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Abstract. Triangle enumeration is a fundamental problem in large-scale
graph analysis. For instance, triangles are used to solve practical prob-
lems like community detection and spam filtering. On the other hand,
there is a large amount of data stored on database management sys-
tems (DBMSs), which can be modeled and analyzed as graphs. Alter-
natively, graph data can be quickly loaded into a DBMS. Our paper
shows how to adapt and optimize a randomized distributed triangle enu-
meration algorithm with SQL queries, which is a significantly different
approach from programming graph algorithms in traditional languages
such as Python or C++. We choose a parallel columnar DBMS given
its fast query processing, but our solution should work for a row DBMS
as well. Our randomized solution provides a balanced workload for par-
allel query processing, being robust to the existence of skewed degree
vertices. We experimentally prove our solution ensures a balanced data
distribution, and hence workload, among machines. The key idea behind
the algorithm is to evenly partition all possible triplets of vertices among
machines, sending edges that may form a triangle to a proxy machine;
this edge redistribution eliminates shuffling edges during join computa-
tion and therefore triangle enumeration becomes local and fully parallel.
In summary, our algorithm exhibits linear speedup with large graphs,
including graphs that have high skewness in vertex degree distributions.

Keywords: Inside DBMS Solution · Parallel Triangle Enumeration ·
Graph · Columnar DBMS.

1 Introduction

Large graphs are becoming pervasive as the world is more interconnected than
before. Examples include real-world networks such as social, transportation,
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Web, and biological networks. One of the fundamental graph problems is tri-
angle enumeration, which has attracted much interest because of its numerous
practical applications, including the analysis of social processes in networks [26],
dense subgraph mining [25], joins in databases [16], etc. The interested reader
may refer to [7, 5] for additional applications. Triangle detection and triangle
counting are also well-studied problems, and potentially significantly easier than
triangle enumeration. However, we emphasize that for many applications, in-
cluding all the aforementioned ones, triangle detection, and triangle counting
are not enough, and a complete enumeration of all the triangles is required.

Graphs can be modeled in terms of a database perspective. DBMSs provide
a different angle of graph processing since they offer an easily load/import data
into them. Nonetheless, processing large graphs in DBMSs did not receive much
interest as long as DBMSs did not define graph concepts. Some recent studies
offer support for the vertex-centric query interface to express graph queries like
Pregel and its open-source successor Giraph [15]. Other works such as [18, 6]
study and compare different graph problems on row, array and columnar DBMSs
with Spark GraphX. These works showed that DBMSs are faster.

In our work, we present an adaption of a parallel randomized algorithm [19]
to solve the triangle enumeration problem. We prove that our approach guaran-
tees the load balancing between the processors. We study how to express this
algorithm using standard SQL queries that can be executed on any DBMS. We
discuss various possible optimizations in order to obtain the optimum execution
time while using columnar DBMS to execute the algorithm.

Our paper is organized as follows. Section 2 states an overview of related
works. Preliminary concepts and notations including graph, triangle enumeration
problem, columnar DBMS and parallel computational model are described in
section 3. In section 4, we present the standard algorithm and its limitations; then
we detailed our proposed randomized algorithm while discussing its complexity
and load balancing. We introduce our experimental findings in section 5 and we
conclude in section 6 with general remarks and potential future works.

2 Related work

In this section, we summarize the most relevant, state of the art, triangle enu-
meration works. We start by highlighting numerous applications related to graph
processing using relation queries on DBMSs. Then, we present an overview of
triangle enumeration with a brief description of recent studies.

Processing graphs in DBMSs have been studied in recent years. The work
of [28] revisited graph processing support in the RDBMS at SQL level. [18]
studied the optimization of recursive queries on two complementary graph prob-
lems: transitive closure and adjacency matrix multiplication. The authors ex-
perimentally proved that the columnar DBMS is the fastest with tuned query
optimization. [6] studied how to solve four important graph problems: reacha-
bility, single-source shortest path, weakly connected components and page rank
using relational queries on columnar DBMS, array DBMS and spark’s GraphX
on share-nothing architecture. Other works like [23, 10] stored graphs in rela-
tional tables with schema optimized for graph queries by adding a specific layer
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supporting graph processing on RDBMS. Other interesting work of processing
graph in DBMSs can be found at [17, 2, 9]. Moreover, there exist powerful parallel
graph engines in the Hadoop big data ecosystem like Neo4j and Spark GraphX,
but they require significant effort to link and integrate information about the
graph and, in general, they provide query languages inferior as compared to
SQL. In contrast, our system can readily exploit diverse relational tables, which
can be easily loaded and integrated with the graph edge table. Our SQL solu-
tion provides good time performance, but it does not intend to be the fastest
compared to Hadoop systems. On the other hand, our goal is to provide perfect
load balancing, which ensures scalability as more parallel processing nodes are
available. A detailed benchmark comparison is left as future work.

The foundational algorithms for enumerating triangles are the node iterator
[21] and the edge iterator [12] suitable for one host execution. Nonetheless, with
the expansion of graph size, they become less efficient, and one host processing
on the main memory is infeasible. Some works like MGT [11] and Trigon [8] use
one host processing but with better I/O techniques which reduce the overhead
caused by the I/O access. Other works focus on paralleling the processing and
present multi-core solutions like [14, 22]; the first presented a load balance guar-
antee and the second proposed a cache-friendly algorithm supporting dynamic
parallelism without tuning parameters. Many distributed works have been also
introduced, [4] proposed MPI-based distributed memory parallel algorithm based
on node iterator for counting triangles in massive networks that can be easily
adapted for triangle enumeration.[27] is another approach based on distributing
the processing over a cluster while reducing messages during run-time. On the
other hand, many solutions have been explicitly addressed in the MapReduce
framework by [1, 24, 20, 29]. These solutions paralleled the processing through
two rounds of MapReduce where the first focuses on finding all the wedges and
the second checks whether there is an edge connecting each wedge endpoints.
However, those solutions are time-costly because of the large amount of inter-
mediate data exchanged between the hosts during processing.

The work of [19] presented a randomized distributed algorithm for triangle
enumeration and counting in the k-machine model, a popular theoretical model
for large-scale distributed graph computation [13]. In this model, k ≥ 2 machines
jointly perform computations on graphs with n nodes (typically, n � k). The
input graph is assumed to be initially partitioned among the k machines in
a balanced fashion. Communication is point-to-point by message passing (no
shared memory), and the goal is to minimize the number of communication
rounds of the computation. The work of [19] presented a distributed algorithm
that enumerates all the triangles of a graph in Õ(m/k5/3 + n/k4/3) rounds (the
Õ notation hides a polylog(n) multiplicative and additive factor), where n and
m are the number of nodes and edges of the input graph respectively. It also
showed that this algorithm is essentially optimal with respect to the number
of communication rounds by presenting a lower bound that showed that there
exist graphs with m edges where any distributed algorithm requires Ω̃(m/k5/3)
rounds. The current work builds on the algorithm of [19] and shows how to
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modify and efficiently implement this algorithm on a DBMS with queries which
is significantly different from a fairly straightforward MPI implementation of the
algorithm in a traditional language such as C++ or Python.

3 Preliminaries

This is a reference section that introduces definitions of a graph from mathemat-
ics and database perspectives, our problem definition, an overview of distributed
processing using columnar DBMS, and a description of the computational model.

3.1 Graph

Let G = (V,E) be an undirected unweighted graph with V non-empty set of
vertices (nodes) and E a possibly empty set of edges. We denote n = |V | and
m = |E|. Each edge e ∈ E links between two vertices u, v and defines a direction
(from u to v and v to u). We denote for each u ∈ V, N(u) = {v ∈ V : (u, v) ∈
E} the set of neighbors of a vertex u. Thereby, the degree of u is defined as
deg(u) = |N(u)|.

By this definition, we allow the presence of cliques and cycles. A clique defines
a complete sub-graph of G. A cycle is a path that starts and ends on the same
vertex. A cycle of length l is called l-cycle; hence a 3-cycle refers to a triangle.

Mathematically, a graph G can be represented by an adjacency matrix of
n × n (see Fig.1 (b)), where the cell i, j holds 1 if there is an edge combining
vertex i to vertex j. In database perspective, a graph G is stored as adjacency
list in an edge table E(i, j) with primary key (i, j) representing source vertex i
and destination vertex j (see Fig.1 (c)). An entry in table E defines existence of
an edge. Fig. 1 (a) depicts an undirected graph, (b) shows its adjacency matrix
representation and (c) its adjacency list representation.

Fig. 1: Graph representations

3.2 Triangles properties

Definition 1. Given a graph, a connected triple (u, v, w) at vertex v is a path
of length 2 for which v is at the center. If (w, u) ∈ E : (u, v, w) is a closed triple
called triangle otherwise it is open triple named wedge or open triad. A triangle
contains three closed triples: (u, v, w), (v, w, u) and (w, u, v).
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By definition 1, we allow the enumeration of triangles on both directed and
undirected graph as triangle is a cycle of 3 edges.

Besides triangle enumeration problem, the problem of finding open triads
has many applications, e.g., in social networks, where vertices represent people,
edges represent a friendship relation, and open triads can be used to recommend
friends.

Definition 2. A triangle denoted as ∆(u,v,w), is the smallest clique in graph
G composed of three distinct vertices u, v and w. The triangle formed by these
vertices include the existence of three edges (u, v), (v, w) and (w, u). The set
∆(G) includes all the triangles ∆(u,v,w) of the graph G. Fig. 1 (d) represents
an example of triangles in an undirected graph (Fig1. (a)). Notice that the two
examples of produced triangles are in lexicographical order. This eliminates the
listing of the triangle multiple times.

Definition 3. Two triangles ∆1 and ∆2 may belong to the same clique. Fig. 1
(d) shows that both enumerated triangles ∆(1,2,5) and ∆(2,3,5) belong to the same
clique formed of vertices {2,3,4,5}.

For a given graph G, triangle enumeration problem is to list all the unique
triangles present in the set ∆(G) which is expensive compared to counting be-
cause enumeration tests the possibility of each triplet of edges to form a triangle.
Therefore, using the results of the enumeration task, one can easily obtain the
count of triangles in the graph. In contrast, just counting does not necessarily
give the list of resulting triangles [3].

Notably, in practice, most graphs are sparse and therefore m = O(n). How-
ever, detecting embedded triangles is computationally hard with time O(n3).

3.3 DBMS storage

In order to enumerate triangles, standard SQL queries can be employed based on
SPJ operations (selection, projection and join). These operations can be useful
in simplifying and understanding the problem by formulating the solution using
relational algebra (σ, π and ./) then translating it into SQL queries that can be
executed in parallel on any distributed DBMS. To handle a graph in a database
system, the best storage definition is a list of edges as edge table E(i, j) where it
is assumed the edge goes from i to j. If the graph is undirected, we include two
edges for each pair of connected vertices. Otherwise, only the directed edge is
inserted. In this manner, we can always get a triangle vertices in order {u, v, w}
instead of {v, w, u} or {w, u, v} with u < v < w.

Fig. 2 depicts physical schema for a graph in DBMS, where the table E s
represents the adjacency list of the graph, it holds all the edges. While, the table
‘User’ stocks all the information related to vertices (i and j) of table E s.

We opted for columnar DBMSs such as Vertica or MonetDB to execute our
queries, since they present better efficiency of writing and reading data to and
from disk comparing to row DBMSs. Thus, speeding up the required time to
perform a query [18]. In fact, physical storage between the two types of DBMSs
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Fig. 2: A physical database model for the graph representation

varies significantly. The row DBMSs use indexes that hold the rowid of the physi-
cal data location. Whereas, the columnar DBMSs rely on projections, optimized
collections of table columns that provide physical storage for data. They can
contain some or all of the columns of one or more tables. For instance, Vertica
allows storing data by projections in a format that optimizes query execution,
and it compresses data and/or encodes projection data, allowing optimization
of access and storage.

3.4 Parallel computation architecture

We assume a k-machines cluster (k represents the count of the hosts in the
cluster) built over share-nothing architecture. Each machine can communicate
directly with others. All the machines define a homogeneous setup configuration
providing at least the minimum hardware and software requirements for the best
performance of the columnar DBMS. Following the guidelines presented by the
DBMS, each machine should provide at least 8 cores processor, 8 GB RAM and
1 TB of storage.

The number of machines k must be chosen as: k = p3 with p ∈ N. This is
important for our algorithm to achieve a perfect load balancing.

4 Triangle enumeration

In this section, we present our contribution to solve the triangle enumeration
problem in parallel using SQL queries. Most of the queries bellow are specific
to Vertica, particullary, CREATE TABLE/PROJECTION and COPY queries.
For other DBMSs including row DBMSs like Oracle and SQL Server, a DBA can
easily adapt them depending on their data loading and retrieval strategies.

4.1 Standard algorithm

Enumerating triangle in a given graph G can be done in two main iterations,
the first aims to identify all the directed wedges in the input graph while the
second focuses on finding whether there exists an edge connecting the endpoints
of each wedge.

Basically, listing triangles using standard algorithm is performed by three
nested loops, which can be translated in SQL by three self-join of table E (E1 ./
E2 ./ E3 ./ E1) on E1.j = E2.i, E2.j = E3.i and E3.j = E1.i respectively with
E1 = E,E2 = E and E3 = E (E1,E2 and E3 are alias table of E). However,
since only triangles defining lexicographical order (v1 < v2 < v3) are output (see
Section 3.3), we can eliminate the third self-join by taking both E2.j = E3.i
and E3.j = E1.i within the second self-join. As a result, the above-mentioned
process can be formulated using only two self-joins on table E (E ./ E ./ E). In
SQL queries bellow, we use E dup which is a duplicate table of E used to speed
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up the local join processing. Indeed, partitioning the first table by i and the
duplicate one by j divides the two corresponding tables into small pieces based
on the aforementioned columns which will make local joining on E.j = E.i faster.

SELECT E1.i As v1 ,E1.j AS v2 ,E2.j As v3
FROM

E E1 JOIN E_dup E2 ON E1.j=E2.i
JOIN E E3 ON E2.j=E3.i AND E3.j=E1.i

WHERE E1.i<E1.j AND E2.i<E2.j;

One problem can occur with this query executed in parallel. If the clique size
is too large, there would be a redundancy in listed triangles caused by assigning
each vertex and its neighbors to different machines to speed up local joins.

4.2 Randomized triangle enumeration

The high-level idea behind the randomized triangle enumeration algorithm of [19]
is to randomly partition vertices into subsets of certain size and then compute the
triangles within each subset in parallel. Specifically, the vertex set is partitioned
into k1/3 random subsets (thus each subset will have n/k1/3 vertices), where k is
the number of machines. Then each triplet of subsets of vertices (there are a total
of (k1/3)3 = k triplets, including repetitions) and the edges between the vertices
in the subset are assigned to each one of the k machines. Each machine then
computes the triangles in the subgraph induced by the subset assigned to that
machine locally. Since every possible triplet is taken into account, every triangle
will be counted (it is easy to remove duplicate counting, by using lexicographic
order among the vertices, as described later). Hence correctness is easy to es-
tablish. The main intuition behind the randomized algorithm is that a random
partition of the vertex set into equal sized subsets also essentially balances the
number of edges assigned to a machine. This crucially reduces communication,
but also the amount of work done per machine. While this is balancing is easy to
see under expectation (an easy calculation using linearity of expectation shows
that on average, the number of edges are balanced); however there can be a sig-
nificant variance. It is shown in [19] via a probabilistic analysis, that the number
of edges assigned per machine is bounded by Õ(max{m/k2/3, n/k1/3}). We note
that the randomized algorithm is always correct (i.e., of Las Vegas type), while
the randomization is helpful to improve the performance.

The Fig. 3 illustrates the overview of the randomized triangle enumeration
algorithm. To distinguish each partition of vertices, a color from k1/3 colors is
assigned to it. The communication between machines is needed when creating
sub-graphs or collecting edges from proxies. Otherwise, the processing is local.

4.3 Graph reading

The first step to enumerate triangles is to read the input graph on one host.
If the graph is directed, the edge table E s is built as adjacency list into the
database system. Otherwise, for each tuple (i,j) inserted in the edge table E s,
(j,i) is also inserted. The following queries are used to read the input graph:

CREATE TABLE E_s(i int ,j int);
COPY E_s FROM "link/to/graph_data_set";
/*if the input graph is undirected */
INSERT INTO E_s SELECT j,i FROM E_s;
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Fig. 3: Random triangle enumeration process

4.4 Graph partitioning

We assume k-machine model as presented in Section 3.4. The input graph G
is partitioned over the k machines using the random vertex partition model
that is based on assigning each vertex and its neighbors to a random machine
among the k machines [19]. Notably, for a graph G = (V,E), a machine k hosts
Gk = (Vk, Ek) a sub-graph of G, where Vk ⊂ V and ∪kVk = V , Gk needs to be
formed in a manner that for each v ∈ Vk and u ∈ N(v)/(u, v) ∈ Ek.

As explained previously, our partitioning strategy (proposed in [19]) aims to
partition the set V of vertices of G in k1/3 subsets of n/k1/3 vertex each. Ini-
tially, the table ”V s” in the query bellow ensures that each vertex v ∈ V picks
independently and uniformly at random one color from a set of k1/3 distinct
colors using the function randomint of vertica. To be noted that 1 and 2 in the
query bellow refer to subsets of colors of k-machine model (k = 8). A determin-
istic assignment of triplets of colors through the table ”Triplet” in the following
queries assigns each of the k possible triplets of colors formed by k1/3 distinct
colors to one distinct machine. This can be translated by the following queries:

/*Each vertex picks a random color of qr=k^(1/3) , for k=8, qr=2 */
CREATE TABLE V_s(i int ,color int);
INSERT INTO V_s

SELECT i,randomint(qr)+1
FROM

(SELECT DISTINCT i FROM E_s
UNION
SELECT DISTINCT j FROM E_s)V;

/* triplet_file values for k=8: (1,1,1,1)(2,1,1,2)
(3,1,2,1)(4,1,2,2)(5,2,1,1)(6,2,1,2)(7,2,2,1)(8,2,2,2)*/
CREATE TABLE Triplet(machine int ,color1 int ,color2 int ,color3 int)

UNSEGMENTED ALL NODES;
COPY Triplet FROM "link/to/triplet_file";

Then for each edge it holds, each machine designates one random machine as
edge proxy for that edge and sends all its edges to the respective edge proxies,
the table ”E s proxy” holds all the edges with their respective edge proxies.
this table is formed by coloring edge table ”E s” end-vertices with the vertex
table ”V s” having for each vertex its picked color by using double join between
the two tables. Building ”E s proxy” is the most important step because all
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the partitioning depends on it. Using this table, we can identify the edges end-
vertices picked colors which help the next query of ”E s local” building to decide
which host will hold which edge according to the deterministic triplet assignment
to each machine. In other words, each host collects its required edges from edge
proxies to process the next step.

/* Sending edges to proxies */
CREATE TABLE E_s_proxy(i_color int ,j_color int ,i int ,j int);
INSERT INTO E_s_proxy

SELECT Vi.color , Vj.color ,E.i,E.j
FROM

E_s E JOIN V_s Vi ON E.i=Vi.i
JOIN V_s Vj ON E.j=Vj.i;

/* Collecting edges from proxies */
CREATE TABLE E_s_local(machine int ,i int ,j int ,i_color int ,j_color int);
INSERT INTO E_s_local

SELECT machine , i, j, i_color , j_color
FROM

E_s_proxy E JOIN triplet edge1 ON E.i_color=edge1.color1
AND E.j_color=edge1.color2 WHERE E.i<E.j

UNION
SELECT machine , i, j, i_color , j_color

FROM
E_s_proxy E JOIN triplet edge2 ON E.i_color=edge2.color2

AND E.j_color=edge2.color3 WHERE E.i<E.j
UNION
SELECT machine , i, j, i_color , j_color

FROM
E_s_proxy E JOIN triplet edge3 ON E.i_color=edge3.color3

AND E.j_color=edge3.color1 WHERE E.i>E.j;

Having E.i < E.j and E.i > E.j in last query guarantee the output of each
triangle on a unique machine. For instance, a triangle (u, v, w) picking colors
(c, b, c) is output on a unique machine m having triplet (c, b, c) assigned to it
with u < v < w, hence triangles like (w, u, v) and (v, w, u) where w > u < v
and v < w > u won’t be taken in account which eliminates redundancy of
enumerated triangles.

4.5 Local triangle enumeration

To enumerate triangles locally on each host and in parallel, each machine ex-
amines its edges whose endpoints are in two distinct subsets among the three
subsets assigned to it. This happens in two steps:

1. Each machine lists all the possible wedges that vertices have identical color
and order as its triplet

2. To output triangles, each host checks whether there is an edge connecting
the end-vertices of each listed wedge

The aforementioned steps are ensured through a local double self-join on table
E (E ./ E ./ E) on columns E.j = E.i on each host locally and in parallel. The
queries are presented in the following:

SELECT E1.machine , E1.i AS v1 , E1.j AS v2, E2.j AS v3
FROM

E_s_local E1 JOIN E_s_local E2 ON E1.machine=E2.machine AND E1.j=E2.i
JOIN E_s_local E3 ON E2.machine=E3.machine AND E2.j=E3.i
JOIN Triplet T on T.machine = E3.machine

WHERE E1.i<E1.j AND E2.i<E2.j AND E1.i=E3.j
AND E1.i_color=T.color_1 AND E1.j_color=T.color_2
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AND E2.j_color=T.color_3 AND local_node_name ()=’node_name ’
ORDER BY v1 ,v2,v3;

As explained in previous section, having E1.i < E1.j and E2.i < E2.j in the
query eliminates redundancy. The last join with the table ”Triplet” eliminates
having triangles with vertex having same colors to be output by other machines
then theirs. Fig. 4 illustrates the random partitioning and triangle enumeration
in a cluster of eight machines.

Fig. 4: Randomized triangle enumeration on 8 machines.

Furthermore, to check similarity between triangles output by randomized
algorithm and those with standard algorithm, a set difference between the results
of the two algorithms can be employed. The following queries are executed in
Section 5 to prove the similarity of the output of both algorithms (notice that
Triangle is a table containing the list of triangles resulting from randomized
algorithm execution):

SELECT u, v, w FROM Triangle
EXCEPT

(SELECT E1.i As v1 ,E1.j AS v2 ,E2.j As v3
FROM E E1 JOIN E E2 ON E1.j=E2.i

JOIN E E3 ON E2.j=E3.i AND E3.j=E1.i
WHERE E1.i<E1.j AND E2.i<E2.j);

4.6 Load balancing

Parallel computing is considered complete when all the hosts complete their
processing and output the results. Therefore, reducing running time requires
that all processors finish their tasks at almost the same time [4]. This is possible
if all hosts acquire an equitable amount of data that they can process on.

We mentioned in data partitioning section that each vertex of the set V pick
randomly and independently a color c from k1/3 distinct colors. This gives rise
to a partition of the vertices set V into k1/3 subsets sc of O(n/k1/3) vertex each.
Each machine then receives a sub-graph Gk = (Vk, Ek) of G. As mentioned at
the beginning of Section 4.2, the analysis of [19] shows that the number of edges
among the subgraphs Gk = (Vk, Ek) is relatively balanced with high probability.
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Hence each machine processes essentially the same number of edges which leads
to a load balance. The endpoints of each e ∈ Ek are in two subsets sc. This
means that each triangle (u, v, w) satisfying u < v < w will be output.

4.7 Time complexity of randomized algorithm

The time complexity taken by a machine is proportional to the number of edges
and triangles it handles. Each machine handles a particular triplet of colors
(cx, cy, cz) so it handles O(n/k1/3) random sized subset of vertices. The worst-
case number of triangles in this subset is O(n3/k); however the number of edges is
much lower. Indeed, as mentioned in Section 4.2 the key idea of the randomized
algorithm as shown in [19], is that a random subset of the above-mentioned
size (i.e., O(n/k1/3)) will have no more than max{Õ(m/k2/3, n/k1/3)} edges
with high probability. Hence each machine handles only so many edges with
high probability. Since it is known that the number of triangles that can be
listed using a set of ` edges is Ω(`3/2) (see e.g., [19]) the number of triangles
that each machine has to handle is at most max{Õ(m3/2/k, n3/2/k1/2)}. Since,
the maximum number of (distinct) triangles in a graph of m edges is at most
O(m3/2), and each machine handles essentially a 1/k fraction of that (when
m3/2/k > n3/2/k1/2), we have essentially an optimal (linear) speed up (except,
possibly for very sparse graphs). Indeed, we show experimentally (Section 5)
that each machine handles approximately the same number of triangles, which
gives load balance among the machines.

5 Experimental evaluation

In the following section, we present how we conduct our experiments and we
outline our findings.

5.1 Hardware and software configuration

The experiments were conducted on 8 nodes cluster (k = 8) each with 4 virtual
cores CPU of type GeniuneIntel running at 2.4 Ghz, 48 GB of main memory,
1 TB of storage, 32 KB L1 cache, 4 MB L2 cache and Linux Ubuntu server
18.04 operating system. The total of RAM on the cluster is 384 GB and total of
disk storage is 8 TB and 32 cores for processing. We used Vertica, a distributed
columnar DBMS to execute our SQL queries and Python as the host language to
generate and submit them to the database for its fastness comparing to JDBC.

5.2 Data set

Table 1 summarizes the data sets used in our experiments. We used seven real
and synthetic (both directed and undirected) graph data sets. These data sets
represent different sizes and structures. The aforementioned table exhibits for
each data set, its nodes, edge, and expected triangle count with its type, format,
and source.

5.3 Edge table partitioning

For the triangle enumeration problem, the input graph is mostly partitioned
locally by source vertex i or destination vertex j to speedup the local join as
explained in Section 4.1. Whereas the segmentation of the Vertices set V accross
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Table 1: data sets
data set n m Triangle count Type Format Skewness Source

LiveJournal 3,997k 34,681k 177,820k Real Undirected Low SNAP

as-Skitter 1,696k 11,095k 28,769k Real Undirected Low SNAP

flickr-link 105k 2,316k 548,174k Real Undirected High KONECT

hyves 1,402k 2,777k 752k Real Undirected High KONECT

Graph500 s19 335k 15,459k 186,288k Synthetic Directed High Generated

Linear 141k 49,907k 3,300,095k Synthetic Directed High Generated

Geometric 8k 22,361k 13,078,242k Synthetic Directed High Generated

the hosts is done randomly using the random vertex partition model mentioned
in Section 4.4. In Vertica DBMS, this process is performed in the DDL step
through the segmentation clause definition in the projection creation query:

CREATE PROJECTION E_s_local_super(machine ENCODING RLE , i, j,
i_color ENCODING RLE , j_color ENCODING RLE)

AS
SELECT machine , i,j, i_color ,j_color

FROM E_s_local
ORDER BY i,j
SEGMENTED BY (machine *4294967295//k) ALL NODES OFFSET 0 KSAFE 1;

In fact, Vertica attributes for each machine a segment between 0 and 4 bytes
that represents its hash values interval. Initially, the hash value of each tuple is
calculated using the segmentation clause then according to the resulting value,
the tuple is sent to the corresponding machine owning that hash value within
its segment. We exploited this property to send each edge to its corresponding
machine. This allowed us to perform joins locally on each machine independently
from other hosts by specifying the name of the host in the WHERE clause of
the triangle enumeration SQL query.

5.4 Triangle enumeration

Here we analyze the performance of the randomized triangle enumeration algo-
rithm output and compare it to the standard algorithm results.

We start by discussing our randomized algorithm results in terms of load
balancing between processors and time execution on each machine. Our main
purpose is to experimentally prove that the count of output triangles is almost
even on all hosts. Thus, we present Fig. 5 and Fig.6 pie charts of examples of
triangles count (TC) on two data sets on each host. The count of triangles output
on each host is 1/8 of the total count which confirms our theoretical statement.

Fig. 7 represents the triangles count output on each machine for the remaining
data sets. It is obvious that the distribution of output triangles is balanced
over machines. Moreover, Fig. 8 presents the execution time of the randomized
algorithm on each host. The lines chart reveals that all the processors finish their
tasks at almost the same time on all the data sets with small-time shifts due
to data movement in the preprocessing phase or the presence of skewness. For
instance, data sets present a small overhead on machine 1 responsible for data
read and shuffling which explains this additional processing time. Experimenting
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on high skewed graphs data sets, we can notice that there is some machines that
take less time than the other hosts and finish first for the same data set, these
machines may have fewer cliques compared to other machines.

We compare now the results between the standard algorithm and the ran-
domized algorithm, summarized in Table 2. We notice that the triangle count is
the same as the expected triangle count defined in Table 1. The load balancing
is not ensured and a lot of data movement is performed to complete the join
task using the standard algorithm. Thus, we added the preprocessing step as we
want to ensure the load balancing in the standard algorithm, however this costs
a significant overhead in execution time. The column ”Rebalanced” in Table 2
exhibits the cost of such approach.

The column ”Randomized” give the average time execution of randomized
algorithm on the different data sets. As the data set size grows or presents high
skewness, the performance of the randomized algorithm becomes better than
standard algorithm such as the case for directed graph Graph500 s19 and undi-
rected graph flickr-link or hyves respectively. Moreover, when the skewed graph
data set is becoming significantly large like Linear and Geometric, standard al-
gorithm fails because of the data movement during the join processing causing
memory issues while randomized algorithm succeeds to finish the task because
the triangle listing is done locally on the subgraph stored on each machine and
no data exchange is performed.
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Table 2: Triangle count (in millions) and execution time (secs) results
data set TCstand TCrand Standard Rebalanced Randomized

com-LiveJournal 177,820k 177,820k 480 stop 503
as-Skitter 28,769k 28,769k 90 1988 180
flickr-link na 548,174k stop stop 485
hyves 752k 752k 49 604 47
Graph500 s19 186,288k 186,288k 610 stop 250
Linear na 3,300,095k stop stop 365
Geometric na 13,078,242k stop stop 954

Columns TCstand and TCrand summarize the resulting triangle count using
both algorithms, we notice that both algorithms give the same triangle count.
We experimentally executed the set difference SQL query presented in Section
4.5 between the two results that returns an empty set for each data set, hence,
the similarity of results from both algorithms is confirmed.

6 Conclusions

We presented a parallel randomized algorithm for triangle enumeration on large
graphs using SQL queries. Our approach using SQL queries provides elegant,
shorter and abstract solution compared to traditional languages like C++ or
Python. We proved that our approach scales well with the size of the graph and
its complexity especially with skewed graph. Our partitioning strategy ensures
balanced load distribution of data between the hosts. The experimental findings
were promising. They were compatible with our theoretical statements.

For our future work, we are planning to perform a deeper study of the ran-
domized algorithm with dense and complex graphs. As well as, running further
experiments to compare the randomized algorithm with graph engine solutions
for triangle enumeration. Finally, we are opting for expanding our algorithm to
detect larger cliques which is another computationally challenging problem.
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