
A logic dimension on RDF partitioning,
technical report

Jorge Galicia1, Amin Mesmoudi1,2, and Ladjel Bellatreche1

1 LIAS/ISAE-ENSMA, France
{jorge.galicia,bellatreche}@ensma.fr

2 Université de Poitiers, France
amin.mesmoudi@univ-poitiers.fr

Abstract. In the last years, scalable RDF processing systems distribut-
ing the data over a set of nodes to improve the performance have gained
momentum. The triple is used as a distribution unit in these systems
contrary to the relational model that defines the higher-level entities
(tables) first and then partitions using tables’ subsets. We believe that
gathering the triples storing facts of the same logical entities contributes
not only to avoid scanning irrelevant triples but also to create RDF par-
titions with an actual logical meaning. In this study, we give the formal
definition and detail the algorithm to gather the logical entities, which
we name segments, used as distribution units for RDF datasets. The
logical entities proposed, harmonize with the notion of partitions by in-
stances (horizontal) and by attributes (vertical) in the relational model.
We propose allocation strategies for these segments, considering the case
when replication is available and in which both fragments by instances
and by attributes are considered. We finally propose a declarative par-
titioning definition language for RDF declaring the higher-level entities
and partitions.

Keywords: RDF · Partitioning · Distributed Computing.

1 Introduction

The Resource Description Framework (RDF) has been widely accepted as the
standard model for data interchange on the Web. It facilitates the exchange be-
tween applications providing a common framework to express information about
resources on the Web. Web resources are described using facts represented as
triples of the form < subject, property, object >. Formerly, RDF intended to
be only a machine-readable exchange standard. Moreover, collections of RDF
triples (known as Knowledge Bases) are extensive sources of information popu-
larly queried and aggregated (using SPARQL). The size of the knowledge bases
has considerably augmented in the last years. Likewise, the development of scal-
able RDF processing systems that can cope with several billions of triples.

Parallel and distributed solutions distribute RDF datasets over processing
and storing nodes for scaling purposes. As it is the case in the relational model,

2 Jorge Galicia, Amin Mesmoudi, and Ladjel Bellatreche

the fragmentation and allocation of an RDF graph is not trivial. Contrarily to
relational databases, in RDF there is not a conceptual design stage being that
RDF systems store the data at a higher granularity. The notion of higher-level
entities (i.e. tables) storing its instances under the same structure is not present
in RDF. An RDF triple (subject, predicate, object) represents a fact describing
the resource in the subject position. This characteristic gives the RDF model
flexibility and allows to represent with simple statements information about a
resource. However, knowledge bases are often collections of scattered facts very
hard to distribute and query efficiently.

Most of partitioning approaches for distributed RDF systems do not con-
sider the identification of higher-level entities before partitioning. Partitioning
approaches apply, for example, hashing or graph-partitioning strategies to clus-
ter and distribute the data. The query execution on these systems relies in the
exploration of very dense indexes (e.g. SPO, OPS, POS) or in massive processing
frameworks (e.g. MapReduce) to find solutions to SPARQL queries. Addition-
ally, the execution engine is dependent on the partitioning strategy used to dis-
tribute the data. Creating groups of triples describing the same high-level entity
could help to prune invalid intermediate results similarly to what is done in the
relational model in which the FROM clause indicates the only relations to be
scanned.

There have been some efforts towards the addition of class hierarchies to
RDF (e.g. RDFS and OWL). Furthermore, not all the entities in a knowledge
base are annotated with this metadata and when a SPARQL query pattern does
not include an annotated class, the system is unable to scan only the pertinent
triples. We believe that the identification of higher-level entities might be useful
to: i) avoid scanning not relevant triples, ii) declare more specific customized
optimization strategies (like indexes), iii) avoid data skewness in some nodes
in the allocation, and iv) use these entities in a declarative language to create
partitions with a logical meaning.

Our work introduces a logical dimension to the partitioning process of RDF
graphs. We define two types of high-level entities, which we name forward and
backward segments. The forward and backward segments harmonize with the
notion of partitions by instances (horizontal) and by attributes (vertical) in the
relational model. We detail an identification algorithm of both types of entities.
Next, we use these entities as allocation fragments. We propose allocation strate-
gies for both segments, considering the case in which both partitioning schemas
are considered. We finally propose a declarative partitioning definition language
for RDF declaring the higher-level entities and partitions.

The contributions of this paper are:

1. The formalization of a logical dimension generalizing RDF partitions iden-
tifying high-level entities.

2. An analysis of allocation methods integrating both partitioning by attributes
and by instances in RDF systems.

3. The proposition of a declarative definition language to declare and allocate
the high-level entities (segments) in an RDF graph.

A logic dimension on RDF partitioning, technical report 3

The rest of the paper is organized as follows. We start in Section 2 by stating
the motivation of our work. Then, Section 3 gives an overview of the creation
and allocation of forward and backward segments by the means of a motivat-
ing example. In Section 4, we formalize our solutions and define the segment
allocation problem. Section 5 discusses related works. Finally, in Section 6 we
conclude and give insights on our future work.

2 Motivation

The partitioning problem in relational databases is considered a mature problem.
There are clearly two alternatives to partition the logical entities mapped to
tables: i) by its attributes (vertical partitioning) or ii) by its instances (horizontal
partitioning). The relational model has largely explored both alternatives. Even
if the partitioning step is part of the physical design of the database, some
partitions have a logical representation. For example, a table T =Airplane(ID,

Model, Length, Constructor) is partitioned in T1 = σLength<50(T) and T2 =
σLength≥50(T). This representation is useful to declare a partition applying the
same declaration language used for the tables. For example:

CREATE TABLE AIRPLANE (ID long, MODEL varchar, LENGTH varchar,

CONSTRUCTOR varchar)

PARTITION BY RANGE(LENGTH)

(

PARTITION T1 VALUES LESS THAN (50),

PARTITION T2 VALUES LESS THAN (MAXVALUE)

);

Also, a logic representation of a partition contributes to create other optimization
structures like indexes. An index could be created at different, or even the same,
attributes but at different granularities avoiding the definition of useless and
redundant structures. Finally, the logic representation of a partition could be
used by the query optimizer at run-time to avoid unnecessary partition scans.

Meanwhile, data partitioning in the RDF model remains very close to the
physical structure used to store the data. Most of RDF processing systems
adopted the relational model to physically represent RDF triples. For example,
some systems store an RDF graph using a big table of three columns (subject,
predicate and object). A partitioning strategy for for this table could be to apply
a hashing function to the values of one of the columns. There is no logical mean-
ing of the partitions induced by this method. Besides, the partitioning strategy
in several RDF systems is not customizable. Not only optimization structures
like indexes cannot be implemented by the user but the execution engine de-
pends on a specific partitioning strategy. We seek to provide a generic logical
representation for RDF partitions. Our model contributes to generalize the par-
titioning methods proposed by several RDF systems. The logical representation
of RDF partitions is similar to the representations of the relational model in
which the entities are partitioned by instances, by its attributes, or by both.

4 Jorge Galicia, Amin Mesmoudi, and Ladjel Bellatreche

We propose allocation strategies for the RDF partitions represented as logical
entities. Finally, we enunciate a declarative partition language (PDL) to create
customized RDF partitions. The next section uses a motivation example to get
an overview of the model.

3 Logic partitioning overview: motivating example

Let us consider the RDF graph G shown in Figure 1. We simplified the N-
Triples syntax to encode the dataset by adding a ”:” representing the complete
IRI (Internationalized Resource Identifier).

<:Airplane1> <:has_model> <:A340>.

<:Airbus> <:has_location> :ToulouseFR>.

<:Airplane1> <:has_type> <:Airplane>.

<:Airplane20> <:has_length> "70.1".

<:Airplane20> <:has_constructor> <:Boeing>.

<:Airplane1> <:has_length> "75.4".

<:Airplane1> <:nb_motors> "4".

<:ToulouseFR> <:has_name> "Toulouse".

<:Airplane1> <:has_constructor> <:Airbus>.

<:Boeing> <:has_location> <:ChicagoIL>.

<:Airplane20> <:has_type> <:Airplane>.

<:ChicagoIL> <:has_name> "Chicago".

<:A340> <:nb_version> "4".

<:Airplane20> <:has_model> <:B747>.

<:B747> <:nb_version> "5".

<:Airplane20> <:nb_motors> "4".

Airplane1

Airplane

Airbus

A340”75.4”

”4”

ToulouseFR ”Toulouse”

Airplane20

B747 ”70.1”

ChicagoIL

Boeing

”Chicago”

”5”

has model

has
length

nb version

nb motors

type

has constructor

ha
s
m
od

el

has length

has
constructor

nb motors

has location

has name

has name

has location

nb version

type

Fig. 1: RDF graph G

An RDF triple encodes a statement, a simple logical expression or claim
about the world. For example, the triple < Airplane1, has model, A340 > states
the fact that the Airplane1 ’s model is A340. In contrast to the conceptual design
step in the relational model, in RDF the high-level entities (e.g. an airplane) are
not defined at the creation moment of the database. This characteristic gives
the RDF model flexibility but at the price of data dispersion. Raw RDF files
store lots of disperse triples (sometimes billions) in which the facts of the same
high-level entity are scattered through the batch of data. Querying raw RDF
files is therefore a challenging task.

Some efforts have been done towards adding semantics as metadata to RDF.
RDFS (RDF Schema3) and OWL4 are some of the proposed standards. RDFS
allows, for instance, the definition of classes and class hierarchies. The predicate
rdf:type is used to specify that an individual resource belongs to a certain
class. This is the case of both Airplane1 and Airplane20 in the example. Fur-
thermore when the predicate rdf:type is not present in a SPARQL query, it

3 https://www.w3.org/TR/rdf-schema/
4 https://www.w3.org/TR/2012/REC-owl2-overview-20121211/

A logic dimension on RDF partitioning, technical report 5

is impossible to determine the high-level entity(ies) concerned by it. This is the
case of the queries shown on Figure 2. The query on Figure 2a for example,
implicitly concerns the entity Airplane but since the predicate rdf:type is not
explicitly stated in the query, the optimizer may scan many irrelevant entities.
Additionally, the use of the rdf:type is not mandatory for all resources. Our ap-
proach gathers the triples belonging to the same high-level entity (e.g. Airplane,
Constructor) based on its entire set of predicates and not only on the predicate
rdf:type. We denote as an entity instance, to the cluster of a node and its direct
outgoing edges and nodes. For example, Airplane1 and its outgoing edges and
nodes correspond to an instance of the class Airplane. We explain in detail this
procedure in the next section.

SELECT ?y ?z
WHERE {
?x :has_model :B747 .
?x :has_length ?y .
?x :has_constructor ?z . }

(a) Example query 1

SELECT COUNT(?x)
WHERE {
?x :has_motors "4" . }

(b) Example query 2

SELECT ?y ?z
WHERE {
?x :has_model :A340 . #1
?x :has_length ?y . #2
?x :has_constructor ?w . #3
?w :has_location ?z . #4
?z :has_name "Toulouse" . #5 }

(c) Example query 3

Fig. 2: Example SPARQL queries

3.1 Creation of RDF groups of instances

To gather the triples of the same high-level entity we group in the first place the
triples by its subjects. We obtain 8 groups of triples (Airplane1, Airplane20,

B747, A340, Airbus, Boeing, ToulouseFR and ChicagoIL). We name each

of these groups of triples a forward entity
−→
E representing instances of higher level

entities (e.g. an Airplane, Constructor, Airplane Model). We observe that two
instances of the same high-level entity share the same (or almost the same) set
of predicates. In the example, the forward entities Airplane1 and Airplane20

share the same predicates has model, has length, has constructor, nb motsors

and type. Airplane1 and Airplane20 belong to the same group that we named

the i-th forward segment
−→
Ci of G. A forward segment represent a high-level en-

tity on the graph G. In Section ?? we prove that the set of forward segments is a
partition set of the RDF dataset. The set of forward segments is represented as−→
C = {Ci, ..., Cm}. In the example, there are four forward segments representing
the following logical entities: an airplane containing 10 triples, a location with
2 triples, an airplane constructor with 2 triples and an airplane model with 2
triples.

The organization of the RDF triples in forward segments is ideal when solving
star-pattern BGP queries like the one shown in Figure 2a. In order to solve it,
an index of predicates as the one illustrated on Figure 3a could be built to scan
only the most relevant forward segments.

6 Jorge Galicia, Amin Mesmoudi, and Ladjel Bellatreche

Predicates

has model,
has length,
nb motor,

has constructor,
type

nb version has location has name

−→
C1

−→
C2

−→
C3

−→
C4

(a) Forward segments predicate index

Predicates

nb version,
nb motor

has model ... has name

nb version
nb version,
nb motor

←−
C3

←−
C8

←−
C1 ←−

C2

(b) Backward segments predicate index

Fig. 3: Example of predicates indexes

Still, an organization of the data in forward segments is not optimal when
solving queries with a very reduced number of predicates like the one shown
in Figure 2b. To solve the query all the triples of the forward segment must
be read, even the triples with predicates other than has motors. To solve the
query, 10 triples in the airplane forward segment must be scanned when only
2 triples are relevant. The problem is quite similar to the one that motivated
vertical partitions in relational databases in which only the pertinent attributes
of a table are accessed. Partitioning a table by attributes is very performant
when the query does not access many attributes of the relation. This inspired us
to propose another organization model for the RDF data that we name backward
segments.

3.2 Creation of RDF groups of attributes

The vertical partitions for RDF data are obtained gathering first the triples
by its incoming edges. In other words, we group the triples by its object. We
obtain 13 groups "5", "4", "75.4", "70.1", Boeing, ChicagoIL, Airbus,

ToulouseFR, "Toulouse", "Chicago", A340, B747 and Airplane . We named

these groups backward entities
←−
E . Similarly to what was done for the forward

entities, we group the backward entities sharing the same(or almost the same)

set of predicates. We named each of these sets the i-th backward segment
←−
Ci of

G. As it is proven in Section ??, the set of backward segments form a partition
set of the RDF graph.

For the example graph of Figure 1 we obtain 8 backward segments: the group
of names with the has name predicate (2 triples), the group of constructors (2
triples), lengths (2 triples), locations (2 triples), models (2 triples) and types
(2 triples). There is a group gathering the triples having only the nb version

predicate (1 triple), and another group gathering the triples with the predicates
nb version and nb motor (3 triples). The predicates could be organized with a
simple index structure like the one shown in Figure 3b.

The solution to the query of Figure 2b is found scanning only the backward
segment storing triples with the predicate has motors. The execution engine
checks the predicate’s index of Figure3b and scans only the backward segment

A logic dimension on RDF partitioning, technical report 7

←−
C2 that has only 3 triples. Comparing to the result obtained when the data
are organized as forward entities and assuming that the cost to explore the
predicate’s index is the same, the execution process on the backward segments is
more efficient. The process saves for this case the resources used to scan 7 triples.
However, as it is the case for vertical partitions in the relational model, the
performance can be degraded in SPARQL queries joining many single patterns.

3.3 Integration of the partitions by attributes and by instances

The integration of horizontal and vertical partitions in the relational model has
been explored by many researchers in the past [2, 20]. Meanwhile, many massive
processing systems propose replication strategies not only to recover and sup-
port fault tolerance but to improve the response time of queries. The Hadoop
distributed framework for example, stores the data with a default replication
factor of 3. In our approach, similar to the Fractured Mirrors [20] in relational
databases, we consider a system that stores two copies of the data. One copy
organizes the data as forward segments and another as backward segments. This
configuration is useful especially when the workload is unknown in the initial
partitioning stage.

We assume that the execution engine of the system is able to consider si-
multaneously forward and backward segments. The execution engine should be
able to decide when each segment should be scanned according to a query. Let
us consider the query of Figure 2c that contains 5 single patterns. The single
patterns 1-3 form a star-query pattern, the patterns 3-4 and 4-5 form two path-
query patterns. The execution engine proposes a plan in which, for instance, the

matches to the query patterns 1-3 are found using the forward segment
−→
C1. Then

to find matches for pattern 4 the intermediate results could be joined with the

forward pattern
−→
C3. Finally, to find matches from patterns 1 to 5, the results

could be joined with the backward segment
←−
C8.

Forward and backward segments could be used as fragments to be allocated
in a distributed or parallel system. The allocation strategies are discussed in the
following section.

3.4 Allocation of segments

When we are dealing with distributed or parallel systems, the segments must be
allocated into the processing workers. We assume that the size of a segment is
smaller than the maximum capacity of a site. We treat the problem of big seg-
ments in the next section. Using a straightforward strategy like a round-robin
for instance, may not produce an optimal performance. Firstly because the size
of the segments is not uniform, therefore the data may be unequally distributed
causing data skewness in some nodes. Secondly, queries like the one presented on
Figure 2c may be affected by the cost to send intermediate results through the
network. The network costs are the bottleneck of distributed systems and should
be minimized to improve the performance. We consider an allocation strategy

8 Jorge Galicia, Amin Mesmoudi, and Ladjel Bellatreche

in which the segments connected with a path pattern should be allocated in
the same site. For example in the execution plan detailed previously, the seg-

ments
−→
C1,
−→
C3 and

←−
C8 should be located in the same machine to avoid unnecessary

network costs. The allocation problem is formalized in Section 4.3.

Allocation heuristics: graph partitioning The segments could be repre-
sented in a weighted directed graph G as it is illustrated in Figure 4b. As it is
shown in Section 4.4, the allocation problem for the segments is an NP-Hard
problem. Graph partitioning heuristics (e.g. METIS [13]) could be used to find
good approximate solutions. In the graph of Figure 4b, the colored nodes corre-
spond to the forward segments. The red dashed line separates the graph into two
hypothetical partitions. An edge joining two nodes in different partitions(e.g. the

edge between
−→
C1 and

−→
C2) represents a necessary network communication for a

query joining both segments. The node’s weights represent the total number of
triples on each segment. The weights are represented inside the nodes of the
graph of Figure 4b. The predicates on each segment are shown on the table of
Figure 4a. The edge’s weights represent the number of triples that should be
transferred between two segments when they are joined. The weights are cal-
culated according to the cases shown on Table 1. Not all the edges between
segments are represented in the graph of Figure 4b for readability. Let us con-

sider for example the weight of the edge between the forward segments
−→
C1 and

−→
C2.

The weight in this case is equal to 2 since according to Table 1, the objects(A340

and B747) of two triples in
−→
C1 are the subject of two triples in

−→
C2. The same

reasoning is used to create the other edges and its weights.

Predicates C

Forward

has model,has length, nb motors, type, has constructor
−→
C1

nb version
−→
C2

has location
−→
C3

has name
−→
C4

Backward

nb version
←−
C1

nb version, nb motor
←−
C2

has type
←−
C3

has model
←−
C4

has length
←−
C5

has constructor
←−
C6

has location
←−
C7

has name
←−
C8

(a) Predicates by segment

−→
C1
10

−→
C2
2

−→
C3
2

−→
C4
2

←−
C3
2

←−
C2
3

←−
C4
2

←−
C1
1

←−
C5
2

←−
C6
2

←−
C7
2

←−
C8
2

2

2

22

2

21

11

2

2

2

2

2

2

2

2
2 2

2

2

2

2

2

2

2

1

1 1

(b) Extract of segment graph G

Fig. 4: Allocation example of graph G

A logic dimension on RDF partitioning, technical report 9

Table 1: Edge’s weights in segment graph G
Case Edge WeightEdge = # triples ti such that ti ∈ Ci, tj ∈ Cj and:

F aF (
−→
Ci ,
−→
Cj) object(ti) = subject(tj)

BbBA (
←−
Ci ,
←−
Cj) subject(ti) = subject(tj)

BBB (
←−
Ci ,
←−
Cj) object(ti) = subject(tj)

FBA, BFA (
−→
Ci ,
←−
Cj) subject(ti) = subject(tj)

FBB , BFB (
−→
Ci ,
←−
Cj) object(ti) = subject(tj)

a Forward segment
b Backward segment

Allocation of big segments When the size of a forward or backward segment
is bigger than the maximum available space for a site, the entity needs to be
repartitioned. A segment is formed by sets of forward or backward entities. To
partition within a segment, we apply a function that sub-partitions the segments
in such a way that all the triples of a backward or forward entity belong to the
same partition. In other words, the repartitioning function should not divide the
forward or backward entities in a segment when it creates sub-partitions.

Let us consider that the size of an entity C is bigger than the available
space for a site. To sub-partition the entity, we apply a function that maps the
forward or backward entities to a partition according to the values of a (some)
predicate(s). If the segment C is formed by the predicates p1..pk, the conditions
of a repartition function are predicates such as: i)p1 ≥ value and ii)p1 < value,
distributing the entities of the segment in two groups. In order to choose the
best sub-partitioning function, statistics about the entity must be available (e.g.
number of distinct values per predicate, histograms of values for a predicate).

For example, let us consider the forward entity
−→
C1 of G with 10 triples.

Supposing that a site cannot hold more than 6 triples,
−→
C1 cannot be allocated to

a single site. To repartition the forward segment, we apply a function, for instance

σ −→C1.has length<73

(−→
C1
)
, whose predicates are set based on segment’s statistics. The

original segment is split into two partitions:
−→
C1A (5 triples) with all the facts of

the instance <:Airplane20> and
−→
C1B (5 triples) with all the facts of the instance

<:Airplane1>. All the edges of
−→
C1 are maintained in

−→
C1A and

−→
C1B . Finally,

the partitioning algorithm is performed to decide the allocation of segments
considering the recently created sub-partitions.

3.5 Use of a declarative language to describe a partition

The creation of forward and backward segments before partitioning a raw RDF
file contributes to integrate a logical dimension to the purely physical partition-
ing process. The forward and backward segments are described by its predicate’s
set. As it was mentioned previously, partitioning big segments is done based on

10 Jorge Galicia, Amin Mesmoudi, and Ladjel Bellatreche

these predicates. A declarative language could be then used to describe the cre-
ation and partitioning processes for both types of segments. The declarations
are done similarly to the declarations of tables with the DDL (data declaration
language) in SQL.

Both types of entities are declared as follows:

CREATE {FORWARD,BACKWARD,BOTH}_SEGMENTS

FROM [raw rdf file path] WITH [max_size]

The CREATE command is taken from the SQL DDL. The instruction {FORWARD,
BACKWARD} SEGMENTS indicate the creation of only forward or backward entities
respectively. To create both types of segments the instruction: BOTH SEGMENTS

must be used. The [raw rdf file path] is the path to the raw file to be loaded
into the processing system. Finally the parameter WITH [max size] states the
maximum allowed size for a segment. At the end of both instructions, the for-
ward and backward entities should be created and a list of the segments, its
predicates and statistics should be available to the user. This file creates an id

for each segment used mainly when the segment is repartitioned. At the end
of the instruction the forward and backward entities that need to be reparti-
tioned, because their size is bigger than the max size parameter, should also be
indicated.

To repartition a segment, the following syntax is used:

CREATE [{FORWARD,BACKWARD}_SEGMENT [id]

PARTITION BY ([predicate function])

This instruction overwrites a segment (identified with id) and creates the par-
titions according to the predicate’s function. The predicate’s function model is
inspired as well from the DDL of the relational model:

(

PARTITION [partition_name_1] [predicate] {LESS,MORE} THAN [VALUE],

...

PARTITION [partition_name_m] [predicate] {LESS,MORE} THAN [VALUE].

)

The following expression declares the repartition of the segment Airplane (we
assumed that its ID is 1) used as example at the previous section:

CREATE FORWARD_SEGMENT 1

PARTITION BY (

PARTITION part1 has_length LESS THAN (73),

PARTITION part2 has_length VALUES LESS THAN < (maxvalue))

The maxvalue is a reserved word indicating the maximum value of the object
with the predicate has length.

To allocate the segments to the processing sites, the declaration is done with
the following syntax:

A logic dimension on RDF partitioning, technical report 11

ALLOCATE {FORWARD,BACKWARD,BOTH}_ENTITIES BY [partition function]

WITH [nb_partitions]

As it was done at the creation stage of segments, we can allocate individually for-
ward and backward edges with the instruction ALLOCATE {FORWARD,BACKWARD}
ENTITIES. To allocate both segments the keyword BOTH ENTITIES should be

used. The partitioning strategy to be used by the system is indicated in the
[partition function] instruction. The available partitioning strategies are:

– ROUND ROBIN

– METIS

The nb partitions parameter indicates the number of sites in which the data
should be distributed. If one segment must be moved to another partition by
implementation constraints, the declaration is:

ALLOCATE {FORWARD,BACKWARD}_SEGMENT [id]

TO SITE ([site id])

In the following section we give the formal definitions for the entities, seg-
ments and partitioning algorithms applied throughout the example developed
on this section.

4 Formal definitions

In this section we define the forward and backward segments for an input RDF
dataset that we represent as G. The data in G is stored in either of the RDF
syntaxes (e.g. RDF/XML, N-Triples, Turtle). We start defining the forward en-
tities that compose forward segments. Then, we define a forward segment and
prove that the set of all forward segments constitutes a partition of G using
the completeness, reconstruction and disjointedness rules. Next, we formalize
the backward entities and segments proving that they also form a partition of
G. Later, we define the allocation problem in which the forward and backward
segments are considered as fragments. Finally, we show the formal mapping of
the allocation problem to a graph partitioning problem.

4.1 Forward segments construction

We start defining the functions s : (s, p, o) → s and o : (s, p, o) → o returning
the subject and object of an RDF triple respectively. They are applied in some
of the definitions of this section.

Definition 1. Forward entity A forward entity denoted as
−→
E is a subset of

G in which the triples share the same subject. Formally
−→
E ⊆ G, such that

−→
E =

{(s, p, o)|∀i 6=j(si = sj)}.

12 Jorge Galicia, Amin Mesmoudi, and Ladjel Bellatreche

The forward entity creation algorithm is described in Alg. 1. Since the algorithms
to create forward and backward entities are very similar, we use the same algo-

rithm to describe both procedures. In this case, we consider that the symbol
←→
E

in Alg. 1 represents actually
−→
E . For each triple t in the graph, we verify if there

is already a forward entity that contains triples with the same subject on the
forward entity set(Step 2). If it is the case, the triple is added to this set (Step
3), otherwise a new forward entity containing the triple t is created (Step 5).

Algorithm 1 Entities creation

Input: RDF dataset G

Output: Set of segments
←→
E = {

←→
E 1, ...,

←→
E p}

1: for each t in G do
2: if ∃q ∈

←→
Ej

∣∣(if −→E j → s(q) = s(t) else
←−
E j → o(q) = o(t)

)
then

3:
←→
Ej =

←→
Ej ∪ {t}

4: else
5:

←→
Ek = {t}

6:
←→
E =

←→
E ∪

←→
Ek

7: end if
8: end for
9: return

←→
E

Theorem 1. A triple belongs to one and only one forward entity. Let t be a

triple t ∈ G, if t ∈
−→
E i ⇒ ∀i 6=j(t /∈

−→
E j).

Proof. To prove by contradiction. Let us assume that a triple t ∈
−→
E i and t ∈

−→
E j .

Let us consider two not equal triples t1, t2, both different from t, such that

t1 ∈
−→
E i and t2 ∈

−→
E j . Based on the forward entities definition, s(t1) = s(t)

and s(t2) = s(t). Using the transitivity of the equality, s(t1) = s(t2) which is

impossible if
−→
Ei 6=

−→
Ej .

Definition 2. Forward segment A forward segment is a set of forward entities−→
E that share the same predicates (or almost the same according to a threshold τ).

A forward entity
−→
E i belongs to one and only one forward segment

−→
C i. Formally−→

C = {
−→
E |∀i 6=j

(
Sim(p(

−→
E i), p(

−→
E j)) ≥ τ

)
⇒
−→
E i ∈

−→
E ∧

−→
E j ∈

−→
E }.

The function p(
−→
E i) returns the set of distinct predicates in the forward entity

−→
E i. The similarity function Sim(p1, p2) returns the similarity between two sets
of predicates p1 and p2. This function could be, for example, a Jaccard similarity
between both sets as:

|p1 ∩ p2|
Max(|p1|, |p2|)

To assign the entity
−→
E i to a segment, the pairwise similarity is calculated be-

tween the entity
−→
E i with all the entities that have already been assigned to a

A logic dimension on RDF partitioning, technical report 13

segment. Let us consider two already assigned entities
−→
E j ∈

−→
Cj and

−→
E k ∈

−→
Ck.

When calculating the similarity one can encounter the following cases:

– If Sim
(
p(
−→
E i), p(

−→
E j)

)
> Sim

(
p(
−→
E i), p(

−→
E k)

)
> τ then Ei ∈

−→
Cj .

– If both scores have the same value, Sim
(
p(
−→
E i), p(

−→
E j

)
= Sim

(
p(
−→
E i), p(

−→
E k)

)
>

τ , then
−→
E i is randomly assigned to either of the sets

−→
Cj or

−→
Ck.

– If the forward entity has not a similarity score greater than the threshold
when comparing with all the forward entities of the graph G, formally ex-

pressed as ∀i 6=j(Sim(p(
−→
E i), p(

−→
E j)) < τ), then the forward entity

−→
E form a

forward segment on its own (
−→
C =

−→
E i).

The algorithm to generate the forward segments is shown in Alg. 2. Similarly

to the notation in Alg. 1, the symbols
←→
E and

←→
C correspond actually to

−→
E

and
−→
C respectively when creating forward segments. For each forward entity

we calculate the pairwise similarity between the forward entity and the already

assigned forward entities (Step 2). The entity
−→
E i is assigned to the segment

according to the cases described previously. The similarity between each distinct
set of predicates sets could be pre-calculated to improve the similarity search
efficiency. When the similarity is greater or equal than the threshold (Steps 4-6),
the forward entity is added to the corresponding forward segment. Otherwise
the forward segment is created on its own (Steps 8,12).

Algorithm 2 Segment creation

Input: Set of entities
←→
E = {

←→
E 1, ...,

←→
E p} , threshold similarity τ

Output: Set of segments
←→
C = {

←→
C 1, ...,

←→
C p}

1: for each
←→
E i in

←→
E do

2: if maximum
(
∀i6=j

(
Sim(p(

←→
Ei), p(

←→
Ej)

))
) ≥ τ then

3: if ∃←→C k∈
←→
C

(
←→
Ej ∈

←→
C k) then

4:
←→
C =

←→
C − {

←→
C k}

5:
←→
C k =

←→
C k ∪ {

←→
Ei}

6:
←→
C =

←→
C ∪ {

←→
C k}

7: else
8:

←→
C k = {

←→
Ei}

9:
←→
C =

←→
C ∪ {

←→
C k}

10: end if
11: else
12:

←→
C k = {

←→
Ei}

13:
←→
C =

←→
C ∪ {

←→
C k}

14: end if
15: end for
16: return

←→
C

14 Jorge Galicia, Amin Mesmoudi, and Ladjel Bellatreche

Theorem 2. The set
−→
C = {

−→
C 1, ...,

−→
C l} of all forward segments for the graph

G is a correct5 partition set of the graph G.

Proof. We will show that the three correctness fragmentation rules are enforced.

– Completeness: If t ∈ G⇒ ∃
−→
E i such that t ∈

−→
E i,
−→
E i ∈

−→
C i, and

−→
C i ∈

−→
C . By

contradiction, if ∀
−→
E i, t /∈

−→
E i then the triple’s t subject s(t) does not equal

any of the subjects of the forward entities
−→
E . Since the forward entities

−→
E

are built by grouping first all triples of the graph G by subject, the triple t’s
subject is not equal to the subject of any triple in G, therefore t /∈ G.

– Reconstruction: It is possible to define an operator∇ such thatG = ∇
−→
Ci ,∀
−→
Ci ∈−→

C . For the forward entity classes, the operator ∇ equals the union operator

∪. In other words,
⋃l

i=1

−→
Ci = G. By contradiction, if ∃t ∈

−→
Ci such that t /∈ G,

then the subject of any triple in
−→
Ci does not belong to G. This is impossible

because by definition, the forward entities are created grouping all triples

from the initial graph G by subject. This would be possible only if t /∈
−→
Ci

and therefore the set of forward entities would not be complete.

– Disjointness: ∀i 6=j(
−→
Ci ∩

−→
Cj = ∅). By contradiction, if ∃(

−→
Ci ∩

−→
Cj = {t}) then

t ∈
−→
Ei and t ∈

−→
Ej (
−→
Ei ∈

−→
Ci ,
−→
Ej ∈

−→
Cj), which is impossible unless the same

triple had two different subjects.

4.2 Backward segments construction

Definition 3. Backward entity A backward entity denoted as
←−
E is a subset

of the original RDF graph G in which the triples share the same object. Formally←−
E ⊆ G such that

←−
E = {(s, p, o)|∀i 6=j(oi = oj)}. A backward entity

←−
E i belongs

to one and only one backward segment
←−
C i.

The backward entity creation algorithm is described in the Alg. 1. In this case

we consider that the symbols
←→
E and

←→
C correspond actually to

−→
E and

−→
C re-

spectively. For each triple t in the graph, we verify if there is already a backward
entity that contains triples with the same object on the backward entity set(Step
2). If so the triple is added to this set (Step 3), otherwise we a new backward
entity containing the triple t is created (Step 5).

Theorem 3. A triple belongs to one and only one backward entity. Let t be a

triple t ∈ G, if t ∈
←−
E i ⇒ ∀i 6=j(t /∈

←−
E j).

Proof. To prove by contradiction. Let us assume that a triple t ∈
←−
E i and t ∈

←−
E j .

Let us consider two not equal triples t1, t2, both different from t, such that

t1 ∈
←−
E i and t2 ∈

←−
E j . Based on the backward entity definition, o(t1) = o(t) and

o(t2) = o(t). Using the transitivity property of the equality, o(t1) = o(t2) which

is impossible if
←−
Ei 6=

←−
Ej .

5 According to the correctness fragmentation rules in [18]

A logic dimension on RDF partitioning, technical report 15

Definition 4. Backward segment A backward segment
←−
C is a set of backward

entities
←−
E that share the same predicates (or almost the same according to a

threshold τ). Formally
←−
C = {

←−
E |Sim(p(

←−
E i), p(

←−
E j)) ≥ τ}.

The similarity is calculated applying the same rules for the forward segments
in Definition 2. The similarity function could be, as it is the case for forward
entities, a Jaccard similarity between the predicates.

The algorithm to generate the backward segments is shown in Alg. 2. The
backward segment creation is created in the same way as the forward segments.

The steps are described in Alg. 1, the symbols
←→
E and

←→
C correspond actually

to
←−
E and

←−
C respectively when creating backward segments.

Theorem 4. The set
←−
C = {

←−
C 1, ...,

←−
C m} of all backward segments for the graph

G is a correct6 partition set of the graph G.

Proof. We will show that the three correctness fragmentation rules are enforced.

– Completeness: If t ∈ G ⇒ ∃
←−
E i such that t ∈

←−
E i,
←−
E i ∈

←−
C i, and

←−
C i ∈

←−
C .

By contradiction, if ∀
←−
E , t /∈

←−
E then the triple’s t object o(t) does not equal

any of the objects of the backward entities
←−
E . Since the backward entities←−

E are built by grouping first all triples of the graph G by object, the triple
t’s object is not equal to the object of any triple in G, therefore t /∈ G.

– Reconstruction: It is possible to define an operator∇ such thatG = ∇
←−
Ci ,∀
←−
Ci ∈←−

C . For the backward entity classes, the operator ∇ equals the union opera-

tor ∪. In other words,
⋃m

i=1

←−
Ci = G. By contradiction, if ∃t ∈

←−
Ci such that

t /∈ G, then the object of any triple in
←−
Ci does not belong to G which is

impossible because by definition the backward entities are created grouping
all triples from the initial graph G by object. This would be possible only if

t /∈
←−
Ci and therefore the set of backward entities would not be complete.

– Disjointness: ∀i 6=j(
←−
Ci ∩

←−
Cj = ∅). By contradiction, if ∃(

←−
Ci ∩

←−
Cj = {t}) then

t ∈
←−
Ei and t ∈

←−
Ej (
←−
Ei ∈

←−
Ci ,
←−
Ej ∈

←−
Cj), which is impossible unless the same

triple had two different objects.

We have proven that the sets of forward and backward segments (
−→
C =

{
−→
C 1, ...,

−→
C l},

←−
C = {

←−
C 1, ...,

←−
C m} respectively) induce correct partitions (i.e.

complete, disjoint and rebuildable) of the original RDF dataset G. The elements
on each set correspond to fragments of G that are adopted as distribution units
during the allocation step. In the next section we describe the allocation strate-

gies for the sets of fragments
−→
C ,
←−
C .

4.3 Allocation problem

In this section, we state the allocation problem for RDF distributed systems and
specify our assumptions. The allocation is performed for a set of segments into
a set of sites.
6 According to the correctness fragmentation rules in [18]

16 Jorge Galicia, Amin Mesmoudi, and Ladjel Bellatreche

Inputs Let V = {V1, ..., Vp} be the set of forward and backward segments

V = {
−→
C1, ...,

−→
Cl}∪{

←−
C1...
←−
Cm} with cardinality p = l+m. The sites are represented

by the set S = {S1, ..., Sq}. We assume that the size of a single segment is always
inferior to the maximum capacity of a site |Si| ≥ |Vj |. An imbalance factor
denoted by ε is used to avoid high imbalance of the size of the partitions.

Preliminary functions The functions defined in this section are used in the
definition of the objective function and restrictions of the allocation problem.
Their definitions are stated in Table 2.

Table 2: Preliminary functions

Function Returns

WV : V → N+ Number of triples per segment.

WF : V × V → N Number of triples shared by two segments V1 and V2. Its
calculation depends on whether the relation is for example
between a forward and backward segment or between two
forward segments. The cases are detailed on Table 1 .

xiSk : V → {0, 1} The assignation function returns 1 if and only if Vi ∈ Sk,
otherwise it returns zero.

Problem definition The partitioning problem consists then in finding an allo-
cation function XiSk

: V → S that minimizes the total number of shared triples
by two segments. Given a set of segments V , sites S and an imbalance factor ε,

minimize
∑

i,j∈{1,...,p}
k∈{1,...,q}

(
(xiSk

⊕ xjSk
) ·WE(Vi, Vj)

)
(1)

Subject to:

∀k∈{1..q}
∣∣∣∣ p∑
i=1

(
xiSk

·WV (Vi)
)
−

p∑
j=1

(
xjSk

·WV (Vj)
)∣∣∣∣

i 6=j

≤ ε (2)

∀i∈{1..p}
(q∑

k=1

xiSk
= 1
)

(3)

Complexity NP-Hard still to be determined.

A logic dimension on RDF partitioning, technical report 17

4.4 Allocation as a graph partitioning problem

The allocation of segments in set of sites is an NP-Hard? problem as it was proven
in last section. Likewise, the data partitioning problem has been proven to be
NP-Complete [7, 22, 15]. Finding exact solutions is consequently computationally
unfeasible and therefore heuristics producing sub-optimal results are the most
convenient strategies.

In this line, we mapped the segments to a directed weighted graph, trans-
forming the allocation problem into a graph partitioning problem. The graph
partitioning problem has been proved to be as well a very complex and com-
putationally expensive problem. However, many efficient heuristics have been
developed (e.g. METIS [13]).

Let us map the set of entity classes C into a directed weighted graph repre-
sented by the quadruple G = (V,E,WV ,WE). V correspond to the set of nodes
composed by the union of forward and backward segments. The node weights
WV correspond to the number of triples on each segment. E represent the set of
edges and WE its weights. An edge is added between two nodes when at least
one of its triples meets the characteristics described in Table 1. The weight of
an edge represent the number of triples to be transferred between two segments
when they are joined with a path pattern.

Given a graph G and a given a number p ∈ N+ indicating the number of
partitions, the graph partitioning problem asks for blocks of nodes V1, ...,Vp
such that V1∪ ...∪Vp = V and Vi∩Vj∀i 6= j. As it was defined before, a balance
parameter ε is used to regulate the balance size between each partition.

Objective function We seek a partition that minimizes the total cuts. In other
words, the objective computes the sum of the weight of the cut edges. A cut edge
is an edge formed by two nodes belonging to two different partitions.

minimize
∑
i<j

w(Eij) (4)

Subject to:
|w(Ei)− w(Ej)|∀i 6=j ≤ ε (5)

The graph of segments needs to be distributed across several nodes and com-

−→
Ca

−→
Cb

←−
Cc

−→
Cd

←−
Ce

−→
Cf

−→
Cg

−→
Ch

←−
Ci

←−
Cj

←−
Ck

Communication

Fig. 5: Graph partitioning example

18 Jorge Galicia, Amin Mesmoudi, and Ladjel Bellatreche

munication between sites takes place for nodes that have non-local edges. We
assume that the number of cuts is proportional to the units of communications
as shown in Figure 5 in which the filled nodes located in different partitions

imply network costs when both segments are joined (e.g. the nodes
−→
Ca and

−→
Ch).

5 Related Work

In this section we describe briefly the principal storage models used by RDF
systems. Then we classify the RDF partitioning approaches and we cite the
studies comparing the performance between partitioning strategies.

5.1 RDF data storage models

The data storage model of several RDF systems is based on the relational model.
The triples of these systems are stored on disk using one of the following strate-
gies: i)Triple table: a single table with three columns (subject, predicate, object)
is created. The most popular systems using this strategy are RDF-3X[17] and
Hexastore[27]. ii)Property table: a single table whose dimensions are determined
by the number of subjects and distinct predicates is created. This strategy is
applied by the Jena2[28] system. iii) Vertical partition: this strategy creates a
two-column table (subject, object) per predicate. The strategy is applied by SW-
Store[1], HadoopRDF[5] and Jena-HBase[14]. More sophisticated storage models
are used by the systems G-Store[31], Trinity.RDF[29] and H2RDF[19] in which
the data are stored using graph-representation models like adjacency lists.

5.2 Partitioning RDF techniques

Distributed7 RDF systems are classified in two major groups. The first group
concerns Federated systems(e.g. HiBISCuS [24], SPLENDID [8]) in which SPARQL
queries run over multiple endpoints in different physical locations. Federated sys-
tems are out of the scope of our research but we mention them for the complete-
ness. The second group gathers systems in which the RDF data are distributed
among different data nodes being part of a single RDF storage solution. The
systems in this category are called clustered storage systems and its partitioning
strategies are classified as:

1. Hash partitioning: the allocation of triples is performed according to a hash
value computed on the subject(or predicate) of a triple modulo the number of
computer nodes. The strategy ensures that the triples of the same subject(or
predicate) are located in the same partition. The strategy is used in systems
like Virtuoso[6], Trinity.RDF[29] and HadoopRDF[5].

2. Hierarchical hash: also called semantic-hash partitioning, the strategy builds
a path hierarchy based on the subject’s IRIs. It is applied in SHAPE[16].

7 Distributed or Parallel

A logic dimension on RDF partitioning, technical report 19

3. Minimal edge-cut: this strategy solves the partitioning problem as a k-way
graph partitioning using heuristic packages like METIS[13]. The strategy
aims to minimize the number of edges between vertices of different partitions.
This strategy is applied in the EAGRE[30] system. A variant of this strategy,
named n-hop guarantee, replicates certain data to reduce the number of
exchanged intermediate results. This strategy is applied in H-RDF-3X[10].
Another variant uses the workload to assign weights to the edges and perform
a graph partitioning heuristic on a weighted graph. This strategy is applied
in the systems WARP[9] and [4].

4. Round-robin: This technique assigns an x number of triples to partition 1,
then an x number to partition 2 and so on. The strategy is applied in [23].

5. Other approaches: the previous strategies are built specifically to deal with
RDF. Several other strategies work on top of distributed platforms like
Hadoop or key-value stores. In these systems, the storage back-end is in
charge of distributing the triples. For example, when the graph is directly
stored into the HDFS (Hadoop Distributed File System), the data are split
into blocks of fixed size that are hash-distributed among the workers. This is
the case of systems like S2RDF[26](with Spark), SHARD[21] and PigSparql[25].

Recently, the studies [12, 3] evaluated and compared the impact of certain data
placement strategies in distributed RDF stores. Some efforts have also been made
to build a system to benchmark partitioning strategies. The system Koral[11], for
example, allows the integration of different RDF graph partitioning techniques
to investigate their behavior.

6 Conclusion

In this paper, we added a logical dimension to the partitioning process of RDF
graphs. The logic dimension allows to declare the partitions with a declarative
language. The allocation methods show that the exchanges of intermediate re-
sults are minimized using a min-cut algorithm. Our on-going projects include
the consideration of the query workload in the declaration of partitions and the
considering of changes on the dataset (updates).

References

1. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: Sw-store: a vertically parti-
tioned DBMS for semantic web data management. VLDB J. 18(2), 385–406 (2009).
https://doi.org/10.1007/s00778-008-0125-y, https://doi.org/10.1007/s00778-008-
0125-y

2. Agrawal, S., Narasayya, V.R., Yang, B.: Integrating vertical and horizon-
tal partitioning into automated physical database design. In: Weikum, G.,
König, A.C., Deßloch, S. (eds.) Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, Paris, France, June 13-
18, 2004. pp. 359–370. ACM (2004). https://doi.org/10.1145/1007568.1007609,
http://doi.acm.org/10.1145/1007568.1007609

20 Jorge Galicia, Amin Mesmoudi, and Ladjel Bellatreche

3. Akhter, A., Ngomo, A.N., Saleem, M.: An empirical evaluation of RDF graph
partitioning techniques. In: Faron-Zucker, C., Ghidini, C., Napoli, A., Toussaint,
Y. (eds.) Knowledge Engineering and Knowledge Management - 21st Interna-
tional Conference, EKAW 2018, Nancy, France, November 12-16, 2018, Proceed-
ings. Lecture Notes in Computer Science, vol. 11313, pp. 3–18. Springer (2018).
https://doi.org/10.1007/978-3-030-03667-6 1, https://doi.org/10.1007/978-3-030-
03667-6 1

4. Al-Ghezi, A.I.A., Wiese, L.: Adaptive workload-based partitioning and repli-
cation for RDF graphs. In: Hartmann, S., Ma, H., Hameurlain, A., Per-
nul, G., Wagner, R.R. (eds.) Database and Expert Systems Applications -
29th International Conference, DEXA 2018, Regensburg, Germany, Septem-
ber 3-6, 2018, Proceedings, Part II. Lecture Notes in Computer Science, vol.
11030, pp. 250–258. Springer (2018). https://doi.org/10.1007/978-3-319-98812-
2 21, https://doi.org/10.1007/978-3-319-98812-2 21

5. Du, J., Wang, H., Ni, Y., Yu, Y.: Hadooprdf: A scalable semantic data analytical
engine. In: Huang, D., Ma, J., Jo, K., Gromiha, M.M. (eds.) Intelligent Comput-
ing Theories and Applications - 8th International Conference, ICIC 2012, Huang-
shan, China, July 25-29, 2012. Proceedings. Lecture Notes in Computer Science,
vol. 7390, pp. 633–641. Springer (2012). https://doi.org/10.1007/978-3-642-31576-
3 80, https://doi.org/10.1007/978-3-642-31576-3 80

6. Erling, O., Mikhailov, I.: RDF support in the virtuoso DBMS. In: Auer, S.,
Bizer, C., Müller, C., Zhdanova, A.V. (eds.) The Social Semantic Web 2007,
Proceedings of the 1st Conference on Social Semantic Web (CSSW), Septem-
ber 26-28, 2007, Leipzig, Germany. LNI, vol. 113, pp. 59–68. GI (2007),
http://subs.emis.de/LNI/Proceedings/Proceedings113/article1851.html

7. Eswaran, K.P.: Placement of records in a file and file allocation in a computer. In:
IFIP Congress. pp. 304–307 (1974)

8. Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting VOID
descriptions. In: Hartig, O., Harth, A., Sequeda, J.F. (eds.) Proceedings of the Sec-
ond International Workshop on Consuming Linked Data (COLD2011), Bonn, Ger-
many, October 23, 2011. CEUR Workshop Proceedings, vol. 782. CEUR-WS.org
(2011), http://ceur-ws.org/Vol-782/GoerlitzAndStaab COLD2011.pdf

9. Hose, K., Schenkel, R.: WARP: workload-aware replication and partition-
ing for RDF. In: Chan, C.Y., Lu, J., Nørv̊ag, K., Tanin, E. (eds.) Work-
shops Proceedings of the 29th IEEE International Conference on Data
Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013. pp. 1–6.
IEEE Computer Society (2013). https://doi.org/10.1109/ICDEW.2013.6547414,
https://doi.org/10.1109/ICDEW.2013.6547414

10. Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL querying of large RDF graphs.
PVLDB 4(11), 1123–1134 (2011), http://www.vldb.org/pvldb/vol4/p1123-
huang.pdf

11. Janke, D., Staab, S., Thimm, M.: Koral: A glass box profiling system for indi-
vidual components of distributed RDF stores. In: Usbeck, R., Ngomo, A.N., Kim,
J., Choi, K., Cimiano, P., Fundulaki, I., Krithara, A. (eds.) Joint Proceedings
of BLINK2017: 2nd International Workshop on Benchmarking Linked Data and
NLIWoD3: Natural Language Interfaces for the Web of Data co-located with 16th
International Semantic Web Conference (ISWC 2017), Vienna, Austria, October
21st - to - 22nd, 2017. CEUR Workshop Proceedings, vol. 1932. CEUR-WS.org
(2017), http://ceur-ws.org/Vol-1932/paper-05.pdf

A logic dimension on RDF partitioning, technical report 21

12. Janke, D., Staab, S., Thimm, M.: Impact analysis of data placement
strategies on query efforts in distributed RDF stores. J. Web Se-
mant. 50, 21–48 (2018). https://doi.org/10.1016/j.websem.2018.02.002,
https://doi.org/10.1016/j.websem.2018.02.002

13. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Scientific Computing
20(1), 359–392 (1998). https://doi.org/10.1137/S1064827595287997,
https://doi.org/10.1137/S1064827595287997

14. Khadilkar, V., Kantarcioglu, M., Thuraisingham, B.M., Castagna, P.: Jena-hbase:
A distributed, scalable and effcient RDF triple store. In: Glimm, B., Huynh, D.
(eds.) Proceedings of the ISWC 2012 Posters & Demonstrations Track, Boston,
USA, November 11-15, 2012. CEUR Workshop Proceedings, vol. 914. CEUR-
WS.org (2012), http://ceur-ws.org/Vol-914/paper 14.pdf

15. Lam, K., Yu, C.T.: An approximation algorithm for a file-allocation problem in a
hierarchical distributed system. In: Chen, P.P., Sprowls, R.C. (eds.) Proceedings
of the 1980 ACM SIGMOD International Conference on Management of Data,
Santa Monica, California, USA, May 14-16, 1980. pp. 125–132. ACM Press (1980).
https://doi.org/10.1145/582250.582270, https://doi.org/10.1145/582250.582270

16. Lee, K., Liu, L.: Scaling queries over big RDF graphs with semantic hash partition-
ing. PVLDB 6(14), 1894–1905 (2013). https://doi.org/10.14778/2556549.2556571,
http://www.vldb.org/pvldb/vol6/p1894-lee.pdf

17. Neumann, T., Weikum, G.: RDF-3X: a risc-style engine for RDF.
PVLDB 1(1), 647–659 (2008). https://doi.org/10.14778/1453856.1453927,
http://www.vldb.org/pvldb/1/1453927.pdf

18. Özsu, M.T., Valduriez, P.: Principles of distributed database systems. Springer
Science & Business Media (2011)

19. Papailiou, N., Konstantinou, I., Tsoumakos, D., Karras, P., Koziris, N.:
H2RDF+: high-performance distributed joins over large-scale RDF graphs.
In: Hu, X., Lin, T.Y., Raghavan, V.V., Wah, B.W., Baeza-Yates, R.A.,
Fox, G.C., Shahabi, C., Smith, M., Yang, Q., Ghani, R., Fan, W.,
Lempel, R., Nambiar, R. (eds.) Proceedings of the 2013 IEEE Inter-
national Conference on Big Data, 6-9 October 2013, Santa Clara, CA,
USA. pp. 255–263. IEEE (2013). https://doi.org/10.1109/BigData.2013.6691582,
https://doi.org/10.1109/BigData.2013.6691582

20. Ramamurthy, R., DeWitt, D.J., Su, Q.: A case for fractured mirrors. In: VLDB
2002, Proceedings of 28th International Conference on Very Large Data Bases,
August 20-23, 2002, Hong Kong, China. pp. 430–441. Morgan Kaufmann (2002),
http://www.vldb.org/conf/2002/S12P03.pdf

21. Rohloff, K., Schantz, R.E.: Clause-iteration with mapreduce to scal-
ably query datagraphs in the SHARD graph-store. In: Kosar, T.
(ed.) DIDC’11, Proceedings of the Fourth International Workshop on
Data-intensive Distributed Computing, San Jose, CA, USA, June 8,
2011. pp. 35–44. ACM (2011). https://doi.org/10.1145/1996014.1996021,
http://doi.acm.org/10.1145/1996014.1996021

22. Saccà, D., Wiederhold, G.: Database partitioning in a cluster of processors. ACM
Trans. Database Syst. 10(1), 29–56 (1985). https://doi.org/10.1145/3148.3161,
https://doi.org/10.1145/3148.3161

23. Saleem, M., Khan, Y., Hasnain, A., Ermilov, I., Ngomo, A.N.: A fine-grained
evaluation of SPARQL endpoint federation systems. Semantic Web 7(5), 493–518
(2016). https://doi.org/10.3233/SW-150186, https://doi.org/10.3233/SW-150186

22 Jorge Galicia, Amin Mesmoudi, and Ladjel Bellatreche

24. Saleem, M., Ngomo, A.N.: Hibiscus: Hypergraph-based source selection for
SPARQL endpoint federation. In: Presutti, V., d’Amato, C., Gandon, F.,
d’Aquin, M., Staab, S., Tordai, A. (eds.) The Semantic Web: Trends and
Challenges - 11th International Conference, ESWC 2014, Anissaras, Crete,
Greece, May 25-29, 2014. Proceedings. Lecture Notes in Computer Science,
vol. 8465, pp. 176–191. Springer (2014). https://doi.org/10.1007/978-3-319-07443-
6 13, https://doi.org/10.1007/978-3-319-07443-6 13

25. Schätzle, A., Przyjaciel-Zablocki, M., Lausen, G.: Pigsparql: map-
ping SPARQL to pig latin. In: Virgilio, R.D., Giunchiglia, F., Tanca,
L. (eds.) Proceedings of the International Workshop on Semantic
Web Information Management, SWIM 2011, Athens, Greece, June
12, 2011. p. 4. ACM (2011). https://doi.org/10.1145/1999299.1999303,
http://doi.acm.org/10.1145/1999299.1999303

26. Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.:
S2RDF: RDF querying with SPARQL on spark. PVLDB
9(10), 804–815 (2016). https://doi.org/10.14778/2977797.2977806,
http://www.vldb.org/pvldb/vol9/p804-schaetzle.pdf

27. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple in-
dexing for semantic web data management. PVLDB 1(1),
1008–1019 (2008). https://doi.org/10.14778/1453856.1453965,
http://www.vldb.org/pvldb/1/1453965.pdf

28. Wilkinson, K.: Jena property table implementation (2006)

29. Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A dis-
tributed graph engine for web scale RDF data. PVLDB
6(4), 265–276 (2013). https://doi.org/10.14778/2535570.2488333,
http://www.vldb.org/pvldb/vol6/p265-zeng.pdf

30. Zhang, X., Chen, L., Tong, Y., Wang, M.: EAGRE: towards scalable I/O ef-
ficient SPARQL query evaluation on the cloud. In: Jensen, C.S., Jermaine,
C.M., Zhou, X. (eds.) 29th IEEE International Conference on Data En-
gineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013. pp. 565–576.
IEEE Computer Society (2013). https://doi.org/10.1109/ICDE.2013.6544856,
https://doi.org/10.1109/ICDE.2013.6544856

31. Zou, L., Özsu, M.T., Chen, L., Shen, X., Huang, R., Zhao, D.: gstore:
a graph-based SPARQL query engine. VLDB J. 23(4), 565–590 (2014).
https://doi.org/10.1007/s00778-013-0337-7, https://doi.org/10.1007/s00778-013-
0337-7

7 Appendix

7.1 Queries from experiments

Query 1: Linear

SELECT ?v0 ?v2
WHERE {
?v0 <http://ogp.me/ns#tag> <http://db.uwaterloo.ca/~galuc/wsdbm/Topic179> .
?v0 <http://schema.org/caption> ?v2 .
}

A logic dimension on RDF partitioning, technical report 23

Query 2: Linear

SELECT ?v0 ?v2
WHERE {
?v0 <http://ogp.me/ns#tag> <http://db.uwaterloo.ca/~galuc/wsdbm/Topic183> .
?v0 <http://schema.org/caption> ?v2 .
}

Query 3: Linear

SELECT ?v0 ?v2
WHERE {
?v0 <http://ogp.me/ns#tag> <http://db.uwaterloo.ca/~galuc/wsdbm/Topic84> .
?v0 <http://schema.org/caption> ?v2 .
}

Query 4: Linear

SELECT ?v0 ?v2
WHERE {
?v0 <http://ogp.me/ns#tag> <http://db.uwaterloo.ca/~galuc/wsdbm/Topic84> .
?v0 <http://schema.org/caption> ?v2 .
}

Query 5: Linear

SELECT ?v0 ?v1
WHERE {
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/likes> ?v1 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/subscribes> <http://db.uwaterloo.ca/~galuc/wsdbm/Website28> .
}

Query 6: Star

SELECT ?v0 ?v2 ?v3 ?v4
WHERE {
?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://db.uwaterloo.ca/~galuc/wsdbm/ProductCategory5> .
?v0 <http://schema.org/caption> ?v2 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/hasGenre> ?v3 .
?v0 <http://schema.org/publisher> ?v4 .
}

Query 7: Star

SELECT ?v0 ?v2 ?v3
WHERE {
?v0 <http://xmlns.com/foaf/age> <http://db.uwaterloo.ca/~galuc/wsdbm/AgeGroup2> .
?v0 <http://xmlns.com/foaf/familyName> ?v2 .
?v3 <http://purl.org/ontology/mo/artist> ?v0 .
?v0 <http://schema.org/nationality> <http://db.uwaterloo.ca/~galuc/wsdbm/Country1> .
}

Query 8: Star

SELECT ?v0 ?v1 ?v2
WHERE {
?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v1 .
?v0 <http://schema.org/text> ?v2 .
<http://db.uwaterloo.ca/~galuc/wsdbm/User506> <http://db.uwaterloo.ca/~galuc/wsdbm/likes> ?v0 .
}

24 Jorge Galicia, Amin Mesmoudi, and Ladjel Bellatreche

Query 9: Star

SELECT ?v0 ?v1 ?v3 ?v4 ?v5 ?v6 ?v7 ?v8 ?v9
WHERE {
?v0 <http://purl.org/goodrelations/includes> ?v1 .
<http://db.uwaterloo.ca/~galuc/wsdbm/Retailer10> <http://purl.org/goodrelations/offers> ?v0 .
?v0 <http://purl.org/goodrelations/price> ?v3 .
?v0 <http://purl.org/goodrelations/serialNumber> ?v4 .
?v0 <http://purl.org/goodrelations/validFrom> ?v5 .
?v0 <http://purl.org/goodrelations/validThrough> ?v6 .
?v0 <http://schema.org/eligibleQuantity> ?v7 .
?v0 <http://schema.org/eligibleRegion> ?v8 .
?v0 <http://schema.org/priceValidUntil> ?v9 .
}

Query 10: Star

SELECT ?v0 ?v2 ?v3 ?v4
WHERE {
?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://db.uwaterloo.ca/~galuc/wsdbm/ProductCategory12> .
?v0 <http://schema.org/caption> ?v2 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/hasGenre> ?v3 .
?v0 <http://schema.org/publisher> ?v4 .
}

Query 11: Snowflake

SELECT ?v0 ?v1 ?v3 ?v4 ?v5 ?v6
WHERE {
?v0 <http://purl.org/goodrelations/includes> ?v1 .
<http://db.uwaterloo.ca/~galuc/wsdbm/Retailer3> <http://purl.org/goodrelations/offers> ?v0 .
?v0 <http://purl.org/goodrelations/price> ?v3 .
?v0 <http://purl.org/goodrelations/validThrough> ?v4 .
?v1 <http://ogp.me/ns#title> ?v5 .
?v1 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v6 .
}

Query 12: Snowflake

SELECT ?v0 ?v1 ?v3 ?v4 ?v5 ?v6
WHERE {
?v0 <http://purl.org/goodrelations/includes> ?v1 .
<http://db.uwaterloo.ca/~galuc/wsdbm/Retailer11> <http://purl.org/goodrelations/offers> ?v0 .
?v0 <http://purl.org/goodrelations/price> ?v3 .
?v0 <http://purl.org/goodrelations/validThrough> ?v4 .
?v1 <http://ogp.me/ns#title> ?v5 .
?v1 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v6 .
}

Query 13: Snowflake

SELECT ?v0 ?v2 ?v3 ?v4 ?v5
WHERE {
?v0 <http://ogp.me/ns#tag> <http://db.uwaterloo.ca/~galuc/wsdbm/Topic61> .
?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v2 .
?v3 <http://schema.org/trailer> ?v4 .
?v3 <http://schema.org/keywords> ?v5 .
?v3 <http://db.uwaterloo.ca/~galuc/wsdbm/hasGenre> ?v0 .
?v3 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://db.uwaterloo.ca/~galuc/wsdbm/ProductCategory2> .
}

A logic dimension on RDF partitioning, technical report 25

Query 14: Snowflake

SELECT ?v0 ?v2 ?v3 ?v4 ?v5
WHERE {
?v0 <http://ogp.me/ns#tag> <http://db.uwaterloo.ca/~galuc/wsdbm/Topic232> .
?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v2 .
?v3 <http://schema.org/trailer> ?v4 .
?v3 <http://schema.org/keywords> ?v5 .
?v3 <http://db.uwaterloo.ca/~galuc/wsdbm/hasGenre> ?v0 .
?v3 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://db.uwaterloo.ca/~galuc/wsdbm/ProductCategory2> .
}

Query 15: Snowflake

SELECT ?v0 ?v1 ?v2 ?v4 ?v5 ?v6 ?v7
WHERE {
?v0 <http://xmlns.com/foaf/homepage> ?v1 .
?v0 <http://ogp.me/ns#title> ?v2 .
?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v3 .
?v0 <http://schema.org/caption> ?v4 .
?v0 <http://schema.org/description> ?v5 .
?v1 <http://schema.org/url> ?v6 .
?v1 <http://db.uwaterloo.ca/~galuc/wsdbm/hits> ?v7 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/hasGenre> <http://db.uwaterloo.ca/~galuc/wsdbm/SubGenre24> .
}

Query 16: Snowflake

SELECT ?v0 ?v1 ?v2 ?v4 ?v5 ?v6 ?v7
WHERE {
?v0 <http://xmlns.com/foaf/homepage> ?v1 .
?v0 <http://ogp.me/ns#title> ?v2 .
?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v3 .
?v0 <http://schema.org/caption> ?v4 .
?v0 <http://schema.org/description> ?v5 .
?v1 <http://schema.org/url> ?v6 .
?v1 <http://db.uwaterloo.ca/~galuc/wsdbm/hits> ?v7 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/hasGenre> <http://db.uwaterloo.ca/~galuc/wsdbm/SubGenre59> .
}

Query 17: Complex

SELECT ?v0
WHERE {
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/likes> ?v1 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/friendOf> ?v2 .
?v0 <http://purl.org/dc/terms/Location> ?v3 .
?v0 <http://xmlns.com/foaf/age> ?v4 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/gender> ?v5 .
?v0 <http://xmlns.com/foaf/givenName> ?v6 .
}

Query 18: Complex

SELECT ?v0 ?v4 ?v6 ?v7
WHERE {
?v0 <http://schema.org/caption> ?v1 .
?v0 <http://schema.org/text> ?v2 .
?v0 <http://schema.org/contentRating> ?v3 .
?v0 <http://purl.org/stuff/rev#hasReview> ?v4 .
?v4 <http://purl.org/stuff/rev#title> ?v5 .
?v4 <http://purl.org/stuff/rev#reviewer> ?v6 .
?v7 <http://schema.org/actor> ?v6 .
?v7 <http://schema.org/language> ?v8 .
}

26 Jorge Galicia, Amin Mesmoudi, and Ladjel Bellatreche

Query 19: Complex

SELECT ?v0
WHERE {
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/likes> ?v1 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/friendOf> ?v2 .
?v0 <http://purl.org/dc/terms/Location> ?v3 .
?v0 <http://xmlns.com/foaf/age> ?v4 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/gender> ?v5 .
?v0 <http://xmlns.com/foaf/givenName> ?v6 .
}

Query 20: Complex

SELECT ?v0 ?v4 ?v6 ?v7
WHERE {
?v0 <http://schema.org/caption> ?v1 .
?v0 <http://schema.org/text> ?v2 .
?v0 <http://schema.org/contentRating> ?v3 .
?v0 <http://purl.org/stuff/rev#hasReview> ?v4 .
?v4 <http://purl.org/stuff/rev#title> ?v5 .
?v4 <http://purl.org/stuff/rev#reviewer> ?v6 .
?v7 <http://schema.org/actor> ?v6 .
?v7 <http://schema.org/language> ?v8 .
}

