4.3.2. The results presented in this section are an excerpt from our paper describing
RDF QDAG main components in [KMG+20]. The queries are in the Appendix B of this thesis.
For all the experiments, we run the queries 3 times (excluding the first cold start run time to
avoid the warm-up bias).

Let us start discussing the results of the queries performed in the Watdiv benchmark shown
in Table 4.5. As it was explained when we compared the loading times in Section 4.3.3, gStore
was unable to load Watdiv1B. Furthermore, at query runtime, gStore loads the V∗-Tree index
to main memory before looking for query matches slowing down the execution of most of the
queries. Complex queries in Watdiv100M are solved in average 5.3x faster in RDF QDAG com-
pared to Virtuoso and RDF-3X. For the dataset of more than a billion triples (i.e. Watdiv1B),
RDF QDAG is clearly faster to solve complex queries (130x faster in average). For snowflake
queries in the Watdiv100M dataset, Virtuoso, RDF-3X and RDF QDAG performed very simi-
larly. However, the same queries in the dataset of 1 billion triples were solved 4.9x and 12.8x
faster in RDF QDAG than in RDF-3X and Virtuoso respectively. Linear queries were solved
0.4x and 45x faster in our system than RDF-3X and Virtuoso for Watdiv1B, and all three per-
formed similarly in Watdiv100M. Finally, star queries are solved faster in Virtuoso in the smaller
dataset, but in average 4.9x faster than RDF-3X and 12.8x with respect to Virtuoso in the 1
billion dataset.

The other synthetic dataset, LUBM500M, whose results are shown in Table 4.6, could not
be loaded by gStore for the same reasons as the previous one. RDF-3X performed slightly better
for queries 8, 11, 12 and 14, that are snowflake shaped queries. Still, in all the other queries
RDF QDAG outperformed both systems solving queries 9.8x and 1.1x faster than Virtuoso and
RDF-3X respectively.

7http://vos.openlinksw.com/owiki/wiki/VOS
8https://gitlab.db.in.tum.de/dbtools/rdf3x
9https://github.com/pkumod/gStore

134

http://vos.openlinksw.com/owiki/wiki/VOS
https://gitlab.db.in.tum.de/dbtools/rdf3x
https://github.com/pkumod/gStore

4.4. EVALUATION OF THE FRAGMENTATION STRATEGIES

T
ab

le
4
.5
:
W
a
td
iv

B
G
P

q
u
er
ie
s
re
su
lt
s
in

se
co
n
d
s

C
om

p
le
x

S
n
ow

fl
ak
e

L
in
ea
r

S
ta
r

1
2

3
1

2
3

4
5

1
2

3
4

5
1

2
3

4

Watdiv100M

g
S

93
.9

9
2
.1

9
6.
4

91
.3

93
.1

97
.8

88
.9

91
.9

93
.8

94
.4

9
2.
3

93
.3

9
5.
2

91
.2

8
9.
2

85
.0

9
3.
8

3
X

12
.9

0
.7

6
6.
1

0
.1

0
.7

0.
8

1.
5

0.
01

0
.1

1.
1

0
.0
3

0.
8

0.
6

2
.0

0
.3

0
.9

4.
8

V
13

.3
2
.2

6
9.
3

0
.4

0
.7

0
.3

0
.2

0.
3

0.
3

0
.1

0
.0
1

0
.3

0
.1

✗
0
.1

0
.2

20
.3

Q
D

1
.4

1.
7

4
5
.0

0
.3

0
.4

0
.3

0.
4

0
.0
0
1

0
.1

1.
1

0
.0
0
1

1.
1

0.
4

5.
6

0.
7

0.
88

1
.9

Watdiv1B

3
X

6
81

8
.2

1
6.
1

6
94

.2
0
.4

1
4.
0

12
.7

10
.3

1.
3

0.
4

56
.1

0.
5

21
.0

1
9
.1

1
73

.7
6

1
1.
6

26
7.
0

V
15

2
.4

1
1
1.
9

9
21

.8
4
.7

5
6.
2

10
.4

8
.0

4.
6

33
.7

2
.3

3
0.
8

33
.1

3
7.
6

✗
1
.5

1
.8

6
97

.5
Q
D

9
.1

1
3
.4

3
8
2
.2

1
.5

2
.2

4
.6

1.
5

0
.3

0
.2

10
2.
0

0
.3

1
9
.1

4
7.
4

3
5
.9

29
.2

6
.4

1
5
.0

gS
:
g
S
to
re
,
3X

:
R
D
F
-3
X
,
V
:V

ir
tu
os
o,

Q
D
:
R
D
F

Q
D
A
G
,

✗
:
E
rr
or
,
B
o
ld
:
lo
w
es
t
ex
ec
u
ti
o
n
ti
m
e

T
ab

le
4.
6
:
L
U
B
M
5
0
0
M

B
G
P

q
u
er
ie
s
re
su
lt
s
in

se
co
n
d
s

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

3
X

0
.1

3
8
8.
4

0.
1

0.
1

0.
1

55
3.
4

0.
1

0
.2

72
.7

0.
1

0
.4

0
.2

25
0.
6

5
3
3
.1

V
0
.0
5

2
1
4.
9

0.
1

0.
1

2.
8

68
3.
3

0.
1

6.
7

27
.0

0
.7

3
.8

4
.6

3
26

.6
79

6.
9

Q
D

0
.0
1

1
3
9
.5

0
.0
1

0
.0
3

0
.1

5
5
0
.0

0
.0
3

3
1
3
.9

0
.0
1

2
.6

3
.0

4
4
.6

5
50

.0

3X
:
R
D
F
-3
X
,
V
:V

ir
tu
os
o,

Q
D
:
R
D
F

Q
D
A
G
,
B
o
ld
:
lo
w
es
t
ex
ec
u
ti
on

ti
m
e

T
ab

le
4
.7
:
D
B
L
P

B
G
P

q
u
er
ie
s
re
su
lt
s
in

se
co
n
d
s

L
1

L
2

L
3

L
4

S
1

S
2

S
3

S
4

S
5

3
X

42
2
6.
37

0
.4
0

0.
15

0.
10

26
87

.4
8

0.
19

15
5
.3
6

2
.6
8

43
9.
45

V
✗

0
.0
5

0.
48

0.
13

✗
2.
26

21
0
.7
8

88
.3
5

40
5.
85

Q
D

2
0
2
3
.3
4

0
.0
1

0
.0
1

0
.0
0
5

5
3
7
.5
0

0
.0
1

1
4
5
.1

1.
23

2
3
7
.9

3X
:
R
D
F
-3
X
,
V
:V

ir
tu
os
o,

Q
D
:
R
D
F

Q
D
A
G
,
B
o
ld
:
lo
w
es
t
ex
ec
u
ti
on

ti
m
e

135

CHAPTER 4. RDFPARTSUITE IN ACTION

Y1 Y2 Y3 Y4 Y5

0

2

4

Query

L
o
g
a
ri
th

m
ic

e
x
e
c
u
ti
o
n

ti
m
e

Virtuoso
RDF-3X

RDF QDAG

Figure 4.11: Yago BGP queries results

Among the real datasets, we designed the workload of DBLP in queries with different shapes
and selectivities. As it is shown in Table 4.7, RDF QDAG outperformed RDF-3X and Virtuoso
for most of the queries (1.6x faster than Virtuoso and 13.8x faster than RDF-3X). The queries
in which the systems had a similar performance are those very selective (e.g., L1, S1 and S5).
Finally, the results of Yago are plotted in a logarithmic scale in Figure 4.11. RDF QDAG outper-
formed the three systems and managed to filter faster the results based on the known bounded
values of the queries (e.g., query Y2). It achieved up to 4x faster performance compared to
Virtuoso.

Summary The virtues of the logical partitioning strategy have been shown throughout
these sections. Undoubtedly, a logical partitioning strategy grants much more freedom to
designers and managers. They do not depend anymore on a specific system to partition
their data. We have shown the feasibility of incorporating our framework into centralized
and distributed triple stores. Furthermore, the experiments using RDF QDAG reveal that
the use of these structures in a centralized native triple store ensures its scalability and
good performance for certain queries.

4.5 Evaluation of the allocation strategies

In the previous section we evaluated whether both fragmentation strategies proposed in this
thesis are effective to cover the completeness of the data in a reasonable manner. Then, we
compared their effectiveness at query runtime with other physical organization strategies of the
state of the art. In this section, we evaluate the allocation strategies proposed to place the
forward and backward graph fragments to the sites of a distributed triple store. We start in
Section 4.5.1 comparing three allocation strategies in terms of data skewness prior the query
execution. Then, in Section 4.5.2 we present an extensive study of the communication costs of
the state-of-the-art partitioning strategies versus the allocation heuristic proposed for our logical
structures. This study is based on the execution logs of RDF QDAG. Finally, in Section 4.5.3,
we compare the performances of a graph-based system, a cloud-based system and a system that
applies the partitioning strategy proposed in this study. Part of the results in this section were
published in our work [GMB19] introducingRDFPartSuite Framework.

4.5.1 Data skewness comparison

In this section we compare the round-robin, linear programming and min-cut allocation strategies
in terms of data skewness. The first strategy assigns the fragments (forward and backward) to
the sites in a round-robin manner. The linear programming uses a solver to find the optimal
solution for the problem defined in Section 3.5.1. Finally, the min-cut strategy refers to the

136

4.5. EVALUATION OF THE ALLOCATION STRATEGIES

graph-based heuristic described in Section 3.5.2. We give as inputs to the linear programming
and min-cut strategies only the necessary fragments to cover the 80% of the data (cf. Table
4.3). The other 20% are assigned in a round-robin manner. The results are shown in Figure
4.12 in which we represent the distribution when 5 and 20 partitions are created for some of the
datasets described in Section 4.3.1. For each partitioning strategy we show the proportion of
the number of triples assigned to each site in a stacked bar and in a secondary axis the precision
of the distribution.

GP RR LPGP RR LP
0

0,2
0,4
0,6
0,8
1

Precision

(a) WatDiv100M (5)

GP RR LPGP RR LP
0

0,2
0,4
0,6
0,8
1

Precision

(b) LUBM100M (5)

GP RR LPGP RR LP
0
0,2
0,4
0,6
0,8
1

Precision

(c) Yago (5)

GP RR LPGP RR LP
0
0,2
0,4
0,6
0,8
1

Precision

(d) DBLP (5)

GP RR LPGP RR LP
0

0,2
0,4
0,6
0,8
1

Precision

(e) WatDiv100M (20)

GP RR LPGP RR LP
0

0,2
0,4
0,6
0,8
1

Precision

(f) LUBM100M (20)

GP RR LPGP RR LP
0
0,2
0,4
0,6
0,8
1

Precision

(g) Yago (20)

GP RR LPGP RR LP
0
0,2
0,4
0,6
0,8
1

Precision

(h) DBLP (20)

Figure 4.12: Triple distribution by allocation method
GP: graph partitioning, RR: rond-robin, LP: linear programming

The linear programming solution, was implemented using the Gurobi10 optimization library
[GO18] . To obtain a solution with a reasonable time, we configured the imbalance parameter in
the first constraint of the problem ϵ = 500M triples. Even with this big tolerance, the majority
of the data was allocated to one partition. Also, we validated that the round-robin distribution
strategy leads to data skewness problems compared with the graph partitioning heuristic. For
example, for LUBM100M, the number of triples stored in the second site is significantly larger
to the number of triples in all of the other partitions.

The precision of each partitioning strategy is shown in the secondary axis of the graphs of
Figure 4.12. It is calculated as: w(ec)

w(e) , in which w(ec) and w(e) are respectively the sum of the
weights of the cut edges and the total number of edge’s weights. In other words, it is the ratio
of the number of triples that share a subject (or object) in two fragments located in different
sites with respect to the number of triples on the site. The results are shown in the red line
of Figure 4.12. As expected the higher precision is obtained by the linear program, however
the scalability on this program is very low and in the ends puts most of the data to a single
site. The min-cut partitioning algorithm, used by systems like EAGRE [ZCTW13] to distribute
forward fragments, gets better results than the round-robin strategy, not only in terms of data
distribution but also on the precision.

4.5.2 Communication costs study

In this section, we present an extensive study of the communication costs induced by different
allocation strategies. To evaluate fairly and isolate the impact of an allocation strategy at query

10Availabe at: https://www.gurobi.com/downloads/gurobi-optimizer-eula/

137

https://www.gurobi.com/downloads/gurobi-optimizer-eula/

CHAPTER 4. RDFPARTSUITE IN ACTION

runtime, we run the queries on the same execution engine. We measured precisely for each query
the number of intermediate results exchanged. For this purpose, we use the execution logs of
RDF QDAG [KMG+20]. Even though it is a centralized system, we collected for each query the
number of data sent from one fragment to another as it was explained when we described Figure
4.6. Then, we calculate the total mappings exchanged between fragments in different sites.

We analyzed the communication costs for the following allocation techniques:

• Hash on subject (H): as shown in the Related Work section, several systems follow this
strategy applying a hashing function on the triple’s subject.

• Linear programming (LP): the problem formalized in Section 3.5 was programmed and
solved with the Gurobi [GO18] optimization library as in the previous section.

• Graph partitioning (GP): the data are firstly grouped in graph fragments that are dis-
tributed using a graph partitioning heuristic (METIS [KK98a]).

• Graph partitioning (small groups) (GPS): in this strategy the size of the graph fragments
were restricted to form as many fragments as possible. Then these smaller fragments are
distributed with a graph partitioning heuristic. We seek to see whether regulating the size
of the partitions influence in the overall performance of the system.

• Round robin allocation (RR): data firstly grouped in graph fragments are distributed in a
round-robin manner.

All of the previous allocation strategies were evaluated in the Watdiv benchmark since it
offered queries with different structures (complex, snowflake, linear and star). We generated
a dataset with about 100k triples to guarantee that the linear program finds a solution in a
reasonable time. We partitioned the data in 5, 10 and 20 sites to evaluate the performance
of the solutions as the number of sites grows. The results comparing the number of mappings
exchanged by fragments in different sites for each query are shown in Figure 4.13.

The linear programming strategy (identified as LP in the graphs) is, as expected, the one with
the lowest number of mappings exchanged between sites in most of the queries. There are still
some queries where the graph partitioning strategy with smaller groups (GPS) or hashing by the
subjects performed better. This is because the function to optimize in LP considers moving the
initial graph fragments from one site to another, but does not consider making smaller fragments.
For those queries, making smaller fragments reduced the number of exchanged mappings (e.g.,
queries 1 and 13 in the case of 5 partitions). The hashing strategy performed well for linear
queries but it induced several exchanges for the other query types. In general, for linear queries
we did not find an absolute winning strategy, since the queries are quite simple the allocation
strategy did not varied considerably the number of mappings. The round robin allocation
strategy was the one with the highest number of mappings for all of the query types in the tests
with 5, 15 and 20 partitions. Furthermore, the graph partitioning strategy that does not modify
the size of the groups offers a reasonable performance without modifying the sizes of the loaded
groups. This strategy worked better in snowflake and star-shaped queries. Another interesting
finding was that the number of generated partitions (e.g., 5, 10 or 20) did not influence the
number of mappings sent between sites.

Our experiments show that allocation strategies like graph-partitioning heuristics are a good
compromise to reduce the number of data interchange at query runtime. Still, if the queries are
mostly simple linear queries, a hashing function has shown to have also an advantageous perfor-
mance. Another essential insight is that regulating the size of the groups of graph fragments is
crucial to achieve a good performance, as it was proven by the number of exchanged results in
complex queries.

138

4.5. EVALUATION OF THE ALLOCATION STRATEGIES

1 2 3 4 5 6 7 8 9 10 11 12 13

2

4

Complex Snowflake Linear Star

Query

L
o
g
a
ri
th

m
ic

m
a
p
p
in

g
s

LP RR H GPS GP

(a) 5 partitions

1 2 3 4 5 6 7 8 9 10 11 12 13

2

4
Complex Snowflake Linear Star

Query

L
o
g
a
ri
th

m
ic

m
a
p
p
in

g
s

LP RR H GPS GP

(b) 10 partitions

1 2 3 4 5 6 7 8 9 10 11 12 13

2

4

Complex Snowflake Linear Star

Query

L
o
g
a
ri
th

m
ic

m
a
p
p
in

g
s

LP RR H GPS GP

(c) 20 partitions

Figure 4.13: Mappings analysis for Watdiv100k
LP: Linear programming, RR: round-robin, H: hashing on the subject, GPS: graph partitioning - small

groups, GP: Graph partitioning

139

CHAPTER 4. RDFPARTSUITE IN ACTION

4.5.3 Distributed experiments

We used synthetic and real datasets to compare three systems with distinct partitioning and
execution strategies. Contrarily to the experiments detailed in Section 4.4.3, we compare RDF -
QDAG with two distributed triple stores. Our goal is not to compare the performance of
systems storing physically the data with different structures as in Sect. 4.4.3. Here, our focus is
to compare systems distributing the triples with different strategies. The compared distribution
strategies are: i)cloud-based, ii)simple hashing and iii)our allocation strategy of graph fragments.
The tested systems are:

(i) gStoreD [PZÖ+16]: graph-based system partitioning each node by subject. We use as well
the centralized version of this system for reference.

(ii) Cliquesquare [GKM+15]: cloud-based system fragmenting the data by predicates. We
configured the system in a single and multi node modes.

(iii) RDF QDAG [KMG+20]: centralized system partitioning the data in forward and backward
graph fragments.

4.5.3.1 Configuration setup

The experiments were conducted on a cluster of 5 machines connected by a 10Gbps Ethernet
switch. The cluster runs a 64-bit Linux and each site has 16GB (32GB in the master node) of
main memory, a processor Intel(R) Xenon(R) Gold 5118 @ 2.30 GHz and 100GB (2TB in the
master node) of hard disk. As it was done in the communication study, we use Yago and DBLP
as real datasets. We use Watdiv100M and LUBM100M as synthetic datasets. Also, to be able
to compare with gStore which was unable to load LUBM100M, we also tested in LUBM with
20 million triples.

4.5.3.2 Experimental results

The results are shown in Tables 4.9-4.10. We use the following abbreviations for each system:
Cliquesquare in a single node (Cs), Cliquesquare in multiple nodes (CsD), gStore (gS), dis-
tributed gStore (gSD) and RDF QDAG. In the tables, we show the execution time in seconds,
highlighting with bolds the best results for each query. Below we discuss the results for each
dataset.

Watdiv For most of the queries, the execution time of RDF QDAG is up to 60x less than
all the other systems. It performed on average 400x, 40x, 348x, and 40x faster for linear, star,
snowflake and complex queries respectively. However, for the complex query C3 which involves
several graph patterns without any subject or object known was performed almost 2x faster by
gStore. This dataset fitted in main memory and therefore, for in-memory systems (like gStore)
the matching processing is faster. Especially in queries that are not very selective or that do not
have a bounded subject or object that could be used by RDF QDAG to prune. RDF QDAG
processing is based on the Volcano execution model, exchanging data between the disk and main
memory to guarantee scalability and the same time ensuring a good performance. As it is shown
next in the real datasets, gStore was not able to treat these datasets whose size is bigger than
the available main memory.

LUBM The results for both datasets are shown in the Table 4.9. The system RDF QDAG
outperformed all the other tested systems (centralized or distributed versions) in most of the
queries for both dataset sizes. As shown by the results in the Table 4.9, for the 20 million triple
dataset Cliquesquare (single or multinode) is the slowest system due to the starting cost of the
MapReduce engine which does not offset the performance gain of parallelism. Even if gStore

140

4.5. EVALUATION OF THE ALLOCATION STRATEGIES

systems (centralized and distributed) are able to load the 20M dataset, RDF QDAG performs
better for all queries except the sixth which is a simple query but not very selective. However,
the same query in the dataset of 100 million triples is solved 15x faster by RDF QDAG. For the
dataset of 100 million triples, RDF QDAG is faster in almost 80% of the queries. The queries
(2, 5, 6, 14) for which Cliquesquare performed in average 2.4x faster than RDF QDAG were
simple queries not selective with many results. In this case, the parallel treatment offered by
MapReduce in Cliquesquare works best. Let us remind that RDF QDAG partitioned the graph
but worked in a centralized configuration, the parallel version of this system is part of our future
perspectives.

Yago and DBLP The results are shown in Table 4.10. Cliquesquare and the centralized
version of gStore were unable to process the tested queries. RDF QDAG outperformed gStoreD
by almost 1000x. Concerning DBLP, the distributed versions of gStore and Cliquesquare as well
as RDF QDAG were able to process queries on this dataset. RDF QDAG performed in average
500x better than all the tested systems.

Summary These experiments complement those that evaluated data fragmentation. We
show the advantages of our allocation strategies in terms of balanced data distribution
and query performance. Our experimental study showed that incorporating our logical
partitioning strategies to a centralized triple store can make them more performant than
many of the current distributed systems. Our partitioning strategies enable a graph-
based system (RDF QDAG) to scale contrary to other centralized graph-based systems
like gStore.

141

CHAPTER 4. RDFPARTSUITE IN ACTION

T
ab

le
4.
8:

E
x
ec
u
ti
o
n
ti
m
e
(i
n
se
co
n
d
s)

fo
r
W
a
td
iv
1
0
0
M

q
u
er
ie
s

S
y
s.

C
1

C
2

C
3

F
1

F
2

F
3

F
4

F
5

L
1

L
2

L
3

L
4

L
5

S
1

S
2

S
3

S
4

S
5

S
6

S
7

C
s

1
2
4
.5

1
8
1
.1

1
3
8
.4

✗
1
8
1
.0

7
5
.7

5
9
.1

1
0
4
.4

5
1
.5

5
1
.8

4
0
.9

4
1
.8

5
0
.5

5
7
.8

4
7
.9

✗
4
0
.6

4
6
.5

4
2
.7

4
4
.2

C
sD

6
9
.9

9
3
.0

9
1
.7

✗
9
2
.0

8
1
.7

1
6
3
.9

✗
3
0
.4

3
0
.3

2
6
.4

2
6
.3

3
1
.4

1
2
5
.7

3
7
.5

✗
2
6
.4

3
6
.5

2
7
.6

2
7
.5

g
S

9
3
.9

9
2
.1

9
6
.4

9
1
.3

9
3
.1

9
7
.8

8
8
.9

9
1
.9

9
3
.8

9
4
.4

9
2
.3

9
3
.3

9
5
.2

9
1
.2

8
9
.2

9
0
.8

8
8
.8

9
0
.5

8
5
.0

9
3
.8

g
S
D

1
3
9
.8

5
5
.0

2
4
.0

2
2
.0

3
3
.0

2
9
.3

5
9
.4

7
3
.1

2
7
.6

2
2
.6

2
1
.9

2
2
.8

2
3
.3

2
2
.9

2
1
.8

2
1
.8

2
1
.8

2
1
.9

2
1
.9

2
1
.8

Q
D
A
G

1
.3
6

1
.6
8

4
5
.0
5

0
.2
7

0
.4
4

0
.6
3

0
.4
1

0
.0
0
1

0
.0
9

1
.1
5

0
.0
0
1

1
.1
1

0
.4
5

5
.5
7

0
.7
8

0
.2
9

0
.9
5

0
.2
4

0
.7
6

1
.9
1

T
ab

le
4.
9
:
E
x
ec
u
ti
o
n
ti
m
e
(i
n
se
co
n
d
s)

fo
r
L
U
B
M

q
u
er
ie
s

D
s.

S
y
s.

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

20M

C
s

4
2
.4

7
6
.3

4
3
.8

4
5
.0

4
0
.4

4
6
.9

1
2
0
.8

1
0
4
.6

1
5
5
.8

4
2
.4

4
9
.1

3
8
.4

4
2
.4

4
7
.8

C
sD

3
8
.3

6
7
.6

1
5
9
.2

2
9
.1

2
8
.0

3
1
.0

5
0
5
.1

4
9
.2

1
0
8
.4

2
9
.0

3
1
.1

2
7
.0

2
9
.0

3
0
.0

g
S

2
6
.0

2
5
.0

2
6
.2

2
6
.5

3
2
.2

4
7
.9

2
5
.9

2
5
.7

2
6
.6

2
5
.3

2
5
.7

2
6
.8

3
4
.2

4
9
.0

g
S
D

1
0
.1

8
8
3
.1

9
.8

9
.8

9
.8

1
7
.1

2
9
.7

3
5
3
.0

3
3
.9

9
.9

1
2
.9

9
.9

1
4
.1

1
7
.3

Q
D
A
G

0
.0
1

6
.0

0
.0
1

0
.0
2

0
.0
9

1
9
.5

0
.0
3

0
.4
7

0
.9
9

0
.0
0
4

0
.0
2

0
.0
1
5

7
.9

1
8
.4

100M

C
s

7
3
.3

1
4
3
.8

8
6
.4

8
1
.5

4
5
.9

8
7
.7

3
8
8
.6

3
0
1
.8

6
0
0
.9

7
8
.7

5
6
.6

3
9
.5

4
0
.9

8
9
.8

C
sD

5
7
.1

6
7
.5

4
5
.0

4
3
.2

3
0
.0

4
3
.0

1
4
6
.1

1
2
2
.3

2
9
1
.4

4
1
.1

3
2
.0

2
6
.9

2
7
.9

4
3
.1

g
S

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

g
S
D

2
6
8
4

✗
2
8
1
5

1
8
1
8

1
8
0
1

1
9
1
2

1
1
0
6
3

2
2
4
3
9

8
7
4
7

3
3
1
2

3
4
5
5

1
6
3
9

1
8
3
4

1
9
2
0

Q
D
A
G

0
.0
0
5

1
7
3
.9

2
2
.5

4
.1

3
5
.6

1
2
1
.9

0
.0
3
9

1
.2

0
.0
5

0
.0
0
6

1
.0
4

0
.8
0

1
2
.9

1
2
3
.8

T
ab

le
4.
10
:
E
x
ec
u
ti
o
n
ti
m
e
(i
n
se
co
n
d
s)

fo
r
D
B
L
P

a
n
d
Y
A
G
O

q
u
er
ie
s

D
s.

S
y
s.

C
1

C
2

C
3

L
1

L
2

L
3

L
4

S
1

S
2

S
3

S
4

D
s.

1
2

3
4

5

DBLP

C
s

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗

Yago

✗
✗

✗
✗

✗

C
sD

✗
✗

2
7
8
.5

1
3
6
5

3
7
.5

2
9
.4

3
7
.6

4
2
4

3
8
.7

9
8
.5

3
5
.5

✗
✗

✗
✗

✗

g
S

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

g
S
D

4
1
5
5
6
.3

4
4
5
8

2
7
7
9

✗
1
7
6
7

1
5
5
6

1
4
8
3

✗
1
6
4
9

2
2
6
4

1
6
9
2

5
7
9
.8
4

4
1
7
.5
9

9
3
3
.9
0

3
7
3
.2
6

3
9
9
.7
0

Q
D
A
G

✗
✗

2
3
8

2
0
2
3

0
.0
1

4
5
.9

0
.0
1

8
9
6

0
.0
1

1
5
8
.9

2
.8
1

0
.5
4

0
.0
7

2
0
.3
5

1
.6
3

3
3
5
.2
0

D
a
ta
se
t
(D

s.
),

S
y
st
em

(S
y
s.
),

C
li
q
u
es
q
u
a
re

in
a
si
n
g
le

n
o
d
e
(C

s)
,
C
li
q
u
es
q
u
a
re

in
m
u
lt
ip
le

n
o
d
es

(C
sD

),
g
S
to
re

(g
S
),

d
is
tr
ib
u
te
d
g
S
to
re

(g
S
D
)
a
n
d
R
D
F

Q
D
A
G

(Q
D
A
G
).

T
h
e
b
o
ld

ce
ll
s
re
p
re
se
n
t
th
e
lo
w
es
t
ex
ec
u
ti
o
n
ti
m
e
a
n
d

✗
th
a
t
th
e
sy
st
em

w
a
s
u
n
a
b
le

to
p
er
fo
rm

th
e
q
u
er
y.

142

4.6. PARTITIONING LANGUAGE

4.6 Partitioning language

The creation of forward and backward graph fragments before partitioning a raw RDF file
contributes to integrate a logical dimension to the purely physical partitioning process. This
logical layer allows designers to deal with much more manageable structures than the one offered
by single triples. These structures can be used not only by system’s developers but also by Triple
Store managers. In this section, we present a user-friendly extension to the RDFPartSuite
framework. We propose a declarative partitioning language that allows designers, based on
their expertise level, to manually partition a KG.

The declarations are done similarly to the ones of tables and partitions with a DDL (data def-
inition language) available in some database management systems (e.g., Oracle11, PostreSQL12).
The language uses the logical structures and hides the implementation of the fragmentation and
allocation algorithms presented in the previous chapter. In the following section we define the
grammar and syntactical elements of this language. RDFPartSuite keeps a meta-data file with
information related to the managed KGs. This includes, their names, fragments and predi-
cates identifiers. The specifications of the infrastructure used by the triple store (number of
sites, available space on each site, IP of each site, etc.) are also kept in a separate file by the
framework.

4.6.1 Notations

Before defining the grammar, let us consider the notation used to define the syntax of the defi-
nition language. This declarative language is not case-sensitive. While describing the grammar
we used some commands in uppercase just to facilitate their readability.

– ⟨element⟩: nonterminal element;

– element: terminal element;

– [element]: optional element;

– {element}: is an element that can be repeated 0 or n times;

– | : represents an alternative;

– ⟨element list⟩ is an element defined as ⟨element⟩{, ⟨ element ⟩}.

The main lexical elements are described as follows:

⟨non quote characters⟩ ::= {a-z}
⟨quote characters⟩ ::= ’{a-z}’
⟨unsigned integer⟩ ::= {init digit}[{digit}]
⟨unsigned float⟩ ::= {init digit}[{digit}].{⟨digit⟩}
⟨digit⟩ ::= 0|1|2|3|4|5|6|7|8|9
⟨init digit⟩ ::= 1|2|3|4|5|6|7|8|9

The language is composed of seven main statements from the declaration of the KG to the
allocation of graph fragments to the sites of the system. Each of these statements is described
next.

11https://docs.oracle.com/cd/E18283_01/server.112/e16541/part_admin001.htm
12https://www.postgresql.org/docs/10/ddl-partitioning.html

143

https://docs.oracle.com/cd/E18283_01/server.112/e16541/part_admin001.htm
https://www.postgresql.org/docs/10/ddl-partitioning.html

CHAPTER 4. RDFPARTSUITE IN ACTION

4.6.2 CREATE KG statement

This statement creates an empty Knowledge Graph and stores the name in a metadata file
maintained by the framework. If the KG exists already (identified by the kg name), it sends
back an error.

⟨kg definition⟩ ::= CREATE KG ⟨kg name⟩
⟨kg name⟩ ::= ⟨non quote characters⟩

Let us consider for example the following statement declaring a KG named yago.

CREATE KG yago

4.6.3 LOAD DATA statement

This statement indicates that the data in a file (in .NT or .ttl format) belongs an existent knowl-
edge graph.

⟨load data⟩ ::= LOAD DATA INFILE ⟨file name ⟩ INTO ⟨kg name⟩
⟨file name⟩ ::= ⟨non quote characters⟩

In the previous statement, the filename is the raw RDF file stored in the working directory13

of the framework. For example, here we state that the triples of the file yago-knowledge.nt

belong to the yago KG declared previously.

LOAD DATA INFILE yago-knowledge.nt INTO yago

4.6.4 FRAGMENT KG statement

This statement fragments the data in an existent KG in Forward or Backward graph fragments.

⟨fragment kg⟩ ::= FRAGMENT KG ⟨kg name⟩ FORWARDLY [⟨partition options⟩]
| FRAGMENT KG ⟨kg name⟩ BACKWARDLY [⟨partition options⟩]

⟨partition options⟩ ::= BY ⟨fragment mode⟩ [⟨max frag⟩][⟨similarity⟩]
⟨fragment mode⟩ ::= SUPERSET

| JACCARD

| TFIDF

| LABEL

| ANCESTOR

⟨max frag⟩ ::= MAX ⟨unsigned integer⟩
⟨similarity⟩ ::= SIM ⟨unsigned float⟩

The language allows to partition a KG (identified by kg name) in Forward or by Back-
ward graph fragments. The structural partitioning (using characteristic sets only), a similarity
threshold of 1, and the maximum size of 50 million triples per partition are the default parameter
values. The fragmentation mode can be changed to either of the modes presented in Section
3.3.1.1. Also, it is possible to limit the maximum size of fragments (in number of triples) using
the keyword MAX. Finally, it is also possible to change the similarity threshold (SIM) that is

13Indicated in a configuration file

144

4.6. PARTITIONING LANGUAGE

defined in Sect 3.3.1.1. This value is a float between 0 and 1. If the user enters a similarity
threshold greater than 1, the framework identifies it as an error and abort the command.

For example, let us consider that the yago KG declared previously. is partitioned by forward
fragments, using the JACCARD MODE, restricting the number of triples in a fragments to
10,000 and choosing the similarity threshold to 0.8.

FRAGMENT KG yago FORWARDLY BY JACCARD MAX 10000 SIM 0.8

4.6.5 ALTER FRAGMENT statement

It is possible to re-split a given fragment because it is too large with the methods described in
Sect. 3.7.

⟨alter fragment⟩ ::= ALTER FRAGMENT ⟨frag id⟩ IN ⟨kg name⟩ SUBPARTITION

BY ⟨subpartition mode⟩
⟨frag id⟩ ::= ⟨unsigned integer⟩
⟨subpartition mode⟩ ::= HASH

| ⟨range⟩
⟨range⟩ ::= RANGE ⟨pred id⟩ LESS THAN ⟨range value⟩
⟨pred id⟩ ::= ⟨unsigned integer⟩
⟨range value⟩ ::= ⟨unsigned integer⟩

| ⟨unsigned float⟩

All the fragments and predicates are identified with an integer identifier (frag id and pred
id respectively) automatically generated by RDFPartSuite. A fragment can be sub partitioned
using two main modes: hashing function or range partitioning as defined in Section 3.7.

Let us consider the example in which we want to partition a fragment in the yago KG iden-
tified with the ID = 345. The fragment is partitioned in two parts according to the values of
the predicate identified with the ID = 8 (whose range are integers).

ALTER FRAGMENT 345 IN yago SUBPARTITION BY RANGE 8 LESS THAN 4000

4.6.6 ALLOCATE statement

This statement allocates the fragments of the previous instruction according to a round-robin
rule or using the graph partitioning heuristic described in Section 3.5.2.

⟨allocate fragments⟩ ::= ALLOCATE KG ⟨kg name⟩ BY ⟨allocation mode⟩ ⟨nb sites⟩
⟨allocation mode⟩ ::= ROUND-ROBIN

| METIS

⟨nb sites⟩ ::= SITES ⟨unsigned integer⟩

For example, in our running example, we can allocate the fragments in the yago KG using
the graph heuristic in 5 sites.

ALLOCATE yago BY METIS SITES 5

145

CHAPTER 4. RDFPARTSUITE IN ACTION

4.6.7 ALTER ALLOCATION statement

This statement allocates a given fragment (identified by a fragment ID) to a specific site (iden-
tified with a site ID).

⟨alter allocation⟩ ::= ALTER ALLOCATION FRAGMENT ⟨frag id⟩ IN ⟨kg name⟩ ⟨site
id⟩

⟨site id⟩ ::= TO SITE ⟨unsigned integer⟩

In our example in the yago KG, we change the allocation of fragment 2 to the site identified
with the ID 5.

ALTER ALLOCATION FRAGMENT 2 IN yago TO SITE 5

4.6.8 DISPATCH statement

This statement calls the dispatcher component of RDFPartSuite. It sends the fragments of a
KG to the sites according to the allocation schema. It can be called only after the allocation
schema has been created using the ALLOCATE statement. The data are sent to the sites indicated
in the configuration file of the framework.

⟨dispatch allocation⟩ ::= DISPATCH KG ⟨kg name⟩

In our example, the KG is dispatched to the sites of the system as follows:

DISPATCH KG yago

4.6.9 Integration of the language to other systems

In this section we show that the proposed language is able to express the partitioning strategies
used by most of distributed RDF systems. For example, HadoopRDF[DWNY12] applying a
hashing function on the subject is mimicked creating forward star graphs fragments that are
allocated using a round-robin. If there are 15 sites in the system, the partitioning is declared as:

FRAGMENT KG yago FORWARDLY

ALLOCATE yago BY ROUND-ROBIN SITES 15

If the system uses vertical partitions (e.g., SW-Store [AMMH09]), backward graph fragments
are then declared. The declaration of fragments with maximum partition size of 1000 is for
example:

FRAGMENT KG yago BACKWARDLY BY SUPERSET MAX 1000

ALLOCATE yago BY ROUND-ROBIN IN SITES 5

The gStoreD [PZÖ+16] system creates the forward entities and leaves to the user the freedom
to choose the allocation strategy. Supposing that she/he chose a graph partitioning heuristic,
the declaration is:

FRAGMENT KG yago FORWARDLY

ALLOCATE yago BY METIS SITES 15

The system RDF QDAG[KMG+20] uses both, forward and backward segments, and allocate
them with a graph partitioning heuristic declared as:

146

4.7. RDF PARTITIONING ADVISOR

FRAGMENT KG yago FORWARDLY

FRAGMENT KG yago BACKWARDLY

ALLOCATE yago BY METIS SITES 15

4.7 RDF partitioning advisor

In this section we present a partitioning wizard that integrates in different modules each of the
fragmentation and allocation approaches that have been proposed so far. Our goal is to provide
user-friendly tools for experimented and non-expert users. An expert user (manager) can choose
to integrate the interfaces of RDFPartSuite directly to her/his code. The user can also choose
to manually partition the data using the declarative partitioning language that we proposed
in the previous section. Our partitioning advisor is designed to assist non-expert designers or
administrators of centralized or distributed triple stores. It produces a partitioning schema for
a KG based on the input user’s requirements. It provides a degree of comfort similar to the one
offered by the partitioning advisors in the relational model (Sect. 1.4.3.1).

4.7.1 Main functionalities

RDFPartSuite’s advisor functionalities are summarized as follows:

• Collect manager’s requirements: the advisor provides means to managers of centralized
and distributed triple stores to record the creator’s requirements (functional and non-
functional), constraints, and KGs to be considered in the fragmentation, allocation and
loading processes.

• Smart KG Fragmentation: the advisor proposes a fragmentation schema for the input
KG considering the manager’s explicit requirements and using default parameters (e.g.,
similarity threshold).

• Smart KG Allocation: an allocation schema is proposed by the advisor. This schema
considers the manager’s requirements explicited in the first requirement.

• Tune fragmentation and allocation: the advisor leaves the final decision of how to fragment
and how to allocate to the managers. The manager is able to choose different fragmen-
tation and allocation strategies from the ones proposed automatically by the advisor.
Additionally, it lets the manager change the values of the input parameters and let them
sub partition manually large graph fragments.

• Load the data to a triple store: this functionality concerns the data transfer and loading
to the target triple store. At the moment we support RDF QDAG and gStoreD.

As summary of the functionalities of the system is shown in Figure 4.14. Basically, the
manager seeks to fragment a given raw RDF dataset in graph fragments. The tool adjusts
the partitioning strategy according to a set of configuration parameters (e.g., system catalog,
constraints). It allows exploring the set of fragments and their distribution and if necessary,
adjusting the fragmentation strategy or re-partitioning some fragments. Finally, the set of
graph fragments are distributed/loaded to the sites of the system.

The following section describes the architecture of this system that we name RDFPartSuite
GUI.

147

CHAPTER 4. RDFPARTSUITE IN ACTION

RDF partitioning advisor
RDF partitioning advisor

Fragment raw RDF data

Explore fragmented/allocated data

Tune fragmentation

Allocate fragmentsTransfer/Load fragments

System manager

Figure 4.14: Partitioning advisor use case

4.7.2 System architecture

In this section we describe the architecture of RDFPartSuite advisor illustrated in Figure 4.15.
It is composed of five modules: features extractor, fragmenter, allocator, dispatcher and the
Graphic User Interface (GUI). The framework provides a Web User Interface to manage the
partitioning process. This interface is similar to the ones available to administrate the current
big data frameworks. The back-end layer was implemented using the Java programming language
chosen for its robustness, portability and available libraries. The communication between the
backend and the graphic interface is performed using a REST API. The backend is built following
the MicroProfile specification using JAX-RS and CDI components. The client layer (i.e. front-
end) is implemented with Vue.js and Bootstrap. Below, we detail each of the RDFPartSuite
components.

4.7.2.1 Features extractor

This component is in charge of processing the information collected from the GUI. It gets
for instance the configuration parameters for the fragmentation algorithms. For example, the
similarity threshold, the type of similarity scores and the allocation methods. It also processes
information related to the system’s hardware (e.g., available space in hard disk, main memory
available per site).

4.7.2.2 Fragmenter

This component is in charge of creating the forward and backward graph fragments. It gathers
the data following Algorithms 1 and 4 respectively. By default it creates groups of triples using
the structural similarity measure on the characteristic sets. The similarity threshold is initially
fixed to 1, but it can be tuned in the next component. This component also calculates a set
of statistics characterizing the fragments. It counts the number of triples per fragment and
calculates the distribution of the data on the fragments. It also detects which fragments should
be re-partitioned because their size exceeds the maximium available space in a single site. It
communicates with both, the fragmenter and dispatcher components, since it collects information
to create the plots guiding the user to choose the optimal fragmentation and allocation strategies.
For the distributor component, it calculates the precision of the distribution calculating the
relative number of cuts in the sites.

148

4.7. RDF PARTITIONING ADVISOR

Fragmenter Allocator

Dispatcher/
Loader

Features
extractors

System
catalog

Config.
parameters

Back-end

REST API

Web application
GUI

Front-end

�
Client

Manager

Figure 4.15: Partitioning advisor architecture

4.7.2.3 Allocator

This component calculates firstly the distribution of the final graph fragments (the ones created
after re-partitioning) to the sites of the system. It lets the user choose among the graph parti-
tioning heuristic and the traditional hashing function. It sends the number of data exchanged
between two partitions to the statistics generator component which calculates the allocation’s
precision. The output of this component is a file indicating the site to which each fragment
should be assigned.

4.7.2.4 Dispatcher/Loader

This component is in charge of sending the fragments to the sites of the distributed system
according to the allocation schema produced by the previous component. This component
connects to the loading module of a centralized (RDF QDAG) or distributed triple store (gStore)
and load the data according to the fragmentation (in centralized) or allocation (in distributed)
schema.

4.7.3 Use case

In this section we present the functionalities of RDFPart following the sequence of screens in the
web graphic user interface. We show for each screen the expected inputs, options and outputs
from the processing modules in the back-end. The welcome screen of our interface is shown
in Figure 4.16. In this interface, the user selects the raw RDF file to be partitioned (in N-
Triples format). Then, it selects the directory to store the temporary files generated during the
fragmentation stage. By default, this directory is set the same directory as the raw RDF file.
Next, it collects information about the infrastructure in which the data will be partitioned. It
gets the number of sites (workers and master), and their available space in hard disk and main
memory. If the site’s specifications are different in the master site (which sometimes have more
available main memory and disk), it records this information in a different form. After this
data is set, the Start Partitioning action button activates and the system performs an initial
scan on the data to encode it and detect the distinct predicates. Finally, it allows to select the
domain and range of each predicate, which by default are set to strings. After this stage, the
fragmentation strategy using Algorithms 1 and 4 begins.

149

CHAPTER 4. RDFPARTSUITE IN ACTION

Figure 4.16: RDFPart advisor’s welcome screen

The fragmentation progress can be tracked using the progress bar of the second screen shown
in Figure 4.17a. Once the fragmentation process finishes, the forward and backward graph frag-
ments are persisted to a temporary directory and a set of statistics are displayed. These statistics
include the number of distinct predicates, forward and backward graph fragments. By default
the fragmentation is performed using the structural similarity measure (which is by far the sim-
plest). We displayed as well the distribution of the total data in the forward and backward
fragments in a line chart. This graph shows from the total number of fragments (normalized
to a percentage), what is the percentage of the total data stored on them. This visualization
allows to detect if most of the data are condensed into a few fragments and should therefore be
re-distributed. The re-fragmentation module is illustrated in Figure 4.17b. This screen allows
to change the default structural similarity score and to select a distinct similarity threshold.
Since the interface was developed with VueJs, the graph of Figure 4.17a would change when
the similarity score is changed. A comparison of the total number of fragments of the default
fragmentation and the tested one is shown in an horizontal bar chart in Figure 4.17b. Finally,
if the set of fragments whose size is greater than the available space in a single site are shown
in at the bottom of the screen in the section Big fragments. This menu allows to choose the
re-partitioning strategy which by default is set to a hashing function as described in Section 3.7.
However, the data from a fragment can be re-partitioned using a single predicate and the defi-
nition language of the previous section. To save the changes the user clicks on the Re-partition!
button.

The final screen concerns the allocation of the forward and backward fragments to the sites
of the distributed system. This screen is shown in Figure 4.18. When the workload is available,
it selects the directory storing the SPARQL query files. The specification asks a single file
per query. After clicking the Test allocation button it compares using a customized precision
function the distribution of the case in which the fragments are distributed using a hashing
function on the predicates, and the graph partitioning heuristic defined in Sect. 3.5. The final
allocation method is selected from the right drop-down list and it generates in the temporary
directory a file with the graph fragment identifier and its location id.

150

4.7. RDF PARTITIONING ADVISOR

(a) RDFPart initial statistics

(b) RDFPart re-fragmentation module

Figure 4.17: RDFPart statistics and re-fragmentation modules

Figure 4.18: RDFPart allocation interface

151

CHAPTER 4. RDFPARTSUITE IN ACTION

4.8 Conclusion

In this chapter we presented our framework in action. We used the fragmentation and allocation
modules to load the data into a centralized and distributed triple store. We performed a series of
tests on each of the tested systems to show the strengths, features and limits of our framework.
We started giving an overview of the centralized RDF QDAG triple store. This system stores the
data as forward and backward graph fragments. We integrated our findings to the loading module
of this system. We compared the loading costs of RDF QDAG with other representative systems
of the state of the art in terms of time and scalability. We showed that the fragmentation process
with our entities (Gf) is feasible, even in architectures with limited resources. Even though the
loading times were high compared to other lighter fragmentation techniques (e.g., triple table),
we saw the advantages at query runtime of this extra cost. Then, we performed a complete
evaluation of the fragmentation strategies. We started showing that the number of fragments is
reasonable with respect to the datasets’ sizes. Next, we use our framework to fragment the data
in forward and backward graph fragments in a graph-based distributed triple store (gStoreD).
This system was used to compare Forward and Backward fragmentation strategies. Next, we
showed that combining both types of fragments in a single system contributes not only for
scalability but to enhance the query performance. We performed an extensive study on the
communication costs comparing our partitioning strategy with the most relevant state-of-the-
art techniques. We have shown that our strategies give a promising compromise between the
allocation cost, measured in terms of loading time, distribution’s quality, and query performance.
Finally, we introduce a user friendly extensions to our framework. These extensions are a
declarative partitioning language built on top of the logical structures of the previous chapter
and a partitioning advisor.

152

Conclusions and Perspectives

Conclusion

Currently, our world is filled with data. A large part of this data is freely available on the Web.
The W3C devoted many efforts to the development of standards that facilitate the exploita-
tion, exchange, and reuse of this data. Among these standards, RDF excels for its flexibility,
simplicity, and the expressiveness of its query language (SPARQL). RDF statements are triples
logically represented in a graph. These graphs interconnect data coming from multiple datasets
constituting a Knowledge Graph (KG). The complexity of this later concerns both its ecosystem
that involves several actors (e.g., creators, consumers, managers) and infrastructures, and its
size. To satisfy the requirements of these actors, each KG has to be efficiently stored and queried
to facilitate the different processes of its exploitation. As quoted by Clifford Stoll, ”Data is not
information, information is not knowledge, knowledge is not understanding, understanding is
not wisdom”, reaching wisdom passes through the availability of both data and knowledge.

The storage infrastructure, and specifically the Triple Stores are a cornerstone to satisfy these
needs. This pushed researchers from diverse communities (e.g., Semantic Web, Core Databases,
Information Systems Infrastructures) to propose a large collection of triple stores. Some are
built on top of existent solutions (like RDBMS), others are built from scratch using customized
storage implementations (e.g., clustered indexes, adjacency lists). They all have in common the
use of physical optimization strategies that are specific to each system. These strategies usually
ignore the underlying graph-based logical schema of KGs. This is far from the optimizations
based on logical structures broadly studied in relational databases. Within these strategies we
find data partitioning in the first line.

Data partitioning grants managers means to enhance the performance, manageability, and
availability of centralized triple stores by splitting the data in parts (fragments). Still, data
partitioning in centralized triple stores has not had its rightful place in the design of these
systems. To scale to large KGs, many parallel and distributed triple stores came to light. In
these systems, data partitioning becomes a mandatory stride. Many systems offer managers
the possibility to control the partitioning of their data (opaque systems) while others delegate
this task to a host like a cloud provider (transparent systems). For the former systems, there
are several partitioning modes (hashing, graph partitioning, semantic hashing, etc.). They are
applied at the triple-level distributing the data at its finer granularity. Recently, there has been
a research boom to study the performance impact of these data placement strategies in triple
stores [JSL20, ANS18].

The need to address the problem of RDF data partitioning is evident and crucial for perfor-
mance and manageability issues. Our vision encourages the reuse and the reproduction of strong
points of data partitioning applied in different database generations (relational, object-oriented,
XML, data warehouses, etc.) that preceded RDF databases. To do so, it is necessary to make
the partitioning environment explicit, identifying its strengths, evolution, and how their main

153

Conclusions and Perspectives

elements can be reused in the context of KGs. We surveyed the data partitioning problem to
establish the bases that will guide the development of our partitioning framework. It is im-
portant to notice that reproducibility is the hallmark of scientific research. A recent initiative
from Information Systems Journal (Elsevier) identified that much of the research published in
computer science journals and presented at conferences cannot be readily and fully reproduced.
This motivates the Editors of this journal to establishing a new article type: the Invited Repro-
ducibility Paper14. This reproducibility concerns only experiments. At the same time, several
nice conceptual ideas and visions already published and implemented in systems/products in the
last decades are not well reproduced in current trends in the database world. The wealth of data
partitioning findings in the traditional databases in terms of availability of large body of parti-
tioning techniques, algorithms, data structures, optimizations, deployment (in commercial and
open-source DBMSs), advisors, connection with other optimization techniques (such as indexes,
materialized views, etc.), fragment manipulation languages, adaptation for different database
generations, and the large number of Ph.D. theses (a quick search using ”Fragmentation Bases
de Données Informatique” on theses.fr which is a Website that lists all Ph.D. thesis defended
in France since 1985, we find around 875 theses). By this thesis, we attempt to promote the
vision of the reproduction of findings of data partitioning in the context of triple stores.

This vision is embedded in our RDF data partitioning framework for the contexts of central-
ized, distributed, and parallel triple stores. The framework follows the paradigm of being outside
the DBMS so it can be reused, improved, and extended as we will discuss later. Our framework
works using a logical representation of the fragments. We define a set of logical entities that
allow partitioning KGs independently on the storage representation of each system. Finally, we
show how this framework was introduced into centralized and distributed triple stores. We con-
ducted several experiments that showed some scenarios that demonstrate when these partition
strategies are most efficient. Our contributions are summarized as follows.

• Data partitioning survey

We provide a complete survey of the partitioning problem in relational databases. We have
cleared the foundation of the problem and its evolution over all the database generations. We
characterized the problem thanks to a star-schema like the representation of data partitioning
defining 10 main dimensions comprising: (1) Partitioning type, (2) Algorithm, (3) Main ob-
jective, (4) Adaptability, (5) Mechanism, (6) Cost model, (7) System element, (8) Platform,
(9) Constraints and (10) Data model. These dimensions make the elements of the partitioning
environment explicit and they are used to classifying the surveyed works. Secondly, since we
are dealing with Knowledge Graphs we cannot disregard how graphs have been treated in the
literature. We surveyed their logical representation, storage, and querying strategies of this data
model. Then, we focus on RDF systems giving some background concepts and an overview of
the current storage and partitioning strategies applied by triple stores. Thanks to both surveys,
we found that the study of data partitioning in triple stores has not followed the same philosophy
as in relational databases. The partitioning environment in RDF datasets is still un-explicit.
Several methods exist to partition an RDF dataset, but they are hardly reproducible and exten-
sible to other systems. This is due to the dependency of these methods on the physical storage
structure of triples on a given triple store.

• Foundations to RDF Logical Partitioning

Drawing on the lessons learned from the partitioning environment in relational databases, our
first concern was the definition of logical partitioning structures to partition a KG. These struc-
tures should (i) offer more expressiveness than single triples, (ii) represent the overall structure
of the data and, (iii) maintain their graph connectivity. In this thesis, we formally defined these

14https://www.elsevier.com/connect/new-article-type-verifies-experimental-reproducibility

154

theses.fr
https://www.elsevier.com/connect/new-article-type-verifies-experimental-reproducibility

Conclusions and Perspectives

structures. We distinguish two structures: forward graph fragments
−→
Gf and backward graph

fragments
←−
Gf . They harmonize with the notions of horizontal and vertical partitions in the

relational model, respectively. However, they have been defined on graph abstractions and not
on a table. We proved that the partitioning process of a KG in graph fragments enforces the
correctness rules of fragmentation [ÖV11]. Also, graph fragments are independent of the storage
structure of a triple store (table- or graph-driven). Besides, since they are built from the original
KG and not from the storage representation of the triples, they manage to keep the inherent
graph structure of a KG.

• RDFPartSuite Framework

We define a common partitioning framework for centralized and parallel triple stores. Our
framework follows the paradigm of outside the DBMS (outside the Triple Store in our case).
This enables users to reuse and extend this framework independently from a given triple store.
The framework is composed of three main modules: fragmentor, allocator and dispatcher. The
first module partitions a given dataset in fragments according to their logical representation in
forward or backward graph fragments. This logical representation is sent to the target centralized
triple store (if the systems are centralized) or to the allocator module (in distributed systems).
The allocator assigns the fragments to the different sites of the system according to data-driven
algorithms. This module outputs an allocation schema that is sent to the dispatcher in charge of
distributing the triples according to this schema. Finally, our framework offers managers support
tools. These tools consider the manager’s expertise level to design a partitioning scheme. For
beginners, it offers a partitioning advisor that automatically chooses the partitioning scheme.
If the manager is an expert, a declarative partitioning language is given to partition a KG
manually.

• RDFPartSuite in Action

Our framework was first incorporated to the loading module of a centralized triple store. The
chosen system was the centralized triple store RDF QDAG [KMG+20], currently developed
in our LIAS Laboratory. We showed the scalability of the fragmentor module and compared
the performance of non-partitioned centralized stores with respect to this system leveraging
data partitioning. Next, we used our framework to load the data to a distributed triple store
(gStoreD[PZÖ+16]). We compared the query performance for configurations in which the data
are loaded as forward and as backward graph fragments in this system. Our experimental study
revealed that the use of these structures in triple stores not only grants designers more freedom,
but also ensures the scalability and good performance for certain queries.

Final Takeaways

In this section, we share our own experiences that led to the establishment of our vision that was
materialized in our partitioning framework. Our aim is to give future researchers an overview
of the process followed in the development and implementation of our framework so they can
reuse/improve their future works with our feedback. The need to create a partitioning framework
arose after exploring the papers and source codes of several triple stores. Our aim was initially
to reproduce and learn how the systems that had been tested in several surveys (e.g., [AHKK17,
KM15]) works. Many of these systems had not been maintained for a long time and they have
been barely used in real implementations. Testing every single system was impossible since
the number of existing triple stores is huge. This because usually improving existent triple
store systems can be more expensive than starting everything from scratch. At this point, we
questioned why this has been the case for triple stores and not for RDBMS? Certainly, there
are many RDBMSs on the market now, however studying their optimization strategies remains

155

Conclusions and Perspectives

constant to the relational model. We decided to reproduce a similar methodology for the design
of triple stores. We focused on data partitioning because recently this optimization strategy has
gained momentum in centralized and especially in parallel and distributed triple stores. Our goal
was then, to overview in detail the main components of data partitioning to reuse them in the
context of triple stores. We seek to imitate the methodology used to partition RDF data and not
exactly the implementations used by RDBMS. Our idea is to take advantage of so many lessons
learned over the years for the creation of partitions in the relational model and incorporate them
into the creation of our framework. Our framework can be improved and extended. The main
perspectives of our work are detailed in the following section.

Perspectives

Extensions to our framework

Calibrator component

The calibrator component would be in charge of monitoring the different schemes generated by
our framework using data-driven approaches. This calibration is performed by the exploitation
of workloads running on the target store. This allows us to have a mixed approach combing the
connectivity of the data and workloads while designing our stores. We use the workload to boost
the quality of the initial allocation. This task could be divided in two sub-modules: workload
handler and smart re-allocator. In the following, we give a brief overview of how both modules
could work.

Workload handler : This sub-component would be in charge of measuring the closeness
between the graph fragments based on the information available on the workload. We could
adapt some of the workload-aware partitioning algorithms of the state of the art. Let us for
example describe how we could use the techniques of [HS13] and [GHS14] to extract the most
relevant information from a representative workload. This is illustrated in Figure 4.19 in which
a query (Fig. 4.19a) is normalized using the techniques of [HS13]. To measure the connectivity
between graph fragments in the workload we can detect a set of candidate graph fragments for
each part of the query. In the example shown in Fig. 4.19b we can calculate the interactions
between the candidate fragments. This information is transmitted to the following module, that
adjusts the cost model used by the allocator component.

SELECT ?a ?m ?z WHERE {

?a :type :Airliner .

?a :nbMotors "4".

?a :hasModel ?m .

?a :manufacturer ?z .

?z :has_seat :France .

?z :office_in ?t .

FILTER regex(?t, "Toulouse") }

(a) Original query

−−→
GfA

{
−→
Gf11,

−→
Gf12,

−→
Gf13}

−−→
GfB

{
−→
Gf21,

−→
Gf22}

Normalized query:

Ω1 :type :Airliner

Ω1 :nbMotors Ω2
Ω1 :hasModel Ω3
Ω1 :manufacturer Ω4
Ω4 :has_seat Ω5
Ω4 :office_in Ω6

−→
GfA

−→
GfB

(b) Query normalization

Figure 4.19: Normalization process

Smart re-partitioner this component considers the former data-driven partitioning proposed
by the allocator and the insights from the workload handler to determine if a fragment should
be transferred or replicated to a given site. To find a solution to the fragment re-allocation
problem, one of the following actions must be performed on each fragment (Vi):

• Replicate: the fragment Vi is replicated to as many sites in S as long as the replication,
space availability and imbalance constraints are met.

156

Conclusions and Perspectives

• Move: this action moves the fragment Vi from its former site Sj to another site in the
network.

• Keep: this action maintains the fragment in its original location Sj .

The interaction between both sub-components is illustrated in Figure 4.20.

Figure 4.20: Calibration component extension

Other allocation rules

Currently, the allocator component of our framework implements data-driven algorithms to place
graph fragments to the sites of a distributed system. This strategy is based on the inherent
connectivity of the triples. However, we can imagine other data-driven rules to extend our
framework. For example, for datasets containing geospatial information. Triple stores have been
recently extended for the efficient management of spatial data. Thus, one may want to place
graph fragments together according to geospatial variables. Another data-driven strategy to be
considered is that useful for triple stores that support reasoning. This allocation strategy should
consider the semantical closeness of their fragments with respect to a given set of ontologies.
This will not only leave connected triples on the graph in the same site, but also triples that are
semantically close but not directly with an arc.

Consideration of other optimization techniques

For the moment, our framework is used to partition KGs in triple stores. We are aware that
data partitioning is just one of the pool of optimizations strategies to consider while design-
ing efficient storage systems. Considering the impact of data partitioning and its interaction
with indexes, replicas, materialized views, etc. is the next step. Following what happened in
RDBMS, partitioning advisors proposed first a partitioning scheme that is tuned by subsequent
optimization structures (e.g., indexes) [NB11]. Our framework can be used as a baseline for
other components in charge of proposing indexes or replications of some fragments.

Implementation to transparent triple stores

We have introduced the notion of data transparency associated with data partitioning. In
transparent distributed triple stores, the partitioning task is delegated to the host where the
system is deployed. What if the host offered clients more visibility and control to partition
their own data? Incorporating our partitioning framework into existent distributed frameworks
should be considered. This need is evidenced, for example, by the overheads suffered by many
Hadoop-based systems due to the high communications costs of MapReduce joins [AHKK17].

157

Conclusions and Perspectives

Dynamic optimization strategies

Today there are many very efficient main-memory distributed triple stores. In these stores, fast
dynamic optimizations to the data distribution can be considered. These optimizations may
consider query streams to decide on re-partitioning or replication strategies. A component can
be added to our framework to deal specifically with this online reorganization.

Reproducibility of our framework to other types of data

In this thesis we present a vision that includes the design process of triple stores. Our vision can
be reused/adapted to the contexts of other existent data types that exist today (e.g., property
graphs) or data models that are yet to come.

A repository for data partitioning findings

In presenting our thesis, we did our best to promote the idea of reproductivity of the strong
points of data partitioning in the traditional databases (deployed in centralized and parallel
infrastructures) in RDF stores. If we deepen our analysis, the development of a repository (a
knowledge graph-like) containing all findings of data partitioning in both traditional and RDF
databases will be a great asset for students, academia, industry, developers of Open Sources sys-
tems, just to name a few. These findings have to be associated with their scientific papers and/or
the systems implementing them. Such a repository will allow any user to navigate through dif-
ferent dimensions of this repository to find their needs. This repository can be complementary
to a traditional survey.

158

Résumé

Introduction

Contexte

Nous vivons dans un monde hyper-connecté dans lequel de grandes quantités de données et de
connaissances sont émises par plusieurs fournisseurs tels que les réseaux sociaux, les appareils
mobiles, le commerce électronique, des capteurs, l’Internet des objets et bien d’autres. Une
grande partie de ces données est produite et disponible sur Internet. À ce jour, le Web contient
plus de 1,8 milliard de sites15 et sa taille est en constante expansion. Les données issues du Web
se caractérisent, entre autres, par leur volume, variété, véracité et vélocité. Les informations et les
connaissances associées à ces données, si elles sont bien préparées, peuvent être précieuses pour
les consommateurs (entreprises, gouvernements, utilisateurs privés, etc.) qui peuvent obtenir
des connaissances pertinentes et éventuellement de la valeur ajouté.

Cependant, la disponibilité des données issues du Web n’implique pas leur exploitation di-
recte. Les ordinateurs doivent manipuler et interpréter les informations publiées sur le Web.
Cette idée a donné lieu au Web sémantique. Les données issues du Web doivent être représen-
tées et interrogeables de manière intuitive et claire. Le World Wide Web Consortium (W3C) a
mené de nombreux efforts pour spécifier, développer et déployer des directives, des modèles de
données et des langages. Parmi ces modèles, le Resource Description Framework (RDF) [RC14]
a été conçu pour exprimer des informations sur les ressources du Web. Ce modèle est la pierre
angulaire des autres modèles et langages du W3C.

Le triplet est la plus petite unité de données dans RDF. Un triplet modélise une seule déc-
laration sur les ressources avec la structure suivante ⟨sujet, predicat, objet⟩. Le triplet indique
qu’une relation identifiée par le prédicat (également connu sous le nom de propriété) est main-
tenu entre le sujet et l’objet représentant des ressources Web (entités, documents, concepts,
etc.).Cette caractéristique d’interconnexion donne à RDF la possibilité de lier des triplets de
différents ensembles de données via leur IRIs (International Resource Identifiers). Le résultat de
la fusion des triplets constitue une Graphe de Connaissances (KG). Pour interroger les ensem-
bles de données RDF et les KGs, le W3C a défini SPARQL [SH13a] comme langage de requête
standard. SPARQL permet d’exprimer des requêtes sur divers ensembles de données.

La popularité de RDF est due à sa flexibilité, simplicité et disponibilité d’un langage de
requête. Aujourd’hui, les graphes de connaissances (KGs) sont devenus des moyens populaires
pour les chercheurs académiques et industrielles pour capturer, représenter et exploiter des
connaissances structurées. Cette variété et la richesse de KGs a motivé des chercheurs d’autres
domaines à les intégrer dans les différentes phases de leur cycle de vie.

15https://www.internetlivestats.com/

159

https://www.internetlivestats.com/

Résumé

La course aux Triple Stores efficaces

Avec l’essor des graphes de connaissances, deux problèmes se posent: (i) stockage scalable et
(ii) accès efficace aux KGs. Les systèmes en charge du stockage et de l’accès aux triplets sont
appelés Triple Stores. Ces systèmes peuvent être classés en deux groupes principaux: non-native
et native.

Non-native Ces systèmes choisissent des solutions de stockage existantes pour construire leurs
triple stores. Les systèmes de gestion de bases de données relationnelles (SGBDR) ont été
largement utilisés pour concevoir de tels systèmes. Les premiers systèmes stockent les triplets
dans une seule table de trois colonnes (sujet S, prédicat P et objet O). Pour réduire le nombre
d’auto-jointures induites par cette approche, d’autres systèmes utilisent une table plate appelée
table de propriétés. Cette table stocke chaque propriété dans des colonnes différentes. Cette
stratégie de stockage génère le problème des valeurs nulles et des contraintes pour représenter
des propriétés à valeurs multiples. Pour surmonter les inconvénients ci-dessus, certains systèmes
partitionnent verticalement la table de propriétés en L fragments (où L représente le nombre
de prédicats). Chaque fragment est associé à un prédicat et composé de deux colonnes (sujet,
objet).

Native Ces systèmes ont été spécialement conçus pour traiter les données RDF. Deux straté-
gies de stockage principales sont utilisées dans ces systèmes: les stratégies basées sur une struc-
ture d’arbre et les listes d’adjacence. Le système RDF-3X [NW08] est le système le plus représen-
tatif dans la première catégorie. Il stocke les triplets dans des arbres B+Tree. Pour améliorer
les performances, il stocke toutes les permutations des colonnes (par exemple, SPO, OPS, PSO).
Les systèmes de la deuxième catégorie utilisent des implémentations physiques de graphes tels
que des listes d’adjacence. Les optimisations de ces systèmes dépendent fortement des structures
de mise en œuvre du graphe.

Triple Stores distribués et parallèles Pour assurer la scalabilité, il existe une grande
nombre de triple stores distribués et paralleles. Le cycle du développement d’un tel système peut
facilement s’inspirer de celui utilisé pour la conception des bases de données traditionnelles. Le
partitionnement des données est une condition préalable pour assurer le déploiement, l’efficacité,
la scalabilité et la tolérance aux pannes de ces systèmes [ÖV11]. La sensibilité du partitionnement
des données RDF et son impact sur les performances dans les triple stores ont été récemment
discutés dans un article présenté lors d’un workshop de SIGMOD 2020 [JSL20]. Nous classons
ces systèmes en trois groupes: homogènes, hétérogènes et basés sur le cloud. Les systèmes
homogènes et hétérogènes sont généralement implémentés dans des architectures master/slave.
Les premiers clonent un triple store centralisé sur les nœuds d’un système distribué tandis que le
second utilise des triple stores différents en chaque nœud. Dans les systèmes basés sur le cloud,
le stockage et l’accès aux données sont délégués à l’hôte. Plusieurs modes de partitionnement
pour les données RDF ont également été implémentés (par exemple, Hashing, Partitionnement
de graphes et Hashing sémantique.

De la présentation ci-dessus, y compris les triple stores centralisés, distribués et parallèles,
trois leçons principales sont tirées:

1. Une forte demande des gestionnaires et des consommateurs pour développer des triple
stores en exploitant l’opportunité technologique en termes de logiciels et de matériels.

2. Toute initiative visant à utiliser le partitionnement des données dans des triple stores
devrait bénéficier de la grande expérience dans les bases des données traditionnels. Cette
expérience doit être capitalisée pour augmenter la réutilisation et la reproductibilité des
résultats du partitionnement des données dans les données RDF.

160

Résumé

3. La nécessité de développer un cadre de partitionnement de données RDF pour les gestion-
naires désireux de concevoir des triple stores centralisés et parallèles.

Notre vision, objectifs et contributions

Dans cette thèse, nous visons d’abord à expliciter le problème du partitionnement pour les bases
de données traditionnelles. Nous privilégions l’utilisation du partitionnement de données dans
la conception de triple stores en réutilisant ses points forts. Notre vision est de construire un
cadre de partitionnement basé sur l’analyse de forces et de contraintes des deux univers (bases de
données traditionnels et KG). Pour cela une étude approfondie du partitionnement des données
proposé dans le contexte des bases de données traditionnelles centralisées/parallèles/distribuées
est nécessaire.

Les objectifs que nous avons fixés dans notre thèse sont:

(i) La définition d’un cadre commun pour les triple stores centralisés et parallèles avec des
composants complets mettant en œuvre notre vision.

(ii) La proposition d’algorithmes efficaces de partitionnement pilotés par les données définis
sur des structures logiques définis préalablement.

(iii) Montrer la faisabilité du framework en l’instanciant dans un triple store centralisé et dis-
tribué.

(iv) Mise à disposition d’outils pour les concepteurs, y compris un langage de manipulation
de fragments et un assistant automatique de partitionnement, basés sur des fragments
logiques.

Les principales contributions de notre travail sont:

• Avec la motivation d’augmenter la reproduction et la réutilisation des résultats importants
du partitionnement des données dans les bases de données centralisées et parallèles tra-
ditionnelles, nous proposons une étude complète de ce problème couvrant les générations
importantes du monde des bases de données.

• La définition d’un Framework, appelé RDFPartSuite. Il soutient notre vision dans la
conception de triple stores centralisés et parallèles. RDFPartSuite peut être personnalisé
en fonction du type de plateforme et il suit le paradigme en dehors d’un SGBD [Ord13],
dans lequel tous les efforts techniques sont effectués en externe. En fonction du type de
plateforme deux scénarios sont possibles:

1. Si la plateforme est centralisée, notre framework active le module fragmenteur en
charge du partitionnement des triples en fonction de leur représentation logique.

2. Lorsque la plate-forme est distribuée ou parallèle, le fragmenteur envoie le schéma de
fragmentation obtenu au composant allocateur. Ce dernier attribue les différents frag-
ments aux nœuds de la plate-forme cible. Une fois le schéma d’allocation obtenu, le
composant dispatcher envoie la description détaillée de ce schéma à différents nœuds,
puis charge les triplets en fonction de leurs définitions.

3. Des outils d’assistance (langage de manipulation de fragments et assistant automa-
tique de partitionnement) sont proposés pour aider les gestionnaires dans leurs tâches.

• La définition d’un ensemble d’entités logiques (appelées fragments de graphe) utilisées
pour effectuer la fragmentation d’ensembles de données RDF au niveau logique dans des
environnements centralisés et parallèles.

• Le déploiement de ce framework sur le module de chargement d’un système centralisé
(RDF QDAG [KMG+20]) et d’un triple store distribué (gStoreD [PZÖ+16]).

161

Résumé

Partitionnement

Modèle de données

Objectif principal

Type

Modèle de coût

Élément du système

Adaptabilité

Mécanisme

Algorithme

PlateformeContraintes

Figure 4.21: Schéma en étoile de l’environnement de partitionnement

Fondements du Partitionnement des Données

Dans les techniques d’optimisation les plus étudiées dans les bases de données, le partitionnement
des données occupe une place très importante non seulement pour son efficacité à améliorer les
performances de la base de données, mais aussi parce que dans les architectures parallèles et
distribuées à grande échelle modernes, c’est un pas obligatoire. Les notions de partitionnement
de données ont été introduites dans les années soixante-dix en [HS75] peu de temps après la
définition des index de base de données.

Dans les bases de données relationnelles, le partitionnement consiste à diviser ce qui est
logiquement une grande table en morceaux physiques plus petits. Comme pour les index, le
problème du partitionnement des données a été couvert dans toutes les générations de bases
de données: deductives [Spy87, NH94], orientée objet[BKS97] et entrepôts de données [SMR00].
Pourtant, contrairement à d’autres stratégies d’optimisation et avant l’introduction de techniques
de partitionnement dynamique, des partitions sont créées lors de la déclaration des tables de base
de données. Cette fonctionnalité distingue le partitionnement des données des autres techniques
d’optimisation qui peuvent être créées à la demande pendant l’exécution de la base de données.
Recréer des partitions après sa définition est coûteux et peu pratique.

Nous avons caractérisé le problème de partitionnement en fonction de son:

• Maturité: le problème existe presque depuis la définition des premiers systèmes de base
de données et a été largement exploré,

• Couverture: il a été implémenté pour toutes les générations de bases de données,

• Évolution: il a été adapté aux différentes architectures, besoins et contraintes, et

• Complexité: trouver un schéma de partition optimal doit considérer plusieurs alternatives
et parfois des fonctions objectives mutuellement exclusives.

Dimensions de partitionnement

Nous avons modélisé l’environnement de partitionnement à l’aide d’un schéma en étoile illustré
dans la Figure 4.21. Les dimensions avec une double bordure dans cette Figure correspondent
à celles définissant le problème de partitionnement de base. Nous organisons les approches de
partitionnement dans ce chapitre en utilisant les dix dimensions détaillées ci-dessous qui sont
utilisées comme critères de diversification. Ces schéma est utilisé pour organiser les travaux
étudiés dans ce chapitre.

162

Résumé

Type

Cette dimension décrit les façons alternatives de diviser une table en plus petites parties. Deux
alternatives sont clairement visibles: la diviser horizontalement ou verticalement. Un troisième
type de partitionnement nommé hybride est une combinaison des techniques de partitionnement
précédentes. En bref, les entités logiques sont représentées sous forme de relations (tables) dans
le modèle relationnel. Chaque relation regroupe des ensembles de tuples qui sont des instances
d’une entité logique qui sont représentées par un ensemble d’attributs.

Le partitionnement horizontal a été exploré plus largement par les SGBD et il en existe de
nombreuses versions. Tout d’abord, nous distinguons les partitions horizontales effectuées dans
une seule table nommée partitionnement horizontal simple. Plusieurs modalités de partition-
nement sont implémentes:

• Partitionnement par plage: une relation est divisée en fonction d’une plage de valeurs pour
un ensemble donné d’attributs.

• Partitionnement de liste: cette stratégie divise une table selon une liste de valeurs discrètes
pour la clé de partitionnement d’une colonne.

• Partitionnement hash: cette modalité décompose les données en appliquant une fonction
de hachage aux attributs de partitionnement.

Un autre mode de partitionnement horizontal, appelé composite, combine les modes de parti-
tionnement simple (par example, plage-hash, hash-liste). Enfin, le partitionnement horizontal
dérivée permet de partitionner une table en exploitant une relation parent-enfant existante
établie selon une clé étrangère entre deux relations [BBRW09].

Objectif principal

Le problème du partitionnement optimal des données sur un système de base de données central-
isé, distribué ou parallèle pourrait à première vue sembler le même. Même si la sortie attendue
est un ensemble de partitions horizontales ou verticales, l’objectif principal de créer chaque
partition est très différent selon les exigences du système. Nous classons les objectifs de par-
titionnement comme suit: (i) Temps de réponse, (ii) Concurrence, (iii) Maintenance and (iv)
Combiné.

Mécanisme

Cette dimension fait référence aux moyens utilisés par les techniques de partitionnement pour at-
teindre les objectifs mentionnés précédemment. Il est composé de deux alternatives: le clustering
et le declustering.

• Le clustering fait référence au partitionnement dans des systèmes de base de données cen-
tralisés et distribués. Dans les premiers systèmes, le partitionnement des données cherche
à minimiser les coûts de transfert entre la mémoire primaire et la mémoire secondaire en
récupérant les enregistrements ou les attributs pertinents à la demande de l’utilisateur.
Dans les systèmes de bases de données distribuées, l’objectif principal est d’éviter les com-
munications réseau coûteuses en localisant les exécutions aux nœuds du système distribué
où résident les données. Dans les deux cas, les données sont regroupées pour former des
groupes de tuples ou d’attributs qui sont généralement récupérés ensemble.

• La stratégies de declustering est préférée par les systèmes de base de données parallèles
où il n’est pas nécessaire de maximiser le traitement local à chaque nœud. Le partition-
nement des données dans les systèmes parallèles se traduit par un compromis entre max-
imiser le temps de réponse pour chaque requête individuelle mais au prix d’une asymétrie
d’exécution ou maximiser le parallélisme intra-requête.

163

Résumé

Algorithme

Trouver le bon ensemble de partitions s’est avéré être un problème très complexe. Le problème de
partitionnement horizontal s’est avéré être NP hard [SW85, SW83], de même que le problème de
trouver des partitions verticales appliquant un graphe d’affinité. Le partitionnement horizontal
et vertical ont été formalisés mathématiquement et posés comme des problèmes d’optimisation
dont la solution est trouvée grâce à l’utilisation d’heuristiques. Nous classons les algorithmes
en: (i) Solutions exactes et (ii) Heuristiques.

Modèle De Coût

Pour évaluer objectivement si une stratégie de partitionnement améliore les performances du
système de base de données, un ensemble de métriques est établi pour définir les critères qui
déterminent un système performant. Après tout, sans une métrique bien définie, il est impossible
de décider quelle alternative de partitionnement est meilleure qu’une autre. De plus, les modèles
de coûts sont essentiels pour prédire les coûts d’exécution réels d’une requête a priori, sans
l’évaluer réellement. Les modèles de coûts offrent une vision simplifiée d’un système et sont liés
aux objectifs décrits avant. Nous classons les modèles de coûts comme suit: (i) Basé sur le
temps de réponse, (ii) Basé sur le débit, (iii) Basé sur la maintenance et (iv) Coût global du
système.

Contraintes

Les algorithmes de partitionnement cherchent à optimiser une fonction objective par rapport
à certaines variables en présence de contraintes. La liste suivante résume les contraintes les
plus courantes: (i) La taille maximale/minimale de la partition, (ii) Nombre de partitions, (iii)
Redondance, et (iv) La charge de requêtes.

Plateforme

Cette dimension considère les trois types d’architectures de base de données: (i) Centralisée,
(ii) Distribuée et (iii) Parallèle.

Élément du Système

Dans cette dimension, nous considérons si l’élément matériel ciblé par l’approche de partition-
nement. Parmi les composants, nous pouvons mentionner: mémoire primaire et secondaire,
réseau local, processeur.

Adaptabilité

Cette dimension classe les stratégies de partitionnement en statiques et dynamiques. La dif-
férence dépend si le partitionnement décrit la procédure qui est effectuée lors de la déclaration
de la base de données et qu’elle ne change jamais, ou s’il inclut décrit les stratégies effectuées
après l’exécution de plusieurs charges de travail et que le système est capable d’adapter son
partitionnement.

Modèle de données

Dans cette section, nous classons les stratégies de partitionnement selon le modèle de données
utilisé pour représenter logiquement les données. Nous incluons dans cette catégorie le mod-
èle relationnel et les modèles directement dérivés de celui-ci. Nous incluons alors: (i) Modèle
relationnel, (ii) Orientée objet, (iii) Déductive and (iv) Dimensionnelle.

164

Résumé

Partitionnement dans les plates-formes récentes à grande échelle

Au début des années 2000, la nécessité d’incorporer, de stocker et d’interroger de grandes quan-
tités de données sur le Web, avec différentes sources, formats et à moindre coût, a contribué
au développement de nouveaux types d’outils de gestion des données. Les systèmes basés sur
le modèle relationnel, en particulier les bases de données parallèles, évoluent et peuvent gérer
de vastes volumes de données, comme le montre [PPR+09]. Cependant, le modèle relationnel
est trop rigide pour s’adapter à la variabilité des sources et des formats de données actuelles.
De plus, étant donné que le schéma de données est rarement disponible au préalable, il est im-
possible d’effectuer l’étape de conception qui est essentielle lors de la construction d’une base
de données relationnelle. Par conséquent, les systèmes appliquant une stratégie schéma-après
ont été largement acceptés. Ces systèmes stockent initialement les données dans leur format
brut et les analysent lors de l’exécution. Le pionnier présentant un nouvel outil de gestion de
données évolutif était Google, introduisant le système de fichiers Google [GGL03] et le modèle
de traitement MapReduce [DG04]. Leurs travaux ont servi de base à Hadoop, l’un des frame-
works de données à grande échelle les plus populaires jusqu’à aujourd’hui. Dans cette section,
nous commençons à donner un bref aperçu de Hadoop en mettant l’accent sur la stratégie de
partitionnement appliquée par ce framework. Ensuite, nous expliquons et détaillons les systèmes
les plus pertinents construits sur Hadoop et décrivons leurs stratégies de partitionnement.

Partitionnement dans l’écosystème Hadoop

Le stockage dans Hadoop est géré par le composant Hadoop Distributed File System (HDFS).
Le HDFS est un système de stockage de données distribué basé sur une architecture mâıtre-
esclave. HDFS est conçu pour stocker des données structurées et non structurées de manière
évolutive, hautement disponible et tolérante aux pannes. Les fichiers sont divisés en blocs d’une
taille configurable (128 Mo par défaut) qui sont distribués et stockés entre les nœuds de données.
Pour garantir la tolérance aux pannes et l’équilibrage de charge, les blocs de données du même
fichier sont répliqués et stockés sur différents nœuds. Le nœud de nom (mâıtre) gère le système
de fichiers et régule l’accès des blocs de fichiers aux emplacements à l’aide des métadonnées du
fichier.

Lorsqu’un fichier est importé dans HDFS, il est divisé séquentiellement en petits blocs d’une
taille de stockage fixe. Chaque bloc est répliqué en un nombre fixe personnalisable de copies
et une fonction de hachage est utilisée pour distribuer les données aux nœuds. Cette stratégie
est assez simple et permet de distribuer les données contrôlant son équilibre. Cependant, il ne
prend pas en compte le schéma des données et il peut produire des frais généraux de réseau à la
récupération.

Conclusion

Avec le déluge de données et l’explosion des architectures de déploiement, le partitionnement
des données est devenu la une technique que les acteurs de la base de données (concepteurs,
administrateurs, architectes, analystes, étudiants, chercheurs) doivent connâıtre en détail. Le
partitionnement des données a été étudié à partir de l’arrivée de bases de données évoluant avec
ses générations. Dans ce chapitre, nous avons cherché à donner un aperçu historique du problème
de partitionnement de données, de son historique, de son évolution, de ses contraintes et de son
comportement après l’arrivée de chaque nouvelle architecture et plateforme de déploiement de
données. Pour ce faire, nous avons proposé une base de partitionnement de données comprenant:
des définitions et des types implicites et explicites, ainsi que des dimensions de partitionnement
de données comprenant: (1) Type de partitionnement, (2) Algorithme, (3) Objectif principal,
(4) Adaptabilité, (5) Mécanisme, (6) Modèle de coût, (7) Élément Système, (8) Plateforme, (9)
Contraintes et (10) Modèle de données. Ces dimensions offrent une représentation graphique

165

Résumé

(comme un schéma en étoile) du partitionnement des données. Pour chaque dimension, nous
avons décrit ses caractéristiques et représenté ses éléments et ses étiquettes.

Nous nous sommes concentrés sur la présentation de l’état de l’art du partitionnement de
données dans des bases de données relationnelles et d’autres modèles proches dans des archi-
tectures centralisées, distribuées et parallèles. Nous avons cité les travaux qui ont conduit à
une définition explicite du problème du partitionnement et montré le développement progres-
sif des principales formes de partitionnement de données. Par la suite, nous avons exposé les
algorithmes, stratégies et heuristiques introduits pour partitionner la base de données selon un
ensemble de dimensions précédemment définies. Nous offrons un examen complet sur le parti-
tionnement des données et peut être utilisé comme un flambeau pour les lecteurs et les acteurs de
travailler dans ce problème passionnant et durable. Enfin, nous montrons comment le problème
a évolué dans les plates-formes cloud actuelles et comment il s’est adapté pour faire face aux
données à grande échelle. Dans le chapitre suivant, nous montrons comment le problème a été
traité spécifiquement pour le traitement de graphes.

Les Données Orientée Graphe : Représentation et Traitement

Dans le chapitre précédent, nous avons détaillé le problème de partitionnement dans les bases
de données relationnelles. Nous avons montré son évolution et comment elle a été adaptée aux
modèles de données orientés objet, déductifs et multidimensionnels. Nous avons expliqué le
développement de plates-formes à grande échelle et comment elles se sont adaptées au besoin
récent de gérer efficacement les grandes volumes de données. Cependant, les modèles de don-
nées discutés dérivent directement de la conception relationnelle si largement étudiée. Dans ce
chapitre, nous détaillons un modèle de données qui permet de décrire des relations plus com-
plexes. Plus précisément, des modèles orientés graphes représentant les données sous forme de
graphe dont la manipulation est exprimée sous forme d’opérateurs de graphes. Ils ont pris de
l’ampleur au cours des dernières années avec le développement du Web sémantique, des réseaux
sociaux et avec l’augmentation de la capacité de capturer des données provenant de différentes
disciplines telles que la Biologie et le Transport. Dans ces applications, l’interconnectivité des
données est une caractéristique clé et elle est aussi importante que les données elles-mêmes. La
modélisation des données sous forme de graphe permet une manière plus naturelle de gérer ces
applications. Dans ce chapitre, nous commençons à donner plus d’informations sur le modèle
de données de graphes en général. Ensuite, nous nous concentrons sur le modèle RDF introduit
pour représenter les données dans le Web sémantique en donnant quelques définitions principales
et en décrivant les approches de stockage et de traitement les plus pertinentes.

Modèles de bases de données orientées graphes

La recherche autour des modèles de base de données orientées graphes n’est pas nouvelle, en fait,
elle a connu un pic à la fin des années 1980 début des années 1990, mais elle a été éclipsée par
le développement de structures arborescentes comme la modélisation XML dans les sites Web
de première génération. L’utilisation des graphes en informatique remonte au début des bases
de données relationnelles au milieu des années 1970 dans lesquelles des modèles de graphes ont
été proposés pour étendre les informations stockées dans des bases de données avec des réseaux
sémantiques (d’abord défini dans [Sim72]).

Structures de données, langages et traitement des requêtes

Les modèles de données orientées graphes représentent les données sous forme de graphes four-
nissant des opérations de traversée efficaces pour les interroger et les analyser. Les graphes sont
composés d’entités représentant quelque chose qui existe en tant qu’unité unique ou composée
et de relations établissant des connexions entre deux entités ou plus. Quelques structures de

166

Résumé

données utilisées pour modéliser les entités et les relations dans ce modèle sont: la matrice
d’adjacence, la liste d’adjacence, la liste de bord, le compressed sparse row(CSR) et les indexes
complexes.

Parmi les études de recherche, il existe plusieurs travaux sur les langages de requête. Ces
travaux présentent des collections d’opérateurs et de règles d’inférence pour manipuler et inter-
roger la structure de données orientées graphes. Compte tenu du grand nombre d’approches
disponibles et de la portée de cette thèse, nous ne mentionnons dans cette section que les lan-
gages de requête de graphes les plus récents et les plus populaires. On retrouve alors: SPARQL,
Cypher, Gremlin, Oracle PGQL et G-Core.

Les stratégies de traitement des requêtes dépendent du type de requête ciblé par l’application.
Ces stratégies peuvent être aussi simples que de trouver les voisins directs d’un nœud ou de
trouver des graphes isomorphes en fonction d’un modèle de requête, ou des chemins de traversée
plus complexes utilisés dans des algorithmes tels que PageRank.Nous avons donné un aperçu
des stratégies de traitement de graphes qui sont au cœur de plusieurs langages de requête.
Une description détaillée de chaque algorithme et des stratégies plus complexes traitant de
l’accessibilité se trouve dans [BFVY18].

Partitionnement de graphes

Au cours des dernières années, les données stockées sous forme de graphes ont considérablement
augmenté. Par exemple, la taille du graphe de données Facebook compte un milliard de nœuds
et environ deux cents milliards d’arêtes [LNP16]. Des solutions distribuées et parallèles ont vu
le jour pour répondre à la demande de stockage et de traitement de graphes efficaces. Dans ces
systèmes, couper le graphe en petits morceaux est une étape fondamentale pour permettre le
parallélisme. Le partitionnement de graphes doit trouver un équilibre entre les objectifs suivants:

• Minimiser les coûts de communication, et

• Maximiser l’équilibre de charges.

Bases de données orientées graphes

Dans les sections précédentes, nous avons caractérisé les dimensions du modèle de base de
données orientées graphe: i) Structure de données logique, ii) stockage de données, iii) langages
de requête et de manipulation, et iv) stratégies de traitement des requêtes. Nous utilisons ces
dimensions pour classer les systèmes les plus populaires. Nous classons les approches en deux
grands groupes: natif et non-natif. Le premier groupe est constitué de systèmes spécialement
conçus pour stocker et interroger des données représentées sous forme de graphes. En revanche,
les approches non natives sont construites sur des plates-formes existantes telles que les bases de
données relationnelles, les systèmes clé-valeur et d’autres systèmes comme par example le cloud.

Le Resource Description Framework (RDF)

Le Resource Description Framework (RDF) [RC14] a été largement accepté comme modèle de
données standard pour l’échange de données issues du Web. RDF est suffisamment flexible pour
faciliter l’intégration des données avec différents schémas. Le modèle utilise des triplets composés
d’un sujet, d’un prédicat et d’un objet (s, p, o) comme structure de données abstraite de base
pour représenter l’information. Un ensemble de tels triplets forme un graphe de connaissances
(KG). Les nœuds représentent des IRIs (International Resource Identifiers), des nœuds vides
(ressources non spécifiées) ou des littéraux. Les arcs caractérisent une ressource en reliant les
nœuds sujet et objet par un prédicat. Ce chapitre classe les systèmes les plus représentatifs en
natifs et non natifs. Nous nous concentrons ici sur les stratégies de partitionnement appliquées
par la plupart de ces systèmes.

167

Résumé

Partitionnement des données RDF

Pour faire face à l’augmentation des données RDF disponibles et à la nécessité de les traiter
efficacement, les systèmes RDF ont eu recours à des techniques de distribution et de traitement
parallèle largement explorées dans les bases de données relationnelles. Dans les systèmes RDF
distribués, nous trouvons deux groupes, les systèmes fédérés et les systèmes en cluster qui sont
décrits comme suit:

• Systèmes fédérés: ces systèmes exécutent des requêtes SPARQL sur plusieurs SPARQL
endpoints16. De tels systèmes nécessitent d’effectuer l’intégration de données à la volée
de plusieurs sources RDF hétérogènes. Les systèmes fédérés sont hors du champ de notre
étude.

• Systèmes en cluster : ces systèmes distribuent les données entre différents nœuds qui for-
ment une seule solution de stockage. Depuis plusieurs années, un grand nombre de systèmes
distribués offrant un traitement efficace des données RDF ont vu le jour. Nous concentrons
notre étude sur ce type de systèmes.

Nous divisons le processus de partitionnement en trois phases: Fragmentation, Allocation et
Réplication. Ensuite, nous détaillons les entrées, les sorties et les algorithmes sur chacune de
ces étapes.

• Fragmentation: Le processus de fragmentation consiste à définir l’unité de fragmentation
à allouer sur les sites du système distribué. Il n’y a pas de consensus sur la façon dont
les données RDF devraient être distribuées. La plupart des solutions actuelles utilisent
le triple comme unité de fragmentation. Cependant,il a été affirmé que le regroupement
des triples en premier pourrait améliorer les performances en découvrant des structures
implicites dans le graphe RDF [BDK+13, SGK+08]. Par conséquent, d’autres solutions
proposent de regrouper d’abord les triplets par sujet, prédicat ou objet et d’utiliser ces
groupes comme unités de fragmentation.

• Allocation: L’étape de l’attribution consiste à trouver la distribution d’un ensemble de
fragments {F1, ..., Fn} (qui sont le résultat de l’étape précédente) pour un ensemble de sites
{S1, ..., Sm}. La distribution des fragments se fait en appliquant les techniques suivantes:
fonction de hachage, round-robin ou dépendant de la plateforme cloud.

• Réplication: La réplication des données est une stratégie d’optimisation fréquente mais
pas obligatoire appliquée par plusieurs systèmes distribués RDF. Il permet également la
tolérance aux pannes dans ces systèmes.

Conclusion

Dans ce chapitre, nous avons d’abord donné un aperçu général du modèle de données orientées
graphes. Nous avons détaillé ses structures logiques et de stockage, les stratégies de traitement
des requêtes, ses langages de requêtes, et enfin nous avons détaillé certains systèmes actuels.
Nous avons vu les avantages du modèle mais aussi ses limites, notamment en raison de la
variabilité des méthodes utilisées pour le partitionnement et traitement de données. Ensuite,
nous nous sommes concentrés sur RDF. Nous avons donné quelques concepts de base, et aussi
décrit les stratégies de stockage, de traitement et de partitionnement. Le partitionnement dans
les triple stores dépend de l’organisation physique des données (c’est-à-dire stockées dans une
seule table, une table de propriétés ou une liste adjacente). Nous avons montré que les stratégies
de partitionnement RDF sont dépendantes aux systèmes. De plus, contrairement aux bases de
données relationnelles, il n’y a pas de couche logique commune. Le partitionnement de données

16Services web RESTful pour exposer les données RDF interrogées avec SPARQL

168

Résumé

RDF est piloté par le système, contrairement au partitionnement dans les bases de données
relationnelles où il est piloté par les données. Dans les bases de données relationnelles, il existe
des outils (par exemple, des systèmes automatiques de partitionnement, langages de définition)
qui permettent au concepteur de base de données de créer des partitions en fonction de la
structure des tables ou d’un schéma de partitionnement qui répond aux exigences d’une certaine
charge de requêtes.

Relationnel RDF

− L’intégration des données avec différents
schémas est complexe.

+ Intégration flexible de nouvelles données.

+ SGBD-indépendant : le partitionnement
est indépendant du système de gestion de
base de données.

− SGBD-dépendant : le système d’exécution
et la stratégie de partitionnement sont cou-
plés.

+ Partitionnement au niveau logique: In-
dépendamment du modèle physique utilisé
pour stocker les données (par exemple, NSM,
DSM).

− Dépend du modèle de stockage physique
(par exemple, basé sur les triplets).

+ Les langages de définition de base de don-
nées natifs prennent en charge la déclaration
de partitions horizontales.

− Partitionnement effectué de manière trans-
parente pendant la phase de chargement.

+ Plusieurs conseillers de partitionnement
automatique sont disponibles pour aider le
concepteur à créer des partitions.

− Le partitionnement des données est princi-
palement imposé par le triple store.

Les stratégies de partitionnement adoptées par les systèmes RDF présentent également
plusieurs avantages. Par exemple, la plupart des approches permet l’intégration des données.
En effet, L’un des atouts de RDF est sa flexibilité pour intégrer des données avec différents
schémas sous-jacents. Le modèle relationnel, en revanche, est souvent trop rigide pour gérer les
données sans donner un schéma initial. Certaines approches de RDF ont essayé de modéliser
les données RDF dans un schéma de base de données relationnelle avant de stocker les don-
nées dans un SGBDR. Cependant, comme le démontrent plusieurs études expérimentales, les
systèmes relationnels ne sont pas optimaux lorsqu’ils traitent des requêtes très complexes. Les
forces et les inconvénients (principalement mutuellement exclusifs) des deux modèles de données
sont résumés dans le tableau précédent.

Nous considérons nécessaire de fournir des outils pour les concepteurs de systèmes RDF
imitant le confort offert dans les systèmes de bases de données relationnelles. Cela nous a
amené à fixer l’objectif de cette thèse qui consiste à proposer un framework de partitionnement
de données RDF basé sur des structures logiques implicites. L’élaboration de ce framework
(RDFPartSuite) sera abordée dans les prochains chapitres.

Partitionnement logique des triplets RDF

Nous nous appuyons sur les enseignements tirés du modèle relationnel dans lequel le partition-
nement des données est effectué à un niveau logique, indépendamment de l’approche de stockage.
Dans ce qui suit, nous introduisons une couche logique au processus de partitionnement des triple
stores distribués homogènes. Nous commençons à donner un aperçu de cette couche logique en
comparant notre stratégie à l’état actuel de l’art. Ensuite, nous définissons formellement les

169

Résumé

entités logiques et proposons des algorithmes pour regrouper les triplets RDF en fragments de
graphes. Ensuite, nous discutons de l’utilisation de ces fragments comme structures de stockage
physique et formalisons leur problème d’allocation. Enfin, nous présentons un exemple complet
des heuristiques de création et d’allocation définies dans ce chapitre.

La conception d’un système distribué implique la distribution de données et de programmes
sur les sites du réseau informatique dans lequel le système est déployé. Nous nous concentrons
sur le problème de la distribution des données en cherchant à trouver et à allouer les unités de
distribution optimales. Pour rendre ce processus plus compréhensible, la distribution de données
est subdivisée en [ÖV11] en deux sous-étapes. Le premier, nommé fragmentation, détermine les
unités de distribution puis l’étape d’allocation qui place les fragments sur les sites du réseau.

La phase de conception déclarant explicitement les entités de haut niveau comme dans les
bases de données relationnelles ne se produit pas dans les systèmes RDF. Au contraire, les
données sont organisées dans un modèle sans schéma en utilisant des triples comme unités de
distribution. Pourtant, les données relatives à la même entité de haut niveau peuvent être
facilement dispersées dans le lot de données. Il n’y a pas de consensus sur la façon dont les
données devraient être fragmentées et allouées. Actuellement, les stratégies de partitionnement
dépendent fortement du système principal utilisé pour stocker les données. Il y a eu des efforts
pour ajouter explicitement un schéma de hiérarchie de classes à RDF via des annotations (par
exemple, schéma-RDFS et ontologies). De plus, comme indiqué dans [PPEB15], i) les entités
d’un seul ensemble de données peuvent être décrites avec plusieurs ontologies, ii) toutes les
entités d’un ensemble de données ne sont pas annotées avec les mêmes métadonnées et, iii) tous
les modèles de requêtes SPARQL ne les considèrent pas. L’utilisation de ces annotations dans
l’identification des entités implicites n’est pas très efficace.

Notre stratégie identifie des entités en utilisant les ensembles de caractéristiques [NM11]. Un
ensemble de caractéristiques regroupe d’abord les triplets par sujet et collecte ensuite les données
en fonction de leurs prédicats. Cette stratégie ne repose pas sur des annotations pour identifier les
entités et elle permet de considérer certaines corrélations entre les triplets. Nous avons réutilisé
cette notion pour détecter les entités décrites ci-dessous. Nous considérons nécessaire de fournir
des outils pour les concepteurs de systèmes RDF imitant le confort offert dans les systèmes de
bases de données relationnelles. Cela nous a amenés à fixer l’objectif de cette thèse qui consiste
à proposer un framework de partitionnement de données RDF basé sur des structures logiques
implicites. L’élaboration de ce cadre sera abordée dans les prochains chapitres.

Fragments de graphes

Dans cette section, nous proposons de regrouper les données inspirés du partitionnement re-
lationnel. Dans les bases de données relationnelles, une entité (une table) est partitionnée au
niveau de l’instance (horizontale) ou de l’attribut (verticale). Considérant qu’en RDF il n’y a
pas d’étape de conception comme dans les bases de données relationnelles, notre proposition
cherche à détecter les entités implicites dans un jeu de données RDF.

L’ensemble de caractéristiques proposé dans [NM11] permet de regrouper les instances d’une
même entité de haut niveau pour former une partition. Nous définissons deux types d’entités:
par instances et par attributs décrites ci-dessous.

Regroupement par instances

Pour rassembler les triples d’une même entité de haut niveau, nous regroupons en premier
lieu les triples par ses sujets. Ces structures sont nommées étoiles de données en avant. Nous
définissons d’abord les fonctions fs(t)→ s, fp(t)→ p and fo(t)→ o renvoyant le sujet, le prédicat
et l’objet d’un triplet RDF t = ⟨s, p, o⟩ respectivement. Ces deux fonctions sont appliquées dans
certaines des définitions du présent chapitre. Une étoiles de données en avant rassemble toutes
les propriétés associées à un nœud décrivant une seule occurrence d’une certaine entité. Les

170

Résumé

entités peuvent être identifiées de manière unique par un sous ensemble de leurs bords émetteurs
[NM11].

Un fragment de graphe avant rassemble des étoiles de données en avant selon leur ensemble
caractéristique. Comme il a été mentionné précédemment, nous pouvons caractériser une entité
par ses bords émetteurs. Un fragment de graphe avant est une structure logique utilisée pour
rassembler les données liées à la même entité de haut niveau. Un fragment de graphe avant peut
être utilisé comme structure logique pour distribuer les données.

En général, deux étoiles de données avant appartiennent à la même entité si les étiquettes
de leurs bords émetteurs (c’est-à-dire les prédicats) sont les mêmes. Pourtant, parfois deux
instances appartiennent à la même entité mais leurs ensembles caractéristiques ne sont pas
exactement les mêmes. C’est le cas lorsque deux ensembles de caractéristiques ne diffèrent
que par des prédicats non discriminants. Pour éviter de créer un grand nombre de fragments
avec des critères de similarité très stricts, nous avons utilisé un score de similarité et un seuil.

Pour simplifier la notation, la fonction cs(
−→
Gf) retourne l’ensemble des caractéristiques (qui est

l’identifiant) du fragment.

Scores de similarité La fonction de similarité Sim(cs(si), cs(sj)) renvoie un score mesurant
la similitude des deux ensembles de caractéristiques. Dans son calcul, il peut considérer unique-
ment la structure de l’ensemble de caractéristiques et leurs relations ou des caractéristiques
sémantiques plus complexes. Parmi les fonctions de similarité structurelle, nous trouvons: Su-
persets, Tf-idf, ou enfin mesures sémantiques (même étiquette et basée sur les ancêtres).

Regroupement par attributs

L’organisation d’un graphe RDF en fragments de graphe avant identifie l’ensemble des instances
implicites à l’aide d’ensembles de caractéristiques. Les fragments créés avec cette stratégie
ressemblent aux groupes de tuples générés lors du partitionnement horizontal d’une base de
données relationnelle. Comme dans le modèle relationnel, fragmenter au niveau instance est
utile pour un certain type de requêtes. Par exemple, si la charge de travail est composée
de requêtes en forme d’étoile, ce type d’organisation est idéal. Cependant, cette stratégie de
fragmentation unique n’optimise pas tous les spectres de requêtes. Le partitionner d’une entité
par ses attributs dans le modèle relationnel (partitionnement vertical), optimise d’autres types
de requêtes qui impliquent un petit nombre d’attributs. Plusieurs systèmes de traitement RDF
utilisent une stratégie similaire, où un fragment est créé pour chaque propriété (par exemple
SW-Store [AMMH09], S2RDF [SPSL16]). Dans les systèmes relationnels, la stratégie stocke les
triplets dans différentes tables par propriété. Cette stratégie est efficace lors de la résolution de
requêtes avec quelques attributs, mais souffre de frais généraux lorsque plusieurs prédicats sont
joints dans une requête.

Dans cette section, nous décrivons la création de fragments en regroupant les nœuds par
leurs propriétés. Au lieu de regrouper strictement chaque propriété dans un fragment différent,
nous utilisons la notion d’ensembles de caractéristiques pour regrouper les attributs affectant le
même nœud. Nous nommons ces structures fragments de graphe arrière dont la construction
est très similaire aux fragments de graphe avant décrits précédemment. Nous commençons par
définir un étoile de données arrière qui regroupe un nœud et ses bords entrants. Cette structure
permet d’identifier les propriétés qui affectent le même nœud pour les regrouper plus tard avec
les mêmes seuils de similarité que pour les fragments de graphe avant.

Des fragments logiques aux structures physiques

L’organisation des données RDF dans des fragments de graphe permet de détecter des entités
logiques implicites qui sont utilisées comme unités de distribution dans des triple stores dis-
tribués. De plus, l’utilisation de ces fragments logiques comme structures physiques pourrait con-

171

Résumé

sidérablement améliorer les performances des systèmes centralisés et distribués. Les travaux de
Pham et al. dans [PPEB15] a montré que le stockage explicite des données à l’aide d’un schéma
relationnel découvert automatiquement améliore les performances de Virtuoso [EM09],un triple
store non-natif. Organiser les données en fragments de graphe avant et arrière, quelle que soit
la structure utilisée pour stocker les données (par exemple, tables, arbres ou listes d’adjacence),
évite de scanner l’ensemble de données plusieurs fois avec une seule requête, comme cela est fait
par la plupart des systèmes.

Partitionner le graphe RDF en fragments physiques peut éviter d’analyser l’ensemble des
données avec chaque requête. Pour ce faire, les partitions pertinentes doivent être identifiées
en fonction des informations disponibles dans la requête. Les fragments en avant et en arrière
permettent d’identifier les partitions pertinentes en fonction des prédicats de la requête, qui sont
connus dans la plupart des requêtes SPARQL.

Combinaison de fragments avant et arrière L’intégration des partitions horizontales et
verticales dans le modèle relationnel a été explorée par de nombreux chercheurs dans le passé. Par
exemple, les conseillers d’une conception physique de base de données décrite dans [ANY04] ou
les miroirs fracturés [RDS02]. Pendant ce temps, de nombreux systèmes de traitement massifs
proposent des stratégies de réplication non seulement pour récupérer et prendre en charge la
tolérance aux pannes, mais pour améliorer le temps de réponse des requêtes. Nous considérons
une approche similaire aux miroirs fracturés [RDS02] dans laquelle un système stocke deux
copies des données. Une copie organise les données comme des fragments à l’avant et une autre
en arrière. Cette configuration est utile en particulier lorsque la charge de travail est inconnue
lors de la phase de partitionnement initiale.

Problème d’allocation

L’allocation de fragments est une étape obligatoire dans les systèmes distribués. Le problème
consiste à trouver la distribution optimale des fragments sur les sites d’un réseau informatique.
Le problème a d’abord été étudié dans le contexte de la distribution de fichiers, puis approfondi
dans les bases de données relationnelles où il s’est avéré NP-complet [Esw74, SW85, LY80].
Dans le modèle relationnel, l’optimisation d’une stratégie dépend de divers critères qui sont
évalués sur la base de modèles de coûts. Ces modèles estiment les coûts de stockage et de
maintenance ainsi que des mesures de performance telles que le débit et le temps de réponse.
Étant donné que la complexité du problème ne permet pas de calculer des solutions exactes dans
un temps raisonnable, un certain nombre d’heuristiques différentes utilisées en recherche opéra-
tionnelle(e.g. knapsack problem [CMP82]) ont été appliqués dans le SGBDR. Ces techniques
sont aussi utilisées dans les architectures distribuées modernes comme Hadoop, qui, bien qu’elles
soient basées sur d’autres paradigmes d’exécution, font face au même problème de distribution
des données.

De même, la plupart des triple stores optent pour des solutions de distribution très simples.
Ces solutions ne garantissent pas que les triples étroitement liés les uns aux autres seraient dans
le même site. Une requête qui fusionne des résultats intermédiaires qui ne se trouvent pas dans la
même machine est très inefficace principalement en raison des coûts de transfert élevés. Comme
dans les bases de données relationnelles distribuées, nous considérons les coûts de réseau comme
le goulot d’étranglement de traitement lors de l’exécution de la requête. Par conséquent, les
stratégies visant à améliorer le rendement du système devraient viser à maximiser la localisation
des données. Cela peut être réalisé grâce à des techniques d’indexation, de partitionnement et
de réplication.

L’utilisation de fragments de graphes comme structures de stockage physique réduit les coûts
de disque et permet le parallélisme dans les systèmes centralisés et distribués. Nous considérons
l’utilisation de fragments de graphes avant et arrière pour réduire le coût du réseau ces systèmes.

172

Résumé

Nous cherchons à allouer des triples au plus près de ses voisins pour élaguer les résultats inter-
médiaires générés pour une requête localement sur chaque site. Nous supposons que la charge
de travail n’est pas disponible et donc nous construisons notre modèle de distribution basé sur
la connectivité innée des données. Le problème est soumis à une série de contraintes qui sont le
déséquilibre, la réplication et l’espace disque disponible.

Heuristique de partitionnement de graphe

L’ensemble de fragments de graphe est mappé à un graphe pondéré non orienté, transformant le
problème d’allocation en un problème de partitionnement de graphe. Le problème de partition-
nement de graphes s’est avéré être un problème très complexe et coûteux en calcul. Cependant,
de nombreuses heuristiques efficaces ont été développées comme par example le package METIS
[KK98a]. Nous recherchons une partition qui minimise le nombre total de coupes de bord
soumises aux mêmes contraintes définies précédemment.

Conclusion

Dans le monde des bases de données relationnelles, le partitionnement des données est identifié
depuis longtemps comme une technique clé d’optimisation et de gestion. Le partitionnement
des données dans les SGBDR est indépendant de la technique de stockage des données. Dans
ce chapitre, nous prétendons reproduire cette stratégie en abordant le problème du partition-
nement des données RDF. Contrairement aux techniques de partitionnement traditionnelles, les
techniques RDF dépendent de la stratégie de partitionnement et sont difficiles à généraliser pour
différents systèmes.

Nous nous appuyons sur la philosophie adoptée par le modèle relationnel pour aborder le
partitionnement au sein de systèmes RDF distribués. Précisément, nous avons introduit une
couche logique au processus de distribution simplement physique des triplets à un ensemble de
sites. Nous formalisons et détaillons les algorithmes utilisés pour créer les entités logiques que
nous avons nommées fragments de graphes (Gf . Nos entités étendent la notion de partition-
nement par instances et par attributs dans le modèle relationnel et offrent un grand équilibre
entre simplicité conceptuelle et intuitive, en plus de son expressivité logique. Nous avons for-
malisé le problème d’allocation et présenté une heuristique de graphes pour minimiser les coûts
de communication.

Notre framework RDFPartSuite en Action

Dans le chapitre précédent, nous avons promu une couche logique pour le partitionnement des
données RDF. Nous avons défini un ensemble de structures qui permettent de partitionner les
données RDF indépendamment de la façon dont elles sont stockées. Ces structures préservent la
nature logique de graphe des données RDF et sont utilisées comme unités de fragmentation. Les
fragments logiques sont placés sur les sites d’un système distribué selon des algorithmes pilotés
par les données que nous avons également détaillés. Dans ce chapitre, nous introduisons un
framework nommé RDFPartSuite. Le framework fournit des fonctionnalités génériques basées
sur les structures logiques définies dans le chapitre précédent. Il peut être adapté en fonction
des spécifications du gestionnaire (exigences du créateur, triple store, infrastructure disponible,
etc.). RDFPartSuite fournit un moyen standard de construire et de déployer des schémas de
partitionnement RDF dans un environnement universel et réutilisable. Le framework est composé
de trois modules principaux:

(i) Fragmenteur: ce composant est chargé de partitionner les triples en utilisant leur représen-

tation logique sous forme de fragments de graphe (c’est-à-dire
−→
Gf or

←−
Gf).Les fragments

peuvent être construits en utilisant des règles structurelles ou sémantiques.

173

Résumé

(ii) Allocateur: ce composant crée un schéma de distribution pour les fragments créés par
le fragmenteur. Ce schéma est construit à l’aide des stratégies basées sur les données
détaillées précédemment.

(iii) Dispatcher: ce composant envoie les fragments aux sites d’un système distribué suivant le
schéma d’allocation produit par l’allocateur. Le dispatcheur charge aussi les données dans
le triple store cible.

En plus de ces modules, notre framework intègre un ensemble d’outils d’assistance pour les ad-
ministrateurs de triple stores. Ces outils comprennent un langage de partitionnement déclaratif,
pour fragmenter, allouer et envoyer un graphe de connaissances à un triple store cible. Et, pour
les utilisateurs non experts, il fournit un assistant de partitionnement pour les aider à créer un
schéma de partitionnement.

Nous commençons par décrire comment intégrer notre framework à un triple store centralisé
(RDF QDAG [KMG+20]). Ce système utilise des techniques de partitionnement de données et
d’exploration de graphes pour accélérer l’exécution des requêtes. Nous avons également montré
comment intégrer notre framework dans un triple store distribué (gStoreD [ZÖC+14]). Nous
avons réalisé un nombre important d’expériences qui ont montré la faisabilité de nos stratégies
de partitionnement, son efficacité et ses limites.

Incorporation au RDF QDAG

Les systèmes de traitement RDF modernes peuvent être distingués en deux groupes. Le premier
groupe utilise le modèle relationnel pour stocker les triplets RDF dans des tables. Les systèmes
de ce groupe sont plus facilement scalables car ils peuvent utiliser des stratégies d’optimisation
telles que les indexes et les partitions disponibles pour les bases de données relationnelles. Mal-
heureusement, les performances de ces systèmes se dégradent rapidement, en particulier lorsqu’il
s’agit de requêtes SPARQL complexes. Le modèle relationnel ne convient pas pour gérer les
données RDF représentées de manière inhérente sous forme de graphe. Le deuxième groupe
comprend des systèmes de traitement RDF maintenant la structure de graphe des données
RDF. Ces systèmes stockent les triplets dans des structures de données spécialement conçues
pour les stocker. Le problème majeur auquel sont confrontées ces approches est la scalabil-
ité [AHKK17, Özs16]. Ils ne parviennent pas à gérer efficacement l’utilisation de la mémoire
principale dans les infrastructures avec des ressources limitées.

RDF QDAG [KMG+20] il combine les vertus du partitionnement des données dans les sys-
tèmes relationnels avec un modèle d’exécution basé sur l’exploration du graphique RDF. Le
système prend en charge les requêtes SPARQL Basic Graph Pattern (BGP) ainsi que les opéra-
teurs de caractères génériques, d’agrégation et de tri. Les données dans RDF QDAG sont
physiquement partitionnés en fragments de graphe avant et arrière. Il est capable d’élaguer des
fragments de graphe non pertinents en utilisant les valeurs des prédicats dans la requête. Cette
fonctionnalité permet d’explorer uniquement les fragments dans lesquels une correspondance est
susceptible d’être trouvée. Comme mentionné précédemment, l’exécution de la requête dans ce
système est basée sur l’exploration de graphes. Pour éviter les débordements de mémoire, le
moteur d’exécution de RDF QDAG est basé sur le système d’évaluation de requête parallèle
Volcano [Gra94].

Ce système est utilisé pour évaluer les temps de chargement, la couverture des données et
pour comparer les performances par rapport à d’autres systèmes en utilisant différentes straté-
gies de partitionnement. Le module de chargement prépare, indexe et partitionne les données
RDF brutes reçues en entrée. Il est composé de deux composants principaux: le module de pré-
traitement et le module de stockage. Le premier transforme les données RDF (stockées dans des
fichiers N-Triples, N3 ou Turtle) codant toutes les châınes de caractères et organisant les données
en fragments de graphes avant et arrière. Le module de prétraitement est entièrement codé en
Java. Le composant de stockage, codé en C++, prend le fichier affiné codé du Pré-traitement

174

Résumé

en entrée et configure les données dans les index. Le résultat de cette étape est un ensemble de
fichiers binaires utilisés par les modules en charge du traitement de requêtes.

Coûts de chargement L’identification et la formulation de fragments de graphes avant et
arrière dans RDF QDAG est certainement un processus plus complexe que celui appliqué par
d’autres systèmes chargeant les données directement dans une seule table relationnelle par ex-
emple. L’ensemble de données est lu plusieurs fois pour identifier et encoder les données avec
le format souhaité. Dans cette section, nous comparons le temps de prétraitement des sys-
tèmes RDF avec différents paradigmes de stockage et d’exécution. Le module de chargement de
RDF QDAG était le seul capable de charger tous les jeux de données étant donné la mémoire
principale limitée (32 Go). Le système basé sur des graphiques gStore n’a pas pu charger des
ensembles de données dont la taille est supérieure à la mémoire principale disponible. Les sys-
tèmes relationnels ont réussi à charger tous les ensembles de données sauf LUBM1B dans lequel
nous avons eu une erreur de débordement de mémoire.

Performance des requêtes Les vertus de la stratégie de partitionnement logique ont été
montrées tout au long de ces sections. Sans aucun doute, une stratégie de partitionnement
logique accorde beaucoup plus de liberté aux concepteurs et aux gestionnaires. Ils ne dépendent
plus d’un système spécifique pour partitionner leurs données. Nous avons montré la faisabilité
d’intégrer notre cadre dans des magasins triples centralisés et distribués. De plus, les expéri-
ences utilisant RDF QDAG révèlent que l’utilisation de ces structures dans un triple store natif
centralisé garantit son scalabilité et de bonnes performances pour certaines requêtes.

Incorporation au gStoreD

Nous comparons les performances de l’organisation des données sous forme de fragments de
graphe vers l’avant ou vers l’arrière dans un triple store distribué. Nous déterminons pour quel
type de requêtes l’organisation des données en tant que fragments de graphe en avant est plus
approprié que les fragments de graphe en arrière et vice versa. À notre connaissance, il n’existe
pas de système RDF basé sur des graphes stockant les données exclusivement sous forme de
fragments de graphes en arrière. En effet, RDF QDAG utilise les deux structures (c’est-à-dire
−→
Gf et

←−
Gf) et gStore stocke les données dans des listes d’adjacence regroupant les données par

sujets. Pour les expériences de cette section, nous avons adapté la version distribuée de gStore
[PZÖ+16] pour prendre en charge le stockage des fragments de graphe avant d’abord, puis des
fragments de graphe arrière. Les résultats de cette section font partie de l’étude expérimentale
de notre étude: RDFPartSuite: Bridging Physical and Logical RDF Partitioning [GMB19].

Conclusion

Dans ce chapitre, nous avons présenté notre cadre d’action. Nous avons utilisé les modules de
fragmentation et d’allocation pour charger les données dans un triple store centralisé et distribué.
Nous avons effectué une série de tests sur chacun des systèmes pour montrer les forces et les
limites de notre framework. Nous avons commencé à donner un aperçu du triple store RDF -
QDAG. Ce système stocke les données sous forme de fragments de graphe avant et arrière. Nous
avons intégré nos résultats au module de chargement de ce système. Nous avons comparé les
coûts de chargement de RDF QDAG avec d’autres systèmes représentatifs de l’état de l’art en
termes de temps et de scalabilité. Nous avons montré que le processus de fragmentation avec nos
entités (Gf) est réalisable, même dans les architectures avec des ressources limitées. Même si
les temps de chargement étaient élevés par rapport à d’autres techniques de fragmentation plus
légères (par exemple, triple table), nous avons vu les avantages lors de l’exécution des requêtes
de ce coût supplémentaire.

175

Résumé

Ensuite, nous avons effectué une évaluation complète des stratégies de fragmentation. Nous
avons commencé à montrer que le nombre de fragments est raisonnable par rapport à la taille
des ensembles de données. Ensuite, nous utilisons notre framework pour fragmenter les données
en fragments de graphes avant et arrière dans un triple store distribué basé sur des graphes
(gStoreD). Ce système a été utilisé pour comparer les stratégies de fragmentation avant et ar-
rière. Ensuite, nous avons montré que la combinaison des deux types de fragments dans un seul
système contribue non seulement à la scalabilité, mais également à améliorer les performances
des requêtes. Nous avons réalisé une étude approfondie sur les coûts de communication en com-
parant notre stratégie de partitionnement avec les techniques les plus pertinentes. Nous avons
montré que nos stratégies offrent un compromis entre le coût d’allocation, mesuré en termes de
temps de chargement, de qualité de distribution et de performances. Enfin, nous introduisons
une extension conviviale à notre framework. Ces extensions sont un langage de partitionnement
déclaratif construit sur les structures logiques du chapitre précédent et un conseiller de parti-
tionnement.

Conclusions et Perspectives

Actuellement, notre monde est rempli de données. Une grande partie de ces données est
disponible gratuitement sur le Web. Le W3C a consacré de nombreux efforts au développe-
ment de normes facilitant l’exploitation, l’échange et la réutilisation de ces données. Parmi ces
standards, RDF excelle pour sa flexibilité, sa simplicité et l’expressivité de son langage de requête
(SPARQL). Les déclarations RDF sont des triples logiquement représentés dans un graphe. Ces
graphes interconnectent des données provenant de plusieurs ensembles de données constituant
un graphe de connaissances (KG). La complexité de ce dernier concerne à la fois son écosystème
qui implique plusieurs acteurs (par exemple, les créateurs, les consommateurs, les gestionnaires)
et les infrastructures, et sa taille. Pour satisfaire les exigences de ces acteurs, chaque KG doit
être efficacement stocké et interrogé pour faciliter les différents processus de son exploitation.

L’infrastructure de stockage, et en particulier les Triple Stores, sont une pierre angulaire
pour répondre à ces besoins. Cela a poussé des chercheurs de diverses communautés à proposer
une grande collection de ces systèmes. Certains sont construits sur des solutions existantes
(comme les SGBDR), d’autres sont construits en utilisant des implémentations de stockage
personnalisées. Ils ont tous en commun l’utilisation de stratégies d’optimisation physique qui
sont spécifiques à chaque système. Ces stratégies généralement ignorent le schéma logique du
KG. Ceci est loin des optimisations basées sur des structures logiques largement étudiées dans
les bases de données relationnelles. Dans ces stratégies, nous trouvons data partitioning dans la
première ligne.

Le partitionnement des données accorde aux gestionnaires des moyens d’améliorer les per-
formances, la gérabilité et la disponibilité des triple stores centralisés en divisant les données
en fragments. Pourtant, le partitionnement des données dans les triple stores centralisés n’a
pas eu la place qui lui revient dans la conception de ces systèmes. Pour des raisons de scala-
bilité, de nombreux triple stores parallèles et distribués ont vu le jour. Dans ces systèmes, le
partitionnement des données devient une évidence. Il existe plusieurs modes de partitionnement
(hachage, partitionnement graphique, hachage sémantique, etc) qui sont appliqués au niveau des
triplets. Récemment, il y a eu un boom de recherche pour étudier l’impact sur la performance
de ces stratégies de placement de données dans les triple stores[JSL20, ANS18].

Notre vision encourage la réutilisation et la reproduction des points forts du partitionnement
de données appliqué dans différentes générations de bases de données qui ont précédé les bases
de données RDF. Pour ce faire, il est nécessaire de rendre l’environnement de partitionnement
explicite, en identifiant ses forces, son évolution et la manière dont leurs principaux éléments
peuvent être réutilisés dans le contexte de KGs. Nous avons étudié le problème du partition-
nement des données pour établir les bases qui guideront le développement de notre framework de

176

Résumé

partitionnement. Dans cette thèse, nous promouvons la vision de la reproduction des résultats
du partitionnement de données dans le contexte des triple stores.

Cette vision est intégrée dans notre framework de partitionnement de données RDF pour
triple stores centralisés, distribués et parallèles. Le framework suit le paradigme d’être en de-
hors du SGBD afin qu’il puisse être réutilisé, amélioré et étendu. Notre framework fonctionne en
utilisant une représentation logique des fragments qui permettent de partitionner KGs indépen-
damment de la représentation de stockage de chaque système. Enfin, nous montrons comment
ce framework a été implémenté dans des triple stores centralisés et distribués. Nous avons mené
plusieurs expérimentations qui ont montré quand ces stratégies de partitionnement sont les plus
efficaces.

Perspectives

Extensions de notre framework

Composant de calibration Ce composant serait chargée de surveiller les différents schémas
générés par notre framework en utilisant des approches basées sur les données. Le calibrage est
réalisé par l’exploitation des charges de requêtes en cours dans le triple store. Nous utilisons la
charge de requêtes pour améliorer la qualité de l’allocation initiale. Cette tâche pourrait être
divisée en deux sous-modules: gestionnaire de charge de travail et réaffectateur intelligent.

Autres règles d’allocation

Actuellement, le composant allocateur de notre framework implémente des algorithmes pilotés
par les données pour placer des fragments de graphes sur les sites d’un système distribué. Cette
stratégie est basée sur la connectivité inhérente des triples. Cependant, nous pouvons imaginer
d’autres règles basées sur les données pour étendre notre cadre. Par exemple, pour les ensembles
de données contenant des informations géospatiales.

Prise en compte d’autres techniques d’optimisation

Pour le moment, notre framework est utilisé pour partitionner KGs. Nous sommes conscients que
le partitionnement des données n’est qu’une des stratégies d’optimisation à prendre en compte
lors de la conception de systèmes de stockage efficaces. Tenir compte de l’impact du partition-
nement des données et de son interaction avec les index, les répliques, les vues matérialisées, etc.
est la prochaine étape.

Stratégies d’optimisation dynamique

Aujourd’hui, il existe de nombreux triple stores distribués à mémoire principale très efficaces.
Dans ces systèmes, des optimisations dynamiques rapides de la distribution des données peuvent
être envisagées. Ces optimisations peuvent prendre en compte les flux de requêtes pour décider
des stratégies de re-partitionnement ou de réplication. Un composant peut être ajouté à notre
cadre pour traiter spécifiquement de cette réorganisation en ligne.

Reproductibilité de notre framework à d’autres types de données

Dans cette thèse, nous présentons une vision qui inclut le processus de conception des triple
stores. Notre vision peut être réutilisée/adaptée aux contextes d’autres types de données exis-
tants qui existent aujourd’hui (par exemple, les graphes de propriétés) ou des modèles de données
qui sont encore à venir.

177

Résumé

Un référentiel pour les résultats de partitionnement de données

En présentant notre thèse, nous avons fait de notre mieux pour promouvoir l’idée de reproduc-
tivité des points forts du partitionnement de données dans les bases de données traditionnelles
(déployées dans des infrastructures centralisées et parallèles) dans les triple stores. Si nous
approfondissons notre analyse, le développement d’un référentiel (un graphe de connaissances)
contenant toutes les conclusions du partitionnement des données dans les bases de données
traditionnelles et RDF sera un grand atout pour les étudiants, les universités, l’industrie, les
développeurs de systèmes Open Sources, pour n’en nommer que quelques-uns.

178

References

[AAB+17] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter, and
Domagoj Vrgoc. Foundations of modern query languages for graph databases. ACM
Comput. Surv., 50(5):68:1–68:40, 2017. (Cited in page 66)

[AAB+18] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L.
Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow,
Juan F. Sequeda, Oskar van Rest, and Hannes Voigt. G-CORE: A core for future
graph query languages. In Proceedings of the International Conference on Manage-
ment of Data, SIGMOD, Houston, TX, USA, June 10-15, pages 1421–1432, 2018.
(Cited in page 68)

[AAK+16] Razen Al-Harbi, Ibrahim Abdelaziz, Panos Kalnis, Nikos Mamoulis, Yasser
Ebrahim, and Majed Sahli. Accelerating SPARQL queries by exploiting hash-based
locality and adaptive partitioning. VLDB Journal, 25(3):355–380, 2016. (Cited in
page 90)

[ABA+09] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi, Alexander Rasin, and
Avi Silberschatz. Hadoopdb: An architectural hybrid of mapreduce and DBMS
technologies for analytical workloads. PVLDB, 2(1):922–933, 2009. (Cited in
page 58)

[ACZH10] Medha Atre, Vineet Chaoji, Mohammed J. Zaki, and James A. Hendler. Matrix
”bit” loaded: a scalable lightweight join query processor for RDF data. In 19th
International Conference on World Wide Web, WWW, Raleigh, North Carolina,
USA, April 26-30, pages 41–50, 2010. (Cited in page 84)

[ADH02] Anastassia Ailamaki, David J. DeWitt, and Mark D. Hill. Data page layouts for
relational databases on deep memory hierarchies. VLDB J., 11(3):198–215, 2002.
(Cited in page 82)

[ADHS01] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Skounakis. Weav-
ing relations for cache performance. In Proceedings of 27th International Conference
on Very Large Data Bases VLDB, September 11-14, Roma, Italy, pages 169–180,
2001. (Cited in page 58)

[AG08] Renzo Angles and Claudio Gutiérrez. Survey of graph database models. ACM
Comput. Surv., 40(1):1:1–1:39, 2008. (Cited in page 63)

[AHKK17] Ibrahim Abdelaziz, Razen Harbi, Zuhair Khayyat, and Panos Kalnis. A survey
and experimental comparison of distributed SPARQL engines for very large RDF
data. Proc. VLDB Endow., 10(13):2049–2060, 2017. (Cited in page 80), (Cited in

179

REFERENCES

page 86), (Cited in page 99), (Cited in page 122), (Cited in page 128), (Cited in
page 155), (Cited in page 157), (Cited in page 174)

[AHÖD14] Günes Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. Diversified stress
testing of RDF data management systems. In Proceedings of the 13th International
Semantic Web Conference - ISWC, Riva del Garda, Italy, October 19-23, pages
197–212, 2014. (Cited in page 128)

[AM09] Sean Bechhofer Alistair Miles. Skos simple knowledge organization system. https:
//www.w3.org/TR/skos-reference/, 2009. (Cited in page 1)

[AMMH09] Daniel J. Abadi, Adam Marcus, Samuel Madden, and Kate Hollenbach. Sw-store:
a vertically partitioned DBMS for semantic web data management. VLDB Journal,
18(2):385–406, 2009. (Cited in page 6), (Cited in page 83), (Cited in page 104),
(Cited in page 131), (Cited in page 146), (Cited in page 171)

[Amo10] Rasmus Resen Amossen. Vertical partitioning of relational OLTP databases using
integer programming. In Workshops Proceedings of the 26th International Confer-
ence on Data Engineering, ICDE, March 1-6, Long Beach, California, USA, pages
93–98, 2010. (Cited in page 36), (Cited in page 37), (Cited in page 51)

[ANS18] Adnan Akhter, Axel-Cyrille Ngonga Ngomo, and Muhammad Saleem. An empirical
evaluation of RDF graph partitioning techniques. In 21st International Conference
on Knowledge Engineering and Knowledge Management - EKAW, Nancy, France,
November 12-16, pages 3–18, 2018. (Cited in page 153), (Cited in page 176)

[ANY04] Sanjay Agrawal, Vivek R. Narasayya, and Beverly Yang. Integrating vertical and
horizontal partitioning into automated physical database design. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, Paris,
France, June 13-18, pages 359–370, 2004. (Cited in page 8), (Cited in page 35),
(Cited in page 47), (Cited in page 48), (Cited in page 51), (Cited in page 108),
(Cited in page 172)

[AÖD14] Gunes Aluc, M. Tamer Özsu, and Khuzaima Daudjee. Workload matters: Why
RDF databases need a new design. Proc. VLDB Endow., 7(10):837–840, 2014.
(Cited in page 97)

[ASAB16] Mohammed Al-Kateb, Paul Sinclair, Grace Au, and Carrie Ballinger. Hybrid
row-column partitioning in teradata. PVLDB, 9(13):1353–1364, 2016. (Cited in
page 29), (Cited in page 41), (Cited in page 51)

[ASH08] Medha Atre, Jagannathan Srinivasan, and James A. Hendler. Bitmat: A main-
memory bit matrix of RDF triples for conjunctive triple pattern queries. In 7th
International Semantic Web Conference (ISWC), Karlsruhe, Germany, October
28, 2008. (Cited in page 85)

[ASYNN20] Waqas Ali, Muhammad Saleem, Bin Yao, and Axel-Cyrille Ngonga Ngomo. Storage,
indexing, query processing, and benchmarking in centralized and distributed RDF
engines: A survey. 05 2020. (Cited in page 80), (Cited in page 86)

[BAC+90] Haran Boral, William Alexander, Larry Clay, George P. Copeland, Scott Danforth,
Michael J. Franklin, Brian E. Hart, Marc G. Smith, and Patrick Valduriez. Proto-
typing bubba, A highly parallel database system. IEEE Trans. Knowl. Data Eng.,
2(1):4–24, 1990. (Cited in page 39), (Cited in page 52)

180

https://www.w3.org/TR/skos-reference/
https://www.w3.org/TR/skos-reference/

[BAC+13] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry C. Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkateshwaran
Venkataramani. TAO: Facebook’s distributed data store for the social graph. In
USENIX Annual Technical Conference, San Jose, CA, USA, June 26-28, pages
49–60, 2013. (Cited in page 78)

[BBA09] Ladjel Bellatreche, Kamel Boukhalfa, and Zaia Alimazighi. Simulph.d.: A physical
design simulator tool. In 20th International Conference on Database and Expert
Systems Applications, DEXA, Linz, Austria, August 31 - September 4, pages 263–
270, 2009. (Cited in page 9)

[BBB19] Wissem Bouarroudj, Zizette Boufäıda, and Ladjel Bellatreche. Welink: A named
entity disambiguation approach for a QAS over knowledge bases. In 13th Interna-
tional Conference on Flexible Query Answering Systems, FQAS, Amantea, Italy,
July 2-5, pages 85–97, 2019. (Cited in page 4)

[BBC14] Soumia Benkrid, Ladjel Bellatreche, and Alfredo Cuzzocrea. A global paradigm for
designing parallel relational data warehouses in distributed environments. Trans.
Large Scale Data Knowl. Centered Syst., 15:64–101, 2014. (Cited in page 7)

[BBKO20] Nabila Berkani, Ladjel Bellatreche, Selma Khouri, and Carlos Ordonez. A model-
agnostic recommendation explanation system based on knowledge graph. In 31st
International Conference on Database and Expert Systems Applications - DEXA,
Bratislava, Slovakia, September 14-17, pages 149–163, 2020. (Cited in page 4)

[BBM07] Ladjel Bellatreche, Kamel Boukhalfa, and Mukesh K. Mohania. Pruning search
space of physical database design. In Proceedings of the 18th International Confer-
ence on Database and Expert Systems Applications DEXA, Regensburg, Germany,
September 3-7, pages 479–488, 2007. (Cited in page 46), (Cited in page 52)

[BBRW09] Ladjel Bellatreche, Kamel Boukhalfa, Pascal Richard, and Komla Yamavo Woa-
meno. Referential horizontal partitioning selection problem in data warehouses:
Hardness study and selection algorithms. IJDWM, 5(4):1–23, 2009. (Cited in
page 9), (Cited in page 10), (Cited in page 28), (Cited in page 46), (Cited in
page 52), (Cited in page 163), (Cited in page XV)

[BCLS87] Thang Nguyen Bui, Soma Chaudhuri, Frank Thomson Leighton, and Michael
Sipser. Graph bisection algorithms with good average case behavior. Combina-
torica, 7(2):171–191, 1987. (Cited in page 73)

[BCN17] Nikita Bobrov, George A. Chernishev, and Boris Novikov. Workload-independent
data-driven vertical partitioning. In Proceedings of New Trends in Databases and
Information Systems - ADBIS, Nicosia, Cyprus, September 24-27, pages 275–284,
2017. (Cited in page 36), (Cited in page 37), (Cited in page 51)

[BCR97] Lorenzo Brunetta, Michele Conforti, and Giovanni Rinaldi. A branch-and-cut al-
gorithm for the equicut problem. Math. Program., 77:243–263, 1997. (Cited in
page 72)

[BDK+13] Mihaela A. Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha Srinivas,
Patrick Dantressangle, Octavian Udrea, and Bishwaranjan Bhattacharjee. Build-
ing an efficient RDF store over a relational database. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, New York, NY, USA,
June 22-27, pages 121–132, 2013. (Cited in page 84), (Cited in page 87), (Cited in
page 168)

181

REFERENCES

[Bel18] Ladjel Bellatreche. Optimization and tuning in data warehouses. In Encyclopedia
of Database Systems, Second Edition, edited by Ling Liu and Tamer Özsu. 2018.
(Cited in page 9), (Cited in page XVII)

[BEP+08] Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
Freebase: a collaboratively created graph database for structuring human knowl-
edge. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, Vancouver, BC, Canada, June 10-12, pages 1247–1250, 2008. (Cited
in page 3)

[BFVY18] Angela Bonifati, George H. L. Fletcher, Hannes Voigt, and Nikolay Yakovets.
Querying Graphs. Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2018. (Cited in page 65), (Cited in page 69), (Cited in page 70), (Cited
in page 71), (Cited in page 125), (Cited in page 167)

[BHS03] Valerie Bönström, Annika Hinze, and Heinz Schweppe. Storing RDF as a graph. In
1st Latin American Web Congress (LA-WEB 2003), Empowering Our Web, 10-12
November 2003, Sanitago, Chile, pages 27–36, 2003. (Cited in page 85)

[BKL98] Ladjel Bellatreche, Kamalakar Karlapalem, and Qing Li. Derived horizontal class
partitioning in oodbs: Design strategies, analytical model and evaluation. In Pro-
ceedings of the 17th International Conference on Conceptual Modeling ER, Singa-
pore, November 16-19, pages 465–479, 1998. (Cited in page 10), (Cited in page 45),
(Cited in page 52)

[BKMS00] Ladjel Bellatreche, Kamalakar Karlapalem, Mukesh K. Mohania, and Michel
Schneider. What can partitioning do for your data warehouses and data marts?
In Proccedings of the International Database Engineering and Applications Sympo-
sium, IDEAS, September 18-20, Yokohoma, Japan,, pages 437–446, 2000. (Cited
in page 46), (Cited in page 52)

[BKS97] Ladjel Bellatreche, Kamalakar Karlapalem, and Ana Simonet. Horizontal class par-
titioning in object-oriented databases. In Proceedings of the 8th International Con-
ference on Database and Expert Systems Applications , DEXA, Toulouse, France,
September 1-5, pages 58–67, 1997. (Cited in page 10), (Cited in page 21), (Cited in
page 45), (Cited in page 162)

[BKS00] Ladjel Bellatreche, Kamalakar Karlapalem, and Ana Simonet. Algorithms and
support for horizontal class partitioning in object-oriented databases. Distributed
and Parallel Databases, 8(2):155–179, 2000. (Cited in page 45), (Cited in page 52)

[BKvH02] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic
architecture for storing and querying RDF and RDF schema. In Proceedings of the
First International Semantic Web Conference - ISWC, , Sardinia, Italy, June 9-12,
pages 54–68, 2002. (Cited in page 83)

[BLN09] Nieves R. Brisaboa, Susana Ladra, and Gonzalo Navarro. k2-trees for compact
web graph representation. In 16th International Symposium on String Processing
and Information Retrieval, SPIRE, Saariselkä, Finland, August 25-27, pages 18–30,
2009. (Cited in page 85)

[BLS09] Rajesh Bordawekar, Lipyeow Lim, and Oded Shmueli. Parallelization of XPath
queries using multi-core processors: challenges and experiences. In 12th Inter-
national Conference on Extending Database Technology EDBT, Saint Petersburg,
Russia, March 24-26, pages 180–191, 2009. (Cited in page 10)

182

[BMS+16] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz.
Recent advances in graph partitioning. In Algorithm Engineering - Selected Results
and Surveys, pages 117–158. 2016. (Cited in page 72)

[BS93] Stephen T. Barnard and Horst D. Simon. A fast multilevel implementation of
recursive spectral bisection for partitioning unstructured problems. In Proceedings of
the Sixth SIAM Conference on Parallel Processing for Scientific Computing, PPSC,
Norfolk, Virginia, USA, March 22-24, pages 711–718, 1993. (Cited in page 73)

[BSG18] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. The Vadalog system:
Datalog-based reasoning for knowledge graphs. Proc. VLDB Endow., 11(9):975–
987, 2018. (Cited in page 3)

[BV04] Paolo Boldi and Sebastiano Vigna. The webgraph framework I: compression tech-
niques. In Proceedings of the 13th international conference on World Wide Web,
WWW, New York, NY, USA, May 17-20, pages 595–602, 2004. (Cited in page 85)

[CBK+10] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hr-
uschka Jr., and Tom M. Mitchell. Toward an architecture for never-ending language
learning. In Proceedings of the Twenty-Fourth Conference on Artificial Intelligence,
AAAI, Atlanta, Georgia, USA, July 11-15, 2010. (Cited in page 4)

[CBN07] Eric Chu, Jennifer L. Beckmann, and Jeffrey F. Naughton. The case for a wide-
table approach to manage sparse relational data sets. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Beijing, China, June
12-14, pages 821–832, 2007. (Cited in page 84), (Cited in page 98), (Cited in
page 99)

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A distributed storage system for structured data. ACM Trans. Comput. Syst.,
26(2):4:1–4:26, 2008. (Cited in page 57)

[CEK+15] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. One trillion edges: Graph processing at Facebook-scale. Proc.
VLDB Endow., 8(12):1804–1815, 2015. (Cited in page 79)

[CFL18] Matteo Cossu, Michael Färber, and Georg Lausen. PRoST: Distributed execution
of SPARQL queries using mixed partitioning strategies. In EDBT, pages 469–472,
2018. (Cited in page 90)

[CG97] Gajanan S. Chinchwadkar and Angela Goh. Method transformations for vertical
partitioning in parallel and distributed object databases. In Proceedings of the Third
International Parallel Processing Conference Euro-Par, Passau, Germany, August
26-29, pages 1135–1143, 1997. (Cited in page 45), (Cited in page 51)

[CGZT14] Yu Cao, Xiaoyan Guo, Baoyao Zhou, and Stephen Todd. HOPE: iterative and
interactive database partitioning for OLTP workloads. In IEEE 30th International
Conference on Data Engineering ICDE, Chicago, IL, USA, March 31 - April 4,
pages 1274–1277, 2014. (Cited in page 43), (Cited in page 44), (Cited in page 52)

[Che76] Peter P. Chen. The entity-relationship model - toward a unified view of data. ACM
Trans. Database Syst., 1(1):9–36, 1976. (Cited in page 33)

[Che10] Songting Chen. Cheetah: A high performance, custom data warehouse on top of
mapreduce. PVLDB, 3(2):1459–1468, 2010. (Cited in page 58)

183

REFERENCES

[CHKZ03] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and dis-
tance queries via 2-hop labels. SIAM J. Comput., 32(5):1338–1355, 2003. (Cited in
page 85)

[Chu69] Wesley W. Chu. Optimal file allocation in a multiple computer system. IEEE
Trans. Computers, 18(10):885–889, 1969. (Cited in page 23), (Cited in page 24),
(Cited in page 26)

[CILP12] Mariano P. Consens, Kleoni Ioannidou, Jeff LeFevre, and Neoklis Polyzotis. Diver-
gent physical design tuning for replicated databases. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Scottsdale, AZ, USA,
May 20-24, pages 49–60, 2012. (Cited in page 42), (Cited in page 44), (Cited in
page 52)

[CK85] George P. Copeland and Setrag Khoshafian. A decomposition storage model. In
Proceedings of ACM SIGMOD International Conference on Management of Data,
Austin, Texas, USA, May 28-31, pages 268–279, 1985. (Cited in page 82)

[CM93] Mariano P. Consens and Alberto O. Mendelzon. Hy+: A hygraph-based query and
visualization system. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, Washington, DC, USA, May 26-28, pages 511–516, 1993.
(Cited in page 64)

[CMP82] Stefano Ceri, Giancarlo Martella, and Giuseppe Pelagatti. Optimal file allocation in
a computer network: a solution method based on the knapsack problem. Comput.
Networks, 6(5):345–357, 1982. (Cited in page 109), (Cited in page 172)

[CNP82] Stefano Ceri, Mauro Negri, and Giuseppe Pelagatti. Horizontal data partitioning
in database design. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, Orlando, Florida, USA, June 2-4, pages 128–136, 1982.
(Cited in page 8), (Cited in page 25), (Cited in page 26), (Cited in page 28), (Cited
in page 37), (Cited in page 52)

[CNW83] Stefano Ceri, Shamkant B. Navathe, and Gio Wiederhold. Distribution design of
logical database schemas. IEEE Trans. Software Eng., 9(4):487–504, 1983. (Cited
in page 28), (Cited in page 41), (Cited in page 52)

[Cod70] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, 1970. (Cited in page 33)

[CPW89] Stefano Ceri, Barbara Pernici, and Gio Wiederhold. Optimization problems and
solution methods in the design of data distribution. Inf. Syst., 14(3):261–272, 1989.
(Cited in page 36), (Cited in page 51)

[CWZ94] Jonathan E. Cook, Alexander L. Wolf, and Benjamin G. Zorn. Partition selection
policies in object database garbage collection. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Minneapolis, Minnesota, USA,
May 24-27, pages 371–382, 1994. (Cited in page 10), (Cited in page 45), (Cited in
page 52)

[CY87] Douglas W. Cornell and Philip S. Yu. A vertical partitioning algorithm for rela-
tional databases. In Proceedings of the Third International Conference on Data
Engineering, February 3-5, 1987, Los Angeles, California, USA, pages 30–35, 1987.
(Cited in page 25), (Cited in page 26), (Cited in page 36), (Cited in page 51)

184

[CZC15] Kaiji Chen, Yongluan Zhou, and Yu Cao. Online data partitioning in distributed
database systems. In Proceedings of the 18th International Conference on Extending
Database Technology, EDBT, Brussels, Belgium, March 23-27, pages 1–12, 2015.
(Cited in page 47), (Cited in page 50), (Cited in page 52)

[CZJM10] Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Madden. Schism:
a workload-driven approach to database replication and partitioning. PVLDB,
3(1):48–57, 2010. (Cited in page 42), (Cited in page 44), (Cited in page 52)

[DAB06] Jun Du, Reda Alhajj, and Ken Barker. Genetic algorithms based approach to
database vertical partition. J. Intell. Inf. Syst., 26(2):167–183, 2006. (Cited in
page 36), (Cited in page 37)

[Dat15] DataStax. TITAN: Distributed graph database. http://titan.thinkaurelius.

com, 2015. (Cited in page 78)

[DB14] R.V. Guha Dan Brickley. RDF schema 1.1. https://www.w3.org/TR/

rdf-schema/, 2014. (Cited in page 1), (Cited in page 81)

[DCL18] Ali Davoudian, Liu Chen, and Mengchi Liu. A survey on NoSQL stores. ACM
Comput. Surv., 51(2):40:1–40:43, 2018. (Cited in page 56), (Cited in page 66),
(Cited in page 75)

[DG92] David J. DeWitt and Jim Gray. Parallel database systems: The future of high per-
formance database systems. Commun. ACM, 35(6):85–98, 1992. (Cited in page 31),
(Cited in page 38), (Cited in page 52)

[DG04] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on
large clusters. In 6th Symposium on Operating System Design and Implementation
(OSDI 2004), San Francisco, California, USA, December 6-8, pages 137–150, 2004.
(Cited in page 53), (Cited in page 165)

[DGG+86] David J. DeWitt, Robert H. Gerber, Goetz Graefe, Michael L. Heytens, Krishna B.
Kumar, and M. Muralikrishna. GAMMA - A high performance dataflow database
machine. In Proceedings of the Twelfth International Conference on Very Large
Data Bases VLDB, August 25-28, Kyoto, Japan., pages 228–237, 1986. (Cited in
page 24), (Cited in page 26), (Cited in page 27), (Cited in page 38)

[DGH+14] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy,
Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: a web-scale
approach to probabilistic knowledge fusion. In The 20th ACM International Con-
ference on Knowledge Discovery and Data Mining SIGKDD, New York, NY, USA
- August 24 - 27, pages 601–610, 2014. (Cited in page 4)

[DH72] William E Donath and Alan J Hoffman. Algorithms for partitioning of graphs
and computer logic based on eigenvectors of connection matrices. IBM Technical
Disclosure Bulletin, 15(3):938–944, 1972. (Cited in page 73)

[DLL+17] Liming Dong, Weidong Liu, Renchuan Li, Tiejun Zhang, and Weiguo Zhao. Replica-
aware partitioning design in parallel database systems. In Proceedings of Euro-
Par: Parallel Processing - 23rd International Conference on Parallel and Distributed
Computing, Santiago de Compostela, Spain, August 28 - September 1, pages 303–
316, 2017. (Cited in page 43), (Cited in page 44), (Cited in page 52)

[DPP+18] Gabriel Campero Durand, Marcus Pinnecke, Rufat Piriyev, Mahmoud Mohsen,
David Broneske, Gunter Saake, Maya S. Sekeran, Fabián Rodriguez, and Laxmi

185

http://titan.thinkaurelius.com
http://titan.thinkaurelius.com
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/

REFERENCES

Balami. Gridformation: Towards self-driven online data partitioning using rein-
forcement learning. In Proceedings of the First International Workshop on Ex-
ploiting Artificial Intelligence Techniques for Data Management, aiDM@SIGMOD,
Houston, TX, USA, June 10, pages 1:1–1:7, 2018. (Cited in page 50), (Cited in
page 51), (Cited in page 52)

[DPP+19] Gabriel Campero Durand, Rufat Piriyev, Marcus Pinnecke, David Broneske, Bala-
subramanian Gurumurthy, and Gunter Saake. Automated vertical partitioning with
deep reinforcement learning. In Proceedings of New Trends in Databases and In-
formation Systems, ADBIS, Bled, Slovenia, September 8-11, pages 126–134, 2019.
(Cited in page 36), (Cited in page 37), (Cited in page 51)

[DPSW00] Ralf Diekmann, Robert Preis, Frank Schlimbach, and Chris Walshaw. Shape-
optimized mesh partitioning and load balancing for parallel adaptive FEM. Parallel
Comput., 26(12):1555–1581, 2000. (Cited in page 74)

[DQ12] Jens Dittrich and Jorge-Arnulfo Quiané-Ruiz. Efficient big data processing in
hadoop mapreduce. PVLDB, 5(12):2014–2015, 2012. (Cited in page 58)

[DQJ+10] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay Setty,
and Jörg Schad. Hadoop++: Making a yellow elephant run like a cheetah (without
it even noticing). PVLDB, 3(1):518–529, 2010. (Cited in page 58)

[DS82] David Hung-Chang Du and John S. Sobolewski. Disk allocation for cartesian prod-
uct files on multiple-disk systems. ACM Trans. Database Syst., 7(1):82–101, 1982.
(Cited in page 39), (Cited in page 40), (Cited in page 52)

[DWNY12] Jin-Hang Du, Haofen Wang, Yuan Ni, and Yong Yu. HadoopRDF: A scalable se-
mantic data analytical engine. In 8th International Conference on Intelligent Com-
puting Theories and Applications (ICIC), pages 633–641, 2012. (Cited in page 83),
(Cited in page 89), (Cited in page 90), (Cited in page 146)

[DZC17] Dong Dai, Wei Zhang, and Yong Chen. IOGP: an incremental online graph par-
titioning algorithm for distributed graph databases. In Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed Comput-
ing, HPDC, Washington, DC, USA, June 26-30, pages 219–230, 2017. (Cited in
page 75), (Cited in page 76)

[ECS+08] George Eadon, Eugene Inseok Chong, Shrikanth Shankar, Ananth Raghavan, Ja-
gannathan Srinivasan, and Souripriya Das. Supporting table partitioning by ref-
erence in Oracle. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD, Vancouver, BC, Canada, June 10-12, pages
1111–1122, 2008. (Cited in page 41), (Cited in page 52)

[EM09] Orri Erling and Ivan Mikhailov. Virtuoso: RDF support in a native RDBMS. In
Semantic Web Information Management - A Model-Based Perspective, pages 501–
519. 2009. (Cited in page 5), (Cited in page 83), (Cited in page 86), (Cited in
page 107), (Cited in page 128), (Cited in page 134), (Cited in page 172)

[ES76] Mark J. Eisner and Dennis G. Severance. Mathematical techniques for efficient
record segmentation in large shared databases. J. ACM, 23(4):619–635, 1976. (Cited
in page 22), (Cited in page 23), (Cited in page 25), (Cited in page 26), (Cited in
page 31), (Cited in page 35), (Cited in page 37)

186

[Esw74] Kapali P. Eswaran. Placement of records in a file and file allocation in a computer.
In IFIP Congress, pages 304–307, 1974. (Cited in page 23), (Cited in page 24),
(Cited in page 26), (Cited in page 109), (Cited in page 172)

[ESW78] Robert S. Epstein, Michael Stonebraker, and Eugene Wong. Distributed query pro-
cessing in a relational data base system. In Proceedings of the 1978 ACM SIGMOD
International Conference on Management of Data, Austin, Texas, USA, May 31 -
June 2, 1978, pages 169–180, 1978. (Cited in page 25), (Cited in page 26)

[ETÖ+11] Mohamed Y. Eltabakh, Yuanyuan Tian, Fatma Özcan, Rainer Gemulla, Aljoscha
Krettek, and John McPherson. Cohadoop: Flexible data placement and its ex-
ploitation in hadoop. PVLDB, 4(9):575–585, 2011. (Cited in page 58)

[FB93] Christos Faloutsos and Pravin Bhagwat. Declustering using fractals. In Proceedings
of the 2nd International Conference on Parallel and Distributed Information Sys-
tems (PDIS), Issues, Architectures, and Algorithms, San Diego, CA, USA, January
20-23, pages 18–25, 1993. (Cited in page 39), (Cited in page 40), (Cited in page 52)

[FGG+18] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and An-
drés Taylor. Cypher: An evolving query language for property graphs. In Proceed-
ings of the International Conference on Management of Data, SIGMOD, Houston,
TX, USA, June 10-15, pages 1433–1445, 2018. (Cited in page 67)

[FKL03] Chi-Wai Fung, Kamalakar Karlapalem, and Qing Li. Cost-driven vertical class
partitioning for methods in object oriented databases. VLDB J., 12(3):187–210,
2003. (Cited in page 10), (Cited in page 45), (Cited in page 51)

[FLC86] M. T. Fang, Richard C. T. Lee, and Chin-Chen Chang. The idea of de-clustering
and its applications. In Proceedings of the Twelfth International Conference on
Very Large Data Bases VLDB, August 25-28, Kyoto, Japan., pages 181–188, 1986.
(Cited in page 24), (Cited in page 26), (Cited in page 27)

[FLT+20] Wenfei Fan, Muyang Liu, Chao Tian, Ruiqi Xu, and Jingren Zhou. Incrementaliza-
tion of graph partitioning algorithms. Proc. VLDB Endow., 13(8):1261–1274, 2020.
(Cited in page 75), (Cited in page 77)

[FM91] Christos Faloutsos and Dimitris N. Metaxas. Disk allocation methods using error
correcting codes. IEEE Trans. Computers, 40(8):907–914, 1991. (Cited in page 39),
(Cited in page 40), (Cited in page 52)

[FM17] Hugo Firth and Paolo Missier. TAPER: query-aware, partition-enhancement for
large, heterogenous graphs. Distributed and Parallel Databases, 35(2):85–115, 2017.
(Cited in page 75), (Cited in page 76)

[FMS15] Ilir Fetai, Damian Murezzan, and Heiko Schuldt. Workload-driven adaptive data
partitioning and distribution - the cumulus approach. In IEEE International Con-
ference on Big Data, Big Data, Santa Clara, CA, USA, October 29 - November 1,
pages 1688–1697, 2015. (Cited in page 50), (Cited in page 52)

[For83] Surveyors’ Forum. comments on ”comparative models of the file assignment prob-
lem”. ACM Comput. Surv., 15(1):81–82, 1983. (Cited in page 26)

[Fou19] The Apache Software Foundation. Apache Giraph. https://giraph.apache.org/,
2019. (Cited in page 75), (Cited in page 78), (Cited in page 79)

187

https://giraph.apache.org/

REFERENCES

[GBF11] Philippe Galinier, Zied Boujbel, and Michael Coutinho Fernandes. An efficient
memetic algorithm for the graph partitioning problem. Annals OR, 191(1):1–22,
2011. (Cited in page 74)

[GD90] Shahram Ghandeharizadeh and David J. DeWitt. Hybrid-range partitioning strat-
egy: A new declustering strategy for multiprocessor database machines. In Proceed-
ings of the 16th International Conference on Very Large Data Bases, August 13-16,
, Brisbane, Queensland, Australia, pages 481–492, 1990. (Cited in page 39)

[GD94] Shahram Ghandeharizadeh and David J. DeWitt. MAGIC: A multiattribute declus-
tering mechanism for multiprocessor database machines. IEEE Trans. Parallel Dis-
trib. Syst., 5(5):509–524, 1994. (Cited in page 39), (Cited in page 52)

[GDQ92] Shahram Ghandeharizadeh, David J. DeWitt, and Waheed Qureshi. A performance
analysis of alternative multi-attribute declustering strategies. In Proceedings of the
1992 ACM SIGMOD International Conference on Management of Data, San Diego,
California, USA, June 2-5, pages 29–38, 1992. (Cited in page 22), (Cited in page 40)

[GGGK03] Shahram Ghandeharizadeh, Shan Gao, Chris Gahagan, and Russ Krauss. High
performance parallel database management systems. In Handbook on Data Man-
agement in Information Systems. Springer, Berlin, Heidelberg, 2003. (Cited in
page 39)

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system.
In Proceedings of the 19th ACM Symposium on Operating Systems Principles SOSP,
Bolton Landing, NY, USA, October 19-22, pages 29–43, 2003. (Cited in page 53),
(Cited in page 165)

[GHK92] Sumit Ganguly, Waqar Hasan, and Ravi Krishnamurthy. Query optimization for
parallel execution. In Proceedings of the 1992 ACM SIGMOD International Confer-
ence on Management of Data, San Diego, California, USA, June 2-5, pages 9–18,
1992. (Cited in page 32)

[GHS14] Luis Galárraga, Katja Hose, and Ralf Schenkel. Partout: a distributed engine for
efficient RDF processing. InWWW, pages 267–268, 2014. (Cited in page 90), (Cited
in page 156)

[GJGL16] Damien Graux, Louis Jachiet, Pierre Genevès, and Nabil Layäıda. SPARQLGX:
efficient distributed evaluation of SPARQL with Apache Spark. In International
Conference on Semantic Web (ISWC), pages 80–87, 2016. (Cited in page 90)

[GJS76] M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified np-
complete graph problems. Theor. Comput. Sci., 1(3):237–267, 1976. (Cited in
page 72)

[GKM+15] François Goasdoué, Zoi Kaoudi, Ioana Manolescu, Jorge-Arnulfo Quiané-Ruiz, and
Stamatis Zampetakis. CliqueSquare: Flat plans for massively parallel RDF queries.
In ICDE, pages 771–782, 2015. (Cited in page 7), (Cited in page 90), (Cited in
page 128), (Cited in page 140)

[GL81] Alan George and Joseph W Liu. Computer Solution of Large Sparse Positive Def-
inite Systems. Prentice Hall Professional Technical Reference, 1981. (Cited in
page 73)

[GLL+20] Jin-Tao Gao, Wenjie Liu, Zhanhuai Li, Jian Zhang, and Li Shen. A general frag-
ments allocation method for join query in distributed database. Inf. Sci., 512:1249–
1263, 2020. (Cited in page 43), (Cited in page 44), (Cited in page 52)

188

[GMB19] Jorge Galicia, Amin Mesmoudi, and Ladjel Bellatreche. RDFPartSuite: Bridging
physical and logical RDF partitioning. In Proceedings of the 21st International Con-
ference on Big Data Analytics and Knowledge Discovery - DaWaK, Linz, Austria,
pages 136–150, 2019. (Cited in page 133), (Cited in page 136), (Cited in page 175)

[GMBO19] Jorge Galicia, Amin Mesmoudi, Ladjel Bellatreche, and Carlos Ordonez. Reverse
partitioning for SPARQL queries: Principles and performance analysis. In Pro-
ceedings of the 30th International Conference in Database and Expert Systems Ap-
plications - DEXA, Linz, Austria, August 26-29, pages 174–183, 2019. (Cited in
page 131)

[GMR98] Matteo Golfarelli, Dario Maio, and Stefano Rizzi. The dimensional fact model: A
conceptual model for data warehouses. Int. J. Cooperative Inf. Syst., 7(2-3):215–
247, 1998. (Cited in page 34)

[GO18] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018. (Cited in
page 137), (Cited in page 138)

[GPdBG94] Marc Gyssens, Jan Paredaens, Jan Van den Bussche, and Dirk Van Gucht. A
graph-oriented object database model. IEEE Trans. Knowl. Data Eng., 6(4):572–
586, 1994. (Cited in page 64)

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL
knowledge base systems. J. Web Semant., 3(2-3):158–182, 2005. (Cited in page 128)

[GPST94] Alejandro Gutiérrez, Philippe Pucheral, Hermann Steffen, and Jean-Marc Thévenin.
Database graph views: A practical model to manage persistent graphs. In Proceed-
ings of 20th International Conference on Very Large Data Bases VLDB, September
12-15, Santiago de Chile, Chile, pages 391–402, 1994. (Cited in page 64)

[Gra94] Goetz Graefe. Volcano - an extensible and parallel query evaluation system. IEEE
Trans. Knowl. Data Eng., 6(1):120–135, 1994. (Cited in page 38), (Cited in
page 122), (Cited in page 127), (Cited in page 174)

[Gro12] W3C OWL Working Group. OWL 2 web ontology language. https://www.w3.

org/TR/2012/REC-owl2-overview-20121211/, 2012. (Cited in page 2), (Cited in
page 81)

[GSMT14] Sairam Gurajada, Stephan Seufert, Iris Miliaraki, and Martin Theobald. TriAD: a
distributed shared-nothing RDF engine based on asynchronous message passing. In
International Conference on Management of Data, SIGMOD, Snowbird, UT, USA,
June 22-27, pages 289–300, 2014. (Cited in page 86), (Cited in page 90)

[Güt94] Ralf Hartmut Güting. Graphdb: Modeling and querying graphs in databases. In
Proceedings of 20th International Conference on Very Large Data Bases VLDB,
September 12-15, Santiago de Chile, Chile, pages 297–308, 1994. (Cited in page 64),
(Cited in page 77)

[GV90] Georges Gardarin and Patrick Valduriez. ESQL: an extended SQL with object and
deductive capabilities. In Proceedings of the International Conference on Database
and Expert Systems Applications, Vienna, Austria, August 29-31, pages 299–306,
1990. (Cited in page 34)

[GXD+14] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. Graphx: Graph processing in a distributed dataflow

189

https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/

REFERENCES

framework. In 11th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI, Broomfield, CO, USA, October 6-8, pages 599–613, 2014. (Cited
in page 75)

[GZQ+20] Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong,
and Qing He. A survey on knowledge graph-based recommender systems. CoRR,
abs/2003.00911, 2020. (Cited in page 3)

[HA16] Jiewen Huang and Daniel Abadi. LEOPARD: lightweight edge-oriented partition-
ing and replication for dynamic graphs. Proc. VLDB Endow., 9(7):540–551, 2016.
(Cited in page 75), (Cited in page 76)

[Had] Welcome to Apache Hadoop! https://hadoop.apache.org/. (Cited in page 53)

[HAR11] Jiewen Huang, Daniel J. Abadi, and Kun Ren. Scalable SPARQL querying of
large RDF graphs. PVLDB, 4(11):1123–1134, 2011. (Cited in page 88), (Cited in
page 89), (Cited in page 90)

[HBR19] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. Towards learning a par-
titioning advisor with deep reinforcement learning. In Proceedings of the Second
International Workshop on Exploiting Artificial Intelligence Techniques for Data
Management, aiDM@SIGMOD, Amsterdam, The Netherlands, July 5, pages 6:1–
6:4, 2019. (Cited in page 47), (Cited in page 49), (Cited in page 51)

[HDA+14] Minyang Han, Khuzaima Daudjee, Khaled Ammar, M. Tamer Özsu, Xingfang
Wang, and Tianqi Jin. An experimental comparison of pregel-like graph processing
systems. Proc. VLDB Endow., 7(12):1047–1058, 2014. (Cited in page 79)

[He16] Qi He. Building the linkedin knowledge graph. https://engineering.linkedin.
com/blog/2016/10/building-the-linkedin-knowledge-graph, 2016. (Cited in
page 3)

[HK00] Bruce Hendrickson and Tamara G. Kolda. Graph partitioning models for parallel
computing. Parallel Comput., 26(12):1519–1534, 2000. (Cited in page 72)

[HL90] Kien A. Hua and Chiang Lee. An adaptive data placement scheme for parallel
database computer systems. In Proceedings of the 16th International Conference
on Very Large Data Bases, August 13-16, Brisbane, Queensland, Australia, pages
493–506, 1990. (Cited in page 39), (Cited in page 40), (Cited in page 52)

[HN79] Michael Hammer and Bahram Niamir. A heuristic approach to attribute partition-
ing. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, Boston, Massachusetts, USA, May 30 - June 1., pages 93–101, 1979. (Cited
in page 35), (Cited in page 37), (Cited in page 51)

[Hof76] Jeffrey A. Hoffer. An integer programming formulation of computer data base design
problems. Inf. Sci., 11(1):29–48, 1976. (Cited in page 23), (Cited in page 25), (Cited
in page 26), (Cited in page 35), (Cited in page 37), (Cited in page 51)

[HP03] Richard A. Hankins and Jignesh M. Patel. Data morphing: An adaptive, cache-
conscious storage technique. In Proceedings of 29th International Conference on
Very Large Data Bases, VLDB, Berlin, Germany, September 9-12, pages 417–428,
2003. (Cited in page 36), (Cited in page 37)

[HRN+15] Mohammad Hammoud, Dania Abed Rabbou, Reza Nouri, Seyed-Mehdi-Reza Be-
heshti, and Sherif Sakr. DREAM: distributed RDF engine with adaptive query plan-
ner and minimal communication. PVLDB, 8(6):654–665, 2015. (Cited in page 90)

190

https://hadoop.apache.org/
https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph
https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph

[HS75] Jeffrey A. Hoffer and Dennis G. Severance. The use of cluster analysis in physical
data base design. In Proceedings of the International Conference on Very Large
Data Bases, September 22-24, Framingham, Massachusetts, USA., pages 69–86,
1975. (Cited in page 21), (Cited in page 23), (Cited in page 24), (Cited in page 25),
(Cited in page 26), (Cited in page 35), (Cited in page 37), (Cited in page 162)

[HS13] Katja Hose and Ralf Schenkel. WARP: workload-aware replication and partitioning
for RDF. InWorkshops Proceedings of the 29th IEEE ICDE, pages 1–6, 2013. (Cited
in page 90), (Cited in page 156)

[HVL14] Kai Herrmann, Hannes Voigt, and Wolfgang Lehner. Cinderella - adaptive online
partitioning of irregularly structured data. In Workshops Proceedings of the 30th
International Conference on Data Engineering Workshops, ICDE 2014, Chicago,
IL, USA, March 31 - April 4, 2014, pages 284–291, 2014. (Cited in page 84),
(Cited in page 98)

[iIaC05] W3C Office in Italy at C.N.R. Representing knowledge in the semantic web. http:
//www.w3c.it/talks/2005/openCulture/slide1-0.html, 2005. (Cited in page 1)

[Ior10] Borislav Iordanov. Hypergraphdb: A generalized graph database. In Interna-
tional Workshops: Web-Age Information Management - WAIM IWGD, XMLDM,
WCMT, Jiuzhaigou Valley, China, July 15-17, pages 25–36, 2010. (Cited in
page 77), (Cited in page 78)

[JD11] Alekh Jindal and Jens Dittrich. Relax and let the database do the partitioning
online. In 5th International Workshop Enabling Real-Time Business Intelligence -
BIRTE, 37th International Conference on Very Large Databases, VLDB, Seattle,
WA, USA, September 2, pages 65–80, 2011. (Cited in page 49), (Cited in page 50),
(Cited in page 52)

[JG77] James B. Rothnie Jr. and Nathan Goodman. An overview of the preliminary design
of SDD-1: A system for distributed databases. In Berkeley Workshop, pages 39–57,
1977. (Cited in page 25), (Cited in page 26)

[JL74] James B. Rothnie Jr. and Tomas Lozano. Attribute based file organization in a
paged memory environment. Commun. ACM, 17(2):63–69, 1974. (Cited in page 26)

[JPPD13] Alekh Jindal, Endre Palatinus, Vladimir Pavlov, and Jens Dittrich. A comparison
of knives for bread slicing. Proc. VLDB Endow., 6(6):361–372, 2013. (Cited in
page 37)

[JQD11] Alekh Jindal, Jorge-Arnulfo Quiané-Ruiz, and Jens Dittrich. Trojan data layouts:
right shoes for a running elephant. In ACM Symposium on Cloud Computing in
conjunction with SOSP, SOCC, Cascais, Portugal, October 26-28, page 21, 2011.
(Cited in page 58)

[JSL20] Daniel Janke, Steffen Staab, and Martin Leinberger. Data placement strategies that
speed-up distributed graph query processing. In Proceedings of The International
Workshop on Semantic Big Data, SBD@SIGMOD , Portland, Oregon, USA, June
19, pages 2:1–2:6, 2020. (Cited in page 7), (Cited in page 153), (Cited in page 160),
(Cited in page 176)

[JST17] Daniel Janke, Steffen Staab, and Matthias Thimm. Koral: A glass box profiling
system for individual components of distributed RDF stores. In 2nd International
Workshop on Benchmarking Linked Data and NLIWoD3: Natural Language Inter-
faces for the Web, 2017. (Cited in page 89)

191

http://www.w3c.it/talks/2005/openCulture/slide1-0.html
http://www.w3c.it/talks/2005/openCulture/slide1-0.html

REFERENCES

[JSW72] William T. McCormick Jr., Paul J. Schweitzer, and Thomas W. White. Prob-
lem decomposition and data reorganization by a clustering technique. Operations
Research, 20(5):993–1009, 1972. (Cited in page 25)

[KG14] Aapo Kyrola and Carlos Guestrin. Graphchi-db: Simple design for a scalable graph
database system - on just a PC. CoRR, abs/1403.0701, 2014. (Cited in page 77),
(Cited in page 78)

[KK98a] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Scientific Computing, 20(1):359–392, 1998.
(Cited in page 50), (Cited in page 66), (Cited in page 73), (Cited in page 74), (Cited
in page 88), (Cited in page 111), (Cited in page 115), (Cited in page 138), (Cited
in page 173)

[KK98b] George Karypis and Vipin Kumar. A parallel algorithm for multilevel graph parti-
tioning and sparse matrix ordering. J. Parallel Distributed Comput., 48(1):71–95,
1998. (Cited in page 75)

[KKTC12] Vaibhav Khadilkar, Murat Kantarcioglu, Bhavani M. Thuraisingham, and Paolo
Castagna. Jena-HBase: A distributed, scalable and effcient RDF triple store. In
Proceedings of the ISWC 2012 Posters & Demonstrations Track, Boston, USA,
November 11-15, 2012, 2012. (Cited in page 90)

[KL70] Brian W. Kernighan and Shen Lin. An efficient heuristic procedure for partitioning
graphs. Bell Syst. Tech. J., 49(2):291–307, 1970. (Cited in page 73)

[KL95] Kamalakar Karlapalem and Qing Li. Partitioning schemes for object oriented
databases. In Proceedings RIDE-DOM ’95, Fifth International Workshop on Re-
search Issues in Data Engineering - Distributed Object Management, Taipei, Tai-
wan, March 6-7, pages 42–49, 1995. (Cited in page 10), (Cited in page 45), (Cited
in page 52)

[KL00] Kamalakar Karlapalem and Qing Li. A framework for class partitioning in object-
oriented databases. Distributed and Parallel Databases, 8(3):333–366, 2000. (Cited
in page 10), (Cited in page 45)

[KM15] Zoi Kaoudi and Ioana Manolescu. RDF in the clouds: a survey. VLDB J., 24(1):67–
91, 2015. (Cited in page 80), (Cited in page 81), (Cited in page 86), (Cited in
page 155)

[KMG+20] Abdallah Khelil, Amin Mesmoudi, Jorge Galicia, Ladjel Bellatreche, Mohand-Säıd
Hacid, and Emmanuel Coquery. Combining graph exploration and fragmentation
for scalable RDF query processing. Information Systems Frontiers (2020), 2020.
(Cited in page 14), (Cited in page 88), (Cited in page 121), (Cited in page 122),
(Cited in page 134), (Cited in page 138), (Cited in page 140), (Cited in page 146),
(Cited in page 155), (Cited in page 161), (Cited in page 174)

[KP88] Myoung-Ho Kim and Sakti Pramanik. Optimal file distribution for partial match
retrieval. In Proceedings of the 1988 ACM SIGMOD International Conference on
Management of Data, Chicago, Illinois, USA, June 1-3, pages 173–182, 1988. (Cited
in page 39), (Cited in page 40), (Cited in page 52)

[KS95] Ralph Kimball and Kevin Strehlo. Why decision support fails and how to fix it.
SIGMOD Rec., 24(3):92–97, 1995. (Cited in page 34)

192

[Kun87] H. S. Kunii. DBMS with graph data model for knowledge handling. In Proceedings of
the Fall Joint Computer Conference on Exploring technology: today and tomorrow,
pages 138–142, 1987. (Cited in page 63)

[KV84] Gabriel M. Kuper and Moshe Y. Vardi. A new approach to database logic. In
Proceedings of the Third ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems, April 2-4, Waterloo, Ontario, Canada, pages 86–96, 1984. (Cited
in page 63)

[LAC+11] Yuting Lin, Divyakant Agrawal, Chun Chen, Beng Chin Ooi, and Sai Wu. Llama:
leveraging columnar storage for scalable join processing in the mapreduce frame-
work. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, Athens, Greece, June 12-16, pages 961–972, 2011. (Cited in page 58)

[LAP+12] Miguel Liroz-Gistau, Reza Akbarinia, Esther Pacitti, Fábio Porto, and Patrick Val-
duriez. Dynamic workload-based partitioning for large-scale databases. In Proceed-
ings of the 23rd International ConferenceDatabase and Expert Systems Applications
- DEXA, Vienna, Austria, September 3-6, pages 183–190, 2012. (Cited in page 49)

[LAP+13] Miguel Liroz-Gistau, Reza Akbarinia, Esther Pacitti, Fábio Porto, and Patrick Val-
duriez. Dynamic workload-based partitioning algorithms for continuously growing
databases. Trans. Large-Scale Data- and Knowledge-Centered Systems, 12:105–128,
2013. (Cited in page 49), (Cited in page 50), (Cited in page 52)

[LG12] Liangzhe Li and Le Gruenwald. Autonomous database partitioning using data
mining on single computers and cluster computers. In 16th International Database
Engineering & Applications Symposium, IDEAS, Prague, Czech Republic, August
8-10, pages 32–41, 2012. (Cited in page 36), (Cited in page 37)

[LGK+12] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. Distributed graphlab: A framework for machine learning in
the cloud. Proc. VLDB Endow., 5(8):716–727, 2012. (Cited in page 78), (Cited in
page 79)

[LGS+79] Vincent Y. Lum, Sakti P. Ghosh, Mario Schkolnick, Robert W. Taylor, D. Jefferson,
Stanley Y. W. Su, James P. Fry, Toby J. Teorey, B. Yao, D. S. Rund, B. Kahn,
Shamkant B. Navathe, D. Smith, L. Aguilar, W. J. Barr, and P. E. Jones. 1978 new
orleans data base design workshop report. In Proceedings of the Fifth International
Conference on Very Large Data Bases, October 3-5, Rio de Janeiro, Brazil., pages
328–339, 1979. (Cited in page 21), (Cited in page 25), (Cited in page 26)

[LIJ+15] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören
Auer, and Christian Bizer. Dbpedia - A large-scale, multilingual knowledge base
extracted from wikipedia. Semantic Web, 6(2):167–195, 2015. (Cited in page 3)

[LL13] Kisung Lee and Ling Liu. Scaling queries over big RDF graphs with semantic hash
partitioning. PVLDB, 6(14):1894–1905, 2013. (Cited in page 89), (Cited in page 90)

[LLD79] W. C. Lin, Richard C. T. Lee, and David Hung-Chang Du. Common properties of
some multiattribute file systems. IEEE Trans. Software Eng., 5(2):160–174, 1979.
(Cited in page 26), (Cited in page 27)

[LMV10] Alexandre A. B. Lima, Marta Mattoso, and Patrick Valduriez. Adaptive virtual
partitioning for OLAP query processing in a database cluster. JIDM, 1(1):75–88,
2010. (Cited in page 46), (Cited in page 49), (Cited in page 50), (Cited in page 52)

193

REFERENCES

[LNP16] Andrew Lenharth, Donald Nguyen, and Keshav Pingali. Parallel graph analytics.
Commun. ACM, 59(5):78–87, 2016. (Cited in page 71), (Cited in page 167)

[LOZ93] Xuemin Lin, Maria E. Orlowska, and Yanchun Zhang. A graph based cluster ap-
proach for vertical partitioning in database design. Data Knowl. Eng., 11(2):151–
169, 1993. (Cited in page 31)

[LRV88] Christophe Lécluse, Philippe Richard, and Fernando Vélez. O2, an object-oriented
data model. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Chicago, Illinois, USA, June 1-3, pages 424–433, 1988. (Cited
in page 64)

[Lum70] Vincent Y. Lum. Multi-attribute retrieval with combined indexes. Commun. ACM,
13(11):660–665, 1970. (Cited in page 83)

[LY77] J. H. Liou and S. Bing Yao. Multi-dimensional clustering for data base organiza-
tions. Inf. Syst., 2(4):187–198, 1977. (Cited in page 26)

[LY80] K. Lam and Clement T. Yu. An approximation algorithm for a file-allocation prob-
lem in a hierarchical distributed system. In Proceedings of the 1980 ACM SIGMOD
International Conference on Management of Data, Santa Monica, California, USA,
May 14-16, pages 125–132, 1980. (Cited in page 109), (Cited in page 172)

[LZ93] Xuemin Lin and Yanchun Zhang. A new graphical method of vertical partitioning
in database design. In Advances in Database Research - Proceedings of the 4th
Australian Database Conference, ADC Griffith University, Brisbane, Queensland,
Australia, February 1-2, pages 131–144, 1993. (Cited in page 36), (Cited in page 37),
(Cited in page 51)

[MAB+10] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD, Indianapolis, Indiana, USA, June 6-10, pages
135–146, 2010. (Cited in page 78), (Cited in page 79)

[MASB18] Shikha Mehta, Parul Agarwal, Prakhar Shrivastava, and Jharna Barlawala. Dif-
ferential bond energy algorithm for optimal vertical fragmentation of distributed
databases. Journal of King Saud University - Computer and Information Sciences,
2018. (Cited in page 35)

[MD97] Manish Mehta and David J. DeWitt. Data placement in shared-nothing parallel
database systems. VLDB J., 6(1):53–72, 1997. (Cited in page 40)

[MDA+10] Cristina Maier, Debabrata Dash, Ioannis Alagiannis, Anastasia Ailamaki, and
Thomas Heinis. PARINDA: an interactive physical designer for PostgreSQL. In
Proceedings of the 13th International Conference on Extending Database Technol-
ogy EDBT, Lausanne, Switzerland, March 22-26, pages 701–704, 2010. (Cited in
page 9), (Cited in page 47), (Cited in page 49), (Cited in page 51)

[MLLS17] Claudio Martella, Dionysios Logothetis, Andreas Loukas, and Georgos Siganos.
Spinner: Scalable graph partitioning in the cloud. In 33rd IEEE International
Conference on Data Engineering, ICDE, San Diego, CA, USA, April 19-22, pages
1083–1094, 2017. (Cited in page 75)

194

[MMG+07] Norbert Mart́ınez-Bazan, Victor Muntés-Mulero, Sergio Gómez-Villamor, Jordi
Nin, Mario-A. Sánchez-Mart́ınez, and Josep-Llúıs Larriba-Pey. Dex: high-
performance exploration on large graphs for information retrieval. In Proceedings
of the Sixteenth ACM Conference on Information and Knowledge Management,
CIKM, Lisbon, Portugal, November 6-10, pages 573–582, 2007. (Cited in page 66),
(Cited in page 77), (Cited in page 78)

[MS77] Salvatore T. March and Dennis G. Severance. The determination of efficient record
segmentations and blocking factors for shared data files. ACM Trans. Database
Syst., 2(3):279–296, 1977. (Cited in page 25)

[MS78] Salvatore T. March and Dennis G. Severance. A mathematical modeling approach
to the automatic selection of database designs. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Austin, Texas, USA, May 31 -
June 2, pages 52–65, 1978. (Cited in page 23), (Cited in page 25), (Cited in page 26)

[MS94] Mukesh K. Mohania and Nandlal L. Sarda. Some issues in design of distributed
deductive databases. In Proceedings of 20th International Conference on Very Large
Data Bases VLDB, September 12-15, Santiago de Chile, Chile, pages 60–71, 1994.
(Cited in page 45), (Cited in page 52)

[MS98] Bongki Moon and Joel H. Saltz. Scalability analysis of declustering methods for
multidimensional range queries. IEEE Trans. Knowl. Data Eng., 10(2):310–327,
1998. (Cited in page 22), (Cited in page 27), (Cited in page 40)

[NB11] Rimma V. Nehme and Nicolas Bruno. Automated partitioning design in parallel
database systems. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Athens, Greece, June 12-16, pages 1137–1148, 2011. (Cited
in page 47), (Cited in page 48), (Cited in page 51), (Cited in page 157)

[NCWD84] Shamkant B. Navathe, Stefano Ceri, Gio Wiederhold, and Jinglie Dou. Vertical
partitioning algorithms for database design. ACM Trans. Database Syst., 9(4):680–
710, 1984. (Cited in page 8), (Cited in page 25), (Cited in page 26), (Cited in
page 36), (Cited in page 37), (Cited in page 51)

[NH94] Kathleen Neumann and Lawrence J. Henschen. Partitioning algorithms for a dis-
tributed deductive databases. In Proceedings of the ACM 22nd Annual Computer
Science Conference on Scaling up: Meeting the Challenge of Complexity in Real-
World Computing Applications, CSC ’94, Phoenix, Arizona, USA, March 8-10,
pages 288–295, 1994. (Cited in page 21), (Cited in page 45), (Cited in page 52),
(Cited in page 162)

[Nia78] Bahram Niamir. Attribute partitioning in a self-adaptive relational database sys-
tem. Massachusetts Institute of Technology, Technical Report 192, 1978. (Cited in
page 35), (Cited in page 37), (Cited in page 51)

[NKDC15] Daniel Nicoara, Shahin Kamali, Khuzaima Daudjee, and Lei Chen. Hermes: Dy-
namic partitioning for distributed social network graph databases. In Proceedings
of the 18th International Conference on Extending Database Technology, EDBT,
Brussels, Belgium, March 23-27, pages 25–36, 2015. (Cited in page 75), (Cited in
page 76)

[NKH18] Yoon-Min Nam, Min-Soo Kim, and Donghyoung Han. A graph-based database
partitioning method for parallel OLAP query processing. In 34th IEEE Interna-
tional Conference on Data Engineering, ICDE, Paris, France, April 16-19, pages
1025–1036, 2018. (Cited in page 46), (Cited in page 52)

195

REFERENCES

[NM11] Thomas Neumann and Guido Moerkotte. Characteristic sets: Accurate cardinality
estimation for RDF queries with multiple joins. In Proceedings of the 27th Interna-
tional Conference on Data Engineering, ICDE, April 11-16, Hannover, Germany,
pages 984–994, 2011. (Cited in page 11), (Cited in page 84), (Cited in page 85),
(Cited in page 87), (Cited in page 98), (Cited in page 99), (Cited in page 134),
(Cited in page 170), (Cited in page 171)

[NPM+15] Yavor Nenov, Robert Piro, Boris Motik, Ian Horrocks, Zhe Wu, and Jay Baner-
jee. RDFox: A highly-scalable RDF store. In 14th International Semantic Web
Conference- ISWC- , Bethlehem, PA, USA, October 11-15, pages 3–20, 2015. (Cited
in page 83)

[NR89] Shamkant B. Navathe and Minyoung Ra. Vertical partitioning for database design:
A graphical algorithm. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, Portland, Oregon, USA, May 31 - June 2, pages
440–450, 1989. (Cited in page 8), (Cited in page 36), (Cited in page 37), (Cited in
page 51)

[NU13] Joel Nishimura and Johan Ugander. Restreaming graph partitioning: simple versa-
tile algorithms for advanced balancing. In The 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD, Chicago, IL, USA,
August 11-14, pages 1106–1114, 2013. (Cited in page 73)

[NW08] Thomas Neumann and Gerhard Weikum. RDF-3X: a risc-style engine for RDF.
Proc. VLDB Endow., 1(1):647–659, 2008. (Cited in page 6), (Cited in page 83),
(Cited in page 86), (Cited in page 107), (Cited in page 125), (Cited in page 128),
(Cited in page 134), (Cited in page 160)

[NW10] Thomas Neumann and Gerhard Weikum. The RDF-3X engine for scalable man-
agement of RDF data. VLDB J., 19(1):91–113, 2010. (Cited in page 88)

[OB19] Carlos Ordonez and Ladjel Bellatreche. Guest editorial-dawak 2018 special issue-
trends in big data analytics. DKE, (2019), 2019. (Cited in page 99)

[OBS99] Michael A. Olson, Keith Bostic, and Margo I. Seltzer. Berkeley DB. In Proceedings
of the FREENIX Track: 1999 USENIX Annual Technical Conference, June 6-11,
Monterey, California, USA, pages 183–191, 1999. (Cited in page 77)

[OO85] Esen A. Ozkarahan and Aris M. Ouksel. Dynamic and order preserving data par-
titioning for database machines. In Proceedings of 11th International Conference
on Very Large Data Bases, August 21-23, Stockholm, Sweden, pages 358–368, 1985.
(Cited in page 39), (Cited in page 40), (Cited in page 52)

[OOB18] Abdelkader Ouared, Yassine Ouhammou, and Ladjel Bellatreche. Qosmos: Qos
metrics management tool suite. Comput. Lang. Syst. Struct., 54:236–251, 2018.
(Cited in page 9)

[Ord13] Carlos Ordonez. Can we analyze big data inside a dbms? In Proceedings of the
sixteenth international workshop on Data warehousing and OLAP, DOLAP, pages
85–92, 2013. (Cited in page 13), (Cited in page 161)

[ÖV96] M. Tamer Özsu and Patrick Valduriez. Distributed and parallel database systems.
ACM Comput. Surv., 28(1):125–128, 1996. (Cited in page 24)

[ÖV11] M Tamer Özsu and Patrick Valduriez. Principles of distributed database systems.
Springer Science & Business Media, 2011. (Cited in page 7), (Cited in page 8),

196

(Cited in page 25), (Cited in page 26), (Cited in page 28), (Cited in page 29),
(Cited in page 35), (Cited in page 37), (Cited in page 38), (Cited in page 41),
(Cited in page 87), (Cited in page 97), (Cited in page 103), (Cited in page 104),
(Cited in page 155), (Cited in page 160), (Cited in page 170)

[Özs16] M. Tamer Özsu. A survey of RDF data management systems. Frontiers Comput.
Sci., 10(3):418–432, 2016. (Cited in page 80), (Cited in page 81), (Cited in page 82),
(Cited in page 86), (Cited in page 122), (Cited in page 174)

[PA04] Stratos Papadomanolakis and Anastassia Ailamaki. AutoPart: Automating schema
design for large scientific databases using data partitioning. In Proceedings of the
16th International Conference on Scientific and Statistical Database Management
SSDBM, 21-23 June, Santorini Island, Greece, pages 383–392, 2004. (Cited in
page 47), (Cited in page 49)

[PB94] John R Pilkington and Scott B Baden. Partitioning with space filling curves, tech-
nical report. 1994. (Cited in page 73)

[PCR15] Roshan Punnoose, Adina Crainiceanu, and David Rapp. SPARQL in the cloud
using rya. Information Systems, 48:181–195, 2015. (Cited in page 90)

[PCZ12] Andrew Pavlo, Carlo Curino, and Stanley B. Zdonik. Skew-aware automatic
database partitioning in shared-nothing, parallel OLTP systems. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD
2012, Scottsdale, AZ, USA, May 20-24, pages 61–72, 2012. (Cited in page 32),
(Cited in page 42), (Cited in page 44), (Cited in page 52)

[PKT+13] Nikolaos Papailiou, Ioannis Konstantinou, Dimitrios Tsoumakos, Panagiotis Karras,
and Nectarios Koziris. H2RDF+: high-performance distributed joins over large-
scale RDF graphs. In IEEE International Conference on Big Data, pages 255–263,
2013. (Cited in page 89), (Cited in page 90)

[PPEB15] Minh-Duc Pham, Linnea Passing, Orri Erling, and Peter A. Boncz. Deriving an
emergent relational schema from RDF data. In Proceedings of the 24th International
Conference on World Wide Web, WWW, Florence, Italy, May 18-22, pages 864–
874, 2015. (Cited in page 6), (Cited in page 84), (Cited in page 87), (Cited in
page 98), (Cited in page 99), (Cited in page 100), (Cited in page 107), (Cited in
page 170), (Cited in page 172)

[PPR+09] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt,
Samuel Madden, and Michael Stonebraker. A comparison of approaches to large-
scale data analysis. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, Providence, Rhode Island, USA, June 29 - July 2, pages
165–178, 2009. (Cited in page 53), (Cited in page 165)

[PPT95] Jan Paredaens, Peter Peelman, and Letizia Tanca. G-log: A graph-based query
language. IEEE Trans. Knowl. Data Eng., 7(3):436–453, 1995. (Cited in page 64)

[Pro19] ISO Graph Query Language Proponents. Gql standard. https://www.

gqlstandards.org/, 2019. (Cited in page 68)

[PZÖ+16] Peng Peng, Lei Zou, M. Tamer Özsu, Lei Chen, and Dongyan Zhao. Processing
SPARQL queries over distributed RDF graphs. VLDB Journal, 25(2):243–268,
2016. (Cited in page 13), (Cited in page 14), (Cited in page 88), (Cited in page 90),
(Cited in page 133), (Cited in page 140), (Cited in page 146), (Cited in page 155),
(Cited in page 161), (Cited in page 175)

197

https://www.gqlstandards.org/
https://www.gqlstandards.org/

REFERENCES

[QKD13] Abdul Quamar, K. Ashwin Kumar, and Amol Deshpande. SWORD: scalable
workload-aware data placement for transactional workloads. In Proceedings of
EDBT/ICDT Conferences, Genoa, Italy, March 18-22, pages 430–441, 2013. (Cited
in page 44)

[RC14] Markus Lanthaler Richard Cyganiak, David Wood. RDF 1.1 concepts and ab-
stract syntax. https://www.w3.org/TR/rdf11-concepts/, 2014. (Cited in page 1),
(Cited in page 80), (Cited in page 159), (Cited in page 167)

[RDS02] Ravishankar Ramamurthy, David J. DeWitt, and Qi Su. A case for fractured mir-
rors. In Proceedings of 28th International Conference on Very Large Data Bases
VLDB, August 20-23, Hong Kong, China, pages 430–441, 2002. (Cited in page 48),
(Cited in page 51), (Cited in page 108), (Cited in page 172)

[Rei82] Raymond Reiter. Towards a logical reconstruction of relational database theory. In
On Conceptual Modelling, Perspectives from Artificial Intelligence, Databases, and
Programming Languages, Book resulting from the Intervale Workshop 1982, pages
191–233, 1982. (Cited in page 34)

[RG00] Raghu Ramakrishnan and Johannes Gehrke. Database management systems. Mc-
Graw Hill, 2000. (Cited in page 25), (Cited in page 28)

[RG06] Boris Rozenberg and Ehud Gudes. Association rules mining in vertically partitioned
databases. Data Knowl. Eng., 59(2):378–396, 2006. (Cited in page 36), (Cited in
page 37), (Cited in page 51)

[RHAF15] Oscar Romero, Victor Herrero, Alberto Abelló, and Jaume Ferrarons. Tuning small
analytics on big data: Data partitioning and secondary indexes in the hadoop
ecosystem. Inf. Syst., 54:336–356, 2015. (Cited in page 58)

[RJ17] Tilmann Rabl and Hans-Arno Jacobsen. Query centric partitioning and alloca-
tion for partially replicated database systems. In Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD, Chicago, IL, USA,
May 14-19, pages 315–330, 2017. (Cited in page 32), (Cited in page 43), (Cited in
page 44), (Cited in page 52)

[RM75] Nick Roussopoulos and John Mylopoulos. Using semantic networks for database
management. In Proceedings of the International Conference on Very Large Data
Bases, September 22-24, Framingham, Massachusetts, USA, pages 144–172, 1975.
(Cited in page 63)

[RPG+15] Fatemeh Rahimian, Amir H. Payberah, Sarunas Girdzijauskas, Márk Jelasity, and
Seif Haridi. A distributed algorithm for large-scale graph partitioning. ACM Trans.
Auton. Adapt. Syst., 10(2):12:1–12:24, 2015. (Cited in page 75)

[RS11] Kurt Rohloff and Richard E. Schantz. Clause-iteration with mapreduce to scalably
query datagraphs in the SHARD graph-store. In Proceedings of the Fourth Interna-
tional Workshop on Data-intensive Distributed Computing, DIDC, San Jose, CA,
USA, June 8, pages 35–44, 2011. (Cited in page 86), (Cited in page 90)

[RZML02] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy M. Lohman. Automating phys-
ical database design in a parallel database. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Madison, Wisconsin, June 3-6,
pages 558–569, 2002. (Cited in page 8), (Cited in page 9), (Cited in page 21), (Cited
in page 31), (Cited in page 47), (Cited in page 51)

198

https://www.w3.org/TR/rdf11-concepts/

[SABW13] Stephan Seufert, Avishek Anand, Srikanta J. Bedathur, and Gerhard Weikum.
FERRARI: flexible and efficient reachability range assignment for graph indexing.
In 29th IEEE International Conference on Data Engineering, ICDE , Brisbane,
Australia, April 8-12, pages 1009–1020, 2013. (Cited in page 85)

[San93] Laura A. Sanchis. Multiple-way network partitioning with different cost functions.
IEEE Trans. Computers, 42(12):1500–1504, 1993. (Cited in page 73)

[Sch07] Satu Elisa Schaeffer. Graph clustering. Comput. Sci. Rev., 1(1):27–64, 2007. (Cited
in page 74)

[SGK+08] Lefteris Sidirourgos, Romulo Goncalves, Martin L. Kersten, Niels Nes, and Stefan
Manegold. Column-store support for RDF data management: not all swans are
white. PVLDB, 1(2):1553–1563, 2008. (Cited in page 87), (Cited in page 168)

[SH13a] Andy Seaborne Steve Harris. SPARQL 1.1 overview. https://www.w3.org/TR/

sparql11-overview/, 2013. (Cited in page 2), (Cited in page 67), (Cited in
page 159)

[SH13b] Andy Seaborne Steve Harris. SPARQL 1.1 query language. https://www.w3.org/
TR/sparql11-query/, 2013. (Cited in page 81), (Cited in page 82)

[Shi81] David W. Shipman. The functional data model and the data language DAPLEX.
ACM Trans. Database Syst., 6(1):140–173, 1981. (Cited in page 63)

[Shn77] Ben Shneiderman. Recuced combined indexes for efficient multiple attribute re-
trieval. Inf. Syst., 2(4):149–154, 1977. (Cited in page 83)

[Sim72] Robert F Simmons. Semantic networks: their computation and use for understand-
ing English sentences. Department of Computer Sciences and Computer-Assisted
Instruction Laboratory, University of Texas, 1972. (Cited in page 63), (Cited in
page 166)

[SKK97] Kirk Schloegel, George Karypis, and Vipin Kumar. Multilevel diffusion schemes for
repartitioning of adaptive meshes. J. Parallel Distributed Comput., 47(2):109–124,
1997. (Cited in page 75)

[SKS+97] Abraham Silberschatz, Henry F Korth, Shashank Sudarshan, et al. Database system
concepts, volume 4. McGraw-Hill New York, 1997. (Cited in page 28), (Cited in
page 47)

[SKW07] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of
semantic knowledge. In Proceedings of the 16th International Conference on World
Wide Web, WWW, Banff, Alberta, Canada, May 8-12, pages 697–706, 2007. (Cited
in page 3)

[SMR00] Thomas Stöhr, Holger Märtens, and Erhard Rahm. Multi-dimensional database
allocation for parallel data warehouses. In Proceedings of 26th International Con-
ference on Very Large Data Bases, VLDB,Cairo, Egypt, September 10-14, pages
273–284, 2000. (Cited in page 10), (Cited in page 21), (Cited in page 45), (Cited
in page 52), (Cited in page 162)

[SPBL15] Alexander Schätzle, Martin Przyjaciel-Zablocki, Thorsten Berberich, and Georg
Lausen. S2X: graph-parallel querying of RDF with graphx. In Biomedical Data
Management and Graph Online Querying Workshop, pages 155–168, 2015. (Cited
in page 90)

199

https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

REFERENCES

[SPL11] Alexander Schätzle, Martin Przyjaciel-Zablocki, and Georg Lausen. PigSPARQL:
mapping SPARQL to Pig Latin. In International Workshop on Semantic Web
Information Management (SWIM), page 4, 2011. (Cited in page 90)

[SPNL14] Alexander Schätzle, Martin Przyjaciel-Zablocki, Antony Neu, and Georg Lausen.
Sempala: Interactive SPARQL query processing on hadoop. In International Con-
ference on Semantic Web (ISWC), pages 164–179, 2014. (Cited in page 90)

[SPSL16] Alexander Schätzle, Martin Przyjaciel-Zablocki, Simon Skilevic, and Georg Lausen.
S2RDF: RDF querying with SPARQL on Spark. Proc. VLDB Endow., 9(10):804–
815, 2016. (Cited in page 86), (Cited in page 89), (Cited in page 90), (Cited in
page 104), (Cited in page 171)

[Spy87] Nicolas Spyratos. The partition model: A deductive database model. ACM Trans.
Database Syst., 12(1):1–37, 1987. (Cited in page 21), (Cited in page 162)

[SRB+18] Kuldeep Singh, Arun Sethupat Radhakrishna, Andreas Both, Saeedeh Shekarpour,
Ioanna Lytra, Ricardo Usbeck, Akhilesh Vyas, Akmal Khikmatullaev, Dharmen
Punjani, Christoph Lange, Maria-Esther Vidal, Jens Lehmann, and Sören Auer.
Why reinvent the wheel: Let’s build question answering systems together. In Pro-
ceedings of the World Wide Web Conference, WWW, Lyon, France, April 23-27,
pages 1247–1256, 2018. (Cited in page 4)

[SS11] Peter Sanders and Christian Schulz. Engineering multilevel graph partitioning al-
gorithms. In Proceedings of the 19th Annual European Symposium, Saarbrücken Al-
gorithms - ESA , Germany, September 5-9, pages 469–480, 2011. (Cited in page 74)

[STE+16] Marco Serafini, Rebecca Taft, Aaron J. Elmore, Andrew Pavlo, Ashraf Aboulnaga,
and Michael Stonebraker. Clay: Fine-grained adaptive partitioning for general
database schemas. PVLDB, 10(4):445–456, 2016. (Cited in page 50), (Cited in
page 52)

[SW83] Domenico Saccà and Gio Wiederhold. Database partitioning in a cluster of proces-
sors. In Proceedings of the 9th International Conference on Very Large Data Bases,
October 31 - November 2, Florence, Italy, pages 242–247, 1983. (Cited in page 31),
(Cited in page 38), (Cited in page 52), (Cited in page 164)

[SW85] Domenico Saccà and Gio Wiederhold. Database partitioning in a cluster of proces-
sors. ACM Trans. Database Syst., 10(1):29–56, 1985. (Cited in page 26), (Cited in
page 31), (Cited in page 36), (Cited in page 109), (Cited in page 164), (Cited in
page 172)

[SWL13] Bin Shao, Haixun Wang, and Yatao Li. Trinity: a distributed graph engine on
a memory cloud. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, New York, NY, USA, June 22-27, pages 505–516, 2013.
(Cited in page 78)

[TBC+13] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and
John McPherson. From ”think like a vertex” to ”think like a graph”. Proc. VLDB
Endow., 7(3):193–204, 2013. (Cited in page 79)

[Tea15] Bing Team. Bing announces availability of the knowledge and action graph
api. https://blogs.bing.com/search/2015/08/20/bing-announces-availability-of-the-
knowledge-and-action-graph-api-for-developers/, 2015. (Cited in page 3)

200

[TF76] Robert W. Taylor and Randall L. Frank. CODASYL data-base management sys-
tems. ACM Comput. Surv., 8(1):67–103, 1976. (Cited in page 63)

[TGRV14] Charalampos E. Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan
Vojnovic. FENNEL: streaming graph partitioning for massive scale graphs. In
Seventh ACM International Conference on Web Search and Data Mining, WSDM,
New York, NY, USA, February 24-28, pages 333–342, 2014. (Cited in page 73),
(Cited in page 75)

[TNST14] Khai Q. Tran, Jeffrey F. Naughton, Bruhathi Sundarmurthy, and Dimitris
Tsirogiannis. JECB: a join-extension, code-based approach to OLTP data parti-
tioning. In International Conference on Management of Data, SIGMOD, Snowbird,
UT, USA, June 22-27, pages 39–50, 2014. (Cited in page 43), (Cited in page 44),
(Cited in page 52)

[TÖ15] Volkan Tüfekçi and Can Özturan. Partitioning graph databases by using access
patterns. In Adaptive Resource Management and Scheduling for Cloud Computing
- Second International Workshop, ARMS-CC, Held in Conjunction with ACM Sym-
posium on Principles of Distributed Computing, PODC , Donostia-San Sebastián,
Spain, July 20, pages 158–176, 2015. (Cited in page 75), (Cited in page 76)

[Tor14] Nicolas Torzec. The yahoo knowledge graph, presented at the 10th semantic
technology business conference. https://www.slideshare.net/NicolasTorzec/
the-yahoo-knowledge-graph, 2014. (Cited in page 3)

[VCLM13] Luis M. Vaquero, Félix Cuadrado, Dionysios Logothetis, and Claudio Martella.
xdgp: A dynamic graph processing system with adaptive partitioning. CoRR,
abs/1309.1049, 2013. (Cited in page 75), (Cited in page 76)

[VHM+14] Ruben Verborgh, Olaf Hartig, Ben De Meester, Gerald Haesendonck, Laurens De
Vocht, Miel Vander Sande, Richard Cyganiak, Pieter Colpaert, Erik Mannens, and
Rik Van de Walle. Querying datasets on the web with high availability. In 13th
International Semantic Web Conference - ISWC, Riva del Garda, Italy, October
19-23, pages 180–196, 2014. (Cited in page 5)

[Vra12] Denny Vrandecic. Wikidata: a new platform for collaborative data collection. In
Proceedings of the 21st World Wide Web Conference, WWW, Lyon, France, April
16-20, pages 1063–1064, 2012. (Cited in page 3)

[vRHK+16] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.
PGQL: a property graph query language. In Proceedings of the Fourth International
Workshop on Graph Data Management Experiences and Systems, Redwood Shores,
CA, USA, June 24 - 24, page 7, 2016. (Cited in page 68)

[W3C04] W3C. Architecture of the world wide web, volume one. https://www.w3.org/TR/
webarch/#identification, 2004. (Cited in page 1)

[W3C08] W3C. An introduction to multilingual web addresses. https://www.w3.org/

International/articles/idn-and-iri/, 2008. (Cited in page 1), (Cited in
page 80)

[WB87] W. Kevin Wilkinson and Haran Boral. KEV - A kernel for bubba. In Proceed-
ings of the 5th International Workshop in Database Machines and Knowledge Base
Machines, Tokyo, Japan, pages 31–44, 1987. (Cited in page 38)

201

https://www.slideshare.net/NicolasTorzec/the-yahoo-knowledge-graph
https://www.slideshare.net/NicolasTorzec/the-yahoo-knowledge-graph
https://www.w3.org/TR/webarch/##identification
https://www.w3.org/TR/webarch/##identification
https://www.w3.org/International/articles/idn-and-iri/
https://www.w3.org/International/articles/idn-and-iri/

REFERENCES

[WC16] Marcin Wylot and Philippe Cudré-Mauroux. DiploCloud: Efficient and scalable
management of RDF data in the cloud. IEEE Trans. Knowl. Data Eng., 28(3):659–
674, 2016. (Cited in page 90)

[Web12] Jim Webber. A programmatic introduction to neo4j. In Conference on Systems,
Programming, and Applications: Software for Humanity, SPLASH ’12, Tucson, AZ,
USA, October 21-25, pages 217–218, 2012. (Cited in page 57), (Cited in page 66),
(Cited in page 77), (Cited in page 78)

[WHCS18] Marcin Wylot, Manfred Hauswirth, Philippe Cudré-Mauroux, and Sherif Sakr.
RDF data storage and query processing schemes: A survey. ACM Comput. Surv.,
51(4):84:1–84:36, 2018. (Cited in page 80), (Cited in page 86)

[Wil06] Kevin Wilkinson. Jena property table implementation, 2006. (Cited in page 6),
(Cited in page 83)

[WRT20] Inria CNRS Wimmics Research Team, University Côte d’Azur. Covid-on-the-web
dataset. https://github.com/Wimmics/CovidOnTheWeb, 2020. (Cited in page 3)

[XGFS13] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica. GraphX:
a resilient distributed graph system on Spark. In First International Workshop
on Graph Data Management Experiences and Systems, GRADES, co-located with
SIGMOD/PODS, New York, NY, USA, June 24, page 2, 2013. (Cited in page 78)

[YYZK12] Shengqi Yang, Xifeng Yan, Bo Zong, and Arijit Khan. Towards effective partition
management for large graphs. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Scottsdale, AZ, USA, May 20-24, pages 517–
528, 2012. (Cited in page 75), (Cited in page 76), (Cited in page 90)

[ZBS15] Erfan Zamanian, Carsten Binnig, and Abdallah Salama. Locality-aware partitioning
in parallel database systems. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June
4, pages 17–30, 2015. (Cited in page 43), (Cited in page 44), (Cited in page 47),
(Cited in page 52)

[ZCTW13] Xiaofei Zhang, Lei Chen, Yongxin Tong, and Min Wang. EAGRE: towards scalable
I/O efficient SPARQL query evaluation on the cloud. In 29th IEEE ICDE, Brisbane,
Australia, April 8-12, pages 565–576, 2013. (Cited in page 84), (Cited in page 86),
(Cited in page 88), (Cited in page 90), (Cited in page 137)

[ZMG+20] Ishaq Zouaghi, Amin Mesmoudi, Jorge Galicia, Ladjel Bellatreche, and Taoufik
Aguili. Query optimization for large scale clustered RDF data. In Proceedings of the
22nd International Workshop on Design, Optimization, Languages and Analytical
Processing of Big Data co-located with EDBT/ICDT, Copenhagen, Denmark, March
30, pages 56–65, 2020. (Cited in page 116), (Cited in page 123), (Cited in page 127)

[ZÖC+14] Lei Zou, M. Tamer Özsu, Lei Chen, Xuchuan Shen, Ruizhe Huang, and Dongyan
Zhao. gStore: a graph-based SPARQL query engine. VLDB Journal, 23(4):565–
590, 2014. (Cited in page 6), (Cited in page 86), (Cited in page 121), (Cited in
page 128), (Cited in page 134), (Cited in page 174)

[ZRL+04] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy M. Lohman, Adam J. Storm, Chris-
tian Garcia-Arellano, and Scott Fadden. DB2 design advisor: Integrated automatic
physical database design. In Proceedings of the Thirtieth International Conference

202

https://github.com/Wimmics/CovidOnTheWeb

on Very Large Data Bases, Toronto, Canada, August 31 - September 3, pages 1087–
1097, 2004. (Cited in page 21), (Cited in page 47), (Cited in page 48), (Cited in
page 51)

[ZYW+13] Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and Zhongyuan Wang. A
distributed graph engine for web scale RDF data. Proc. VLDB Endow., 6(4):265–
276, 2013. (Cited in page 86), (Cited in page 90)

203

REFERENCES

204

Appendix A
Logic fragmentation example

A.1 Raw data & encoding

<:Airplane1> <:has_model> <:A340> .

<:Airplane1> <:has_length> "75.4" .

<:Airplane1> <:nb_motors> "4" .

<:Airplane1> <:type> <Airliner> .

<:Airplane1> <:manufacturer> <Airbus> .

<:Airplane2> <:has_model> <:B747> .

<:Airplane2> <:has_length> "70.1" .

<:Airplane2> <:nb_motors> "4" .

<:Airplane2> <:type> <Airliner> .

<:Airplane2> <:manufacturer> <Boeing> .

<:Airbus> <:office_in> "Toulouse" .

<:Airbus> <:has_seat> <:France> .

<:Boeing> <:office_in> "Chicago" .

<:Boeing> <:has_seat> <:USA> .

<:USA> <:has_city> "Chicago" .

<:France> <:has_city> "Toulouse" .

<:B747> <:nb_version> "5" .

<:A340> <:nb_version> "4" .

Predicate ID

has city 0
has length 1
has model 2
has seat 3
manufacturer 4
nb motors 5
nb version 6
office in 7
type 8

String ID

:A340 10
:Airbus 20
:Airliner 30
:Airplane1 40
:Airplane2 50
:B747 60
:Boeing 70
Chicago 80
:France 90
Toulouse 100
:USA 110

I

APPENDIX A. LOGIC FRAGMENTATION EXAMPLE

A.2 Forward graph fragment

{ "0" : {

"id":1,

"90" : { "0":[100]},

"110" :{ "0":[80]}

},

"6" : {

"id":2,

"10" : { "6":[4^int]},

"60" : { "6":[5^int]}

},

"3-7" :{

"id":3,

"20" : { "3":[90], "7":[100]},

"70" : { "3":[110], "7":[60]}

},

"1-2-4-5-8" :{

"id":4,

"40" : { "1":[75.4^float], "2":[10], "4":[20], "5":[4^int], "8":[30] },

"50" : { "1":[70.1^float], "2":[60], "4":[70], "5":[4^int], "8":[30]}

}

}

A.3 Backward graph fragment

{ "1" : {

"id":5,

"75.4^float" :{ "1":[40]},

"70.1^float" :{ "1":[50]}

},

"2" : {

"id":6,

"10" : { "2":[40]},

"60" : { "2":[50]}

},

"3" : {

"id":7,

"90" : { "3":[20]},

"110" :{ "3":[70]}

},

"4" : {

"id":8,

"20" : { "4":[40]},

"70" : { "4":[50]}

},

"6" : {

"id":9,

"5^int" :{ "6":[60]}

II

A.3. BACKWARD GRAPH FRAGMENT

},

"8" : {

"id":10,

"30" : { "8":[40,50]}

},

"0-7" :{

"id":11,

"100" :{ "0":[20],"7":[90]},

"80" : { "0":[70],"7":[110]}

},

"5-6" :{

"id":12,

"4^int" :{ "5":[40,50],"6":[10]}

}

}

III

APPENDIX A. LOGIC FRAGMENTATION EXAMPLE

IV

Appendix B
Queries

B.1 Watdiv

B.1.1 Prefixes

@prefix pr: <http://purl.org/stuff/rev#>

@prefix prg: <http://purl.org/goodrelations/>

@prefix foaf: <http://xmlns.com/foaf/>

@prefix sc: <http://schema.org/>

@prefix prt: <http://purl.org/dc/terms/>

@prefix pro: <http://purl.org/ontology/mo/>

@prefix rdfs: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix w: <http://db.uwaterloo.ca/~galuc/wsdbm/>

@prefix ogp: <http://ogp.me/ns#>

@prefix geo: <http://www.geonames.org/ontology#>

C: Complex
S: Star
F: Snowflake
L: Linear

B.1.2 Queries

C1

SELECT ?v0 ?v4 ?v6 ?v7 WHERE {

?v0 sc:caption ?v1 .

?v0 sc:text ?v2 .

?v0 sc:contentRating ?v3 .

?v0 pr:hasReview ?v4 .

?v4 pr:title ?v5 .

?v4 pr:reviewer ?v6 .

?v7 sc:actor ?v6 .

?v7 sh:language ?v8 .

}

C2

SELECT ?v0 ?v3 ?v4 ?v8 WHERE {

?v0 sc:legalName ?v1 .

?v0 prg:offers ?v2 .

?v2 sc:eligibleRegion ?v10 .

?v2 prg:includes ?v3 .

?v4 sc:jobTitle ?v5 .

?v4 foaf:homepage ?v6 .

?v4 w:makesPurchase ?v7 .

?v7 w:purchaseFor ?v3 .

?v3 pr:hasReview ?v8 .

?v8 pr:totalVotes ?v9 .

}

V

APPENDIX B. QUERIES

C3

SELECT ?v0 WHERE {

?v0 w:likes ?v1 .

?v0 w:friendOf ?v2 .

?v0 prt:Location ?v3 .

?v0 foaf:age ?v4 .

?v0 w:gender ?v5 .

?v0 w:givenName ?v6 .

}

S1

SELECT ?v0 ?v1 ?v3 ?v4 ?v5 ?v6 ?v7

?v8 ?v9 WHERE {

?v0 prg:includes ?v1 .

?V2 prg:offers ?v0 .

?v0 prg:price ?v3 .

?v0 prg:serialNumber ?v4 .

?v0 prg:validFrom ?v5 .

?v0 prg:validThrough ?v6 .

?v0 sc:eligibleQuantity ?v7 .

?v0 sc:eligibleRegion ?v8 .

?v0 <sc:priceValidUntil ?v9 .

}

S2

SELECT ?v0 ?v1 ?v3 WHERE {

?v0 prt:Location ?v1 .

?v0 sc:nationality w:Country14 .

?v0 w:gender ?v3 .

?v0 rdfs:type w:Role2 .

}

S3

SELECT ?v0 ?v2 ?v3 ?v4 WHERE {

?v0 rdfs:type w:ProductCategory14 .

?v0 sc:caption ?v2 .

?v0 w:hasGenre ?v3 .

?v0 sc:publisher ?v4 .

}

S4

SELECT ?v0 ?v2 ?v3 WHERE {

?v0 foaf:age w:AgeGroup1 .

?v0 foaf:familyName ?v2 .

?v3 pro:artist ?v0 .

?v0 sc:nationality w:Country1 .

}

S5

SELECT ?v0 ?v2 ?v3 WHERE {

?v0 rdfs:type w:ProductCategory7 .

?v0 sc:description ?v2 .

?v0 sc:keywords ?v3 .

?v0 sc:language w:Language0 .

}

S6

SELECT ?v0 ?v1 ?v2 WHERE {

?v0 pro:conductor ?v1 .

?v0 rdfs:type ?v2 .

?v0 w:hasGenre w:SubGenre83 .

}

S7

SELECT ?v0 ?v1 ?v2 WHERE {

?v0 rdfs:type ?v1 .

?v0 sc:text ?v2 .

w:User145869 w:likes ?v0 .

}

F1

SELECT ?v0 ?v2 ?v3 ?v4 ?v5 WHERE {

?v0 ogp:tag w:Topic172 .

?v0 rdfs:type ?v2 .

?v3 sc:trailer ?v4 .

?v3 sc:keywords ?v5 .

?v3 w:hasGenre ?v0 .

?v3 rdfs:type> w:ProductCategory2 .

}

F2

SELECT ?v0 ?v1 ?v2 ?v4 ?v5 ?v6 ?v7

WHERE

{

?v0 foaf:homepage ?v1 .

?v0 ogp:title ?v2 .

?v0 rdfs:type ?v3 .

?v0 sc:caption ?v4 .

?v0 sc:description ?v5 .

?v1 sc:url ?v6 .

?v1 w:hits ?v7 .

?v0 w:hasGenre w:SubGenre55 .

}

VI

B.1. WATDIV

F3

SELECT ?v0 ?v1 ?v2 ?v4 ?v5 ?v6 WHERE {

?v0 sc:contentRating ?v1 .

?v0 sc:contentSize ?v2 .

?v0 w:hasGenre w:SubGenre42 .

?v4 w:makesPurchase ?v5 .

?v5 w:purchaseDate ?v6 .

?v5 w:purchaseFor ?v0 .

}

F4

SELECT ?v0 ?v1 ?v2 ?v4 ?v5 ?v6 ?v7

?v8 WHERE {

?v0 foaf:homepage ?v1 .

?v2 prg:includes ?v0 .

?v0 ogp:tag w:Topic71 .

?v0 sc:description ?v4 .

?v0 sc:contentSize ?v8 .

?v1 sc:url ?v5 .

?v1 w:hits ?v6 .

?v1 sc:language> w:Language0 .

?v7 w:likes ?v0 .

}

F5

SELECT ?v0 ?v1 ?v3 ?v4 ?v5 ?v6 WHERE {

?v0 prg:includes ?v1 .

w:Retailer28001 prg:offers ?v0 .

?v0 prg:price ?v3 .

?v0 prg:validThrough ?v4 .

?v1 ogp:title ?v5 .

?v1 rdfs:type ?v6 .

}

L1

SELECT ?v0 ?v2 ?v3 WHERE {

?v0 w:subscribes w:Website18627 .

?v2 sc:caption ?v3 .

?v0 w:likes ?v2 .

}

L2

SELECT ?v1 ?v2 WHERE {

w:City107 geo:parentCountry ?v1 .

?v2 w:likes w:Product0 .

?v2 sc:nationality ?v1 .

}

L3

SELECT ?v0 ?v1 WHERE {

?v0 w:likes ?v1 .

?v0 w:subscribes ?v2 .

}

L4

SELECT ?v0 ?v2 WHERE {

?v0 ogp:tag w:Topic132 .

?v0 sc:caption ?v2 .

}

L5

SELECT ?v0 ?v1 ?v3 WHERE {

?v0 sc:jobTitle ?v1 .

w:City24 geo:parentCountry ?v3 .

?v0 sc:nationality ?v3 .

}

VII

APPENDIX B. QUERIES

B.2 LUBM

B.2.1 Prefixes

@prefix rdfs: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix lb: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>

@prefix u1: <http://www.Department0.University0.edu/>

@prefix u2: <http://www.University0.edu>

B.2.2 Queries

1

SELECT ?x WHERE {

?x rdfs:type lb:GraduateStudent .

?x lb:takesCourse u1:GraduateCourse0 .

}

2

SELECT ?x ?y WHERE {

?x rdfs:type lb:GraduateStudent .

?y rdfs:type lb:University .

?z rdfs:type lb:Department> .

?x lb:memberOf ?z .

?z lb:subOrganizationOf ?y .

?x lb:undergraduateDegreeFrom ?y .

}

3

SELECT ?x WHERE {

?x rdfs:type lb:Publication .

?x lb:publicationAuthor

u1:AssistantProfessor0 .

}

4

SELECT ?x ?y1 ?y3 WHERE {

?x lb:worksFor u1 .

?x lb:name ?y1 .

?x lb:emailAddress ?y2 .

?x lb:telephone ?y3 .

}

5

SELECT ?x WHERE

{

?x lb:memberOf u1 .

}

6

SELECT ?x WHERE {

?x rdfs:type lb:UndergraduateStudent .

}

7

SELECT ?x ?y WHERE {

?x rdfs:type lb:UndergraduateStudent .

?x lb:takesCourse ?y .

?y rdfs:type lb:Course .

u1:AssociateProfessor0 lb:teacherOf

?y .

}

8

SELECT ?x ?y WHERE {

?x rdfs:type lb:UndergraduateStudent .

?x lb:memberOf ?y .

?x lb:emailAddress ?z .

?y rdfs:type lb:Department .

?y lb:subOrganizationOf u1 .

}

VIII

B.3. DBLP

9

SELECT ?x ?y WHERE {

?x rdfs:type lb:UndergraduateStudent .

?y rdfs:type lb:FullProfessor .

?z rdfs:type lb:Course .

?x lb:advisor ?y .

?x lb:takesCourse ?z .

?y lb:teacherOf ?z .

}

10

SELECT ?x WHERE {

?x rdfs:type lb:GraduateStudent .

?x lb:takesCourse u1:GraduateCourse0 .

}

11

SELECT ?x ?y WHERE {

?x rdfs:type lb:ResearchGroup .

?x lb:subOrganizationOf ?y .

?y lb:subOrganizationOf u2 .

}

12

SELECT ?x ?y WHERE {

?x lb:headOf ?y .

?y rdfs:type lb:Department .

?y lb:subOrganizationOf u2 .

}

13

SELECT ?x WHERE {

?x lb:undergraduateDegreeFrom u2 .

}

14

SELECT ?x WHERE {

?x rdfs:type lb:UndergraduateStudent .

}

B.3 DBLP

B.3.1 Prefixes

@prefix foaf: <http://xmlns.com/foaf/0.1#>

@prefix el: <http://purl.org/dc/elements/1.1#>

@prefix o: <http://swrc.ontoware.org/ontology#>

@prefix te: <http://purl.org/dc/terms#>

@prefix owl: <http://www.w3.org/2002/07/owl#>

@prefix dblp: <http://dblp.uni-trier.de/rec/bibtex/series/cogtech/>

@prefix rdfs: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix book: <http://dblp.l3s.de/d2r/resource/publications/books/ph/>

@prefix author: <http://dblp.l3s.de/d2r/resource/authors/>

C: Complex
S: Star
L: Linear

B.3.2 Queries

C1

SELECT ?v0 ?v4 ?v6 ?v5 WHERE {

?v0 foaf:maker ?v1 .

?v3 el:creator ?v1 .

?v5 o:editor ?v2 .

?v2 te:tableOfContent ?v4 .

?v2 te:issued ?v6 .

}

C2

SELECT ?v0 ?v4 ?v6 ?v5 WHERE {

?v0 te:issued ?v1 .

?v0 el:identifier ?v2 .

?v0 o:volume ?v3 .

?v5 el:type ?v4 .

?v6 el:subject ?v4 .

}

IX

APPENDIX B. QUERIES

C3

SELECT ?v0 ?v1 ?v2 WHERE {

?v0 el:title ?v1 .

?v0 owl:sameAs ?v3 .

?v0 te:bibliographicCitation ?v2 .

}

L1

SELECT ?v0 ?v1 ?v2 ?v3 WHERE {

?v0 el:creator ?v1 .

?v0 foaf:maker ?v2 .

?v0 foaf:homepage ?v3 .

}

L2

SELECT ?v0 ?v1 WHERE {

?v0 te:tableOfContent ?v1 .

?v0 te:bibliographicCitation

dblp:Helbig2006 .

}

L3

SELECT ?v0 ?v1 ?v2 ?v3 WHERE {

?v0 o:month ?v1 .

?v2 el:subject ?v1 .

?v3 o:isbn ?v1 .

}

L4

SELECT ?v0 ?v1 WHERE {

?v0 rdfs:seeAlso book:Shasha92 .

?v0 te:tableOfContent ?v1 .

}

S1

SELECT ?v0 ?v1 ?v2 ?v5 WHERE {

?v0 el:creator ?v1 .

?v0 foaf:maker ?v2 .

?v0 o:journal ?v3 .

?v0 rdfs:type ?v4 .

?v0 rdfs:label ?v5 .

}

S2

SELECT ?v0 ?v4 ?v6 WHERE {

?v0 te:tableOfContent ?v1 .

?v0 o:editor

author:Rodney_W._Topor .

?v0 o:number ?v3 .

?v0 rdfs:label ?v4 .

?v0 te:issued ?v5 .

?v0 te:bibliographicCitation ?v6 .

}

S3

SELECT ?v0 ?v3 ?v1 WHERE {

?v0 rdfs:seeAlso ?v1 .

?v3 foaf:homepage ?v1 .

}

S4

SELECT ?v0 ?v1 ?v3 WHERE {

?v0 rdfs:seeAlso ?v1 .

?v3 foaf:page ?v1 .

}

B.4 Yago

B.4.1 Prefixes

@prefix yago: <http://yago-knowledge.org/resource/>

@prefix rdfs: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

X

B.4. YAGO

B.4.2 Queries

1

SELECT ?GivenName ?FamilyName WHERE {

?p yago:hasGivenName ?GivenName .

?p yago:hasFamilyName ?FamilyName

.

?p yago:wasBornIn ?city .

?p yago:hasAcademicAdvisor ?a .

?a yago:wasBornIn ?city .

}

2

SELECT ?GivenName ?FamilyName WHERE {

?p yago:hasGivenName ?GivenName .

?p yago:hasFamilyName ?FamilyName

.

?p yago:wasBornIn ?city .

?p yago:hasAcademicAdvisor ?a .

?a yago:wasBornIn ?city .

?p yago:isMarriedTo ?p2 .

?p2 yago:wasBornIn ?city .

}

3

SELECT ?name1 ?name2 WHERE {

?a1 yago:hasPreferredName ?name1 .

?a2 yago:hasPreferredName ?name2 .

?a1 yago:actedIn ?movie .

?a2 yago:actedIn ?movie .

}

4

SELECT ?name1 ?name2 WHERE {

?p1 yago:hasPreferredName ?name1

.

?p2 yago:hasPreferredName ?name2

.

?p1 yago:isMarriedTo ?p2 .

?p1 yago:wasBornIn ?city .

?p2 yago:wasBornIn ?city .

}

5

SELECT ?p WHERE {

?p yago:hasGivenName> ?gn.

?p rdfs:type ?h.

?p yago:wasBornIn ?city.

?city yago:isLocatedIn ?i.

?p yago:livesIn ?a.

?a yago:wasBornIn ?city2.

?city2 yago:isLocatedIn ?j.

}

XI

APPENDIX B. QUERIES

XII

B.4. YAGO

XIII

APPENDIX B. QUERIES

XIV

List of Figures

1 Examples for RDF and SPARQL . 2

2 Linked Open Data (LOD) evolution . 3

3 Knowledge Graphs Ecosystem . 4

4 An Example of an instantiation of our Model: The Case of the Yago KG 5

5 Triple stores classification . 6

6 Horizontal partitioning evolution in Oracle RDBMS 8

7 Partitioning environment in relational databases 9

8 Horizontal partitioning in [BBRW09] . 10

9 Partitioning example by data model . 11

10 Fusing data partitioning to both worlds . 12

11 RDFPartSuite Framework . 13

12 Breakdown of thesis chapters . 15

1.1 Aircraft table . 21

1.2 Database partitioning origins . 26

1.3 A star-schema partitioning environment . 27

1.4 Partitioning types for table Airplane . 28

1.5 Hybrid partitioning example . 29

1.6 Type dimension schema . 30

1.7 Organization of schema Section 1.4.1 . 35

1.8 Affinity matrix of Airplane table . 36

1.9 MAGIC grid example . 39

1.10 Owner and member relations . 41

1.11 Schism data representation . 42

1.12 Star-schema example . 46

1.13 Large-scale systems . 53

1.14 MapReduce schema . 54

1.15 Internal structure of HBase row example . 57

2.1 Graph data structures . 65

2.2 Storage structures for graph of Figure 2.1c . 67

2.3 Graph query examples . 68

2.4 Nodes visiting order . 70

2.5 Examples of Sections 2.2.4.1 and 2.2.4.2 . 71

2.6 Partitioning problems . 72

2.7 Graph partitioning algorithms . 73

2.8 Graph algorithms schemas . 74

2.9 Partitioning in Sedge . 76

2.10 RDF example . 80

XV

LIST OF FIGURES

2.11 RDF-Schema associated to graph of Figure 2.10a 81
2.12 Relational-based storage of the graph of Figure 2.10a 84
2.13 Property table optimizations of Figure 2.10a . 85
2.14 Partitioning Process in RDF Systems . 87

3.1 Partitioning design process . 98
3.2 Forward graph fragment example . 100
3.3 Backward graph fragment example . 105
3.4 Query execution by storage . 108
3.5 Graph partitioning example . 112
3.6 Miniature of graph G of Figure 2.10 . 112
3.7 Graph fragments examples . 114
3.8 Execution strategies for query Q3 . 115
3.9 Extract of weighted graphs of fragments for graph G 116

4.1 RDF QDAG architecture . 122
4.2 Storage files examples for graph of Figure 2.10 124
4.3 Compression structure in RDF QDAG . 125
4.4 Query graph example . 126
4.5 Query execution plans example . 126
4.6 Execution pipeline example . 127
4.7 Volcano execution in RDF QDAG example . 128
4.8 Logarithmic loading times . 130
4.9 Performance of partitioning configurations in relational-based system 132
4.10 Query performance of forward and backward graph fragments 133
4.11 Yago BGP queries results . 136
4.12 Triple distribution by allocation method GP: graph partitioning, RR: rond-robin,

LP: linear programming . 137
4.13 Mappings analysis for Watdiv100k LP: Linear programming, RR: round-robin,

H: hashing on the subject, GPS: graph partitioning - small groups, GP: Graph
partitioning . 139

4.14 Partitioning advisor use case . 148
4.15 Partitioning advisor architecture . 149
4.16 RDFPart advisor’s welcome screen . 150
4.17 RDFPart statistics and re-fragmentation modules 151
4.18 RDFPart allocation interface . 151
4.19 Normalization process . 156
4.20 Calibration component extension . 157
4.21 Schéma en étoile de l’environnement de partitionnement 162

XVI

List of Tables

1 Partitioning advisors in [Bel18] . 9

1.1 High-level variants of the partitioning problem 24
1.2 Partitioning type by DBMS . 29
1.3 Partitioning approaches . 34
1.4 Vertical partitioning approaches . 37
1.5 Single-attribute horizontal declustering strategies 39
1.6 Multi-attribute declustering . 39
1.7 Recent horizontal partitioning approaches . 44
1.8 Partitioning advisors . 47
1.9 Online partitioning approaches . 50
1.10 Partitioning approaches . 51

2.1 Dynamic graph partitioning approaches . 75
2.2 Graph databases mentioned in Section 2.2.6 . 78
2.3 State of the art systems . 90
2.4 Main strenghts relational and RDF partitioning 91

3.1 Edge’s weights in fragment graph G . 111

4.1 Experimental datasets . 129
4.2 Loading times comparisons . 130
4.3 Data coverage per dataset . 131
4.4 Experimental datasets in relational-based system 132
4.5 Watdiv BGP queries results in seconds . 135
4.6 LUBM500M BGP queries results in seconds . 135
4.7 DBLP BGP queries results in seconds . 135
4.8 Execution time (in seconds) for Watdiv100M queries 142
4.9 Execution time (in seconds) for LUBM queries 142
4.10 Execution time (in seconds) for DBLP and YAGO queries 142

XVII

Résumé

Le Resource Description Framework (RDF) et SPARQL sont des standards très populaires basés sur des graphes
initialement conçus pour représenter et interroger des informations sur le Web. La flexibilité offerte par RDF a motivé
son utilisation dans d’autres domaines. Aujourd’hui les jeux de données RDF sont d’excellentes sources d’information.
Ils rassemblent des milliards de triplets dans des Knowledge Graphs qui doivent être stockés et exploités efficacement.
La première génération de systèmes RDF a été construite sur des bases de données relationnelles traditionnelles.
Malheureusement, les performances de ces systèmes se dégradent rapidement car le modèle relationnel ne convient
pas au traitement des données RDF intrinsèquement représentées sous forme de graphe. Les systèmes RDF natifs et
distribués cherchent à surmonter cette limitation. Les premiers utilisent principalement l’indexation comme stratégie
d’optimisation pour accélérer les requêtes. Les deuxièmes recourent au partitionnement des données. Dans le modèle
relationnel, la représentation logique de la base de données est cruciale pour concevoir le partitionnement. La couche
logique définissant le schéma explicite de la base de données offre un certain confort aux concepteurs. Cette couche
leur permet de choisir manuellement ou automatiquement, via des assistants automatiques, les tables et les attributs à
partitionner. Aussi, elle préserve les concepts fondamentaux sur le partitionnement qui restent constants quel que soit
le système de gestion de base de données. Ce schéma de conception n’est plus valide pour les bases de données RDF
car le modèle RDF n’applique pas explicitement un schéma aux données. Ainsi, la couche logique est inexistante et le
partitionnement des données dépend fortement des implémentations physiques des triplets sur le disque. Cette situation
contribue à avoir des logiques de partitionnement différentes selon le système cible, ce qui est assez différent du point de
vue du modèle relationnel. Dans cette thèse, nous promouvons l’idée d’effectuer le partitionnement de données au niveau
logique dans les bases de données RDF. Ainsi, nous traitons d’abord le graphe de données RDF pour prendre en charge
le partitionnement basé sur des entités logiques. Puis, nous proposons un framework pour effectuer les méthodes
de partitionnement. Ce framework s’accompagne de procédures d’allocation et de distribution des données. Notre
framework a été incorporé dans un système de traitement des données RDF centralisé (RDF QDAG) et un système
distribué (gStoreD). Nous avons mené plusieurs expériences qui ont confirmé la faisabilité de l’intégration de notre
framework aux systèmes existants en améliorant leurs performances pour certaines requêtes. Enfin, nous concevons un
ensemble d’outils de gestion du partitionnement de données RDF dont un langage de définition de données (DDL) et
un assistant automatique de partitionnement.

Mots-clés : Bases de données–Conception; Bases des données–Gestion; Graphes, Théorie des; Partionnement de
graphes; Resource Description Framework (informatique); SPARQL (langage de programmation); Structure logique;
Systèmes experts (informatique)

Abstract

The Resource Description Framework (RDF) and SPARQL are very popular graph-based standards initially designed
to represent and query information on the Web. The flexibility offered by RDF motivated its use in other domains
and today RDF datasets are great information sources. They gather billions of triples in Knowledge Graphs that must
be stored and efficiently exploited. The first generation of RDF systems was built on top of traditional relational
databases. Unfortunately, the performance in these systems degrades rapidly as the relational model is not suitable
for handling RDF data inherently represented as a graph. Native and distributed RDF systems seek to overcome
this limitation. The former mainly use indexing as an optimization strategy to speed up queries. Distributed and
parallel RDF systems resorts to data partitioning. The logical representation of the database is crucial to design data
partitions in the relational model. The logical layer defining the explicit schema of the database provides a degree
of comfort to database designers. It lets them choose manually or automatically (through advisors) the tables and
attributes to be partitioned. Besides, it allows the partitioning core concepts to remain constant regardless of the
database management system. This design scheme is no longer valid for RDF databases. Essentially, because the RDF
model does not explicitly enforce a schema since RDF data is mostly implicitly structured. Thus, the logical layer is
inexistent and data partitioning depends strongly on the physical implementations of the triples on disk. This situation
contributes to have different partitioning logics depending on the target system, which is quite different from the
relational model’s perspective. In this thesis, we promote the novel idea of performing data partitioning at the logical
level in RDF databases. Thereby, we first process the RDF data graph to support logical entity-based partitioning.
After this preparation, we present a partitioning framework built upon these logical structures. This framework is
accompanied by data fragmentation, allocation, and distribution procedures. This framework was incorporated to a
centralized (RDF QDAG) and a distributed (gStoreD) triple store. We conducted several experiments that confirmed
the feasibility of integrating our framework to existent systems improving their performances for certain queries.
Finally, we design a set of RDF data partitioning management tools including a data definition language (DDL) and
an automatic partitioning wizard.

Keywords : Database design; Database management; Graph theory; Knowledge graph; RDF (Document markup
language); SPARQL (Computer program language); Logic design; Expert systems (Computer science); Performance

Secteur de recherche : Informatique et applications

Laboratoire d’Informatique et d’Automatique pour les Systèmes
Ecole Nationale Supérieure de Mécanique et d’Aérotechnique

Téléport 2 – 1 avenue Clément Ader – BP 40109 – 86961 FUTUROSCOPE CHASSENEUIL CEDEX
Tél : 05.49.49.80.63 – Fax : 05.49.49.80.64

	Table of Contents
	Introduction
	I Preliminaries
	Data Partitioning Foundations
	Introduction
	Data Partitioning Fundamentals
	Partitioning definition and development overview
	Partitioning concept evolution

	Partitioning dimensions
	Type
	Main objective
	Mechanism
	Algorithm
	Cost Model
	Constraints
	Platform
	System Element
	Adaptability
	Data model

	Partitioning approaches
	Partitioning by type, platform and mechanism
	Partitioning by data model
	Partitioning by adaptability
	Partitioning by constraints

	Partitioning in large-scale platforms
	Hadoop ecosystem
	Apache Spark
	NoSQL stores
	Hybrid architectures

	Conclusion

	Graph Data : Representation and Processing
	Introduction
	Graph database models
	Logical graph data structures
	Data storage
	Query and manipulation languages
	Query processing
	Graph partitioning
	Graph databases

	Resource Description Framework
	Background
	Storage models
	Processing strategies
	Data partitioning

	Conclusion

	II Contributions
	Logical RDF Partitioning
	Introduction
	RDF partitioning design process
	Graph fragments
	Grouping the graph by instances
	Grouping the graph by attributes

	From logical fragments to physical structures
	Allocation problem
	Problem definition
	Graph partitioning heuristic

	RDF partitioning example
	Dealing with large fragments
	Conclusion

	RDFPartSuite in Action
	Introduction
	RDF_QDAG
	System architecture
	Storage model
	Execution model

	Loading costs
	Tested datasets
	Configuration setup
	Pre-processing times

	Evaluation of the fragmentation strategies
	Data coverage
	Exclusive comparison of fragmentation strategies
	Combining fragmentation strategies

	Evaluation of the allocation strategies
	Data skewness comparison
	Communication costs study
	Distributed experiments

	Partitioning language
	Notations
	CREATE KG statement
	LOAD DATA statement
	FRAGMENT KG statement
	ALTER FRAGMENT statement
	ALLOCATE statement
	ALTER ALLOCATION statement
	DISPATCH statement
	Integration of the language to other systems

	RDF partitioning advisor
	Main functionalities
	System architecture
	Use case

	Conclusion

	Conclusions and Perspectives
	Résumé
	References
	Logic fragmentation example
	Raw data & encoding
	Forward graph fragment
	Backward graph fragment

	Queries
	Watdiv
	Prefixes
	Queries

	LUBM
	Prefixes
	Queries

	DBLP
	Prefixes
	Queries

	Yago
	Prefixes
	Queries

	List of Figures
	List of Tables

