
Handling Failing RDF Queries: From Diagnosis to
Relaxation

Géraud Fokou, Stéphane Jean, Allel Hadjali, Mickael Baron

LIAS/ISAE-ENSMA - University of Poitiers
1, Avenue Clement Ader, 86960 Futuroscope Cedex, France

{fokou, jean, hadjali, baron}@ensma.fr
–

Received: Sep 10, 2015; Revised: Jan 22, 2016; Accepted: Mar 06, 2016

Abstract. Recent years have witnessed the development of large Knowledge Bases
(KBs). Due to the lack of information about the content and schema semantics of
KBs, users are often not able to correctly formulate KB queries that return the intended
result. In this paper, we consider the problem of failing RDF queries, i.e. queries that
return an empty set of answers. Query relaxation is one cooperative technique proposed
to solve this problem. In the context of RDF data, several works proposed query
relaxation operators and ranking models for relaxed queries. But none of them tried to
find the causes of an RDF query failure given by Minimal Failing Subqueries (MFSs) as
well as successful queries that have a maximal number of triple patterns named Maximal
Succeeding Subqueries (XSSs). Inspired by previous work in the context of relational
databases and recommender systems, we propose two complementary approaches to
fill this gap. The Lattice-Based Approach (LBA) leverages the theoretical properties
of MFSs and XSSs to efficiently explore the subquery lattice of the failing query. The
Matrix-Based Approach (MBA) computes a matrix that records alternative answers
to the failing query with the triple patterns they satisfy. The skyline of this matrix
directly gives the XSSs of the failing query. This matrix can also be used as an index
to improve the performance of LBA. The practical interest of these two approaches are
shown via a set of experiments conducted on the LUBM benchmark and a comparative
study with baseline and related work algorithms.

Keywords: Query Relaxation; Knowledge Base; RDF Database; Semantic Web

1 Introduction

A Knowledge Base (KB) is a collection of entities and facts about them. In recent years,
numerous projects in both industry and academia have been conducted to build large-scale
KBs. Well-known examples of KBs include YAGO2 [1] and DBPEDIA [2], resulting from
academics projects as well as the KBs designed in commercial projects such as those by
Google [3] or Walmart [4]. These KBs are represented in RDF [5] as a set of triples (subject,
predicate, object) and queried with the SPARQL language [6].

For most users, querying KBs is not an easy task. This difficulty is due to the following
three main reasons. First, KBs are often built from a set of heterogeneous data sources and
thus the underlying structure of a KB is rarely known by end users. Second, KB schemas (or

The final publication is available at Springer via
http://dx.doi.org/10.1007/s10115-016-0941-0

ontologies) are defined with a language such as RDFS [7] or OWL [8] whose semantics and
underlying assumptions may not be understood by end users. Last, despite their large size
(e.g., the FreeBase KB [9] has 1.9B triples and Knowledge Vault from Google has 1.6B triples),
KBs are not complete. For example, 60% of the educational institution of the FreeBase KB
have no known telephone number, and 95% have no known number of faculty1. Hence, when
a query does not return any answer, users may not know if the query is too selective or if the
intended result is not defined in the KB. Users may try to change the optional parts of the
SPARQL query as well as the query conditions. But this is a tedious, frustrating and time-
consuming process. This paper addresses this problem of failing RDF queries (i.e., queries
that return an empty result) by identifying, on the one hand, the causes of this failure and,
on the other hand, some successful relaxed queries.

Professor

Faculty

Lecturer

Course
name

String

researchInterest

teacherOf

Peter

Professor1

 subClassOf

property

property value

Schema

Instances

name

Integer

age

SW

name

Lecturer1

John 50

name age

Course1
teacherOf

DB

name

String

instanceOf

research
Interest

TRIPLES

Subject Predicate Object

Faculty rdf:type rdfs:Class

Professor rdf:type rdfs:Class

Professor rdfs:subClassOf Faculty

name rdf:type rdf:Property

name rdfs:range xsd:String

… … …

Professor1 rdf:type Professor

Professor1 name Peter

Professor1 researchInterest SW

Lecturer1 rdf:type Lecturer

… … …

S
ch

em
a

In
stan

ces

Fig. 1. Running example

As a running example, we consider the KB inspired by the LUBM Benchmark [10] depicted
in Figure 1. If a user wants to retrieve the age of lecturers of a database course who are
interested in Semantic Web research, she/he may issue the following query2 Q = t1∧t2∧t3∧t4:

SELECT ?p ?a WHERE {
?p age ?a . (t1)
?p type Lecturer . (t2)
?p researchInterest "SW" . (t3)
?p teacherOf "DB" } (t4)

This query will fail because the domain of the researchInterest property is Professor and
not Lecturer. With a deeper knowledge of the KB schema, the user may be able to correct
this query replacing Lecturer by Professor. But, even in this case, the query may fail again.
This will be the case if the age of professors are not known in the KB or if there is no faculty

1 Numbers current as of February 2015.
2 For readability, we use names instead of URIs to identify the query elements.

member who both teaches a database course and is interested in Semantic Web research. This
query could also fail for many other reasons.

Query relaxation is one of the cooperative techniques used to return alternative answers
instead of an empty result. Several approaches proposed to relax queries in the RDF con-
text [11–20]. They introduced relaxation operators based on RDFS semantics (e.g., general-
izing triple patterns using class and property hierarchies) [11–17], similarity measures [18,19]
and user preferences [20]. These operators are mainly used to obtain top-k answers (where k is
a user-defined parameter) [12–14]. Indeed, they are applied to the user query resulting in a set
of relaxed queries. These relaxed queries are ordered using a similarity measure and then ex-
ecuted in this ranking order. Other approaches proposed an extension of SPARQL to include
relaxation operators in queries [15–17] or query rewriting rules to perform relaxation [20].

In these previous approaches on RDF query relaxation, the relaxation process is blind in
the sense that it relaxes the user query without knowing the reasons for its failure. As a
consequence, it may relax triple patterns that do not need to be modified in the user query
and/or takes a long processing time to effectively relax the triple patterns responsible of the
query’s failure. To avoid this problem, the notion of Minimal Failing Subquery (MFS) was
introduced in the context of relational databases to find the causes of the query’s failure [21].
An MFS is a failing query that does not include a failing subquery. As several MFSs can
be responsible of the query’s failure, relaxing a failing query requires enumerating all these
MFSs, which is an NP-hard problem [21].

Another cooperative technique introduced in the context of relational databases consists
in finding relaxed queries, called Maximal Succeeding Subqueries (XSSs), that are as close
as possible to the failing query semantically speaking. In the context of RDF queries, XSSs
stand for non-failing relaxed queries that have a maximal number of triple patterns. Thus,
each XSS provides a simple way to relax a failing query by removing or making optional the
set of triple patterns that are not in an XSS.

To the best of our knowledge, no work exists in the literature that addresses the issue of
computing MFSs and XSSs of failing RDF queries. In the literature on relational databases,
one can distinguish two main approaches to compute MFSs and XSSs of a failing query.
The first approach consists in exploring the subquery lattice of the failing query [21] while
the second one relies on a particular matrix that records alternative answers to the failing
query with the query conditions they satisfy [22]. These approaches cannot be directly used
to compute MFSs and XSSs of an RDF query as they target a different data model and
query language. In particular, as we will see in Section 4, the computation of the matrix is
particularly challenging in the context of RDF as SQL and SPARQL differ in their semantics
and assumptions [23]. Moreover, these previous approaches were designed to compute either
MFSs or XSSs but not both of them at the same time.

Hence, we propose in this paper two algorithmic approaches called Lattice-Based Approach
(LBA) and Matrix-Based Approach (MBA) for the purpose of MFSs and XSSs computation in
the RDF context. LBA is an adapted and extended variant of Godfrey’s ISHMAEL algorithm
[21] that leverages properties of MFSs and XSSs to prune the subquery lattice search space.
The main novelty of LBA compared to ISHMAEL is that it computes both MFSs and XSSs of
a failing RDF query without an added complexity. MBA is inspired by the work of Jannach
in recommender systems [22]. This approach uses a matrix containing alternative answers to
the failing query with the triple patterns they satisfy. This matrix is computed using only n

queries over the target RDF database where n is the number of query triple patterns. This
matrix can also be computed with only one query if the RDF database is implemented as
a triples table. The skyline3 of this matrix directly gives the XSSs of the query at hand.
We also show that this matrix can improve the performance of LBA to find both MFSs and
XSSs of an RDF query. The relevance of our propositions are evaluated through a set of
experiments conducted on several datasets generated with the LUBM benchmark. They are
also compared with a baseline method and an adapted version of the ISHMAEL algorithm.

This paper is an extension of our earlier conference work [24]. We have substantially
developed, revised and improved the material presented here. In particular, the following
new contributions are made: (i) we investigate a list of properties of our algorithms with
their proofs, (ii) we present a full and critical review of existing works and (iii) we perform
a thorough experimental evaluation of our proposed algorithms and optimizations on large
datasets (ranging from 13M to 130M triples) with a set of generated RDF queries.

The paper is structured as follows. Section 2 introduces some basic notions and formalizes
the problem we consider. Section 3 and 4 present our LBA and MBA approaches to find
the MFSs and XSSs of a failing RDF query. Section 5 presents our implementation and
experimental evaluation of our two approaches on the LUBM benchmark. Section 6 details
related work on RDF query relaxation as well as other proposed approaches to address the
empty answer problem. Finally, we conclude and introduce future work in Section 7.

2 Preliminaries and Problem Statement

This section formally describes the parts of RDF and SPARQL that are necessary to this
paper. We use the notations and definitions given in [23].

Data model. An RDF triple is a triple (subject, predicate, object) ∈ (U ∪ B) × U ×
(U ∪B ∪L) where U is a set of URIs, B is a set of blank nodes and L is a set of literals. We
denote by T the union U ∪B ∪ L. An RDF database stores a set of RDF triples in a triples
table or one of its variants [25].

RDF queries. An RDF triple pattern t is a triple (subject, predicate, object) ∈ (U ∪
V)× (U ∪ V)× (U ∪ V ∪L), where V is a set of variables disjoint from the sets U , B and L.
We denote by var(t) the set of variables occurring in t. We consider RDF queries defined as
a conjunction of triple patterns: Q = t1 ∧ · · · ∧ tn. The number of triple patterns of a query
Q is denoted |Q|.

Query evaluation. A mapping µ from V to T is a partial function µ : V → T . For a
triple pattern t, we denote by µ(t) the triple obtained by replacing the variables in t according
to µ. The domain of µ, dom(µ), is the subset of V where µ is defined. Two mappings µ1 and
µ2 are compatible when for all x ∈ dom(µ1) ∩ dom(µ2), it is the case that µ1(x) = µ2(x),
i.e., when µ1 ∪ µ2 is also a mapping. Let Ω1 and Ω2 be sets of mappings, we define the join
of Ω1 and Ω2 by: Ω1 ./ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible mappings}. Let
D be an RDF database and t a triple pattern. The evaluation of t over D, denoted by [[t]]D,
is defined by: [[t]]D = {µ | dom(µ) = var(t) ∧ µ(t) ∈ D}. Let Q be a query. The evaluation
of Q over D is defined by: [[Q]]D = [[t1]]D ./ · · · ./ [[tn]]D. This evaluation can be done
under different entailment regimes as defined in the SPARQL specification. In this paper, the

3 Given a set of objects described by a list of criteria. A skyline is a subset of objects that are not
dominated (in the sense of Pareto) by any other object with respect to some criteria of interest.

examples as well as our implementation are based on the simple entailment regime. However,
the proposed algorithms can be used with any entailment regime.

MFS and XSS. Given a query Q = t1 ∧ · · · ∧ tn, a query Q′ = ti ∧ · · · ∧ tj is a subquery
of Q, Q′ ⊆ Q, iff {ti, · · · , tj} ⊆ {t1, · · · , tn}. If {ti, · · · , tj} ⊂ {t1, · · · , tn}, we say that Q′ is
a proper subquery of Q (Q′ ⊂ Q). If a subquery Q′ of Q fails, then the query Q fails.

Definition 1. A Minimal Failing Subquery MFS of a query Q is defined as follows: [[MFS]]D =
∅ ∧ @ Q′ ⊂MFS such that [[Q′]]D = ∅.

The set of all MFSs of a query Q is denoted by mfs(Q). Each MFS is a minimal part of the
query that failed.

Definition 2. A Maximal Succeeding Subquery XSS of a query Q is defined as follows:
[[XSS]]D 6= ∅ ∧ @ Q′ such that XSS ⊂ Q′ ∧ [[Q′]]D 6= ∅.

The set of all XSSs of a query Q is denoted by xss(Q). Each XSS is a maximal (in terms of
triple patterns) non-failing subquery viewed as a relaxed query.

Problem Statement. We are concerned with computing the MFSs and XSSs of a failing
RDF query over an RDF database efficiently.

3 Lattice-Based Approach (LBA)

LBA is an algorithm to compute simultaneously both the sets mfs(Q) and xss(Q) of a failing
RDF query Q. It is a three-steps procedure: (1) find an MFS of Q, (2) compute potential
XSSs, i.e., the maximal queries that do not include the MFS previously found and (3) execute
potential XSSs; if they return results, they are XSSs, else this process is applied recursively
on failing potential XSSs.

3.1 Finding an MFS

This step is performed with the a mel fast algorithm proposed in [21]. This algorithm is
based on the following proposition (originally proved in [21]).

Proposition 1. Let Q = t1 ∧ ...∧ tn be a failing query and Qi = Q− ti a proper subquery of
Q. If [[Q]]D = ∅ and [[Qi]]D 6= ∅ then any MFS of Q contains ti .

Proof. Assume that ∃MFS ∈ mfs(Q) such that ti /∈ MFS. Since Qi = Q − ti, MFS is a
subquery of Qi. Contradiction: a successful query cannot include a failing query.

This property is leveraged in Algorithm 1 to find an MFS in n steps (i.e., its complexity is
of O(n)). The algorithm removes a triple pattern ti from Q, resulting in the proper subquery
Q′ (line 4). If [[Q′]]D is not empty, ti is part of any MFS (thanks to the previous proposition)
and it is added to the result Q∗ (line 6). Else, Q′ has an MFS that does not contain ti.
Then, the algorithm iterates over another triple pattern of Q to find an MFS in Q′∧Q∗. This
process stops when all the triple patterns of Q have been processed.

Algorithm 1: Find an MFS of a failing RDF query Q

FindAnMFS(Q, D)
inputs : A failing query Q = t1 ∧ ... ∧ tn; an RDF database D
output: An MFS of Q denoted by Q∗

1 Q∗ ← ∅;
2 Q′ ← Q;
3 foreach triple pattern ti ∈ Q do
4 Q′ ← Q′ − ti;
5 if [[Q′ ∧Q∗]]D 6= ∅ then
6 Q∗ ← Q∗ ∧ ti;

7 return Q∗;

To illustrate this algorithm, we consider our running example Q = t1 ∧ t2 ∧ t3 ∧ t4. We
assume that this query has two MFSs: t1 (people’s ages are unknown in the KB) and t2 ∧ t3
(a lecturer cannot have a researchInterest in the KB) as well as two XSSs: t2 ∧ t4 (there
are lecturers who teach a DB course) and t3 ∧ t4 (there are professors who both teach a DB
course and are interested in SW research).

Figure 2 shows a possible execution of the Algorithm 1 that finds the MFS t2 ∧ t3 of
our example query Q. The algorithm removes the triple pattern t1 from Q, resulting in the
subquery Q′ = t2 ∧ t3 ∧ t4. As this subquery returns an empty result, the algorithm searches
an MFS in t2 ∧ t3 ∧ t4. It removes the triple pattern t2 from this subquery. The resulting
subquery t3 ∧ t4 is successful, hence t2 is part of the MFS Q∗. The same result is obtained
for t3 which is added to Q∗. For t4, the subquery t2 ∧ t3 returns an empty result and thus
t4 does not belong to Q∗. As all the triple patterns of Q have been processed, the algorithm
stops and returns the MFS Q∗ = t2 ∧ t3.

Figure 3 shows another possible execution of the Algorithm 1 that finds the MFS t1 of Q.
This time the algorithm removes the triple pattern t3 from Q. As the query t1∧t2∧t4 returns
an empty result, t3 does not belong to Q∗. The algorithm iterates over the triple pattern t1.
The query t2 ∧ t4 is successful, hence t1 is added to Q∗. For each other triple pattern, the
query Q′ ∧Q∗ returns an empty result and thus the MFS t1 is returned.

Q′ = t2 ∧ t3 ∧ t4
[[Q′ ∧Q∗]]D = ∅

Q∗ = ∅

Q′ = t3 ∧ t4
[[Q′ ∧Q∗]]D 6= ∅

Q∗ = t2

Q′ = t4
[[Q′ ∧Q∗]]D 6= ∅
Q∗ = t2 ∧ t3

Q′ = ∅
[[Q′ ∧Q∗]]D = ∅
Q∗ = t2 ∧ t3

t1 t2 t3 t4

Fig. 2. An example of Algorithm 1 execution that finds the MFS t2 ∧ t3 of Q

3.2 Computing Potential XSSs

By definition, all queries that include the MFS Q∗, found in the previous step, return an
empty set of answers. Thus, they can be neither MFS nor XSS of Q and they are pruned
from the search space. The exploration of the lattice of subqueries continues with the largest

Q′ = t1 ∧ t2 ∧ t4
[[Q′ ∧Q∗]]D = ∅

Q∗ = ∅

Q′ = t2 ∧ t4
[[Q′ ∧Q∗]]D 6= ∅

Q∗ = t1

Q′ = t2
[[Q′ ∧Q∗]]D = ∅

Q∗ = t1

Q′ = ∅
[[Q′ ∧Q∗]]D = ∅

Q∗ = t1

t3 t1 t4 t2

Fig. 3. An example of Algorithm 1 execution that finds the MFS t1 of Q

subqueries of Q that do not include Q∗. If these subqueries are successful, they are XSSs of
Q. Thus, we call them potential XSSs and we denote this set of queries by pxss(Q,Q∗). This
set can be computed as follows:

pxss(Q,Q∗) =

{
∅, if |Q| = 1.

{Q− ti | ti ∈ Q∗}, otherwise.

Indeed, for each triple pattern ti of Q∗, a subquery of the form Qm ← Q− ti does not include
Q∗ and, in addition, it is maximal due to its size, i.e., |Qm| = |Q| − 1. Following the previous
definition, pxss(Q,Q∗) is computed with a simple algorithm running in linear time (O(n∗)
where n∗ = |Q∗|).

Figure 4 illustrates pxss(Q,Q∗) and pxss(Q,Q∗∗) of our running example (Q = t1 ∧ t2 ∧
t3 ∧ t4, Q∗ = t2 ∧ t3 and Q∗∗ = t1) on the lattice of subqueries. The maximal subqueries of Q
that do not contain t2 ∧ t3 are t1 ∧ t2 ∧ t4 and t1 ∧ t3 ∧ t4. The maximal subquery of Q that
does not contain t1 is t2 ∧ t3 ∧ t4.

∅

t1(Q∗∗)mfs(Q) = {Q∗, Q∗∗} t2 t3 t4

t1 ∧ t2 t1 ∧ t3 t1 ∧ t4 t2 ∧ t3(Q∗) t2 ∧ t4 t3 ∧ t4

t1 ∧ t2 ∧ t3 t1 ∧ t2 ∧ t4 t1 ∧ t3 ∧ t4 t2 ∧ t3 ∧ t4 pxss(Q,Q∗∗)pxss(Q,Q∗)

xss(Q)

t1 ∧ t2 ∧ t3 ∧ t4(Q)

Fig. 4. The lattice of subqueries of Q with its MFSs and XSSs

3.3 Finding All XSSs and MFSs

As the following proposition shows, if Q has only a single MFS (which includes the case where
Q is itself an MFS), the MFSs and XSSs of an RDF query can be computed with the two
previous steps.

Proposition 2. If Q has a single MFS Q∗, then xss(Q) = pxss(Q,Q∗).

Proof. By definition, queries of pxss(Q,Q∗) are maximal. Now, assume that ∃Q′ ∈ pxss(Q,Q∗)
such that [[Q′]]D = ∅. Since Q has a single MFS, Q∗ is a subset of Q′. Contradiction with
the definition of pxss(Q,Q∗).

Algorithm 2: Find the MFSs and XSSs of a query Q

LBA(Q, D)
inputs : A failing query Q = t1 ∧ ... ∧ tn; an RDF database D
outputs: The MFSs and XSSs of Q

1 Q∗ ← FindAnMFS(Q,D);
2 pxss← pxss(Q,Q∗);
3 mfs(Q)← {Q∗};
4 xss(Q)← ∅;
5 while pxss 6= ∅ do
6 Q′ ← pxss.element(); // choose an element of pxss
7 if [[Q′]]D 6= ∅ then // Q′ is an XSS

8 xss(Q)← xss(Q) ∪ {Q′};
9 pxss← pxss− {Q′};

10 else // Q′ contains an MFS

11 Q∗∗ ← FindAnMFS(Q′, D);
12 mfs(Q)← mfs(Q) ∪ {Q∗∗};
13 foreach Q′′ ∈ pxss such that Q∗∗ ⊆ Q′′ do // avoid finding again Q∗∗

14 pxss← pxss− {Q′′};
15 pxss← pxss ∪ {Qj ∈ pxss(Q′′, Q∗∗) | @Qk ∈ pxss ∪ xss(Q) : Qj ⊆ Qk};

16 return {mfs(Q), xss(Q)};

We now consider the general case, i.e., when Q has more than one MFS. For each query
Q′ ∈ pxss(Q,Q∗), if [[Q′]]D 6= ∅ then Q′ is an XSS of Q, i.e., Q′ ∈ xss(Q). Otherwise,
Q′ has (at least) an MFS, which is also an MFS of Q different from Q∗. This MFS can be
identified with the FindAnMFS algorithm (see Algorithm 1) and thus the complete process
can be recursively applied on each failing query of pxss(Q,Q∗). However, as different queries
of pxss(Q,Q∗) may contain the same MFS, this process may identify the same MFS several
times and thus be inefficient. Algorithm 2 improves this approach by incrementally computing
potential XSSs that do not contain a previously identified MFS (lines 13-15). Indeed, when
a second MFS Q∗∗ is identified, this algorithm iterates over the previously found potential
XSSs pxss that contain Q∗∗. To avoid finding again this MFS, each such query Q′′ is replaced
by their largest subqueries that do not contain Q∗∗ (i.e., pxss(Q′′, Q∗∗)) and are not included
in any query of pxss or xss(Q) (otherwise they are not the largest potential XSSs of Q).

Figure 5 shows two examples of Algorithm 2 executions to compute the MFSs and XSSs of
our running example: Q = t1∧ t2∧ t3∧ t4. In Figure 5(a), the MFS Q∗ = t2∧ t3 is first found
and the corresponding potential XSSs computed (pxss(Q,Q∗) = {t1 ∧ t3 ∧ t4, t1 ∧ t2 ∧ t4}).
The algorithm executes the query t1 ∧ t3 ∧ t4. As an empty set of answers is obtained, the
Algorithm 1 is applied on this query to find a second MFS Q∗∗ = t1. The two potential XSSs

contain this MFS and thus they are replaced with their largest subqueries that do not contain
Q∗∗, i.e., t3 ∧ t4 and t2 ∧ t4. By executing these two queries, the algorithm finds that these
potential XSSs are effectively XSSs. The algorithm stops and returns these two XSSs and
the MFSs previously found (see Figure 4).

Figure 5(b) presents an alternative execution of Algorithm 2 where the MFS t1 is first
found. The corresponding potential XSS is t2 ∧ t3 ∧ t4. This query returns an empty result
and thus the second MFS t2 ∧ t3 is found. The query t2 ∧ t3 ∧ t4 is replaced by its largest
subqueries that do not contain t2 ∧ t3, i.e., t3 ∧ t4 and t2 ∧ t4. From this point, the execution
is the same as the one presented in Figure 5(a).

pxss = {t1 ∧ t3 ∧ t4, t1 ∧ t2 ∧ t4}
mfs(Q) = {t2 ∧ t3}

xss(Q) = ∅

pxss = {t3 ∧ t4, t2 ∧ t4}
mfs(Q) = {t2 ∧ t3, t1}

xss(Q) = ∅

pxss = {t2 ∧ t4}
mfs(Q) = {t2 ∧ t3, t1}
xss(Q) = {t3 ∧ t4}

pxss = ∅
mfs(Q) = {t2 ∧ t3, t1}
xss(Q) = {t3 ∧ t4, t2 ∧ t4}

[[t1 ∧ t2 ∧ t3 ∧ t4]]D = ∅
Q∗ = t2 ∧ t3

[[t1 ∧ t3 ∧ t4]]D = ∅
Q∗∗ = t1

[[t3 ∧ t4]]D 6= ∅

[[t2 ∧ t4]]D 6= ∅

pxss = {t2 ∧ t3 ∧ t4}
mfs(Q) = {t1}
xss(Q) = ∅

pxss = {t3 ∧ t4, t2 ∧ t4}
mfs(Q) = {t1, t2 ∧ t3}

xss(Q) = ∅

pxss = {t2 ∧ t4}
mfs(Q) = {t1, t2 ∧ t3}
xss(Q) = {t3 ∧ t4}

pxss = ∅
mfs(Q) = {t1, t2 ∧ t3}
xss(Q) = {t3 ∧ t4, t2 ∧ t4}

[[t1 ∧ t2 ∧ t3 ∧ t4]]D = ∅
Q∗ = t1

[[t2 ∧ t3 ∧ t4]]D = ∅
Q∗∗ = t2 ∧ t3

[[t3 ∧ t4]]D 6= ∅

[[t2 ∧ t4]]D 6= ∅

(a) (b)

Fig. 5. Two examples of Algorithm 2 executions that find the MFSs and XSSs of Q

Proposition 3. Algorithm LBA is sound and complete, i.e., it returns exactly all MFSs and
XSSs of a failing RDF query Q.

Proof. We use an induction on the size of Q. If |Q| = 1, the Algorithm 2 correctly returns Q
as MFS4 and an empty set of XSSs. Assuming LBA correctly returns the MFSs and XSSs of
the queries of size n, we consider a query Q such that |Q| = n + 1. LBA finds an MFS Q∗

using Algorithm 1 and computes its potential XSS pxss. It is guaranteed that XSSs and other
MFSs of Q are in the sublattices having a query Q′ of pxss as top since these queries are the

4 To ensure that subqueries of an MFS are successful, it is defined that [[∅]]D 6= ∅.

largest queries that do not contain Q∗. LBA explores each such sublattice by executing Q′. If
Q′ is successful, it is an XSS and this sublattice cannot contain an MFS (otherwise Q′ would
be failing). If Q′ returns an empty result, thanks to the definition of pxss(Q,Q∗), |Q′| = n
and thus LBA computes correctly mfs(Q′) and xss(Q′) (induction hypothesis). All MFSs
of Q′ are also MFSs of Q and so, LBA returns exactly all MFSs of Q. Conversely, all XSSs
of Q′ are not necessarily XSSs of Q. We need to show that these queries are only returned
by LBA if they are XSSs of Q. Let Qp be an XSS of Q′. If Qp is not an XSS of Q, then
there is a query in pxss which contains an XSS of Q larger than Qp (by construction, pxss
contains the largest potential XSSs). LBA does not add Qp to pxss and thus, this query is
not returned as an XSS of Q. Now, if Qp is an XSS of Q, there are two cases. If Qp is not
included in any query of pxss, LBA adds it to pxss and thus this query will be returned as an
XSS. Else, Qp is included in a query Qx of pxss. LBA does not add Qp to pxss but LBA will
find it again when searching for the XSS of Qx (induction hypothesis). This process may be
repeated several times until Qp is not included in a query of pxss anymore. This necessarily
happens, at worst, when pxss is empty and LBA will correctly return it as an XSS of Q.

Proposition 4. Assume that each execution of a query costs unit time, the algorithm LBA
has a worst-case running time of O(

√
n ∗ 2n), where n is the length of the failing query.

Proof. In the worst case, there is an exponential number of MFSs. This is for example
the case if all the queries of size n

2 are MFSs (assuming that n is even, without loss of
generality). Indeed, in this case, the number of MFSs is

(
n
n
2

)
. The XSSs are necessarily

the direct subqueries of these MFSs. Thus the number of XSSs is
(

n
n
2−1
)
. To find an MFS,

LBA needs at most n queries. Conversely, the XSS are found only by executing them.
Thus the time complexity of LBA in the worst case is: O(n ∗

(
n
n
2

)
+
(

n
n
2−1
)
). By using

the Stirling’s approximation for the factorial, one can show that
(
n
n
2

)
≈
√
2√
πn
∗ 2n and thus

O(n ∗
(
n
n
2

)
+
(

n
n
2−1
)
) = O(

√
n ∗ 2n).

Since the problem of enumerating the MFSs of a failing query is NP-hard, this result is
not surprising. Despite this time complexity, our experiments on the LUBM benchmark show
that this algorithm can still have acceptable response time in practice (see Section 5). We
have also defined strategies to improve the performance of this algorithm. They are presented
in the next section.

3.4 Heuristics

In the following, we propose different heuristics to improve the performance of the LBA
algorithm in average case.

Heuristic 1 (Cartesian Products). Proper subqueries of the initial query can be Carte-
sian products (the triple patterns do not share any variable), which are usually expensive to
compute. Instead of executing a Cartesian product, it can be decomposed into connected
parts. If one of these connected parts is failing, then the Cartesian product fails as well.
Otherwise, it succeeds.

Heuristic 2 (Query Cache). By definition, if a query succeeds, all its subqueries are
successful. Thus, once the LBA has executed a succesful query, it is unnecessary to execute

one of its subqueries. As a consequence, to minimize the number of executed queries, the LBA
algorithm maintains a cache of the found successful queries. Before executing a subquery, the
algorithm checks first if this is a subquery of one of the queries contained in this cache.

Conversely, if a query is failing, all its superqueries are failing as well. The LBA algorithm
is designed to prune from the search space the queries that include a previously found MFS.
Thus, the LBA algorithm does not need to check if a query is a superquery of an MFS. Yet,
the LBA maintains a cache of failing queries for the ones that we found when decomposing
Cartesian products (previous heuristic).

Heuristic 3 (Obvious Failing Queries). If there is an inconsistency in a query, this query
is failing. For example, the following query is failing as the domain of the researchInterest
property is Professor and not Lecturer (see Figure 1).

SELECT ?p WHERE { ?p type Lecturer . ?p researchInterest "SW" }

Once an obvious failing query is found, the FindAnMFS algorithm can be run with this
query as input. Compared to an execution of this algorithm with the initial query, this will
minimize the number of executed queries.

Heuristic 4 (Potential XSSs Ordering). In the LBA algorithm, the order in which
the potential XSSs are processed is not specified. As the FindAnMFS algorithm needs to
execute fewer queries for short queries than for large queries, we process the potential XSSs
from the shorter to the larger ones. Moreover, using this order, the large potential XSS will
most likely be replaced with shorter potential XSSs thanks to the found MFSs.

Heuristic 5 (Triple Patterns Ordering). The FindAnMFS algorithm is non-determi-
nistic as the order in which the triple patterns are processed is not defined. Empirically, we
have observed that by removing the triple patterns in the order in which they are present in
the initial query, it increases the chance of using the caching made by the triplestore. This is
probably due to the fact that, in this order, the executed subqueries tend to be syntactically
closer, which may help the query optimizer to detect data that they share.

4 Matrix-Based Approach (MBA)

In the approach proposed in the previous section, the theoretical search space exponentially
increases with the number of triple patterns of the original query. Jannach [22] has proposed
a solution to avoid this problem in the context of recommender systems. This approach is
based on a matrix, we called the relaxed matrix, computed in a preprocessing step with n
queries where n is the number of query atoms. This matrix gives, for each potential solution
of a query, the set of query atoms satisfied by this solution. The XSSs of the query can then
be obtained from this matrix without the need for further database queries.

In this section, we adapt this approach to RDF databases to compute both the XSSs and
MFSs of a query. Compared to [22], the main difficulty is to compute the set of potential
solutions of a query. Indeed, in the context of recommender systems, these solutions are
already known as they are the set of products described in the product catalog. This is not
the case in the context of RDF databases.

4.1 Definition of the Relaxed Matrix of a Query

Let Q = t1∧...∧tn be an RDF query, the potential solutions of Q are the mappings (as defined
in Section 2) that satisfy one triple pattern Q or a combination of those triple patterns. This
set of potential solutions of Q is denoted by ps(Q,D) and is formally defined by ps(Q,D) =
{µ | ∃{i, ..., j} ⊂ {1, ..., n} : µ ∈ [[ti]]D ./ · · · ./ [[tj]]D}. Using this definition, the relaxed
matrix of a query is defined as follows.

Definition 3. The relaxed matrix M of a query Q = t1 ∧ ... ∧ tn over an RDF database D
is a two-dimensional table created with mappings µ ∈ ps(Q,D) as rows and triple patterns
ti ∈ Q as columns. For a mapping µ ∈ ps(Q,D) and a triple pattern ti ∈ Q, M [µ][ti] = 1⇔
µ(ti) ∈ D, else M [µ][ti] = 0.

Figure 6(c) presents the relaxed matrix of the query Q given in Figure 6(b) when it is
executed on the RDF dataset presented in Figure 6(a). Each row of the matrix is a mapping
that satisfies at least one triple pattern. For example, the first row corresponds to the mapping
µ : ?p→ p1, which satisfies the triple pattern t1. A mapping µ has the value 1 in the column
ti, if µ satisfies ti. Thus, the matrix entry that lies in the first row and the t1 column is set
to 1 as p1 is a professor in the considered RDF dataset.

t

s p o

p1 type Professor

p1 teacherOf c1
p2 type Professor

p2 teacherOf c2
c2 name AI

p3 type Lecturer

p3 teacherOf c3
c3 name DB

c4 name DB

?p ?c t1 t2 t3
p1 null 1 0 0

p2 null 1 0 0

p1 c1 1 1 0

p2 c2 1 1 0

p3 c3 0 1 1

p1 c3 1 0 1

p2 c3 1 0 1

p1 c4 1 0 1

p2 c4 1 0 1

null c3 0 0 1

null c4 0 0 1

∗
∗
∗
∗
∗
∗
∗

SELECT ?p ?c WHERE {
?p type Professor (t1)
?p teacherOf ?c (t2)
?c name "DB" } (t3)

xss(Q) = {t1 ∧ t2, t2 ∧ t3, t1 ∧ t3}
mfs(Q) = {t1 ∧ t2 ∧ t3}

(a) RDF triples

(c) The relaxed matrix of Q

(b) The query Q (d) The MFSs and XSSs of Q

Fig. 6. Illustration of the Matrix-Based Approach (MBA)

4.2 Computing the Relaxed Matrix of a Query

As we have seen in Section 2, the evaluation of an RDF query consists in finding the mappings
that satisfy all its triple patterns using join operations. The relaxed matrix contains mappings

that satisfy at least one triple pattern. Intuitively, one can think of using the outer join
operator to compute these mappings. This operator is defined as follows.

Definition 4. Let Ω1 and Ω2 be sets of mappings, the difference of Ω1 and Ω2 is defined by:
Ω1 −Ω2 = {µ1 ∈ Ω1 | ∀µ2 ∈ Ω2, µ1 and µ2 are not compatible}. The full outer join of Ω1

and Ω2 is defined by: Ω1 ./ Ω2 = (Ω1 ./ Ω2) ∪ (Ω1 −Ω2) ∪ (Ω2 −Ω1).

However, as observed in the context of relational database by Galindo-Legaria [26], an
outer join operation eliminates from its operands the mappings that satisfy the inner join
operation. As an example, Figure 7 presents the result of the outer join operations between the
triple patterns of the query given in Figure 6(b). As depicted, the operation [[t1]]D ./ [[t2]]D
does not keep the mapping µ1 : ?p → p1 from [[t1]]D. Indeed, this mapping is compatible
with the mapping µ2 : ?p→ p1, ?c→ c1 and thus it is not an element of [[t1]]D − [[t2]]D.

Keeping the mapping µ1 is particularly important in the context of RDF. Indeed, contrary
to SQL, the predicates used for joining/outer-joining relations in SPARQL are never null-
rejecting [23]. A predicate p is null-rejecting if it evaluates to false (or undefined) whenever
a null value is used in p. As SPARQL is never null-rejecting, the mapping µ1 : ?p → p1 is
compatible with the mapping ?c→ c3. The union of these two mappings is ?p→ p1, ?c→ c3,
which is an element of ps(Q,D) not computed by outer join operations. As a consequence,
an extended join operation is defined as follows.

?p

p1

p2

[[t1]]D

?p ?c

p1 c1
p2 c2
p3 c3

./

[[t2]]D

?p ?c

p1 c1
p2 c2
p3 c3

=

[[t1]]D ./ [[t2]]D

?p ?c

p1 c1
p2 c2
p3 c3

[[t1]]D ./ [[t2]]D

?c

c3
c4

./

[[t3]]D

?p ?c

p1 c1
p2 c2
p3 c3

null c4

=

[[t1]]D ./ [[t2]]D ./ [[t3]]D

Fig. 7. Full outer join operations between sets of mappings

Definition 5. Let Ω1 and Ω2 be sets of mappings, the extended join of Ω1 and Ω2 is defined
by: Ω1 ./

∗ Ω2 = Ω1 ∪ (Ω1 ./ Ω2) ∪Ω2
5.

Proposition 5. The set of potential solutions of Q can be computed with extended join op-
erations: ps(Q,D) = [[t1]]D ./ ∗ · · · ./ ∗ [[tn]]D.

5 As the semantics of SPARQL is never null-rejecting, contrary to the relational algebra, this ex-
pression is not equivalent to: (Ω1 ∪Ω2) ./ (Ω1 ∪Ω2).

Proof. As the join operator distributes over union [23], it can be shown that:

[[t1]]D ./ ∗ [[t2]]D ./ ∗ [[t3]]D =[[t1]]D ∪ [[t2]]D ∪ [[t3]]D ∪ ([[t1]]D ./ [[t2]]D) ∪
([[t2]]D ./ [[t3]]D) ∪ ([[t1]]D ./ [[t3]]D) ∪
([[t1]]D ./ [[t2]]D ./ [[t3]]D)

Thus, the expression [[t1]]D ./ ∗ [[t2]]D ./ ∗ [[t3]]D computes the mappings that satisfy t1 or
t2 or t3 or a combination of those triple patterns. This result can be generalized to n triple
patterns and thus, the expression [[t1]]D ./ ∗ · · · ./ ∗ [[tn]]D computes the mappings that satisfy
one triple pattern of Q or a combination of those triple patterns i.e., the set ps(Q,D).

The Algorithm 3 is based on the previous definition. It computes the relaxed matrix using
a nested loop algorithm. Each triple pattern ti is evaluated over D to obtain the set [[ti]]D
(line 3). Then, each mapping µ of this set is compared with each mapping µ′ in the matrix
(line 5). If µ and µ′ are compatible, the resulting mapping is inserted with a value set to 1
for the column ti and values of the row corresponding to µ′ for the other columns. If this
mapping was already in the matrix, the corresponding row is just updated with a value set
to 1 for the column ti (line 6-12). To respect the semantics of the extended join operation,
the mapping µ is inserted (if it was not already done) in the matrix with a value set to 1 for
the column ti and 0 for the other columns (line 13-15).

An example of Algorithm 3 execution for the query given in Figure 6(b) is presented
in Figure 8. The algorithm executes the triple pattern t1 of the query Q. Each result is
inserted in the matrix with a value set to 1 for the column t1 and 0 for other columns. Then,
the algorithm executes the triple pattern t2. Two results are compatible with the mappings
contain in M . They are added to this matrix with a value set to 1 for the columns t1 and
t2. The mapping ?p→ p3, ?c→ c3 is not compatible with any mapping of M . It is added to
the matrix with a value set to 1 only for the t2 column. The same process is applied for t3 to
find the final relaxed matrix.

The Algorithm 3 only requires n queries where n is the number of triple patterns. Yet,
our experiments conducted on the LUBM benchmark show that this algorithm can still take
a notable amount of time as the size of the matrix can be large for queries involving triple
patterns that are not selective. Moreover, proper subqueries of the initial query can lead to
Cartesian products, which imply an expensive computation cost as well as a matrix of a large
size (see Section 5 for details). As a first step to improve this approach, we have specialized it
for star-shaped queries (i.e., a set of triple patterns with a shared join variable in the subject
position) as they are often found in the query logs of real datasets [27].

4.3 Optimized Computation of the Matrix for Star-shaped Queries

In the following, we propose two approaches to compute the relaxed matrix of a star-shaped
query. The first one, called NQ, is independent of the implementation of the RDF database
while the second one, called 1Q, requires an RDF database implemented as a triples table.
As an illustrative example, we consider our initial query depicted in Figure 9(b).

The NQ approach. The computation of the relaxed matrix for star-shaped queries is
simpler than in the general case. First, subqueries of a star-shaped query cannot be Cartesian

Algorithm 3: Computation of the relaxed matrix of a query Q

ComputeMatrix(Q, D)
inputs : A failing query Q = t1 ∧ ... ∧ tn; an RDF database D
output: The relaxed matrix M

1 M ← ∅;
2 foreach triple pattern ti ∈ Q do
3 foreach µ ∈ [[ti]]D do
4 isInserted← false;
5 foreach µ′ ∈M do
6 if µ and µ′ are compatible then
7 if (µ′ ∪ µ) /∈M then
8 M ←M ∪ {µ′ ∪ µ};
9 M [µ′ ∪ µ][tk]←M [µ′][tk] for k ∈ 1 · · ·n ∧ k 6= i;

10 M [µ′ ∪ µ][ti]← 1;
11 if (µ ∪ µ′) = µ then
12 isInserted← true;

13 if not isInserted then
14 M ←M ∪ {µ};
15 M [µ][tk]← 1 if k = i, else 0; (k ∈ 1 · · ·n)

16 return M ;

M = ∅
?p ?c t1 t2 t3
p1 null 1 0 0

p2 null 1 0 0

[[t1]]D M =
?p ?c t1 t2 t3
p1 null 1 0 0

p2 null 1 0 0

p1 c1 1 1 0

p2 c2 1 1 0

p3 c3 0 1 0

?p ?c t1 t2 t3
p1 null 1 0 0

p2 null 1 0 0

p1 c1 1 1 0

p2 c2 1 1 0

p3 c3 0 1 1

p1 c3 1 0 1

p2 c3 1 0 1

p1 c4 1 0 1

p2 c4 1 0 1

null c3 0 0 1

null c4 0 0 1

[[t2]]D M =

[[t3]]D M =

Fig. 8. An example of Algorithm 3 execution that computes the relaxed matrix

t

s p o

p1 type Professor

p1 researchInterest SW

p1 teacherOf DB

p2 type Lecturer

p2 teacherOf DB

p3 teacherOf DB

p4 researchInterest SW

p5 type Lecturer

p5 teacherOf AI

p6 type Professor

p6 researchInterest NLP

p6 teacherOf WS

p7 type Professor

p7 name John

p7 researchInterest NLP

SELECT ?p ?a WHERE {
?p age ?a (t1)
?p type Lecturer (t2)
?p researchInterest "SW" (t3)
?p teacherOf "DB" } (t4)

?p t1 t2 t3 t4
p1 0 0 1 1

p2 0 1 0 1

p3 0 0 0 1

p4 0 0 1 0

p5 0 1 0 0

∗
∗

xss(Q) = {t2 ∧ t4, t3 ∧ t4}
mfs(Q) = {t1, t2 ∧ t3}

(a) RDF triples

(c) The relaxed matrix of Q

(b) The query Q

(d) The MFSs and XSSs of Q

Fig. 9. Illustration of the MBA approach for star-shaped queries

products. Second, a single variable, denoted by x, is used to join all the triple patterns.
Thanks to this latter property, we only need to record the values of the join variable (i.e., the
restriction of the function µ to {x} denoted by µ|{x}) in the relaxed matrix. The values of the
join variable that satisfy a triple pattern t are evaluated as follows: [[t]]D = {µ|{x} | dom(µ) =
var(t) ∧ µ(t) ∈ D} and the relaxed matrix is computed using the following proposition.

Proposition 6. The set of potential solutions of a star-shaped query Q can be computed with
full outer join operations: ps(Q,D) = [[t1]]D ./ · · · ./ [[tn]]D.

Proof. Let t1 and t2 be two triple patterns of a star-shaped query. If µ1 ∈ [[t1]]D and
µ2 ∈ [[t2]]D, µ1 and µ2 are compatible if they have the same value for the join variable, i.e.,
[[t1]]D ./ [[t2]]D = [[t1]]D ∩ [[t2]]D. Using this property and the laws of set algebra, one can
deduce that:

[[t1]]D ./ [[t2]]D = ([[t1]]D ∩ [[t2]]D) ∪ ([[t1]]D − [[t2]]D) ∪ ([[t2]]D − [[t1]]D)

= ([[t1]]D ∩ [[t2]]D) ∪ [[t1]]D ∪ [[t2]]D

= [[t1]]D ./ ∗ [[t2]]D

Thus, in the case of star-shaped queries, full outer joins are equivalent to extended join
operations and we have shown in Proposition 5 that this latter operation computes the relaxed
matrix of a query.

The Algorithm 4, called NQ, uses the previous proposition to compute the relaxed matrix
of a star-shaped query. This algorithm executes one query for each triple pattern ti (line 2).

For each result µ, the value of the join variable is added to the matrix, if it is not already
present in it, and the values of this row are set to 1 for the column corresponding to ti and 0
for the other columns (line 4-6). If this mapping was already in the matrix, the corresponding
row is just updated with a value set to 1 for the column ti (line 7).

An example of Algorithm 4 execution for our illustrative query (see Figure 9(b)) is given
in Figure 10. The execution of the triple pattern t1 returns an empty result and thus the
matrix remains empty. Then the algorithm executes the triple pattern t2 and adds the two
resulting mappings restricted to the join variable ?p in the matrix with a value set to 1 for
the column t2 and 0 for other columns. The same process is applied for the triple pattern
t3. Finally, the triple pattern t4 is executed. It returns the mappings ?p → p1, ?p → p2 and
?p → p3. As the two first ones were already in the matrix, the corresponding rows are just
updated with a value set to 1 for the column t4. Conversely, the mapping ?p→ p3 is inserted
in the matrix.

Algorithm 4: Computation of the matrix for star-shaped queries (NQ)

ComputeMatrixStarQueryNQ(Q, D)
inputs : A failing star-shaped query Q = t1 ∧ ... ∧ tn with x as join variable;

An RDF database D
output: The relaxed matrix M

1 M ← ∅;
2 foreach triple pattern ti ∈ Q do
3 foreach µ ∈ [[ti]]D do
4 if µ|{x} /∈M then
5 M ←M ∪ {µ|{x}};
6 M [µ|{x}][tk]← 0 for k ∈ 1 · · ·n ∧ k 6= i;

7 M [µ|{x}][ti]← 1;

8 return M ;

The 1Q approach. The algorithmNQ can be used for any RDF database (implemented on a
relational database management system (RDBMS) or not). If we consider an RDF database
implemented as a triples table t(s, p, o) in an RDBMS, we can use a single SQL query to
compute the relaxed matrix. This query is roughly the translation of the [[t1]]D ./ · · · ./ [[tn]]D
expression. Inspired by the work of Cyganiak conducted on the translation of SPARQL queries
into SQL [28], we use SQL outer join operations to compute this expression and the coalesce
function6 to manage unbound values. In addition, we use the case operator to check if a
triple pattern is matched and thus to get the matrix values (1 if it is matched, else 0).

We illustrate this approach with the query given in Figure 9(b). We denote by ti the
query (or view) that computes the values of the join variable for the triple pattern ti. For ex-
ample, t1 is the following query: select distinct s from t where p=’age’. Using, this

6 The coalesce function returns the first non-null expression in the list of parameters.

M = ∅
M = ∅

?p t1 t2 t3 t4
p2 0 1 0 0

p5 0 1 0 0 ?p t1 t2 t3 t4
p2 0 1 0 0

p5 0 1 0 0

p1 0 0 1 0

p4 0 0 1 0
?p t1 t2 t3 t4
p2 0 1 0 1

p5 0 1 0 0

p1 0 0 1 1

p4 0 0 1 0

p3 0 0 0 1

[[t1]]D

[[t2]]D
M =

[[t3]]D M =

[[t4]]D M =

Fig. 10. An example of the algorithm NQ

notation, the SQL query used to compute the relaxed matrix of our example query is:

select coalesce(t1.s , t2.s, t3.s, t4.s),

case when t1.s is null then 0 else 1 end as t1,

case when t2.s is null then 0 else 1 end as t2,

case when t3.s is null then 0 else 1 end as t3,

case when t4.s is null then 0 else 1 end as t4

from t1 full outer join t2 on t1.s = t2.s

full outer join t3 on coalesce(t1.s , t2.s) = t3.s

full outer join t4 on coalesce(t1.s , t2.s, t3.s) = t4.s

This approach, called 1Q, has two advantages: 1) a single query is used to compute the
relaxed matrix, 2) the RDBMS chooses the adequate join algorithm.

4.4 Computing the XSSs from the Relaxed Matrix

Abusing notation, we denote by xss(µ) the maximal proper subquery of Q that retrieves a
mapping µ ∈ ps(Q,D). It is directly obtained from the relaxed matrix: xss(µ) = {ti ∧ ... ∧
tj | ∀tk ∈ {ti, ..., tj} : M [µ][tk] = 1}. Finding the XSSs of a query Q is done in two steps:

1. Computing the skyline SKY of the relaxed matrix: SKY (M) = {µ ∈ ps(Q,D) | @µ′ ∈
ps(Q,D) such that µ ≺ µ′} where µ ≺ µ′ if (i) on every triple pattern ti, M [µ][ti] ≤
M [µ′][ti] and (ii) on at least one triple pattern tj , M [µ][tj] < M [µ′][tj]. This step can be
done by using one of the numerous algorithms defined to efficiently compute the skyline
of a table (see [29] for a survey). In Figure 6(c) and Figure 9(c), all the rows composing
the skyline of the relaxed matrices are marked with ∗.

2. Retrieving the distinct maximal proper subqueries of Q that return an element of the
skyline: xss(Q) = {xss(µ) | µ ∈ SKY (M)}. Each such proper subquery is an XSS. The
XSSs of our examples are given in Figure 6(d) and Figure 9(d). They are framed in the
relaxed matrices.

4.5 Using the Relaxed Matrix as an Index for the LBA Approach

In the LBA algorithm, subqueries are executed on the RDF database to find whether they
return an empty set of answers or not. Instead of executing a subquery, one can compute
the intersection of the matrix columns corresponding to the subquery triple patterns. If the
resulting column is empty, the subquery returns an empty set of answers and conversely.

Thus, the matrix computed by the MBA approach can be used as an index to improve
the performance of the LBA approach. This latter still requires exploring a search space that
exponentially increases with the number of triple patterns, but this search space does not
require the execution of any database query once the relaxed matrix has been computed.

5 Experimental Evaluation

In this section, we investigate the scalability of our proposed algorithms and compare them
with one baseline method and a related work algorithm.

5.1 Experimental Setup

We have implemented the LBA and MBA algorithms in JAVA 1.8 64 bits. These algorithms
take as input a failing SPARQL query and return the set of MFSs and XSSs of this query.
In our current implementation, these algorithms can be run on top of Jena TDB (version
1.0.1) and Sesame Native Store (version 2.8.4). Integrating these algorithms with another
triplestore is easy as soon as this latter supports the SPARQL language. This integration is
simply done by implementing an interface that defines some basic operations for a triplestore
(e.g., establishing a connection and executing a SPARQL query). Our implementation is
available at http://www.lias-lab.fr/forge/projects/qars.

Our experiments were conducted on a Ubuntu Server 14.04.02 LTS system with Intel
XEON CPU E5-2630 v3 @2.4Ghz CPU and 32GB RAM. In this section we report the results
of our experiments run on top of Jena TDB as the ones obtained with Sesame were similar.
All times presented are the average of five consecutive runs of the algorithms. Before the
actual measured run starts we run the algorithms once. The results of algorithms are not
shown for queries when they consumed too many resources, i.e., when they took more than
one hour to execute or when the memory used exceeded the size of the Java Virtual Machine.

5.2 Dataset and Queries

As in previous work on RDF query relaxation [13, 14], we used datasets generated with the
LUBM benchmark [10]. It is based on a university ontology composed of 43 classes and
32 properties. The used datasets range from LUBM100 to LUBM1K. Table 1 gives the
approximate number of triples and instances of these datasets (in millions).

As the LUBM workload mainly contains successful queries, we have generated a set of
random failing queries. To define the characteristics of these queries, we have considered the
study proposed by Arias Gallego and al. [27] on real-world SPARQL queries executed on the
DBPedia and SWDF datasets. They have shown that these queries have three main query
patterns star, chain and composite and range from 1 to 15 triple patterns. As a consequence,

LUBM100 LUBM250 LUBM500 LUBM750 LUBM1K

Number of triples 13M 30M 65M 90M 130M

Number of instances 2M 5M 11M 16M 22M
Table 1. Datasets characteristics

we have generated 225 queries ranging from 1 to 15 triple patterns (5 queries for a given
number of triple patterns) for these three main RDF query patterns (75 queries for a given
query pattern). These queries are characterized as follows.

– Star queries are characterized by subject-subject joins between triple patterns as the join
variable is on subject position.

– Chain queries are composed of object-subject joins, i.e., the join variable is on object
position in one triple pattern and on subject position in the other.

– Composite queries are randomly made of subject-subject, object-object and subject-object
(or object-subject) joins. We have not generated queries that include triple patterns with
variables on predicate positions as they are infrequent in practice [27].

Table 2 presents an example of these three types of generated queries7.

star SELECT * WHERE { ?X rdf:type ub:FullProfessor .

?X ub:age ?Y1

?X ub:memberOf ?Y2 .

?X ub:doctoralDegreeFrom <University911> }
chain SELECT * WHERE { ?Y1 ub:softwareDocumentation ?Y2 .

?Y2 ub:publicationAuthor ?Y3

?Y3 ub:headOf ?Y4 .

?Y4 ub:affiliateOf <FullProfessor4> }
composite SELECT * WHERE { <Dept8> ub:subOrganizationOf ?Y1 .

?Y1 ub:subOrganizationOf <University17>

?Y2 ub:headOf ?Y1 .

?Y3 ub:affiliateOf ?Y2 }
Table 2. Example of generated queries with four triple patterns

5.3 Relaxed Matrix Size and Computation Time

The MBA approach relies on the relaxed matrix. To define the data structure of this matrix,
we have leveraged the similarity between this matrix and bitmap indexes used in RDBMS.
Thus, the matrix is defined as a set of compressed bitmaps, one for each column. We have
used the Roaring bitmap library version 0.4.10 for this purpose [30]. As Table 2 shows, this
data structure ensures that the matrix size remains small even if the number of matrix rows
is large (around 1MB for 1.7M rows). Table 3 only includes results for star-shaped queries as
other queries required too many resources due to Cartesian products.

7 For readability, we shorten the URIs

3 TP 5 TP 8 TP 10 TP 13 TP 15 TP

Computation time with NQ (in sec) 2.36 8.9 17.3 25.5 29.3 36.2

Computation time with 1Q (in sec) 2.36 9 15.5 19.6 23.6 29

Size (in KB) 80 320 480 620 620 1290

Number of rows (in K) 249 911 1326 1532 1532 1738

Table 3. Relaxed Matrix Properties on LUBM100 (TP stands for Triple Pattern)

For the computation of the MBA relaxed matrix, we have compared the two algorithms 1Q
and NQ described in Section 4. As the 1Q approach requires an RDF database implemented
on top of an RDBMS, we have used the Oracle 12c RDBMS to implement the triples table. As
Table 3 shows, the 1Q algorithm is about 25% faster than NQ. Even with this optimization,
which is only possible for specific RDF databases, the computation time of the matrix is
important: around 30 seconds for a query with 15 TP. Despite this important computation
time, the MBA approach can still be interesting as the matrix can be precomputed for usual
failing queries identified thanks to query logs.

5.4 XSS and MFS Computation Time

In this section, we present experiments on the scalability properties of the following algorithms
when both the size of the query and the size of the database increase.

– LBA: the algorithm described in Section 3 without any heuristics.
– LBA-OPT: the LBA algorithm with the heuristics described in Section 3.4.
– MBA+M: this algorithm first computes the relaxed matrix using Algorithm 4 for star-

shaped queries and Algorithm 3 for other queries. Then, it computes XSSs and MFSs
of the query with the LBA algorithm that uses the relaxed matrix instead of execut-
ing queries.

– MBA-M: same as MBA+M but without the computation of the relaxed matrix.
– DFS: a depth-first search algorithm for traversing the subquery lattice. For each failing

(resp., succeeding) subquery reached during the search, we check if this is an MFS (resp.,
an XSS). This algorithm executes each subquery once (in total 2n− 2 queries, where n is
the number of TP).

– ISHMAEL: the algorithm proposed in [21] that we have tailored to return both the XSSs
and MFSs of an RDF query.

5.5 Experiments with Star-shaped Queries

In Figure 11, we illustrate the time to compute the MFSs and XSSs as a function of the
query size and in Figure 12 as a function of the dataset size. These graphs are displayed
in logarithmic scale for readability. Table 4 gives the number of executed queries for each
algorithm. An algorithm that evaluates all the subqueries such as DFS can be used for queries
with only a few triple patterns. For larger queries, the number of subqueries exponentially
increases and thus the performance of DFS quickly decreases. In this case, the smart explo-
ration of the search space provided by the LBA and ISHMAEL algorithms is more efficient.
Their response times are below 1 second for queries that do not have more than 11 triple

0,0

0,1

1,0

10,0

100,0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ti
m
e
(s
ec
)

Query size

LBA LBA‐OPT MBA+M

MBA‐M DFS ISHMAEL

Fig. 11. Star-shaped query time (log scale) vs
query size, for LUBM100

0,01

0,1

1

10

100

1000

13M 30M 65M 90M 130M

Ti
m
e
(s
ec
)

Number of Triples

LBA LBA‐OPT MBA+M

MBA‐M DFS ISHMAEL

Fig. 12. Star-shaped query time (log scale) vs
dataset size, for 15 TP

patterns on LUBM100. For larger queries, LBA outperforms ISHMAEL (recall that the re-
sults are presented in logarithmic scale). Indeed, for queries that have between 12 and 15
triple patterns, the response times of LBA range from 1 to 2 seconds while they exceed 10
seconds for ISHMAEL. As Figure 12 shows, these response times scale linearly with the size
of the dataset. We have identified that the performance difference is due to the simplified
computation of the potential XSSs that leads to a smaller number of executed queries (see
Table 4).

MBA-M provides response times of some milliseconds even for queries with 15 triple
patterns on LUBM1K. This is due to the fact that this approach just needs to compute the
intersection of bitmaps using bitwise operations instead of executing subqueries. However,
this approach makes a strong assumption: the matrix must be precomputed i.e., the query
must have been identified as a usual failing query (e.g., using query logs). If the matrix
is computed at runtime (MBA+M), this computation time is important and thus MBA+M
can hardly be used in practice on large datasets. Indeed, this computation time will only be
acceptable if the matrix size is small, i.e., when the query only involve selective triple patterns
(they can be identified using database statistics).

Finally, we observe that LBA and LBA-OPT have similar performance. This happens
because subqueries of a star-shaped queries cannot lead to Cartesian products. Considering
the query cache, we have observed that approximatively 10% less queries are executed in
LBA-OPT compared to LBA. But, as these queries are included in successful queries, they
are queries of small size and thus have an execution time insignificant compared to large size
queries, which are not in the query cache. Despite these results, our proposed heuristics are
still relevant for other kinds of RDF queries as we show in the next section.

5.6 Experiments with Chain-shaped Queries

Figure 13 and 14 as well as Table 5 present our results with chain-shaped queries. In the case
of chain-shaped queries, all non contiguous subqueries of the initial query lead to Cartesian
products. As a consequence, results of MBA are not provided as the size of the matrix ex-
ceeded the size of the main memory for most queries. The algorithm DFS also quickly becomes
inapplicable in practice as it takes more than 3 minutes for queries with 6 TP on LUBM100.

3 TP 5 TP 8 TP 10 TP 13 TP 15 TP

LBA #Executed Queries 5 14 37 67 117 175

LBA-OPT #Executed Queries 4 11 30 57 103 153
#Cached Queries 1 4 7 10 14 22

DFS #Executed Queries 6 30 254 1022 8190 32766

ISHMAEL #Executed Queries 9 27 76 138 260 393
Table 4. Number of Executed Queries on LUBM 100 for Star Queries

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q
ue

ry
 ti
m
e
(s
ec
)

Query size

LBA LBA‐OPT DFS ISHMAEL

Fig. 13. Chain-shaped query time vs query size,
for LUBM100

0

10

20

30

40

50

60

13M 30M 65M 90M 130M

Q
ue

ry
 ti
m
e
(s
ec
)

Number of Triples

LBA LBA‐OPT ISHMAEL

Fig. 14. Chain-shaped query time vs dataset
size, for 15 TP

3 TP 5 TP 8 TP 10 TP 13 TP 15 TP

LBA #Executed Queries 5 14 33 50 75 100

LBA-OPT #Executed Queries 4 10 24 36 58 75
#Cached Queries 1 7 22 37 57 88

DFS #Executed Queries 6 30 254 1022 8190 32766

ISHMAEL #Executed Queries 11 31 74 113 169 225
Table 5. Number of Executed Queries on LUBM 100 for Chain Queries

As it executes an average of 75% fewer queries than DFS and 55% fewer queries that ISH-
MAEL, the LBA algorithm (without heuristics) has better performance. But this algorithm
still may encounter expensive Cartesian products (i.e., Cartesian product whose connected
components have a large number of rows). As a consequence, the safe way to compute MFSs
and XSSs of a chain-shaped query is to use LBA-OPT that decomposes Cartesian product
in its connected components. In our experiments, LBA-OPT is in average 67% faster than
LBA. This behaviour is explained by the fact that this algorithm uses extensively the query
cache (see Table 5) and does not execute Cartesian products. Indeed, as the decomposition of
Cartesian product leads to an extended use of the query cache, we found that approximatively
30% less queries were executed in LBA-OPT compared to an execution without any query
caching. The response time of LBA-OPT is below 1 second for all queries on LUBM100. As
this algorithm scales linearly with the size of the dataset (see Figure 14), this response time
is around 5 seconds for the largest tested queries on LUBM1K.

3 TP 5 TP 8 TP 10 TP 13 TP 15 TP

LBA #Executed Queries 6 15 35 51 90 118

LBA-OPT #Executed Queries 5 11 26 38 67 86
#Cached Queries 1 5 17 28 49 82

DFS #Executed Queries 6 30 254 1022 8190 32766

ISHMAEL #Executed Queries 12 29 76 116 212 285
Table 6. Number of Executed Queries on LUBM 100 for Composite Queries

5.7 Experiments with Composite-shaped Queries

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q
ue

ry
 ti
m
e
(s
ec
)

Query size

LBA LBA‐OPT DFS ISHMAEL

Fig. 15. Composite-shaped query time vs query
size, for LUBM100

0

10

20

30

40

50

60

70

13M 30M 65M 90M 130M

Q
ue

ry
 ti
m
e
(s
ec
)

Number of Triples

LBA LBA‐OPT ISHMAEL

Fig. 16. Composite-shaped query time vs dataset
size, for 15 TP

Figure 15 and 16 as well as Table 6 present our results with composite-shaped queries.
With this type of queries, the probability of executing an expensive Cartesian product is
smaller than in the case of chain-shaped queries. Yet, our experiments shows that the size
of the matrix used in the MBA algorithm exceeded the size of the main memory for most
queries. The DFS algorithm also quickly becomes extremely slow with queries that have more
than 6 TP. As for chain-shaped query, the safe way to find MFSs and XSSs of a query is to
use the LBA-OPT algorithm. In our experiments, it is in average 37% faster than LBA and
60% faster than ISHMAEL. Compared to its response time with chain-shaped queries, the
response time of LBA-OPT was slower with composite-shaped queries (around 15 seconds
for queries with 15 TP). This happens because composite queries involve different join query
patterns and not only object-subject join pattern like with chain-shaped queries. In particular,
we have observed that executing object-object join query patterns was particularly slow on
Jena TDB.

6 Related Work

We review here the closest works related to our proposal done both in the context of RDF
and relational databases.

– RDF databases context. Hurtado et al. [11] have addressed the relaxation of RDF queries
through RDFS entailment. This work has been extended in [16, 17] to combine query
approximation and relaxation and to consider conjunctive regular path queries. These re-
laxation and approximation techniques can be called in RDF queries using two operators:
RELAX and APPROX. We note that the types of relaxation encompassed by these
techniques do not include a fine-grained relaxation of filters (a value in a triple can only be
replaced by a variable and not by an approximate value). Moreover, few parameters are
available in the proposed operators to control precisely the relaxation or approximation
process. We have addressed these limitations in our previous work [15], where we have
proposed a set of primitive relaxation operators and have shown how these operators can
be integrated in SPARQL in a simple or combined way.

Huang et al. have also addressed the problem of relaxing RDF queries in [13] and [14].
These approaches rely on the relaxation model of [11] (with the same limitation to relax
filters). Two particular contributions are made in these papers: (i) ranking the relaxed
queries using a distance-based method [13] or a measure based on information content [14]
and (ii) optimizing the relaxation process to retrieve the top-k answers.

Let us also mention the work done by Dolog et al. [20] who proposed a method for
automatically relaxing over-constrained RDF queries based on background knowledge
about the domain model and user preferences. The type of relaxation proposed consists
in rewriting the original query by replacing some of its parts by applying specific rules.
For instance, replacing a highly preferred value by a less preferred one. This requires
defining a priori domain preferences and a posteriori user preferences. As an alternative
to query relaxation, there have been works on query auto-completion [31–35], which check
the data during query formulation to avoid empty answers. It is worth noting that none
of the above works has considered the issue related to the causes of RDF query failure
and then the issue of the MFSs computation.

– Relational databases context. Many works have been proposed for query relaxation in
the setting of relational databases (see Bosc et al. [36] for an overview). In particular,
Godfrey [21] has defined the algorithmic complexity of the problem of identifying the
MFSs of failing relational queries and developed the ISHMAEL algorithm for retrieving
them. The LBA approach is inspired by this algorithm. Compared with ISHMAEL, LBA
computes both the MFSs and the potential XSSs in one time. Moreover, LBA proposes
a simplified computation of the potential XSSs. Bosc et al. [36] and Pivert et al. [37]
extended Godfrey’s approach to the fuzzy query context. In [36], the notion of MFSs is
studied in order to quickly find a relaxed fuzzy query with non-empty answers. While
in [37], an approach based on a fuzzy-cardinality-based summary of the relevant part
of the database, is proposed to identify a set of gradual MFSs8. Recently in [38], this
approach is extended for computing gradual XSSs.

In the recommendation systems setting, McSherry [39] and Jannach [22] have studied the
concept of MFS and XSS. McSherry [39] proposed an incremental relaxation of the failing
query based on the MFSs. These MFSs are computed with an algorithm that explores
the subquery lattice. In contrast, the work of Jannach [22] leverages a matrix aiming at
computing alternative answers to the failing query with the query conditions they satisfy.

8 MFSs which are only poorly satisfied, i.e., that do not return any answer with at least a satisfaction
degree equals to α (a user-defined threshold).

Our MBA approach is inspired by [22]. But, contrary to the Jannach’s approach, the
computation of the matrix rows is not straightforward in the context of RDF queries.
Moreover, in [22], the matrix is only used to retrieve the XSSs of the query while, in our
work, we show that the matrix can be used and stored as a bitmap index to improve the
performance of LBA and thus retrieving both the MFSs and XSSs of the query.

7 Conclusion and Discussion

The paper addresses the problem of failing RDF Queries. More specifically, we have inves-
tigated two issues: on the one hand, the diagnosis and the identification of the causes of
the query failure (by computing the MFSs) and, on the other hand, the computation of the
relaxations of the query (by retrieving the XSSs).

Two approaches to efficiently compute the MFSs and XSSs of a failing RDF query are
discussed. The first approach, called LBA, is a smart exploration of the subquery lattice of
the failing query that leverages the properties of MFSs and XSSs. We have also proposed
several heuristics to improve its performance. The second approach, called MBA, is based
on the precomputation of a matrix, which records, for each potential solution of the query,
the set of triple patterns that it satisfies. The XSSs of a query can be found without any
database access by computing the skyline of this matrix. Interestingly, this matrix looks like
a bitmap index and can also improve the performance of the LBA algorithm.

We have done a complete implementation of our propositions and evaluated their perfor-
mances on several datasets generated with the LUBM benchmark. While a straightforward
algorithm does not scale for queries with more than 5 triple patterns, the optimized LBA
approach scales up well for queries up to 15 triple patterns in our experiments. The MBA
approach is only interesting for star-shaped queries. If the matrix is precomputed, which
assumes that the query has been identified as a usual failing query, the computation of XSSs
and MFSs is not time consuming at all even for queries with many triple patterns. If the
matrix is computed at runtime, this approach will only be relevant for large queries when
the cost of computing the matrix becomes acceptable in comparison with the optimization of
LBA it permits.

The work presented in this paper opens many perspectives. A further optimization of
the LBA and MBA approaches is subject to our future work such as using multi-query op-
timization techniques. As our algorithms may compute many XSSs, returning the results of
all these XSSs to the end-user may not be helpful. Thus, we plan to define a ranking model
for these XSSs to suggest or execute them in the ranking order established. For instance,
this ranking model could be based on the result size of each XSS, then one has to study
the problem of query containment over XSSs. As another perspective, we will investigate
the concept of MFSs and XSSs over uncertain/trust-weighted RDF data. In this context, a
response associated with a small level of certainty could be also considered as an unsatisfac-
tory answer (since it does not serve the user needs due to its high uncertainty). To explain
the failure query and repair the query, one can use particular variants of MFSs and XSSs
that imply non-trivial extensions of our algorithms. Finally, we also plan to study whether
our approach could be combined with other cooperative techniques that aim at handling the
unsatisfactory-answer problem (e.g., why-not queries [40]).

Acknowledgement. The authors would like to thanks anonymous reviewers as well as
Patrice Naudin and Pascal Richard for their very useful comments and suggestions.

References

1. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: A Spatially and Temporally
Enhanced Knowledge Base from Wikipedia. Artificial Intelligence 194 (2013) 28–61

2. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia
- A crystallization point for the Web of Data. Journal of Web Semantics 7(3) (2009) 154–165

3. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S.,
Zhang, W.: Knowledge Vault: A Web-scale Approach to Probabilistic Knowledge Fusion. In:
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’14). (2014) 601–610

4. Deshpande, O., Lamba, D.S., Tourn, M., Das, S., Subramaniam, S., Rajaraman, A., Harinarayan,
V., Doan, A.: Building, Maintaining, and Using Knowledge Bases: A Report from the Trenches.
In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data
(SIGMOD’13). (2013) 1209–1220

5. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax. W3C
Recommendation 25 February 2014 (2014) http://www.w3.org/TR/2014/REC-rdf11-concepts-
20140225/.

6. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recommendation
15 January 2008 (2008) http://www.w3.org/TR/rdf-sparql-query/.

7. Brickley, D., Guha, R.: RDF Schema 1.1. W3C Recommendation 25 February 2014 (2014)
http://www.w3.org/TR/rdf-schema/.

8. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider,
P.F., Stein, L.A.: OWL Web Ontology Language Reference. W3C Recommendation 10 February
2004 (2004) http://www.w3.org/TR/owl-ref.

9. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a Collaboratively
Created Graph Database For Structuring Human Knowledge. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD’08). (2008) 1247–1250

10. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base Systems. Web
Semantics 3(2-3) (2005) 158–182

11. Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Query Relaxation in RDF. Journal on Data
Semantics X 10 (2008) 31–61

12. Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Ranking Approximate Answers to Semantic Web
Queries. In: Proceeding of the 6th Extended Semantic Web Conference (ESWC’09). (2009)
263–277

13. Huang, H., Liu, C., Zhou, X.: Computing Relaxed Answers on RDF Databases. In: Proceedings
of the 9th International Conference on Web Information Systems Engineering (WISE’08). (2008)
163–175

14. Huang, H., Liu, C., Zhou, X.: Approximating query answering on RDF databases. Journal of
the World Wide Web: Internet and Web Information Systems (WWW) 15(1) (2012) 89–114

15. Fokou, G., Jean, S., Hadjali, A.: Endowing Semantic Query Languages with Advanced Relax-
ation Capabilities. In: Proceeding of the 21st International Symposium on Methodologies for
Intelligent Systems (ISMIS 2014), Roskilde, Denmark (2014) 512–517

16. Poulovassilis, A., Wood, P.T.: Combining Approximation and Relaxation in Semantic Web Path
Queries. In: Proceedings of the 9th International Semantic Web Conference (ISWC’10). (2010)
631–646

17. Caĺı, A., Frosini, R., Poulovassilis, A., Wood, P.: Flexible Querying for SPARQL. In: Proceedings
of the 13th International Conference on Ontologies, DataBases, and Applications of Semantics
(ODBASE’14). (2014) 473–490

18. Hogan, A., Mellotte, M., Powell, G., Stampouli, D.: Towards Fuzzy Query-relaxation for RDF.
In: Proceeding of the 9th Extended Semantic Web Conference (ESWC’12). (2012) 687–702

19. Elbassuoni, S., Ramanath, M., Weikum, G.: Query Relaxation for Entity-Relationship Search.
In: Proceeding of the 8th Extended Semantic Web Conference (ESWC’11). (2011) 62–76

20. Dolog, P., Stuckenschmidt, H., Wache, H., Diederich, J.: Relaxing RDF queries based on user
and domain preferences. Journal of Intelligent Information Systems 33(3) (2009) 239–260

21. Godfrey, P.: Minimization in Cooperative Response to Failing Database Queries. International
Journal of Cooperative Information Systems 6(2) (1997) 95–149

22. Jannach, D.: Fast Computation of Query Relaxations for Knowledge-based Recommenders. AI
Communications 22(4) (2009) 235–248

23. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM Transactions
on Database Systems (TODS) 34(3) (2009) 16:1–16:45

24. Fokou, G., Jean, S., Hadjali, A., Baron, M.: Cooperative Techniques for SPARQL Query Re-
laxation in RDF Databases. In: Proceeding of the 12th Extended Semantic Web Conference
(ESWC 2015). (2015) 237–252

25. Sakr, S., Al-Naymat, G.: Relational Processing of RDF Queries: A Survey. SIGMOD Record
38(4) (2009) 23–28

26. Galindo-Legaria, C.A.: Algebraic Optimization of Outerjoin Queries. PhD thesis, Harvard
University (1992)

27. Gallego, M.A., Fernández, J.D., Mart́ınez-Prieto, M.A., de la Fuente, P.: An Empirical Study
of Real-World SPARQL Queries. In: Proceedings of the USEWOD workshop co-located with
WWW’11. (2011)

28. Cyganiak, R.: A relational algebra for SPARQL. HP-Labs Technical Report, HPL-2005-170,
http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html (2005)

29. Hose, K., Vlachou, A.: A Survey of Skyline Processing in Highly Distributed Environments.
VLDB Journal 21(3) (2012) 359–384

30. Chambi, S., Lemire, D., Kaser, O., Godin, R.: Better bitmap performance with Roaring bitmaps.
CoRR abs/1402.6407 (2014)

31. Gombos, G., Kiss, A.: SPARQL Query Writing with Recommendations Based on Datasets. In:
Human Interface and the Management of Information. Information and Knowledge Design and
Evaluation. (2014) 310–319

32. Lehmann, J., Bühmann, L.: AutoSPARQL: Let Users Query Your Knowledge Base. In: Pro-
ceeding of the 8th Extended Semantic Web Conference (ESWC’11). (2011) 63–79

33. Campinas, S.: Live SPARQL Auto-Completion. In: Proceedings of the 13th International
Semantic Web Conference (ISWC’14 Posters & Demos). (2014) 477–480

34. Möller, K., Ambrus, O., Josan, L., Handschuh, S.: A Visual Interface for Building SPARQL
Queries in Konduit. In: Proceedings of the 7th International Semantic Web Conference (ISWC’08
Posters & Demos). (2008)

35. Clark, L.: SPARQL Views: A Visual SPARQL Query Builder for Drupal. In: Proceedings of
the 9th International Semantic Web Conference (ISWC’10 Posters & Demos). (2010)

36. Bosc, P., Hadjali, A., Pivert, O.: Incremental Controlled Relaxation of Failing Flexible Queries.
Journal of Intelligent Information Systems (JIIS) (2009) 261–283

37. Pivert, O., Smits, G., Hadjali, A., Jaudoin, H.: Efficient Detection of Minimal Failing Subqueries
in a Fuzzy Querying Context. In: Proceedings of the 15th East-European Conference on Advances
in Databases and Information Systems (ADBIS’11). (2011) 243–256

38. Pivert, O., Smits, G.: How to Efficiently Diagnose and Repair Fuzzy Database Queries that Fail.
In: Fifty Years of Fuzzy Logic and its Applications, Studies in Fuzziness and Soft Computing.
(2015) 499–517

39. McSherry, D.: Incremental Relaxation of Unsuccessful Queries. In: Advances in Case-Based
Reasoning. Volume 3155. (2004) 131–148

40. Bidoit, N., Herschel, M., Tzompanaki, K.: Query-Based Why-Not Provenance with NedExplain.
In: Proceedings of the 17th International Conference on Extending Database Technology (EDBT
2014). (2014) 145–156

Author Biographies

Géraud Fokou is a PhD student and a member of the Data and Model Engi-
neering team of the Laboratory of Computer Science and Automatic Control for
Systems (LIAS) at the National Engineering School for Mechanics and Aerotech-
nics (ISAE-ENSMA). He got a Master degree in computer science at Poitiers
University and an Engineer degree in software engineering at African Institute
of Computer Science of Libreville in Gabon. He spent his engineer internship at
LIAS/ISAE-ENSMA working on RDF database benchmarking. His research in-
terests include ontology engineering, semantic web, datatabases, benchmarking,

knowledge extraction and query relaxation. Web page: http://www.lias-lab.fr/members/geraudfokou

Stéphane Jean is currently Assistant Professor at the University of Poitiers.
He is a member of the Data and Model Engineering team of the Laboratory of
Computer Science and Automatic Control for Systems (LIAS) at the National
Engineering School for Mechanics and Aerotechnics (ISAE-ENSMA). With main
research interests in ontologies, databases, semantic web, query optimization,
model-driven engineering and cooperative answering, he has authored over 50
technical papers in well-known journals and conferences (e.g., Computers in In-
dustry, ESWC, DEXA, etc.). During his PhD, he has designed the OntoQL lan-

guage which is an extension of SQL to manage both ontologies and data stored in a database. This lan-
guage has been successfully used in several projects with large companies in various domains such as
the automotive and petroleum industries. Web page: http://www.lias-lab.fr/members/stephanejean

Allel Hadjali is Full Professor in Computer Science at the National Engineer-
ing School for Mechanics and Aerotechnics (ISAE-ENSMA), Poitiers, France.
He has been an Associate Professor in Computer Science both in University
of Rennes 1 (France) and University of Tizi-ouzou (Algeria). He is a member
of the Data & Model Engineering research team of the Laboratory of Com-
puter Science and Automatic Control for Systems (LIAS/ISEA-ENSMA). His
research interests include Flexible Database Querying, Handling Preferences,
Database Uncertainty, Recommendation Systems, Web Services, Qualitative and

Uncertain/Approximate Reasoning with applications to Artificial Intelligence and Information Sys-
tems. His recent works were published in well-known journals (e.g., Fuzzy Sets and Systems or
Annals of Mathematics and Artificial Intelligence). He also published several papers in International
Conferences (e.g., ESWC, FQAS, SUM, Fuzz-IEEE, CoopIS, etc.). Web page: http://www.lias-
lab.fr/members/allelhadjali.

Mickaël BARON is a Research Engineer and a member of the Data and Model
Engineering team of the Laboratory of Computer Science and Automatic Con-
trol for Systems (LIAS) at the National Engineering School for Mechanics and
Aerotechnics (ISAE-ENSMA). He got his PhD degree in computer science at
Poitiers University. He spent one year at INRIA Rocquencourt into the MER-
LIN team for designing human computer interaction methods and tools. He
spent also two years in high-tech companies on designing and validating soft-

ware. He is the responsible of all the software research development conducted in the LIAS lab-
oratory. His research interests include ontology engineering, data persistence, query relaxation,
software validation, object oriented programming and software quality. Web page: http://www.lias-
lab.fr/members/mickaelbaron

