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L’étude des systemes est depuis longtemps une préoccupation majeure du monde de
la recherche et ce, quel que soit le domaine scientifique. La compréhension d'un sys-
teme permet en effet d’agir ensuite sur son comportement naturel et de lui imposer une
autre conduite répondant a des performances souhaitées par 'utilisateur. Afin de mieux
comprendre un systeme, une approche naturelle consiste a essayer d’en reproduire le com-
portement. Une telle démarche implique 1’établissement d’un modele du systeme étudié.
Selon la connaissance des phénomenes physiques mis en jeu dont on dispose, plusieurs pos-
sibilités de modélisation peuvent se présenter. Les modeles de connaissance reposent sur
une tres bonne connaissance des lois physiques qui régissent le procédé étudié. A 'opposé,
les modeles de comportement sont purement mathématiques et ne nécessitent aucune
connaissance a priori sur la physique du systeme considéré. Il est évidemment possible
d’effectuer un compromis entre ces deux formes de modélisation lorsque la connaissance
physique du systeme est imparfaite.

Quelle que soit leur nature (physique, mathématique ou composition des deux), les mo-
deles ont pour la plus grande partie un point commun : ils sont caractérisés par un certain
nombre de variables que 'on nomme communément parametres. Ces parametres peuvent
avoir une signification physique, en particulier dans le cas d’un modele de connaissance. De
la valeur de ces parametres dépend en grande partie la qualité du modele et sa capacité a
représenter le comportement du systeme réel sur un domaine de fonctionnement spécifique.

Une fois définie la forme du modele la plus apte a représenter correctement le fonction-
nement d'un systeme réel, 'identification des parametres du modele consiste a calculer
leur valeur optimale. Ces valeurs paramétriques optimales permettent au modele de re-
présenter fidelement le systeme sur le domaine de fonctionnement choisi. En I'absence de
connaissance du systeme, le choix de modélisation se porte naturellement sur un modele
de comportement et l'identification paramétrique ne peut étre effectuée qu’a ’aide des
seules données disponibles : des signaux d’entrée judicieusement choisis et la réponse du
systeme a ces signaux d’entrée. Une méthode bien connue d’identification paramétrique
est la méthode classique des moindres carrés, largement utilisée si le modele employé peut
étre exprimé sous forme linéaire par rapport a ses parametres.

L’essentiel des systemes réels sont non linéaires par nature. Pourtant, la complexité
d’étude et d’'implémentation des modeles non linéaires ainsi que l'insuffisance des moyens
de simulation disponibles ont d’abord conduit a essayer d’approcher le comportement des
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systemes réels par des modeles linéaires. Ce type de modele peut s’avérer efficace si le
degré de non-linéarité du systeme reste faible ou bien si I'on ne s’éloigne pas d’un point de
fonctionnement particulier du systeme. On peut ensuite envisager I'implémentation d'une
loi de commande afin d’imposer un comportement au systeme réel. Cependant, il existe
de nombreux cas ou les non-linéarités du systeme étudié ne sont pas négligeables. On
doit donc envisager une modélisation non linéaire. Ce domaine de recherche connait un
essor théorique et pratique important car les moyens technologiques actuels permettent la
simulation de modeles non linéaires complexes ainsi que la simulation et 'implémentation
de lois de commandes évoluées sur des systémes non linéaires réels [Sjoberg et al., 1995].

Un systeme non linéaire se démarque d’un systeme linéaire dans le fait que sa dyna-
mique dépend étroitement du signal d’entrée, qui induit un comportement différent du
systéme non linéaire suivant sa variation d’amplitude et/ou de fréquence. Le comporte-
ment du systeme dépend a son tour des non-linéarités inhérentes a celui-ci. Le choix de la
structure du modele non linéaire doit tenir compte a la fois des non-linéarités et du do-
maine de fonctionnement sur lequel le modele doit étre valide. Si le modele est linéaire par
rapport aux parametres, I'identification de ces derniers peut se faire par la méthode des
moindres carrés. Dans le cas ou le modele n’est plus linéaire par rapport aux parametres,
un algorithme de programmation non linéaire doit étre employé afin d’optimiser la va-
leur des parametres. Un algorithme couramment utilisé est celui de Levenberg-Marquardt
[Marquardt, 1963], qui consiste en une recherche itérative des parametres optimaux. Ce
type d’algorithme s’appuie lui aussi sur 'utilisation de signaux d’entrée et de sortie du
systeme réel.

L’identification paramétrique repose donc sur l'utilisation de signaux d’entrée et de
sortie du systeme réel [Ljung, 1987]. Dans beaucoup de cas, avec 'amélioration croissante
des moyens et des techniques de mesure, le nombre et la précision des capteurs permettent
a l'utilisateur de disposer d'un vaste choix de mesures des grandeurs d’entrée et de sor-
tie du systeme réel. Il peut passer directement a 1’étape d’identification paramétrique du
modele. Cependant, dans d’autres cas, la mesure de certaines grandeurs est difficile, voire
impossible, du fait de I'absence de capteur adéquat ou du cout prohibitif de ce dernier
ou de la mise en place d’un systeme de mesure. Une solution consiste alors a accéder
indirectement a la grandeur non mesurable en résolvant un probléeme inverse.

Un probleme direct consiste a calculer la sortie d’un systeme lorsque 1’on dispose d'un
signal d’entrée et d’'un modele suffisamment précis de ce systeme. Un probleme inverse
consiste a faire le calcul opposé : étant donné une grandeur de sortie et le modele du
systeme étudié, on cherche a calculer I'entrée du systeme. Résoudre un probleme direct
consiste a déterminer une conséquence a partir d’'une cause, résoudre un probleme in-
verse consiste a déterminer une cause connaissant sa conséquence. Dans les deux cas, il
est nécessaire de disposer d’'un modele du systeme réel étudié. Différentes techniques de
résolution de problemes inverses existent et peuvent étre appliquées pour obtenir une gran-
deur non mesurable & partir d’une autre grandeur mesurable [Mohammad-Djafari, 1999b],
[Demoment et al.|. Etant donnée une grandeur mesurable facilement et un modele qui la
relie a une grandeur non mesurable, la résolution du probleme inverse consiste a détermi-



ner la grandeur non mesurable a partir de la grandeur mesurable en inversant le modele
qui les lie. La difficulté de cette méthode réside en I'inversion de modele, qui peut occa-
sionner une mauvaise reconstruction de la grandeur non mesurable suivant la nature du
probleme inverse.

La démarche globale entreprise dans ce mémoire peut se décomposer en deux grandes
étapes. La premiere étape consiste en la modélisation de systemes non linéaires. La se-
conde étape consiste en l'inversion des modeles non linéaires obtenus afin de déterminer
des grandeurs non directement mesurables.

Ce mémoire se compose de trois chapitres.

Le premier chapitre est consacré a la modélisation de systemes non linéaires par les sé-
ries de Volterra [Volterra, 1959], [Schetzen, 1980], [Doyle et al., 2002]. Présentées comme
une possibilité parmi d’autres [Chen, 1989], [Boukhris et al., 1999], [Hérault et Jutten, 1994]
pour modéliser les systemes non linéaires, les séries de Volterra peuvent étre considé-
rées comme un sous-ensemble des séries de fonctionnelles et un outil particulierement
adapté a la représentation des systemes non linéaires car elles généralisent la notion de
convolution utilisée pour la représentation de systemes linéaires. Un certain nombre de
modeles classiques (Hammerstein, Wiener,...) utilisés depuis longtemps sont présentés
comme cas particuliers de modeles de Volterra [Billings et Fakhouri, 1979], [Rugh, 1981],
[Ralston et Zoubir, 1995]. Une série de Volterra est entierement caractérisée par ses noyaux
que l'on peut difficilement exprimer de maniere analytique et qu’il convient donc de modé-
liser. La modélisation des noyaux par développement sur une base de fonctions généralisée
[Ninness et Gustafsson, 1994], [Akcay et Ninness, 1999] est présentée et I'on met 1'accent
sur une difficulté majeure de cette approche : une augmentation importante du nombre
de parametres qui rend difficile la procédure d’identification et I'utilisation du modele a
des fins de commande. Une seconde approche de modélisation des noyaux de Volterra
est proposée : leur développement sur des fonctions de transfert. Le modele obtenu s’ins-
pire des séries génératrices non commutatives [Fliess et al., 1983] et permet d’obtenir une
parcimonie paramétrique satisfaisante. Afin d’améliorer cette parcimonie, nous proposons
également une méthode de développement du modele de Volterra autour de la compo-
sante continue du signal d’entrée. Cette méthode permet de séparer la partie statique de
la partie dynamique du modele. Seule cette derniere est identifiée, réduisant davantage la
complexité et le nombre de parametres du modele de Volterra global.

Le deuxieme chapitre est consacré a l'inversion du modele de Volterra présenté au
premier chapitre afin de reconstruire une grandeur d’entrée en utilisant la mesure de la
grandeur de sortie. La premiere partie est consacrée a la définition des problemes inverses
et a la présentation succincte de quelques exemples. Un apercu général non exhaustif
des méthodes de résolution de ce type particulier de probleme est ensuite exposé, dans
lequel on distingue deux grandes catégories : les méthodes algébriques déterministes et
les méthodes probabilistes [Mohammad-Djafari, 1999b]. Notre choix se porte d’abord sur
la méthode d’inversion de modele par régularisation de Tikhonov (développée a 'origine
dans le cas de modeles linéaires [Tikhonov et Arsénine, 1976]) dont nous élargissons le
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champ d’application au modele de Volterra. Cette méthode nécessite un algorithme d’op-
timisation non linéaire afin de reconstruire une grandeur par minimisation de critere. La
somme de calcul nécessaire devenant importante, nous proposons d’adopter une démarche
de discrétisation du modele de Volterra afin de simplifier le calcul de dérivation du critere
et ainsi diminuer la charge totale de calculs. L’influence du bruit de mesure sur les données
utilisées ainsi que celle des parametres de régularisation de la solution au probleme inverse
sont étudiées dans le cadre de la simulation. Une approche différente (et plus intuitive) est
ensuite proposée pour contourner certains inconvénients de la précédente : I'inversion du
modele de Volterra par retour d’entrée reconstruite. Deux méthodes sont présentées, équi-
valentes dans le cas linéaire mais sensiblement différentes pour des systemes non linéaires.
Elles utilisent toutes deux l'inverse implicite du modele de Volterra afin de reconstruire
point par point une grandeur d’entrée a partir de la mesure d’une grandeur de sortie et
d’un modele de Volterra suffisamment précis qui les relie. Ces deux méthodes possedent
I’avantage de ne pas nécessiter d’étape d’optimisation lors de la procédure d’inversion,
diminuant ainsi de maniere significative le temps total de calcul et laissant envisager leur
possible implémentation en temps réel.

Le troisieme et dernier chapitre est consacré a l'application des méthodes de mo-
délisation et d’inversion proposées dans les deux premiers chapitres a des simulations
de procédés et des données expérimentales. Les deux procédés étudiés entrent dans le
cadre de la dépollution des eaux. Le premier procédé consiste en la neutralisation de
composés organiques considérés comme polluants dans des effluents industriels. L’étude
est effectuée dans le cas de l'atrazine, un herbicide systémique. Le procédé de dépol-
lution est le procédé Fenton : la décomposition du peroxyde d’hydrogene par des ions
ferreux (ou ferriques) permet la création de radicaux hydroxyle hautement réactifs qui
vont oxyder le polluant et le transformer en un produit sans danger pour l’environne-
ment [Barbeni et al., 1987], [Sedlak et Andren, 1991], [DeLaat et Gallard, 1999]. Un mo-
dele cinétique du procédé a déja été établi expérimentalement [Haber et Weiss, 1934],
[Barb et al., 1951], [Walling, 1975], [Gallard et DeLaat, 2000]. Dans un premier temps,
nous comparons ce modele cinétique au modele de Volterra afin de valider ce dernier dans
le cadre de la simulation. Dans un second temps, nous appliquons les méthodes d’inver-
sion proposées précédemment afin de reconstruire une grandeur difficilement accessible (la
concentration en atrazine) a partir de la connaissance d’autres grandeurs plus facilement
mesurables. Cette étude permet de valider en simulation les méthodes proposées dans les
chapitres précédents. Le deuxieme cas d’étude est un procédé d’épuration biologique de
rejets industriels. L’étude porte sur un procédé dit anaérobie (absence d’oxygene) de dé-
gradation de composé organique : le carbone organique contenu dans ’efluent a traiter est
converti en biogaz par des flores bactériennes. Comme dans I’étude précédente, un modele
dynamique du procédé a déja été développé [Bernard et al., 2001], [Steyer et al., 2003].
Nous commencons par valider notre modele de Volterra en le comparant a ce modele établi
expérimentalement. Puis, de la méme maniere que précédemment, 'inversion du modele
de Volterra permet la reconstruction d’'une grandeur (la demande chimique en oxygene)
quasiment impossible a mesurer directement vu le cotit et la complexité d’une telle procé-
dure. Les résultats des deux approches d’inversion du modele de Volterra sont comparées
et validées a nouveau dans le cadre de la simulation. On utilise ensuite ces méthodes sur



des données expérimentales provenant d'un digesteur anaérobie traitant des vinasses de
distilleries.

Une conclusion générale a ce travail, consacrée au rappel de la démarche globale de
recherche et des objectifs, s’attachera en outre a la présentation des différents prolonge-
ments et perspectives envisageables tant du point de vue théorique qu’appliqué.
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Chapitre 1

Modélisation des systemes non
linéaires par les séries de Volterra



Chapitre 1. Modélisation des systémes non linéaires par les séries de Volterra

1.1 Introduction

Cette partie releve du domaine tres vaste de la modélisation des systemes et plus par-
ticulierement de la modélisation de systemes non linéaires.

Pour plusieurs raisons d’ordre pratique, la théorie de la commande s’est surtout déve-
loppée dans le cadre des systemes linéaires. Bien que des travaux théoriques existent déja
depuis longtemps dans le domaine des systemes non linéaires, de nombreuses limitations
techniques, informatiques et financieres ont freiné toute tentative d’application pratique
en modélisation, identification et commande de systemes non linéaires. Depuis un certain
nombre d’années, la technologie et I'informatique ont comblé ce retard vis-a-vis de la théo-
rie. Le domaine particulier de la commande de systemes non linéaires prend de plus en plus
d’importance, les probléemes posés étant de plus en plus nombreux et toujours ouverts, du
fait de la quasi absence de systemes véritablement linéaires ou linéarisables a 1’état naturel.

Une étape importante du processus qui conduit 1'utilisateur a la commande de sys-
temes non linéaires est la modélisation de ces mémes systemes. La premiere section du
chapitre est consacrée a la présentation de différents modeles de systemes non linéaires.
La spécification d’objectifs particuliers, tels la simplicité et la parcimonie paramétrique
du modele employé ainsi que la possibilité d’inversion, nous conduira a envisager dans la
deuxieme section du chapitre une classe particuliere de modeles : les séries de Volterra.
Les deux dernieres sections de ce chapitre sont consacrées a différentes manieres de mo-
déliser les noyaux de Volterra en vue d’obtenir un modele global a la fois simple dans son
utilisation et dans la procédure d’identification de ses parametres.

1.2 Représentation des systemes non linéaires

1.2.1 Introduction

La plupart des systemes réels sont non linéaires a des degrés divers. Historiquement et
pour des raisons de commodité de mise en oeuvre, 'approche la plus répandue est d’ap-
proximer les systemes non linéaires par des modeles linéaires. Un modele linéaire suffit le
plus souvent a décrire avec une bonne précision le comportement général et la dynamique
moyenne dun systeme faiblement non linéaire.

Cependant, si les non-linéarités deviennent trop importantes, il n’est plus possible de
se contenter d’approximer le comportement du systéme par un (ou des) modele(s) li-
néaire(s). Il faut donc avoir recours a des modeles non linéaires, ce qui entraine un certain
nombre de difficultés, tant au niveau de l'identification paramétrique que de la commande.
Si I'on compare les deux types de représentation des systemes (linéaire et non linéaire),
une des principales difficultés de la deuxieme forme de représentation est due a 1’absence
d’une théorie unifiée de représentation des non-linéarités, théorie qui existe dans le cas
des systemes linéaires.

8



1.2. Représentation des systémes non linéaires

Selon que 'on possede ou non des informations sur la structure du systeme non linéaire
étudié, plusieurs choix possibles de formes de modeles se présentent.

1.2.2 Modeles de comportement

Les modeles de comportement (ou modeles "boite noire”) peuvent étre utilisés dans le
cas particulier ou I'objectif de I'utilisateur n’est pas la connaissance physique du systeme
réel mais plutot la reproduction de son comportement. De maniere générale, on peut dire
qu’un modele est satisfaisant quand il prédit correctement certains phénomenes du monde
réel, méme s’il n’est qu’'une vision partielle de la réalité.

Un modele de connaissance de type "boite blanche”, construit a partir de lois de repré-
sentation de phénomeénes physiques, sera plus ou moins satisfaisant en fonction du nombre
et de la précision de ces lois physiques.

La notion de modele "boite grise” provient du fait que 1'utilisateur d’un systeme réel ne
connait a priori pas toutes les lois physiques qui régissent le comportement de ce systeme.
Certaines relations ou variables demeurent inconnues. D’ou l'intérét d’introduire dans le
modele des relations mathématiques (sans forcément de sens physique) qui viennent com-
pléter les relations physiques connues. La mise au point d'un modele "boite grise” nécessite
donc une complémentarité entre I’ensemble des lois physiques et ’ensemble des lois ma-
thématiques a la disposition de 'utilisateur.

Les modeles de comportement, quant a eux, sont construits uniquement a partir de
lois mathématiques reliant les entrées aux sorties du systeme. Ils n’ont aucune significa-
tion physique particuliere et pourront donc donner des résultats satisfaisants dans des
conditions beaucoup plus générales d’application. En théorie [Sjoberg et al., 1995], toute
structure "boite noire” convenablement choisie doit pouvoir représenter n’importe quelle
forme de non-linéarité.

Parmi les modeles de comportement les plus utilisés, on distinguera entre autres les
modeles NARMAX [Chen, 1989, les multi-modeles [Murray-Smith et Johansen, 1997] et
les réseaux de neurones [Hérault et Jutten, 1994].

1.2.2.1 Les modéles NARMAX

La modélisation d'un systeme (linéaire ou non linéaire) nécessite I'identification des
parametres du modele. Le probleme de l'identification est de trouver une ou plusieurs
relations entre des données d’entrée-sortie passées et la sortie a calculer. Si I'on dispose
d’un nombre fini n,, d’entrées u(t —i) (1 <1i <n,) et n, de sorties y(t — j) (1 < j <n,)
rassemblées dans un vecteur o(t) :
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o(t) = [yt —1)... —y(t —ny,) ult —1)..u(t —n,)]" (1.1)
alors le probleme est de trouver la relation f entre y(t), prédiction de la sortie y(t) et
p(t) :

y(t) = fle(t),0) (1.2)

la fonction f étant paramétrée par un vecteur 6.

Dans le cas ou la fonction f est linéaire, différents modeles existent : modeles ARX,
ARMAX, Output Error ou Box-Jenkins. Dans le cas ou f n’est plus une fonction linéaire,
I’approche polynomiale NARMAX (Nonlinear AutoRegressive Moving Average with eXo-
genous inputs) a été développée [Chen, 1989]. Le vecteur ¢(¢) comprend, en plus des
entrées et des sorties passées, les erreurs de prédiction passées e(t — k) (1 <k <n,) :

o(t) = [—yt — ). —y(t —ny) ut —1)..ult —ny,) et —1)..e(t —n)]" (1.3)

L’erreur de prédiction £(t) est ajoutée au modele pour tenir compte du fait que la
sortie y(t) n'est pas fonction exacte des données d’entrée-sortie passées. L'erreur de pré-
diction doit étre la plus faible possible afin que le modele fournisse la meilleure prédiction
possible de la sortie réelle y(t) connaissant les données passées.

La fonction f, inconnue a priori, est choisie de maniere a pouvoir représenter la dyna-
mique du systeme. Une expression possible (et relativement employée) de f est le déve-
loppement sur bases de fonctions :

£(o(0).6) = >~ Oufilo(t) (14

ou f; est une base de fonctions non linéaires et les termes #; sont les parametres du
développement. Le choix des fonctions f; est tres important pour assurer la qualité du
modele. Dans la plupart des structures de modeles non linéaires considérées, les fonctions
fi sont obtenues en paramétrisant une fonction plus générale notée K(.). On écrit de
maniere générale

file) = K(¢, Bi,v:) = K(Bi(p — 1)) (1.5)

Les parametres 3; et ; peuvent étre de nature différente selon les cas.

Si 'on pose K(.) = cos(.), on retrouve le développement de f;(¢) en série de Fourier,
les parametres [3; et ; étant respectivement la fréquence et la phase.

Dans le cas multidimensionnel, les f; sont des bases de fonctions multi-variables,
construites a partir de fonctions mono-variables du type K(.).
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Les bases de fonctions radiales sont couramment utilisées car relativement simples a
construire. Les fonctions f; ont la forme

file) = K([lvi — ¢ll5,) (1.6)

ol [|.|[4, représente une norme précédemment choisie (par exemple la norme euclidienne).
K2
Le terme ~; est ici appelé centre de la fonction f;.

La décomposition en ondelettes est un autre exemple typique. Dans ce cas précis, la
fonction mono-variable utilisée pour la construction de la base d’ondelettes est appelée
ondelette mére. L’expression est doublement indexée et on pose 5; = 2' et ; = j pour
obtenir :

fii(p) = 22 K(2'p — ) (L.7)
Dans tous les cas considérés, le modele NARMAX est linéaire par rapport aux para-

metres. Les parametres de ce modele peuvent donc étre estimés de maniere relativement
simple par la méthode classique des moindres carrés.

Un autre point important, sujet a discussion, est la capacité qu’a le modele NARMAX
a pouvoir représenter toutes les non-linéarités des systemes considérés. Vu dans le contexte
de cette these, cet avantage n’en est pas forcément un car les modeles NARMAX utilisés
sont bien souvent complexes et surparamétrisés. Bien que 1’on puisse envisager de réduire
leur complexité par la suite, cela ne répond pas a I'objectif de parcimonie paramétrique
que nous nous sommes fixés des le départ.

Une solution envisageable est de découper ’espace des données entrées/sorties en sous-
espaces locaux pour lesquels un modele plus simple (structure moins complexe et nombre
de parametres moins important) peut étre appliqué. Le modele général consiste alors a
combiner les modeles locaux.

1.2.2.2 Les multi-modeéles

L’approche multi-modeles [Murray-Smith et Johansen, 1997], [Boukhris, 1998] repose
sur I’établissement de plusieurs modeles simples, encore appelés modeles locaux. Chaque
modele est valable autour d’un point de fonctionnement, dont la zone d’influence est dé-
finie au moyen d’une fonction poids. Tous les modeles locaux sont ensuite agrégés afin
d’obtenir un modele global qui relie les entrées et les sorties du systeme.

Plusieurs problemes se posent alors : la décomposition de ’espace global en différentes
zones, le choix du nombre de zones, le choix de la structure des modeles locaux et leur
agrégation.

De méme que dans la section précédente, on représente la relation entrée-sortie du
systeme de la maniere suivante
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avec

o(t) = [yt —1)... —y(t —ny,) ult —1)..u(t —n,)]" (1.9)

©(t) représente le vecteur d’information et  le vecteur parametre.

Le probleme de la modélisation locale consiste a décomposer le domaine global de fonc-
tionnement ® du systéme en un ensemble de zones de fonctionnement ®;. Dans chaque
zone ®; de I'espace d’information, la fonction () est représentée par la fonction f; para-
métrée par le vecteur 6; :

y(t) = file(t),0;) (1.10)

La parcimonie paramétrique du modele global dépend donc de celle de chaque modele
local. Le choix de la structure des modeles locaux est donc crucial. De plus, le nombre
de parametres a identifier dépend du nombre de modeles locaux employés, et donc de la
maniere dont sera découpé ’espace global en zones de fonctionnement.

Dans un des cas les plus simples, on considere le systeme SISO statique représenté par
la fonction f :

y(t) = f(u(?)) (1.11)
Le multi-modele quasi-linéaire permettant de décrire le systeme représenté par f est

obtenu en décomposant le domaine de variation de la variable v en n, zones de fonction-
nement ®; ou la fonction f est définie par le modele linéaire :

i) = bult) + i (1.12)

Dans ce cas simple, le nombre total de parametres du modele global dépend du nombre
total n, de zones et de la forme du modele employé dans chacune des zones. Cependant,
décomposer le domaine de fonctionnement en zones ou le systeme peut étre représenté par
un modele linéaire peut s’avérer délicat, surtout si le systeme est fortement non linéaire
et si les variations de sa sortie y(t) sont importantes.

Si 'on considere un modele dynamique du premier ordre

y(t) = f(ult —1),y(t - 1)) (1.13)
alors, dans chaque zone de fonctionnement, le systeme est décrit par le modele
Ui(t) = —ay(t — 1) + biu(t — 1) + ¢ (1.14)

ce qui augmente le nombre total de parametres si I’on a conservé le méme nombre n, de
zones de fonctionnement. Cependant, on s’apercoit que plus la complexité d’'un modele
local augmente, plus il est a méme de pouvoir représenter correctement le systeme étudié
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sur un domaine étendu. On peut donc diminuer le nombre n, de zones de fonctionne-
ment. L’objectif devient alors de trouver un compromis entre la complexité des modeles
employés et I'étendue de leur validité.

On peut bien évidemment complexifier davantage la structure des modeles locaux em-
ployés afin que le modele global fournisse une approximation encore meilleure du systeme
réel. Selon les cas, on peut utiliser des fonctions de transfert, des fonctions de Laguerre
ou encore la structure d’Hammerstein généralisée. Il va sans dire que ces modeles locaux
nécessitent davantage de parametres que les modeles simples que 'on vient d’évoquer.
Il ne répondent donc plus a l'objectif de parcimonie paramétrique. De plus, le probleme
d’identification paramétrique devient de plus en plus complexe car on aboutit a un mo-
dele global qui n’est plus linéaire par rapport aux parametres, contraignant 1'utilisateur a
recourir a des méthodes de programmation non linéaire.

La méthode multi-modeles ne répondra donc a ’objectif de parcimonie que dans le cas
de systemes aux non-linéarités douces que 1'on peut décrire localement par un ensemble
de modeles linéaires.

1.2.2.3 Les réseaux de neurones artificiels

Les réseaux de neurones sont a la base un outil d’analyse statistique que 1’on peut
utiliser afin de construire un modele de comportement de systeme. Les réseaux artificiels
neuronaux permettent de représenter des relations fonctionnelles complexes, difficiles a
décrire sous une forme analytique, de systéemes non linéaires ou de systemes variables en
fonction du temps [Hérault et Jutten, 1994].

Le neurone biologique est une cellule vivante spécialisée dans le traitement des si-
gnaux électriques. Les neurones sont reliés entre eux par des liaisons particulieres appe-
lées axones, qui conduisent les signaux électriques de la sortie d'un neurone vers l'entrée
(synapse) d’un autre neurone. Les neurones effectuent une sommation des signaux regus
en entrée et, en fonction du résultat obtenu, vont fournir un signal électrique en sortie.

Par analogie, le neurone artificiel est un processeur élémentaire qui regoit un certain
nombre de variables d’entrée en provenance d’autres neurones appartenant a un niveau
situé en amont. A chacune des entrées est associé un poids w représentatif de I'impor-
tance de la connexion. Chaque neurone est doté d’une sortie unique qui se ramifie pour
alimenter a son tour un certain nombre de neurones appartenant a un niveau situé en aval
(cf figure 1.1).

13
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Entrées

Poids | W,

Fonction
de

Transfert

Ramifications

Fig. 1.1 - Schéma d’un neurone artificiel

Les connexions entre les neurones qui composent le réseau décrivent la topologie du

modele général. Cette topologie fait le plus souvent apparaitre une certaine régularité et
I’'on peut donc distinguer différentes sortes de réseaux :

14

— Les réseaux multicouches classiques : il n’y a pas de connexion entre les neurones

d’une méme couche et les connexions ne se font qu’avec les neurones de la couche
aval. Tous les neurones de la couche amont sont connectés a tous les neurones de la
couche aval. Les couches extérieures du réseau sont appelées respectivement couches
d’entrée et de sortie. Les couches intermédiaires sont appelées couches cachées.

Les réseaux a connexion locale : ce sont également des réseaux multicouches mais
tous les neurones d’une couche amont ne sont pas connectés a tous les neurones de
la couche aval. Le nombre de connexions est donc moins important que dans le cas
d’un réseau multicouches classique.

Les réseaux a connexions récurrentes : une ou plusieurs sorties de neurones d’une
couche aval sont connectées aux entrées des neurones de la couche amont ou bien
de la méme couche. Ces connexions récurrentes ramenent de I'information en arriere
par rapport au sens de propagation défini dans un réseau multicouches classique.

Les réseaux a connexions complexes : chaque neurone est connecté a tous les neu-
rones du réseau, y compris lui-méme. On ne fait plus de distinction entre les diffé-
rentes couches. Aucun sens général de propagation n’est défini. C’est la structure
d’interconnexion la plus générale possible.
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Afin de modéliser correctement un systeme, il est nécessaire que les sorties du réseau
de neurones soient aussi proches que possible des sorties réelles. Pour arriver a ce but, il est
nécessaire de passer par une phase d’apprentissage, durant laquelle on calcule le nombre
et/ou le poids de chacun des neurones. Cela équivaut a une identification paramétrique
de modele.

Les réseaux artificiels neuronaux sont des outils permettant de représenter les rela-
tions fonctionnelles complexes nécessitées par les systemes modernes. La plupart de ces
systemes sont non linéaires. étant donné que les réseaux artificiels de neurones sont tres
souples dans leur structure, on considere qu’ils constituent des modules universels de re-
présentation du comportement de systemes réels, linéaires ou pas.

Cependant, un des inconvénients de cette universalité se traduit par une fréquente
surparamétrisation des modeles. Outre le fait que cette surparamétrisation ne répond pas
a l'objectif de parcimonie fixé au départ, le probleme de I’apprentissage (ou identification
paramétrique) est généralement mal conditionné. On doit donc recourir & des méthodes
de régularisation pour transformer le probleme mal posé en un probleme bien posé et ainsi
obtenir une solution paramétrique optimale unique.

De par sa nature, le réseau de neurones permet donc de représenter un tres grand
nombre de systemes non linéaires, mais ceci au détriment de la simplicité et de la parci-
monie.

1.2.3 Conclusion

Au travers des trois exemples de modeles évoqués, on se rend compte que I'un des
problemes majeurs entrainé par la représentation précise du comportement de systemes
non linéaires est la surparamétrisation des modeles employés. Par la suite, un trop grand
nombre de parametres rend les modeles obtenus difficiles a manipuler et a identifier de ma-
niere globale. Certaines techniques permettent donc de simplifier les structures obtenues
en éliminant les parametres non significatifs des modeles mais cette élimination nécessite
un volume et un temps de calcul supplémentaires. L’objectif de parcimonie des modeles
de systemes non linéaires est donc largement justifié.

1.3 Les séries de Volterra

1.3.1 Introduction

La représentation des systemes non linéaires est actuellement un probleme ouvert aussi
bien du point de vue théorique qu’appliqué. On a vu que des méthodes nombreuses et
variées existent déja et sont largement appliquées dans le domaine de la recherche. Tou-
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tefois, le manque de cohésion entre ces différentes méthodes de modélisation fait que leur
application pratique dans le domaine industriel pour la commande de procédés reste rela-
tivement marginale. Le principal obstacle est qu’il n’existe aucune approche systématique
pour la construction de modeles dynamiques non linéaires dédiés a la commande. A 'in-
verse, la modélisation des systemes linéaires est tres utilisée dans I'industrie. Et ceci car il
est aujourd’hui relativement simple d’obtenir des modeles linéaires a partir de méthodes
cohérentes, fiables et largement éprouvées.

Doyle [Doyle et al., 2002] fait remarquer que les systémes non linéaires sont définis
en terme de manque : un systeme non linéaire ne répond pas a une propriété précise.
A Topposé, un systeme linéaire est défini a partir d’'une propriété mathématique extre-
mement spécifique. Il existe de nombreuses formes de non-linéarités. Pour les modéliser
correctement, il faudra donc se focaliser sur des classes de modeles particulieres, capables
de représenter les non-linéarités considérées. Toutes les classes de modeles non linéaires
ne sont pas capables de représenter tous les types de non-linéarités. Pour ces raisons, dans
le domaine industriel, la commande par modele non linéaire est encore considérée comme
un concept théorique en développement plutot qu’une stratégie de commande fiable.

Une approche possible pour remédier a cet état de fait pourrait étre la modélisa-
tion des systémes non linéaires par les séries de Volterra [Flake, 1963], [Schetzen, 1980],
[Rugh, 1981], [Doyle et al., 2002]. D’une part, les séries de Volterra sont un sous-ensemble
des séries de fonctionnelles et permettent de représenter un grand nombre de non-linéarités.
D’autre part, elles généralisent la notion de convolution utilisée dans ’analyse des sys-
temes linéaires. Le premier terme de la série de Volterra est une intégrale de convolution
qui représente un systeéme linéaire (ou bien la partie linéaire d’un systéme non linéaire)
tandis que les autres termes, qui sont ajoutés, vont modéliser la partie non linéaire du
systeme considéré.

Les séries de Volterra peuvent donc étre un moyen pratique et acceptable aux yeux des
utilisateurs (car elles généralisent une notion qu’ils connaissent bien : la convolution) de
représenter les systemes non linéaires pour ensuite envisager la commande des procédés
modélisés.

1.3.2 Les séries de fonctionnelles
1.3.2.1 Présentation

Avant de parler des séries de Volterra, nous allons d’abord introduire les séries de fonc-
tionnelles, outil mathématique qui permet la représentation de dynamiques non linéaires
tres variées. Les séries de Volterra trouvent leur origine dans les mathématiques de I'ana-
lyse fonctionnelle, née au début du X X¢ siecle. L’analyse fonctionnelle est la branche des
mathématiques consacrée a I’étude des espaces de fonctions.

Déja mise en évidence par des précurseurs italiens (Ascoli et Arzela), 'analyse fonc-

16



1.3. Les séries de Volterra

tionnelle et la notion méme de fonctionnelle furent introduite par Jacques Hadamard en
1910. De nombreux mathématiciens vont ensuite développer cette nouvelle branche des
mathématiques : Frédéric Riesz, René Baire, Maurice Fréchet, Stephan Banach et Vito
Volterra.

Une fonctionnelle réelle est une fonction a valeurs réelles définie sur un espace linéaire.
Dans ce cas, I'espace linéaire est supposé étre un espace de fonctions, a savoir les signaux
d’entrée u(t). A n’importe quel temps ¢, la sortie y(t) d’'un systeme dépend des entrées
précédentes u(t — o), o > 0. On dit que la sortie y(¢) a un instant ¢ particulier est une
fonctionnelle réelle du signal d’entrée u(t).

Une fonctionnelle réguliere et homogene d’ordre i est donnée par I'expression générale

+o0 +o0o i
Hi[u(t)]:/ / hi(ﬁ,...,n)ﬂu@—@)d@ (1.15)

On suppose que le noyau h;(7, ..., 7;) est symétrique par rapport a ses ¢ variables.

La somme de n fonctionnelles régulieres et homogenes H;,7 = 1, ..., n est une fonction-
nelle H d’ordre n réguliere et homogene. La fonctionnelle H qui relie 'entrée u(t) et la
sortie y(t) du systeme peut donc étre notée sous la forme

y(t)zH[u(t)]zZ(/_ OO/_ Oohi(ﬁ,...,n)Hu@—Tj)de) (1.16)

j=1

La réponse y(t) du systéme s’exprime plus simplement en fonction de I'entrée wu(t)

y(t) = > Hiu(t) (117)

Une fonctionnelle réguliere et homogene d’ordre ¢ vérifie la propriété suivante :

Hi[Xu(t)] = N Hi[u(t)] (1.18)
A étant un réel non nul et ¢ un entier naturel.
Sii > 1 alors la fonctionnelle H;[u(t)] est non linéaire. Elle admet la représentation

intégrale (1.15) ou la fonction hi(7,...,7;) : R — R, i = 1,2, ... est localement bornée
et continue par morceaux.

On remarque que le premier terme de la somme

+o0
Hiu(t)] = / ha(m)u(t — 1 )dm (1.19)

o0

n’est autre que l'intégrale de convolution utilisée pour représenter un systeme linéaire.
Dans un cadre plus général, ce premier terme représente le systeme linéarisé autour de

17



Chapitre 1. Modélisation des systémes non linéaires par les séries de Volterra

son point de fonctionnement. hy () est donc la réponse impulsionnelle de la partie linéaire
du systeme considéré.

Les termes H;[u(t)] (¢ > 1) généralisent la notion de convolution et permettent d’appli-
quer cette représentation aux systemes non linéaires afin de représenter les non-linéarités
qui apparaissent au fur et a mesure que le systeme s’éloigne de son point de fonctionne-
ment. On pourra donc considérer les termes h;(t) (i > 1) comme des réponses impulsion-
nelles multidimensionnelles car chaque fonctionnelle H;[u(t)] est obtenue par convolution
avec lentrée u(t) du systeme.

1.3.2.2 Propriétés

L’outil mathématique que sont les séries de fonctionnelles doit étre adapté a la re-
présentation des systemes en général et des systémes non linéaires dans le cas qui nous
concerne. Dans cette optique, une série de fonctionnelles possede deux propriétés tres
intéressantes :

— Tout d’abord, la représentation d’un systéme non linéaire par une série de fonc-
tionnelles H possede une relation entrée-sortie explicite, qui se préte bien a la
représentation par schéma-bloc déja utilisée pour la modélisation des systemes li-
néaires.

— Ensuite, cette représentation par schémas-blocs autorise, comme dans le cas linéaire,
I'interconnexion en série, en parallele ou en cascade de plusieurs modeles de systemes
non linéaires. L’association de modeles linéaires et non linéaires est évidemment pos-
sible et nous verrons qu’elle était déja employée depuis un certain temps (modeles
de Hammerstein-Wiener).

1.3.2.3 Conclusion

Le formalisme des séries de fonctionnelles, d’abord utilisé par Wiener dans le domaine
particulier de I'analyse des circuits électroniques non linéaires [Wiener, 1943], s’est depuis
étendu a tous les domaines de la physique. Mais la notion de systéeme peut également
s’appliquer a d’autres domaines scientifiques (chimie, biologie,...).

Les méthodes de modélisation de systemes non linéaires se sont donc récemment “ex-
portées” avec succes vers des domaines auxquels elles n’étaient pas forcément prédestinées,
dont la chimie et la biochimie. La prévision du comportement de réacteurs chimiques ou
biochimiques, fermés ou continus, intéresse forcément les chercheurs de ces domaines et
cette prévision passe par une modélisation précise des phénomenes en jeu. Le lien entre
différentes especes chimiques ou biochimiques peut étre établi a I'aide de modeles linéaires
ou, dans la plupart des cas, non linéaires. Le formalisme des séries de fonctionnelles, qui
comprend une relation explicite entrée-sortie représentable sous forme de schéma-bloc,
peut donc étre envisagé pour la modélisation de systemes chimiques ou biochimiques
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[Corriou, 2001].

1.3.3 Définition des séries de Volterra
1.3.3.1 Introduction

Les travaux de Volterra (1860-1940) se sont portés, entre autres, sur la classe des équa-
tions intégrales qui porte son nom. Il a contribué de maniere significative aux premiers
développements de ce qui allait plus tard devenir ’analyse fonctionnelle.

Les équations intégrales [Tricomi, 1985], de méme que les équations différentielles et
les équations aux dérivées partielles, font partie de I’ensemble plus vaste des équations
fonctionnelles. Les équations intégrales de Volterra sont donc contenues dans I’ensemble
des équations fonctionnelles et les séries de Volterra qui découlent de ces équations inté-
grales peuvent étre considérées comme un sous-ensemble des séries de fonctionnelles.

Les équations intégrales de Volterra proviennent naturellement de méthodes dévelop-
pées pour la résolution d’équations différentielles non linéaires ordinaires du type

pi F(x,y) (1.20)

avec la condition initiale y(zg) = yo. Si 'on integre cette équation entre x et x, on obtient
I’équation suivante

)=+ [ " Flt, () (1.21)

o

Une forme plus générale de cette équation est I’équation non linéaire de Volterra

o) = f(a) + / " Fle,y, 6(y)ldy (1.22)

ou les fonctions f et F' sont connues et la fonction ¢ inconnue et déterminée par 1’équa-
tion (1.22). Ces équations sont résolues par 'approche itérative de substitution suivante
(Tricomi 85) : on pose

bulr) = F(z) + / " Flesy, o (4))dy (1.23)

pour n > 1. Cette séquence est initialisée en définissant ¢o(z) = f(z) et, pour n — oo,
¢n () converge vers la solution ¢(x).

Si 'on considere maintenant le cas particulier ou la fonction F' peut étre mise sous la
forme

Flz,y,¢(y)] = AK(z,y)p(y) (1.24)
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avec K (z,y) fonction réelle (K(z,y) = 0 si y > z), alors la résolution par approche
itérative de substitution conduit a ’équation de Volterra de deuxieme espece

o) = ) + 3 A / " Ko ) f () dy (1.25)

qui est une série infinie et ou K,(z,y) est un noyau itéré, défini par K;(z,y) = K(z,y)
pour n =1 et, pour n > 1,

Ky(x,y) = / K(x,2)K,—1(z,y)dz (1.26)
0
Le noyau itéré d’ordre n est donc ici une intégrale d’ordre n (pour n > 2).

On constate alors que la solution de ’équation intégrale, calculée de maniere itérative,
prend la forme d’une série dont le terme d’ordre 1 est une intégrale simple

A/Om Ki(z,y) f(y)dy (1.27)

Le terme d’ordre 2 est une intégrale double

22 /Ow /Ox K(z,2)K(z,y)f(y)dzdy (1.28)

Le terme général d’ordre n est donc une intégrale d’ordre n. On se rapproche donc du
formalisme des séries de fonctionnelles défini dans la section précédente. Pour retrouver le
formalisme plus exact des séries de fonctionnelles, on pose d’abord f(y) = 1, A = 1, puis
pour le terme d’ordre 1

Ki(z,y) = K(z,y) = hi(z — y)u(y) (1.29)

Pour le terme d’ordre 2

Ky(z,y) = /Ox K(z,2)K(z,y)dz = /Ox ho(z — y, . — 2))u(y)u(z)dz (1.30)

et ainsi de suite pour tous les termes d’ordre n > 2. On retrouve ainsi le formalisme des
séries de fonctionnelles défini précédemment. Cela confirme que les séries de Volterra sont
bien une classe particuliere de séries de fonctionnelles, répondant a certaines propriétés.

1.3.3.2 Propriétés

De maniere générale, on dira quune fonctionnelle H;[u(t)] est réalisable et de type
Volterra [Volterra, 1959] si le terme h;(7y, ..., 7;) (pour i = 1, ..., 00) répond aux propriétés
suivantes :

Causalité :
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hi(t —,..,t — 1) =0 pour 7pu >t, k=1,...;i (1.31)

Mémoire finie :

hi(t1,...,7i) =0pour 7, >, a« >0et k=1,...i (1.32)

Stationnarité :
Le noyau h;(1, ..., 7;) est invariant dans le temps et ne dépend que des différences t —7;.

Si le noyau h;(7,...,7;) répond a ces propriétés pour i = 1,...,00, alors I'ensemble
des noyaux, qu’on appellera désormais noyaux de Volterra, caractérise completement le
systeme non linéaire considéré.

1.3.4 Cas particuliers
1.3.4.1 Introduction

Limiter la complexité des modeles de Volterra n’est pas un sujet nouveau. Nous allons
voir dans cette section que de nombreuses méthodes de représentation de systéemes non
linéaires existent déja. Ces méthodes peuvent conduire a la synthese de modeles non li-
néaires tres efficaces et moins complexes que les modeles généraux de Volterra, mais ceci
uniquement dans certains cas particuliers. Nous verrons alors que ces classes particulieres
de modeles ne sont que des sous-ensembles de la classe des modeles de Volterra.

1.3.4.2 Modeéle de Hammerstein

Le modele de Hammerstein est un des plus simples et des plus connus de la famille plus
générale des modeles non linéaires dynamiques orientés par blocs [Billings et Fakhouri, 1979],
[Ralston et Zoubir, 1995]. La structure du modele de Hammerstein consiste en une non-
linéarité statique g(-) reliée en cascade avec un modele linéaire dynamique défini par une
fonction de transfert notée A(s).

Dans le cas particulier ou le modele linéaire est a réponse impulsionnelle finie et si la
fonction g(+) est un polynéme de degré n, on parle de modele de Hammerstein fini.

u(t) @ (1) ()
—> g() > A(s) >

Fig. 1.2 - Modéle de Hammerstein
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D’apres la figure 1.2, la sortie intermédiaire ¢(t) peut s’écrire sous la forme

o(t) = g(u(®) = 3 (1) (1.33)

De méme, la sortie générale y(t) du modele de Hammerstein s’écrit sous la forme

y(t) = /000 a(T)o(t — 1)dr (1.34)

ou «a(7) est la réponse impulsionnelle de la fonction de transfert A(s).

Si I’on combine ces deux expressions, on obtient finalement 1’expression de y(t) suivante

y(t) = Z /000 yiol(T)u'(t — 7)dT (1.35)

Si 'on pose ensuite

0 sinon

hi(Ti, ..., i) = { ) sim = =7 (1.36)

le modele obtenu peut étre vu comme un modele de Volterra "diagonal” car les termes
hors diagonale, qui correspondent au cas olt 7; # 7; (j # ¢), sont nuls. Les parametres non
nuls du modele non linéaire ainsi obtenu sont proportionnels aux parametres du modele
linéaire : hy(7,...,7) = vihy (7).

On peut donc considérer le modele de Hammerstein comme une approximation du
modele de Volterra. Cette approximation suffit a réduire la complexité du modele de Vol-
terra. Cette classe de modele est plus simple a utiliser et plus parcimonieuse dans les
parametres que la classe des modeles de Volterra. Ces avantages sont obtenus au détri-
ment de la flexibilité du modele : les restrictions inhérentes au modele de Hammerstein
I’empéchent de représenter autant de non-linéarités différentes que le modele plus général
de Volterra.

1.3.4.3 Modéle de Wiener

Le modele de Wiener peut étre vu comme le dual du modele de Hammerstein [Rugh, 1981],
[Doyle et al., 2002]. Il comporte les deux mémes composantes mais reliées dans 1’ordre in-
verse. Le signal d’entrée u(t) passe d’abord par le modele linéaire dynamique de fonction
de transfert A(s) pour donner le signal de sortie intermédiaire 1(t), lui-méme transformé
par la non-linéarité statique g(-) pour donner le signal de sortie y(¢) du modele.

De la méme maniere que pour le modele de Hammerstein, on peut définir un modele

de Wiener fini si le modele linéaire est a réponse impulsionnelle finie, et si la fonction g(-)
est un polynome de degré n.
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u(t) Y@ ()
— A(s) > g() —>

Fig. 1.3 - Modéle de Wiener

D’apres la figure 1.3, la sortie intermédiaire () peut s’écrire sous la forme

olt) = /OOO a(r)ult — 7)dr (1.37)

La sortie générale y(t) du modele de Wiener s’écrit sous la forme

y(t) = Z Y (t) (1.38)

En tenant compte des deux expressions précédentes, la sortie y(¢) du modele de Wiener
peut s’exprimer ainsi

y(t) = Z/OOO/OOO vl (Tl (t — 7)(dr)! (1.39)

On définit ensuite, pour i = 1,..., 00 :

hi(T1, ..., Ti) = vic(T1)...(T3) (1.40)

Si 'on s’en tient aux schémas, la structure du modele de Wiener est tres proche de
celle du modele de Hammerstein. Ils utilisent en effet les mémes composantes, a savoir un
transfert linéaire et une non-linéarité statique.

Cependant, les équations (1.36) et (1.40) nous montrent que ces deux modeles sont
tres différents car le seul cas ou les coefficients h;(7, ..., 7;) sont égaux est le cas linéaire
(n = 1) ou la relation entre 'entrée u(t) et la sortie y(t) est un produit de convolution
classique. Le comportement des deux types de modeles dans le cas non linéaire et dyna-
mique ne sera donc pas le méme.

On remarque également que, par construction, la complexité du modele de Wiener est
du méme ordre que celle du modele de Hammerstein. Le modele de Wiener peut donc
également étre considéré comme une approximation du modele de Volterra, approxima-
tion dont la complexité est réduite mais dont la flexibilité (la capacité a représenter une
large variété de non-linéarités) est moindre par rapport a celle du modele de Volterra.
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1.3.4.4 Modele d’Uryson

Le modele d’Uryson est généralement moins connu que les modeles de Hammerstein et
de Wiener mais on peut considérer qu’il représente un sous-ensemble de la classe des mo-
deles de Volterra [Doyle et al., 2002]. 11 consiste a mettre en parallele un certain nombre
de modeles de Hammerstein (r modeles dans notre cas).

A

() > A

u®)r— 9,() 1 A9

| v

O—

L 9.() = A9 J

Fig. 1.4 - Modéle d’Uryson

On suppose que les non-linéarités statiques g;(-) sont des polynémes d’ordre n; (i =
1,...,7) et que les modeles linéaires dynamiques peuvent étre représentés par des fonctions
de transfert A;(s) (i =1,...,r).

La sortie y;(t) du i®™® modele de Hammerstein s’écrit :

nq

u(t) =3 /0 D) (t - 7)dr (1.41)

Jj=

La sortie y(t) du modele d’Uryson s’écrit donc sous la forme :

:Zyi ZZ/ 7] Vo (T)u! (t — 7)dr (1.42)

=1 j=1

Les coefficients de ce modele sont les suivants :

ro (D) Co
By (71, s Ts) :{ ()Zsiizlozj () si T = =1, (1.43)

Comme dans le cas du modele de Hammerstein, on remarque que le modele d’Uryson
peut étre vu comme un modele de Volterra "diagonal”. Dans le cas ot 7 = 1, on se ramene
a un modele de Hammerstein classique, beaucoup plus flexible que le modele de Volterra
classique mais moins efficace. Le fait de coupler plusieurs modeles de Hammerstein pallie
au probleme d’efficacité car on peut ainsi représenter davantage de systémes non linéaires
mais c’est au détriment de la simplicité de modélisation. En effet, le modele d’Uryson
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comporte r fois plus de parametres que celui de Hammerstein.

Le modele d’Uryson est donc plus flexible que le modele de Hammerstein, mais il reste
plus complexe et ne permet pas de représenter autant de types de non-linéarités que le
modele de Volterra. Dans certains cas, le modele d’Uryson peut apparaitre comme un
bon compromis entre le modele de Hammerstein (trop peu flexible) et celui de Volterra
(relativement complexe).

1.3.4.5 Modele de projection-poursuite

Le modele de projection-poursuite peut étre vu comme le dual du modele d’Uryson
[Doyle et al., 2002]. Le terme de projection-poursuite vient de la littérature consacrée aux
statistiques et se réfere a une classe de modeles de régression non linéaire. Le modele de
projection-poursuite peut étre obtenu a partir du modele d’Uryson si 'on remplace cha-
cun des sous-modeles de Hammerstein par des modeles de Wiener (en intervertissant la
non-linéarité statique et le modele linéaire dynamique).

Au final, cela revient a mettre en parallele un nombre r de modeles de Wiener.

A(s) a.()

un— A 1 %0

— A( — 90 J

Fig. 1.5 - Modeéle de projection-poursuite

On suppose que les non-linéarités statiques g;(-) sont des polynomes d’ordre n; (i =
1,...,7) et que les modeles linéaires dynamiques peuvent étre représentés par des fonctions
de transfert A;(s) (i =1,...,7).

La sortie y;(t) du j¥"* modele de Wiener s’écrit :

it =3 / / 2D ol (r)ui (¢t — 7)(dr) (1.44)
i=1 70 0
La sortie y(¢) du modele de projection-poursuite s’écrit donc sous la forme :
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r nj

w0 = u0=33 [ o [Tl -y (1.45)

=1 i=1

Les coeflicients de ce modele sont les suivants :

hi(r, o) = >4 ay(m1).05(n) (1.46)
j=1

I a été démontré [Doyle et al., 2002] que si r est suffisamment grand, alors la classe
des modeles de projection-poursuite est équivalente a la classe des modeles de Volterra.

Comme dans le cas des modeles d’Uryson, l'efficacité des modeles de projection-
poursuite dépend du modele considéré : si 'on prend r faible, le modele de projection-
poursuite est plus efficace en termes de nombre de parametres qu'un modele de Volterra.
Cependant, le nombre de non-linéarités représentables est plus faible que dans le cas d’un
modele de Volterra.

1.3.5 Conclusion

Les séries de Volterra apparaissent donc comme un moyen acceptable, pratique et
souple de modéliser un grand nombre de systemes non linéaires. Leur formalisme permet
une représentation sous forme de schémas-blocs relativement aisée car déja utilisée dans
la représentation de systemes linéaires. Certaines méthodes de représentation de systemes
non linéaires sont déja utilisées avec succes depuis un certain nombre d’années, voire de
décennies, et apparaissent rétrospectivement comme des cas particuliers de modeles de
Volterra, justifiant ainsi le choix de ce type de modele.

1.4 Détermination et modélisation des noyaux de Vol-
terra

1.4.1 Introduction

Dans tout ce qui suit, on considérera que les conditions initiales sont nulles. Lorsque
les conditions initiales sont non nulles, on montre que la connaissance de la réponse impul-
sionnelle et des noyaux de la réponse d'un systeme non linéaire en partant de conditions
initiales nulles permet d’évaluer les noyaux de la réponse de ce systeme avec des conditions
initiales non nulles [Hassouna, 2001].

On considere le systeme non linéaire mono entrée-mono sortie dont la représentation
d’état est la suivante :
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((t)) + u(t)g(x(t)) (1.47)

ou

fla) = [fH(z(t)), ,f"(m( N|T
g(a(t)) = [g"(2(t)), ..., g"(x(t)]" (1.48)

sont des vecteurs de fonctions analytiques et ou .r(t) € R™

Dans le cas ou I'entrée u(t) est bornée en amplitude, la sortie y(t) de ce systéme non
linéaire admet un développement en série de Volterra. Obtenir ’expression analytique des
noyaux de Volterra hy(t1, ..., t;) nécessite la connaissance des vecteurs de fonctions f et
g, et de la fonction analytique h. Ces expressions peuvent étre relativement difficiles a
calculer selon la complexité des fonctions précédentes et le nombre de termes de degré
élevé souhaités dans le développement en série de Volterra.

Pour calculer analytiquement les noyaux de Volterra, on peut appliquer la transformée
de Laplace multidimensionnelle au systeme non linéaire global, décomposé sous forme de
blocs linéaires et non linéaires. La transformée de Laplace multidimensionnelle inverse
permet d’obtenir I'expression temporelle de la réponse impulsionnelle de chaque noyau de
Volterra [George, 1959], [Hassouna, 2001], [Hassouna et al., 2001].

1.4.2 Séries génératrices non commutatives
1.4.2.1 Expression analytique des noyaux de Volterra

La formule fondamentale de Fliess est I’équivalent pour une fonctionnelle de ce qu’est
la série de Taylor pour une fonction.

Théoréme 1.1 [Lamnabhi-Lagarrigue, 1995]

Soit le systéme non linéaire mono-entrée mono-sortie (1.47). Dans le cas ou ’entrée
u(t) du systéeme est suffisamment bornée, on peut associer a la sortie y(t) le développement
en série suivant :

g = h(zo +Z Z L;, h(x0)zjy---Zjy 1 %j, (1.49)

v2>0 jo,...,ju=0

Les opérateurs Lo et Ly sont appelés opérateurs de Lie et définis de la maniére sui-
vante :

2 (1.50)
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Les variables zy et zy correspondent respectivement a ['opérateur d’intégration par rap-
port au temps et a lopérateur dintégration par rapport au temps apres multiplication par
Uentrée u(t) :

¢
20 < fO -dt

1.51
27 & f(f u(T)dr (1.51)

On remarque que les deux variables zy et z; ne sont pas commutatives. En effet, si on
pose u(t) =t*, « # 0, on obtient

t T2 ta+2
2021 < / dTQ/ U(Tl)dTl = ( (152)
0 0

a+2)(a+1)

qui est différent de

t ) ta—i—?
& d dm = 1.53
2120 /0 U(TQ) 7'2/0 T1 o2 ( )

A partir de ces définitions, le théoréeme suivant donne une expression explicite de la
série de Volterra :

Théoréme 1.2 [Fliess et al., 1983]
La sortie y(t) du systéme non linéaire défini par (1.47) peut étre développée en une
série de Volterra :

y(®) :ho(t)+§;/0t /O/O hi(t,n,...,ﬁ)f[lu(fj)dfj (1.54)

ot les noyauzx de Volterra sont des fonctions analytiques. Le terme hy(t) correspond a la
réponse libre (c’est a dire en l'absence d’entrée u(t)) du systéeme (1.47). Il a la forme :

hot) = L’gh(:co)H = et p (o) (1.55)
k=0
Le noyau hy(t, ) d’ordre 1 a la forme :
00 00 1 —T1 leko
ha(t, 1) = > o0 2o Lg® L1 L h(l’o)% (1.56)

= enbo L et=m)lop(g0)
Le noyau h,(t,71,...7,) d’ordre n a la forme :

_ - - ko k1 kn (t_Tn)kn---Tfo
ko=0  kn=0 " (1.57)

=enkof em—m)lo L1€(t77—n)L0h(‘r0)
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1.4.2.2 Commentaire

Ces expressions analytiques des noyaux de Volterra ne sont pas utilisables telles quelles
car les opérateurs qu’elles comportent sont difficilement calculables. Le calcul effectif des
noyaux de Volterra reste donc un probleme ouvert.

1.4.3 Modélisation des noyaux de Volterra sur bases de fonc-
tions orthonormeées

Dans la majeure partie des cas considérés, on ne peut pas disposer d’une expression
analytique (ou d’'un modele de connaissance) des noyaux de Volterra car soit celle-ci ne
peut pas étre calculée (structure des noyaux inconnue), soit cette expression est trop
complexe pour étre ensuite utilisée (structure des noyaux trop complexe). Une maniére
de traiter ce probléeme est de trouver un modele paramétrique valide pour les noyaux de
Volterra sur une certaine plage de fonctionnement du systeme non linéaire. On utilisera
ensuite les données d’entrée et de sortie du systeme non linéaire considéré pour identifier
les noyaux de Volterra, méme si la forme analytique de ces derniers reste inconnue.

Un moyen relativement courant de modéliser les noyaux de Volterra consiste en leur
développement sur des bases de fonctions orthonormées multidimensionnelles, elles-mémes
obtenues a partir d’'une ou de plusieurs bases de fonctions monodimensionnelles
[Wahlberg, 1991], [Lindskog et Wahlberg, 1993], [Ninness et Gustafsson, 1994],

[Akgay et Ninness, 1999].

Nous verrons ensuite qu'un autre moyen consiste en 1'utilisation de la représentation
temporelle de la série génératrice a variables non commutatives (introduite par Fliess)
associée a la sortie y(t) du systeéme non linéaire. Cette méthode conduit & un modele
relativement parcimonieux pour chaque noyau de Volterra mais ceci au détriment d’une
complexité croissante du modele au fur et a mesure que le nombre de noyaux augmente.

Un autre modele, inspiré du précédent, sera ensuite présenté. Ce modele consiste a
développer les noyaux de Volterra sur des produits de fonctions de transfert. Bien que la
parcimonie de ce nouveau modele soit légerement moindre, nous verrons que sa complexité
globale est considérablement diminuée, permettant ainsi une identification paramétrique
beaucoup plus aisée.

1.4.3.1 Introduction

Les bases de fonctions orthonormées sont couramment utilisées en matiere d’approxi-
mation et d’analyse de fonctions complexes. Une des premieres études sur le sujet est
I'oeuvre du mathématicien Yuk-Wing Lee, un des éleves de Wiener [Lee, 1932]. On consi-
dere aujourd’hui qu’il fut le premier a utiliser le terme de "synthese” pour décrire le
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rassemblement de divers éléments dans le but de répondre a un ensemble de performances.

Dans des domaines tels que la théorie de la commande, le traitement du signal et I'iden-
tification de systémes, on utilise depuis longtemps les fonctions de Laguerre [Wahlberg, 1991],
développées par Laguerre a la fin du 199 siecle, étendues ensuite par Kautz a 1’ordre 2 afin
de modéliser des dynamiques non amorties [Wahlberg, 1994|. Les bases de fonctions or-
thonormées généralisées, introduites par Ninness et Akgay [Ninness et Gustafsson, 1994,
[Akgay et Ninness, 1999], permettent I'introduction de poles réels ou complexes conjugués
afin de modéliser le plus grand nombre possible de dynamiques différentes.

1.4.3.2 Définition et propriétés

Une base de fonctions orthonormeées est constituée de fonctions orthonormées entre
elles et normales & elles-mémes. Si I’on considere une base de fonctions orthonormées @
définie par

{®;(s)} i eN (1.58)

et

O,(s) € Ho(Cy) (1.59)

ou Hy(C'Y) est l'espace de Hardy, espace des fonctions analytiques dans le demi-plan com-
plexe de Laplace C tel que Re(s) > 0, et de carré sommable sur 'axe des imaginaires.

Ces fonctions ®;(s) sont orthonormées entre elles si leur produit interne a Hy(Cy) a
les propriétés suivantes :

+oo C
@) = o [ et { 5 (1.60)

21 J_ oo 0 sinon
ou l'indice * désigne le conjugué d’un nombre complexe.
Dans la suite du mémoire, on adopte les notations suivantes : ®(s) représente une

fonction orthonormée dans le domaine de Laplace tandis que ¢ représente la réponse de
la fonction ® & une excitation u(t).

1.4.3.3 Développement sur une base monovariable

On considére une fonction f(s) de I'espace de Hardy Hy(C4 ). Cette fonction admet
un développement unique sur la base de fonctions ®

f@zZ%%ﬁ (1.61)
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Les coefficients 6,; sont les parametres du développement.

Suivant le choix des fonctions ®;(s), les coefficients 6.; tendent plus ou moins rapide-
ment vers 0 lorsque j tend vers 'infini. Le développement (1.61) peut donc étre tronqué
a ses M premiers termes

f(s) = Z 0c;®;(s) (1.62)

1.4.3.4 Développement sur une base multivariable

On considere maintenant Uespace L*(T™), T = [0, 0o[, des fonctions mesurables et de
carré sommable. Toute fonction f(ty,...,t,) de L*(T™), admet un développement unique
sur la base orthonormée {¢,,, .m.,} de la forme

Flth, oty Z Z Fons oo O oo (15 1) (1.63)

m1=0 myp=0

ou les termes f,,. .m, sont les parametres du développement.

Proposition 1.1 : Une base orthonormée {¢m,. . m,} de L*(T™) peut étre obtenue a
partir de la base orthonormée {¢,,} de L*(T) en formant les produits directs

Omy @ oo @ Gy, = H(bml avec my > ... > my, (1.64)

i=1

Preuve :

On considere un multi-index (my, ...,m,) tel que my; > my > ... > m, et une base
orthonormée {¢,,} monodimensionnelle de I'espace L*(T'). On définit 'ensemble des fonc-
tions {Pm,..m, } de L*(T™) de la manitre suivante :

e (1.65)
=1

Calculons le produit scalaire (@, m,., Ppr..pn)

(s O ) = 25 250 B (s F) 03, (1o )
- ZjOOO —joo Hz 1 (I)mz( l) szl (I);] (fj)dfldfn
=TT S 25 @ (1)@, (fi)df: (166)
= H?*l <(I)mi7 (I>pi>
_Hz 1 mupz

= 5m1-'~mn7p1~~pn

Ol Oy pr..pn €St le symbole de Kronecker défini par
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_fIsimy=..=m,=p1=..=p,
Ormy...ttm 1. = { 0 sinon (1.67)

Les fonctions ¢y, ..m, sont donc orthogonales entre elles et normales a elles-mémes.
Par conséquent, {¢,,..m, } constitue une base orthonormée de L*(7™). B

Suivant le choix de la base de fonctions multivariables, les coefficients du développe-
ment peuvent tendre plus ou moins rapidement vers 0 lorsque le nombre de termes tend
vers I'infini. On peut donc, comme dans le cas monovariable, approximer le développement

(1.63) :

Flt1, ot Z Z Fonreons Py (1, - tn) (1.68)

mi= =0 mn—O

1.4.3.5 Développement des noyaux de Volterra [Monsion, 1976]

Nous allons utiliser le résultat précédent pour approximer les noyaux de Volterra.
On rappelle que la sortie d'un systeme non linéaire mono entrée-mono sortie peut étre
développée en une série de Volterra

:2 (/Ot.../othi(ﬁ,..., Hu dTJ> (1.69)

Dans le cas général, le noyau de Volterra h;(7, ..., 7;) est une fonction multivariable et
admet donc un développement unique sur une base de fonctions {¢y,,..m, } de L*(T7) :

hi(T1, oo T2) Z Zcml s O (T1y 0y i) (1.70)

mi1=0

Proposition 1.2 : en considérant les propriétés d’orthonormalité de la base de fonc-
tions {@m,..m, }, la réponse H;[u(t)] du noyau (1.70) a l'entrée u(t) peut étre approximée
par

mi—1

Z me iy (8) Lo, (£) (1.71)

m1=0

ot le terme I,,,;(t) est la réponse de la fonction orthonormée ¢, a 'entrée u(t).

Preuve : comme on l'a vu précédemment, le développement (1.70) peut étre tronqué :

hi(T1, s 7) Z Z Cong s Gy (T1s s T2) (1.72)

m1=0
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La base de fonctions multidimensionnelles orthonormées {¢,,,. ., } de L*(T?) étant
obtenue a I’aide de la base de fonctions monodimensionnelles orthonormées {¢,, } de L*(T),
on peut réécrire 'approximation précédente du développement de la maniere suivante :

hilTt, s T) = St g omiy O (S (T1) O () + oo+ By ()G, (1))

+ Zf\r/ﬁ:o Cmy..myq ¢m1 (Tl)'--gbvm (7‘1)
(1.73)

La réponse H;[u(t)] du noyau de Volterra d’ordre i a l'entrée u(t) du systeme s’écrit

de la maniere suivante :
+o00 400 T
:/ / hi(ry, om) [ [ ult — 75)d; (1.74)

On en déduit donc Pexpression approchée H;[u(t)] :

ﬁi[U(t)]—ZM%o i o |
Oy (7)<, (75) et Gy (7)o (7)) Ty ult = )

t t 7
+ Zmlzo Cmy..mq fo f() gbml (Tl)"'gbﬁn (Tl) H]:l u(t Tj>d7—j
(1.75)
Afin de simplifier les notations, on note I, (t) la réponse de la fonction orthonormée

Gm,; a lentrée u(t) :

/ O, (T)u(t — 7)dr (1.76)
L’expression approchée H; [u(t)] de la réponse H;[u(t)] peut donc s’écrire :

ﬁz[u<t>] = Zn]\{j:o Zzl 1ocm1 mz(i')[ml (t)"'[mi (t)
+ Z%{;o Cony ooy Ly (8) - Ly (B) (1.77)

On peut uniformiser la notation des coefficients du développement de la maniere sui-
vante :

Cmy.om; SI M = ... =M,
= o 1.
b, = { (1.78)

avec my > ... > m,;. N
On obtient enfin 'expression approchée générale de la sortie H;[u(t)] du noyau d’ordre

Hiu®)] =" > by Lo (8)-- I, (1) (1.79)
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Considérons 'exemple du noyau de Volterra d’ordre 2 développé sur 2 fonctions ortho-
normées (troncature a My = 1). Sa représentation schématique est donnée sur la figure 1.6.

— O \@_}

— @ 7

w1 4 P~ H,[u(n)]
. - O
— @ 7

Fig. 1.6 - Noyau d’ordre 2 développé sur 2 fonctions orthonormées

La représentation schématique générale du modele H;[u(t)] de la réponse du noyau
d’ordre 7 (1.79) est donnée sur la figure 1.7.

— @, i
ol 1 \ vH [u(t)]
T T (Y
— @, /
— @y
D
L (pM, /

Fig. 1.7 - Noyau d’ordre i développé sur une base de fonctions orthonormées
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Enfin, 'approximation y(¢) (troncature de I’expression (1.69) a l'ordre n) de la sortie
y(t) du systéme non linéaire est donnée par

Z(Z i:bml oLy (€)- I (t)> (1.80)

=1 m1=0

et représentée sur la figure 1.8.

H[u(t)]

A

(1))

u(t) u(t)] £ (0

> 1 (T,,..nT,) _,@>_>

H,[u(1)]

A 4
&~
~
-~
-~
~

Fig. 1.8 - Approximation de la sortie y(t) du systéme non linéaire

Une fois le modele du systeme non linéaire établi, I’étape suivante consiste a choisir la
forme des fonctions de la base orthonormée.

1.4.3.6 Choix des fonctions orthonormées

Le choix de la base orthonormée monodimensionnelle initiale ®,, est primordial pour la
qualité du modele. Les dynamiques des fonctions génératrices doivent étre aussi proches
que possible de celles des noyaux de Volterra. Ces derniers dépendant du systeme non
linéaire considéré, le choix de la base de fonctions orthonormées devra donc se faire au
cas par cas parmi I’éventail des possibilités.

a) Fonctions de Laguerre

Les fonctions de Laguerre ont été les premieres a étre utilisées afin de modéliser les
systémes (linéaires ou non linéaires). On les utilise plus particulierement dans le cas de
systémes apériodiques [Wahlberg, 1991]. Elles sont définies dans I’espace de Laplace de la
maniere suivante :
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V2a s —«
Ln(s) = — )t 1.81
n< ) S+« ( S+ Oé) ( )
Ces fonctions sont composées d’'un filtre passe-bas du premier ordre suivi d'une fonction
passe-tout. Le modele de Volterra ainsi défini ne comporte dans ce cas qu'un seul pole

réel multiple —a.

b) Fonctions de Kautz

Les fonctions de Kautz sont une extension des fonctions de Laguerre au deuxieme
ordre afin de modéliser les systemes oscillants [Wahlberg, 1994]. Elles sont définies dans
I’espace de Laplace de la maniere suivante :

k—1
] (S) _ _V2bs s2—bs+c
2k—1 T s24bstc | s24bs+c

k—1
\I/ (S) _ \/2bc $2—bs+c
2k T s24bstc | s24bstc

avec k> 0,b>0,c¢>0 (1.82)

Les deux poles conjugués sont calculés par résolution de I'équation s + bs + ¢ = 0.

On remarque que dans le cas o b = «a et ¢ = 0, on retrouve la fonction de Laguerre
définie au paragraphe précédent.

c) Fonctions orthonormées généralisées

Un des principaux inconvénients des deux types précédents de fonctions orthonormées
est que I'on ne peut introduire qu’'un et deux podles dans chaque fonction de Laguerre et
de Kautz respectivement. Dans le cas d’un systeme comportant plusieurs non-linéarités
différentes ou plus simplement des modes éloignées, on ne pourra pas introduire plu-
sieurs dynamiques. Il faut alors considérer un nombre suffisamment grand de fonctions
orthonormées, ce qui entrainera un probleme de surdimensionnement de modele et de
surparameétrisation.

Pour remédier a ce probleme, on dispose des fonctions orthonormées généralisées,
introduites par Ninness et Akcay [Ninness et Gustafsson, 1994], [Akgay et Ninness, 1999],
définies dans ’espace de Laplace de la maniere suivante :

B, (s) = V2P ﬁ et 2 (1.83)

S+ Pn S + Pk

k=1

ol le terme py désigne le conjugué du nombre complexe py.

La construction de telles fonctions préserve 'orthonormalité et permet I'incorporation
d’une grande variété de poles pi convenablement répartis afin de modéliser les différentes
dynamiques ou les non-linéarités du systeme considéré. Ces fonctions permettent de cor-
rectement décrire la dynamique de chaque noyau et d’éviter ainsi d’obtenir un modele de
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dimension trop importante.

Un autre avantage de 'utilisation des fonctions orthonormées généralisées est la possi-
bilité d’introduire des poles complexes afin de modéliser des dynamiques oscillantes. Ces
poles complexes sont introduits par paires.

On introduit les fonctions @/ (s) et @7 (s) définies de la maniere suivante :

( zig; ) - < gz gi > < qiiiz) ) (1.84)

ou Cy, C1, C} et Cf sont des nombres complexes, la fonction ®,(s) est donnée par (1.83)
et la fonction ®,,,1(s) est définie de la manieére suivante :

— n—1 —
Ppi1(s) = & (s = Px) (1.85)
§+Dn s (s + k)

1.4.3.7 Identification

On considere le systeme non linéaire quadratique dont la représentation d’état est la
suivante :

. 2
{ i(t) = —a(t) — 2*(t) + u(?) (1.56)
y(t) = x(t)

L’utilisation d'une série de Volterra pour modéliser un systéme non linéaire suppose
que l'on puisse identifier les termes de la série a partir d’un signal d’entrée u(t) quelconque
mais suffisamment riche pour pouvoir sensibiliser I’ensemble des parametres. Dans le cas
du systéme non linéaire (1.86), I'utilisation d’une séquence pseudo aléatoire bornée en
amplitude (figure 1.11(a)) permet d’effectuer une identification globale des parametres de
tous les termes du modele de Volterra.

0.4 T T T T T T
0.351 J M I

0.3

0.251

0.2r

0.151

0.1r

0.051

0 I . . h . . .
0 50 100 150 200 250 300 350 400

Fig. 1.9 - Séquence pseudo-aléatoire bornée en amplitude
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Ce type d’excitation comporte un nombre suffisamment important de variations d’am-
plitude pour sensibiliser tous les termes de la série de Volterra.

La réponse du systéme non linéaire (1.86) au signal d’entrée défini par la figure 1.11(a)
est donnée par la figure 1.11(b).

0.35

| q

0.2

0.15f

01f L

0.05

0 | . . . . . .
0 50 100 150 200 250 300 350 400

Fig. 1.10 - Réponse du systéme non linéaire

On utilisera ce signal d’entrée et cette réponse du systéeme non linéaire afin d’identifier
les parametres des modeles de Volterra dans toute la suite de ce chapitre.

La structure du modele de Volterra est d’abord fixée en effectuant une troncature a
ses 2 premiers termes. Le premier terme permet de modéliser la partie linéaire du systeme
considéré. Le second terme prend en compte la non-linéarité. Nous verrons que cette tron-
cature, bien qu’arbitraire, peut cependant étre suffisante pour une modélisation correcte
du systeme non linéaire.

Pour les raisons définies précédemment, nous choisissons de développer chaque noyau
de Volterra sur des fonctions orthonormées généralisées définies par (1.83). Le nombre
de fonctions orthonormées généralisées est d’abord arbitrairement fixé a 4 pour chaque
noyau de Volterra, ce qui fixe le nombre total de parametres a 14.

On peut alors fixer la valeur des poles des fonctions orthonormées généralisées a une
valeur arbitraire. En ’absence de connaissance a priori sur le systeme non linéaire, le pole
de la premiere fonction est fixé a 10 et celui de la deuxieme fonction a 20, celui de la
troisieme a 30 et le dernier a 40.

A ce point de I’étude, on remarque que le modele de Volterra développé sur des fonc-
tions orthonormées généralisées reste linéaire par rapport aux parametres. La sortie y(t)
du modele de Volterra peut donc s’écrire sous la forme du produit d’'un régresseur ¢(¢)
par un vecteur parametre 6 :
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y(t) = e(t)0 (1.87)

La solution optimale 6,,; a un tel probleme est donnée par la méthode classique des
moindres carrés :

Oope = (0" () (1)~ 0" (H)y(t) (1.88)

Une fois l'identification paramétrique achevée, on utilise un autre signal d’entrée (fi-
gure 1.11(a)) et la réponse correspondante (figure 1.11(b)) du systéme non linéaire (1.86)
afin de valider le modele de Volterra obtenu.

0.4 T T T T T T T 0.35
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0.1r

0.05f

0

. . . . . . 0 . . . . . . .
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

(a) Nouvelle séquence pseudo-aléatoire bornée

, (b) Réponse du systeéme non linéaire
en amplitude

Fig. 1.11 - Signauz d’entrée et de sortie utilisés pour valider le modele de Volterra

La figure 1.12(a) représente la sortie du systéme non linéaire (1.86) pour ce nouveau
signal d’entrée et la sortie du modele de Volterra décrit précédemment (pour les valeurs
paramétriques optimales calculées par la méthode des moindres carrés).
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x10°
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100 150 1“10 1é0 150 200 100 120 140 160 180 200
(a) Réponse du systéme non linéaire (ligne
continue) et du modele de Volterra (ligne poin-
tillée)

(b) Erreur quadratique

Fig. 1.12 - Modéle de Volterra tronqué a 2 noyaux développés sur 4 fonctions

La figure 1.12(b) représente I'erreur quadratique entre les deux courbes de la figure
1.12(a). Le critere quadratique J est égal a 8.95. La reconstruction est donc mauvaise, ce
qui ne surprend pas l'utilisateur car les choix de structure, de nombre de fonctions et de
valeur paramétriques du modele de Volterra sont tous arbitraires.

Une structure complexe de modele et un nombre important de parametres ne suffisent
donc pas a représenter correctement le systeme non linéaire considéré.

Une premiere solution consiste a complexifier le modele de Volterra en augmentant
soit le nombre de termes, soit le nombre de fonctions orthonormées généralisées utilisées
pour modéliser chaque noyau. On peut par exemple utiliser 5 fonctions orthonormées gé-
néralisées au lieu de 4. Le nombre total de parametres est dorénavant de 20.

La figure 1.13(a) représente la sortie du systeéme non linéaire (1.86) et la sortie du
modele de Volterra complexifié. Le critere quadratique J est désormais égal a 8.04.
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(a) Réponse du systéme non linéaire (ligne
continue) et du modele de Volterra (ligne poin-
tillée)

(b) Erreur quadratique

Fig. 1.13 - Modéle de Volterra tronqué a 2 noyaux développés sur 5 fonctions

Un modele de Volterra plus complexe est donc plus précis mais reste incapable de
représenter précisément la sortie du systéeme non linéaire. La solution théorique consiste
donc a augmenter indéfiniment le nombre de termes du modele ou bien le nombre de
fonctions orthonormées généralisées utilisées pour modéliser chaque noyau. Dans ces deux
cas, le nombre de parametres augmente et le calcul de la solution optimale par la méthode
des moindres carrés devient problématique.

Une autre solution consiste a choisir d’autres valeurs de poles tout en gardant la méme
structure de modele de Volterra. En I’absence de connaissance a priori sur le systeme non
linéaire considéré, le choix des valeurs paramétriques optimales doit se faire de maniere
empirique. Mais, en pratique, il arrive souvent que 1’on dispose de la réponse du systeme
non linéaire a différents signaux d’entrée. Ces réponses peuvent permettre a l'utilisateur
d’estimer le temps de réponse global du systeme non linéaire et ainsi d’approcher beau-
coup plus rapidement les valeurs optimales d'un ou plusieurs parametres.

En conservant la méme structure de modele (2 noyaux de Volterra modélisés chacun
sur 4 fonctions orthonormées généralisées) et en fixant les valeurs des poles des fonctions
a 1, 2, 3 et 4 on obtient la réponse de la figure 1.14(a).
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(a) Réponse du systéme non linéaire (ligne
continue) et du modele de Volterra (ligne poin-
tillée)

(b) Erreur quadratique

Fig. 1.1 - Modéle de Volterra tronqué a 2 noyaux développés sur 4 fonctions avec choix conve-
nable des poles

L’erreur quadratique entre les deux courbes de la figure 1.14(a) est donnée par la figure
1.14(b). Le critere quadratique J est égal a 0.022.

La qualité du modele de Volterra est dans ce cas bien meilleure que précédemment.
La connaissance a priori de la dynamique globale du systeme non linéaire peut donc aider
I'utilisateur a fixer convenablement la structure du modele de Volterra développé sur une
base de fonctions orthonormées généralisée.

1.4.3.8 Discussion

Le modele de Volterra dont les noyaux sont développés sur des bases de fonctions or-
thonormées généralisées apparait donc comme un tres bon moyen de représenter un tres
grand nombre de dynamiques différentes. Cependant, cette propriété intéressante entraine
un certain nombre de problemes d’identification paramétrique :

— Probleme du choix des ordres de troncature : la structure globale optimale du modele
de Volterra n’est pas connue d’avance par 'utilisateur. Dans la plupart des cas, une
série de Volterra étant uniformément convergente, il n’est pas utile de conserver une
infinité de termes (donc une infinité de noyaux) pour modéliser correctement un sys-
teme non linéaire. Le probleme du choix de 'ordre idéal de troncature se pose alors
pour chaque systeme non linéaire étudié. Dans 1’état actuel des connaissances, seule
une connaissance a priori du systeme étudié permet de résoudre ce probleme. De
plus, une fois 'ordre de troncature fixé, 'utilisateur doit également fixer le nombre
de fonctions orthonormées généralisées sur lesquelles sera développé chaque noyau
de Volterra. Ici également, la connaissance a priori du comportement du systeme
peut aider l'utilisateur a fixer des valeurs optimales du nombre de fonctions pour
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chaque noyau.

— Probleme du choix des poles des fonctions orthonormées généralisées : un des avan-
tages du modele de Volterra développé sur bases de fonctions orthonormées générali-
sées est le grand nombre de poles différents introduits dans les fonctions. Mais, dans
de nombreux cas, 'utilisateur n’a pas de connaissance a priori sur les dynamiques
du systeme étudié et doit fixer des valeurs de poles a priori inexactes. Ceci pose
des problemes d’identification si le nombre de fonctions de chaque développement a
été tronqué au départ par 'utilisateur : en effet, la procédure d’identification doit
s’adapter a ces valeurs de poles, fixées des le départ, et I'algorithme d’identification
par moindres carrés peut fournir un mauvais résultat d’identification des parametres
si les valeurs de poles ne correspondent pas aux dynamiques réelles du systeme étu-
dié.

— Probleme du nombre de parametres : ce troisieme probleme découle du précédent.
En effet, pour pallier au probleme du choix des poles en ’absence de connaissance
a priori sur les dynamiques du systeme non linéaire étudié, I'utilisateur peut choisir
d’introduire le plus de dynamiques différentes possibles dans le modele de Volterra,
augmentant ainsi le nombre de fonctions sur lesquelles est développé chaque noyau
de Volterra. Ceci provoque une forte augmentation du nombre total de parametres
du modele de Volterra, sacrifiant ainsi 1'objectif de parcimonie fixé au départ de
notre étude.

Un des objectifs essentiels de cette étude est de conserver une certaine parcimonie pa-
ramétrique dans le modele étudié, a la différence des multi-modeles, du modele NARMAX
et des réseaux artificiels de neurones évoqués précédemment. Une solution pour réduire le
nombre de parametres nécessaires est le développement des noyaux de Volterra non plus
sur bases de fonctions orthonormées généralisées mais sur des fonctions de transfert.

1.4.4 Modélisation des noyaux de Volterra sur fonctions de trans-
fert

1.4.4.1 Introduction

L’objectif de parcimonie est difficilement réalisable en conservant la modélisation des
noyaux de Volterra établie a ’aide des fonctions orthonormées généralisées, en particulier
lorsque connaissance a priori sur le comportement du systeme non linéaire est faible.

Une solution a ce probleme consisterait a optimiser le choix de pdles des fonctions de
la base orthonormée généralisée a ’aide d’'un algorithme de programmation non linéaire.
Cependant, en ’absence de connaissance sur la structure globale optimale du modele de
Volterra, cette optimisation devrait étre effectuée pour différents ordres de troncature de
la série de Volterra utilisée et des développements de chaque noyau de Volterra. Une telle
procédure nécessiterait en outre un critere valable de comparaison des résultats d’optimi-
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sation obtenus pour chaque structure de modele employée. Le volume de calcul nécessaire
deviendrait rapidement important et les résultats obtenus seraient difficilement exploi-
tables.

Pourtant, 1'idée d’optimiser par programmation non linéaire tous les poles et les zéros
des fonctions orthonormées généralisées afin de compenser le manque de connaissance a
priori sur le systeme non linéaire parait séduisante. Nous allons donc essayer d’effectuer
cette optimisation mais en remplacant les fonctions orthonormées généralisées par des
fonctions de transfert classiques, dont la forme plus souple se préte davantage a la procé-
dure d’optimisation des gains et des poles.

Le développement théorique que nous allons présenter est d’un abord difficile a cause
de calculs lourds et laborieux. Il conduit cependant a un modele tres parcimonieux des
noyaux de Volterra, répondant ainsi a I'un des objectifs que nous nous sommes fixés.

1.4.4.2 Cas particulier : modele de Wiener

On reprend le modele de Wiener (figure 1.15), qui n’est autre quun cas particulier du
modele de Volterra, plus simple mais moins flexible.

u(t) g (1) y(t)
— A(s) > a() >

Fig. 1.15 - Modéle de Wiener

Nous allons utiliser une forme particuliere de ce type de structure pour modéliser
chaque noyau de Volterra.

Dans le modele de Wiener, tout comme dans celui de Hammerstein, la partie linéaire
est séparée de la partie non linéaire.

Nous allons commencer par restreindre la partie non linéaire du modele de Wiener a
un cas particulier, celui d'un gain g¢; :

g((t)) = (1) (1.89)

La partie linéaire dynamique peut étre la réponse impulsionnelle h(¢) d’une fonction
A(s). On peut alors se servir de ce cas particulier de modele de Wiener pour représenter le
premier noyau de Volterra de signal d’entrée u(t) et de signal de sortie y;(t) = Hy[u(t)] :
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u(t) i ()
—> A(s) g —>

\4

Fig. 1.16 - Modele de Wiener représentant le premier noyau de Volterra

Si on veut maintenant représenter le noyau de Volterra d’ordre ¢, on utilise le produit
de plusieurs réponses impulsionnelles, suivi d'un gain (figure 1.17).

u(t)

—> Al

u(t)

— A9

Y (1)
g9 —

/

u(t)

—_ A(s)

Fig. 1.17 - Modéle de Wiener représentant le noyau de Volterra d’ordre ¢

Dans cette forme de représentation, les parametres du modele restent les gains g; uti-
lisés dans chaque noyau de Volterra. On se rapproche donc du modele de Volterra dans
lequel chaque noyau est développé sur des fonctions orthonormées généralisées.

L’idée d’optimiser les poles et les zéros des fonctions utilisées pour modéliser les noyaux
au lieu de les fixer d’avance et d’optimiser simplement les gains du modele conduit aux
modifications suivantes : pour tous les noyaux de Volterra, on peut poser g; = 1 et
considérer ensuite que les termes h(t) sont les réponses de fonctions de transfert du premier
ordre du type :

b
As) = —— (1.90)
ap + a8
Si l'on considere ensuite une seule fonction de transfert du type (1.90) pour chaque
noyau de Volterra, on peut définir un modele pour le systéeme non linéaire, inspiré du
modele particulier de Wiener.
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Par exemple, le modele considéré pour le noyau d’ordre i serait représenté sur la figure
1.18.

u(t) b(()i)
— >
@ 4,0
a, ta’s
u(t) hO
0
— >, 0. ¥, (0
al’ +a"s \><:> ;
u(t) b
“lal +as

Fig. 1.18 - Noyau de Volterra d’ordre i modélisé par un produit de fonctions de transfert

Dans ce nouveau modele, aucun parametre n’est fixé au départ par l'utilisateur. Un
algorithme de programmation non linéaire permettra I’évaluation de chacun des gains et
des poles de chacune des fonctions de transfert modélisant un noyau de Volterra.

Il s’agit maintenant d’essayer de généraliser cette forme de modele afin de pouvoir
représenter le plus grand nombre possible de systemes non linéaires.

1.4.4.3 Généralisation : utilisation des séries de Fliess

a) Introduction

Le modele 1.18 présenté au paragraphe précédent peut étre vu comme un cas par-
ticulier de modele de Wiener, lui-méme considéré comme cas particulier de modele de
Volterra. Par contre, ce type de modele répond bien a l'objectif d’identification globale
des parametres que nous nous étions fixé afin que 'utilisateur n’ait pas décider lui-méme
des valeurs de certains parametres sans connaissance a priori sur le systeme non linéaire.

Un moyen de généraliser cette forme de modélisation des noyaux de Volterra sur des

fonctions de transfert est d’utiliser les séries génératrices non commutatives évoquées pré-
cédemment.

Nous avons vu qu’une méthode de résolution du systéme non linéaire (1.86) consiste
a utiliser la représentation temporelle de la série génératrice (1.49), développée en une
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somme de séries génératrices représentant chacune un terme de la série de Volterra.

Reprenons la série génératrice (1.49) associée au systeme non linéaire (1.86). Elle s’écrit
sous la forme :

1
g="h(xo)+Y Y LjyLjh(20)Zjo-25, 1%,

©v20 jo,...,jv=0

Afin de résoudre le systeme (1.86), il est possible de développer la série génératrice
(1.49) qui lui est associée en une somme de termes de la forme :

9=">_ui (1.91)
1=0

ol g; regroupe tous les termes de la série g ayant exactement ¢ occurrences en z;. Chaque
terme g; est lui-méme une série génératrice qui représente le terme d’ordre ¢ du développe-
ment en série de Volterra de la sortie y(¢) du systeme non linéaire. On peut alors montrer
que tous les termes g; du développement admettent, dans le cas du systeme (1.86), une
représentation de la forme :

g; = (1 — aiozo)*piozl(l — ClﬂZg)ipilZl...Zl(l — aiizo)*p“ (192)

ol a9, U1, ..., Ay sont des nombres complexes et p;g, Pi1, ..., Pii sont des entiers naturels.

Notre objectif est de pouvoir modéliser chacun des noyaux de Volterra sous la forme
d’une somme de produits de réponses a des fonctions de transfert. Pour ce faire, nous
allons utiliser la représentation temporelle de chaque terme g; de la somme (1.91).

Considérons la série rationnelle

g1 =(1— aozo)_lzl(l —a129) " (1.93)

qui peut se développer sous la forme

g1 = Z Z abal zhz 2 (1.94)

=0 j=0
L’expression z}z1 2 peut étre développée en explicitant les opérateurs zg et z; (1.51) :

zézlzé(:)/ot(dm)i /Otu(ﬁ)dﬁ /Ot(dTo)j (1.95)

Cette intégrale itérée est égale a

/t —(t — Tl)iT{u(Tl)dTl (1.96)

il

Par conséquent, la série rationnelle g; est la représentation symbolique de
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Zzaoal / Z'j' (Tl)dTl (197)

=0 5=0

Cette expression peut étre vue comme le développement d’un produit de deux expo-
nentielles et peut donc étre écrite sous la forme

t
/ et dr (1.98)
0

Ce résultat peut étre généralisé sans difficulté a tous les termes de la série génératrice g.

La représentation temporelle générale de chaque terme g; est la suivante :

/ / / ao (8= 7). foi ) (2 = 1) [ (1) Hu (1;)dr; (1.99)

7=1

ou les fonctions fP(t) s’expriment de la maniere suivante :

p—1 Cj Lo
fa(t) = (Z %cﬂﬂ) et (1.100)

J=0

b) Séparation de l’intégrale multiple

Afin de modéliser le noyau de Volterra d’ordre n sous la forme d’'une somme de pro-
duits de réponses de fonctions de transfert, il est nécessaire de séparer I'intégrale multiple
(1.99), que nous noterons y,(t), en une somme de produits d’intégrales de convolution
simples.

Théoreme 1.3 Séparation de l'intégrale multiple y,(t) en une somme de produits d’in-
tégrales simples yp ri(t)

L’intégrale multiple (1.99) ot les fonctions fP(t) ont pour expression (1.100) peut étre
réécrite sous la forme :

t T Tn n
0 JoO 0 i=1

(1.101)
ot chaque terme D; est fonction de t, 7;, a; et p; (i=1,...,n).

n—1
Cette intégrale multiple peut se décomposer en une somme de P, = py ]:[ W

intégrales multiples y,, .(t) de la forme :
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t T2 Tn n v
yn,r(t) = f Ak Hi:l(t — Ti)Qn,'L,r
0Jo e(aofom)(tfq—n)Jr(alfa2)(t77—n71)+.“+an,1(tf-rl) H?:1 U(Ti)dTi (1.102)

Chacune de ces P, intégrales multiples yn . (t) est séparable en un produit de n inté-
grales simples yn;(t) de la forme suivante :

fot an,i(t — T)q”’”_”e(ai_a”l)(t_T)u(T)dT, si 0 S i S n—29
fot it — T)q"*"*”e‘“(t_T)u(T)dT, si i=n—1

Ynri(t) = { (1.103)

ot les termes o, ; et g, sont des constantes réelles qui dépendent des termes p; et a; de
chaque fonction (1.100) de lintégrale multiple (1.99).

Preuve : voir annexe.
Chacune des intégrales simples y,,,;(t) est une réponse monodimensionnelle & I'entrée

u(t). Dans les conditions de stabilité classiques (a; —a;+1 > 0 et a; > 0), on peut appliquer
la transformée de Laplace a Iexpression (1.103), et on obtient le résultat suivant :

Qo g 3 <7 < — <7 <mp; —
Yori(s) = (s—(ai—aipy))mn—ir ™ Us) Sl. .O srsnodd 0 =J=pd (1.104)
o oyt U () sti=n—let0sjsp—1

On peut donc utiliser la représentation par blocs pour dessiner le systeme non linéaire
ainsi modélisé.

c) Cas particulier : n =3

Si 'on considere le cas particulier de la modélisation du noyau de Volterra d’ordre
3 sous la forme d’une somme de produits de fonctions de transfert, on doit effectuer la
séparation d’une intégrale multiple y5(¢) d’ordre 3 en une somme de produits d’intégrales

simples ys ,;(1).

L’intégrale multiple y3(t) ou les fonctions fP(¢) ont pour expression (1.100) peut étre
réécrite sous la forme :

3

t T2 T3
ys3(t) = / / / DoD; Dyel00=a0)(t=ms) glar—az)(t=m2) gaz(t-m) Hu(n)dn (1.105)
o Jo Jo

i=1

ou chaque terme D; est fonction de t, 7, a; et p; (i = 1,...,3).
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2
On peut ensuite séparer cette intégrale multiple en une somme de P; = pg [] M
i=1

intégrales multiples ys,(t) de la forme :

Ysa(t) = [y asolt — 75) @@=y () drs [ g (t — 7)) 820 el =02 =Ty (7,)dr,
fot 05372 (t — 7-1)(13,1,7"6042(1577'1),“(7_1)dTl
(1.106)

Chacune de ces P intégrales multiples ys - (¢) est séparable en un produit de 3 intégrales
simples ys3,.;(t) de la forme suivante :

fot s i(t — 7)B3-irel@ima) ="y (r)dr si 0<i<1

1.107
fot 04371-(15 _ 7—)‘13,3—¢,reai(t—r)u(,]_)d,]_’ G i—2 ( )

Ysri(t) = {

ou les termes ag; et g, sont des constantes réelles qui dépendent des termes p; et a; de
chaque fonction (1.100) de l'intégrale multiple ys(t).

Preuve : voir annexe.

Chacune des intégrales simples ys,.;(t) est une réponse monodimensionnelle a Ientrée
u(t). Dans les conditions de stabilité classiques (a; —a;+1 > 0 et a; > 0), on peut appliquer
la transformée de Laplace a Iexpression (1.107), ce qui amene au résultat suivant :

(s—(ai=ait1)

asz; o
(e T U(s) si i=2

i U(s) si 0<i<1
Vi(s) = { e Ule) (1.108)

d) Représentation schématique pour n =3

Dans le cas ou n = 3, le modele obtenu pour le noyau de Volterra d’ordre 3 avec un
ensemble de P3 = 18 schémas blocs interconnectés est représenté sur la figure 1.19.
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Vi1 ()

Hy,(s) —‘

Y

Y

u(f) y3,(0) lyg(t)
a0 —C—

|

.
.

Yap (D)
Hs,/z (s)

Fig. 1.19 - Modéle du noyau d’ordre 3

Y

La structure de chaque schéma-bloc Hj, est relativement simple : il ne s’agit que de
mettre en parallele 3 blocs représentant chacun une fonction de transfert d’ordre plus ou
moins élevé (figure 1.20).

a., Vs,(0)
" [s=(as5, _‘11,1)]%”H
u(t) - V2 y »y,(0)
o 3,1
g [s— (33,1 T4, )]{h;'ﬂ
A
o V3,5(0)

32
[s— ay, ]rm,,”

Fig. 1.20 - Structure d’un schéma-bloc

Nous avons adopté ici la notation as; au lieu de a; pour les poles des fonctions afin de
différencier les poles considérés pour chaque noyau de Volterra modélisé.

Nous verrons que dans le cas général, le noyau d’ordre n peut étre modélisé par un
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ensemble interconnecté de P, schémas blocs. Chacun de ces schémas-blocs mettra en pa-
rallele n blocs représentant chacun une fonction de transfert d’ordre plus ou moins élevé.

La complexité du modele vient du nombre de schémas-blocs nécessaires a la modélisa-
tion d’un noyau de Volterra. Dans le cas oun = 3, 18 schémas-blocs de structure identique
(mais dont la valeur des parametres est différente) sont nécessaires.

e) Représentation schématique. Cas général

Dans le cas général, on peut représenter le modele obtenu pour le noyau de Volterra
d’ordre n par un ensemble de P, schémas blocs interconnectés (figure 1.21). La valeur
de P,, et donc le nombre de schémas-blocs nécessaires, dépend bien sir des valeurs des
termes p;, ¢t =0,..n — 1.

yn,l(l)

H, (s) —‘

Y

u(t) yn,r(l) l y”(l)
H,) —>O)—>

T

Yur (1)
Hn,Pn (s)

Fig. 1.21 - Modéle du noyau d’ordre n

\ 4

Bien que sa représentation schématique paraisse lourde, la structure de chaque schéma-
bloc H, , est pourtant simple : il ne s’agit que de mettre en parallele n blocs représentant
chacun une fonction de transfert d’ordre plus ou moins élevé (figure 1.22).
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a yn,r.l (l)

]q,,,»,,*l

Y

[s=(a,,~a,)

u([) Ve (t) A4 yn,y(t)

a,,

>
@1,
[s - (a,, =a,,)1""

+

A

yn.r,n ([)

\ 4

Fig. 1.22 - Structure d’un schéma-bloc

Nous avons également adopté ici la notation a,; au lieu de a; pour différencier les
poles des fonctions du modele du noyau de Volterra d’ordre n.

1.4.4.4 Identification et discussion

a) Introduction

Les noyaux de Volterra sont modélisés par des sommes de produits de réponses au
signal d’entrée u(t). La modélisation de la série de Volterra utilisée pour représenter le
systeme non linéaire se ramene donc a un probleme d’identification des parametres du
modele.

L’utilisation d’une série de Volterra pour modéliser un systeme non linéaire suppose
que 'on puisse identifier les termes de la série a partir d'un signal d’entrée u(t) quelconque
mais suffisamment riche pour pouvoir sensibiliser I’ensemble des parametres. Dans le cas
du systéme non linéaire (1.86), I'utilisation d’une séquence pseudo aléatoire bornée en
amplitude (figure 1.11(a)) se révele étre un moyen idéal pour effectuer une identification
globale des parametres de tous les termes du modele de Volterra.

Ce type d’excitation comporte un nombre suffisamment important de variations d’am-
plitude pour sensibiliser tous les termes de la série de Volterra.

Un avantage du modele de Volterra proposé est son faible nombre de parametres. On

peut voir sur les figures 1.21 et 1.22 que le modele du noyau d’ordre n comprend seulement
n + 1 parametres : les n termes ay,p, ..., an -1 des fonctions et le nombre p,, de termes de
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chaque développement D,, (qui permet de calculer le nombre P, de "blocs”). Si ce nombre
pn est fixé des le départ pour que la structure du modele soit adaptée au systéme non
linéaire considéré, le modele de Volterra tronqué a ses n premiers termes comprend alors
n(n+1)

——— parametres.

Considérons a nouveau l’exemple académique d’un systeme non linéaire quadratique
de représentation d’état suivante :

{ o(t) = —x(t) — 22(t) + u(t) (1.109)

Rappelons que la réponse d’un tel systeme au signal d’entrée défini par la figure 1.11(a)
est donnée par la figure 1.23.

0.35

0.3

0.25

0.2

0.15f

0.1f

0.05F

0 . . . . . h .
0 50 100 150 200 250 300 350 400

Fig. 1.23 - Réponse du systéme non linéaire

La série de Volterra est tronquée a ses deux premiers termes. Le premier noyau est
modélisé par :

t
hy(t) = / ot — 7)e 0y (T)dr (1.110)
0

et sa réponse représentée sur la figure 1.24
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u(?) a,, Vi) =00
’ —>

2l
[S _al‘o]‘]u.

Fig. 1.24 - Modélisation du premier noyau

Le terme pg est fixé a 1. Par conséquent, le nombre P; de termes de la somme (définie
dans l'annexe) est égal a 1. L’indice r ne prend que la valeur 1 et donc ¢y 1, = 1.

Pour le deuxieme noyau, on choisit de fixer py = 1 et p; = 2. Le nombre P, de termes
de la somme est égal a 3. L’indice r prend donc les valeurs 1 a 3. Le deuxieme noyau est

ainsi modélisé par une somme de P, = 3 blocs dont la forme est représentée sur la figure
(1.25) avec r =1,..., P, = 3.

a., Yo, ®)

[s=(ay = “2,\)]"1'1’H

Y

u(t) Y .0

Y ®

Y

[s— a,, ]‘ll.la+

Fig. 1.25 - Modélisation du deuxiéeme noyau

Le modele de Volterra global est constitué de la somme du modele du premier noyau et
du modele du deuxiéme noyau. Les parametres du modele global sont ici les poles a; o pour
le bloc unique du premier noyau, as et as; dans chacun des blocs du deuxieme noyau.
Les gains a;j; (1 = 1,2 et j = 1,...,4 — 1) des fonctions ne sont pas considérés comme des
parametres indépendants car les calculs présentés dans les sections précédentes montrent
qu'ils dépendent des poles a;; (i =1,2 et j =1,...,i — 1) et uniquement de ces poles. On
notera la parcimonie du modele global qui, malgré sa complexité, est entierement carac-
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térisé par 3 parametres.

Dans notre cas, le modele de Volterra global n’est pas linéaire par rapport aux pa-
rametres. Il est donc impossible d’utiliser un algorithme d’identification utilisant la mé-
thode des moindres carrés. La solution adoptée ici est 1'utilisation d’un algorithme de
programmation non linéaire de type Levenberg-Marquardt [Marquardt, 1963], qui réalise
un compromis entre la stabilité de la méthode du gradient et la rapidité de la méthode
de Gauss-Newton.

b) Principe de l’identification paramétrique

Un algorithme d’identification non linéaire est basé sur une recherche itérative de
l'optimum paramétrique. Si 'on appelle 6 le vecteur de parametres a identifier, 'estimée
6 de ce vecteur sera calculée itérativement. A l'itération ¢ + 1, I'estimée, notée 6,1, est
donnée par :

Oiv1 = 0; + oof; (1.111)

ou f; est une direction de recherche calculée a partir de I'information sur le critere qua-
dratique J(#) obtenue a l'itération ¢ :

J(6) = (y(0) — 5(6:))" (y(0) — 5(6:)) (1.112)

Le terme « est une constante positive destinée a assurer la convergence de l’algorithme.
Cet incrément o f; est différent suivant les méthodes utilisées. La méthode du gradient est
basée sur le développement de la dérivée premiere du critere J(0) :

27 (6)
20 |,_5

i

Bis1 =0, — A (1.113)

Le terme 8‘({)—(;) est appelé gradient du critere. La constante A assure la stabilité de

I’algorithme.

Partant du méme principe que la méthode du gradient, la méthode de Newton déve-

loppe le critere jusqu’au deuxieme ordre et fait intervenir le gradient 979) o le hessien

o0
0%J(0)
-1
aJ(0)
6=0; 90

50907 - L’algorithme de Newton s’écrit :
~ ~ 02J(0)
Oir1 = 0; — =
0000

La méthode du gradient permet une convergence lente mais stable vers I'optimum
paramétrique tandis que la méthode de Newton converge rapidement au détriment de la
stabilité. La méthode dite de Levenberg-Marquardt permet de profiter des avantages des
deux algorithmes précédents par un compromis entre rapidité de convergence et stabilité.
L’algorithme de Levenberg-Marquardt est défini de la maniere suivante :

] (1.114)

0=0;
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“Tas)
0=0; Kz

Le parametre A; est un parametre d’ajustement. étant donné que l'on cherche & mini-
miser le critere J(6), deux cas peuvent se présenter. Si J(6;41) < J(0;) alors I'algorithme
converge et on doit diminuer le terme \;,; par rapport au terme \; afin de rendre le hessien
prépondérant et de tendre vers l'algorithme de Newton, qui convergera plus rapidement.
Mais si J(6;) < J(6;+1), Ialgorithme ne converge pas et I'on doit augmenter le terme \; 4,
par rapport au terme ); afin de tendre vers I'algorithme du gradient et d’assurer ainsi la
stabilité. On augmente la valeur du terme \;;; jusqu’au retour de la convergence avant

de passer a l'itération suivante.

~ -~

2
Gror — 01— O J(0)

NI+ 20007

A] (1.115)

0=0;

Ces algorithmes nécessitent le calcul du gradient, effectué de la maniere suivante :

0
9J0) _ —207(0)e(0) (1.116)
o0
oue(f) =y(0) — ﬂ(é\l) est lerreur et o(f) = %(f) est le vecteur des fonctions de sensibilité

paramétrique.

Le hessien est tres souvent approché par I'expression suivante :

927 (6)
20907

~ 20(0)a” () (1.117)

L’algorithme de Levenberg-Marquardt doit étre initialisé en donnant une valeur de dé-
part 6y aux parametres du vecteur #. L’inconvénient majeur de cette méthode est qu’elle
ne garantit pas la convergence globale des parametres vers 'optimum. En effet, le pro-
bleme peut admettre un certain nombre d’optima locaux et, selon la valeur initiale des
parametres, 'algorithme pourra converger vers un minimum local. Certaines méthodes
ont été développées pour assurer la convergence de ’algorithme, comme ['utilisation d’al-
gorithmes génétiques afin de calculer des valeurs paramétriques qui assurent une valeur
du critere proche de 'optimum global. On peut alors utiliser ces valeurs paramétriques
obtenues pour initialiser 1’algorithme de Levenberg-Marquardt et étre certain qu’il va
converger vers I'optimum global.

c) Discussion

Reprenons 'exemple du systeme non linéaire (1.109). Le modele de Volterra est tronqué
a ses deux premiers noyaux et on initialise les parametres a la valeur —1. Les fichiers de
mesure du signal d’entrée u(t) et de sortie y(¢) comportent 40000 points. La période
d’échantillonnage est égale a 0.01 s. Apres 100 itérations, les valeurs des 3 parametres
obtenues sont :
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Q10 = —1.0635
Q20 = —1.0097 (1118)
a21 = —2.5121

et le critere quadratique est J = 0.1104.

La figure 1.26(a) compare la sortie du systeme non linéaire (1.109) et la sortie du
modele de Volterra pour ces 3 valeurs paramétriques.

0.35

0.3r

0.25[

0.2

0.15f

0.1r

0.05-

0 .
100 120

. . .
140 160 180

200 % 20 20 60 80 100
(a) Sortie du systéme non linéaire (ligne conti- (b) Evolution du parametre a; o (courbe conti-
nue) et du modele de Volterra (ligne pointillée) nue), as ¢ (courbe en pointillés longs) et as 1

(courbe en pointillés fins)
x 10~

N M
100

120 140

160 180

200
(¢) Erreur quadratique

Fig. 1.26 - Résultats de modélisation et d’identification paramétrique

On constate une bonne adéquation entre les deux courbes de la figure 1.26(a).

La figure 1.26(b) représente ’évolution des parametres en fonction du nombre d’itéra-
tions.

On s’apercoit que la valeur du premier parametre a;( converge bien mais qu’on ne
peut rien affirmer pour les valeurs des 2 autres parametres. Par conséquent, malgré le
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fait que les deux courbes de la figure 1.26(a) soient tres proches I'une de I’autre, rien ne
garantit que l'algorithme de Levenberg-Marquardt nous ait fourni les valeurs optimales
des parametres. En effet, un changement d’initialisation des parametres conduit a d’autres
valeurs du critere J. Si l’on initialise les parametres a la valeur —2, on obtient J = 0.4446 ;
si 'on initialise les parametres a la valeur —10, on obtient J = 1.0521. Ces initialisations
conduisent donc a des minima locaux et les modeles ainsi obtenus fournissent donc une
réponse au signal d’entrée u(t) plus ou moins satisfaisante. On peut donc se rapprocher de
I'optimum global suivant I'initialisation paramétrique mais seule une démarche empirique
permet d’obtenir (ou pas) une initialisation paramétrique correcte.

Le plus gros avantage du modele de Volterra proposé est son faible nombre de para-
metres. Cette parcimonie entraine malgré tout une complexité importante du modele de
Volterra, ce qui peut rendre délicate la procédure d’identification des parametres.

D’autres contraintes doivent étre considérées : d'une part, les termes a; et a; — a;11,
i = 1,...,n dans les fonctions qui modélisent le noyau d’ordre n (figure 1.22) doivent
respecter les conditions de stabilité :

(1.119)

Api — Apiv1 <0, 1=0,...,n—2
an,i<07 1=n—1

D’autre part, les valeurs des gains o, ; de chaque fonction dépendent des valeurs des
poles a,; et sont donc "fixées” par les valeurs des poles obtenues lors de la procédure
d’identification. Dans la plupart des cas (comme dans le cas que nous venons de voir), les
contraintes sur les valeurs des poles se répercutent sur les valeurs des gains et conduisent a
des minima locaux du critere. Cette convergence vers des minima locaux est également due
a l'initialisation paramétrique. Ainsi, malgré une parcimonie paramétrique intéressante,
on n’obtient le plus souvent que des solutions sous-optimales du probleme non linéaire.

1.4.5 Modele simplifié des noyaux de Volterra sur fonctions de
transfert

1.4.5.1 Introduction

Bien que parcimonieux, le modele de Volterra inspiré des séries de Fliess proposé pré-
cédemment est assujetti a un certain nombre de contraintes qui peuvent conduire a des
solutions inacceptables du probleme non linéaire. Si I’on considere des applications pra-
tiques, la complexité du modele et les contraintes imposées sur ses parametres peuvent se
révéler autant d’inconvénients qui prennent le pas sur sa parcimonie. Cependant, toute
I’étude effectuée montre bien que les séries de Volterra peuvent étre développées sur des
fonctions de transfert.

Nous allons donc utiliser ce résultat pour concevoir un autre modele plus flexible

[Bibes et al., 2003a] : il sera soumis a moins de contraintes et disposera de davantage
de degrés de liberté dans ses parametres. Le but est également de conserver une certaine
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parcimonie du modele de Volterra précédent afin de satisfaire au mieux ’objectif de départ.

1.4.5.2 Résultat préliminaire

Considérons une famille de fonctions ¢;(t), j = 1, ...,k unidimensionnelles linéaires.
La réponse yy, (t) de la fonction 1;(¢) au signal d’entrée u(t) est donnée par 1'équation
suivante :

Yy, () = / Y (T)u(t —7)dr (1.120)
0
Soit y;(t) le produit de toutes les réponses yy, (t) :
vi(t) =] o, (1.121)
j=1
On développe cette expression :
u®) =T[ [ ws(ute - myar, (1.122)
=170

Si les variables 7; sont indépendantes, on peut transformer ce produit d’intégrales
simples en une intégrale multiple :

yi(t) = / / [T ¢i(m)utt = 7)dr; (1.123)
0 0 o
Si I'on effectue alors 'analogie avec 1'expression (1.15), on peut poser :

hi(T1, ..., 7) :H@/)j(Tj) (1.124)

Cela revient a dire que sous certaines conditions, une fonction multidimensionnelle
hi(T1, ..., 7;) peut étre représentée par un produit de fonctions unidimensionnelles ;(7;).

L’expression (1.123) peut alors étre réécrite sous la forme :

yi(t) = /Ooo /OOO hi(Ti, . Ts) Hu(t — 7;)dr; (1.125)

Nous allons utiliser ce résultat afin de simplifier le modele de Volterra développé sur
fonctions de transfert.
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1.4.5.3 Modele de Volterra simplifié sur fonctions de transfert

Nous venons de voir que le noyau de Volterra h;(7y,...,7;) d’ordre i peut étre repré-
senté par un produit de ¢ fonctions unidimensionnelles ;(7;). L’idée générale est donc
de représenter chaque noyau de Volterra du modele par un tel produit. A ce point et
sans autre renseignement, toute la difficulté réside dans le choix de la forme des fonctions
unidimensionnelles 1;(7;).

Cependant, nous disposons d’un modele de départ, défini dans la section précédente.
Nous avons vu que le noyau de Volterra d’ordre n peut étre modélisé par une somme de
P, produits de n intégrales simples de la forme :

t ) . . . .
Qi (t — 7)Inn=ire(@i=aic) =)y (P dr si 0 <i<n— 2
Ynri(t) :{ Jo cnilt =) () - (1.126)

Jy ani(t — 7)tmn=iretiy(T)dr, si i=n—1

Dans cette forme de modele, la constante a,; est dépendante de la valeur de la
constante a; et la constante ¢, ,—;, dépend des ordres p; de développement des fonctions :

O S Qn,l,r S pnfl - 1

Nous avons vu que ce modele est soumis a des contraintes : les différences a; — a;11
doivent obéir a la condition de stabilité et les valeurs des gains «,,; sont fixées par les
valeurs des poles a;.

Nous proposons donc de modifier le modele (1.126) précédemment présenté de telle
maniere qu’il soit a la fois plus "libre” (moins soumis a des contraintes paramétriques) et
plus facile & manipuler (en particulier a identifier), tout en gardant une relative parcimo-
nie paramétrique.

La nouvelle forme de modélisation du noyau de Volterra d’ordre n que nous présentons
est le produit de n intégrales simples de la forme :

tpzn
Yin(t) / Z Yein(t —T) kgan,i(t=7) u(r)dr, pour 1 <i<n (1.128)
0

ou les termes 7, sont des constantes (indépendantes des termes a,, ;). Le terme p; ,, est
également une constante.

Le noyau de Volterra d’ordre n est donc modélisé par 1’expression :

Yn(t) = [ Tizy Gin(t) (1.129)
=TT o 00 it = )t u(r)dr |
Si 'on compare les expressions (1.126) et (1.128), on remarque bien évidemment cer-
taines similitudes mais également des différences, introduites dans un but bien précis.
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Tout d’abord, il ne faut pas perdre de vue que I'on cherche a améliorer la flexibilité
du modele (1.126). Les termes «,; de chaque dénominateur des fonctions de transfert
utilisées dans ce modele dépendent des termes a;. Le nombre total de parametres est donc
restreint car les termes o, ;, qui ne sont pas considérés comme des parametres du modele,
ne sont pas identifiés indépendamment des parametres a;. Un moyen d’améliorer la flexi-
bilité du modele global est de transformer ces termes o, ; en véritables parametres 7 ; »,
qui seront identifiés indépendamment des parametres a;. Ces parametres se rajoutent aux
parametres a, ;. On peut croire que cela tend a diminuer la parcimonie du modele et
augmenter la difficulté d’identification paramétrique : ces deux problemes seront discutés
par la suite.

La seconde modification est la disparition des différences de poles a; — a;1 au profit
d’un seul pdle a,,; pour chaque fonction considérée. Cette modification permet de libérer le
nouveau modele de Volterra d'une des contraintes principales du précédent : la condition
de stabilité a,,; < 0 ne s’applique plus qu’aux seuls poles des fonctions de transfert.

Enfin, 'introduction d’une somme dont l'indice k£ porte sur 'exposant du terme ¢ — 7
ne modifie que formellement l'intégrale simple (1.126) : en effet, la valeur du terme k
dépend de la valeur du terme p; ,,, tout comme la valeur des termes g, ;,, ne dépendait que
de la valeur des termes p,_; dans le modele précédent. Les valeurs des termes p,,_; (pour
le premier modele) et p;, (pour le deuxieme modele) sont données par l'utilisateur afin
de fixer la structure du modele de Volterra des le départ : ces termes indiquent ’ordre des
fonctions utilisées pour modéliser un noyau de Volterra.

Sous les conditions habituelles de stabilité, on peut appliquer la transformée de Laplace
a l'expression (1.128) et on obtient :

Yials) = Y (S_VZWU(S) (1.130)

Le nouveau modele de Volterra proposé pour le noyau d’ordre n est représenté sché-
matiquement sur la figure 1.27.
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yl, n (t)

Pl
. yk An

= (s-a,)

k+1

u(t) Yia(t) x A

- Pt Yiin ) i
| s (sma )t ([ |

(D)

Y

Pra yk,n,n
2, (s-a,,)"

Fig. 1.27 - Représentation du noyau d’ordre n

On remarque les similitudes entre la modélisation du noyau de Volterra d’ordre n pro-
posée précédemment (figure 1.22) et cette forme de modélisation. Toutefois, il faut noter
que le modele précédent du noyau de Volterra d’ordre n se compose d'une somme de P,
schémas-blocs (figure 1.22) alors que le nouveau modele du noyau de Volterra d’ordre n
présenté ici ne comporte que le seul schéma-bloc 1.27. La complexité du nouveau modele
est ainsi fortement diminuée car chaque noyau de Volterra est modélisé par un seul pro-
duit de réponses de fonctions a I'entrée u(t) au lieu d’une somme de produits de réponses
a lentrée u(t).

On introduit maintenant les notations simplificatrices suivantes :

Pin—

1
din(t—=7) = D Ypin(t — 7)Femi=7) (1.131)
k=0

Par calcul de la transformée de Laplace de cette expression, on obtient :

pi,n_l

Din(anispin) = Y 2"t (1.132)

rar (5 — Q)i

Le modele de Volterra global tronqué a l'ordre n représentant le systeme non linéaire
considéré est le suivant :
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n J n J

t):;yj => 1w ZH/O d; ;(t — 7)u(r)dr (1.133)

7j=1 =1 7j=1 i=1

On utilise les notations introduites pour schématiser le nouveau modele de Volterra
tronqué a l'ordre n pour représenter un systeme non linéaire :

yi(t)
> D11(a1,1’ pl,l)
> D12(a2,1’ p1,2)
I t
> Dy(a,,, Pys) yz( )
u(t) . y(t)
» D, (an,l! pl,n)

(0

Dnn (ann ’ pn,n)

Y

Fig. 1.28 - Modéle global développé sur des fonctions de transfert

1.4.5.4 Identification et discussion

Reprenons le cas du systeme non linéaire de représentation d’état :

y(t) = x(t)

Afin de comparer les deux structures de modeles de Volterra, nous allons reprendre
les mémes signaux d’entrée u(t) et de sortie y(t) que ceux définis par les figures 1.11(a)
et 1.11(b).

{ a(t) = —a(t) — 22(t) + u(t) (1.134)

La structure du modele de Volterra est fixée de la méme maniere que précédemment, en
tronquant la série a ses deux premiers termes. Le modele du premier noyau est développé
sur un seul terme (donc p;; = 1) :

Dyi(a11,p11) = S%’—Zl (1.135)
—ap

Le deuxieme noyau est modélisé par le produit de deux développements Dj;, chacun
tronqué a ses deux premiers termes (p12 = 2 et pao = 2) :
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__ 70,2,1 71,2,1
Dis(az,p12) = s—as: T (s—az1)? 1136
Dos ) = 22 4 22 (1.136)
22\02,2,P2,2) = 5700 T (5_az.0)2

Les parametres de cette forme de modele de Volterra sont donc au nombre de 8 : le
gain 7,11 et le pole a; ; du modele du premier noyau et les gains vp2.1, 71,2,1, 70,2,2 €6 71,2,2
ainsi que les poles ay; et az s du modele du deuxieme noyau.

Malgré ce nombre de parametres plus important que celui du modele précédent, 1’ob-
jectif de parcimonie est relativement respecté. Nous verrons plus tard que ’on peut encore
diminuer ce nombre de parametres en modifiant légerement le modele de Volterra présenté.

Le modele de Volterra global n’est toujours pas linéaire par rapport aux parametres.
La solution a nouveau adoptée ici est 'utilisation d'un algorithme d’identification non
linéaire de type Levenberg-Marquardt.

Les parametres du modele sont initialisés de la maniére suivante :

a1 = —1§G2,1 = —1;a272 = -1

1.137
70,11 = 1; 70,21 = 2;’)’1,2,1 = 3;70,2,2 = 4; M,22 = 5 ( )

D’autres initialisations sont possibles mais on a vu que toutes ne menent pas forcément
a I'optimum paramétrique. Nous allons voir que cette initialisation conduit a un résultat
tout a fait convenable.

Les fichiers de mesure du signal d’entrée u(t) et de sortie y(t) comportent 40000 points.
La période d’échantillonnage est égale a 0.01 s. Apres 100 itérations, les valeurs des 8
parametres sont :

ay; = —1.0841

az; = —1.3270

azo = —1.2682

Yo1,1 = 1.0276

Y0,2,1 = 0.0020 (1.138)
V1,21 = —0.2635

Y0,2,2 = 0.2499

Y22 = 4.7715

et le critere quadratique est J = 0.0432. En comparaison avec la valeur obtenue pour le
modele de Volterra précédent (J = 0.1104), celle-ci est du méme ordre de grandeur.

La figure 1.29(a) compare la sortie du systéme non linéaire (1.134) et la sortie du

modele de Volterra pour ces 8 valeurs paramétriques. Les deux courbes sont quasiment
superposées.
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(a) Sortie du systeme non linéaire (ligne conti- (b) Evolution des poles (courbes foncées) et
nue) et du modele de Volterra (ligne pointillée) des gains (courbes claires pointillées)
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Fig. 1.29 - Résultats de modélisation et d’identification paramétrique

La figure 1.29(b) représente 1'évolution des parametres en fonction du nombre d’itéra-
tions.

Tous les parametres ne convergent pas vers des valeurs stables. L’obtention de 1'opti-
mum paramétrique n’est absolument pas garantie mais néanmoins, 1’estimation donne un
résultat tout a fait satisfaisant.

1.4.5.5 Conclusion

Le modele de Volterra développé sur fonctions de transfert est plus facilement iden-
tifiable et d'une précision tout a fait comparable a celle du modele de Volterra inspiré
directement des séries de Fliess, malgré un nombre de parametres plus important. La re-
lative souplesse de ce nouveau modele compense donc la perte de parcimonie par rapport
au modele précédent. Nous allons maintenant essayer de diminuer a nouveau ce nombre de
parametres en introduisant un modele de Volterra développé autour d’une valeur moyenne.
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1.5 Développement autour d’'une composante conti-
nue

1.5.1 Introduction

L’approche classique de représentation des systéemes non linéaires par les séries de
Volterra consiste a développer le modele autour d’un point de fonctionnement particulier
relatif a chaque systeme non linéaire considéré. Dans le cas ol les conditions initiales de
fonctionnement du systeme sont nulles, on se contente habituellement de considérer que
la composante continue est nulle et que les variations du signal d’entrée u(t) et de sortie
y(t) s’effectuent autour de cette valeur moyenne.

Nous avons vu que le premier noyau de Volterra modélise la partie linéaire du systeme
considéré. Des que I'amplitude des signaux d’entrée et de sortie atteint une certaine va-
leur, le systéeme commence a avoir un comportement non linéaire que le premier noyau
de Volterra seul ne peut modéliser. Il faut donc ajouter un second noyau de Volterra au
modele pour tenir compte du comportement non linéaire du systeme. L’augmentation pro-
gressive de 'amplitude des signaux d’entrée et de sortie nécessite donc ’ajout progressif
de noyaux dans le modele de Volterra pour tenir compte des non-linéarités introduites. Et
cela jusqu’au moment ou les non-linéarités du systeme sont trop importantes pour étre
convenablement modélisées par un nombre fini de noyaux de Volterra. On a alors atteint
les limites de cette forme de modélisation.

Nous venons de mettre ’accent sur un inconvénient du modele classique de Volterra,
qui peut avoir des conséquences importantes sur le nombre de parametres du modele glo-
bal : si 'amplitude des signaux autour d’une valeur moyenne nulle devient importante, le
modele de Volterra classique devra comporter un nombre important de noyaux afin de re-
présenter correctement les non-linéarités du systeme. Nous avons étudié plusieurs formes
de modélisation des noyaux de Volterra qui comportent chacune un certain nombre de
parametres. Il va de soi que plus le nombre de noyaux de Volterra nécessaires est impor-
tant, plus le nombre de parametres pour les modéliser va devenir important. On peut ainsi
aboutir a un modele surparamétrisé qui pourra causer certaines difficultés dans I'identifi-
cation globale du vecteur des parametres.

Nous proposons ici un moyen de pallier a ce probleme : plutét que de développer le
modele de Volterra autour d'une valeur moyenne nulle, nous allons développer ce modele
autour de la valeur moyenne ug du signal d’entrée u(t) et ainsi séparer la partie statique
de la partie dynamique du modele de Volterra. Seule la partie dynamique autour de la
composante continue sera identifiée. Ainsi, la structure du modele de Volterra nécessaire
a une modélisation correcte du systeme non linéaire sera moins complexe et le nombre de
parametres nécessaires pourra étre diminué [Bibes et al., 2003b].

Remarquons que si I'on se contente d’ajouter la composante continue du signal de
sortie y(t) du systeme a la partie dynamique en sortie de notre modele de Volterra, on ne

67



Chapitre 1. Modélisation des systémes non linéaires par les séries de Volterra

reconstruit pas correctement le signal de sortie y(¢) du systeme non linéaire. Cela parce
qu’on ne prend pas en compte les termes ”de couplage” (& savoir les termes comprenant a
la fois la partie statique et la partie dynamique du signal u(t)) pour reconstruire y(t). Il
ne suffit donc pas d’identifier la partie dynamique puis de lui rajouter la partie statique
pour reconstruire correctement un signal en sortie de modele. D’ou I'intérét de développer
notre modele de Volterra autour d’une composante continue non nulle du signal d’entrée

u(t).

1.5.2 Expression du modele développé autour d’une composante
continue

On considere a nouveau le systeme non linéaire

E(t) = F(2(8)) + u(t)g(x(t))
{ y(t) = h(z(t)) (1.139)
)

ou z(t) € R™ est le vecteur d’état, u(t) € R le signal d’entrée et y(t) € R le signal de
sortie. Les fonctions f, g et h sont des fonctions non linéaires de x(t).

On décompose le signal d’entrée u(t) de la maniere suivante :

u(t) = up + Au(t) (1.140)

oll ug est un terme constant qui représente la partie statique du signal d’entrée et Au(t) est
un terme variant dans le temps qui représente la partie dynamique du signal d’entrée u(t).
La série de Volterra tronquée a l'ordre n représentant le systeme non linéaire (1.139)

a été définie de la manieére suivante :

)

:Z/ /h (71, o) [ [l = 75))d; (1.141)
i=1 L0 o

j=1

Si I'on applique la décomposition de I'entrée u(t) a ce modele, on obtient :

Z/ / (71,7, H[UO+Au( 7;)]dT; (1.142)

j=1

1.5.3 Bases de fonctions orthonormées

Proposition 1.3 : Le développement en série de Volterra de la sortie du systeme
(1.139) autour d’une composante continue uq s’écrit, dans le cas ou les noyaux de Volterra
sont euz-mémes développés sur une base de fonctions orthonormées généralisée, sous la
forme :
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3i(t) - Z(Z D
T st et ) (1.143)

LéH% ()42 g T (Au(t)

j=1

o

i i J
Jig(Au(t)) =) (H by, (0 ) <HI,,l(Au(t))> (1.144)

awecV ke [l,i—j],VIe][l,j]: _
{viyU{m}y=A{1,...,i+j}
{ (e} N {n} = (1.145)

et ou lexpression L, (u(t)) est la réponse de la fonction orthonormée ¢,,(t) a l'entrée

u(t) :
/qﬁw u(t —7)dr (1.146)

Preuve : le développement du noyau de Volterra h; (71, ..., 7;) sur une base de fonctions
orthonormées {¢, } s’écrit :

Vi—1

/BZ‘(Tl,..., Z Zél/l V7H¢VJ T] (1147)

v1=0 V=

Par conséquent, ’expression (1.142) peut étre developpee de la maniere suivante :

~ n Mi Vi—
90 = Xy (S0 S0

; . (1.148)
T Jy 0, (7)o + Au(t — 7)ldry)] )
On développe le calcul de I'expression entre crochets :
i t
1 Jo Du; (7)) uo + Au(t — 75)|dT;
H_] 1fo ( ])[ 0 ( J)] J) (1.149)

= Tl (w0 Jy 0, (7)drs + Jy 60, (73) Dt = 7)dr; )

Le premier terme fo ¢y, (7j)d7; correspond a la réponse d'une fonction orthonormée
¢y, & un signal d’entrée u(t) = 1, ¢ > 0. On peut donc considérer ce terme comme un gain
et I'écrire ¢,,(0).

Le deuxieme terme fot ¢y, (75)Au(t — 7;)d7; correspond a la réponse d’une fonction or-

thonormée ¢, a la partie dynamique de 'entrée. On peut donc noter ce terme 7, (Au(t)),
conformément a la notation introduite précédemment.
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Le calcul devient :

[Tim Jo v, (7)o + Au(t —7;))dr;)

= [1j=1 (w00, (0) + I, (Au(t))) (1.150)

On pose maintenant

Ji o, (1)dr; = 6,,(0) = g
{ f(f b, (75)Au(t — 7;)dr; = T, (Au(t)) = b, (1.151)

de maniere a pouvoir appliquer la généralisation de la loi du bindome de Newton :

H; 1(“9% +b;) = u }_[] 1a3—|—
2;:1% 7 [ZC ( ko= 1ak1> (H@ 1 )]
avec {k1}U{ko} ={1,....k+j} et {k1i} N {ko} = 0.

(1.152)

Cette généralisation nous permet donc d’obtenir, en remplacant les termes a; et b; par
leur expression, le résultat que nous souhaitions démontrer :

90 = 2% (20 - T (1.153)
[ T2 60, (0) + X5 Ty (Bu(0)]) |

1.5.4 Fonctions de transfert

Proposition 1.4 : Le développement en série de Volterra de la sortie du systéme
(1.139) autour d’une composante continue ug s’écrit, dans le cas ou les noyauz de Volterra
sont eux-memes développés sur des fonctions de transfert, sous la forme :

Z (uOHdﬂ + i:uélei,j(Au(t))> (1.154)

i=1 j=1

o

ICi j(Au(t) Z (ﬁ dy.i(0 > (ﬁIl,i(AU<t))> (1.155)

avec YV k € [1,i—j],VIe[l,y]

(YUY ={1,...i+j}
{ a0 = J (1.156)

et ot Uexpression I;;(u(t)) est la réponse du développement d;; a U'entrée u(t) :

TZi(u(t)) = /Ot dyi(T)u(t — 7)dr (1.157)
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Preuve : en considérant le développement du noyau de Volterra h; (7q,...,7;) sur des
fonctions de transfert (1.133), I'expression (1.142) peut étre développée de la maniére
suivante :

%

Z/ / [T () [ (o + Au(t — 7))dr; (1.158)

i=1 \_,_/a 1 j=1

ou l'expression du terme d;; est donnée par (1.131).

On développe ce calcul :

i

noopt
—Z/ / Hdﬂ T; Huo—i-Aut—T])]de (1.159)
=10 70 j=1

Le premier terme fg d;i(1;)dr; correspond & la réponse d'un développement d;; de
fonctions de transfert a un signal d’entrée u(t) = 1, ¢ > 0. On peut donc considérer ce
terme comme un gain et 'écrire d;;(0).

Le deuxieme terme fot d;i(7j)Au(t — 7;)dr; correspond a la réponse d'un développe-
ment d;; a la partie dynamique de I'entrée. On peut noter ce terme Z; ;(Au(t)).

Le calcul devient :

n [

g(t) = Z H [uod; +(0) + Z,:(Au(t))] (1.160)

i=1 j=1
On peut alors poser
Jo d3i(7j)dr; = d;:(0) = a
) (1.161)
Jo dji(mj)Ault — 75)dr; = I;i(Au(t)) = b;

et appliquer la loi du binéme de Newton définie en (1.152) pour obtenir, en remplagant
les termes a; et b; par leur expression, le modele de Volterra sur fonctions de transfert et
développé autour de la composante continue de I'entrée :

Z (uOHdﬂ + iuélei,j(Au(t))> (1.162)

i=1 j=1

@

1.5.5 Identification du modele sur fonctions de transfert et ap-
plication

Afin de comparer les performances du modele défini en (1.133) et de ce méme modele
développé autour d’'une composante continue (1.154), nous allons appliquer ce dernier
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modele au systeme non linéaire de représentation d’état :

{ a(t) = —a(t) — 22(t) + u(t) (1.163)

Tout comme le modele défini en (1.133), le modele développé autour d’'une compo-
sante continue n’est pas linéaire par rapport aux parametres. On utilise donc a nouveau
un algorithme d’identification non linéaire de type Levenberg-Marquardt.

On reprend les mémes signaux d’entrée u(t) et de sortie y(t) que ceux définis par les
figures 1.11(a) et 1.11(b).

La structure du modele de Volterra est fixée de la maniere suivante : on tronque la
série a ses deux premiers termes. Le modele du premier noyau est développé sur un seul
terme (donc p;; = 1) et le deuxiéme noyau est également développé sur un seul terme
(donc pro=1et ppo=1):

Diy(ari,pr1) = %
Dis(az1,p1,2) = S’yij;lzz,,ll (1.164)
D22(a2,27p2,2) = S’Y_sz,?z

En comparaison avec le modele de Volterra (1.133) développé sur des fonctions de
transfert, le nombre de parametres de ce modele est réduit de 8 a 6 : les poles a1, as; et

as 2 ainsi que les gains vo.1.1, Y0,2.1 €t Yo,1,1-

Les parametres du modele sont initialisés de la maniere suivante :

ari1 = —1;a271 = —1;a2,2 =-1

1.165
Y0,1,1 = 1;’70,2,1 = 1.1;7072’2 =1.2 ( )

Cette initialisation paramétrique nous permet d’atteindre une valeur acceptable des
parametres, sans garantie qu’il s’agisse de I'optimum.

Le principe de cette méthode consiste a identifier uniquement la partie dynamique
du modele. On n’utilise que les parties dynamiques des signaux d’entrée u(t) et y(t).
Pour cela, il suffit de retirer la valeur moyenne uy = 0.2059 de u(t) et la valeur moyenne
Yo = 0.1692 de y(t). Cela revient a ramener ces signaux a une composante continue nulle.
Les signaux d’entrée et de sortie utilisés sont ceux des figures 1.30(a) et 1.30(b).

72



1.5. Développement autour d’une composante continue
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(a) Signal d’entrée (b) Signal de sortie

Fig. 1.30 - Partie dynamique des signauz

Apres 100 itérations, les valeurs des 6 parametres obtenues sont :

ay, = —1.3070

az; = —1.1917

ass = —1.1917

Y0,1,1 = 0.9855 (1.166)
Y0,2,1 = —0.7806

Y0,2,2 = 0.8544

et le critere quadratique vaut J = 0.1114. En comparaison avec les valeurs obtenues pour
les modeles précédents, celui-ci est du méme ordre de grandeur. On a donc obtenu les
mémes performances avec 2 parametres de moins que le modele précédent.

Une fois la partie dynamique du systeme correctement identifiée, on utilise les valeurs
des parametres et de la composante continue uy du signal d’entrée u(t) pour reconstruire
la partie statique du modele de Volterra global défini par (1.154).

La figure 1.31(a) illustre le cas d’une mauvaise reconstruction du signal de sortie ne
tenant pas compte des termes de couplage (& savoir les termes comprenant a la fois la
partie statique ug et la partie dynamique Aw(t) du signal u(t)).

La figure 1.31(b) compare la sortie du systeéme non linéaire et la sortie du modele de
Volterra correctement reconstruite pour les 6 valeurs paramétriques.
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(a) Mauvaise reconstruction (b) Reconstruction correcte

Fig. 1.31 - Sortie du systéme non linéaire (ligne continue) et du modéle de Volterra (ligne poin-
tillée)

0.05 . . . .
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-1 . . . .

(a) Sortie du systeéme non linéaire (ligne conti- (b) Evolution des parameétres a;; (courbes
nue) et du modele de Volterra (ligne pointillée) continues) et des gains 7 ;; (courbes poin-
tillées)

100 120 140 160 180 200

(c¢) Erreur quadratique

Fig. 1.32 - Résultats de modélisation et d’identification paramétrique
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La figure 1.32(a) compare la sortie du systéme non linéaire (1.134) et la sortie du
modele de Volterra pour ces 6 valeurs paramétriques. Les deux courbes sont quasiment
superposées.

La figure 1.32(b) représente 1'évolution des parametres en fonction du nombre d’itéra-
tions.

Dans ce cas aussi, tous les parametres ne convergent pas vers des valeurs stables. L’ob-
tention de 'optimum paramétrique n’est pas garantie mais, malgré cela, les valeurs des
parametres obtenues donnent un résultat tout a fait satisfaisant.

1.5.6 Conclusion

La séparation du signal d’entrée u(t) en une partie statique ug et une partie dynamique
Au(t) permet a 'utilisateur de diminuer la complexité et le nombre de parametres du mo-
dele de Volterra utilisé. La méthode proposée consiste a modéliser et identifier seulement
la partie dynamique du modele de Volterra. On peut ensuite reconstruire le signal y(t)
complet en sortie du modele de Volterra par I'ajout & la partie dynamique identifiée Ay(t)
de la partie statique y, et des termes "de couplage” qui dépendent a la fois de la partie
statique et de la partie dynamique de 'entrée u(t).

Cette procédure permet donc d’utiliser un modele de Volterra plus simple et plus
parcimonieux dans ses parametres. Le fait de tronquer la série de Volterra a un nombre
moins important de termes implique un nombre de parametres de modélisation des noyaux
moins important. On répond ainsi davantage a 1'objectif de parcimonie paramétrique fixé
au début de cette étude.
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1.6 Comparaison des 4 modeles

Les courbes des figures 1.33 et 1.34 reprennent ’ensemble des résultats de modélisation
relatifs aux systemes non linéaires quadratiques présentés dans ce chapitre.

La figure 1.33 reprend le cas de la modélisation des noyaux de Volterra par dévelop-
pement sur une base de fonctions généralisée. Le nombre total de parametres du modele
est égal a 14. Si 'on choisit correctement les poles des fonctions de la base, le modele
est suffisant pour représenter correctement le systéme non linéaire quadratique (critere
quadratique J = 0.022).

25

15r

0.5r

0.05 . . . . 0 h |
100 120 140 160 180 200 100 120 140 160 180 200

(a) Modele de Volterra développé sur base de
fonctions généralisées

(b) Erreur quadratique

Fig. 1.38 - Résultats de modélisation sur bases de fonctions généralisée

Un des objectifs du chapitre est de réduire le nombre de parametres du modele tout
en conservant une précision satisfaisante du modele. La figure globale 1.34 reprend les 3
formes de modélisation sur fonctions de transfert présentées dans le chapitre.

Le premier modele développé sur fonctions de transfert (figure 1.34(a)) réduit consi-
dérablement le nombre de parametres (égal a 3) et assure une bonne précision (critere
quadratique J = 0.1104). Cependant, la complexité de ce modele rend difficile la procé-
dure d’identification paramétrique.
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(e) Modele de Volterra développé autour d’une
composante continue

(f) Erreur quadratique

Fig. 1.34 - Comparaison des résultats de modélisation sur fonctions de transfert

Le second modele développé sur fonctions de transfert (figure 1.34(c)) est une simpli-
fication du premier. Le nombre total de parametres augmente (il est égal a 8) mais reste
inférieur a celui du modele développé sur une base de fonctions généralisée. La précision
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reste correcte (critere quadratique J = 0.0432).

Le troisieme modele développé autour d’une composante continue (figure 1.34(e)) est
introduit pour diminuer le nombre de parametres du second. On passe ainsi de 8 para-
metres a 6 et la précision reste correcte (critere quadratique J = 0.1114). Cette méthode
de modélisation peut également étre appliquée aux autres modeles pour améliorer leur
parcimonie.
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1.7 Conclusion du chapitre

La modélisation de systemes non linéaires est un domaine de recherche qui comporte
de nombreuses pistes encore inexplorées. Parmi les nombreuses possibilités de modélisa-
tion, nous avons opté pour la représentation du comportement d’un systéeme non linéaire
par les séries de Volterra. Cet outil de modélisation permet en effet de modéliser le com-
portement d’une assez large variété de systemes non linéaires et peut étre vu comme une
généralisation de la relation de convolution, outil classique de modélisation des systemes
linéaires.

Les noyaux de Volterra peuvent rarement étre exprimés de maniere analytique et 'on
doit avoir recours a leur modélisation. Nous avons évoqué un choix de modeles sur dif-
férentes bases de fonctions. L’utilisation de tels modeles montre toute la souplesse et
I’adaptabilité des modeles de Volterra a de nombreux systemes non linéaires. Cependant,
I’absence de connaissance sur un systeme non linéaire ou la présence de non-linéarités
trop importantes font ressortir un inconvénient majeur de cette forme de modélisation :
I’augmentation du nombre de termes de la série de Volterra va de pair avec l'augmentation
du nombre de parametres nécessaires a une modélisation correcte du systeme. Le nombre
total de parametres peut ainsi varier du simple au double. Cette absence de parcimonie
rend le modele de Volterra difficile a utiliser et engendre des problemes d’identification.

Afin de pallier a cet inconvénient, nous avons proposé un modele des noyaux de Vol-
terra développé sur fonctions de transfert. Cependant, la complexité de ce nouveau modele
entraine également dans ce cas des difficultés d’identification. Nous avons donc envisagé
de simplifier le modele développé sur fonctions de transfert et présenté une autre forme
de modele sensiblement différente, moins complexe et plus flexible, tout en conservant
une parcimonie paramétrique meilleure que dans le cas du développement des noyaux de
Volterra sur bases de fonctions.

Afin d’améliorer a nouveau cette parcimonie, nous avons introduit une méthode qui
consiste a séparer la partie statique de la partie dynamique des signaux d’entrée et de sor-
tie utilisés pour l'identification des parametres. L’identification paramétrique de la partie
dynamique seule permet de simplifier davantage le modele de Volterra nécessaire et ainsi
de réduire le nombre de parametres.

Cet ensemble de modélisations et d’améliorations permet d’obtenir un modele de Vol-
terra suffisamment souple et parcimonieux. Nous allons donc ensuite pouvoir envisager
son inversion afin de reconstruire le signal d’entrée u(t) d’un systéme non linéaire a partir
de mesures du signal de sortie y(t) et de la connaissance de la structure et des parametres
du modele de Volterra utilisé pour représenter son comportement.
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Inversion d’un modele de Volterra
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Chapitre 2. Inversion d’un modele de Volterra

2.1 Introduction

La détermination d'une grandeur inconnue a partir de mesures est un probleme qui
continue de se poser dans de nombreux domaines scientifiques (physique, chimie, biolo-
gie,...). Selon les cas, I’évaluation de la grandeur inconnue peut s’effectuer de maniere
directe ou de maniere indirecte. Les problemes qui en découlent seront alors traités diffé-
remiment.

Dans le cas d’une mesure directe, la précision avec laquelle sera déterminée la gran-
deur inconnue est avant tout un probleme lié a la précision de I'instrumentation utilisée : il
s’agit de recueillir des mesures qui soient les plus précises et les plus informatives possible
afin de pouvoir quantifier la grandeur considérée dans les meilleures conditions possibles.

Dans le cas ou la mesure ne peut pas s’effectuer directement, une solution est la mesure
d’une autre grandeur dont on sait qu’elle a un lien avec la grandeur inconnue a déterminer.
En plus d’une instrumentation précise nécessaire a la mesure de cette deuxieme grandeur,
on doit également avoir une idée assez précise du lien qui unit les deux grandeurs, celle
que I'on mesure et celle que I'on veut déterminer. Ce lien peut étre établi en utilisant les
lois physiques, chimiques ou mathématiques qui régissent le phénomene étudié (qui met en
jeu les grandeurs considérées). Dans la majeure partie des cas, on doit se contenter d’une
approximation plus ou moins satisfaisante du lien entre les deux grandeurs a cause d’un
manque de connaissance de I’ensemble des phénomenes physiques ou chimiques mis en jeu.

La détermination d'une grandeur inconnue a partir de la mesure d’une grandeur cor-
rélée et du lien qui unit ces deux grandeurs porte le nom de probleme inverse.

Ce chapitre est constitué de trois grandes sections. La premiere section dresse un état
de 'art non exhaustif des problemes inverses. Les deux sections suivantes décrivent 1’ap-
port de ce mémoire quant aux techniques d’inversion du modele de Volterra. La deuxieme
section est consacrée a 'inversion du modele de Volterra par régularisation de Tikhonov.
Une telle démarche a déja été proposée par [Inglada, 2000] dans le cadre de la topographie
d’un milieu sous-marin. Différentes techniques d’inversion du modele de Volterra ont été
présentées dans un cadre théorique rigoureux inspiré de I'approche de [Schetzen, 1980).
Cependant, ces techniques n’ont été ensuite appliquées qu’a un transfert linéaire, suffisant
pour correctement représenter les phénomenes physiques mis en jeu. La méthode d’in-
version du modele de Volterra proposée dans ce mémoire sera appliquée a deux systemes
chimiques aux non-linéarités avérées. La troisieme section se démarque de I’approche pré-
cédente en introduisant deux techniques d’inversion du modele de Volterra par retour
d’entrée reconstruite.
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2.2 Les problemes inverses

2.2.1 Introduction

Dans le cadre général des sciences expérimentales, I’expérimentateur est souvent amené
a mesurer précisément une quantité donnée. Dans certains cas, cette quantité est direc-
tement accessible et mesurée par l'intermédiaire d’un simple capteur. On citera, dans
le domaine général de 1'électricité, le cas de la tension ou de l'intensité d'un courant
électrique, mesurables facilement a 'aide d’un voltmetre ou d’'un amperemetre. Dans le
domaine général de la chimie, le pH d’une solution est facilement mesurable a ’aide d'un
pHmetre.

Mais il existe de nombreux cas ou une grandeur, qu’elle soit physique ou chimique,
n’est pas directement accessible a la mesure. On doit dans ce cas se contenter de mesurer
d’autres quantités directement observables et, quand c’est possible, trouver un lien entre
la ou les grandeur(s) directement mesurable(s) et la grandeur non directement mesurable.
Ce lien, qui peut étre analytique et que nous nommerons modele, peut permettre d’obtenir
la grandeur non mesurable en la reconstruisant.

Jusqu’ici, nous avons employé le terme de "modele” pour qualifier le lien entre une
grandeur d’entrée et une grandeur de sortie (dans le cas mono-entrée mono-sortie). Nous
allons garder cette définition et donc faire I'analogie entre sortie du modele et gran-
deur directement mesurable d’une part, et entrée du modele et grandeur non directement
mesurable d’autre part. Par conséquent, étant donnés le modele et la sortie, la détermi-
nation de l'entrée est ce que 'on appelle I'inversion ou encore, la résolution d'un pro-
bleme inverse. Le champ d’application de ce type de probleme est tres vaste : géophysique
[Scales et Smith, 1996], thermique [Ghannam, 2000], médecine [Louis, 1992] [Louis, 1997],
topographie [Inglada, 2000], la liste étant loin d’étre exhaustive. Suivant le domaine d’ap-
plication considéré, on utilise également le terme déconvolution ou restauration (cas du
traitement d’image et de signal) [Demoment, 1987].

Pour reconstruire une grandeur que 'on considere comme ’entrée d’un modele, il faut
donc pouvoir mesurer la sortie du modele, qui peut étre vue comme une conséquence de
)
I’entrée. Un probleme inverse peut donc étre vu comme la reconstruction d’une cause a
partir de la mesure d’une ou plusieurs de ses conséquences et de la connaissance du modele
qui les relie.

2.2.2 Cadre général : les problemes mal posés
2.2.2.1 Introduction

Un grand nombre de problemes en sciences expérimentales nous amene a déterminer
une grandeur non observable u a partir d’un ensemble fini de mesures d’une ou plusieurs
grandeurs observables y et de la connaissance du modele qui les relie :
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H(u,y) =0 (2.1)

H est un opérateur (linéaire ou non linéaire) qui décrit les relations théoriques entre
u et y. Il est en général caractérisé par un vecteur de parametres 6.

Le probleme direct consiste a calculer la grandeur y connaissant la grandeur u et le
modele H. Il s’agit d’un probleme d’identification paramétrique et de calcul de réponse
bien connu des automaticiens.

Le probleme inverse consiste a calculer u connaissant les mesures y et, parfois, le mo-
dele H. C’est un probléme plus délicat car il est souvent mal posé ( nous verrons ce que
cela veut dire ) et la solution obtenue peut étre extrémement sensible aux erreurs et aux
perturbations sur les mesures des grandeurs observables y. N'importe quel dispositif expé-
rimental donne lieu a des incertitudes dues essentiellement a la précision finie des mesures
d’une part, et a la corruption des mesures par du bruit d’autre part. Il faut donc tenir
compte de ces imprécisions dans la résolution du probleme inverse.

La résolution des problemes inverses fait donc appel a la notion mathématique de pro-
bleme mal posé au sens de Hadamard [Hadamard, 1923].

2.2.2.2 Cas linéaire

On garde les définitions de u, grandeur (ou vecteur de grandeurs) non directement
mesurable dans un ensemble F'| et de y, grandeur (ou vecteur de grandeurs) observable
dans un ensemble G dont on possede un nombre fini de mesures. On suppose également
que ces deux grandeurs sont liées par un opérateur H linéaire de la maniere suivante :

Hu=1y (2.2)

Définition : d’apres le mathématicien francais Hadamard [Hadamard, 1923], un pro-
bleme est dit bien posé s’il admet une solution et si cette solution est unique et stable.

a) Existence

La solution d'un probleme existe si

VyeG, JueF :Hu=y (2.3)

b) Unicité
La solution d’un probleme est unique si

Hu, =y

Huy = y } = U1 = Uy (24)
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c) Stabilité
La solution d'un probleme est stable si une faible variation de y engendre une faible
variation de la solution u. Autrement exprimé :
y <<1l=du<<l (2.5)

On peut également dire dans ce cas que la dépendance de u par rapport a y est conti-
nue. L’exigence de continuité est reliée a celle de stabilité ou de robustesse de la solution.
La continuité est cependant une condition nécessaire, mais pas suffisante, de stabilité. Un
probleme bien posé pourra ainsi étre mal conditionné. Cette notion est caractérisée par
le calcul d’un nombre de condition qui, suivant sa valeur, renseigne 1'utilisateur sur la
stabilité numérique du probleme.

Selon Hadamard [Hadamard, 1923], un probleme est dit mal posé si au moins une des
3 conditions définies précédemment n’est pas vérifiée.

2.2.2.3 Application des notions précédentes au modele non linéaire de Vol-
terra

Toutes les notions définies précédemment peuvent s’appliquer dans le cas ou I'opérateur
H qui relie la grandeur u a la grandeur y est non linéaire. Nous nous limiterons au cas ot
H est une fonctionnelle de Volterra. La relation entre u et y est la suivante :

Hlul =y (2.6)

Les conditions d’existence, d’unicité et de stabilité du probleme inverse sont les mémes
que dans le cas linéaire. Nous supposerons en outre que la relation 2.6 est stricte au sens
BIBO : I'entrée et la sortie sont bornées.

a) Existence

La solution du probleme inverse non linéaire existe si

Vye G, Jue F:Hul =y (2.7)

b) Unicité

La solution du probleme inverse non linéaire est unique si

Hluy]
H [us)]

z } = U1 = Uy (28)

c) Stabilité
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Dans le cadre des hypotheses faites sur le systeme non linéaire direct 2.6, la solution
du probleme inverse non linéaire est stable si une faible variation de y engendre une faible
variation de la solution u. Autrement exprimé :

by <<l=du<<l (2.9)

Un probleme inverse non linéaire est dit mal posé si au moins une de ces 3 conditions
n’est pas vérifiée. Sa résolution au sens habituel du terme est alors impossible. Il faut
envisager d’autres techniques de résolution.

2.2.2.4 Quelques exemples de problemes inverses

On rencontre de nombreux exemples de problemes inverses dans des domaines tres va-
riés des sciences expérimentales, en particulier celui de I'imagerie. L’intéréet des techniques
d’imagerie (tomographie a rayons X, a ultrasons, a émission de positons, tomographie
d’impédance, imagerie par résonance magnétique nucléaire,...) est qu’elles permettent de
voir (ou bien de reconstruire) ce qui ne peut étre vu directement, et cela sans détruire
ce qui est observé (cas de I'imagerie médicale) et sans danger pour I'observateur (cas des
problemes thermiques). L’objet dont on veut caractériser l'intérieur peut étre le corps
humain (imagerie médicale : échographie, scanner, rayons X), ’écorce terrestre (prospec-
tion pétroliere par des méthodes sismiques ou magnétiques, hydrogéologie) ou une étoile
(astronomie). Il peut aussi s’agir de reconstruire des images (restauration d’images floues
dans le cas du télescope Hubble) ou des topographies inaccessibles (fonds sous-marins).

Du point de vue mathématique, ces problemes se répartissent en deux grands groupes :
les problemes linéaires qui se ramenent a la résolution d’équations intégrales de premiere
espece, et les problemes non linéaires qui aboutissent le plus souvent a l’estimation de
parametres dans des équations différentielles ou aux dérivées partielles. Cette seconde ca-
tégorie peut étre séparée en deux sous-catégories selon que 1’on cherche a reconstruire un
vecteur (dimension finie) ou une fonction.

De maniere générale, on rencontre des problemes inverses dans les domaines particu-
liers suivants :

— Thermique : afin de déterminer la répartition de la température dans un matériau
hétérogene, on écrit la loi de conservation de 1’énergie ainsi que la loi de Fourier qui
relie le flux de chaleur au gradient de température. Ces deux équations permettent
d’obtenir ’équation de la chaleur en milieu hétérogene. Cette équation aux dérivées
partielles doit ensuite etre complétée par des conditions aux limites et une condition
initiale de température. Dans ce cas précis, le probleme direct consiste a déterminer
la température T' connaissant différents coefficients physiques (densité du fluide étu-
dié, chaleur spécifique et conductivité thermique), ainsi que la source de chaleur f.
Ce probleme est bien connu, tant du point de vue théorique (existence et unicité de
la solution) que du point de vue numérique. Plusieurs problémes inverses peuvent
se poser : la détermination de la température initiale étant donnée une mesure de la
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température a un instant ¢; (probleme linéaire) ou bien la détermination de certains
des coefficients de I’équation de la chaleur étant donnée une mesure partielle de la
température (probleme non linéaire).

Hydrogéologie : I'hydrogéologie (science qui étudie entre autres les nappes phréa-
tiques) est une source abondante de problemes inverses. Il est en effet difficile d’ac-
céder aux couches du sous-sol pour mesurer les propriétés aqueuses des roches. Un
probleme actuel est le controle des polluants dans les nappes d’eau souterraines.
Un milieu poreux est constitué d’'une matrice rocheuse, comprenant des pores qui
laissent passer ’eau. Il est impossible de décrire I’écoulement d’un fluide dans un
tel milieu hétérogene dans la mesure ou 'on doit prendre en compte des échelles
spatiales allant du centimetre (dimension d’un pore) au kilometre (modele d’une ré-
gion), et sachant que la disposition des pores est a priori inconnue. On utilise alors
des modeles simplifiés (dont le plus courant est la loi de Darcy) afin de relier la
hauteur de 'eau dans le milieu (appelée charge piézométrique et notée h(x,y, z,t))
a la vitesse de filtration (notée ¢ (z,vy, 2,t)). Cette loi établit que la vitesse de filtra-
tion est proportionnelle a 'opposé du gradient hydraulique. On exprime ensuite la
loi de conservation de la masse (le milieu étant par hypothese incompressible). On
obtient alors une équation aux dérivées partielles a laquelle on rajoute une condition
initiale (h donné a t = 0) et des conditions aux limites (conditions de Dirichlet ou de
Neumann). Les problemes de transport de contaminants font intervenir, en plus de
I’écoulement, ’évolution de la concentration des especes (composés chimiques, hy-
drocarbures, radionucléides) contenues dans 1’écoulement. Ce phénomeéne met en jeu
trois mécanismes : la convection (imposée par la vitesse de filtration ¢'), la diffusion
moléculaire et la dispersion cinématique. La quantité étudiée est la concentration
C(z,y, z,t) du polluant qui obéit a une équation de type convection-diffusion. Le
probleme direct est constitué par ’équation aux dérivées partielles et I’équation de
type convection-diffusion. Ce probleme couplé est en général non linéaire. On peut
mesurer la concentration en polluant en un certain nombre de points et a des ins-
tants discrets. Un probleme inverse est alors de chercher la conductivité hydraulique
connaissant ces mesures. En pratique, il est rare que 'on ait suffisamment de me-
sures et le probleme est donc sous-déterminé.

Sismique : la prospection pétroliere par des méthodes sismiques donne lieu a un
probleme inverse largement étudié en raison de l'intérét économique rattaché a sa
solution. Il s’agit en réalité d’une famille de problemes inverses dont le but commun
est de déterminer les propriétés élastiques du sous-sol (densité, vitesses de propa-
gation des ondes élastiques) a partir de mesures des champs de déplacement, ou
de pression, en surface. Lors d’une campagne sismique, une source (en général une
explosion) provoque un ébranlement des roches formant le sous-sol. L’écho est en-
registré par une série de capteurs placés en surface. Cette expérience est répétée
pour plusieurs positions de la source (de plusieurs centaines a plusieurs milliers).
On obtient de cette manieére une tres grande quantité de données. Le but est d’es-
timer les propriétés du milieu étant donné un modele de propagation. Il existe un
grand nombre de méthode spécifiques pour traiter ce probleme. Il existe également
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plusieurs modeles physiques pouvant rendre compte de 'expérience décrite ci-dessus
a des degrés divers d’approximation. Un des cas les plus simples consiste a supposer
que la région étudiée se compose d'un fluide (expérience de sismique sous-marine).
On peut démontrer dans ce cas que la propagation des ondes est régie par I’équation
des ondes acoustiques. La quantité mesurée est un champ scalaire de pression. Il est
commode de faire ’hypothese que le domaine d’étude est le demi-espace {z > 0}. On
suppose donc que la terre est plane et infinie mais ces approximations sont justifiées
par 1’échelle considérée, qui est de 'ordre du kilometre, 'axe Oz étant orienté vers
le bas. Le probleme direct est alors, connaissant la source d’ondes, leur vitesse de
propagation et la densité du milieu, de reconstruire le champ scalaire de pression.
Ce probleme direct a été abondamment étudié, ses propriétés numériques sont bien
connues ainsi que des méthodes efficaces pour sa résolution numérique. Le probleme
inverse consiste a déterminer la vitesse de propagation des ondes, leur source et la
densité du milieu (qu’il n’est pas réaliste de supposer connue) a partir des mesures,
¢’est-a-dire de la connaissance de la pression en chaque point du milieu. Ce probleme
est non linéaire puisque sa solution dépend de facon non linéaire de la vitesse de
propagation des ondes et de la densité du milieu. Dans la réalité, il faut tenir compte
d’un parametre supplémentaire : ’expérience est répétée en déplacant le dispositif
sources-récepteurs. L’ensemble des "tirs” fournit une immense quantité de données,
rendant ainsi le probleme inverse surdéterminé. Une information importante a ex-
ploiter est que tous ces enregistrements proviennent du méme sous-sol.

Imagerie médicale : les sciences médicales fournissent un grand nombre de pro-
blemes inverses, dont 'importance pratique n’échappera a personne. Dans chacun
des cas que nous allons évoquer, la grandeur a reconstruire se situe bien évidemment
a 'intérieur du corps humain.

— tomographie par rayons X : la tomographie par rayons X est la principale tech-
nique utilisée par les scanners. Un tube a rayons X est monté sur un portique qui
entoure le patient. Les rayons émis sont mesurés par des détecteurs placés en face
de I’émetteur. On considere souvent la situation bidimensionnelle, ot le domaine
représente une “section transverse” du patient. On suppose que les rayons suivent
une ligne droite et sont atténués a la traversée des tissus proportionnellement a
leur intensité et a la distance parcourue (loi de Bouger). Les rayons X suivent des
lignes droites qui seront paramétrisées par leur vecteur normal et leur distance a
l'origine. Le probleme direct consiste a déterminer I'intensité mesurée au détec-
teur connaissant celle a ’émetteur ainsi que la fonction d’atténuation du patient.
Le probleme inverse consiste a déterminer la fonction d’atténuation connaissant
I'intensité mesurée a I’émetteur et au récepteur. En pratique, il faut que les don-
nées soient mesurées de facon uniforme sur un cercle autour du patient. Ce n’est
pas tout le temps réalisable et la fonction d’atténuation ne peut donc pas toujours
étre reconstruite de maniere stable. Par ailleurs, la formule de reconstruction fait
intervenir la dérivée des mesures, qui montre également son caractere instable, la
dérivation amplifiant le bruit des mesures.
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— échographie : cette méthode d’investigation présente I’avantage d’étre sans risque
pour le patient. Les sources sont de breves impulsions d’une onde acoustique a
tres haute fréquence ; les mesures sont des échos acoustiques et ’on recherche les
discontinuités de la vitesse de propagation dans le milieu. Le probleme direct est
de calculer une onde diffractée u, connaissant le potentiel ¢ (et I'onde plane inci-
dente u;) tandis que le probleme inverse est de retrouver g a partir de mesures de
u, effectuées loin de I'obstacle. Par rapport aux exemples précédents, le probleme
est posé ici dans le domaine fréquentiel. Lorsque ’onde traverse le patient, elle est
réfléchie par les changements de la densité et des parametres élastiques des tissus.

2.2.2.5 Conclusion

Cette liste d’exemple est loin d’étre exhaustive. Le but était de montrer que la théorie
des problemes inverses est tres étendue et que des applications pratiques nombreuses et
variées existent.

Les méthodes de résolution des problemes inverses sont elles aussi relativement variées
suivant les problemes considérés et les approches adoptées pour les résoudre.

2.2.3 Meéthodes algébriques déterministes

Un probleme inverse est dit mal posé s’il ne satisfait pas a au moins une des conditions
suivantes : existence d’'une solution, unicité de cette solution et stabilité de cette solution.

La nécessité d’approfondir des problemes qui ne sont pas mathématiquement bien po-
sés, mais cependant d’un grand intérét pour les sciences expérimentales, est a ’origine de
deux branches de ’analyse : la théorie de 'inversion généralisée et celle de la régularisation.

2.2.3.1 Moindres carrés et inversion généralisée

Lorsque la difficulté de résolution du probleme inverse provient de la non-unicité de la
solution, la théorie de I'inversion généralisée permet de trouver une solution quel que soit
le cas envisagé. La résolution de I’équation linéaire y = Hu présente 3 possibilités : soit il
y a une solution au probleme, soit il y a une infinité de solutions au probleme, soit il n’y
a pas de solution au probleme.

Dans le premier cas, on doit pouvoir directement calculer I'inverse de H pour obtenir
la solution u. Dans le deuxieme cas, il faut choisir une solution optimale au probleme
parmi un ensemble de solutions suivant un critere défini au préalable. Dans le troisieme
cas, on ne peut pas trouver de solution exacte mais on essaie de définir une solution ap-
proximative qui minimise un critere de différence entre y et Hu. Dans le cas ou le critere
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choisi est la norme euclidienne, la solution est dite solution des moindres carrés.
Considérons 1'équation

y = Hu (2.10)

ouy € R™ et u € R™. Placons nous dans le cas général ou H est une matrice de dimension
m X n.

L’inverse généralisée d’un tel systéme est notée HT et satisfait les conditions suivantes
[Albert, 1972] :

HHYH = H
H*HH* = H*
(HHH)T = HH~
(H*H)T = H*H

(2.11)

La solution du systeme linéaire s’écrit alors

uw=H"y (2.12)

La résolution d’un tel systeme met en évidence 4 cas. Selon les dimensions m et n
et le rang de la matrice H, on définira les matrices inverse, pseudo-inverse a gauche et
pseudo-inverse a droite.

La matrice inverse est la solution d’un probléeme qui possede autant d’inconnues que
de contraintes. Selon les cas, il n’est pas pour autant certain qu’il existe une solution.

La matrice pseudo-inverse a gauche est une solution d’un probleme sur-déterminé, qui
contient des informations redondantes. Elle minimise ’erreur quadratique moyenne.

La matrice pseudo-inverse a droite est une solution d’un probléeme sous-déterminé, qui
ne contient pas suffisamment d’information pour garantir une solution unique. Elle permet
d’obtenir une solution particuliere qui minimise la norme quadratique.

Ces deux pseudo-inverses, qu’on appelle généralement matrice inverse généralisée au
sens défini par Moore et Penrose [Albert, 1972] [Ben-Israel et Greville, 2003], sont définies
par

HY =lim(H'H +61)'H" =lim H'(HH" +6°1)™" (2.13)

6—0 6—0
Si les colonnes de H sont linéairement indépendantes, on peut poser 6 = 0.
a) Cas o m=n et rang(H)=n

C’est le cas d’une matrice carrée (m = n) et non singuliere (det(H) # 0). Dans ce cas
unique, H+ = H~! est la matrice inverse de H. La matrice H~! vérifie la propriété
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H'H=HH'=1, (2.14)

ou I, est la matrice identité de dimension n.

b) Cas ou m<n et rang(H)=m

Il s’agit du cas ou le probleme est sous-déterminé : il y a plus d’inconnues que de
contraintes. Dans ce cas, la matrice inverse généralisée est de la forme H™ = HT(HH™)!
et vérifie la propriété HH' = I,,. 1l existe une infinité de solutions au probleéme inverse.
On note U lensemble des solutions ut de Iéquation u = Hty.

Parmi cet ensemble de solution, on retient la solution % qui minimise une norme
préétablie :

u=min{|ul|l, u=H"y} (2.15)

c) Cas ou m>n et rang(H)=n

Il s’agit du cas ou le probleme est surdéterminé : il y a plus de contraintes que d’in-
connues. La matrice inverse généralisée est de la forme H* = (HTH) 'HT et vérifie la
propriété HH' = I,,. Il n’existe pas de solution exacte au probléme inverse et 1’on doit
définir une quasi-solution @ de 'équation y = Hu qui minimise une distance A(y, Hu)
entre y et Hu :

u= argmuin {A(y,Hu)} (2.16)

. . . . © 1. 2 o~
Lorsque la distance choisie est une distance euclidienne A(y, Hu) = ||y — Hu||”, U est
la solution au sens des moindres carrés :

ﬂ:argmin{Hy—HUHQ} (2.17)

Cet ensemble coincide avec I’ensemble des solutions de ’équation normale :
[H'HJu = H"y (2.18)

d) Cas ou rang(H)=k<min(m,n)

Dans ce cas, la matrice H est singuliere (det(H) = 0). Pour l'inverser, il faut faire
appel a une décomposition en valeurs singulieres ou encore a des méthodes itératives.

i) Décomposition en valeurs singuliéres
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On considere I'équation y = Hu ou rang(H) < min(m,n). On note {v;, j =1,....k}
les vecteurs propres de la matrice HT H, {u;,i = 1, ..., k} les vecteurs propres de la matrice
HHT et )\32. les valeurs propres correspondantes.

On a alors les relations suivantes :

HTHUj = )\?’Uj, ] = 1, ,k‘
HHTUZ‘ = )\Z2UZ, 1= 1, ,k’

H'Uj = )\ju]', j = 1, ,k) (219)
HTUZ' = )\i’l}i, 1= 1, ceey k
et la matrice H peut se décomposer de la maniere suivante :
H=UAVT (2.20)
ou U, A et V sont des matrices définies par
V=(vy vy -+ vg) (2.21)
A= d?:(lg()\l, )\2, ceey )\k)
avec A\; > Ay > ... > M et k <inf(m,n).
La solution inverse généralisée au sens de Moore et Penrose est définie par
ut = Hty avec HT = VATU (2.22)
avec
1 .
+ . . ; = X\ S1 )\z 7é 0
AT = diag{a;}, { 0 =08 A\ ~ 0 (2.23)

ii) Méthodes itératives

Ces méthodes permettent de calculer itérativement une solution v de norme minimale
au probleme Hu = y. Elles sont couramment utilisées en raison de leur simplicité et de la
facilité d’incorporation de contraintes déterministes. Elles nécessitent cependant un gros
volume de calcul a cause du grand nombre d’itérations nécessaires a I’approximation opti-
male de la solution. Il est également nécessaire de fixer une regle d’arrét qui peut reposer
sur I'estimation de I'erreur résiduelle. Un seuil d’arrét est fixé au départ.

La méthode de reconstitution itérative la plus ancienne est celle de Van Cittert (qui
date des années 1930) [Demoment, 1987]. D’autres auteurs ont ajouté des modifications
afin d’accélérer la convergence vers la solution optimale et d’améliorer la solution recons-
truite. On citera les méthodes de Bialy et de Landweber [Demoment, 1987], la méthode
de Jansson [Jansson, 1984] et la méthode du gradient conjugué [Sullivan, 1990].

92



2.2. Les problemes inverses

2.2.3.2 Régularisation

La régularisation d’un probleme mal posé consiste a le transformer en un probleme
bien posé : étant donné les mesures et la connaissance du modele dont on dispose, on
cherche a définir une solution unique et a assurer la stabilité de cette solution vis a vis
des erreurs de mesure [Tikhonov et Arsénine, 1976].

Si 'on considere a nouveau le probleme

y=Hu (2.24)

ou l'opérateur H est linéaire ou non linéaire, alors ce probleme est bien posé au sens de
Tikhonov s’il répond aux trois conditions énumérées précédemment.

Dans le cas d’un probleme linéaire, les principales difficultés sont la sur-détermination
et les valeurs singulieres proches de 0 de la matrice H.

Suivant les connaissances dont on dispose, une estimation u de la grandeur u & recons-
truire est correcte si le terme y = Hu est suffisamment proche de la grandeur mesurée y.
La qualité de la grandeur reconstruite peut donc étre quantifiée en calculant ’adéquation
entre la grandeur mesurée y et la grandeur calculée Hu sous la forme d’un critere :

J(u) = Ay, Hu) (2.25)

ou A représente la distance entre y et Hu. Cette distance peut étre la norme euclidienne
et le critere devient alors le critere quadratique classique :

J(u) = |ly = Hul® (2.26)

La minimisation de ce critere conduit a la solution 7 du probléme inverse :

u=arg muin {J(u)} (2.27)

Cependant, on s’apergoit rapidement que cette minimisation conduit rarement a une
estimation correcte u de la grandeur u a reconstruire. Nous avons déja vu en effet que
si le rang de la matrice H de dimension m X n est inférieur a n, il existe une infinité de
solutions 7. On utilise alors un critére de comparaison. Ce critére ne garantit en aucun cas
la stabilité de la solution obtenue car le mauvais conditionnement de la matrice H peut
la conduire a se comporter comme un filtre passe-haut qui va amplifier les plus petites
variations de la grandeur mesurée y. La condition de stabilité définie plus haut n’est donc
pas assurée.

La grandeur mesurée y ne donne aucun renseignement sur certains aspects de la gran-
deur u a reconstruire. Il est donc nécessaire d’ajouter des informations additionnelles sur
la grandeur u qui permettront de sélectionner la meilleure reconstruction parmi plusieurs
possibles. Une maniere d’effectuer cette sélection consiste a introduire un second terme
Q(u) au critere général (2.25) afin d’ajouter une information supplémentaire concernant la
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grandeur u a reconstruire et ainsi de régulariser le probleme. On appelle ce terme ajouté
terme de pénalisation ou de régularisation. Le critere J(u) pénalisé devient :

J(u) = Ay, Hu) + Q(u) (2.28)

Si I'on reprend le cas du critere (2.26), 'ajout du terme (u) le transforme en un
critere des moindres carrés de norme minimale, car il ne s’agit plus ici de simplement
minimiser un seul terme mais de choisir parmi plusieurs possibilités une solution % qui
rendra le terme {2(u) minimal. On peut choisir a priori une valeur constante particu-
liere Jy du critere Ju : a partir du moment ou la valeur du critere est inférieure ou
égale a Jy, on considérera qu’on a obtenu une solution acceptable au probleme régularisé
[Tikhonov et Arsénine, 1976], [Ljung et al., 1992].

Un choix possible parmi les plus simples pour Q(u) consiste a prendre la norme eucli-
dienne de la grandeur u a reconstruire :

Qu) = Jlull” (2.29)

Dans le cas ou I’on connaitrait a priori une solution par défaut u, au probleme inverse,
on peut l'intégrer au terme Q(u) :

Q(u) = llu — ual’ (2.30)

Plus généralement, dans beaucoup de cas, il ne suffit pas seulement de minimiser la
norme de la grandeur u a reconstruire mais d'un opérateur L (linéaire ou non) qui agit
sur cette grandeur. Il faut donc intégrer cet opérateur dans Q(u) :

2
Q(u) = [ L(u)]] (2.31)
Dans le cas simple ou 'opérateur L est linéaire, on peut écrire :

Qu) = || Lu|® = uL” Lu (2.32)

Typiquement, 'opérateur L (dans le cas linéaire) est la matrice identité. Mais on peut
également choisir une approximation de la dérivée premiere Ly :

-1 1 0
1 o -1 .
Li=— 2.33
VAT s (2:3)
o -~ 0 -1
Il est également possible d’utiliser une approximation de la dérivée seconde :
1 -2 1 0
) 01 =2 :
2.34
2 = (AT 0 1 1 (2.34)
-2
0 0 0 1
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Dans d’autres cas, on pourra utiliser une combinaison linéaire des dérivées

Qu) = o || Lyul® (2.35)

ou Lj est une matrice d’approximation de la dérivée d’ordre k et les termes oy sont des
constantes positives.

Il existe de nombreuses méthodes de régularisation qui essaient de traiter a la fois le
probléme de la fidélité aux données mesurées (correspondant au premier terme du critére
a minimiser) et celui de la fidélité a I'information a priori (correspondant au deuxieme
terme du critere & minimiser). Ces deux problemes étant bien souvent en conflit, il s’agit
alors de trouver une solution @ qui soit un bon compromis entre les nécessités dues aux
grandeurs mesurées et aux données a priori [Ljung et al., 1992].

a) Régularisation de Tikhonov

La régularisation de Tikhonov est une des méthodes les plus connues et de nombreux
développements existent de nos jours [Tikhonov et Arsénine, 1976], [Chavent et Kunisch, 1994],
[Johansen, 1997]. Le critére & minimiser J(u) est défini de la maniére suivante :

J(u) = |y — Hul* + M| L(w)||” (2.36)

ou le terme A est appelé coefficient de régularisation. Ce coefficient sert ici a pondérer
I'influence des connaissances a priori dont on dispose sur le probleme a résoudre. La
solution wy du probleme inverse y = Hu est définie de la maniére suivante :

iy = argmin{ly — Hull” + A | L(u)||*} (2.37)

On obtient donc ici une famille de solutions ) paramétrée par le coefficient de régu-
larisation A. Si ce parametre est treés grand, l'effet du terme |y — H uH2 est négligeable
devant celui du terme ||L(u)|”. On néglige les données mesurées et on tient compte en
priorité de la connaissance a priori sur le probleme. La solution ainsi obtenue peut étre
correcte du point de vue de la minimisation du critere mais en inadéquation avec les don-
nées mesurées. Il faut par ailleurs étre certain de I'exactitude des connaissances a priori
dont on dispose. C’est dans ce cas I'expertise de I'utilisateur qui est requise.

D’autre part, si le parametre de régularisation est trop faible, on néglige la connaissance
a priori en donnant une plus grande importance aux grandeurs mesurées. Cependant, plus
la valeur du parametre de régularisation diminue et plus on se rapproche d'un éventuel
mauvais conditionnement du probleme. Il ne faut pas perdre de vue que le second terme
a été ajouté afin de transformer le probleme mal posé en un probléeme bien posé.

Afin de calculer analytiquement la solution du probléme, on dérive le critere (2.36)
par rapport a la grandeur a reconstruire :
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oJ OL(u) T
— =2 \L(u)—— —-2H ' (y— H 2.38
= (y— Hu) (2.3%)

Ceci conduit a calculer la solution de I’équation :

oL

ot ()22 om0 (2.39)
On voit bien dans ce cas que si 'on pose A = 0, on retrouve la solution des moindres
carrés. Si A n’est pas nul, le terme additionnel AL(u) agiu) modifie les valeurs propres de
la matrice H H seule. A partir du moment ot la matrice HT H + )\L(u)ag—i") n’est plus

singuliere, le probleme a une solution unique.

b) Choix du coefficient de régularisation

Dans de nombreux problemes inverses, un réglage précis du coefficient de régularisa-
tion A est inutile, la solution u, n’étant sensible qu’a des variations importantes de .
Il est alors possible, avec un peu d’expérience, de choisir empiriquement \. Dans le cas
contraire, il existe quelques méthodes de réglage automatique a partir des données mesu-
rées.

i) Controle de I’énergie de ’erreur résiduelle

Une des idées les plus intuitives et les plus anciennes pour régler la valeur de A est de
considérer ce coefficient comme un multiplicateur de Lagrange [Demoment et al.]. Repre-
nons 'expression générale du critere pénalisé :

J(u) = Ay, Hu) + Q(u) (2.40)

Dans le cadre de la régularisation de Tikhonov, ce critere peut s’exprimer sous la
forme :

J(u) = |ly = Hul* + X[ L(w)| (2.41)
avec ici A(y, Hu) = |ly — Hul* et Q(u) = X || L(u)|*.

Sil’on considere A comme un multiplicateur de Lagrange, le probleme de régularisation
est équivalent a I’énoncé suivant :

uy = argmin{Q(u)} sous la contrainte A(y, Hu) = ¢ (2.42)

Le degré de régularisation est fixé par la valeur de c. Plus la valeur de c est faible, plus
on accorde d’'importance aux données mesurées y car la condition A(y, Hu) = ¢ devient
davantage contraignante. Par conséquent, la notion de compromis entre fidélité aux don-
nées mesurées et degré de pénalisation de la solution du probleme apparait déja dans ce
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contexte.

Lorsque le terme A est quadratique, on préconise souvent de choisir ¢ égal a la dimen-
sion de la grandeur u a reconstruire.

ii) Méthode de la courbe en ”L”

On peut également utiliser une méthode alternative qui a fait ses preuves dans des
problemes inverses de la forme

J(u) = |y — Hu || + AQ(uw) (2.43)

et dans le cas précis ot (u) est quadratique : la méthode de la courbe en L [Hansen, 2001].

Cette méthode consiste a tracer en échelle logarithmique le terme de régularisation
Q(Ty) en fonction du critere des moindres carrés ||y — Haiy | en faisant varier le coeffi-
cient de régularisation \.

Cette courbe a en général 'allure caractéristique d’un L et la valeur de A correspon-
dant a ’angle de ce L fournit un bon compromis entre les exigences contradictoires de
fidélité aux grandeurs mesurées et de fidélité aux connaissances a priori.

On remarque que toutes les méthodes de choix du coefficient de régularisation A\ expo-
sées ici n’ont de justification claire que dans le cas de criteres quadratiques. De méme que
pour le choix du terme de régularisation Q(u), les justifications sont données de maniere
empirique. Chaque solution de régularisation est a considérer selon la nature méme du
probleme inverse traité.

2.2.4 Méthodes probabilistes

Une autre classe de méthodes de résolution des problemes inverses est la classe des
méthodes probabilistes. L’approche générale de ces méthodes consiste d’abord a prendre
en compte explicitement le plus grand nombre d’erreurs possible (erreur de mesure, de mo-
délisation et, éventuellement, de discrétisation du probléme), ensuite a prendre en compte
les informations a priori dont on peut disposer et, enfin, une fois la solution du probleme
inverse estimée, a caractériser I'incertitude méme sur cette solution.

Un outil mathématique tres utile pour représenter des erreurs de toute sorte est la
théorie des probabilités. En effet, une loi de probabilité permet de caractériser l'incerti-
tude sur les mesures et le manque de connaissance sur une grandeur.

Parmi les méthodes probabilistes de résolution des problemes inverses du type y = Hu,

on distingue :
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— Les méthodes utilisant les moments : on cherche a lier les moments (d’ordre 1 et
2) des grandeurs mesurées y aux moments de la grandeur a calculer u. On obtient
ainsi un lien entre les deux grandeurs qu’il suffit d’inverser pour calculer u.

— Les méthodes statistiques classiques utilisant le maximum de vraisemblance : on
prend en compte explicitement le caractere incertain des mesures en le caractérisant
par une loi de probabilité conditionnelle p(y | w). On consideére ensuite p(y | u)
comme une fonction de la grandeur u que 'on nomme fonction de vraisemblance
V(u). On définit alors un critere basé sur cette fonction, par exemple le maximum
de vraisemblance, qui permet d’obtenir une estimation de wu.

— Les méthodes basées sur [’entropie : le principe ressemble a celui du maximum de
vraisemblance. On définit cette fois la fonction entropie S(u) que 'on va essayer de
maximiser sous certaines contraintes correspondant au lien entre u et y.

— L’approche statistique bayésienne ot non seulement on prend en compte 'incertitude
sur les mesures de la grandeur y mais on attribue également une loi de probabilité
a la grandeur v qui traduit I'information a priori dont on dispose. On peut ainsi
combiner ces deux informations tout comme on le fait dans les méthodes de régula-
risation vues précédemment.

2.2.4.1 Utilisation des moments

Cette approche considere que les grandeurs observée y et mesurée u sont des fonctions
aléatoires [Mohammad-Djafari, 1999b]. On se limite donc a caractériser les lois de proba-
bilités de ces grandeurs par leurs moments jusqu’a 'ordre deux. Il suffit ensuite d’établir
un lien entre les moments de la grandeur observée et ceux de la grandeur inconnue a
reconstruire, puis d’essayer d’inverser ce lien.

Nous allons prendre l’exemple classique du filtrage optimal de Wiener appliqué au
probleme de la déconvolution des signaux.

On considere le probleme suivant (cf figure 2.1) :

y(t) = h(t) * u(t) + b(t) (2.44)

ou les fonctions y(t), u(t) et b(t) sont aléatoires et représentent respectivement la grandeur
mesurée, la grandeur inconnue a reconstruire et le bruit.
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b()

u(?) l y(2)

— H(w) —>

Fig. 2.1 - Modeéle d’observation

Les moments d’ordre 1 de ces grandeurs sont leur moyenne (ou espérance mathéma-
tique) :

Ely®)], Elu®)] et Eb(1)] (2.45)

Rappelons que la moyenne E[z(t)] d'une grandeur x(t) est calculée a chaque instant ¢.
Si cette moyenne ne dépend pas de t, le signal est dit stationnaire au premier ordre. Si le
signal est “ergodique” (ses moyennes statistiques sont égales a ses moyennes temporelles,
propriété généralement admise), on peut remplacer le calcul sur différentes réalisations a
un instant ¢ donné par une moyenne temporelle.

Elz(t)] = =57 tlm/ (2.46)

Les moments d’ordre 2 de ces grandeurs sont leurs fonctions d’autocorrélation tempo-
relle (Ry,(7) et Ry, (7)) et leurs fonctions d’intercorrélation temporelle (R, (7) et Ry, (7))
définis de la maniere suivante :

gyy <(7'>) = EE?] [[y((t))y ((t + 7'))]]

wlT) = Blu(t)u(t + 71

Rypu(7) = Rup(—7) = E[b(t)u(t + 7)] (2.47)
Ry (T) = Ryy(—7) = Ely(t)u(t + 7)]

On fait ’hypothese que wu(t) et b(t
permet d’obtenir les relations suivantes :

[(t)] h(t) * Elu(t)] + E[b(t)]
Ry (1) = h(t) * h(t) * Ruu(7) + Rip(7) (2.48)
Ryu(7) = h(t) * R (T)

La transformée de Fourier de certaines des précédentes relations donne :

Syy(@) = [H(W)[* Suu(w) + Spp(w)
Syu(w) = H(w)Syu(w) (2.49)
Suy(w) = H*(w)Suu(w)

L’objectif du filtrage optimal est de fournir une solution #(t) obtenue par filtrage
linéaire de y(t) :

sont indépendants (non corrélés), ce qui nous
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Q) = w(t) * y(t) (2.50)

W) —  W(w) —|— ul

Fig. 2.2 - Déconvolution par filtrage de Wiener

Il s’agit donc d’obtenir la réponse impulsionnelle du filtre w(t) telle que lerreur qua-
dratique moyenne E[(u(t) — u(t))?] soit minimale. Aprés diverses manipulations mathé-
matiques, on obtient l'expression de la transformée de Fourier de w(t) :

W) — H*(w)Suu(w) 1 |H(w)|2
W( ) - ‘H(W)P Suu(W) —|—Sbb(w) B H(u)) ]H(w)|2 + 552((‘:)) (2.51)

Un autre probleme réside en la détermination de Sy, (w) et Sy, (w), qui nécessite la
connaissance a priori de Sy, (w) et de Sp(w). On peut faire I'hypotheése que le rapport de
ces deux dernieres grandeurs est égal a l'inverse du rapport signal sur bruit (hypothese
peu réaliste) ou bien au carré du module de la fonction de transfert d'un filtre passe-haut.

Une fois obtenue I'expression de W (w), on peut estimer la solution %(t) du probleme
inverse en calculant I’expression temporelle du filtre de Wiener par transformée de Fourier
inverse.

2.2.4.2 Critere du maximum de vraisemblance

La méthode du maximum de vraisemblance repose sur une idée de base assez intui-
tive : la meilleure estimée d’une grandeur a reconstruire u est celle qui permet d’obtenir la
plus grande probabilité d’obtention de la grandeur mesurée y. Cette méthode prend donc
en compte explicitement le caractere incertain de la grandeur mesurée en la caractérisant
par une loi de probabilité p(y | u) [Demoment et al.].

On consideére ensuite cette loi de probabilité comme une fonction V(u) = p(y | w)
appelée fonction vraisemblance.

La solution @ du probleme inverse maximise cette fonction vraisemblance :
u = argmax{p(y | u)} (2.52)
u
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Pour des raisons calculatoires (nous verrons plus tard que la loi de probabilité p(y | u)
s’exprime souvent sous la forme d’une exponentielle), il est souvent préférable de maxi-
miser le logarithme népérien de la fonction vraisemblance :

u = arg mgx{lnp(y | u)} (2.53)

Le logarithme népérien étant une fonction monotone, le maximum de Inp(y | u) coin-
cide avec le maximum de p(y | u).

On note qu’il est évidemment possible d’obtenir la solution u du probléme inverse en
estimant non pas le maximum du logarithme népérien mais le minimum de son opposé :

u=argmin{—Inp(y | u)} (2.54)
Il est en effet parfois plus simple de minimiser une grandeur plutot que de la maximiser.

L’estimateur du maximum de vraisemblance possede quelques propriétés intéressantes :
c’est un estimateur a variance minimale (on parle d’efficacité de cet estimateur) et si le
nombre de mesures de la grandeur observable y augmente alors l’estimateur converge
asymptotiquement vers la solution du probleme inverse.

Nous allons maintenant nous intéresser a la forme que peut prendre la loi de probabilité
p(y | w).

a) Loi gaussienne

On considere le modele général y = H(u) + b et on suppose que le bruit b peut étre
modélisé par un vecteur aléatoire centré, blanc et gaussien. On le représente alors par une
loi normale (ou de Gauss) N(0,021) d’espérance nulle et de variance o7.

On en déduit alors la loi de probabilité :

—1
bl ) = Kexp (3l = HO Ty~ Hw) ) (2.55)
b
ou K est une constante non nulle.

On peut donc calculer une estimation de la grandeur uw au sens du maximum de
vraisemblance :

u = arg muin{— Inp(y | u)} (2.56)

On obtient 'expression suivante :
@ = arg min{ |y — H(u)|*} (2.57)
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On remarque que, dans ce cas précis, on aboutit a I'estimateur des moindres carrés.

b) Loi gaussienne généralisée
On suppose maintenant que chaque mesure b; du bruit b obéit a une loi gaussienne
généralisée :
p(bi) = Aexp [-Bb;["], 3>0, 1 <p<2 (2.58)
ou A est une constante.

Si on fait I’hypothese que b est un bruit blanc, 'estimation de la grandeur u au sens
du maximum de vraisemblance a pour expression analytique :

U = argmin {Z ly: — [H(U)]z‘|p} (2.59)

i=1
On peut écrire cette expression sous la forme :

@ = argmin{ly — H(u)|"} (2.60)

Lorsque p = 2, on retrouve a nouveau l'estimation au sens des moindres carrés.

¢) Loi Gamma

A présent, voyons le cas ou chaque mesure b; du bruit b obéit a une loi gamma :

p(bi) = Kib;* exp (—fb;) (2.61)
On fait également I’hypothese que le bruit est blanc. On en déduit la loi gamma
associée au logarithme népérien de p(y | u) :

Inp(y | u) = K + 3 alog(y — [H)) + Ay — [Hw)) (2,62
i=1
La solution u = argmin,{—Inp(y | u)} n’a pas d’expression analytique dans ce cas.
Elle peut toutefois étre calculée par un algorithme itératif.

En conclusion, un des défauts de I'approche du maximum de vraisemblance est qu’elle
fournit des résultats rarement satisfaisants pour la résolution de problemes inverses dans le
cadre algébrique ot le nombres de grandeurs a reconstruire est du méme ordre de grandeur,
voire plus grand, que le nombre de mesures. Une solution est ’approche du mazimum
de vraisemblance pénalisé qui consiste a définir la solution u du probléme inverse de la
maniere suivante :

u = argmin{—Inp(y | u) + ¢(u)} (2.63)
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ol ¢(u) est une fonction de pénalisation qui permet d’obtenir une solution beaucoup plus
satisfaisante. Ce principe de pénalisation est dans I'idée semblable a celui de régularisation
vu dans la section précédente.

2.2.4.3 Critere du maximum d’entropie

a) Définitions

La notion d’entropie peut étre introduite de la manieére suivante [Mohammad-Djafari, 1999b],
[Mohammad-Djafari, 1999a] : plus un événement est rare et plus le gain d’information ob-
tenu par sa réalisation est grand. On considere donc une variable aléatoire discrete X
produisant des réalisations x = {x1,xs,...,2,} auxquelles on attribue les probabilités
p = {p1,p2, .., pn} POur représenter une information partielle sur la variable X. On définit

ensuite la quantité
L=l < ! > (2.64)
i = In —_ .
Pi

comme étant la quantité d’information apportée par la réalisation x; de la variable X.
L’utilisation du logarithme rend additif le gain total d’information obtenu par la réalisa-
tion de plusieurs événements indépendants.

On définit alors I'entropie S(p) d’un processus par la somme pondérée des informations
apportées par chaque réalisation (définition de I’entropie donnée par Shannon) :

n 1 n
S(p) = sz‘ In (;) = - sz‘ In p; (2-65)
i=1 v i=1

L’entropie S peut étre vue comme une mesure d’incertitude de la distribution p =
{p17p27 7pn}

Ce concept peut étre généralisé en définissant le terme — In(p;/q;) comme étant le gain
d’information, sur une probabilité a priori q;, apporté par la connaissance de la probabilité
p; de réalisation d’un événement x;. On définit alors :

S(p.q) = ipi In (Iﬁ) (2.66)

comme étant 'entropie croisée (ou relative) de la distribution p = {py, pa, ..., pn} par rap-
port a la distribution a priori ¢ = {q1, g2, ..., Gn }-

Moyennant quelques précautions de calcul, on peut généraliser ces définitions au cas
continu et définir I’entropie par :

S() =~ [ plo)mpa)ds (2.67)
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et ’entropie croisée par

S(p,q) = /p(x) In Mdm (2.68)

On définit maintenant la meilleure estimée ® d’une fonction ®(X) de la variable aléa-
toire discrete X au sens du minimum de 'erreur quadratique moyenne :

= EO(X)] =) _p®(x) (2.69)

Il s’agit ici d’'un probleme direct et bien posé. Mais il existe en général beaucoup de
distributions p qui satisfont cet ensemble de contraintes. Le probleme inverse considéré
est donc mal posé au sens de la non-unicité de sa solution. Le principe du maximum
d’entropie permet alors de choisir une solution : la meilleure solution sera celle qui a 1’en-
tropie maximale (c’est-a-dire celle qui satisfait toutes les contraintes) et qui est la moins
compromettante vis-a-vis de toute autre information inconnue (information apportée par
aucune des réalisations de la variable aléatoire).

Le probleme inverse se formule donc ainsi :

maximiser S(p) = —> .7 p;iInp;

sous les contraintes Y ;| pi®r(x;) =dy, k=1,....,m (2.70)

Dans le cas de I'entropie croisée, le probleme se formule ainsi : étant donnée une dis-

tribution de probabilités a priori ¢ = {q1, ¢2, ..., ¢n }, il s’agit de déterminer la distribution
de probabilités a posteriori p = {p1, p2, ..., pn} qui minimise le terme

_ iz:;pi In (Zqi) (2.71)

et qui satisfait les contraintes

> pi®i(r) =di, k=1,..,m (2.72)

Ces deux définitions de probléemes inverses peuvent étre étendues au cas continu. Le
premier probléeme (2.70) est défini en continu par :

maximiser S(p) = — [ p(z) Inp(x

sous les contralntes | @i( ) (x )dx =di, k=1,..,m (2.73)

Dans le cas de 'entropie croisée, le deuxieme probleme (2.71) est défini ainsi : étant
donnée une densité de probabilité a priori p(z), il s’agit de déterminer la densité de
probabilité a posteriori ¢(x) qui minimise 1’entropie croisée

S(p,q) = /p(x) In IMCM (2.74)

104



2.2. Les problemes inverses

et qui satisfait les m contraintes

/@k(x)p(:v)dx =dy, k=1,...m (2.75)

b) Application a des probléemes inverses

L’approche de base (maximum d’entropie classique) consiste a considérer la grandeur a
reconstruire © comme une distribution de probabilités et les données mesurées y comme un
ensemble de contraintes sur cette distribution de probabilités. En général, ces contraintes
ne sont pas suffisantes pour définir une solution unique au probleme inverse.

On utilise donc le principe du maximum d’entropie pour choisir une solution parmi
I’ensemble des solutions admissibles défini par :

{u:J=lly—H(u)| < Jo} (2.76)

On choisit dans cet ensemble la solution qui maximise '’entropie S(u) définie par :

S(u) = —iuj In u, (2.77)

On peut définir 'entropie de maniere plus générale :

S(u) = — zn: {uj In (%) + (uy — mj)} (2.78)

J=1

ou m est une solution par défaut (a priori) que l'on considére également comme une dis-
tribution de probabilités.

2.2.4.4 Approche bayésienne des problemes inverses

L’approche bayésienne pour la résolution de problemes inverses permet de prendre en
compte et de traiter de la méme maniere I'information a priori sur la grandeur a recons-
truire u et sur les grandeurs mesurées y [Mohammad-Djafari, 1998], [Mohammad-Djafari, 1999b].
On tient compte non seulement de I'incertitude des mesures en leur attribuant une loi de
probabilité mais également de l'incertitude concernant 'information a priori au travers
d’une loi de probabilité a priori que I'on attribue a la grandeur inconnue du probleme. La
regle de Bayes permet de tenir compte en les fusionnant de ces deux sources d’information.

Ainsi, le cadre bayésien offre les réponses les plus cohérentes et les plus completes a des
problemes laissés ouverts dans les autres approches. D’une certaine maniere, ’approche
bayésienne généralise la régularisation déterministe.

a) Introduction
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La démarche correspondant a ’approche bayésienne peut se scinder en différentes
étapes. La toute premiere de ces étapes consiste bien stur a expliciter le probleme lui-méme.
On définit un modele H reliant la grandeur mesurée y et la grandeur a reconstruire w :

y=H(u)+b (2.79)

Le terme b étant le bruit qui entache inévitablement y.

On peut ensuite définir de maniere explicite les connaissances a priori dont on dispose
(et si on peut en disposer) sur u et sur le bruit de mesure b. Cette étape est cruciale pour
la suite du probleme car la qualité de 'estimation u de v dépend directement de la qualité
(et parfois de la quantité) des informations que ’on aura pu rassembler.

La deuxieme étape de la démarche consiste en I’attribution d’une loi de probabilité a
priori p(u, d,) a la grandeur inconnue du probléme afin de traduire la connaissance dont
on dispose sur cette grandeur avant méme d’essayer de 'estimer. Cette loi de probabilités
peut dépendre d’un vecteur de parametres 6,,.

On attribue également une loi de probabilité conditionnelle p(y | u,0,) a y afin de
traduire l'incertitude sur les mesures. Ces incertitudes sont dues en partie au manque de
précision de I'appareil de mesure et au bruit environnant qui s’ajoute aux mesures. De
meéme que la précédente, cette loi de probabilité peut dépendre d’un vecteur de parametres
6,. L'ensemble 6 = [0, 6,] est appelé vecteur des hyperparametres du probléme.

La troisieme étape de la démarche consiste a utiliser la regle de Bayes pour combiner
les deux sources d’information : I'information contenue dans y et celles contenues dans la
loi de probabilité a priori sur u. On calcule ainsi une loi de probabilité a posteriori :

~ py | u,0y)p(u, )

p(u|y,b) = (0.0) (2.80)

avec

ply,0) = / Py | . 0,)p(u. 8,)du (2.81)

Cette loi de probabilité p(u | y, 0) dépend des hyperparametres du probléme et contient
toute I'information disponible sur la grandeur inconnue w. Elle permet donc de choisir la
meilleure estimée @ de u suivant un critere prédéfini. Une fois cette solution choisie, il est
impératif de lui attribuer un degré de confiance et de déterminer sa sensibilité vis-a-vis
des erreurs de mesure et de modélisation. L’approche bayésienne nous permet de répondre
a ces attentes car on dispose de la loi de probabilité a posteriori sur v qui permet de ca-
ractériser I'erreur d’estimation.

Tous les problemes de cette approche résident dans le choix des lois de probabilités a

priori p(u, 8,), p(y | u,8,) et des hyperparametres 6, ainsi que dans le calcul effectif de la
loi de probabilité a posteriori p(u | y, 0).
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b) Un exemple simple : le cas linéaire gaussien

Afin de mieux comprendre la démarche exposée en introduction, nous allons ’appliquer
a un cas simple : celui ou le modele reliant u et y est linéaire et ou ’on peut attribuer des
lois de probabilités gaussiennes a u et y. Le probleme est donc le suivant :

y=Hu+b (2.82)

ou b représente le bruit de mesure (bruit additif dans ce cas particulier). La matrice H
est une matrice de dimension [m x n].

Faisons d’abord I'hypothese que 1'on connait de la grandeur u a priori sa moyenne
FElu] = ug et sa matrice de covariance E[(u — ug)(u — ug)’] = R, = 02F,. On peut alors
en déduire que la loi de probabilité attribuée a u est une loi gaussienne :

—1
p(u) = Aexp [T(U —u) R, (u — uo)T} (2.83)
que l'on peut aussi écrire
-1 -1 T
p(u) = Aexp rﬂ(u —ug) Py (u — up) (2.84)
avec
A= (@207 |R,|? = (21027 |R|” (2.85)

On suppose ensuite que la valeur moyenne E[b] du bruit est nulle et que sa matrice de
covariance est définie par E[bbT] = R, = o21. Cela signifie bien stir que le bruit est blanc
et non corrélé et qu’il n’y a pas d’erreur systématique lorsqu’on le mesure. On peut donc
attribuer au bruit b une loi gaussienne :

—1
p(b) = Ajexp {T‘EUUT} (2.86)

avec

A= (20) 7 Ry 7 = (2m02)F (2.87)

En faisant de plus I’hypothese que le bruit b est indépendant de la grandeur inconnue
u, on peut déduire la loi de probabilité conditionnelle :

plul ) = Bexp | S~ Hul By ) (259

que l'on peut également écrire

ply | uw) = Besp [%(:q )y - Hu>] (2.80)

avec
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B=2n)7 R = (21027 (2.90)

On peut maintenant utiliser la regle de Bayes :

ply | w)p(u)

pluly) = ) (2.91)
et on obtient au final :
—1
p(u | y) = Cexp [TJ(u)} (2.92)
J(w) = (y — Hu) By y — Hu) + (u — u) B (u — o)
= L [(y — Hu)"(y — Hu) + Mo — )" Py "(u — uo)] (2.98)
ot A= 2.

Ty

On peut montrer a posteriori que la loi de probabilité p(u | y) est gaussienne de valeur
moyenne u et de matrice de covariance P :

~_ (yT —1\—1 T
{E—(H H+ M Py )"'H'y (2.04)

P=o}(H"H + AP, )™
On a ainsi obtenu une loi de probabilité a posteriori et I’on peut en déduire une estimée
u qui n’est autre que la valeur moyenne a posteriori et qui peut aussi étre calculée par

u = arg max {p(u]y)} =arg m;n{J(u) = Q(u) + \(u)} (2.95)
Q(u) = (y — Hu)"(y — Hu)
{ Q(u) - (Z - U())TPOEJ1 (u — UO) (296)

On peut aussi remarquer que si 'on pose Py * = DT D, on obtient :

J(u) = lly — Hul|* + M| D(u — up)||* (2.97)

On retrouve donc la notion de solution régularisée et de régularisation quadratique
avec cependant quelques différences dans le choix des distances et du coefficient de régu-
larisation.

Dans l'approche de régularisation déterministe, le choix des distances A;(y, Hu) et
As(u,ug) était arbitraire alors que I'approche bayésienne permet de définir rigoureuse-
ment ces termes comme étant les conséquences des hypotheses faites respectivement sur
la loi de probabilité attribuée au bruit b et sur la loi de probabilité a priori attribuée a wu.
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Dans I'approche de régularisation déterministe, le coefficient de régularisation A\ est
déterminé de maniere empirique alors que I’approche bayésienne le définit comme étant le
rapport de la variance du bruit b par la variance de u. Si I'on connait ces deux variances,
la valeur de A est déterminée mais ce n’est bien sir pas le cas en pratique. Par contre,
cette expression indique bien que plus la variance du bruit est importante, plus la valeur
de X doit étre grande pour obtenir un résultat satisfaisant.

L’approche bayésienne permet de quantifier le degré de confiance que ’on attribue a la
solution estimée u en offrant la possibilité de calculer la matrice de covariance a posteriori
E|[(u — @)?] de la solution.

c) Choix de la loi de probabilité a priori

Le probleme de la conversion d’une information a priori en une loi de probabilité est
un probleme encore largement ouvert. La principale difficulté est qu’une information a
priori se présente rarement directement sous une forme probabiliste. On peut par exemple
savoir par avance que la grandeur u a reconstruire est positive ou bien bornée entre 0 et
1. Il faut ensuite pouvoir construire des lois de probabilité qui puissent incorporer une ou
plusieurs de ces informations.

Les méthodes existantes peuvent étre regroupées en trois grandes classes.

Certaines reposent sur la théorie des groupes de transformation pour déterminer la
mesure de référence "naturelle” pour la grandeur a reconstruire. On utilise ce genre de
méthode lorsqu’on sait peu de choses, c’est-a-dire lorsque I'information a priori se limite
a une connaissance qualitative sur la nature de la grandeur a reconstruire.

D’autres méthodes reposent sur des principes informationnels. Il s’agit principalement
des méthodes dites "a maximum d’entropie” dans lesquelles on recherche une distribution
qui soit la plus proche (au sens d’une distance) d’une distribution de référence (souvent
choisie par 'approche précédente) tout en vérifiant une information incompléte connue a
priori sous la forme de contraintes sur la loi recherchée. Cette approche n’est véritable-
ment applicable que lorsque I'information a priori est faite de contraintes linéaires sur la
distribution recherchée.

Il existe enfin une derniere classe de méthodes, celle des constructions faites "a la
main”. Elles permettent d’incorporer dans une distribution a priori des propriétés locales
essentielles que doit posséder la grandeur a reconstruire. Ces méthodes de construction
reposent en grande partie sur I'expérience personnelle et demandent beaucoup de savoir-
faire.

d) Calcul de la loi de probabilité a posteriori
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Nous avons vu que dans le cas d’'un modele linéaire gaussien H, la loi de probabi-
lité a posteriori est également gaussienne et donc définie par ses deux premiers moments
(moyenne et matrice de covariance). On dispose donc d’expressions analytiques qui nous
permettent de calculer 'estimée u de la grandeur u et de quantifier le degré de confiance
que 1'on peut lui attribuer.

Dans le cas général, le calcul analytique de la loi de probabilité a posteriori p(u | y)
peut devenir plus délicat et on doit souvent se contenter de ’approximer par une loi
gaussienne ou bien de se limiter au calcul de sa moyenne et de sa matrice de covariance
(quand c’est possible). On peut également essayer de définir un estimateur ponctuel a
partir de cette loi, comme le maximum a posteriori :

= argmase {p(u | )} = argmin {~Inp(u | )} (2.98)

ou bien la moyenne a posteriori

u= /up(u | y)du (2.99)

Le calcul du maximum a posteriori est plus souvent utilisé car il ne nécessite qu'une
optimisation alors que le calcul de la moyenne a posteriori fait intervenir la résolution
d’une intégrale de dimension élevée. Dans le cas du modele linéaire gaussien, cela ne pose
pas de probleme car ces deux calculs aboutissent au méme résultat. Mais ils peuvent four-
nir des résultats tres différents dans le cadre général. Il convient donc d’étre prudent dans
les hypotheses de départ et dans les approximations faites ensuite pour le loi de probabilité.

2.2.5 Conclusion

Les différentes approches évoquées dans cette partie permettent la résolution de nom-
breux problemes inverses bien ou mal posés. Pour des raisons de clarté et de simplicité,
nous n’avons évoqué jusqu’a maintenant que des approches d’inversion destinées a ré-
soudre des problemes inverses dans le cadre linéaire. Cependant, la majeure partie des
systemes naturels étant non linéaires, les méthodes d’inversion employées dans le cas de
systemes linéaires doivent étre étendues dans ce cadre plus général. De telles démarches de
généralisation des méthodes d’inversion a des problemes non linéaires constituent encore
de nos jours une partie importante de la recherche fondamentale.

2.3 Inversion du modele de Volterra par régularisa-
tion de Tikhonov

2.3.1 Introduction

Nous avons vu qu'une méthode d’inversion bien connue et couramment employée est
la régularisation de Tikhonov [Tikhonov et Arsénine, 1976], [Chavent et Kunisch, 1994],
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2.83. Inversion du modéle de Volterra par régularisation de Tikhonov

[Johansen, 1997]. Dans le cas d’un modele linéaire y = Hu, cette méthode consiste a
minimiser un critére composite J(u) (2.36). Le propos de cette partie est d’adapter cette
technique d’inversion en l’appliquant a un modele non linéaire : le modele de Volterra
décrit dans le premier chapitre de ce mémoire [Bibes et al., 2003c], [Bibes et al., 2004].
Cette approche d’inversion du modele de Volterra a déja été proposée par [Inglada, 2000]
dans le cadre théorique. Cependant, le modele obtenu est quasi-linéaire et 1’estimation
de la grandeur inconnue revient a une inversion de filtre linéaire. Les différents systemes
étudiés dans notre travail de these possedent des non-linéarités importantes. Les méthodes
d’inversion proposées seront donc appliquées a des systemes aux non-linéarités avérées,
participant ainsi a ’originalité de notre approche.

2.3.2 Principe de la méthode
2.3.2.1 Modele de Volterra

Reprenons la série de Volterra décrite dans le premier chapitre :

e +o00 +00 )
y(t) = Z (/ / hi(ﬁ,...,n)Hu(t—Tj)dfj) (2.100)

Cette série peut s’écrire de maniere plus synthétique :

y(t) = Hlu(t) (2.101)

Si la (ou les) non-linéarité(s) du systeme considéré sont relativement douces, la série
de Volterra peut étre tronquée a ses premiers termes et utilisée pour modéliser la sortie
y(t) du systeme. Le modele y(t) de la sortie s’écrit :

g@):Z(/_ OO/_ Oohl-(ﬁ,...,n)Hu(t_fj)d7j> (2.102)

j=1
On notera donc :

n

§(t) = lu(t) = 3 Hilu(t) (2.103)

i=1

Nous avons décrit deux manieres de modéliser les noyaux de Volterra en les déve-
loppant soit sur des fonctions de transfert, soit sur une base de fonctions orthonormées
multidimensionnelles {®,,,, .}

Dans toute la suite de cette partie, c’est cette derniere méthode de modélisation que
nous utiliserons. En ce qui concerne les fonctions de la base, le choix le plus judicieux est
celui des fonctions orthonormées généralisées unidimensionnelles définies de la maniere
suivante :
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O, (s) = 2Beipn} 7 H S Pk (2.104)

5+ Pn k1 5+ Pr
Chaque terme H;[u(t)] sera modélisé ainsi :
Z Z biny.oms Lo, () - I, (1) (2.105)

m1=0

ou le terme I, (t) représente la réponse de la fonction ®,, (s) a I'entrée u(t) du systeme
non linéaire :

/ G, (T)u(t — 7)dT (2.106)

et ou les parametres b,,,. ., composent le vecteur 6; des parametres qui caractérisent le
modele du noyau de Volterra d’ordre <.

Le modele global de Volterra utilisé pour représenter le systeme non linéaire est donc
le suivant :

7(t,0) = Hu(t), Z (Z Z by Lo, (£).- I (t)) (2.107)

i=1 m1=0 m;=0

Le vecteur 6 rassemble tous les parametres de modélisation de chaque noyau de Vol-
terra : 0 = [0y, ..., 0,].

2.3.2.2 Inversion du modeéle de Volterra

A partir de la connaissance du modele non linéaire y(¢, 0) qui relie la grandeur d’entrée
u(t) a la grandeur de sortie y(t) et d’un vecteur fini y* de mesures de la sortie y(t), on
cherche & obtenir une reconstruction correcte U de 'entrée u(t) du systeme par la mé-
thode de régularisation de Tikhonov. Remarquons ici que la qualité de la reconstruction
peut étre caractérisée par 'erreur quadratique entre I'entrée réelle et ’entrée reconstruite
mais que ’appréciation de la qualité de reconstruction reste a la discrétion de 1'utilisateur.

Comme on I'a vu précédemment, la méthode consiste en la minimisation d’un critere
composite défini comme suit :

~ 2
Iaw) = |}y = Al 0] + XL (2.108)
ou A est appelé parametre de régularisation.
La solution reconstruite Uy au sens de la minimisation du critere J \(u) est donnée par
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~

UA—argmuin{Hy—f][u,@]HQ—l—AHL(u)||2} (2.109)

a) Cas linéaire

Dans le cas d’un systeme causal linéaire mono-entrée mono-sortie, la relation liant
I'entrée u(t) a la sortie y(t) du systéme peut étre écrite sous la forme d’un produit de
convolution :

t
y(t) = / h(t — T)u(T)dr (2.110)
0
ou h(t), réponse impulsionnelle du systeme linéaire, est supposée connue.

L’ensemble des mesures y* de la sortie y(t) du systeme est effectué sur un horizon
temporel fini. En d’autres termes, chaque fichier de mesures de la sortie y(t) ne comporte
qu’un nombre fini N de points et représente la sortie y(t) avec une périodicité finie donnée.
C’est a l'utilisateur de s’assurer que ce nombre fini de mesures est suffisant pour repré-
senter avec précision la sortie y(t) du systeme. La dimension du vecteur y* est donc fixée
des le départ par l'utilisateur, qui choisit lui-méme 'horizon des mesures et la période
d’échantillonnage T..

Ce passage d’'une dimension a priori infinie vers une dimension finie N de la sortie y(t)
justifie donc la discrétisation du modele linéaire (2.110). Une représentation discrete de
la sortie peut étre donnée par :

I I
Yk = Z hy—ju; = Z hiug—; (2.111)
=0 =0
oul<k<N.

Les termes h; sont les coefficients de la réponse impulsionnelle discrete du modele.
Leur expression dépend de la méthode de discrétisation utilisée. Dans I'immense majorité
des cas, la réponse impulsionnelle est supposée finie :

hi~0, i>1I i€N (2.112)

Le vecteur y* des mesures peut donc s’écrire

v = HU (2.113)
avec
y* = [yb "'7yN]T

U=lup,...,uy]" (2.114)
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ou u; = u(iT,) pour i =1,..., N.

H est une matrice N x N donnée par

-hO 0 0 T
hi  hy :
H=|p, : (2.115)
0
. . . h[) 0
L O -+ ... hI hl hO_

Sous cette forme, le probleme change de nature car il revient a reconstruire une entrée
U de dimension finie. Dans le cas classique ou le parametre de régularisation A est nul,
I’entrée reconstruite Uy—q est la solution du probléeme au sens des moindres carrés :

Uso = (HTH) "HTy* (2.116)

Toute les difficultés de ce probleme viennent d'un éventuel mauvais conditionnement
de la matrice HT H. L’inversion d'une matrice HT H mal conditionnée et un ensemble de
mesures y* de la sortie y(t) entaché d’erreur pourront conduire & une mauvaise recons-
truction U de l'entrée U. D’out Dintérét de la méthode de régularisation de Tikhonov qui
conduit, dans le cas linéaire, a la solution suivante :

Uy = [HTH + MNLU)" LU ' HT y* (2.117)

ou L est soit la matrice identité, soit la matrice des dérivées secondes et A le parametre
de régularisation.

b) Cas non linéaire : modele de Volterra

Dans le cas d'un systeme causal mono-entrée mono-sortie non linéaire par rapport a
I'entrée, la relation liant I'entrée u(t) a la sortie y(¢) du systeme peut également étre écrite
sous la forme d’un modele de Volterra (2.107). Ce modele est toujours linéaire par rapport
aux parametres, ce qui facilite I'identification du vecteur 6, mais il devient non linéaire
par rapport a 'entrée u(t).

La reconstruction de 'entrée u(t) par minimisation du critere composite Jy(u) (2.108)
nécessite alors un algorithme d’optimisation non linéaire. Nous allons utiliser I’algorithme
de Levenberg-Marquardt (1.115) déja décrit et employé dans le chapitre précédent. Cet
algorithme, ainsi que la plupart des algorithmes de programmation non linéaire, nécessite
la dérivation par rapport a l'entrée u(t) du critere J. A(zi) afin d’obtenir le vecteur gradient
9Jx (w) Ir(w)

=22 et une approximation de la matrice hessienne 0
du(t) du(t)

. L’expression du critere com-
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posite Jy(u) (2.108) montre que le calcul du vecteur gradient et de la matrice hessienne
requiert le calcul des fonctions de sensibilité par rapport a Uentrée u(t) :

OHu(t)]
OR (2.118)

D’apres expression du modele de Volterra (2.107), ce calcul des fonctions de sensibilité
nécessite a son tour le calcul de chaque dérivée de la forme

L, (1) OLm,(t)
du(t) "7 Ou(t)

(2.119)

et de la forme

O, () I, (1)

0 (2.120)

Le modele de Volterra développé sur une base de fonctions orthonormées généralisée
(2.107) est suffisamment explicite pour permettre d’effectuer analytiquement le calcul des
fonctions de sensibilité mais le probleme du calcul et de la simulation numérique du vec-
teur gradient et de la matrice hessienne se pose : la dimension du vecteur y* des mesures
de la sortie y(t) peut considérablement alourdir la somme de calculs numériques nécessaire
a la résolution du probleme inverse.

Afin de diminuer la somme de calculs, I'idée est d’adopter une démarche de discréti-
sation semblable a celle présentée dans le cas linéaire : nous choisissons de simuler chaque
fonction ¢,, de la base orthonormée généralisée par I'utilisation de la convolution discrete
et des coefficients ¢; de la réponse impulsionnelle discrete de la fonction @, (s).

L’expression de la réponse d’une fonction généralisée a U'entrée u(t)

L(t) = /0 ' on(P)ult — 7)dr (2.121)

devient, apres discrétisation

I, = U (2.122)

ou I, et U sont des vecteurs de NV valeurs données en fonction de la période d’échantillon-
nage T, choisie :

I = [I.(kT.)], k=0,..,N—1

U=[ukT,)], k=0,..,N—1 (2.123)

Le terme ¢,, est une matrice N x N, analogue a la matrice (2.115) définie dans le cas
linéaire, et donnée par
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Chapitre 2. Inversion d’un modele de Volterra

F o0 0 07
Y1 ¥o
On=| o : (2.124)
0 .
: : wo 0
L 0 - - o o 01 o

ou les coefficients ¢; sont les coefficients de la réponse impulsionnelle discrete de la fonc-
tion ®,,(s).

La réponse impulsionnelle de la fonction ®,,(s) est finie :

0;~0, i>1,i€eN (2.125)

Une fois cette discrétisation effectuée, le modele de Volterra global discrétisé, tronqué
a l'ordre n, est donc défini par :

mi—1

7(0) = HU,6) = Z (Z Z bony .ons (Ormy )@...@(gbmiU)) (2.126)

=1 \m1=0

L’opération ® est le produit de Hadamard entre deux matrices A et B défini de la
maniere suivante :

A:{“l “2},3:“1 bQ],A@B:{albl “2(’2] (2.127)

a3 ay bg b4 CL3b3 a4b4

Cette discrétisation du modele de Volterra présente deux avantages. D’abord, la simu-
lation numérique du modele non linéaire ne comporte que des produits matriciels, ce qui
permet d’alléger la charge de calculs. Ensuite, le calcul du vecteur gradient est grandement
simplifié puisque le calcul des dérivées (2.119) devient

I, L,
. 2.128
et celui des dérivées (2.120) devient
OIn;Olm))  Om, Ol
ouU = S0 © Iy + 5" © I, (2.129)

- Qbml © Imj + ¢m] O, ImZ

Le vecteur gradient est donc donné par I’expression

a\U) . OH[U,H) .
S T kg TAALLU (2.130)

ou
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~

e =y — H[U,0) (2.131)

La matrice hessienne est obtenue par 'approximation de Gauss-Newton :

+2ALTL (2.132)

~ T ~
) _, (9.6 0H[U.0
Uz au ou

Une fois ces calculs effectués, la reconstruction du signal d’entrée U est donc assurée
par la minimisation du critere composite J(U) (2.108). Un des inconvénients de ’algo-
rithme ci-dessus est qu’il ne garantit pas I'optimalité de la solution, a savoir une entrée
reconstruite Uy qui minimise globalement le critere Jy(U). La reconstruction optimale Uy
de I'entrée U dépend du parametre de régularisation A et de l'initialisation de I'algorithme
de Levenberg-Marquardt. Le probleme d’initialisation de 'algorithme a déja été discuté
au premier chapitre. Le probleme du choix du parametre A est inhérent a la méthode de
régularisation de Tikhonov.

2.3.3 Application en simulation

Nous allons maintenant appliquer cette méthode d’inversion du modele de Volterra
par régularisation de Tikhonov au systéeme non linéaire dont la représentation d’état est
la suivante :

{ o(t) = —x(t) — 22(t) + u(t) (2.133)

La non-linéarité est introduite par le terme quadratique z%(¢). Le modele de Volterra
utilisé pour représenter la relation entrée/sortie de ce systeme est développé sur ses 2
premiers noyaux. Ces 2 noyaux sont a leur tour modélisés par un développement sur 4
fonctions orthonormées généralisées. Les poles des fonctions généralisées sont fixées aux
valeurs —0.5, —1, —1.5 et —2. Le nombre total de parametres est égal a 14. La période
d’échantillonnage est fixée a 0.01s. La figure 2.3(a) représente la sortie du systéme non
linéaire (2.133) et la sortie du modele de Volterra proposé.
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0.35 T T T 25
0.3r
0.251
02l 15r

0.151

0.1r
0.5r

VN |

0 5 10 15 20 0 5 10 15 20

0.05r

(a) Comparaison (b) Erreur quadratique

Fig. 2.3 - Comparaison entre sortie du systéme non linéaire (ligne continue) et sortie du modéle
de Volterra (ligne pointillée)

L’erreur quadratique entre les deux courbes, présentée sur la figure 2.3(b), est tres
faible. L’adéquation entre le systeme et le modele de Volterra est donc suffisamment
bonne pour envisager 'inversion du modele de Volterra afin de correctement reconstruire
le signal d’entrée u(t) du systéme non linéaire connaissant sa sortie y(t).

a) Cas déterministe

Afin de valider la méthode d’inversion et le modele de Volterra choisi, on commence
par effectuer une minimisation du critere Jy(u) (2.108) sans parametre de régularisation,
soit A = 0, et sans ajouter de bruit au vecteur y* des sorties mesurées. Les résultats ob-
tenus sont les suivants :

La figure 2.4(a) compare l'entrée U du systeme non linéaire et Ientrée reconstruite
Ujs—o par la méthode décrite précédemment.
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Tikhonov

0.4

0.351

0.3F

0.251

0.2r

0.15-

0.1r

0.051

-0.05

35

25F

15¢

0.5-

5 10

(a) Courbe complete

15

20

5 10 15

(b) Erreur quadratique

20

Fig. 2.4 - Entrée du systéme non linéaire (ligne continue) et entrée reconstruite (ligne pointillée)

La figure 2.4(b) nous donne l'erreur quadratique entre les deux courbes précédentes.

Ce résultat permet donc de valider le bon fonctionnement de ’algorithme de recons-

truction de ’entrée d’un systeme non linéaire par régularisation de Tikhonov.

b) Cas stochastique

A la différence du signal de sortie y(t) précédent, tout signal de sortie mesuré est in-
évitablement entaché d'un bruit de mesure. Cette constatation s’étend a tous les types
de signaux mesurés. Ce bruit de mesure a évidemment une influence sur la qualité de
la reconstruction de l'entrée u(t) du systéme non linéaire et cela méme si le modele de
Volterra est suffisamment précis.

On considere donc dans cette partie un signal y(t) simulé auquel on a ajouté un bruit
blanc gaussien. Le rapport signal sur bruit est fixé a 100. Le modele de Volterra défini
précédemment (2 noyaux, 14 parametres) permet un bon compromis entre l’erreur de mo-
délisation (due aux troncatures) et l'erreur de variance (due au bruit) comme le montre

la figure 2.5.
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0.35 T T T 16

0.31

0.25[

0.2r

0.15f

0.1r

0.05-

0

-0.05 L L L L N | . | L
0 5 10 15 20 0 5 10 15 20

(a) Sortie bruitée du systéme non linéaire
(courbe pointillée) et sortie du modele de Vol-
terra (courbe foncée)

(b) Erreur quadratique

Fig. 2.5 - Comparaison entre les sorties du systeme non linéaire et du modele de Volterra

Nous conservons donc le méme modele de Volterra dans les différentes études qui
suivent : d’abord, I’étude de I'influence du parametre de régularisation \; ensuite I’'étude
de l'influence de I'amplitude du bruit de mesure; et enfin I’étude de I'influence du choix
de 'opérateur L de régularisation qui, dans notre étude, sera une matrice.

i) Influence du parametre de régularisation A

Afin d’étudier I'importance du parametre de régularisation A dans la reconstruction
de l'entrée u(t) du systéme non linéaire, nous allons fixer le rapport signal sur bruit a la
valeur 100 et prendre comme opérateur L le plus simple qui soit : la matrice identité I.

On effectue donc la reconstruction de 'entrée u(t) a partir de mesures de la sortie
bruitée 3* et du modele de Volterra pour différentes valeurs de \ échelonnées entre 10~°
et 1 (figure 2.6).
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(a) A=10"° (b) A=10"4

0.35f
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0.15¢
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0.4 ‘ ‘ ‘ 04
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Fig. 2.6 - Reconstruction de l’entrée u(t) pour différentes valeurs de A

[’augmentation progressive de la valeur du parametre de régularisation A permet de
constater l'influence du deuxieme terme du critere composite Jy(u) (2.108) sur la qualité
de la reconstruction Uy de 'entrée u(t).

De maniere générale, on retrouve sur ’entrée reconstruite le bruit ajouté a la sortie
y(t) du systeme, mais d’autant plus amplifié que la valeur de X est faible. Ceci montre
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bien que, dans le cas ou 'on ne régularise que tres peu ou pas du tout, I'inversion du
modele de Volterra est équivalente a un filtrage passe-haut : les composantes en haute
fréquence (c’est a dire le bruit) sont amplifiées. Il en résulte une reconstruction de 1’en-
trée u(t) fidele au données mesurées mais fortement bruitée. On constate & nouveau que
I’absence totale de régularisation est équivalente a reconstruire I’entrée par la méthode
classique des moindres carrés.

L’ajout du terme de régularisation X ||L(u)||* et Paugmentation progressive de la va-
leur du parametre A permet de vérifier son influence sur la qualité de la reconstruction
de l'entrée u(t). Si la valeur de A augmente trop, ce n’est plus I'adéquation aux données
mesurées qui est privilégiée mais plutot 'information a priori que I'on possede sur I'en-
trée u(t). Il en résulte une atténuation importante du bruit sur la solution reconstruite
mais on observe également que le signal reconstruit U n’est plus du tout en adéquation
avec l'entrée réelle u(t) du systeme non linéaire : la régularisation a occasionné une perte
d’information par rapport aux données mesurées.

Ces observations indiquent donc qu’il est nécessaire de trouver un compromis entre
I'importance accordée aux données et celle accordée a la régularisation de la solution. Ce
compromis doit donc étre effectué sur le choix de la valeur du parametre .

Différents essais de reconstruction de I'entrée u(t) montrent que la meilleure valeur du
parametre de régularisation A se situe aux alentours de 0.005 comme le montre la figure
2.7. Ceci est conforme au résultat de I’approche bayésienne qui définit le coefficient de
régularisation optimal comme étant le rapport A\, = o; /02 de la variance du bruit par
la variance de l'entrée u(t) a reconstruire. Dans notre application, ce rapport est égal a
0.0049.

0.5

0.4r

0.3f

0.21

0.1r

5 10 15 20

Fig. 2.7 - Reconstruction de l’entrée u(t) pour A = 0.005

On remarque que cette valeur A, qui offre pourtant un compromis entre le niveau de

bruit de 'entrée reconstruite U, et sa régularisation, ne permet pas d’obtenir une recons-
truction totalement satisfaisante car cette derniére reste relativement bruitée. Le niveau
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de bruit des données mesurées a donc une importance capitale pour la reconstruction de
I’entrée d’'un systeme par inversion de modele. Le paragraphe suivant propose donc d’ob-
server I'influence du bruit de mesure sur la qualité de la reconstruction de 'entrée u(t) du
systeme non linéaire.

ii) Influence du bruit de mesure

Afin d’observer l'influence du bruit de mesure, nous allons ajouter aux données de
sortie mesurées y* un bruit d’amplitude croissante. Dans chaque cas, on fixe le parametre
de régularisation A a une valeur optimale A, et on garde L = I comme opérateur de ré-
gularisation agissant sur 'entrée u(t). On fait varier le rapport signal sur bruit de maniere
a obtenir des données de sortie faiblement bruitées (rapport S/B égal a 10000) jusqu’a des
données fortement bruitées (rapport S/B égal a 20). L’ensemble de figures 2.8 représente
I’entrée reconstruite pour ces différents niveaux de bruit.

0.6 T T T 0.6
05- 1 osh
0.41 1 0.4F
03} 03l
0.2F 02k
0.1 1 0.1,
-0.1 -0.1
02 : : : -02 : : :

0 5 10 15 20 0 5 10 15 20
(a) Rapport signal/bruit égal & 10000; A,p: = (b) Rapport signal/bruit égal & 1000; Aoy =
491le -5 4.91e — 4

0.6 T T T 0.4
0.35

0.5r
0.31
041 1 0.25}
03t 0.2
0.15f
02r 01f
01f { 005
0

0
-0.05F

-0.1 : ; ; -01 ; ; ;

0 5 10 15 20 0 5 10 15 20
(c) Rapport signal/bruit égal & 100; A, = (d) Rapport signal/bruit égal & 20; A,y =
4.91e — 3 2.45e — 2

Fig. 2.8 - Reconstruction de 'entrée u(t) pour différents niveaur de bruit de la sortie mesurée
y(t)
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Malgré une valeur du parametre A qui respecte au mieux le compromis entre adéqua-
tion aux données et régularisation de I’entrée reconstruite, on constate qu’un fort niveau
de bruit ajouté aux données mesurées y(t) dégrade considérablement le signal reconstruit
jusqu’a le rendre inutilisable (cas d’un rapport signal sur bruit égal a 20 sur la figure

2.8(d)).

La mesure du signal de sortie doit donc étre la plus précise possible. Cependant, dans
certains cas de figure, il n’est pas possible d’éliminer compléetement le bruit de mesure sans
perdre d’information sur le signal de sortie y(t). Le filtrage des données ne suffit pas a
obtenir une entrée reconstruite suffisamment proche de la véritable entrée du systeme non
linéaire. Il faut donc trouver un autre moyen de limiter 'amplification du bruit de mesure.

Une solution consiste a modifier le critére composite Jy(u) en choisissant une matrice
de régularisation L autre que la matrice identité.

iii) Influence du choix de la matrice de régularisation L

Nous venons de voir que le probleme de ’amplification du bruit de mesure ne peut étre
évité lors de l'inversion du modele de Volterra (ou de n’importe quel modele linéaire ou
non linéaire). On peut cependant modifier la deuxieme partie du critere composite Jy(u)
pour agir sur l'entrée reconstruite U A et tenter de minimiser I'importance du bruit.

Jusqu’ici, la matrice de régularisation L considérée était la matrice identité. On se
contentait donc de minimiser la norme ||.||, de 'entrée reconstruite U. Un autre choix
possible est de minimiser non pas la norme de I'entrée reconstruite mais celle de la dérivée
seconde de 'entrée reconstruite afin d’adoucir les variations brusques occasionnées par le
bruitage des données mesurées.

Le critere composite Jy(u) devient donc :

2ull?
e

étant donné que 'on travaille sur des mesures discretes et sur un modele de Volterra
discrétisé qui nous a conduit au critere composite discrétisé suivant :

Ja(u) = |ly — Hu]||* + A (2.134)

T(U) = Hy—fI[U,G]H2+/\||LUH2 (2.135)

. / . . /L / /e s 2 .
il est nécessaire de discrétiser I’opérateur dérivée seconde % afin de I'appliquer au vecteur
U de dimension finie.

Considérons une fonction f(¢) échantillonnée avec une période 7T, sur un horizon de N
points. Sur cet horizon, la fonction f(t) est représentée par le vecteur fini :

[f1s fos ooy fis s f] (2.136)
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2.83. Inversion du modéle de Volterra par régularisation de Tikhonov

avec

fi= f(Te) (2.137)

Selon la méthode d’Euler, une approximation de la dérivée seconde de la fonction f(¢)
au temps ¢t = i1, est donnée par :

dt* )i, 12
que 'on peut écrire plus simplement
fic1 = 2fi + fin (2.139)

2
Te
On peut donc écrire une approximation de la dérivée seconde de ’entrée reconstruite
U au temps t = kT, de la maniere suivante :

U((k — )T,) — 2U(KT,) + U((k + 1)T,)
12

(2.140)

ou, plus simplement

Uk—1 —2Uk + U
1z
A partir de 'approximation de la dérivée seconde de chaque composante du vecteur

U, on peut donc définir une matrice L d’approximation de la dérivée seconde de I’entrée
reconstruite U :

(2.141)

—2 1 0 0 0
o 2
L:T_g 0 1 -2 1 0 (2.142)
: .. .. .. .0
0o - 0 0 1 -21

On appelle plus communément matrice des dérivées secondes la matrice L ainsi définie.

Si I'on multiplie cette matrice par le vecteur U, on obtient un vecteur d’approximations
de la dérivée seconde de chaque composante :

Uy —2U, + Us

1 .
w5 | Uk =20k + Uiy (2.143)

e

Un_—2—2Un_1+Unx

On peut maintenant utiliser cette discrétisation de I'opérateur dérivée seconde dans
le critere composite J)(U) afin d’en observer les effets sur la qualité de la reconstruction
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Chapitre 2. Inversion d’un modéle de Volterra

de Pentrée u(t) du systeme non linéaire. On va dans un premier temps se placer dans les
mémes conditions de simulation que dans le cas des figures 2.6(a) a 2.6(f). Le rapport
signal sur bruit reste égal a 100. Selon différentes valeurs du coefficient de régularisation
A, les résultats obtenus sont ceux de I'ensemble de figures 2.9.

i
(a) A=10"12 (b) A=10"10

0.5 T T T 0.6

pllL A 1 o8

[yl“' 1 |
11 |H‘1l"'h

0.1 A ‘J. Ik
Viilwr

‘h“ 1‘1[1 u‘ i" WW[ —

(c) A=10"8 (d) A=10"7

5 10 15 20 o 5 10 15 20

(e) A=10"* (f) A=1

Fig. 2.9 - Reconstruction de l’entrée u(t) pour différentes valeurs de \ et L matrice des dérivées
secondes
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On remarque tout d’abord que les valeurs considérées du coefficient de régularisation
A sont différentes des valeurs utilisées dans le cas de 'ensemble des figures 2.6(a) a 2.6(f).
Ceci peut s’expliquer par la forme de la matrice L des dérivées secondes (2.142) appliquée
au vecteur d’entrée discrétisé U. En effet, les coefficients de cette matrice sont multipliés
par le coefficient % qui dépend de la période d’échantillonnage T,. Puisque la période
d’échantillonnage est T, = 0.01s, la matrice L se retrouve multipliée par un coefficient
7 = 10000. Le deuxieme terme du critére composite Jy(u) (2.134) prend donc beaucoup
plus d’importance que le premier dans la reconstruction de 'entrée U. Afin de relativiser
I'importance de ce second terme, il faudra donc considérer des valeurs de A tres faibles,

de Dordre de 1074.

Comparons maintenant la reconstruction de 'entrée U en utilisant la matrice identité
(figures 2.6(a) a 2.6(f)) a celle qui utilise la matrice des dérivées secondes (figures 2.9(a)
a 2.9(f)). On peut constater d’une part que Ueffet de filtrage introduit par ["utilisation de
la dérivée seconde de I'entrée reconstruite U est visible a partir d’une certaine valeur du
parametre A située autour de la valeur 10~7. Le terme % qui multiplie la matrice L est
donc égal & 1072, valeur du méme ordre de grandeur que celle optimale A\ = 0.005 que
nous avons considéré lors de 1'utilisation de la matrice identité.

Mais, d’autre part, on constate que I'augmentation de la valeur du parametre \ (figure
2.9(f)) n’occasionne pas de dégradation de la reconstruction de I'entrée comme c’était le
cas lors de l'utilisation de la matrice identité.

2.3.4 Volume de calcul

Un probléeme qui n’a pas été abordé jusqu’a maintenant est celui du temps de calcul
et de simulation nécessaire pour l'inversion du modele de Volterra. En effet, suivant la
dimension du vecteur U a reconstruire (généralement fixée par la dimension du vecteur
y* des données mesurées), ce temps peut devenir prohibitif, de I'ordre de plusieurs heures
de calcul. Cette charge de calcul s’explique en grande partie par la dimension du vecteur
y* des points de mesure. De maniere générale, il n’est pas rare de travailler sur des vec-
teurs de points dont la dimension atteint facilement 1000, voire davantage, selon 1’horizon
temporel et la période d’échantillonnage 7T, choisis par 'utilisateur. Les matrices ¢,, et L
considérées pour simuler la sortie y(f) du modele de Volterra et pour minimiser le cri-
tere composite Jy(U) sont donc également de dimension tres importante. Par conséquent,
effectuer une simulation de sortie de modele de Volterra ainsi qu'une minimisation de
critere sur toute 1’étendue de I'horizon des mesures coute tres cher en temps de calcul,
méme pour les processeurs actuels dont la puissance de calcul augmente régulierement.
En outre, la charge de calcul nécessaire, si on utilise la méthode telle quelle, ne permet
pas d’envisager la reconstruction d’un signal d’entrée en temps réel.

Une solution consiste donc a ne pas envisager la minimisation du critere Jy(U) sur
I'ensemble N des points de mesure mais plutot sur un horizon donné I < N (figure 2.10).
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A{yk}

T — .

~_

Horizon
< > .
k k+1 N

Fig. 2.10 - Horizon I de minimisation de critére

A {yk}

Horizon 7 +J

Y

»
»

k—-J k k+1 N

Fig. 2.11 - Horizon J + I de reconstruction

A Tinstant k, Uentrée a déja été reconstruite pour k— 1 échantillons et on la reconstruit
pour I’échantillon & aprés minimisation du critere Jy(U) sur 'horizon [k, k+I]. On déplace
ensuite ’horizon [ en introduisant une nouvelle mesure, d’ou le nom de reconstruction
sur fenétre glissante. Une fois qu’on a atteint la valeur I = N, le signal d’entrée u(t) est

reconstruit sur ’horizon entier.

La charge de calcul liée a I'optimisation sur I points est ainsi limitée.

Cependant, le nombre de points sur lesquels on reconstruit ’entrée augmente a chaque
nouvelle mesure considérée. Par conséquent, I’horizon de simulation du modele de Volterra
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est en perpétuelle augmentation. La aussi, une solution consiste a envisager la reconstruc-
tion de I'entrée sur un horizon donné J + I < N dont la largeur est fixée par 'utilisateur
(figure 2.11).

La figure 2.12 illustre cette technique de reconstruction par minimisation de critere
sur une fenetre glissante.

A Tlinstant k, U'entrée u(t) a déja été reconstruite sur I’horizon [0,k — 1]. On dispose
donc d'un vecteur

Up_1 = [U(0),...,UGT.), ..., U((k — 1)T,)] (2.144)

On note ce vecteur plus simplement

ﬁk*l - [UOV-"Uia-'-akal] (2145)

L’étape suivante est de déterminer la reconstruction optimale U,,; de I'entrée u(t) sur
I'horizon [k, k + I] par minimisation du critere composite :

k+1 k+1
DaU) = (i =0 + A U7 (2.146)
ik ik

ou les termes y; sont les mesures de la sortie y(t) du systéme non linéaire sur ’horizon

(k, k+ 1.

~

Le terme y = HI[U, 0] est la réponse simulée du modele de Volterra a l'entrée U sur
I'horizon [k — J, k + I]. Cette simulation n’est donc pas effectuée sur 1'horizon global
[0, k + I] mais sur un horizon réduit afin de diminuer la charge de calcul nécessaire.

On utilise un algorithme de programmation non linéaire de type Levenberg-Marquardt

pour minimiser le critere Jy x(U). Le vecteur U est initialisé a la valeur 0 a chaque instant
k.

La minimisation du critere Jy ,(U) permet d’obtenir la reconstruction U, de 'entrée
u(t) sur 'horizon [k — J,k + I] mais on ne conserve que ’échantillon correspondant a
I'instant & :

Up = Uppt (k) (2.147)
On dispose maintenant du vecteur

~

U = [Uo, ..., Us, oo, Uy (2.148)

L’étape suivante consiste a incrémenter la valeur de k et minimiser le critere Jy g1 (U).
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Etape £:
Horizon de
simulation
Horizon d'
optimisation
L | | | | >
0 k=J k k+1 N
< Ny,
N Vd
Horizon global
Etape k +1:
Horizon de
simulation
Horizon d'
optimisation
L | | | | >
0 k+1-J k+1 k+1+1 N
& Ny,
< >
Horizon global
Etape N - I
Horizon de
simulation
Horizon d'
optimisation
L | | | >
0 N-I-J N-1I N
< N,
< >

Horizon global

Fig. 2.12 - Reconstruction de l’entrée u(t) sur une fenétre glissante

Cette technique permet donc de réduire le temps de calcul global en limitant le temps
consacré a la minimisation du critére composite Jy ,(U) et a la simulation de la sortie §
du modele de Volterra. L’entrée u(t) n’est plus reconstruite globalement sur 1'horizon des
mesures mais de maniere itérative, point par point, en considérant un horizon de simu-
lation réduit a I + J points et un horizon de minimisation de critere réduit a [ points.
On peut ainsi passer de plusieurs heures de calcul a seulement quelques minutes. On peut
encore diminuer ce temps en choisissant des valeurs de [ et J faibles et ainsi envisager une
exploitation en temps réel mais un choix de valeurs trop faibles peut dégrader la qualité
de reconstruction de l'entrée a cause de I’étroitesse de I'horizon d’optimisation I et de
simulation [/ + J]. Il est donc nécessaire de respecter un compromis entre temps de calcul
et qualité de reconstruction. Ce compromis peut empécher d’implémenter cette méthode
en temps réel pour des systemes rapides.

Si les valeurs de I et .J sont convenablement choisies, cette technique de reconstruction
de Pentrée u(t) n’affecte en rien la qualité de I'entrée reconstruite U sur I’horizon global.
On peut reprendre le cas ou la valeur du parametre de régularisation \ est fixé a la valeur
0.001 et la matrice L est celle des dérivées secondes (cf figure 2.13).
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0.45 T T T

0.4r R

0.351 1

0.3r 1

0.251 ]

0.2r R

0.151 4

0.1r q

0.051 R

OF 1
-0.05 - - -
0

Fig. 2.18 - Reconstruction de l’entrée u(t) sur une fenétre glissante pour A = 0.001

La méthode présentée permet donc de diminuer considérablement le volume de calcul
nécessaire a la reconstruction du signal d’entrée.

2.3.5 Conclusion

L’étude de l'inversion d'un modele par la méthode de régularisation de Tikhonov ap-
pliquée dans un cas non linéaire (celui du modele de Volterra) fait ressortir un certain
nombre de problemes ouverts, dont la plupart concernent également les modeles linéaires.

Tout d’abord, la question de la forme du modele employé et le fait qu’il puisse correc-
tement représenter le systeme réel étudié doivent rester au centre des préoccupations de
I'utilisateur car ces deux considérations doivent étre antérieures au probleme de l'inver-
sion. Le modele de Volterra considéré dans cette étude est un type particulier de modele
parmi d’autres. Nous verrons dans la partie de ce mémoire consacrée aux applications
qu’il convient dans les deux cas considérés mais d’autres modeles pourraient bien str re-
présenter tout aussi correctement le comportement des systemes réels étudiés. Par contre,
la méthode d’inversion par régularisation ne pourra peut-étre pas s’appliquer a ces autres
formes de modele. Ceci met 'accent sur la difficulté a définir une méthode d’inversion
globale, que ce soit dans le cas linéaire ou non linéaire.

Un autre probleme ouvert aussi bien en linéaire qu’en non linéaire est la détermina-
tion du parametre de régularisation optimal. Dans notre cas, cette détermination n’a pu
se faire qu’a la suite de différents essais/erreurs et de comparaisons entre 1'entrée réelle du
systeme et I’entrée reconstruite. La présence de bruit sur les données mesurées ne facilite
pas ce choix optimal du parametre.

Un probleme n’a pas été soulevé dans cette partie mais reste d’une importance capitale

dans le cas non linéaire et ne se limite pas qu’au probleme d’inversion de systeme. Il s’agit
bien str de la minimisation de critere. La méthode employée dans notre cas est celle de
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Levenberg-Marquardt. Les résultats obtenus sont relativement satisfaisants mais, comme
on I'a vu dans la premiere partie du mémoire, cette méthode ne garantit pas un résultat
optimal. La reconstruction de I'entrée réelle du systeme non linéaire apres minimisation
du critere régularisé nous fournit un résultat correct mais qui peut se révéler sous-optimal.

Cette étude a donc montré que la méthode d’inversion de modele par régularisation
de Tikhonov peut s’appliquer en utilisant un modele de Volterra discrétisé et une fenétre
d’optimisation glissante.

2.4 Inversion du modele de Volterra par retour d’en-
trée reconstruite [George, 1959]

2.4.1 Introduction

Une alternative possible a la régularisation de Tikhonov appliquée a l'inversion dun
systeme non linéaire consiste en 1'utilisation d’une représentation implicite de l'inverse
du modele non linéaire considéré. Les deux méthodes que nous allons décrire sont tres
proches 'une de I'autre dans leur principe et nécessitent toutes deux un retour additif de
I’entrée reconstruite sur le signal mesuré utilisé pour reconstruire cette méme entrée. De
meéme que la régularisation de Tikhonov, ces deux méthodes ne nécessitent en aucun cas
de procéder a une inversion explicite du modele non linéaire considéré.

Ces deux approches sont relativement intuitives et permettent la reconstruction point
par point d’un signal d’entrée en utilisant uniquement la sortie mesurée et un modele du
systeme non linéaire. La forme de modele que nous utiliserons est une série de Volterra
dont chaque noyau est approché par un développement sur des fonctions de transfert.
Afin d’assurer une reconstruction de qualité, le modele doit représenter le plus précisé-
ment possible la sortie du systeme non linéaire.

L’application de ces deux méthodes de reconstruction a un systeme non linéaire en
simulation permettra de constater que les résultats de reconstruction obtenus sont précis
et tout a fait comparables entre eux et a ceux obtenus par régularisation.

2.4.2 Premiere approche
2.4.2.1 Principe

Les conditions de départ sont les mémes que dans la partie précédente : on considere
un systéme non linéaire dont lentrée est notée u(t) et la sortie y(t), modélisé par un
développement tronqué en série de Volterra. Nous utiliserons dans toute la suite de cette
partie le modele de Volterra développé sur fonctions de transfert. Cette forme de modéli-
sation a été étudiée au chapitre 1. L’ensemble des résultats présentés peuvent également
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s’appliquer au modele de Volterra développé sur bases de fonctions orthonormées.

Dans toute la suite de cette partie, on utilise la forme de modele définie par la figure
1.28 du premier chapitre. Chaque terme Dj;(a; ;,p;;) représente donc une fonction de
transfert d’ordre p,;; € N (somme de fonctions de transfert d’ordre k € N,k = 0,...,p;;)
et est donné par l'expression (1.132).

La premiere approche considérée afin d’obtenir une reconstruction acceptable u de
I'entrée u(t) a partir de la sortie mesurée y(t) et du modele de Volterra H[u(t)] d'un
systeme non linéaire repose sur le schéma d’inversion en boucle fermée donné sur la figure
2.14.

A\ A5

(1) :@

+

Fig. 2.14 - Schéma de reconstruction de l’entrée u(t)

La fonctionnelle H qui relie la sortie y(¢) du systéme non linéaire a son entrée u(t) est
définie par I'expression

= Z H;[u(t)] (2.149)

avec

+o0o +oo
:/ / hi(T1y ..oy T Hu 7;)dT; (2.150)

On peut définir la fonctionnelle I de la maniere suivante :

= Z L{u(t)] (2.151)

On considere une fonction multidimensionnelle z(ty, ..., ¢;) et on lui applique la fonc-
tionnelle I; de la maniere suivante :

][ tl,..., / / t1_7—17'--7 i tl,..., Hde (2152)
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La fonction 0 est une impulsion de Dirac. Par définition, I'impulsion de Dirac est
I'élément neutre du produit de convolution. L’expression (2.152) est donc égale a :

Si 'on remplace maintenant la fonction x par le signal d’entrée u du systeme non
linéaire et que 1'on se place dans le cas particulier ou t; = ... = t; = ¢, U'expression (2.152)

peut s’écrire :

Llu(t, ... t)] = [Ju(t) = v'(t) (2.154)

La somme de deux fonctionnelles étant une fonctionnelle, on peut par conséquent
développer le terme (I — H)[u(t)] comme une fonctionnelle classique :

o0

(I = H)lu(®)] = 3 (1 = H)u(t) (2155)
(5 = H)lu(t)] = u'(t) ~ Hifu(t)] (2156)

L’expression de H;[u(t)] est donnée par (2.150).

Le schéma de la figure 2.14 est équivalent a la figure 2.15 ou la fonctionnelle L relie
'entrée reconstruite @ a la sortie mesurée y(t).

<>

y(t)
— > L —

Fig. 2.15 - Schéma équivalent de reconstruction de l’entrée u(t)

La fonctionnelle L peut étre développée de maniere classique en une somme de fonc-
tionnelles :

Lly(®)] = ZLi[y(t)] (2.157)

Nous allons maintenant montrer que la fonctionnelle L (qui associe I'entrée recons-
truite u(t) a la sortie y(¢) du systeme non linéaire) est 'inverse de la fonctionnelle de
Volterra H (qui associe la sortie y(t) a 'entrée u(t) du systéme non linéaire).
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Considérons d’abord le cas simple ou la sortie mesurée y(t) n’est pas bruitée. Le schéma
de la figure 2.14 permet d’écrire la relation :

G =y(t)+ (I — H)a) (2.158)

Le schéma équivalent 2.15 nous donne la relation u = L[y(t)] que 'on peut introduire
dans la relation (2.158) :

Lly(®)] = y(t) + (I — H)[L{y(®)]] (2.159)

La fonctionnelle I — H peut étre développée en une somme de deux fonctionnelles :

Lly(t)]

y(t) + I[Lly(t)] — H[L[y(t)]
y(t) + Lly(8)] — H[L[y(1)] (2.160)

Apres simplification, on obtient :

y(t) = H[L[y(t)]] (2.161)

On en déduit donc que la fonctionnelle L est I'inverse de la fonctionnelle H. Le prin-
cipe du schéma 2.14 peut donc étre utilisé pour reconstruire l'entrée u(t) du systéme non
linéaire a partir de la connaissance du modele de Volterra et de la mesure de la sortie y(t).

2.4.2.2 Application a un systeme non linéaire

Afin de valider en simulation cette méthode d’inversion, on prend I’exemple d’un sys-
teme non linéaire quadratique dont la représentation d’état est la suivante :

{ 2(t) = —107%x(t) — 22 (t) + 10~5u(t) (2.162)

y(t) = 250x(t)

Ce systeme est différent de celui utilisé précédemment afin d’éviter certains problemes
numériques lors des simulations. On considere comme signal d’entrée la séquence pseudo-
aléatoire variable en amplitude présenté sur la figure 2.16(a). La période d’échantillonnage
est cette fois fixée & T, = 1s.
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(a) Entrée u(t) (b) Sortie y(t)

Fig. 2.16 - Simulation du systéeme non linéaire (2.162)

La réponse du systéme non linéaire (2.162) est représentée sur la figure 2.16(b).

Afin de représenter correctement le lien entre ces deux signaux, le modele de Volterra
utilisé est développé sur ses deux premiers noyaux. Le premier noyau de Volterra est en-
suite modélisé par un développement sur une fonction de transfert tandis que le deuxieme
est modélisé par un développement sur deux fonctions de transfert. Le nombre total de
parametres du modele est égal a 8.

La sortie du modele de Volterra et du systéme non linéaire (2.162) sont proches comme
le montrent les figures 2.17(a) et 2.17(b).

x10~

0.07 T T T T T T T 1

0.9r
0.06

0.8

0.05f 07k

0.0ak 0.61

0.5r

0.03f
0.4r

0.02} 0.3r

0.2

0.01r
0.1r

(a) Comparaison (b) Erreur quadratique

Fig. 2.17 - Sortie du systéme non linéaire (ligne continue) et du modéle de Volterra (ligne poin-
tillée)

On dispose donc d'un modele de Volterra suffisamment précis et d’'une mesure non

136



2.4. Inversion du modéle de Volterra par retour d’entrée reconstruite [George, 1959]

bruitée de la sortie y(t) du systéme non linéaire étudié. On peut donc appliquer la mé-
thode d’inversion proposée afin de la valider.

Le modele de Volterra tronqué a ses deux premiers noyaux étant suffisant pour cor-
rectement représenter la sortie du systeéme non linéaire, on tronque également a ses deux
premiers termes la fonctionnelle I définie par (2.151) :

Iu(t)] = L{u(t)] + L]u(t)]
= u(t) + u?(t)
Remarquons que l'augmentation de 'ordre de troncature du modele de Volterra et

de la fonctionnelle I n’apporte rien de plus a la précision des résultats obtenus par cette
méthode.

(2.163)

Cette premiere méthode de reconstruction de I'entrée u(t) donne les résultats figurant
sur les courbes de la figure 2.18.

x10°
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0.091 H
| 251
0.08- \
]
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0.06 ; :‘;“;
)
0.05- " 1 1.5r
0.04r b
v 1b
0.03f !
0.02-
0.5
0.01r
o . L
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
x 10" x 10"
(a) Reconstruction (b) Erreur quadratique

Fig. 2.18 - Comparaison de l'entrée du systéme non linéaire (courbe continue) avec l’entrée
reconstruite (ligne pointillée)

La qualité de la reconstruction de I'entrée est donc satisfaisante. Toutefois, on re-
marque certaines différences entre 1'entrée u(t) réelle et 'entrée reconstruite u malgré la
précision du modele de Volterra. De plus, I'apparition de pics dans la reconstruction de
I’entrée peut géner I'utilisateur si leur amplitude prend trop d’importance par rapport a
celle du signal d’entrée réel. Une solution pourrait étre le filtrage des composantes haute
fréquence du signal reconstruit afin d’atténuer le plus possible ces "effets de bord” génants.

Un avantage de cette approche par rapport a la méthode d’inversion par régularisation
de Tikhonov est le faible temps de calcul qu’elle nécessite. En effet, le temps total néces-
saire a la reconstruction de 'entrée u(t) ne dépasse pas ici quelques dizaines de secondes.
Cette différence s’explique en grande partie par 1'utilisation nécessaire d’un algorithme
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Chapitre 2. Inversion d’un modele de Volterra

de programmation non linéaire, tres cotiteux en temps de calcul, qui ralentit donc la pro-
cédure de reconstruction de ’entrée par minimisation de critéere. La premiere approche
proposée dans cette partie ne possede pas cet inconvénient, ce qui permet de se rapprocher
davantage de 'objectif de reconstruction de I’entrée du systeme non linéaire en temps réel.

Cette premiere application nous a donc permis de valider la méthode d’inversion pro-
posée.

2.4.2.3 Influence du bruit de mesure sur la reconstruction

La sortie mesurée y*(¢) du systeéme non linéaire et un modele de Volterra suffisamment
précis permettent la reconstruction rapide de l'entrée par la méthode proposée. Cepen-
dant, nous avons déja vu que toute mesure est inévitablement entachée de bruit. Afin
de valider completement la méthode proposée et de pouvoir la comparer a la méthode
d’inversion par régularisation de Tikhonov, il est donc nécessaire d’étudier I'influence du
bruit de mesure de la sortie sur la reconstruction @ de l'entrée wu(t).

On ajoute a la grandeur de sortie du systéme un bruit gaussien by(t) (figure 2.19).

u(t) (@) + ¥ (@ 0
> H —> L

+
T

A 4
M

by(?)
Fig. 2.19 - Ajout de bruit sur le signal de sortie du systéeme

Le signal de sortie y*(t) utilisé pour reconstruire I'entrée est donc différent de celui
utilisé en l'absence de bruit.

Le signal u* reconstruit par inversion du modele de Volterra sera lui aussi différent a
la fois du véritable signal d’entrée u(t) et du signal reconstruit u en ’absence de bruit.
On peut noter ce signal reconstruit u* comme la somme du véritable signal d’entrée wu(t)
et d'une erreur de reconstruction que 'on nomme b, (¢) (figure 2.19).

T = u(t) + by (t) (2.164)
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En I’absence de bruit de mesure, on a déja montré que la reconstruction u est identique
a lentrée u(t) car la fonctionnelle L est I'inverse exacte de la fonctionnelle H.

(2.165)

En présence d’un bruit de mesure by(t) ajouté au signal de sortie y(t), la reconstruction
u* ne sera pas exactement identique au signal d’entrée u(¢). On peut écrire :

ut = Lly" ()] = Lly(t) + ba(t)] (2.166)

On peut développer cette expression en la séparant en deux termes :

u* = L[Hu(t)] + ba(t)] = u(t) + L[bo(t)] (2.167)

En considérant les expressions (2.164) et (2.167), on obtient finalement :

b1(t) = L[ba(1)] (2.168)

Ceci confirme que l'erreur de reconstruction b (¢) dépend uniquement du bruit de me-
sure by(t). Nous verrons par la suite quelle est 'influence de la fonctionnelle L (inverse
exacte de H) sur 'amplitude de I'erreur de reconstruction en fonction de celle du bruit
de mesure.

On reprend l'exemple du systéme non linéaire quadratique (2.162) mais en utilisant
un signal de sortie bruité (rapport signal/bruit égal a 100) et on identifie & nouveau les
parametres du modele de Volterra. La sortie bruitée du systeme quadratique et celle du
modele de Volterra sont présentées sur la figure 2.20.

0.07

0.061

0.051

0.041

0.031

0.021

0.011

-0.01
0

Fig. 2.20 - Sortie bruitée (courbe claire) et sortie du modéle de Volterra (courbe foncée
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Chapitre 2. Inversion d’un modele de Volterra

Le résultat de la reconstruction u* de l'entrée u(t) par la méthode présentée précé-
demment est donné sur la figure 2.21(a).

0.1 T T T T T T T 25

0.081

0.06
1.5¢

0.04r

0.021

0.51 q
o 4
-0.02 . . . . . . . 0

0 1 2 3 4 5 6 7 8 () 1 2 3 4 5 6 7 8
x10* X 10

(a) Entrée réelle (courbe foncée) et entrée re-
construite (courbe claire)

(b) Erreur quadratique

Fig. 2.21 - Comparaison de l'entrée du systéme non linéaire (courbe foncée) avec l'entrée re-
construite (courbe claire)

L’erreur quadratique entre les courbes de la figure 2.21(a) est représentée sur la figure
2.21(b).

La variance du bruit by(t) ajouté au signal de sortie est égale a 5.38¢ — 6 tandis que
la variance du "bruit” qui entache le signal d’entrée reconstruit est égale a 4.28¢ — 5. La
procédure d’inversion a donc multiplié par un facteur d’ordre 10 le bruit de mesure ajouté
au signal de sortie y(t).

Malgré la présence de bruit et de pics de reconstruction, la qualité de reconstruction
de lentrée u(t) est tout a fait correcte. Cette technique de reconstruction peut donc per-
mettre de contourner le probleme d’amplification de bruit du a I'inversion de modele.

2.4.3 Deuxieme approche

2.4.3.1 Principe

On se place dans les mémes conditions que la premiere approche : on utilise la forme
de modele de Volterra définie par la figure 1.28, ou chaque terme Dj;(a;,pj;) repré-
sente une fonction de transfert d’ordre p;;, € N (somme de fonctions de transfert d’ordre
ke N k=0,..,p;;) et est donné par 'expression (1.132).

La deuxieme approche de reconstruction de U'entrée u(t) a partir de la sortie mesurée
y(t) et du modele de Volterra Hu(t)] repose également sur un schéma d’inversion en
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boucle fermée présenté par la figure 2.22.

vQ)

+
“— H
A_

¥(t) @ X
%Y

Fig. 2.22 - Schéma de reconstruction de l’entrée u(t)

Les termes K7 et K, sont des constantes positives et I'on suppose que K; = 1/Ks.
Nous verrons que le choix des valeurs de ces deux constantes est important pour la qualité
de la reconstruction de I'entrée u(t) et que ce choix peut s’apparenter a celui du parametre
A de la méthode d’inversion par régularisation de Tikhonov.

La fonctionnelle H qui relie la sortie y(¢) du systéme non linéaire a son entrée u(t) est
définie par les expressions (2.149) et (2.150).

Ce schéma présente des caractéristiques similaires au schéma de la figure 2.14 étudié
dans la section précédente. Nous verrons plus tard que, dans certains cas, ces deux sché-
mas sont équivalents.

De méme que la premiere approche étudiée, le schéma 2.22 est équivalent a la figure
2.23 ou la fonctionnelle M relie I'entrée reconstruite u a la sortie mesurée y(t).

<>

y(2)

—> M —>

Fig. 2.23 - Schéma équivalent de reconstruction de l’entrée u(t)
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Chapitre 2. Inversion d’un modele de Volterra

La fonctionnelle M possede les mémes propriétés que la fonctionnelle L et peut étre
développée en une somme de fonctionnelles :

MTy(t)] = Z M;ly(t)] (2.169)

De méme que dans I'approche précédente, on va montrer que la fonctionnelle M est
I'inverse de la fonctionnelle de Volterra H.

On considere d’abord le cas ou la sortie mesurée y(t) n’est pas bruitée. D’apres le
schéma 2.22, 'entrée reconstruite peut s’écrire :

)

= Kily(t) — H[a) + K@) (2.170)

Développons cette relation :

0= Kuy(t) — K [H[A]] + K K@ (2.171)

Les termes K et K, étant des coefficients, on a bien les relations Ki[y(t)] = Kjy(t)
et KQ[ZL\] = Kga

étant donné que K; K, = 1, on peut simplifier la relation (2.171) :

Ky(t) = K[ (2.172)

On peut également simplifier par le coefficient K et d’apres le schéma équivalent 2.23,
on a dans le cas d'un signal de sortie non bruité y(¢) la relation u = M|y(t)], que l'on
peut introduire dans la relation (2.172) :

y(t) = H[M[y(t)]] (2.173)

On en déduit que la fonctionnelle M est I'inverse de la fonctionnelle H. Le schéma
2.22 peut donc également étre utilisé pour obtenir une reconstruction exacte u de I'entrée
u(t) du systeéme non linéaire a partir de la sortie y(t) non bruitée et du modele de Volterra.

2.4.3.2 Application a un systeme non linéaire

Afin de valider cette deuxieme approche et de pouvoir la comparer a la premiere, on
utilise les mémes signaux d’entrée et de sortie (figures 2.16(a) et 2.16(b)) que pour la
premiere approche. La période d’échantillonnage est toujours égale a 1s et la structure du
modele de Volterra reste la méme : la série est tronquée a ses deux premiers termes et le
nombre de parametres est égal a 8.

Pour différents choix de valeur des coefficients K; et K5, la deuxieme approche utilisée

pour la reconstruction de l'entrée u(t) donne les résultats figurant sur les courbes de la
figure 2.24.

142



2.4. Inversion du modéle de Volterra par retour d’entrée reconstruite [George, 1959]

012 4210
01f | 3sf il
3t i
0.08F
25} 1
0.06F
ol i
0.04F
150 :
0.02F 1
1 i
0 H 1 osf l l g
Y I . . |
0 1 2 3 4 5 6 8 0 1 2 3 4 5 6 7 8
x 10 x10*
(a) Ki=1let Kb =1 (b) Erreur quadratique
-3
0.07 3x10
0.06 : _,.__L 25l i
Ny h
Iy h
0.05} = 1
ol i
0.04f 1 1
g
- 15} 1
0.03f 1
it i
0.02 1
001k | osf :
. o . L.
0 1 2 3 4 5 6 8 0 1 2 3 4 5 6 7 8
x10* x10*
(¢c) K1 =0.1et Ko =10 (d) Erreur quadratique
-3
0.06 ‘ ‘ ‘ ‘ ‘ = X0 ‘ ‘ ‘ ‘ ‘ ‘
0.05 — ) 1 25t 1
e ’
g \ !
/ \ '
; | ,
0.04 ; \ . 1 2 1
1 \ 4
b N
1
1
0.03 ! 1 1sf :
1
N
0.02 ! 1 1f :
1
1
1
0.01 | 1 o5t 'L 4
A
. . N
1 2 3 4 5 6 8 0 1 2 3 2 5 6 7 8
x10* x 10

(e) K1 =0.01 et K2 = 100

(f) Erreur quadratique

Fig. 2.2 - Entrée du systeme non linéaire (ligne continue) et entrée reconstruite (ligne poin-
tillée) pour différentes valeurs de K et Ko

La qualité de reconstruction varie selon les valeurs données aux coefficients K7 et K.
Afin de mieux comprendre, on reprend 'expression (2.171) de 'entrée reconstruite et on
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Chapitre 2. Inversion d’un modele de Volterra

I'exprime de la maniere suivante :

u = Ki(y(t) — [H[u]]) + KiKou (2.174)

L’expression (2.174) est analogue a l'expression de l'entrée wu(t) reconstruite par la
méthode de régularisation de Tikhonov. Le premier terme K (y(t) — [H[u]]) représente la
fidélité aux données dont on dispose, tandis que le second est un terme de régularisation
de la solution u. Faire varier les valeurs des coefficients K; et K, revient a accorder plus
ou moins d'importance a l'un des deux termes de I’expression (2.174) : si la reconstruction
est trop régularisée, on observe une perte d’information; si le terme de régularisation est
négligé, on observe des oscillations indésirables en haute fréquence. Les valeurs optimales
de K; et K5 semble se situer autour de 0.1 et 10 respectivement. Cette seconde méthode
d’inversion est donc comparable a celle par régularisation étudiée précédemment dans le
chapitre.

On remarque cependant que le temps de calcul nécessaire a l'inversion du modele de
Volterra par cette deuxieme méthode est équivalent a celui de la premiere méthode et
reste largement inférieur au volume de calcul occasionné par la méthode d’inversion par
régularisation de Tikhonov.

Cette application nous a donc permis de valider la deuxieme méthode d’inversion
proposée et de constater une analogie avec la méthode d’inversion par régularisation de
Tikhonov.

2.4.3.3 Influence du bruit de mesure sur la reconstruction

En I'absence de bruit de mesure, la reconstruction @ est théoriquement identique &
I'entrée u(t) car la fonctionnelle M est 'inverse exacte de la fonctionnelle H.

(t) = Hlu(t)]
= u(t) = M[y(t)]
De méme que dans I'approche précédente, en présence d'un bruit de mesure by(t)

ajouté au signal de sortie y(¢), la reconstruction u* ne sera pas exactement identique au
signal d’entrée u(t). On peut écrire :

y
. (2.175)

ut = Mly* ()] = M[y(t) + ba(1)] (2.176)

On peut développer cette expression :

T = M[H[u(t) + ba(t)] (2.177)

On sépare alors 'expression en 2 termes pour finalement obtenir :
u* = wu(t) + Mbs(t)] (2.178)
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Cette expression est tout-a-fait similaire a 1’expression (2.167). On obtient finalement :

bi(t) = M by(1)] (2.179)

De méme que dans 'approche précédente, on a montré que l'erreur de reconstruction
dépend de la fonctionnelle inverse M et du bruit de mesure by(t).

En se plagant dans les mémes conditions que dans la premiére approche (méme mo-
dele de Volterra, bruit de mesure ajouté au signal de sortie y(t)), on obtient sur la figure
2.25(a) le résultat de reconstruction ©* de U'entrée réelle u(t) par la deuxieme approche
pour des valeurs optimales de K et K5 fixées a 0.1 et 10.
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(a) Entrée réelle (courbe foncée) et entrée re-

b) Erreur quadratique
construite (courbe claire) (®) d d

Fig. 2.25 - Comparaison de l'entrée du systéme non linéaire (courbe foncée) avec l’entrée re-
construite (courbe claire)

L’erreur quadratique entre les courbes de la figure 2.25(a) est représentée sur la figure
2.25(b).

La variance de l'erreur de reconstruction b (t) est égale a 1.11e — 5. Cette valeur est
supérieure a celle de la variance du bruit de mesure 6.19¢ — 6. Le bruit de mesure a donc
été ici aussi amplifié par la procédure d’inversion du modele de Volterra.

2.4.4 Comparaison des deux approches

Les deux approches proposées d’inversion du modele de Volterra reposent sur deux
schémas (2.14 et 2.22) en apparence différents mais qui peuvent se révéler équivalents
dans un cas particulier.
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Considérons le cas ou les constantes K et Ky du schéma 2.22 sont égales a 1. Ce
schéma est alors équivalent a celui de la figure 2.26.

(1) :@
+
)

v&)

+— H

Fig. 2.26 - Schéma de reconstruction de l’entrée u(t) par la deuziéme approche avec K1 = Ko =
1

L’expression de 'entrée reconstruite u est la suivante :

@ =y(t) +a— H[a] (2.180)

Le schéma d’inversion de la premiere approche est celui de la figure 2.27.

y(t) ;@

+

v$>

Fig. 2.27 - Schéma de reconstruction de l’entrée u(t) par la premiére approche

L’expression de l'entrée reconstruite u est dans ce cas :

@ =y(t) + I[a] — Ha) (2.181)

Rappelons que 'expression de la fonctionnelle I est donnée par les expressions (2.151)
et (2.152) :
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u(t)] = Zli[U(tﬂ (2.182)

avec

Llu(t)] = [ Ju(t) = v'(t) (2.183)

Par conséquent, les deux expressions (2.180) et (2.181) sont identiques si et seulement
si on a 'égalité I[u] = u.

Cette égalité ne peut avoir lieu que si I est une fonctionnelle linéaire. Par conséquent,
les deux schémas d’inversion 2.14 et 2.22 sont identiques uniquement dans le cas d’un sys-
téme linéaire (et dans I'hypotheése ou les constantes K; et Ky sont égales a 1).

On a cependant constaté que, dans le cas d'un systeme non linéaire, les deux approches
d’inversion fournissent des résultats satisfaisants et comparables.

2.4.5 Conclusion

Les deux approches d’inversion d’un modele de Volterra que nous venons de présenter
sont semblables dans leur principe mais ne sont véritablement équivalentes que dans le
cas d'un systeme linéaire.

Si 'on considere un systeme non linéaire, les deux approches fournissent des résultats
d’inversion comparables. La premiere méthode présente un avantage par rapport a la tech-
nique d’inversion par régularisation de Tikhonov : I'absence de parametre de régularisa-
tion. On retrouve cependant sur le signal d’entrée reconstruit une erreur de reconstruction
dont la variance est supérieure a celle du bruit de mesure. La seconde méthode permet
une reconstruction de meilleure qualité que celle obtenue par la premiere méthode mais
elle ne s’affranchit pas d’une des difficultés de la méthode de régularisation de Tikhonov,
a savoir le choix des valeurs de certains parametres afin de régulariser le signal reconstruit.

Un avantage commun aux deux méthodes proposées est le temps de calcul, sensible-
ment inférieur a celui nécessité par la méthode d’inversion par régularisation de Tikhonov :
il est égal a quelques dizaines de secondes et dépend de I'importance des fichiers de me-
sures utilisés et de la complexité du modele de Volterra a inverser. Un des objectifs de ce
travail étant la conservation de la simplicité des modeles de Volterra et de leur parcimonie
paramétrique, le temps de calcul dépend a la fois du modele et des fichiers de points de
mesure. De plus, la procédure d’optimisation paramétrique, nécessaire a chaque itération
lors de I'inversion par régularisation de Tikhonov et par conséquent tres cotiteuse en temps
de calcul, est ici effectuée seulement une fois afin de modéliser correctement le systeme
avant d’'inverser le modele. Ceci explique également la diminution notable du temps de

147



Chapitre 2. Inversion d’un modele de Volterra

calcul nécessité par les deux méthodes d’inversion par retour d’entrée reconstruite.
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2.5 Conclusion du chapitre

L’inversion du modele d'un systeme réel est un probleme largement étudié et élucidé
dans le cas linéaire. On peut cependant considérer que la résolution de problemes inverses
linéaires n’est dans certains cas que la premiere étape d’'un domaine de recherche plus
vaste et plus général, celui de la résolution de problemes inverses non linéaires.

Dans le premier chapitre de ce mémoire, nous avons proposé la représentation de sys-
temes non linéaires par les séries de Volterra, modele non linéaire que 1’on peut considérer
comme une généralisation du produit de convolution utilisé pour représenter un systeme
linéaire. L’'inversion d’un produit de convolution a fait 'objet de nombreuses études et
une solution particulierement connue est la méthode d’inversion par régularisation de Ti-
khonov, qui permet entre autres d’atténuer les effets des perturbations dues au bruit de
mesure.

Nous avons dans un premier temps proposé d’appliquer la méthode d’inversion par
régularisation de Tikhonov au modele de Volterra décrit dans le premier chapitre. Cette
démarche correspond a I'approche de généralisation d’une méthode qui a fait ses preuves
dans le domaine linéaire. La reconstruction de I'entrée du systeme étudié par minimisa-
tion d’un critere composite nécessite la simulation de la sortie du modele et 'optimisation
des parametres par un algorithme de programmation non linéaire, deux procédures tres
couteuses en temps de calcul. Nous avons donc utilisé une méthode de discrétisation du
modele de Volterra afin de diminuer le temps de calcul du vecteur gradient et de la matrice
hessienne, couplée a un algorithme d’optimisation et de simulation sur fenétre glissante,
qui permettent de considérablement diminuer le temps de calcul global nécessaire a I'in-
version du modele de Volterra.

Le temps de calcul reste cependant trop important et une exploitation en temps réel
de la méthode d’inversion du modele de Volterra par régularisation de Tikhonov ne peut
étre envisagée que pour des systemes lents tels certains procédés chimiques. Nous avons
donc présenté et étudié deux autres méthodes d’inversion du modele de Volterra par re-
tour d’entrée reconstruite qui permettent d’éviter la procédure d’optimisation de critere
quadratique et ainsi de gagner un temps de calcul important. Ces deux méthodes néces-
sitent cependant une modélisation précise du systeme étudié ainsi qu’'une identification
paramétrique rigoureuse, conditions qui sont difficilement remplies si la non-linéarité du
systeme réel étudié est importante, provoquant des instabilités numériques lors de la pro-
cédure de reconstruction de la grandeur d’entrée.

Les applications présentées dans le chapitre suivant vont permettre d’appliquer et de
tester les différentes méthodes d’inversion présentées dans ce chapitre et de constater les
qualités et défauts de chacune dans le cas d'un systeme simulé (oxydation d’un composé
organique par le procédé Fenton) et d'un systéme réel (élimination de composés orga-
niques par digestion anaérobie).
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Application a des procédés

151



Chapitre 8. Application a des procédés

3.1 Introduction

Les différents modeles de Volterra présentés dans le chapitre 1 et les méthodes d’in-
version étudiées dans le chapitre 2 vont a présent étre testés en simulation sur un procédé
chimique d’oxydation de polluant puis validés sur un procédé biochimique expérimental
de digestion anaérobie.

Les procédés chimiques et biochimiques ont été utilisés par I’homme bien avant que
les notions de génie chimique ou biochimique ne soient apparues, méme si les installations
ou les appareils utilisés avaient fait ’'objet d’une réflexion avant leur conception. Le génie
chimique est né avec la notion de modélisation, nécessaire a la compréhension et a la re-
production de phénomenes chimiques ou biochimiques, et déja largement employée dans
le domaine de la physique. Afin de modéliser les opérations unitaires qui constituent un
procédé complet, le génie chimique fait appel aux principes fondamentaux de conserva-
tion (matiere, énergie, quantité de mouvement) ainsi qu’a d’autres branches scientifiques
telles la thermodynamique et la mécanique des fluides, sans oublier les mathématiques.
L’extension des concepts du génie chimique a des domaines connexes pouvant relever de la
méme méthodologie a permis de définir, entre autres, le génie biochimique. Ces catégories
font partie de I'ensemble plus vaste du génie des procédés [Corriou, 2001].

Les deux études présentées dans ce chapitre relevent donc du génie des procédés et
plus particulierement du génie des procédés de traitement des eaux. La premiere partie est
consacrée a 1’étude d’un simulateur d’oxydation de composé organique considéré comme
polluant (I’atrazine) par le procédé Fenton. La deuxieme partie est consacrée a ’étude
d’un procédé biochimique réel de digestion anaérobie.

3.2 Généralités a propos du traitement des eaux

Le traitement des eaux, et en particulier la neutralisation de polluants dans les eaux
résiduaires industrielles, est actuellement un domaine de recherche ouvert [ESIP, 2000].
Les activités industrielles génerent selon le ou les types de fabrication des rejets pol-
luants continus ou discontinus d’une extréme diversité. La finalité du traitement des eaux
résiduaires industrielles est essentiellement la protection du milieu naturel, c’est-a-dire
I'obtention d’'une eau épurée qui satisfait aux normes de rejet édictées par la législation,
mais aussi la réutilisation en usine de I'eau traitée, en particulier pour le refroidissement
et certains lavages. Selon la nature ou I'importance de la pollution, différents procédés de
neutralisation peuvent étre envisagés et mis en oeuvre. Il faut également noter que, pour
un méme type de pollution, différentes solutions peuvent étre envisagées [Boeglin, 1997].

D’une maniere générale, une installation de traitement centralisée des rejets industriels
comporte classiquement la succession de stades de traitement suivants :

— une série de traitements préliminaires, souvent liée au type d’activité industrielle :

rétention par dégrillage automatique et tamisage des matieres volumineuses
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susceptibles de géner les étapes ultérieures de traitement, dessablage assurant 1’éli-
mination des particules grossiéres par décantation ou encore élimination des pro-
duits insolubles de faible densité (huiles, graisses) par flottation.

— des traitements physico-chimiques, qui assurent la séparation physique des insolubles
solides (matieres en suspension) et liquides (substances huileuses, hydrocarbures...)
de I'eau avec pour objectif une clarification plus ou moins poussée des rejets. Ce
traitement peut, suivant les cas, constituer un stade intermédiaire ou un stade final
du traitement. Il suppose un maintien du pH dans une zone assez étroite. Selon les
circonstances, I’épuration physico-chimique peut étre simultanée a d’autres proces-
sus comme la neutralisation des rejets, 'oxydation et la réduction de certains
COMPOSES.

— des traitements biologiques, qui constituent le mode classique d’épuration de la pol-
lution organique des eaux résiduaires industrielles. Les procédés les plus couramment
mis en oeuvre pour la dépollution des rejets industriels sont de type aérobie (pré-
sence d’air ou d’oxygene), car la cinétique du processus s’avere beaucoup plus rapide
et les rendements plus élevés qu’avec les traitements biologiques anaérobies. Selon
les cas, on distingue les procédés aérobies utilisant une culture bactérienne libre en
suspension de ceux qui utilisent une culture bactérienne fixée sur un support. Mais
il faut noter que I’élimination de la pollution organique concentrée de certains rejets
industriels biodégradables (en particulier dans I'industrie agroalimentaire) se fait de
plus en plus par des procédés anaérobie de méthanisation pouvant également fonc-
tionner avec une biomasse en suspension ou fixée sur un support.

— des traitements de finition, ou complémentaires, qui permettent d’obtenir une qua-
lité d’effluent supérieure a celle obtenue par les procédés physico-chimiques et/ou
biologiques classiques : il s’agit d’affiner ’eau en poussant ’épuration le plus loin
possible par amélioration des performances des parametres classiques et par ’action
spécifique sur des parametres qui ne sont que peu ou pas du tout affectés par les
traitements classiques.

3.3 Etude en simulation : procédé d’oxydation de
polluant

Le type de procédé de traitement des eaux que nous allons étudier ici en simulation
correspond a un traitement physico-chimique de neutralisation de polluant par oxyda-
tion. Ce traitement peut constituer dans notre cas le stade final du procédé de neu-
tralisation d’'un polluant particulier ou bien un stade intermédiaire d’'un procédé glo-
bal d’épuration complete d’effluent industriel. Le procédé de traitement de ’eau mis en
oeuvre est le procédé Fenton qui consiste en la neutralisation par oxydation d'un com-
posé organique considéré comme polluant [Barbeni et al., 1987], [Sedlak et Andren, 1991],
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[DeLaat et Gallard, 1999].

3.3.1 Description du procédé étudié

A l'intérieur d’un réacteur chimique, on mélange de fagon homogene a 'effluent a trai-
ter un certain nombre de réactifs chimiques. L’effluent a traiter est de I’eau contenant
une ou plusieurs sortes de composés organiques considérés comme polluants. Le procédé
étudié consiste a neutraliser un composé organique particulier.

Dans cette étude, le composé organique considéré est 'atrazine (2-chloro-4-éthylamino-
6-isopylamino-1, 3, 5-triazine), un herbicide systémique principalement utilisé pour mai-
triser les mauvaises herbes graminoides et a feuilles larges dans les champs de mais, de
colza et de bleuet nain, et pour détruire les mauvaises herbes en général. L’atrazine peut
avoir des effets sur la santé des personnes exposées a des concentrations supérieures a
celles recommandées. Une exposition a des concentrations élevées d’atrazine dans 'eau
potable peut provoquer des nausées et des étourdissements. L’atrazine est toxique pour
les poissons et les invertébrés d’eau douce et plus particulierement pour les plantes aqua-
tiques. La famille des triazines est le pesticide le plus employé. Introduits en 1962, ce
sont des produits assez bon marché et simples a utiliser. Ils sont utilisés massivement par
les producteurs de mais conventionnel qui traitent la plus grande partie de leurs surfaces
a 'atrazine. Les triazines sont les substances les plus fréquemment rencontrées dans les
nappes d’eau souterraines et dans les eaux de surfaces. En Bretagne, comme dans le Sud-
Ouest et I'lle de France, il est courant de trouver, dans des prélevements d’eau potable,
des taux de triazine dix fois plus élevés que le seuil autorisé de 0, 1 microgramme par litre.
L’atrazine et toute la famille des triazines ont été bannies par I’Allemagne en mars 2001,
et depuis le 28 septembre 2001 par la France. Cette décision devait prendre effet le 30 juin
2003.

La neutralisation d’un composé organique (par exemple l'atrazine) consiste en son
oxydation par le radical hydroxyle OH" suivant la réaction chimique :

Atrazine+ OH° — Pi (3.1)

Le produit Pi obtenu apres réaction pourra a nouveau réagir avec un radical hydroxyle
O H? mais on ne le considere plus comme un polluant. Cette seule réaction chimique suffit
donc a neutraliser un composé organique considéré comme polluant. Un autre probleme,
situé en amont de celui-ci, est la production de ces radicaux hydroxyles O H° extrémement
réactifs.

Fenton a montré en 1894 que l'ion ferreux, dont il existe cing formes ([Fe!f]** [FelTOH|T,
[Fell(OH),)°, [Fell(OH)3]~ et [Fell(OH)4)*7), accélérait 1'oxydation de I’acide maléique
par le peroxyde d’hydrogene HyOs. Depuis cette date, I'étude de la décomposition du per-
oxyde d’hydrogene HyO, par les ions ferreux et ferriques ainsi que I'oxydation de composés
organiques par le systeme Fe(II)/H;05 (connu sous le nom de réactif de Fenton) a fait
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I'objet de nombreux travaux. Une des réactions produisant des radicaux hydroxyles est la
suivante :

[Fe'' 1t + HyOy — Fe' +OH° + OH~ (3.2)

Les réactifs utilisés lors du procédé Fenton sont donc les ions ferreux Fe(I1) (ou fer-
riques Fe(I11)) et le peroxyde d’hydrogene HoO5 qui, en réagissant entre eux, produisent
les radicaux hydroxyles O H° nécessaires a ’oxydation du (ou des) composé(s) organique(s)
considéré(s) comme polluant(s).

De nombreuses études ont montré qu’une irradiation UV-visible pouvait augmenter
de fagon importante les vitesses d’oxydation des composés organiques par le réactif de
Fenton. Le systeme oxydant Fe(I1)/Hs0, auquel se rajoute l'irradiation est donc com-
munément appelé Photo-Fenton.

Des installations industrielles utilisant le procédé Fenton existent. Cependant, pour
s’assurer que la concentration en polluant en sortie de réacteur respecte les normes de re-
jet, les réactifs en entrée sont introduits en exces. Cette étude s’inscrit dans un projet du
programme Baux du 12¢™¢ Contrat de Plan état-Région de I’Université de Poitiers dont
l'objectif a terme est d’optimiser le dosage en fer ferreux (ou ferrique) et en peroxyde
d’hydrogene en entrée du réacteur chimique.

3.3.2 Modele cinétique établi expérimentalement

A partir de connaissances expérimentales sur le mécanisme d’oxydation de l'atra-
zine par le procédé Photo-Fenton, un modele cinétique du taux d’oxydation de 'atrazine
par le systeme Fe(II)/H;05 a pu étre établi [Haber et Weiss, 1934], [Barb et al., 1951],
[Walling, 1975], [Gallard et DeLaat, 2000] :
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[FelT]3 + H,0 < [FeTOH)?t + Ht

[Fe' P+ 4 2H,0 < [Fe!' (OH)y|t + 2H™
o[Fe PP+ 4 2H,0 < [Fel'(OH)y)* + 2H
Fe”l]?““ + HyOy = [F HI(HO >]2+ +HT
FeTOH> + Hy0, < [Fe" (OH)(HO,)|* + H*
Pt (O — (e + 1Oy

Felll (OH)(HOz)] [Fe”]“ —|—HO°+OH—
Fell* + HyOy — Fe'!l + OH° + OH~
Fel')* + OH° — Fe!'l + OH~

OH’ + HyOy — HO$ + Hy0

[FeT]2* + HOg — [Fe'T (HO,)**

[Fell]2* 4 0§~ + H+ — [Fell (HO,)|*+
Felll 4 HO3 — [Fe*t + Oy + HT

Felll 4+ 03~ — [Fe'2* 1 0,

HO$ — O3 + H*

03 +H" — HOS

HOS + HO§ — Hy04 + O,

HO3 + 03" + HyO — HyOy + Oy + OH~
OH° + HO3 — H0 + O,

OH° 4+ 05 — OH™ + O,

OH® + OH® — Hy0,

Atrazine + OH® — Pi

Pi+OH® — Pi

Pi' + OH° — Produits

[
[
[
[
[
[
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Ce modele cinétique prend en compte les réactions d’hydrolyse de Fe(I11) (réactions
I & I11), les réactions de complexation de Fe(III) avec HoOy (réactions IV et V), la
réaction de décomposition des hydroperoxydes de fer en Fe(I/I) et HOS (réaction c) qui
représente 1’étape d’initiation du mécanisme de décomposition de HyOy par Fe(111), les
réactions de propagation (réactions o, 1 a 5), les réactions de terminaison (réactions 6 a
10) et les réactions d’oxydation de l'atrazine et du produit Pi de I'oxydation (réactions
11 a 13).

Les 5 premieres réactions de la liste (hydrolyse et complexation) sont des équilibres
chimiques. En d’autres termes, si 'on prend le cas de la premiere réaction de la liste

[Pt + HyO & [FeOHP*T + HT (3.4)

les deux réactions suivantes ont lieu :

[FeI+ 4 HyO — [FeTOH)> + H*
[FOH>" + HY —> [FelIP* + H,0 (3.5)

Les 19 autres réactions chimiques sont completes. Chacune de ces réactions est ca-
ractérisée par une vitesse v de réaction et, plus particulierement, par une constante de
réaction k dont nous allons voir le principe de calcul.

On considere la réaction chimique complete suivante :

aA+bB = cC +dD (3.6)

A et B sont les réactifs et C' et D sont les produits de la réaction. La vitesse v de cette
réaction chimique dépend de facteurs cinétiques tels la température et la concentration
des réactifs. On peut la définir de la maniere suivante :

v = k[A]*[B]’ (3.7)

Le terme k est la constante de la réaction. a + b est appelé ordre de la réaction. k, a
et b sont déterminés expérimentalement.

Dans le cas d'un équilibre chimique, on définit donc deux vitesses v et v’ ainsi que
deux constantes de réaction k et k', une pour chaque ”sens” de réaction :

{v:kmmmb 38)

o = K[CI[D)

On définit ensuite la constante d’équilibre K = % en fonction de la concentration des
réactifs et des produits ainsi que des coefficients a, b, ¢ et d (loi de Guldberg et Waage) :

[C]°[D])?
K = Cigp (3.9)
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Dans le cas des équilibres chimiques, si la constante K est grande, on tend vers une
réaction complete (disparition des réactifs A et B) tandis que si K est faible, on tend vers
une réaction impossible (non apparition des produits C' et D). Dans le cas des réactions
completes, la valeur de la constante k permet de calculer la vitesse d’apparition des pro-
duits ou de disparition des réactifs.

Un récapitulatif des constantes de chaque réaction du modele cinétique établi expéri-
mentalement est présenté en (3.10) et (3.11).

Constantes associées aux équilibres chimiques :

kr=2291 x 107 k;=1x10"° K, =2291x107?

kip =4571 x 103 k;; =1x 101" K, =4.571 x 1077 (3.10)
kirr = 1122 x 107 K}, =1 x 1010 Ky, =1.122 x 1073

kry =3.1x107 kb, =1x10"° KI, =31x1073

ky = 2.0 x 10° ki, =1x10"° KI,=20x10"*

Constantes associées aux réactions chimiques :

ke =2.7x1073 k, = 63.0 ki = 3.2 x 108

ky = 3.3 x 107 ks =12x105 ki =1.0x 107 311
ky =1 x 10% ' =5x 10" ks = 1.58 x 10° (3.11)
kL =1 x 10 ke =83 x10°  k;=9.7x 107

ks = 0.71 x 10'° ko = 1.01 x 10" kyy = 5.2 x 10°

kar = (1.2 — 3) x 107 kp; ~ kas /{2331 < 10°

Une fois établi le modele cinétique du taux d’oxydation de ’atrazine par le systeme
Fe(I1)/Hy04, on peut le transformer en un systeme d’équations différentielles du premier
ordre traduisant la variation de concentration de chaque espéce et sous-espece chimiques
présentes a un moment ou a un autre lors du processus :
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Dans la premiere équation différentielle de la liste, les concentrations [1;] =

ko. |09 ][O H?]

2 11)].[0H°]
J-[HOS) = k. [Fe(ID].[087) + ku.[Fe(1ID].[HOg

k[ Fe(I11)][Hy0o]

ko .JOH®).[H204]

(AL = k(L] + 1)) — ko [Fe(IT)].[H05] —
—kg[ 6([[
+ky.[Fe(111)].[05°7]
dFediDr] - —  AFD] _  [Fe(I11)] + ky[Fe(IIT)OH][HY]
AH20a] =k [Fe(I1)].[HoOs) — ko.[OH®).[HyO5] + ke.[HOZ).[HO3]
+k7.[O57).[HOS] + k10.[OH°).JOH?] —
K, [Fe(ITTYHO,|[H]
uted = ko([l1] + [I2)) + ko.[OH?).[Hs05) — ks.[Fe(I1
—ky[Fe(I1D)).[HOZ] — ks. [HOO] + k. .[Og—].[H+
—2kg.[HOS).|HOS] — kq.[0~
405" = K, [Fe(ID)).]037] — K,.|[Fe(I11)).][037] + ks.[HOS]
—k5.[O37).[H"] — k7.[O057].[HOS] —
o’ = ko.[Fe(II)].[HyO4] — ky.[Fe(IT)].JOH?] —
—ks.[OH®].[HOS] — ko.[037).[OH®] — 2k10.]OH®].[OH"]
—ka.[AL).[OH®] — kp;.[Pi].JOH?]
dad = —ka.[At].[OH]
| 4P = ka.[At].JOH®] — kp;.[Pi].[OH®]

(3.12)

[Fe(I1T)(HO,)*"]

et [I] = [Fe(III)(OH)(HO2)*] des complexes en Fe(III) dépendent des concentrations
en Fe(III) et HyOs, et sont calculées analytiquement en utilisant les constantes d’équi-
libre de leur formation (K I; et KI5) ainsi que celles des autres réactions de formation des

différentes especes de Fe(I11) (K, Ky et Ka3).
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A chaque instant de la réaction entre HyOs, Fe(II1) et Fe(II), les concentrations des
différentes especes de fer peuvent étre calculées a partir des constantes d’équilibre :

[Fe(OH)* |[H*]

o [ (O[];;)gi}][ﬂ P
Ky = [Fe3t]
[Fea(OH)y | [H*]?
Ksp = [Feb+]2 (3.13)
_ L][HT]
K= Fe 10,0y
n— L]

[Fe(OH)“] [HQOQ]
En considérant I’équation de conservation de la matiere

[Felr = [Fe(ITT)) + [I] + [I,] + [Fe(IT)] (3.14)

ou le terme [F'e] représente la quantité totale de fer, et en exprimant chaque forme de fer
ferrique par son équation en fonction de la forme [Fe!!]3* on obtient la relation suivante :

K1 [F€3+] K2 [F€3+] 2K2’2 [F63+]2 KII [F63+] [HQOQ]

[Fe(III)] = [Fe¥t] +

[H] [H*]? [H*]? [H*]
KlKIQ[F€3+][HQOQ]
[H*]?
(3.15)
La racine positive de cette équation correspond & la concentration en [Fel!l]3t et
dépend des concentrations initiales [H], [Fe(I1I)] et HyO; :

(14 K, n K, K1 [HOs] K KI3[Hy0,] AFe
F 347 [H+] [H+]2 [H+] [H+]2 3 ].6
[Fet) = R (316)

[H*]?

avec

B Ki Ky  KL[H:05] K KIL[Hy05]
AFe_(H[H+]+[H+P+ ) P

) +8[Fe(I11)] [[;1]22 (3.17)

On calcule ensuite les concentrations des autres formes de fer ferrique a partir des
équations (3.13), dont [I1] et [I3] qui nous intéressent plus particulierement :
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KI,[Fe*T|[Hy0,)

(1] = [H+
K LK\ [Fe*|[Hy0,) (3.18)
[[2] = 112
[H+]

avec [HT] = 107PH.

L’influence du pH sur la vitesse de décomposition de I'atrazine a été étudiée dans un
domaine de valeurs de pH compris entre 1 et 3 avec différentes concentrations initiales
en fer ferreux et en peroxyde d’hydrogene HyOs. Les résultats expérimentaux concernant
I’évolution de la concentration en composé organique et du fer ferreux en fonction du
temps de réaction montrent que la vitesse d’élimination de I'atrazine augmente lorsque
le pH passe de 1 a 3, vraisemblablement en raison d’'une différence de réactivité des ra-
dicaux hydroxyle OH? vis-a-vis de 'atrazine. D’autres résultats montrent que la vitesse
de décomposition de HO, passe par une valeur optimale pour une valeur de pH située
autour de 3. Le pH a l'intérieur du réacteur chimique sera donc maintenu autour de la
valeur 3 durant tout le temps de réaction.

3.3.3 Modele cinétique d’un réacteur chimique continu
3.3.3.1 Présentation

Le modele cinétique du réacteur chimique utilisé par la suite s’inspire du systeme
d’équations différentielles (3.12) pour décrire a chaque instant la concentration de 8 dif-
férentes especes chimiques présentes lors du procédé d’oxydation : concentration en Fer
IT (variable X7), concentration totale en Fer 1] (variable X3), concentration en HoOs
(variable X3), concentration en HOJ (variable X,), concentration en 05~ (variable X3),
concentration en radicaux OH® (variable X§), concentration en atrazine (variable X7) et
en produit dérivé de son oxydation (variable Xg).

Le modele proposé (d’apres [Gallard et DeLaat, 2000]) est donné par I’ensemble d’équa-
tions (3.19).
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X1 == kc<[11] —|— [IQ]) - ko.Xl.X3 — kl.Xl.Xﬁ
—]{33.X1.X4 — kéX1X5 + ]{54[F€(III)]X4
Xo- in Xi. ou
k) [Fe(IIT)]. X5+ Quin _ X1:Qout
0.0 VRQ Vr
) ) X g2in X2~ out
X, = —X;+-2 —
.2 1+ Vi Vi
X3 = —kfo.Xl.Xg - k’Q.XG.Xg + kG.X4.X4+k7.X5.X4
XO'Qfﬁn X3-Qout
k1. X6. Xg+—> —
| +Ri0-Ae-Xg+ Vi Vi
X4 = kc([jl] —|— [IQ]) + kﬁg.Xﬁ.Xg — kg.Xl.X4
— kg [Fe(ITT)]. Xy — k5. X4 + k.. X5.[H*] (3.19)
—2]{?6.X4.X4 - ]{37.X5.X4 — kZS.X6.X4
X5 = —kéXng,—kg[F@([[[)]X5+k5X4
—l{:g.X5.[H+] — k7. X5. X4 — k9. X5.X5
X = ko X1.X3—k1.X1.Xg — ko Xg. X3—ks. X6.X4
—kg.X5.Xg — 2k19.X6. X6 — kat. X7. X5
—k‘pi.Xg.XG
: XO. in X ou
Xr = kg Xo Xgr or@in _ X7-Qou
Vi XVR
Xy = kapX7.Xg — kpj. Xg. X6 — 8'2"“

Les concentrations des autres formes de fer ferrique I; et Is sont calculées avec les équa-
tions (3.18). La concentration en fer ferrique [Fe(I11)] est obtenue par le calcul (3.14).
La concentration en ions H™ est calculée d’apres 'expression [Ht] = 107PH,

Les termes Q1in, Q2in, Q3in €t Quin représentent respectivement le débit d’entrée en
fer ferreux Fe(I1), en fer ferrique Fe(I11), en peroxyde d’hydrogene HsO5 et en atrazine
At. Le terme Q,,; représente le débit global de sortie du réacteur avec la relation de
conservation de débit :

Qout = Q1in + Q2in + Q3in + Quin (3.20)

Les termes X?, X2 X9 et X? représentent respectivement les concentrations en entrée
en fer ferreux, en fer ferrique, en peroxyde d’hydrogene et en atrazine.

Le terme Vy représente le volume du réacteur.
Les non-linéarités du procédé d’oxydation de l'atrazine apparaissent de maniere évi-
dente sur le modele proposé : elles sont matérialisées par des produits de variables d’état

X;.X;. En outre, il faut tenir compte d’autres non-linéarités introduites par le calcul ana-
lytique des différentes formes de fer ferrique (3.14).
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Ces constatations justifient 1'utilisation d’un modele de Volterra pour représenter les
liens existant entre les différentes grandeurs d’entrée possibles (débit d’entrée en fer fer-
reux, en fer ferrique, en peroxyde d’hydrogene et en atrazine) et la grandeur de sortie
qui nous intéresse : la quantité d’atrazine présente dans les effluents en sortie de procédé
[Bibes et al., 2003a].

La mesure de la quantité d’atrazine étant par ailleurs tres cotteuse et tres difficile,
voire impossible, a mettre en oeuvre, I'inversion du modele de Volterra reliant la quantité
d’atrazine et une autre grandeur, dont un protocole de mesure existe (par exemple la
concentration en peroxyde d’hydrogene), permettra éventuellement la reconstruction de
la quantité d’atrazine. Cette solution pourra permettre d’accéder a une grandeur chimique
a moindre cofit, le procédé d’'inversion de modele et de reconstruction de la grandeur pou-
vant étre entierement géré informatiquement.

3.3.3.2 Utilisation du modele cinétique du réacteur chimique

Afin de comparer dans un premier temps les deux procédés d’oxydation HoOo/Fe(11)
et HyOy/Fe(III), nous allons nous placer dans un cas idéal : le volume global est fixé a
1 litre et on suppose que le liquide a l'intérieur du réacteur est parfaitement homogene,
les réactifs et I'atrazine étant mélangés instantanément.

Considérons le procédé d’oxydation HyOy/Fe(II). On commence par appliquer le
modele cinétique (3.19) dans les conditions suivantes : on suppose d’abord constante la
concentration en atrazine dans I'effluent a traiter ([At] = 8.107"mol/l) ainsi que son débit
(Quin = 8.10731/s). Cette valeur de débit assure un temps de séjour de l'atrazine dans
le réacteur a peu pres égal a 20 minutes, ce qui est tres suffisant pour I’ensemble des
réactions chimiques.

La période d’échantillonnage T'e est fixée a 10s et ce pour toute la suite de cette étude.

On fait varier le débit de peroxyde d’hydrogene (figure 3.1(a)) en maintenant constante
sa concentration ([HoOs] = 1.1072mol/l) . La concentration en fer ferreux reste égale &
[Fe(IT)] = 2.10*mol /1 et son débit d’entrée est fixé & Qq;, = 2.107%1/s. La concentration
en atrazine en sortie du procédé est présentée sur la figure 3.1(b).
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Fig. 3.1 - Procédé d’oxydation HoOo/Fe(II) pour [At];, = 810 "mol/l et [Fe(II)] =
2.10~*mol /1

La variation de concentration en atrazine est I'inverse de celle en peroxyde d’hydro-
gene. Comme on 'a déja vu, le procédé Fenton consiste ici en la création de radicaux
OH? a partir du fer ferreux et du peroxyde d’hydrogene. La concentration en fer ferreux
étant constante, chaque augmentation de la concentration en peroxyde d’hydrogene oc-
casionne la création de davantage de radicaux OH° qui vont oxyder |’atrazine, faisant
ainsi diminuer sa concentration. Le modele cinétique du réacteur représente donc bien le
comportement du procédé réel.

Comparons maintenant ces résultats a ceux du procédé d’oxydation HyOy/Fe(I11).
Le débit d’atrazine reste constant en entrée, on conserve la meéme variation de débit de
peroxyde d’hydrogene (figure 3.2(a)) et on introduit a la place du fer ferreux une certaine
quantité de fer ferrique (méme concentration [Fe(III)] = 2.10*mol/l). La concentration
en atrazine en sortie du procédé est présentée sur la figure (3.2(b)).
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Fig. 8.2 - Procédé d’oxydation HeOs/Fe(III) pour [Atl;, = 810 "mol/l et [Fe(IIl)] =
2.10"*mol /1

Les résultats obtenus semblent montrer qu’a concentration égale, ’action du fer fer-
reux est plus significative que celle du fer ferrique sur la production de radicaux OH® et
I'oxydation de I’atrazine qui en résulte. Différentes mesures expérimentales confirment que
la cinétique de décomposition du peroxyde d’hydrogene par le fer ferreux est beaucoup
plus rapide qu’avec le fer ferrique [Gallard, 1998].

(C’est pourquoi nous nous limiterons dans la suite de cette étude aux résultats d’oxy-
dation de l'atrazine obtenus en utilisant le procédé Fenton HoOo/Fe(11).

Afin d’étudier le procédé d’oxydation HyOy/Fe(I1) de Iatrazine dans des conditions
relativement proches de celles qui seront utilisées sur le futur pilote expérimental (en cours
de réalisation sur la plate-forme Eaux de I’Université de Poitiers), nous allons modifier les
conditions de simulation. Le volume global du réacteur chimique est désormais fixé a 10
litres. On conserve également I'’hypothese de départ d'un réacteur parfaitement agité et
d’un mélange homogene instantané des différentes especes chimiques introduites.

On fait maintenant varier le débit d’atrazine a l'entrée du réacteur chimique (figure
3.3(a)) afin d’assurer un temps de séjour compris entre 5 et 10 minutes. Le débit et
la concentration en peroxyde d’hydrogéne sont maintenus constants (Qsz;, = 2.10721/s
et [Ho0s] = 1.1072mol/l) ainsi que le débit et la concentration en fer ferreux (Qqin =
4.107%/s et [Fe(II)] = 2.10"*mol/l). La concentration en atrazine en sortie du procédé
est présentée sur la figure 3.3(b).
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Fig. 3.8 - Procédé d’oxydation HyOz/Fe(II) pour [HoOsly = 1.1072mol/l et [Fe(II)]iyn =
2.10~*mol /1

On observe également la concentration en peroxyde d’hydrogene HoOy dans le réac-
teur durant le procédé d’oxydation (figure 3.3(c)). Cela permet de constater que seule une
partie du peroxyde d’hydrogene (entre 40% et 60%) a été utilisée afin de produire des
radicaux OH°.

La concentration en atrazine apres traitement chimique est donc divisée par un facteur
moyen de 2 par rapport a la quantité d’atrazine présente dans 1’effluent a traiter. Le débit
des réactifs de Fenton restant constant, toute augmentation du débit d’atrazine a l’entrée
du réacteur a une répercussion sur la quantité d’atrazine apres traitement a partir du
moment ot une partie de la quantité de réactif a été utilisée lors du procédé.

Nous nous sommes bornés jusqu’ici a ne faire varier qu'une seule concentration a ’en-

trée du réacteur (ou bien le débit de peroxyde d’hydrogene, ou bien celui d’atrazine). La
quantité considérée a chaque fois dans le réacteur est soit la concentration en atrazine
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apres traitement par le procédé d’oxydation HoOy/Fe(11), soit la concentration restante
en H,O,. Dans ces conditions idéales, on peut donc considérer le réacteur chimique continu
comme un systeme mono-entrée mono-sortie et ainsi justifier la représentation du lien entre
la grandeur d’entrée et la grandeur de sortie par un modele de Volterra.

Remarquons que le cas idéal du systeme mono-entrée mono-sortie dans lequel on se
place ici limite les possibilités de commande du procédé car on ne pourra agir que sur le
dosage d’un seul des deux réactifs, soit celui de peroxyde d’hydrogene, soit celui de fer.
La commande du dosage optimal des deux réactifs nécessite un modele a deux entrées et
une sortie, ou plus généralement un modele multi-entrées mono-sortie, que 1’on pourrait
envisager dans la suite directe de ce travail de recherche.

De plus, on a vu qu’il est impossible dans notre cas de mesurer directement la quan-
tité d’atrazine présente dans l’effluent a traiter. La connaissance d’un modele de Volterra
reliant le débit d’atrazine (grandeur d’entrée) a la concentration en peroxyde d’hydro-
gene permet d’envisager 'inversion de ce modele pour estimer par reconstruction le débit
d’atrazine a l'entrée du réacteur. Une méthode satisfaisante d’analyse en continu de 1’évo-
lution de la concentration en HyOs existe [Audebrand et al., 2002]. Le temps nécessaire
a cette analyse a été optimisé et réduit a quelques minutes, ce qui laisse envisager une
utilisation en temps réel de ce type de méthode de mesure.

3.3.4 Application du modele de Volterra
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Fig. 3.4 - Débit d’atrazine en entrée du réacteur (1/s)
Considérons le cas du procédé d’oxydation HyOs/Fe(I1) pour une variation de débit
d’atrazine en entrée représentée sur la figure 3.4.

Les variations de concentration en atrazine et en peroxyde d’hydrogene HoOy données
par le modele cinétique du procédé sont représentées par les courbes continues de la figure
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Fig. 3.5 - Variations de concentrations (mol/l) donnée par le modéle cinétique du réacteur
(courbe continue) et le modéle linéaire (courbe pointillée)

On montre d’abord qu'un modele linéaire ne suffit pas a représenter correctement le
lien entre la variation d’atrazine en entrée et la variation d’atrazine et de peroxyde d’hy-
drogene dans le réacteur. A cet effet, le modele de Volterra est tronqué a son premier
terme et le noyau de Volterra (qui correspond dans ce cas a la réponse impulsionnelle
du modele linéaire) est développé sur 10 fonctions généralisées dont les valeurs des poles
sont fixées de —0.001 a —0.01. Le modele linéaire comporte donc 10 parametres et les
courbes de la figure 3.5 prouvent l'insuffisance d’un modele linéaire. On note que 'ajout
de fonctions dans chacun des développements n’apporte aucune amélioration au modele
linéaire.

On peut alors envisager la représentation par un modele de Volterra du lien entre la
variation d’atrazine en entrée et la variation d’atrazine dans le réacteur d’une part, puis
la variation de peroxyde d’hydrogene dans le réacteur d’autre part. Dans chacun des deux
cas, on utilise maintenant une série de Volterra tronquée a ses trois premiers termes. On
utilise dans un premier temps la modélisation des noyaux de Volterra par développement
sur une base de fonctions généralisée. Le premier noyau de Volterra est développé sur une
fonction de la base. Le deuxieme et le troisieme noyau sont développés sur deux fonctions
de la base. Les valeurs des poles sont fixées a —0.005 et —0.01. Dans chacun des deux cas,
le modele de Volterra global comporte 8 parametres.
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Fig. 3.6 - Variations de concentrations (mol/l) donnée par le modéle cinétique du réacteur

(courbe continue) et par le modéle de

Volterra (courbe pointillée)

Les sorties de chacun des deux modeles de Volterra sont représentées sur la figure
3.6 et comparées aux résultats correspondants donnés par le modele cinétique (3.19) du

réacteur

chimique.

Considérons maintenant le cas d’une variation de débit de peroxyde d’hydrogene HoO4
en entrée du modele cinétique représentée sur la figure 3.7(a).

La variation de concentration en atrazine donnée par le modele cinétique du procédé
et en sortie du modele de Volterra est représentée sur la figure 3.7(b).
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Le modele de Volterra utilisé est tronqué a ses 3 premiers noyaux, développés respec-
tivement sur une, deux et deux fonctions orthonormées généralisées. Les valeurs des poles
des fonctions sont fixées a —0.005 et —0.01. Le nombre total de parametres du modele est
égal a 8.

Divers modeles de Volterra peuvent donc étre établis faisant le lien entre les variations
de différentes especes chimiques mises en jeu lors du procédé d’oxydation. Ces modeles
de Volterra sont suffisamment précis et parcimonieux pour que 1’on puisse envisager leur
inversion par les deux méthodes présentées et étudiées dans le deuxieme chapitre de ce
mémoire : inversion du modele de Volterra par régularisation de Tikhonov et par retour
d’entrée reconstruite.

L’inversion du modele de Volterra permet, a partir de la grandeur de sortie, de re-
construire la grandeur d’entrée. Dans le cadre du procédé d’oxydation HyOy/Fe(I1), la
reconstruction d'une grandeur possede un double intérét :

— la reconstruction de la quantité d’atrazine par l'inversion du modele de Volterra
qui la relie a la concentration en peroxyde d’hydrogene HyOs : 'intérét de cette re-
construction réside dans le fait que la quantité d’atrazine (ou, de maniere générale,
en composant organique polluant) est difficilement mesurable durant le procédé. Le
procédé de mesure de la concentration en HyOs est lui relativement simple en mettre
en oeuvre. La connaissance du lien qui unit ces deux grandeurs permet donc, par
I'inversion de ce lien, de s’affranchir du probleme de mesure de la quantité d’atrazine.

— la commande du dosage des réactifs (peroxyde d’hydrogene ou fer ferreux) a l’entrée
du réacteur : le but du procédé d’oxydation HoOy/Fe(I1) est la neutralisation de
Iatrazine présente dans 'effluent a traiter. L’objectif final est 'optimisation de la
quantité de réactif a ajouter en entrée de réacteur a partir de la connaissance de la
quantité maximale d’atrazine que 'on désire en sortie du réacteur. L’intéret est ici
purement économique.

3.3.5 Inversion de modele de Volterra par régularisation de Ti-
khonov

Afin de valider la méthode de reconstruction de la quantité d’atrazine par régulari-
sation de Tikhonov, nous allons envisager l'inversion du modele de Volterra reliant le
débit d’atrazine a l'entrée (figure 3.4) et la concentration en HyOy dans le réacteur (figure
3.6(b)). Le modele de Volterra est tronqué a ses 3 premiers noyaux développés respecti-
vement sur une, deux et deux fonctions orthonormées. Les poles des fonctions sont fixés
aux valeurs —0.01 et —0.05. Le modele possede au total 8 parametres. Dans le cas ou la
mesure de la concentration en HOs n’est pas bruitée, le modele de Volterra utilisé est
suffisamment précis pour que I'on puisse envisager son inversion sans avoir a régulariser la
quantité reconstruite (A = 0). Le résultat de reconstruction est représenté sur la figure 3.8.
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Fig. 3.8 - Débit d’atrazine (I/s) (courbe continue) et sa reconstruction (ligne pointillée)

Malgré I'absence de bruit de mesure, on constate 'apparition de pics de reconstruc-
tion d’amplitude non négligeable. La qualité de reconstruction est cependant correcte.
L’augmentation du nombre de noyaux ou de fonctions modélisant ces noyaux n’apporte
aucune amélioration ni a la précision du modele ni a la qualité de la reconstruction du
débit d’atrazine.

Considérons maintenant le cas ou la mesure de la concentration en HoO5 est bruitée
(rapport signal sur bruit égal a 100). La figure 3.9 montre la sortie du modele de Volterra,
dont les parametres ont été réidentifiés pour représenter la concentration en peroxyde
d’hydrogene dans le réacteur.
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Fig. 3.9 - Concentration en HoOo (mol/l) dans le réacteur (courbe claire) et en sortie du modéle
de Volterra (courbe foncée)

Afin de reconstruire correctement la quantité d’atrazine a l’entrée du réacteur, il est
maintenant nécessaire de régulariser la solution du probleme inverse. La figure 3.10 re-
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présente la reconstruction pour deux valeurs du parametre de régulation (A = 10000 et
A = 100000). Dans chacun des cas, la matrice de régulation utilisée est la matrice des dé-
rivées secondes, qui offre les résultats de reconstruction les plus probants (cf le deuxieme
chapitre du mémoire).
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Fig. 3.10 - Comparaison entre le débit d’atrazine (I/s) (courbe foncée) et sa reconstruction
(courbe claire) pour différentes valeurs de \ avec utilisation de la matrice des dé-
rivées secondes

Le terme A prend des valeurs tres importantes, étant donné qu’il est proportionnel a
I'inverse de la période d’échantillonnage. On constate un bon comportement par rapport
a 'amplitude du bruit sans qu’il y ait pour autant une perte d’information sur le signal
reconstruit.

Ces différents essais en présence de bruit de mesure permettent de valider la méthode
d’inversion par régularisation dans le cas du modele cinétique du procédé d’oxydation
HQOQ/Fe(II)

Cet exemple de reconstruction de la quantité d’atrazine valide la méthode de recons-
truction par régularisation de Tikhonov et confirme donc l'intérét de cette méthode pour
la reconstruction de grandeurs non directement mesurables a partir de la connaissance de
grandeurs mesurables et d’'un modele qui les relie. On peut également constater I'influence
de 'amplitude du bruit de mesure et de la précision du modele de Volterra sur la qualité
de reconstruction de la quantité d’atrazine.

3.3.6 Inversion de modele de Volterra par retour d’entrée re-
construite

Les résultats de reconstruction par régularisation de Tikhonov montrent que la mé-
thode employée est satisfaisante pour inverser un modele de Volterra. Nous allons a présent
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les comparer aux résultats obtenus par les deux méthodes d’inversion par retour d’entrée
reconstruite décrites dans le deuxieme chapitre du mémoire.

On utilise cette fois la modélisation des noyaux de Volterra par développement sur des
fonctions de transfert afin de montrer que les méthodes d’inversion proposées fonctionnent
quel que soit le choix de modélisation des noyaux de Volterra.

On considere toujours le cas du procédé d’oxydation HyOy/Fe(II) pour une variation
du débit d’atrazine en entrée représenté par la figure 3.4.

Dans tout ce qui suit, le modele de Volterra est tronqué a ses 2 premiers noyaux,
développés respectivement sur une et deux fonctions de transfert. Le modele de Volterra
global comporte 8 parametres.

Dans le cas ou les mesures de concentration ne sont pas bruitées, les variations de
concentration en atrazine et en peroxyde d’hydrogene H20, données par le modele ciné-
tique du réacteur et le modele de Volterra sont représentées sur la figure 3.11.
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Fig. 3.11 - Variations de concentrations (mol/l) donnée par le modéle cinétique du réacteur
(courbe continue) et le modéle de Volterra (courbe pointillée)

Si les mesures de concentration sont bruitées (rapport signal/bruit égal a 100), la fi-
gure 3.12 montre qu’apres une nouvelle identification, le modele de Volterra proposé reste
valable pour représenter les variations de concentration en atrazine et en peroxyde d’hy-
drogene H,Oy données par le modele cinétique du réacteur.
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Fig. 3.12 - Variations de concentrations (mol/l) données par le modéle cinétique du réacteur
(courbe claire) et le modéle de Volterra (courbe foncée)

Le modele de Volterra développé sur des fonctions de transfert comporte autant de
parametres que celui développé sur base de fonctions généralisée mais sa complexité est
moindre car il ne comporte que deux noyaux. Les résultats obtenus dans les deux cas sont
pourtant tout a fait comparables.

Remarquons que la parcimonie du modele de Volterra développé sur une base de
fonctions généralisée n’est garantie que dans le cas d'un choix convenable des poles des
fonctions, ce qui était le cas dans I’étude précédente : les valeurs ont été fixées a —0.005
et —0.01 apres divers essais.

Quoi qu’il en soit, le modele développé sur fonctions de transfert est ici aussi suffisam-
ment précis et parcimonieux pour que 1’on puisse envisager son inversion.

On envisage directement la reconstruction du débit d’atrazine en entrée de réacteur
(figure 3.4) par les deux méthodes d’inversion par retour d’entrée reconstruite dans le cas
de mesures bruitées de la concentration en peroxyde d’hydrogene HyOs dans le réacteur
(rapport signal/bruit=100).

Les parametres du modele de Volterra sont a nouveau identifiés dans le cas ou la me-
sure de la concentration en peroxyde d’hydrogene est bruitée (figure 3.12(b)). Lors de
I'utilisation de la deuxieme méthode, les valeurs des parametres K et K5 sont respective-
ment fixées a 0.05 et 20 pour une reconstruction optimale. Les résultats de reconstruction
sont représentés sur la figure 3.13.
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Fig. 3.13 - Débit d’atrazine (I/s) en entrée du réacteur (courbe foncée) et sa reconstruction
(courbe claire)

Malgré la présence de pics de reconstruction, la qualité de reconstruction semble
meilleure que celle obtenue dans le meilleur des cas par régularisation de Tikhonov (figure
3.10), ceci a cause de la faible amplitude de I'erreur de reconstruction. Ces résultats ont été
obtenus sans avoir eu a tenir compte d’une éventuelle amplification du bruit de mesure
ajouté a la grandeur de sortie. L’amplitude du bruit (ou erreur de reconstruction) que
I’on retrouve sur le signal reconstruit est ici plus faible que I'amplitude du bruit ajouté a
la mesure de la concentration en HsO4 utilisée. Chacune des deux méthodes d’inversion
par retour d’entrée reconstruite joue implicitement le role d’un filtre passe-bas, atténuant
I’amplitude du bruit.

Un autre avantage de ces deux méthodes d’inversion par rapport a la méthode par
régularisation de Tikhonov est une diminution importante du temps de calcul nécessaire,
qui est réduit a quelques dizaines de secondes au plus, suivant la taille du signal de sortie
mesuré et la complexité du modele de Volterra.

3.3.7 Conclusion

Cette étude d’un procédé chimique de traitement des eaux permet de valider dans le
cadre de la simulation les modeles de Volterra et les différentes techniques d’inversion non
linéaire proposés dans les deux premiers chapitres du mémoire.

La nature des non-linéarités inhérentes au procédé Fenton d’oxydation de composés
organiques permet 1'utilisation d’un modele de Volterra. L’étape d’inversion du modele de
Volterra est d’autant plus rapide et efficace que le modele possede une structure simple
(i.e. un faible nombre de noyaux) et une bonne parcimonie paramétrique. L’objectif de
reconstruction d’une concentration non mesurable a partir de la mesure de concentration
d’une autre espece chimique est donc atteint dans le cadre de la simulation. Partant des
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constatations effectuées en simulation, une implémentation en temps réel du procédé de
reconstruction de la concentration en composé organique polluant est envisageable.

L’étape suivante de cette étude consistera en ’application de ces méthodes de modé-
lisation et d’inversion sur des données réelles.

3.4 Etude expérimentale : procédé de digestion anaé-
robie

Les traitements biologiques ou biochimiques constituent le mode classique d’épuration
de la pollution organique des eaux résiduaires industrielles. Ces techniques d’épuration
reposent sur les conditions qui permettent aux flores bactériennes de se développer et
d’assurer la dégradation des matieres organiques polluantes, éliminées dans la mesure ou
elles servent d’aliments aux bactéries. Le recours a 1’épuration biologique ou biochimique
dépend étroitement de la biodégradabilité des rejets industriels [Boeglin, 1997].

Les procédés d’épuration biologiques ou biochimiques les plus utilisés sont de type
aérobie (présence d’air ou d’oxygene) car la cinétique du processus s’avere beaucoup plus
rapide et les rendements d’épuration plus élevés qu’avec les traitements biologiques anaé-
robies.

Cependant, les procédés anaérobies, tout en assurant une élimination de la pollution
organique carbonée, présentent quand méme un certain nombre d’avantages par rapport
aux traitements biologiques aérobies : une faible consommation d’énergie pour les besoins
du procédé, une faible production de boues biologiques en exces et la récupération pos-
sible d'un biogaz (constitué en grande partie de méthane) pouvant étre utilisé comme
source d’énergie. Ce type de traitement, communément appelé "digestion anaérobie” est
utilisé surtout pour des effluents tres concentrés en pollution carbonée, de type industriel
(brasserie, sucrerie, conserverie, distillerie,...).

3.4.1 Description du procédé étudié

La digestion anaérobie assure la conversion de la majeure partie du carbone organique
contenu dans les effluents en un biogaz combustible composé en grande partie de méthane
CH,. Vu le cout actuel de I'énergie, la digestion anaérobie est un procédé bien adapté
au traitement d’efuents industriels concentrés en pollution organique et produits a des
débits moyens. En contrepartie de certains avantages par rapport aux traitements aérobies
classiques, la cinétique des réactions mises en jeu est lente (en particulier lors de I’étape
de méthanisation), ce qui se traduit par un investissement de départ élevé compte tenu
du volume important nécessaire des réacteurs biologiques anaérobies.
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La digestion anaérobie s’effectue spontanément lorsqu’une pollution organique concen-
trée est maintenue en ’absence d’oxygene. Le processus de dégradation des composés
organiques s’opere en deux étapes essentielles :

— une phase acide de liquéfaction des composés organiques aboutissant a la formation
d’acides gras volatils (AGV). Cette phase fait intervenir des bactéries anaérobies
qui sécretent des enzymes extracellulaires capables d’hydrolyser les macromolécules
organiques complexes (protéines, lipides, hydrates de carbone) de 'eau résiduaire
en molécules plus petites, appelées acides volatils (acide acétique, propionique, bu-
tyrique,...) qui sont essentiellement gras et qui serviront de substrat aux bactéries
méthanogenes.

— une phase de gazéification ou méthanogénese dont les produits finaux sont le mé-
thane (C'H,) et le dioxyde de carbone (CO,). L’acétogénese permet d’abord la trans-
formation des acides volatils en acide acétique et en hydrogene. La méthanogénese
assure ensuite par des bactéries anaérobies la transformation des acides volatils en
produits gazeux finaux (méthane et dioxyde de carbone).

La digestion anaérobie est un processus lent a démarrer. La cinétique des réactions
mises en jeu est principalement gouvernée par la méthanogénese, étape relativement lente.
Le fonctionnement global est fortement influencé par la sensibilité de la masse bactérienne
au pH (la vitesse de production de méthane décroit rapidement en dehors d’une zone de
pH allant de 6 a 8), a la température (chute de la production de méthane en dessous de
30°C"), aux variations de pollution et a la présence en quantité trop importante de cer-
tains toxiques, comme les métaux lourds ou les sulfures. De maniere générale, on vérifie
la bonne marche du procédé de digestion anaérobie en mesurant la production de biogaz,
elle-méme fonction de la qualité du substrat entrant en fermentation lorsque toutes les
conditions biologiques sont satisfaites.

On peut classer les différents digesteurs anaérobies mis en oeuvre industriellement en
deux grandes catégories selon l'intervention dans la dégradation des polluants organiques
de cultures bactériennes anaérobies libres ou fixées :

— les digesteurs a cultures libres dans lesquels la biomasse est en suspension. On as-
sure un brassage puissant pour homogénéiser le milieu, le plus souvent par recyclage
d’une fraction du biogaz produit. Pour optimiser le fonctionnement de la méthani-
sation, on peut procéder a la séparation des deux processus d’acidogénese (réalisé
dans un bassin) et de méthanisation (dans le réacteur proprement dit)

— les digesteurs a cultures fixées dans lesquels on s’efforce de fixer la culture bacté-
rienne anaérobie sur un support solide. Le matériau est choisi en fonction de sa
surface spécifique, afin de fixer le maximum de biomasse, et de son indice de vide,
afin de limiter les risques de colmatage.

Le procédé étudié est un digesteur anaérobie en lit fixe a flux ascendant traitant
des vinasses de distilleries de la région de Narbonne (figure 3.14) [Bernard et al., 2001],
[Steyer et al., 2003].
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Le réacteur est une colonne circulaire de 3.5m de hauteur et de 0.6m de diametre, ce
qui donne un volume total de 0.989m3. Le support utilisé pour fixer la biomasse est du
Cloisonyle™, matériau dont la surface spécifique est de 180m?/m?. Ce support occupant
un certain volume, le volume utile du réacteur est de 0.948m3.

Analysany de Anal yseur de conposition
Cabiore Total Madale du biogaz (CH, CO, H.)
Oz arique ] dulbrafiltration
(0,14 pxy)
e X .
Captanr titHmétique
[AT, AP AGY Eic)
Bidomumd:e Spectométe
g Infrarmge (DC 0, (il
COT, 4GV, AT, 4F) | .
Reacteur |
en litfixe] 77
{1 m?)
Capteur pH Didhitréhe
d
FHmR e Bidonde soude

Fig. 8.14 - Digesteur anaérobie en lit fixe a flur ascendant

Le liquide a l'entrée du réacteur est obtenu par dilution de 20/ de vinasses dans un
réservoir de 2001. Ce réservoir d’alimentation est équipé de capteurs de niveau permet-
tant d’obtenir une concentration donnée en matiere carbonée a l'entrée du réacteur. Le
pH est également mesuré (figure 3.15(a)) et régulé dans le réservoir d’alimentation par
I’ajout de soude a I’aide d’'une pompe doseuse. La température a I'intérieur du réacteur
est maintenue a 35°C par une boucle de régulation constituée d’une résistance chauffante,
d’un circuit d’eau chaude et d'une sonde de température.
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Fig. 3.15 - Mesures effectuées en ligne

Le débit de liquide a ’entrée du réacteur est mesuré a l'aide d'un capteur électroma-
gnétique (figure 3.15(d)). Une fois dans le réacteur, le liquide monte jusqu’a la sortie en
passant par le support sur lequel est fixée la biomasse. A la sortie du réacteur, un sépa-
rateur permet le dégazage du milieu liquide et la décantation des solides en suspension,
qui seront ensuite recyclés. Le liquide est ensuite recyclé a I'entrée du réacteur a l'aide
d’une pompe de recirculation. Un analyseur permet de mesurer le pourcentage (et donc le
débit) d’hydrogene, de méthane (figure 3.15(c)) et de dioxyde de carbone (figure 3.15(b))
du gaz en sortie de réacteur.

D’autres mesures, habituellement obtenues hors-ligne et manuellement, sont effectuées
en ligne dans le cadre spécifique de ce réacteur :
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Fig. 3.16 - Autres mesures effectuées en ligne

— la concentration en acides gras volatils (AGV - figure 3.16(b)) mesurée a 'aide d'un
capteur industriel ;

— la demande chimique en oxygene (DCO - figure 3.16(a)) mesurée par titrimétrie
— lalcalinité totale (AT - figure 3.16(c)) et partielle (AP - figure 3.16(d)) mesurées

par titrimétrie.

Une deuxieme mesure de la DCO et de la concentration en AGV est effectuée par
spectrométrie infrarouge. Ces mesures sont représentées sur la figure 3.17.
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Fig. 3.17 - Mesures effectuées par spectrométrie infrarouge

3.4.2 Le modele dynamique

La modélisation dynamique du processus de digestion anaérobie, sujet abordé depuis
pres de 30 ans, a d’abord été envisagée du point de vue de la précision. Les modeles pro-
posées avaient pour objectif principal de représenter le mieux possible le comportement
du réacteur. Les modeles mis au point étaient relativement simples et ne comportaient
qu’une seule population de bactéries. Ils ont été complexifiés en y incluant davantage de
populations de bactéries différentes et en décomposant le procédé total en plusieurs étapes
intermédiaires. Il résulte de cette augmentation de la précision des modeles une complexité
et une absence de parcimonie paramétrique qui rendent difficile, voire impossible, toute
tentative d’utilisation a des fins de commande du procédé.

Le modele dynamique développé par [Bernard et al., 2001] suppose deux populations
de bactéries différentes (X; et X3) ainsi qu'une séparation du procédé de digestion anaé-
robie en deux phases distinctes :

— une phase d’acidogénese durant laquelle la population de bactéries acidogéniques

X, consomme le substrat organique S; pour produire du dioxyde de carbone C'O,
et des acides gras volatils (S2) selon la réaction

51 — X1 + SQ + COQ (321)

— une phase de méthanogénese durant laquelle la seconde population de bactéries
Xy utilise les acides gras volatils comme substrat afin de croitre et de produire du
dioxyde de carbone C'Oy et du méthane C'Hy selon la réaction

52 e X2 + CH4 + OOQ (322)

Le carbone inorganique total C' est stocké sous forme de bicarbonate et de C'Oy dis-
sout. Une variable Z est introduite pour représenter 1’alcalinité totale dans le digesteur.
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Le modele dynamique est donc constitué d’'un ensemble d’équations différentielles du
premier ordre qui représentent, pour un débit de liquide en entrée D, I’évolution des deux
populations de bactéries (X et Xs), des substrats organiques (S7 et Ss), de I'alcalinité
totale Z et de la concentration en carbone inorganique C' :

( Xm

A&,

4
—1_ D(Slm - Sl) - /ﬁﬂl(sl)Xl

A4, (3.23)

= (m(S1) —aD)X;
= (p2(52) —aD)X,

g = D(Sain — S2) + ko1 (S1) X1 — k3pa(S2) Xo
=  D(Cyp — C) + kapr (S1) X1 + kspi2(S2) X2 — qeo,

N dt
Les termes Si;,, Soin, Zin et C;, représentent respectivement les concentrations en

entrée de substrat organique, d’acides gras volatils (AGV), I'alcalinité et le carbone inor-
ganique total.

Les taux de croissance bactérienne i (S1) et ua(S2) sont représentés respectivement
par le modele de Monod et celui de Haldane .

S1
S1) = Umax——— 3.24
p1(S1) = S+ Ks, ( )

S
MQ(SQ) = M2 max 2 52 (3'25)

2

SQ _I_ KSZ + KIQ
Les parametres fi1 max €t ftomax représentent le taux de croissance maximal de la bio-
masse acidogénique et méthanogénique respectivement. Les termes K, et Kg, sont des pa-
rametres de saturation associés respectivement a S; et Ss. Le terme K, est une constante

d’inhibition associée a Ss.

Le terme « représente une fraction supposée constante des bactéries attachée au sup-
port. Cette fraction n’est pas affectée par le phénomene de dilution.

Le terme qco, est le débit molaire en C'O,. On le calcule de maniere analytique en
utilisant ’expression

qco, = ki1(ksPeo, +Z — C — S) (3.26)

ou le terme Prp, est la pression partielle en C'Os donnée par 1'expression
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O — /D2 — 4k Pr[CO
Feo, = v T sLrlC0) (3.27)

avec

k So) X
i 6#2( 2) 2
7

& = ks Pr + [CO,] (3.28)

La concentration en dioxyde de carbone [CO;] est donnée par [CO,] = C' + Sy — Z.
Le terme Pr est la pression totale en sortie du réacteur.

Les valeurs identifiées de toutes les constantes définies figurent dans [Bernard et al., 2001].

L’utilisation de ce modele dynamique permet de comparer les mesures obtenues en
ligne aux résultats de simulation. On suppose tout au long du procédé que la biomasse,
apres sa croissance initiale, est maintenue constante : la concentration X; en bactéries
acidogenes et Xo en bactéries méthanogenes reste les mémes tout au long des 30 jours
d’expérimentation (figure 3.18). Du fait de la croissance initiale des populations de bac-
téries, le volume total utilisé est de 350 litres sur les 948 utilisables a 1’origine.

2
1.5F 4
2
-
X
0.5 b
0 L L L L L
0 5 10 15 20 25 30
Temps (jours)
25
2 |- -
< 15¢ 7
RS
N |
0.5F i
0 , , , , ,
0 5 10 15 20 25 30
Temps (jours)

Fig. 3.18 - Concentrations en biomasse

La comparaison des résultats expérimentaux et des résultats fournis par le modele
dynamique est présentée sur I’ensemble de figures 3.19.
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Fig. 3.19 - Comparaison des mesures obtenues en ligne (courbes claires) avec les résultats de

simulation (courbes foncées)

Le modele dynamique est donc valide sur un large domaine d’application du procédé
de digestion anaérobie. Nous allons donc pouvoir comparer les résultats de simulation
fournis par le modele non linéaire de Volterra a ceux fournis par ce modele dynamique en
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plus des résultats expérimentaux afin de valider a la fois le modele de Volterra présenté
dans la premiere partie du mémoire et les techniques d’inversion de ce modele décrites
dans la deuxieme partie du mémoire.

3.4.3 Application du modele de Volterra au digesteur anaérobie

Le procédé de digestion anaérobie considéré ici présente, comme de nombreux autres
procédés biologiques et biochimiques, un comportement dynamique fortement non linéaire
du en grande partie aux taux de croissance bactérienne 1(S1) et p2(S2) (3.24) et (3.25).
Un tel comportement justifie I'utilisation de modeles non linéaires pour représenter le pro-
cédé dans son entier ou bien les relations entre les différentes grandeurs mesurées en ligne
sur le pilote expérimental. Nous allons donc appliquer au digesteur anaérobie le modele
de Volterra décrit dans la premiere partie du mémoire [Bibes et al., 2003b].

Si 'on envisage ensuite la commande du procédé de digestion anaérobie, il est impor-
tant de pouvoir disposer en temps réel d’'une mesure de grandeur d’entrée du réacteur.
Bien souvent, en pratique, on ne dispose pas d’un capteur adéquat pour des raisons tech-
nologiques aussi bien qu’économiques. Et dans le cas ot 'on dispose d'un capteur, il est
souvent impossible de I'implémenter a ’entrée du réacteur. Une solution est alors d’effec-
tuer des mesures de grandeurs en sortie du procédé et d’estimer la grandeur d’entrée en
inversant le modele qui la relie a une ou plusieurs des grandeurs mesurables. Sachant que
la grandeur d’entrée peut étre liée a d’autres grandeurs de sortie par un modele de Vol-
terra, nous allons appliquer les techniques d’inversion présentées dans la deuxieme partie
du mémoire afin de reconstruire la grandeur d’entrée souhaitée.

3.4.3.1 Modélisation

Les modeles de Volterra décrits dans le premier chapitre de ce mémoire sont des mo-
deles mono-entrée mono-sortie. Il convient donc dans un premier temps de définir les
grandeurs que nous considérons comme entrées et sorties du digesteur anaérobie. La des-
cription du réacteur en lit fixe (figure 3.14) ameéne naturellement a définir comme grandeur
d’entrée le débit D(t) de liquide pollué a lentrée (figure 3.15(d)), avant son traitement
par digestion anaérobie. Les autres grandeurs mesurées en ligne (débit de méthane, de
dioxyde de carbone, demande chimique en oxygene, concentration en acides gras volatils,
alcalinité totale, pH) pourront étre considérées comme des grandeurs de sortie liées a la
grandeur d’entrée. La demande chimique en oxygene (DCO) et la concentration en acides
gras volatils (AGV) sont les principales mesures de la pollution et donc les témoins les
plus important de la dégradation de cette derniere par digestion anaérobie. On s’attachera
donc particulierement a la modélisation du lien entre débit d’entrée D(t) et DCO et du
lien entre D(t) et AGV.

a) Identification de modeles de Volterra
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Nous allons dans un premier temps utiliser le modele dynamique (3.23) du procédé
pour identifier différents modeles de Volterra entre la grandeur d’entrée D(t) et les diffé-
rentes grandeurs de sortie. La premiere étape est de créer un fichier d’entrée D(t) (figure
3.20) et d’utiliser le modele dynamique pour simuler les grandeurs de sortie (DCO, AGV,
différents débits, alcalinité totale, pH).

0.9F T

0.8
0.7f

0.61

D(t) (Ilh)

0.5F

0.4r

0.3f

0.2 , , , ,
0 20 40 60 80 100
Temps (jours)

Fig. 3.20 - Débit d’entrée

Les conditions de simulation sont les suivantes : la période d’échantillonnage est
fixée a 2 minutes (ce sera le cas dans toutes les simulations qui suivent). Les concen-
trations Siin, Soin, Zin €t Cy, en entrée sont maintenues constantes (Sy;, = 6.86g/l,
Soin = 110.06mmol /1, Z;, = 138.2Tmeq/l, Cy, = 32.27Tmmol /1).

Les valeurs des constantes utilisées dans le modele dynamique (3.23) sont :

a= 0.5

ki = 42.14

ke = 116.5

ks = 268

ky, = 50.6 (3.29)
ks = 343.6

ke = 453

kr = 19.8

ks = 16

Les valeurs des constantes utilisées pour le calcul des taux de croissance bactérienne
sont :
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M1 max = 1.2

Homax = 0.74

Kg, = 8.9 (3.30)
Kg, = 25

K, = 256

On en déduit les taux de croissance bactérienne 1 (S1) et p2(S2) (figure 3.21).
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(a) Bactérie acidogénique (b) Bactérie méthanogénique

Fig. 3.21 - Taux de croissance bactérienne

Les différentes grandeurs de sortie obtenues par simulation (selon les conditions que
I'on vient de décrire) sont données sur la figure 3.22.
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Fig. 8.22 - Fichiers de points utilisés pour l’identification de modéles de Volterra

Nous considérons des modeles de Volterra tronqués aux deux premiers termes. Chaque
noyau est ensuite modélisé par un développement sur des fonctions de transfert. Le pre-
mier noyau est développé sur une seule fonction de transfert tandis que le deuxieme noyau
est développé sur deux fonctions de transfert. Dans chaque cas le modele comporte donc
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3.4. Ftude expérimentale : procédé de digestion anaérobie

au total 8 parametres (3 poles a1, ag;1, azz et 5 gains Y011, Yo,2,1, V1,2,1, V0,2,2, V1,2,2) €t
peut étre schématisé comme 'indique la figure 3.23.

Les différents modeles de Volterra identifiés possedent tous la méme structure. Nous
allons voir que ce choix de structure garantit dans chacun des cas une précision suffisante
des résultats. L’augmentation de la complexité du modele (et donc la diminution de sa
parcimonie paramétrique) n’améliore pas les résultats.

. Your 371,1 (1)
- STy
y y(0)
u(t) » Yoio + Yiie yl,2 (t)
> K al,?_ (S —_ al,z)z % _’
- M + ylvz,z |‘
e Gma) Yy, (1)

Fig. 3.23 - Structure du modéle de Volterra

Une fois 'identification paramétrique achevée (par programmation non linéaire), on
dispose de 5 modeles de Volterra de la forme présentée par la figure (3.23) reliant le
débit d’entrée D(t) a la DCO, a la concentration en AGV, au débit de CO,, au débit
de C'Hy4 et au pH respectivement. L’ensemble des figures 3.24 est une comparaison de la
sortie de chaque modele de Volterra avec les résultats de simulation du modele dynamique.
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Fig. 3.24 - Comparaison entre sorties des modéles de Volterra (ligne pointillée) et sorties du
modele dynamique (ligne continue)

Dans chacun des 5 cas, le modele de Volterra identifié fournit une bonne approximation
de la sortie du modele dynamique malgré un nombre de parametres relativement faible.
L’ajout d'un troisieme terme dans le modele de Volterra n’améliore pas la précision des
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résultats obtenus, malgré un nombre plus important de parametres.

Par contre, l'alcalinité Z (figure 3.22(f)) semble avoir un comportement indépendant
de celui du débit d’entrée D(t). Une fois passé un régime transitoire, la valeur de Z(t) se
stabilise autour d’une valeur constante. Sans comportement dynamique autour de cette
valeur, il n’est pas possible de modéliser le lien entre D(t) et Z(t) par une série de Volterra.

b) Test sur les données mesurées

L’étape suivante consiste a valider les modeles de Volterra identifiés en comparant les
sorties obtenues pour le débit d’entrée D(t) (figure 3.15(d)) aux données expérimentales.

On applique donc le débit d’entrée D(t) aux différents modeles de Volterra identifiés
dans la partie précédente. L’ensemble de figures 3.25 compare les sorties de chacun des
modeles de Volterra aux données expérimentales.
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Fig. 3.25 - Validation expérimentale des modéles de Volterra (courbes claires : données expéri-
mentales - courbe foncée : sortie du modéle de Volterra)

Dans chacun des cas, on constate une assez bonne adéquation entre mesures expéri-
mentales et résultats de simulation des modeles de Volterra pour un méme débit d’entrée.
Quelques remarques sont cependant nécessaires :
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— dans le cas de la DCO (figure 3.25(a)) et de la concentration en AGV (figure 3.25(b),
il a été nécessaire de multiplier la sortie du modele de Volterra par un gain dont
la valeur est 2.3 et 0.8 respectivement. Cette différence entre la sortie du modele
de Volterra et les données expérimentales peut s’expliquer : le modele dynamique
que nous avons utilisé pour identifier les modeles de Volterra a été établi a partir de
données expérimentales datant du début d’utilisation du digesteur anaérobie. A ce
moment, le volume utile du réacteur était de 9481. Toutes les valeurs des parametres
du modele ont été identifiés a partir de ces données. Par contre, les données expéri-
mentales utilisées ici correspondent a une utilisation plus récente du digesteur. Les
conditions expérimentales ont changé : entre autres changements, le volume utile
du réacteur a diminué jusqu’a 3501 a cause de la croissance bactérienne. De plus,
les valeurs de certains parametres ont di (ou doivent) étre a nouveau identifiées.
Le modele dynamique (3.23) qui a servi a identifier les parametres des différents
modeles de Volterra a donc été utilisé dans des conditions ou il ne correspond pas
exactement aux données expérimentales, ce qui explique la différence entre les me-
sures et les sorties du modele de Volterra. Cette sensibilité du modele de Volterra
aux changements de conditions expérimentales pourrait étre étudiée afin d’étre uti-
lisée a la mise en évidence de problemes pratiques, tel le colmatage du réacteur.

— ce probléme de gain n’apparait pas dans le cas du débit de CO; et de C'Hy (courbes
3.25(c) et 3.25(d)).

— dans le cas du pH, on constate sur la courbe de mesures expérimentales (figure
3.15(a)) que sa variation est I'inverse de celle du débit d’entrée (figure 3.15(d)). Ceci
justifie le gain unitaire négatif par lequel on doit multiplier la sortie du modele de
Volterra pour qu’elle corresponde au pH mesuré expérimentalement. On constate
tout de méme une différence de gain marquée a certains endroits entre les deux
courbes de la figure 3.25(e). Cependant, la variation expérimentale de pH étant
faible (le pH est régulé autour de la valeur optimale de 7 pour des conditions idéales
de fonctionnement des cultures bactériennes), le modele de Volterra peut suffire a
prévoir cette variation en fonction de celle du débit d’entrée.

— dans tous les cas de figure, les résultats de simulation obtenus a 'aide des modeles
de Volterra sont tout a fait comparables a ceux obtenus par le modele dynamique
(figures 3.19(a) a 3.19(e)).

Cet ensemble de résultats de comparaison permet ici de valider ’approche de repré-
sentation des liens entre le débit d’entrée et différentes grandeurs de sortie par modeles de
Volterra. La précision de ces modeles est suffisante pour ensuite envisager leur inversion
et permettre ainsi la reconstruction du débit d’entrée (ou de la DCO en entrée) a partir
de la mesure de grandeurs de sortie.
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3.4.3.2 Reconstruction de grandeurs par inversion du modele de Volterra

a) Régularisation de Tikhonov

La méthode de régularisation de Tikhonov présentée dans le deuxieme chapitre de ce
mémoire est utilisée afin d’inverser les modeles de Volterra reliant le débit d’entrée D(t)
du digesteur anaérobie aux différentes mesures de sorties (DCO, AGV, débit de COs,
débit de C'Hy, pH). Ainsi, les mesures de grandeurs les plus accessibles permettront, par
inversion de modele, de reconstruire une des grandeurs d’entrée, comme le débit (faci-
lement mesurable) ou la DCO en entrée (dont le protocole de mesure est difficile, voire
impossible a implémenter). La reconstruction du débit d’entrée D(t) permettra de valider
la méthode employée en comparant la grandeur reconstruite a la mesure du débit d’entrée.

Dans toute la partie qui suit, on utilise le modele de Volterra développé sur base de
fonctions orthonormées généralisée.

Considérons le débit d’entrée D(t) représenté sur la figure 3.26(a). La figure 3.26(b)
représente la sortie du modele dynamique du digesteur (3.23) et la sortie du modele de
Volterra représentant le lien entre débit d’entrée et DCO en sortie : ce modele de Vol-
terra est tronqué a ses deux premiers noyaux, développés respectivement sur une et trois
fonctions de la base orthonormée généralisée. Les poles des fonctions sont tous fixés a 10.
Le nombre total de parametres est égal a 7. Les deux courbes de la figure 3.26(b) sont
suffisamment proches pour envisager ensuite 'inversion du modele de Volterra.

0.9r
0.8-

0.61

DCO (glly

D(t) (Irh)

0.5r

0.4f L—

0.31

0-20 lb 26 36 4‘0 50 : é 16 1‘5 26 2‘5 36 3‘5 4‘0 4‘5 50
Temps (jours) Temps (jours)
s . b) DCO en sortie du modele dynamique
(a) Débit d’entrée (b) . R Y 4
(courbe continue) et du modele de Volterra

(courbe pointillée)

Fig. 8.26 - Modélisation du lien entre débit d’entrée et DCO en sortie

Dans le cas ou aucun bruit de mesure ne s’ajoute a la DCO en sortie, aucune régulari-
sation de l'entrée D(t) reconstruite n’est nécessaire. On fixe donc la valeur du parametre
A a 0. Le résultat de la reconstruction est représenté sur la figure 3.27.
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Fig. 3.27 - Comparaison entre D(t) (courbe continue) et sa reconstruction (courbe pointillée)

Malgré la présence de plusieurs pics de reconstruction sur une partie du signal re-
construit, les deux courbes sont pratiquement superposées, attestant de la qualité de
reconstruction du débit d’entrée D(t).

On ajoute maintenant un bruit de mesure a la DCO en sortie (rapport signal/bruit égal
a 100). Le modele de Volterra est a nouveau identifié et I’on conserve le méme débit d’en-
trée (figure 3.26(a)). La comparaison entre les deux courbes de la figure 3.28 montre que le
modele de Volterra est suffisamment précis pour modéliser correctement la DCO en sortie.

25
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DCO (g/l)
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5 10 15 20 25 30 35 40 45 50
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Fig. 3.28 - Comparaison entre DCO bruitée (courbe claire) et DCO en sortie du modéle de Vol-
terra (courbe foncée)

Afin de reconstruire correctement le débit d’entrée, il est maintenant nécessaire de ré-
gulariser la solution du probleéme inverse. La figure 3.29 représente le débit d’entrée D(¢)
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reconstruit pour deux valeurs du parametre de régularisation (A = 0.01 et A = 0.1). Dans
chacun des deux cas, la matrice de régulation utilisée est la matrice des dérivées secondes.

D(t) (Irh)

11 T T T T 11

1r 1
0.9 0.9
0.8 0.8
0.7 0.7r

ol = o
0.6 = 0.6t
a3
0.5 0.5
0.4 vy 0.4 e A
0.3f 0.3
0.2 0.2
01 . . . . 01 . . . . . . . . .
10 20 30 40 50 5 10 15 20 25 30 35 40 45 50
Temps (jours) Temps (jours)
(a) A=0.01 (b) A=0.1

Fig. 3.29 - Comparaison entre D(t) (courbe foncée) et sa reconstruction (courbe claire) pour

différentes valeurs de A

L’utilisation de la matrice des dérivées secondes permet une bonne reconstruction du
débit d’entrée sans qu’il y ait pour autant une perte d’information sur le signal reconstruit.

Ces différents essais en présence de bruit de mesure permettent de valider la méthode
d’inversion par régularisation dans le cas du modele du digesteur anaérobie. On utilise
maintenant le débit d’entrée D(t) et la DCO en sortie mesurés expérimentalement (figure
3.30).
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Le modele de Volterra utilisé reste le méme que précédemment (troncature aux deux
premiers noyaux). Malgré une différence notable entre la DCO mesurée et la sortie du
modele de Volterra entre 20 et 25 jours (figure 3.30(b)), le modele de Volterra est suffi-
samment précis pour envisager la reconstruction du débit d’entrée.

L’application de la méthode d’inversion conduit aux résultats présentés sur les courbes
de la figure 3.31.
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(a) A=0.01 (b) A=0.1

Fig. 3.31 - Débit d’entrée expérimental (courbe foncée) et sa reconstruction (courbe claire)

Si I'on compare les deux courbes, I'influence du parametre de régularisation est nette-
ment visible. La valeur optimale de A se situe a nouveau autour de 0.1.

La méthode d’inversion du modele de Volterra par régularisation de Tikhonov peut
donc s’appliquer a des fichiers de points expérimentaux. Les résultats de reconstruction
du débit d’entrée D(t) sont de bonne qualité malgré la aussi une différence notable entre
les deux courbes de la figure 3.31(b) entre 20 et 25 jours.

La deuxieme étape consiste maintenant a reconstruire une grandeur d’entrée dont le
protocole de mesure est difficile, voire impossible a implémenter : la DCO en entrée du
réacteur biologique. L’acces a la mesure de la DCO en entrée est important dans le cas
du digesteur anaérobie étudié car cette grandeur permet de quantifier le taux de pollution
présent dans le liquide en entrée du réacteur.

La figure 3.32(a) représente la DCO en entrée DCO;, du modele dynamique et la
figure 3.32(b) la DCO obtenue en sortie comparée a la sortie du modele de Volterra. Dans
ce cas, le modele de Volterra est tronqué a ses 3 premiers noyaux, chacun développé res-
pectivement sur une, une et deux fonctions de la base orthonormée généralisée. Les poles
des fonctions sont fixés a 5. Le nombre total de parametres est égal a 6.
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Fig. 3.32 - Modélisation du lien entre DCO en entrée et DCO en sortie

La reconstruction de la DCO en entrée peut étre effectuée sans régularisation (A=0).
Le résultat est représenté sur la figure 3.33.
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Fig. 3.33 - Comparaison entre la DCO en entrée (courbe continue) et sa reconstruction (courbe
pointillée)

On constate également dans ce cas la présence de pics de reconstruction mais la qualité
de reconstruction de la DCO en entrée reste tout a fait correcte.

On ajoute a nouveau un bruit de mesure a la DCO en sortie (rapport signal /bruit égal
a 100). Le modele de Volterra est a nouveau identifié et ’'on conserve la méme DCO en en-
trée (figure 3.32(a)). La comparaison entre les deux courbes de la figure 3.34 montre que le
modele de Volterra est suffisamment précis pour modéliser correctement la DCO en sortie.
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Fig. 3.3/ - Comparaison entre DCO bruitée (courbe claire) et DCO en sortie du modéle de Vol-
terra (courbe foncée)

La figure 3.35 représente la DCO en entrée reconstruite pour deux valeurs du para-
metre de régulation (A = 1075 et A = 10™*). Dans chacun des cas, la matrice de régulation
utilisée est la matrice des dérivées secondes.
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Fig. 3.35 - Comparaison entre la DCO en entrée (courbe foncée) et sa reconstruction (courbe
claire) pour différentes valeurs de X

La valeur optimale du coefficient de régularisation se situe autour de 10~*. On obtient
pour cette valeur une bonne reconstruction de la DCO sans dégradation.

Cette méthode d’inversion du modele de Volterra par régularisation de Tikhonov peut
donc étre appliquée a la reconstruction de grandeurs non mesurables directement.

La concentration en polluant étant beaucoup plus importante dans le liquide a 1’en-
trée du réacteur, cette méthode pourrait éventuellement étre utilisée en lieu et place d’un
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capteur. Nous avons constaté que le temps de calcul nécessaire a 'inversion du modele
de Volterra était au mieux égal a quelques minutes, pour une durée globale du procédé
qui s’étend sur plusieurs jours. Ceci permet d’envisager une reconstruction de la DCO
d’entrée en temps réel.

b) Inversion par retour d’entrée reconstruite

Les résultats de reconstruction par régularisation de Tikhonov étant probants, nous
allons a présent les comparer a ceux obtenus par les deux méthodes d’inversion par retour
d’entrée reconstruite décrites dans le deuxieme chapitre du mémoire.

On utilise le débit d’entrée D(t) de la figure 3.36(a). La DCO en sortie du modele
dynamique a laquelle s’ajoute un bruit de mesure (rapport signal sur bruit égal a 100)
(3.23) est représentée sur la figure 3.36(b).

D(t) (Ith)

DCO (g/l)

0.5

26 4‘0 Gb 86 100 00 26 4‘0 éO 86 100
Temps (jours) Temps (jours)

(a) Débit dentrée (b) Comparalson de la DCO en sortie du n}odele

dynamique (courbe continue) et du modele de

Volterra (courbe pointillée)

Fig. 3.36 - Signaux d’entrée et de sortie

On cherche ensuite & représenter le lien entre le débit d’entrée D(t) et la DCO en
sortie par un modele de Volterra développé sur fonctions de transfert. On utilise dans
toute cette partie un modele de Volterra tronqué a ses deux premiers termes, le premier
noyau est modélisé par une fonction de transfert tandis que le deuxieme noyau est modé-
lisé par un développement sur deux fonctions de transfert. Le nombre total de parametres
du modele est égal a 8. La figure 3.36(b) compare la sortie du modele de Volterra avec la
DCO en sortie du modele dynamique. On constate a nouveau que la modele de Volterra
est suffisamment précis pour envisager son inversion et ainsi reconstruire le débit d’entrée
D(t) a partir de la DCO en sortie.

On applique alors les deux méthodes de reconstruction d’un signal par retour d’entrée
reconstruite décrites dans le premier chapitre. Le résultat des deux reconstructions est
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représenté sur la figure 3.37.
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(a) Reconstruction par la méthode 1 (b) Reconstruction par la méthode 2
Fig. 3.37 - Comparaison entre débit d’entrée reconstruit (courbe claire) et mesuré (courbe fon-
cée) pour les 2 méthodes de reconstruction

Malgré une qualité de reconstruction qui peut sembler moindre par rapport a celle ob-
tenue par régularisation (figure 3.29(a)), les résultats obtenus restent satisfaisants et cela
sans que nous ayons eu a tenir compte d’une éventuelle amplification du bruit de mesure
ajouté a la DCO en sortie. L’amplitude du bruit (ou erreur de reconstruction) que ’on
retrouve sur le signal D(t) reconstruit est du méme ordre de grandeur que 'amplitude du

bruit de mesure ajouté a la DCO utilisée pour reconstruire D(t).

Afin d’appliquer ces deux méthodes sur les données expérimentales, on utilise main-
tenant le débit d’entrée D(t) et la DCO en sortie mesurés expérimentalement (figure 3.38).
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(a) Débit d’entrée (b) DCO expérimentale

Fig. 3.38 - Mesures expérimentales du débit d’entrée et de la DCO en sortie
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Le modele de Volterra utilisé reste le méme que précédemment (troncature aux deux

premiers noyaux).

L’application des deux méthodes d’inversion conduit aux résultats présentés sur les
courbes de la figure 3.39.
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(a) Méthode 1 (b) Méthode 2

Fig. 3.89 - Débit d’entrée expérimental (courbe claire) et sa reconstruction (courbe foncée)

De maniere plus précise, la figure 3.40 compare la reconstruction du débit d’entrée par
les deux méthodes avec le débit d’entrée mesuré expérimentalement et filtré.
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Fig. 3.40 - Débit d’entrée expérimental filtré (courbe claire) et sa reconstruction (courbe foncée)

Les résultats obtenus sur des fichiers de points expérimentaux sont de bonne qualité et
restent tout a fait comparables a ceux obtenus par la méthode d’inversion par régularisa-
tion (figure 3.31(b)). En comparaison avec cette derniere méthode, on note également une
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nette amélioration de la rapidité des calculs (moins d’une minute) lors de I’application de
ces deux méthodes.

La deuxieme étape consiste maintenant a appliquer ces deux méthodes afin de recons-
truire la DCO en entrée du réacteur.

La figure 3.41(a) représente la DCO en entrée (DCO;,) du modele dynamique et la fi-
gure 3.41(b) la DCO bruitée obtenue en sortie comparée a la sortie du modele de Volterra.
Le modele de Volterra qui relie ces deux grandeurs est tronqué a ses 2 premiers noyaux,
chacun développé respectivement sur une et deux fonctions de transfert. Le nombre total
de parametres est égal a 8.
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(2) DCO en entrée (b) DCO en sortie du mod\ele dynamique
(courbe continue) et du modele de Volterra

(courbe pointillée)

Fig. 3.41 - Modélisation du lien entre DCO en entrée et DCO en sortie

Le résultat de la reconstruction de la DCO en entrée par chacune des deux méthodes
est représenté sur la figure 3.42.
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Fig. 3.42 - DCO en entrée (courbe foncée) et DCO reconstruite (courbe claire)

Dans le cas de la reconstruction de la DCO en entrée a partir de la DCO en sortie
bruitée, il apparait en plus de I'erreur de reconstruction due au bruit de mesure, des pics
d’amplitude importante qui nuisent a la qualité de la DCO en entrée reconstruite. Ce
phénomene est atténué lorsque 'on utilise la deuxieme méthode de reconstruction.

3.4.4 Conclusion

L’utilisation du modele dynamique du procédé et des données expérimentales per-
mettent dans ce cas d’étude de valider en simulation les méthodes de modélisation et
d’inversion non linéaire présentées dans les deux premiers chapitres du mémoire.

La modélisation des liens non linéaires entre la variation de débit de liquide pollué en
entrée du procédé et différentes grandeurs en sortie (DCO, AGV, pH, débits de gaz) est
réalisée a l'aide de modeles de Volterra dont on s’est attaché a réduire la complexité et le
nombre de parametres. Cette simplification des modeles permet ensuite d’envisager leur
inversion en un temps relativement réduit.

Le deuxieme objectif de ’étude était celui de la reconstruction de grandeurs non me-
surables par l'inversion du modele de Volterra et 1'utilisation de grandeurs plus facilement
mesurables. La DCO en entrée du réacteur a été reconstruite a partir de la mesure de
la DCO en sortie et l'inversion par deux approches différentes du modele de Volterra.
L’approche d’inversion par régularisation de Tikhonov offre des résultats de reconstruc-
tion satisfaisants au détriment d’une charge de calcul importante. Cependant, le procédé
étudié possede une dynamique globale lente par rapport au temps de calcul nécessaire. On
peut donc envisager I'implémentation du procédé de reconstruction. En outre, I'approche
d’inversion par retour d’entrée reconstruite ne repose pas sur une optimisation itérative
et permet donc de limiter davantage la charge de calcul : une implémentation en temps
réel est donc tout a fait concevable.
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3.5 Conclusion du chapitre

Les deux procédés de traitement des eaux étudiés dans ce chapitre font appel a des
principes différents : un processus chimique d’oxydation dans le premier cas et un pro-
cessus biologique de digestion dans le deuxieme cas. Cependant, 1'objectif final reste le
meéme, la neutralisation d’'un composé organique potentiellement dangereux pour 'envi-
ronnement. Ces deux procédés comportent d’autres points communs, mis en évidence lors
de leur étude. Il s’agit avant tout de deux procédés continus : la mise en oeuvre de la
neutralisation du composé organique est envisagée dans chacun des cas sur une longue
durée, pouvant aller jusqu’a plusieurs mois. La modélisation de chacun des deux procédés
tient compte de ce fait et les structures des deux modeles cinétiques obtenus sont donc
tres proches : on aboutit dans chacun des cas a un ensemble d’équations différentielles
dans lequel des non-linéarités sont mises en évidence.

Les résultats fournis par le modele de Volterra sont suffisamment proches de ceux ob-
tenus en utilisant les modeles cinétiques des deux procédés pour justifier son utilisation et
valider la méthode de modélisation proposée. Ceci montre s’il en est besoin qu'un modele
de comportement peut-étre utilisé dans les domaines de la chimie et de la biochimie afin
de prévoir le comportement d’un procédé continu, assimilable a un systeme mono-entrée
mono-sortie.

La reconstruction de grandeurs chimiques non directement mesurables a, dans les deux
cas d’étude, un objectif semblable (I’accés a une grandeur) et des motivations d’ordre
économique : I'optimisation de la quantité de réactif dans le cas du procédé chimique
d’oxydation et la possibilité d’éviter la mise en place onéreuse d’un protocole de mesure
directe en entrée du réacteur dans le cas du procédé biologique de digestion. Les méthodes
présentées permettent d’obtenir des grandeurs reconstruites tout a fait satisfaisantes. On
a montré que la méthode de régularisation de Tikhonov, le plus souvent employée dans
le cadre de systemes linéaires, peut voir son utilisation élargie au domaine plus vaste des
systemes non linéaires si ceux-ci sont modélisables par une série de Volterra. Les deux
méthodes d’inversion par retour d’entrée reconstruite permettent de s’affranchir d’un cer-
tain nombre de calculs et d’obtenir une rapidité satisfaisante si I’on désire ensuite utiliser
ces méthodes sur une application en temps réel.
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Le double objectif de ce travail de these s’inscrit dans la mise en place actuelle d'un
pole innovant de traitement des eaux, ceci dans le cadre du 12°™¢ Contrat de Plan Etat-
Région de I"Université de Poitiers.

Le premier objectif du travail de recherche consistait en la modélisation de procédés
chimiques et biologiques de traitement des eaux. Dans le domaine plus général du gé-
nie des procédés, de telles tentatives de modélisation sont depuis longtemps 'objet de
recherches. La modélisation des deux procédés de traitement des eaux par les séries de
Volterra présentée dans ce mémoire est dans chaque cas la premiere étape d'un projet
global : le modele du procédé d’oxydation de composé organique polluant doit ensuite
permettre d’envisager la commande de ce procédé en agissant sur certaines grandeurs;
le modele du procédé de digestion anaérobie permet, en faisant le lien entre différentes
grandeurs, d’envisager la reconstruction d’une de ces grandeurs par inversion de modele.
Il s’agit la du deuxieme objectif de cette these. Un des objectifs a terme du projet global
de recherche dans lequel figure ce travail est la création d’un capteur intelligent capable
de reconstruire une grandeur non directement mesurable. Ce type de capteur pourra étre
ensuite utilisé lors de la synthese et de la mise en place d’un dispositif de commande du
procédé de traitement des eaux.

Le premier chapitre répond a l'objectif de modélisation de systéemes non linéaires. Les
différentes formes de modélisation et techniques présentées contribuent a augmenter le plus
possible la parcimonie paramétrique du modele de Volterra. C’est la principale contribu-
tion de ce chapitre. L'utilisation des séries de Volterra pour représenter un systéme non
linéaire fournit un modele souple et abordable car il généralise la notion de convolution,
tres utilisée pour la représentation de systemes linéaires. Nous avons tenté de répondre
a I'un des inconvénients du modele de Volterra développé sur bases de fonctions géné-
ralisées : la forte augmentation du nombre de parametres en 1’absence de connaissance
a priori sur le systeme étudié. La premiere solution proposée consiste a développer les
noyaux de Volterra sur des fonctions de transfert : on obtient ainsi un modele plus souple
dont les parametres sont tous identifiés a partir de signaux d’entrée et de sortie du sys-
teme. Le probleme de I'absence de connaissance a priori sur le systeme est éludé et la
parcimonie globale du modele de Volterra est augmentée. La deuxieme solution proposée,
que 'on peut coupler a la premiere, consiste a séparer la partie statique et la partie dy-
namique du signal d’entrée considéré. Le modele de Volterra ne représente alors que la
partie dynamique du systeme, ce qui permet de réduire le nombre total de noyaux et donc
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de parametres.

Le deuxieme chapitre s’attache a 1'objectif de reconstruction de grandeurs non di-
rectement mesurables. De nombreuses méthodes d’inversion de modeles linéaires et non
linéaires existent, dont la méthode de régularisation de Tikhonov. Une des contributions
de ce chapitre consiste en ’application de cette méthode de régularisation au modele de
Volterra défini dans le premier chapitre. Des difficultés similaires a celles du cas linéaire
se posent (choix du parametre et de la matrice de régularisation) et sont solutionnées
de maniere satisfaisante. Un probleme supplémentaire se pose dans le cas du modele de
Volterra : 'augmentation du temps de calcul du a la procédure d’optimisation non linéaire
des parametres. Une solution classique que nous proposons consiste en la discrétisation
du modele de Volterra afin de limiter le volume de calcul nécessaire a la simulation des
sorties. Une solution moins classique consiste a coupler cette discrétisation a ’optimisa-
tion paramétrique et a la simulation de modele sur un horizon fuyant, réduisant encore
davantage le temps de calcul global. Cependant, 'optimisation et la simulation restent
des étapes nécessaires de la procédure d’inversion par régularisation de Tikhonov. Nous
avons alors proposé deux méthodes calculatoires d’inversion au principe différent de celui
de la régularisation afin de contourner I'optimisation paramétrique. Ces deux méthodes
d’inversion par retour d’entrée reconstruite sont équivalentes dans le cas d'un systeme
linéaire mais donnent des résultats sensiblement différents dans le cas d’un systeme non
linéaire. Dans les deux cas, le gain en temps de calcul est relativement important mais au
prix de certaines difficultés numériques qui n’apparaissent pas dans le cas de la régulari-
sation de Tikhonov.

Le troisieme chapitre est consacré a I’étude de deux procédés de traitement des eaux
aux objectifs semblables (la neutralisation de composés organiques) mais dont les tech-
niques mises en oeuvre different (utilisation de réactifs chimiques dans un cas et de po-
pulations de bactéries dans I'autre). Nous nous sommes efforcés de montrer qu'un modele
de Volterra (modele de comportement) est capable de représenter correctement le fonc-
tionnement de ces deux procédés, dont deux modeles de connaissance avaient déja été
développés sous forme d’un ensemble d’équations différentielles. La validation du modele
de Volterra montre qu'un procédé chimique ou biologique peut étre considéré comme un
systeme comportant une ou plusieurs entrées et sorties sur lesquelles on peut agir afin de
commander (et d’optimiser) son fonctionnement. Cependant, il n’est possible d’agir sur
ces entrées et sorties qu’a la condition de pouvoir les mesurer a n’importe quel instant
du processus. L’étude des deux procédés a montré que la mesure directe de certaines
grandeurs était trop complexe et/ou trop couteuse a mettre en oeuvre. Nous avons donc
proposé une méthode indirecte de mesure de ces grandeurs par 'utilisation des méthodes
d’inversion exposées dans le deuxieme chapitre. Ces méthodes font appel a la mesure di-
recte de grandeurs accessibles a ’aide de capteurs et a la reconstruction des grandeurs non
directement mesurables par des moyens informatiques. Les temps de mesure et de calcul
sont suffisamment faibles pour envisager d’implémenter ces méthodes de mesure indirecte
en temps réel.

On peut envisager différents prolongements a ce travail de these.
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Tout d’abord, I’étude effectuée dans le troisieme chapitre pourrait aboutir a la mise
au point d’un capteur logiciel dédié a la mesure de grandeurs physico-chimiques par une
méthode indirecte comme nous 'avons vu précédemment. Un tel capteur présenterait
I’avantage de pouvoir étre implémenté directement sur un pilote expérimental et cela a
moindre cotit. Une autre possibilité consisterait a ajouter a un capteur déja existant une
composante informatique afin de reconstruire une ou plusieurs grandeurs a partir des me-
sures de ce capteur et d’'un modele préétabli reliant les grandeurs entre elles. Une telle
démarche réduirait encore davantage le colit de mise en place, celui-ci se limitant au ma-
tériel informatique et d’interfagage nécessaire.

La suite logique de la mise en place d’un tel capteur pourra étre la synthese de lois
de commandes visant a optimiser le fonctionnement des procédés de traitement des eaux,
particulierement dans le cas de I'oxydation de composés organiques par le procédé Fenton,
pour lequel aucune méthode de dosage optimal de réactif en entrée du processus n’a été
développée. Le dosage optimal conduirait également a une diminution du cott global du
procédé, tout en assurant un taux de neutralisation de polluant conforme aux normes
préétablies.

Nous nous sommes limités dans notre étude au cas de systemes mono-entrée mono-
sortie. Les modeles de Volterra n’ont donc été développés que dans ce cas. Or, les deux
études effectuées au troisieme chapitre montrent qu’il serait souhaitable d’un point de vue
pratique de pouvoir agir sur plusieurs entrées des procédés. Dans le cas de l'oxydation
par le procédé Fenton, une action simultanée sur le dosage des deux réactifs pourrait étre
envisagée. Elle implique donc la représentation du procédé par un modele multi-entrées
mono-sortie. Le modele de Volterra est généralisable a plusieurs entrées il n’existe pas
de moyen certain de quantification de l'influence de chacune des entrées sur la sortie,
ceci a cause de nombreux termes de couplage présents dans le développement en série
de Volterra. De plus, le nombre de parametres augmente proportionnellement au nombre
d’entrées du modele, sacrifiant ainsi a l'objectif de parcimonie du modele global. Un étude
de pertinence des parametres du modele de Volterra multi-entrées mono-sortie serait donc
nécessaire afin d’en réduire le nombre.

Enfin, un probleme beaucoup plus délicat serait I’application de techniques d’inversion
au modele de Volterra multi-entrées mono-sortie. La reconstruction de plusieurs signaux
d’entrée a partir d’un seul signal de sortie nécessiterait de connaitre exactement I'influence
de chacune des entrées du systeme. Cette information pourrait étre déduite de connais-
sances a priori sur le systeme étudié. Les recherches dans ce domaine particulier ne se
limitent pas au cadre du traitement des eaux mais a ’ensemble des problemes inverses.
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Annexe

1 Preuve du théoreme 1.3

La premiere étape du calcul consiste a rééerire I'intégrale multiple y,,(¢) (1.99) en rem-
plagant les fonctions fP(t) par leur expression (1.100).

t 1o Tn po—1 C S ao(t—7n)
Jo Jo7 - J; < ino —ra(t ) | e ..
Pn—1—1 Czjm—lflaj ( . )j ean,l(rz—n) pn—1 Cpn 1CLJ eanTL Hn u(T-)dT
- §=0 7! n—1\T2 — T1 §=0 i=1 U\T¢)AT;

Afin de simplifier les calculs, nous allons poser :
o
’yi,j:'yi,j(ag):p_;'_laf pour 0<i<mnet0<j<p —1 (2)
4!

L’équation (1) devient :

F 7 (S sl — ) et

Pn—1—1 _ — pn—1 a n
- ( o Tam(me — 1) ) etn-1(mmm) ( ito TngTi )6 "L w(m)dr

Posons maintenant

il 0 3 Y0t = T) pour ¢ =0
D; = ?l 0 Yig(Ta—it1 — Ta)’ pour 1 <i<n—1 (4)
1]0”0 Y T2 pour i =n

On obtient donc comme nouvelle expression de y,(t) :

t T2 Tn n
/ / / DoDy...D, et tn-1(r2=71) ganTi H u(r;)dT; (5)
0o Jo 0 i=1

que l'on peut également écrire :
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t T Tn n
/ / 2 / DoDl~--D’I’Le(ao_al)(t_Tn)J’_'“J’_(an_l_an)(t_T1)+ant H U(Ti)dﬂ' (6)
0 JO 0 i=1

A ce stade, il faut faire la remarque que l'intégrale multiple (1.99) comporte n + 1
fonctions (1.100) et seulement n termes u(7;). Si 'on parvient a décomposer I'intégrale
multiple en un produit d’intégrales simples, nous aboutirons a un produit de n + 1 in-
tégrales, dont les n premieres seront des intégrales de convolution simples alors que la
derni¢re sera indépendante des variables 7; et pourra s’écrire sous la forme e*!. Dans le
cas général, cette exponentielle peut étre considérée comme un facteur de pondération ou
un coefficient d’amortissement.

Afin de simplifier les calculs, nous allons poser p, = 0. Il est important de noter que
cette simplification n’aura pas d’importance dans la suite des calculs, la séparation de
I'intégrale multiple ou I'identification paramétrique.

Nous obtenons bien dans I'intégrale multiple (6) un terme e®! indépendant des va-

riables 7; que I’on peut donc considérer comme un facteur constant et "sortir” de I'intégrale
multiple :

t T Tn n
ot / / / DoDy... Dyelto-ntmrtectns-an - [T u(r)dr;  (7)
0 Jo 0 paiey

Posons p,, = 0 pour obtenir :

pn_1 ]
C o
“Pnlgimd ] et = 1 (8)
gt

j=0
et ainsi simplifier le calcul sans affecter la suite des manipulations mathématiques.
L’intégrale multiple y,(t) s’écrira donc au final :

t T2 Tn n
/ / / DQ...Dn_le(aO_al)(t_Tn)...ean_l(t_ﬁ) HU(Tz)de (9)
0 JO 0 1=1

Le but étant de séparer l'intégrale multiple (9), il reste a déterminer si le produit

n—1
DODl---anl - H Dz (10)
=0
peut étre séparé en un produit de termes qui ne dépendent que des différences t — 7.
La séparation de I'intégrale multiple nécessite donc la connaissance du produit (10) quelle
que soit la valeur du coefficient p; de chaque développement D; défini par (4).
Les termes D; s’écrivent de maniere générale :

(11)

o 04t = ) pour i =0
DZ' = pi—l ] -
Zj:o Yij(Ta—i4r — Tni)? pour 1 <i<n—1
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Afin de simplifier les formules théoriques, on a posé
NG
%~7j:%7j(a3):p,—i;1a5 pour 0<i<m—1let0<j<p —1 (12)
7!
En ajoutant et en retranchant la variable ¢, 'expression (11), pour 1 <1i < n—1, peut
s’écrire
pzfl

D; = Z Yij (t = Tni) — (t = Tn—i+1))j (13)

Afin de développer cette expression, on considere la loi du binome de Newton :

J
(a —b) = Z C’k al~Fpk (14)
k=0
On obtient ainsi
pz_l
D; = Zw Z CH (t = 105t — Tuin)* (15)
k=0

On utilise également la simplification suivante pour alléger les notations :
Mij = YVij pour ¢ = 0

L’expression (15) devient donc

pi—1 J

D Z Z nz]k — Tp— 1 k(t - Tn*iJrl)k (17)

7=0 k=0

. n—1 Jy N ENET) . N
Le produit [[;_, D; (généralisé a I'ordre n et pour des valeurs quelconques mais entieres
des termes p;) s’exprime alors de la maniére suivante

1:[ (Z ol ) (H Z Z%k — Tai) Rt~ Tn—i+1)k> (18)

i=0 i=1 j=0 k=0

Le produit H?:_o D; (avec p; quelconque, i = 0,...,n — 1) peut donc s’écrire sous la
forme d’une somme de termes de la forme o5, (t —71)% 07 (t —2) 27 (t —T7,) 97, ol ozwk
est une constante qui ne dépend que des constantes 7;;; et ou les termes gy ;,,7 = 1,...,n
sont des entiers positifs ou nuls qui dépendent des valeurs des termes p;, i =0,...,n — 1.

n—1 Py,
LI D =D cugult = m)omir(t — mp)m2r (= 7,,)%mnr (19)
=0 r=1

On notera chacun des termes du produit de la maniere suivante :
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Kot 71, o) = a8 = 7) 20 (20)
avec
0 S qn,1,r S Pn—1 — 1 (21)
0 S Qn,i,r S (pnfz - 1)(pn7i+1 - 1) pour 1= 27 L
On a donc transformé un produit en somme :
n—1 P,
[[p:=> K7, ...m) (22)
=0 r=1

Le nombre P, de termes de la somme peut s’exprimer de maniere générale en fonction
des termes p;, i =1,...,n :

n—1
pi(pi +1
po=po [ 20D (25)
i=1
L’intégrale multiple y,(¢) (1.99)

t T Tn n
/ / 2 / DoD;...D,,_jel®0=a)(t=n)g(ar=a2)(t=Tn1)  can-1(t=11) Hu(n)dn (24)
o Jo 0 i=1

se décompose alors en une somme de P, intégrales multiples :

=3 1) (25)

que l'on peut expliciter davantage :

o f o Jo g [T (= ) i (26)

elao— a1 )(t— Tn)-i- a1—a2)(t—Tn—1)+...+an_1(t— Tl)H?:l U(Tz’)de‘

Chacune de ces P, intégrales multiples v, , peut ensuite étre exprimée sous la forme
d’un produit de n intégrales simples :

Ynar () = fg A o(t = 7)oy (7, ) dry, fot Q1 (t — Ty )Irm—trelar=a2) =Ty (7.~ Vd7, ;...
- fot 1 (E = 71) et Ty (1) dry
(27)

avec Qi = Olp oQn1...Op n—1-

De maniere générale, chacune des intégrales simples du produit précédent aura la forme
suivante :

t i _ dn,n—i,r (ai_ai+1)(t_7) 1 < < — 2
) = e O R (28)

f(f Qi (t — 7)In—ire®=Ty(r)dr, si i =mn—1

ce que nous voulions montrer.
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2 Cas particulier du théoreme 1.3
On reprend le calcul pour un cas particulier : n = 3.

La premiere étape du calcul consiste a réécrire I'intégrale multiple y3(¢) (1.99) en rem-
plagant les fonctions fP(t) par leur expression (1.100).

f(f OT2 v (Z?iol pjo| : ](t_TS) ) o(t—73) (Zpl 1€ p1 1&{(’7’3 _7_2) ) elll(Tngz)

(29)
<Zp2 = p2u —22-1a) (15 — 71)’ > a2(m2=m) (Zm = pj —ragm? )6“371 [T, u(r)dr:
Afin de simplifier les calculs, on pose :
NG
%J:%j(ag):p,—i'ﬁlafA pour 0 <:<3et0<j<p —1 (30)
j!
L’équation (29) devient :
o 57 057 (5l st =) ) (20 s —mp ) e
( 2 (= )T ) e (g ) eon [T (i),
Posons maintenant
Zpo o Yot —T3)! pour i =0
D, = fl 01 Yij(T3—iz1 — T3—4)? pour 1 <i<?2 (32)
?30173]7'1 pour i =3

On obtient donc comme nouvelle expression de ys(t) :

t T2 T3 3
/ / / Do Dy Do Dse =) g01(73=72) ga2(r2=71) gasmy H u(r;)dT; (33)
o Jo Jo

=1

que l'on peut également écrire :

t T T 3
/ / p) / 3 DODlD2D3€(a0_a1)(t_T3)+(a1_aQ)(t—TQ)+(a2—a3)(t—n)+a3t H U(Ti)dﬂ' (34)
0 Jo 0 i=1

A ce stade, il faut faire la remarque que I'intégrale multiple (1.99) comporte 4 fonctions
(1.100) et seulement 3 termes u(7;). Si 'on parvient a décomposer I'intégrale multiple en
un produit d’intégrales simples, nous aboutirons a un produit de 4 intégrales, dont les
3 premieres seront des intégrales de convolution simples alors que la derniere sera indé-
pendante des variables 7; et pourra s’écrire sous la forme e®*!. Dans le cas général, cette
exponentielle peut étre considérée comme un facteur de pondération ou un coefficient
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d’amortissement.

Afin de simplifier les calculs, nous allons poser p; = 0. Il est important de noter que
cette simplification n’aura pas d’importance dans la suite des calculs, la séparation de
I'intégrale multiple ou I'identification paramétrique.

Nous obtenons bien dans I'intégrale multiple (34) un terme €' indépendant des va-

riables 7; que l'on peut donc considérer comme un facteur constant et "sortir” de l'intégrale
multiple :

t T T 3
6a3t/ / 2 / 3 DODID2D36(a0_a1)(t_73)+(a1_az)(t—m)+(a2—a3)(t—n) H u(7;)dr; (35)
o Jo Jo

i=1
Posons p3 = 0 pour obtenir :

p3—1 ~j
C o
( g 1;.3‘71 a?g’ﬂ) e =1 (36)

J=0

et ainsi simplifier le calcul sans affecter la suite des manipulations mathématiques. L’in-
tégrale multiple y5(t) s’écrira donc au final :

t 2 pT :
/ / 2 /’ 3 DoDlD2€(a0_a1)(t_7—3)6(a1—a2)(t—7'2)6‘12(t_71) H u(Ti)dTi (37)
o Jo 0 1=1

Le but étant de séparer l'intégrale multiple (37), il reste & déterminer si le produit

2
DoD\D, = [[ D (38)
=0

peut étre séparé en un produit de termes qui ne dépendent que des différences ¢t — 7;. La
séparation de l'intégrale multiple nécessite donc la connaissance du produit (38) quelle
que soit la valeur du coefficient p; de chaque développement D; défini par (32).

Les termes D; s’écrivent dans ce cas :

Dy = Y02 05t —73)/
Dy = 32050 (s — o) (39)
Dy = Y024 22 (12 — 1)
Afin de simplifier les formules théoriques, on a posé
J

. c’ .
'yi,j:'yi,j(ag):p_;'laf pour 0<i<2et0<j<p —1 (40)
J

En ajoutant et en retranchant la variable ¢, les expressions (39), pour 1 <i < 2, peut
s’écrire
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2. Cas particulier du théoréme 1.3

= 2 (i ) |
D1 Too (= 72) = (t = 73))) (41)
Dy =3 (= 71) = (t = 7))
Afin de développer cette expression, on considere la loi du binome de Newton :
. ] .
(a—bY =) (1) CF o/ " (42)

k=0
On obtient ainsi
Do =317 o Yos(t - 73)) '
Dy =370 01%] ko (= 1)FCY (¢ = ) 7 (t — 73)" (43)
= Y00 oy Do (PO (= )Rt — 1)
On utilise également la simplification suivante pour alléger les notations :
_ kk _
{ Nijr = Yij (—1)"C] pour i = 1,...,2 (44)
Nij = Yij pour ¢ =0

On peut réécrire les expressions (43) sous la forme :

DO - 1]00 0]L 770J( - 73)’ .
= 3 S o k(= 1) TR (E = ) (45)
D2 52:01 hmo M2t (8 = T1)7 7R (t — 7o)

Dans le cas particulier o 'on pose pg = p; = py = 2, U'expression (43) devient

Do = 1o + 1o (t — 73)
Dy = 100 + mio(t — 72) + M1 (t — 73) (46)
Dy = 1900 + 1210(t — 71) + M211(t — T2)

et le produit DgD; D, s’exprime alors de la maniere suivante

DoD1Dy = (no0 + 101 (t = 73)) (100 + M10(t — 72) + 111 (t — 73))

(77200 + 77210(t - 7'1) + 77211(t — 7'2)) (47)

Une fois ce produit développé, on obtient une expression du type

Lo <Z%t_7‘°’ )(Hizw ) ’“<t—73—i+1>’“> (48)

=0 i=1 j=0 k=0

Le produit DgD1 Dy peut donc s’écrire sous la forme d’une somme de 18 termes de la
forme a5, (t — 1) B0 (t — 72) %27 (t — 73)937, ol ayj est une constante qui ne dépend que
des constantes 7;;; et ou les termes ¢3;,,% = 1,...,3 sont des entiers positifs ou nuls qui
dépendent des valeurs des termes p;, © =0, ..., 2.
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Annexe

L’intégrale multiple y3(t) peut alors étre développée en une somme de Pj intégrales
multiples :

P
ys(t) = Z Y3, (1) (49)
r=1
que l'on peut expliciter davantage :
P t rT T4 3 .
ys(t) =220 o o2 05 i [Timy (8 — 1) (50)
e(ao—(l1)(t—7'3)+(a1—ag)(t—Tg)-i-aQ(t—Tl) Hg’:l u<7_7,)d7_2

Le nombre P; d’intégrales multiples est défini en fonction des constantes pg, p1, p2
(toutes trois égales a 2) de la maniere suivante :

pi(pr+ 1) pa(p2 + 1)
2 2
Chacune des P; = 18 intégrales multiples y3, peut ensuite étre exprimée sous la forme
d’un produit de 3 intégrales simples :

(51)

Py = p,

Y3, (t) = fot as ot — T3) B3 e(@0=a)(E=Ts)y (7Y dry fg asq(t— ) B2 el =a2)(t=m2)y (7)) dr,
fot Oz372(t — 7'1)qs’l'rew(tfn)U(Tl)dTl
(52)

avec aijk = (3,003,103 2.

On voit bien maintenant que chacune des intégrales simples du produit précédent aura
la forme suivante :

()= { Jyasilt = )mamreler et Du(rydr, s 0<i<1
Yo fot g i(t — T)B3=ired Ty (T)dr, si i =2

ce que nous voulions montrer pour le cas particulier ot n = 3.

(53)
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Résumé

Ce mémoire de these est consacré a la modélisation de systemes non linéaires par les
séries de Volterra ainsi qu’a la reconstruction de grandeurs non directement mesurables
par inversion du modele de Volterra. Le premier chapitre aborde la modélisation par-
cimonieuse de systémes non linéaires. Les noyaux de la série de Volterra sont d’abord
développés sur une base de fonctions généralisée. On se propose de limiter le nombre total
de parametres en développant les noyaux de Volterra sur des fonctions de transfert d’'une
part, puis en séparant la partie statique de la partie dynamique du modele de Volterra. Le
deuxieme chapitre traite de I'inversion du modele de Volterra. On utilise d’abord la mé-
thode de régularisation de Tikhonov puis deux méthodes d’inversion par retour d’entrée
reconstruite. Afin de limiter le volume de calcul nécessaire a la régularisation de Tikhonov,
nous proposons de discrétiser le modele de Volterra et d’effectuer les procédures d’opti-
misation et de simulation sur un horizon fuyant. Dans le troisieme chapitre, les méthodes
de modélisation et d’inversion sont appliquées a un procédé chimique, I'oxydation d'un
composé organique par le réactif de Fenton, puis a un procédé biologique, la digestion
anaérobie d'un composé carboné.

Mots-clés: systeme non linéaire, modélisation, identification, série de Volterra, probleme
inverse, régularisation de Tikhonov, oxydation composé organique, réactif de Fenton, di-
gestion anaérobie.

Abstract

This PhD thesis is dedicated to nonlinear system modelling using Volterra series and
to Volterra model inversion in order to restore quantities which are not directly mea-
surable. First chapter is about parsimonious modelling for nonlinear systems. Volterra
series kernels are first expanded on a generalized function basis. In order to limit the total
number of parameters we propose to expand Volterra kernels on transfer functions on the
one hand, and to separate Volterra model static part from its dynamic part on the other
hand. Second chapter deals with Volterra model inversion. First, we use Tikhonov’s regu-
larization method, then we propose two inversion methods using restored input feedback.
In order to reduce the necessary computational burden for Tikhonov regularization, we
suggest a Volterra model discretization combined with optimization and simulation proce-
dures performed on a sliding window. In third chapter, modelling and inversion methods
are put into practice with a chemical process, organic compound oxidation with Fenton
reagent, and a biological process, anaerobic digestion of a carbonaceous compound.

Keywords: nonlinear system, modelling, identification, Volterra series, inverse problem,
Tikhonov regularization, organic compound oxidation, Fenton’s reagent, anaerobic diges-
tion.
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