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Abstract

Packet switched networks and message multiplexing have been a major
upgrade for industrial systems communications. In the avionics domain,
this evolution was brought by the introduction of Avionics Full Duplex
Switched Ethernet (AFDX). Guaranteed upper bounds of end-to-end de-
lays for messages transmitted over an AFDX network are mandatory for
certification reasons.

In this article, we present the Forward end-to-end delay Analysis (FA),
which is scalable to both large and heavily loaded configurations. A formal
proof of FA is detailed and the approach is compared with alternative
methods (Network Calculus and the Trajectory approach) on two types
of AFDX configurations (including a real industrial architecture).

1 Introduction

Over the last decades, the Real-Time systems have widely spread in many do-
mains and their complexity has increased substantially. The augmentation of
computation demand and cost reduction efforts has push forward distributed
architectures, sharing resources in the form of processing units interconnected
by communication channels.

A direct consequence of the evolution towards more distributed systems is
a higher amount of data exchange. Real-time capable networks offering large
bandwidth capacity over a shared medium have been proposed in the avionics
field, such as the Avionics Full Duplex Switched Ethernet [1], used as a backbone
network in most of recent civilian aircraft, or TTEthernet [2] at the core of the
new NASA crew vehicle (ORION).

Network determinism is mandatory to ensure that end-to-end timing con-
straints are met. In particular, the worst-case end-to-end (ETE) latency of each
frame sent over the network has to be determined. Such a worst-case is hard to
track when the network components are asynchronous such as for AFDX. Sev-
eral approaches have been developed in order to determine guaranteed upper
bounds of ETE delays. Even though upper bounds are sufficient for certification
purpose, they often imply oversizing when used for network dimensioning.
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The contribution of this paper is to propose a new approach for computing
ETE delays in AFDX networks, named Forward Analysis. It can be generalized
to asynchronous packet networks with FIFO queuing. It has been improved in
comparison with author’s prior results [3] and is rigorously proved in this paper.
Moreover, the approach is benchmarked against state of the art methods on a
real-world avionics case-study.

This paper is organized as follows. In Section 2, we present existing worst-
case end-to-end computation frameworks in the context of packet networks.
The detail of AFDX and its modeling are given in Section 3. FA is presented in
Section 4. Finally, in Section 5, experimentation and comparison are conducted
on both sample and industrial configurations. Conclusion and further work are
presented in Section 6.

2 Related work and motivations

Determining worst-case ETE delays of frames in a packet network is manda-
tory for temporal validation of distributed systems. However, with fully asyn-
chronous sources and switching elements, tracking the worst-case scenario along
a multi-hop path with several queuing elements can be hard. Thus, Model
Checking (MC) approaches are not applicable as they do not scale up with
large industrial configurations [4] due to combinatorial explosion. Some work
has been conducted to improve the ambit of MC through state space reduc-
tion [4] or by considering timing correlation between traffic flows [5], but still
not in line with full-fledged avionics configurations [6].

An alternative to worst-case scenarios tracking is to compute upper-bounds
of the worst-case ETE delays by making conservative, and thus, pessimistic
hypothesis. Finding a computation minimizing this pessimism will help keeping
as low as possible the cost of overdimensioning. We compare hereafter several
conservative computation techniques.

Network Calculus (NC) [7] is the current reference for certification of AFDX
networks in civilian aircraft [8]. It can be applied [9] to other Ethernet based
networks such as Audio Video Bridging (AVB) [10]. In NC, the upper bound
is obtained as a sum of local worst-case scenarios computed with traffic en-
velopes. Since these scenarios cannot be experienced simultaneously, and since
the envelope are conservative, the obtained upper bounds can be pessimistic. A
stochastic extension of NC has been formalized in [11], but the results are not
yet relevant for real-world systems.

The holistic approach (HA) also computes local delays in switches [12] and
iteratively updates jitters until a fix point is reached (i.e., worst-case ETE upper
bounds have been computed). Some work in the context of packet networks has
been conducted to cope with ETE delays [13], but without formal proof of
correctness. In [14] the holistic approach has been applied to analyze AFDX
End Systems.

The Trajectory Approach (TA) proposed in [13,15] takes advantage of schedul-
ing analysis results, by making an analogy between frames being served in a
multiplexing point and non-preemptive task scheduling in a uniprocessor. The
main idea is to overcome the ”sum of local optimum” problem mentioned for
NC and HA by concatenating all network elements crossed by a traffic flow into
a single global node (hence the name of the approach). However, this assump-
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Figure 1: An AFDX configuration

tion induces an important limitation: it cannot determine an upper bound of
the ETE delay for a flow with a cumulative load along its path higher than
100%. TA has not been formally proved in previously cited work, and Kemayo
et al. [16] showed that TA can compute optimistic bounds in some corner cases.
The method has been patched since [17], but the correction is also lacking a
formal proof of correctness.

The limitations in existing methods motivated the research for another
method for evaluating worst-case ETE delays in packet networks. Similarly
to TA, the Forward End-to-End delays Analysis (FA) [3,18] leverages existing
results about non-preempting task scheduling in the uniprocessor context. The
most significant contributions of our approach compared with TA is the global
load limitation being lifted and a formal proof of correctness.

Among the previously cited methods, NC and TA have been improved to take
into account the so called serialization effect : frames transmitted via a same
link cannot arrive simultaneously in the destination node of this link. They
are necessarily delivered sequentially. This improvement has shown to produce
less pessimistic ETE delays for both NC [8] and for TA [19,20]. We show (see
Section 4.4) that our approach (FA) can benefit from this improvement within
a same order of magnitude.

3 AFDX and network model

AFDX [1] is a switched packet network based on Ethernet. The AFDX ingress/Egress
points are called End Systems (ES). The ESs are interconnected by a set of
switches and physical links. The traffic is mapped on logical communication
channels called Virtual Links (VL). A sample AFDX configuration is depicted
in Fig. 1. It is made up of six switches and nine ESs exchanging frames through
ten VLs.

A VL is an unidirectional connection between a source ES and one or more
destination ESs. For example, in Fig. 1, multicast VL v4 starts at ES3, crosses
switches S1 and S4, then splits towards two destination ESs: ES7 (via S5)
and ES8. A VL defines static routes with predetermined bandwidth allocation
in the form of a maximum frame size (Fmax) and a minimum time between
the generation of two consecutive frames in the source ES (BAG), also called
Bandwidth Allocation Gap. The deterministic behavior of AFDX is ensured by
traffic shaping and policing units in each node. Switches and End Systems are
fully asynchronous: there is no global clock or synchronization protocol. Full
Duplex links guarantee the absence of collisions between frames. The entire
multiplexing cost is thus deferred to the servicing queues.

AFDX switches operate as store-and-forward between input and output
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ports, applying traffic policing and routing according to the specification of
the VLs. The switching fabric latency (L) is estimated at 16µs [8]. An out-
put port is a work-conserving queue, servicing frames with a First-In, First-Out
(FIFO) policy. An ES has no input ports but has a single output port with a
FIFO buffer. The servicing rate of an output port is constant (mostly 100 Mbps,
10 Mbps for a few of them).

FA has been thought for AFDX, but can be used for any kind of packet
network compliant with the model defined hereafter. It considers a network
composed of a set of nodes S interconnected through logical links. A node h
has a set of input links, a single FIFO buffer with a servicing rate rh connected
to one or multiple destination nodes through output links. As for AFDX, each
multiplexing point (i.e. a switch output port or an ES) corresponds to a node.

At its arrival time in the node, a frame is stored in an input buffer, be-
fore being forwarded to its destination nodes (see Fig. 2). The communications
exchanged between nodes are modeled by a set of sporadic, unicast and unidi-
rectional flows denoted Γ = {v1, v2, . . . , vn}. Let Γh be the set of flows crossing
a node h. These flows are the counterpart of Virtual Links in the AFDX con-
text. As VLs can be multicast, flows modeling a VL have to be duplicated at
each splitting point of the multicast tree.

A frame from a flow vi starts its transmission in a source node denoted
firsti. It crosses successive nodes until its destination node, denoted lasti.
The path Pi of a flow vi is statically defined as the ordered list of nodes from
firsti to lasti. In the context of AFDX, lasti often corresponds to the output
port of last switch crossed by vi, since the message processing delay in the
destination ES (depending on the application running on it) is not accounted
in the computation.

In addition to its path, a flow vi is characterized by:

• Fmaxi, the maximum frame size (in bits) for a flow vi, corresponding to
a maximum transmission time in a node h (of servicing rate rh) equal to
Ch

i = Fmaxi

rh
;

• Ti, the minimum interval between the generation time of two consecutive
frames from flow vi in node firsti. It corresponds to the AFDX BAG.

The delay incurred by a frame of a flow vi, as depicted in Fig. 2, is made up
of :

• a technological latency, denoted L, including the electrical propagation
time (fairly negligible) and the switching delay of 16µs at each hop ;

• a highly variable waiting time spent in each node from its path Pi,
conditioned by the amount of pending frames (or backlog) in the buffer at
its arrival time in the given node, including its own transmission time
Ch

i .

The aim of the FA computation is to upper-bound these waiting times in order
to compute worst-case ETE delays.

4 Forward Analysis

In this section, we present the Forward End-to-End delay Analysis (FA). The
aim of this method is to determine upper bounds of worst-case ETE transmission
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delays, based on the packet network model exposed in Section 3.

4.1 Principles

To determine the ETE delay of a flow, all the nodes belonging to its path are
analyzed sequentially. A worst-case ETE transmission delay of a frame from
its departure node up to a given node is computed, and the computation is
propagated in a data-flow manner, up to its destination node.

The worst-case traversal delay of a frame of a flow vi from its ingress node
(firsti) up to a given node h from Pi, denoted Rh

i (see Fig. 3), is composed of a
worst-case traversal time until node h, plus a worst-case delay incurred in node
h :

Rh
i = Smaxhi +Bklgh (1)

We detail hereafter the computation of both parts of Rh
i .

Definition 1 A temporal definition of the backlog in an output buffer is the
total transmission time of all the pending frames in that buffer at a given time
t. We denote by Bklgh an upper bound on the worst-case backlog in the output
buffer of node h at any time.

Definition 2 For a node h from Pi, the term Smaxhi is the maximum delay
incurred by a frame of vi, from its generation time in node firsti, before entering
node h.

By definition: Smaxfirstii = 0. Smaxhi is then determined iteratively. Let
h and h+ 1 denote two consecutive nodes from Pi. By construction, Smaxh+1

i

(see Fig. 3) is the sum of the delay suffered to reach h (Smaxhi ), the maximum
queuing time in h (Bklgh) and the technological latency L:{

Smaxfirstii = 0

Smaxh+1
i = Smaxhi +Bklgh + L

(2)
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It is worthy noting that Bklgh includes the transmission time Ch
i of the

frame under study. Similarly, the shortest time to reach a node h for a frame
from flow vi considering no interference in each node is:{

Sminfirstii = 0

Sminh+1
i = Sminhi + Ch

i + L
(3)

Finally, the worst-case ETE delay for a flow vi is denoted Ri, which corre-
sponds, by definition to Rlasti

i .
The main difficulty is to determine Bklgh in each node h. Thus, for a node

h, we establish the worst-case scenario maximizing the contribution of each flow
vi (vi ∈ Γh) in Bklgh. This problem is studied in Section 4.2. In Section 4.3,
this scenario is described with the concept of Request Bound Functions (RBF).
Further optimization considering the serialization effect is brought in Section 4.4.
The final expression of the maximum backlog is given in Section 4.5 and a
sufficient condition to stop the computation is given in Section 4.6. Finally, the
whole method is summed up in Section 4.7 and expressed in the form of an
algorithm.

4.2 Worst-case scenario to determine the maximum back-
log

In order to determine Bklgh, we consider the starting time of node h as time
0 (no frame arrives in h before time 0). Bklgh is the maximum backlog for
any time t ≥ 0. Therefore, we analyze the time interval [0, t], looking for the
maximum backlog that can be generated by each flow vi ∈ Γh in order to
maximize the global amount of backlog for any t ≥ 0.

Theorem 1 In a FIFO buffer, the worst-case backlog generated by a flow vi in
a node h from Pi during a time interval [0, t] (t ≥ 0) is obtained when:

(i) the frames of vi are generated periodically every Ti in the source node
(firsti);

(ii) the first frame, denoted fi, generated by vi arrives in h at time 0;

(iii) fi reaches node h, suffering its maximum traversal delay (Smaxhi ) whereas
all the subsequent frames from vi arrive on h suffering their minimum
traversal delay so that their arrival time is never before time 0 (see Fig. 4).
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Proof: The maximum backlog is obtained when the flows generate the max-
imum interfering traffic. For sporadic flows, this is achieved when frames are
generated with their minimal inter-generation time on their source node. Hence,
for a flow vi, this corresponds to the generation of a new frame every Ti in its
source node firsti, which proves item (i).

To maximize its contribution in a time interval [0, t], frames from vi have to
arrive in node h as soon as possible. Point (ii) can be proved by contradiction.
If the first frame fi arrives on h strictly after 0, it is always possible to find a
worse scenario by moving fi forward closer to 0. Therefore, to determine the
maximum backlog, the first frame fi has to enter node h exactly at time 0.

The case of the first frame fi from point (iii) is also proved by contradiction:
consider that fi arrives at time 0 but suffers a delay d < Smaxhi to reach h, as
depicted in Fig. 5. Since it suffers a delay shorter than Smaxhi , its generation
time in its source node firsti has to be delayed (by Smaxhi − d). Moreover,
since the frame generation is strictly periodic, as stated in (i), the generation
time of all the subsequent frames are also delayed. Considering that they cross
the network with a minimum traversal time (Sminhi ), their arrival time on h
is also delayed. Therefore, it is possible to define a worse scenario by moving
forward the generation time of fi.

Frame fi reaches node h at time 0 with a delay equal to Smaxhi , but for
the subsequent frames, this delay can range between Sminhi and Smaxhi . This
means that one or more consecutive frames can catch up, but without overtak-
ing, due to the FIFO constraint.

The scenario, where khi frames (with khi ≥ 0) have caught up fi, is illustrated
in Fig. 4. These khi frames have necessarily incurred shorter delays to catch up
fi. This delay cannot be shorter than Sminhi , but it may be larger for some of
them as there can be no overtaking.

In Fig. 4, we denote by fi,1 the first frame arriving after the khi frames
incoming at time 0. In order to maximize the backlog, that is, to minimize the
time interval with previous frames, it has to arrive suffering the minimum delay
Sminhi to reach h. Moreover, since the following frame cannot suffer a delay
shorter than Sminhi , they arrive periodically in h, with an interval of Ti. �

The number khi of frames arriving together with frame fi at time 0 depends
on the flow characteristics (Ti, Smin

h
i and Smaxhi ). It is computed in Theo-

rem 2.

Theorem 2 In a FIFO buffer, considering the worst-case scenario from Theo-
rem 1, the first frame fi generated by flow vi (vi ∈ Γh) reaches node h simulta-
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neously with khi others frames. khi ∈ N is defined such as:

khi Ti ≤ Jh
i < (khi + 1)Ti that is: khi =

⌊
Jh
i

Ti

⌋
(4)

with Jh
i = Smaxhi − Sminhi being the worst-case jitter of vi in h.

Proof: We prove separately the two inequalities khi Ti ≤ Jh
i and Jh

i < (khi +1)Ti:

• Let us consider the last frame from vi arriving in node h at time 0. Ac-
cording to the periodic scenario defined in Theorem 1 and depicted in
Fig. 4, its generation time in firsti is 0 − Smaxhi + khi Ti. As it suffers a
delay d ≥ Sminhi in order to reaches h and its arrival time in h is still 0,
we have:

−Smaxhi + khi Ti + d = 0

−Smaxhi + khi Ti + Sminhi ≤ −Smaxhi + khi Ti + d = 0

−Smaxhi + khi Ti + Sminhi ≤ 0

khi Ti ≤ Smaxhi − Sminhi = Jh
i

khi Ti ≤ Jh
i

• We now focus on fi,1, the first frame arriving in node h strictly after 0. It
is generated at time 0− Smaxhi + (khi + 1)Ti in firsti and suffers a delay
equal to Sminhi to reach h:

0 < −Smaxhi + (khi + 1)Ti + Sminhi

Smaxhi − Sminhi < (khi + 1)Ti

Jh
i < (khi + 1)Ti

Hence the proof. �

The arrival date of fi,1 is deduced from the next corollary.

Corollary 1 Considering the worst-case scenario described in Theorem 1, the
arrival date, of the first frame from a flow vi ∈ Γh in node h after time 0,
denoted fi,1 in Fig. 4, is: (khi + 1)Ti − Jh

i .

Proof: This is a direct result of Theorems 1 and 2, since the generation time of
fi,1 in firsti is equal to −Smaxhi + (khi + 1)Ti and it suffers a delay equal to
Sminhi to reach h. �

In a FIFO buffer, the worst-case backlog generated by a flow vi in a node
h from Pi during a time interval [0, t] (t ≥ 0) is maximized considering the
scenario from Theorem 1.

In the next section, we express this worst-case in terms of Request Bound
Functions (RBF), in order to determine the maximum possible backlog in the
buffers.
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4.3 Workload and Request Bound Functions

The Request Bound Function rbfhi (t) defines the total transmission time of
frames arriving in node h generated by a flow vi ∈ Γh during an interval of
length t. We denote by Wh(t) an upper bound on the workload, the cumulative
transmission time of all the flows crossing h during a time interval of length t:

Wh(t) =
∑

vi∈Γh

rbfhi (t) (5)

The expression of rbfhi (t) can be derived directly from the worst-case sce-
nario defined in Theorem 1.

Theorem 3 Considering a FIFO node h and a flow vi crossing h, the Request
Bound Function (RBF) in an interval of length t is:

rbfhi (t) =

(
1 +

⌊
t+ Jh

i

Ti

⌋)
Ch

i (6)

where Jh
i is the maximum jitter of the flow vi on h (Jh

i = Smaxhi − Sminhi ).

Proof: We study several cases, according to the value of t:

• For t = 0, (1+khi ) frames from vi arrive at time 0, as proved in Theorem 1:

rbfhi (0) =

(
1 +

⌊
0 + Jh

i

Ti

⌋)
︸ ︷︷ ︸

kh
i +1 frames

Ch
i

• For 0 ≤ t < (khi + 1)Ti − Jh
i , no additional frame is accounted since:

rbfhi (t) =

(
1 +

⌊
t+ Jh

i

Ti

⌋)
Ch

i

<

(
1 +

⌊
(khi + 1)Ti

Ti

⌋)
Ch

i

< (khi + 2)Ch
i

• The next incoming frame from vi arrives at time (khi + 1)Ti−Jh
i . Finally,

all the following frames arrive with an interval of Ti, as depicted in Fig. 4.

Summarizing these cases leads to Formula (6). �

It is worth noting that Formula (6), applied in a source node, also corre-
sponds to the Request Bound Function for non-preemptive tasks in a unipro-
cessor system (i.e. Jfirsti

i = 0 since Sminfirstii = Smaxfirstii = 0).
The worst-case workload computed with RBFs can however be improved

considering the effect of flow serialization.
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4.4 The serialization effect

In packet networks, frames are necessarily serialized when being sent over a
physical link at a given rate r. Frames sharing a common link cannot therefore
arrive simultaneously in the subsequent node: their arrival times are delayed by
at least their transmission time at rate r. This is what is commonly called the
serialization effect [8].

For example, considering Fig. 4, the (khi +1) first frames from vi ∈ Γh cannot
arrive simultaneously in h since they share the same input link. Taking this into
account can lead to a significant improvement for the tightness of the worst case
bounds. Note that the serialization can only occur in non-source nodes, since it
is accounted in the input links of the nodes.

We thus complete our model for non-source nodes, in order to distinguish
flows based upon their input link. Such a node (let it be called h), with n input
links denoted IPh

x (with 1 ≤ x ≤ n), is described in Fig. 2. The global workload
Wh(t) is then obtained by summing the contribution of each input link:

Wh(t) =

n∑
x=1

Wh
x (t) (7)

where Wh
x (t) denotes the cumulative transmission time of frames from flows

incoming in node h through the input link IPh
x during a time interval of length

t.
The fixed rate of the link ensures a maximum rate of frame arrival and

implies a shaping of the expression of Wh
x (t), which can thus be determined as

the minimum of two terms :

• the cumulative transmission time of frames during an interval of length t,
regardless of the serialization effect:

Wh
x (t) ≤

∑
vi∈Γh

x

rbfhi (t) (8)

where Γh
x designates the set of flows entering node h through the input

link IPh
x (with 1 ≤ x ≤ n);

• the maximum amount of incoming workload according to the rate of the
input link, as determined in Lemma 1.

Lemma 1 The worst-case cumulative transmission time originating from an
input link IPx in a node h during a time interval t, denoted Wh

x (t), is:

Wh
x (t) ≤ rhx-1

rh
t+ max

vi∈Γh
x

Ch
i (9)

where (hx-1) denotes the predecessor of node of h via IPh
x .

Proof: Nodes (hx-1) and h are directly connected through a physical link.
Therefore, the amount of traffic arriving on h via IPh

x during a time interval of
length t corresponds to the number of frames having been fully served at rate
rhx-1, as depicted in Fig. 6:
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Figure 6: Worst-case cumulative transmission time of frames entering a node h
through an input link during a time interval of length t.

(i) during a time interval t, the total amount of traffic served at rate rhx-1 is
rhx-1 × t (shaded area in Fig. 6);

(ii) in the worst-case, we consider that a frame of maximal size has been
transmitted at the very start of the time interval: rhx-1 × max

vi∈Γh
x

Chx-1
i

The corresponding workload in node h at rate rh is thus: rhx-1

rh
× t for part

(i), and the transmission time of the frame of maximal size arriving from IPh
x ,

which is, by definition,
rhx-1

rh
× max

vi∈Γh
x

Chx-1
i = max

vi∈Γh
x

Ch
i , for part (ii). �

Theorem 4 The cumulative workload arriving in a non-source node h through
the input link IPh

x during a time interval t is bounded by:

Wh
x (t) = min

 ∑
vi∈Γh

x

rbfhi (t),
rhx-1

rh
t+ max

vi∈Γh
x

Ch
i


Proof: Direct application of Formulas (8) and (9), which define two guaran-

teed upper bounds of the value Wh
x (t). �

4.5 The maximum backlog

During a time interval [0, t], the maximum cumulative workload Wh(t) incoming
in a node h is fully determined by the Formula (7) and Theorem 4. But, as the
nodes are work-conserving, they start serving frames as soon as they arrive in
the buffers. The maximum backlog in a node h is thus obtained by computing
the difference between the incoming workload Wh(t) and the amount of traffic
serviced at the rate of the node during any time interval [0, t], which is of length
t:

Bklgh = max
t≥0

(
Wh(t)− t

)
(10)

4.6 Sufficient condition to stop the computation

For each node h, all the intervals of length t ≥ 0 have to be tested to determine
the maximum backlog Bklgh. Here we give a sufficient condition on the max-
imum value of t to be tested, in order to compute Bklgh. To determine this
condition, we use the concept of busy period.
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Definition 3 A busy period [21] is a time interval between two consecutive idle
times. An idle time, is a time such as all previously arrived frames have been
served at that time (no remaining backlog).

No frame arrived before an idle time can impact the amount of backlog after
it. If an idle time is present in a given time interval, the computation can be
stopped, since for any scenario with a larger interval length no new frame arrival
will generate more backlog. As a consequence, the computation is limited to
the first busy period starting at time 0 (node start time)

An idle time occurs at a time t on a node h, if the amount of incoming
workload Wh(t) is less than or equal to the transmission time t: Wh(t) ≤ t. We
now define a sufficient condition to ensure the occurrence of such an idle time
in the node h based on its load.

Theorem 5 Let us consider a node h with a FIFO servicing policy where the
frames arrive according the scenario defined in Theorem 1. The existence of an
idle time in h is guaranteed if the following condition on its local load (Uh) is
verified:

Uh =
∑

vi∈Γh

Ch
i

Ti
< 1 (11)

Proof: The arrival pattern of every flow vi ∈ Γh starts with an initial burst
at time 0 (khi + 1 frames) and it becomes periodic from time (khi + 1)Ti − Jh

i

(see Theorem 1). At time max
vi∈Γh

(khi + 1)Ti − Jh
i , the system is periodic and, in

particular, the frames arrive in h as a repeating cycle. At this time instant, the
initial bursts can be not fully transmitted. Considering that a node is similar to
a non-preemptive uniprocessor scheduling problem, if Uh < 1, during a cycle,
there are some idle times.

If Uh < 1, the overload generated by the initial burst will eventually be
transmitted during the idle times present in the repeating cycle, regardless of
its size. Thus, an idle time on node h will occur. �

4.7 Putting it all together and Algorithm

For every flow vi ∈ Γ, we determine in each node from Pi, an upper bound of
the worst-case transversal delay Rh

i using:

Rh
i =Smaxhi +Bklgh

where the maximum backlog Bklgh is computed according to

Bklgh = max
t≥0

{
Wh(t)− t

}
(12)

with Wh(t) being defined by Formula (7). The computation stops as soon as
the first idle time is encountered. Its occurrence is ensured if Uh < 1.

The pseudo-code for computing the worst-case ETE delay of a set of flows
in a network is given by Algorithm 1. This algorithm is pseudo-polynomial.

The computation can be done in a discrete manner by testing t only at
arrival times of new frames.
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Input: A network defined by S and Γ
For each flow vi ∈ Γ: Fmaxi, Ti and Pi

For each node h ∈ S: rh with Uh < 1 required
The technological latency L

Result: Ri for each vi ∈ Γ
begin

foreach flow vi ∈ Γ do

Sminfirstii ← 0

Smaxfirstii ← 0

end
foreach node h do

foreach flow vi ∈ Γh do
Ch

i ← Fmaxi

rh

Jh
i ← Smaxhi − Sminhi

end
if h is a source node then
Wh(t)←

∑
vj∈Γh rbfhj (t)

else
foreach input link IPh

x with x ∈ {1, . . . , n} do

Wh
x (t)← min

{∑
vi∈Γh

x

rbfh
i (t), rhx-1

rh
t + max

vi∈Γh
x

Ch
i

}
end

Wh(t)←
n∑

x=1
Wh

x (t)

end

Bklgh ← 0
t← 0
do

Bklgh ← max
{
Bklgh,Wh(t)− t

}
t← NextArrivalDate(t)

while Wh(t) > t
foreach flow vi ∈ Γh do

if h 6= lasti then

Sminh+1
i ← Sminhi + Ch

i + L

Smaxh+1
i ← Smaxhi +Bklgh + L

else
Ri ← Smaxhi +Bklgh

end

end

end

end
Algorithm 1: Computing worst-case ETE delays with FA.
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Characteristics ETE delays

Fmaxi (bits) Ti (µs) NC (µs) FA (µs)

v1 12144 4000 4270.48 3133.60

v2 12144 4000 3678.54 3270.40

v3 8256 8000 5404.05 4957.60

v4 (ES7)
8256 8000

6709.98 5564.16

v4 (ES8) 2955.28 2924.80

v5 (ES7) 8256 8000 6709.98 5564.16

v6 (ES8)
2048 1000

2955.28 2924.80

v6 (ES9) 3009.81 2880.26

v7 2048 1000 4447.91 3309.44

v8 (ES7)
512 1200

4447.91 3309.44

v8 (ES9) 973.43 796.42

v9 (ES8)
2304 500

693.20 670.08

v9 (ES9) 973.43 796.42

v10 512 250 3915.79 2789.12

Table 1: Flow characteristics and computed Worst-case ETE delays (by NC and
FA) for the configuration depicted Fig. 1.

5 Experimentation

FA is applied hereafter on two types of configurations. We compare the upper
bounds for worst-case ETE delays to the one obtained with Network Calculus
(NC) and with the Trajectory Approach (TA). Our comparisons with NC are
based on the version [8] used by Airbus for the certification of AFDX, that is:
leaky bucket arrival curves, flow serialization optimization (rather than ”Pay
Burst Only Once” [7]). For TA, we use an implementation based on the patch
proposed in [17]. These approaches are first applied on a sample case study,
then on a real industrial configuration.

5.1 Case study

We first experiment with the configuration depicted in Fig. 1. The servicing
rate of output ports is equal to rh = 100 Mbps, except for ES1, ES3, ES4, S2

(to S4) S3 (to ES6) and S5 which run at rh = 10 Mbps. The characteristics of
the flows are given in Table 1.

The worst-case ETE delay bounds obtained with TA are not shown in Ta-
ble 1, because the AFDX configuration from Fig. 1 cannot be tested with TA.

In fact, the global load of traffic (
∑ Ch

i

Ti
) encountered by some flows (e.g. v7) on

their path is strictly larger than 1, which prevents the convergence of the com-
putation with this method. The worst-case ETE delay computed with NC and
FA are presented in the two last columns of Table 1. The worst-case ETE delays
have been differentiated for each destination ES in the case of multicast VLs.
For example, considering flow v4, two worst-case ETE delays are determined
with each method: one for destination node ES7 and another for ES8.

The ETE delay bounds obtained with FA are tighter than with NC. The
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Figure 7: Statistical comparisons between the worst-case ETE delays deter-
mined using FA and the others approaches (NC and TA).

difference is up to 28.8% for flow v10.

5.2 Industrial configuration

The three approaches (FA, NC and TA) have also been applied to an indus-
trial configuration (an actual A380 type network configuration), thanks to an
internally developed calculation tool. It is made up of 96 End Systems inter-
connected with 983 multicast VLs (corresponding to 6412 flows) through eight
24-ports switches.

FA is scalable to large configuration since its execution time on this configu-
ration is 2.12s with our Python based computation tool on a 3.3Ghz quad-core
64 bits processor.

The worst-case ETE delay of flows have been computed with FA, NC and
TA. We cannot compare the computed delays with exact worst-case ETE delays,
since there is no scalable approach to determine exact worst-cases for such an
industrial configuration. We compare FA with NC one hand, and with TA on
the other hand. Due to the high number of flows, statistical results are showed
in Fig. 7 in the form of a frequency histogram.

We determine, for each VL, the difference in percentage between the worst-
case ETE delay obtained by FA and by the competing approaches (NC and TA).
The frequency histogram is plotted with 5% intervals. For example, the grey
bar at 20% indicates that approximately one thousand of flows have a worst-
case ETE delay computed with FA 15% to 20% tighter, compared to the TA
computation.

It has already been shown that there is no dominating approach between NC
and TA [20], in the sense that none of them obtains the tightest bound for all
flows of any configuration. Similarly, we see that there is neither a dominating
method between FA, TA and NC, since we observe negative and positive values
in the histogram depicted in Fig. 7. The performance variations between the
methods can be explained each one is based on different conservative assump-
tions. Each hypothesis induces pessimism in the ETE delay upper bound, but
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not necessarily under the same constraints, and thus, for the same flows.
It is still possible to combine two or three of the approaches, as each of them

provides a sufficient condition, by taking the minimum of the upper-bounds, in
order to mitigate the unfavorable scenarios of a single method.

Nevertheless, only a few and most of the lowest bars on the graph are in
favor of TA, whereas the highest bars are in favor of FA. In the end, the upper
bounds computed by FA are, on average 4.74% (resp. 11.78%) less pessimistic
than the upper bounds computed by NC (resp. TA).

6 Conclusion

We have proposed a new approach for computing worst-case ETE delays of flows
in an AFDX network. More generally, the forward ETE delay analysis (FA) is
applicable to any packet network using FIFO queues, compliant with the model
defined in Section 3. A formal proof of FA has been provided, covering the case of
flow serialization in network links. FA has been compared to existing approach
(Network Calculus and Trajectory Approach) on a case study and proved to be
scalable on a real-world industrial configuration. The results obtained with FA
are relevant, since tighter bounds can be obtained, compared to currently used
NC. FA is also applicable without any constraint on the global load of a flow
(overcoming the limitation of TA).

A short-term perspective is to extend the FA principle to other servicing
policies, in particular, fixed priorities classes for flows. The tightness of the
bounds should also be assessed toward the exact worst case ETE delay, which
could be obtained thanks to Model Checking (at least on reasonably sized con-
figurations). Another future area for analysis is the choice of the most suitable
method based on topology and flow characteristics of a configuration, as non of
the three competing approaches dominates another in general. Lastly, applying
the FA method to other kinds of architectures, like IEEE Audio Video Bridg-
ing (AVB) or even newer IEEE Time Sensitive Networking (TSN) would be of
highest interest.
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