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Thèse préparée au sein du Laboratoire d’Automatique et d’Informatique Industrielle de Poitiers
dans le cadre d’une bourse de la Région Poitou-Charentes





Avant-propos

L’ensemble de ces travaux de recherche a été réalisé au sein de l’équipe Identification
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d’Ingénieurs de Poitiers.
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Professeur à l’Université de Poitiers, que je remercie vivement pour toutes les qualités hu-
maines et scientifiques dont il a fait preuve : ses précieux conseils issus d’un savoir semble-
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de Poitiers, et Monsieur Joseph DeLAAT, Professeur à l’Université de Poitiers, d’avoir
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mon égard. Toutes mes pensées vont également vers mes parents, sans le soutien desquels
je n’aurais jamais pu concrétiser toutes ces années d’études.

iv



A Delphine,

A mes parents

v



vi



Table des matières

Introduction générale 1
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1.4 Détermination et modélisation des noyaux de Volterra . . . . . . . . . . . . 26

1.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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2.2.3.2 Régularisation . . . . . . . . . . . . . . . . . . . . . . . . 93
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2 Cas particulier du théorème 1.3 . . . . . . . . . . . . . . . . . . . . . . . . 215

Bibliographie 219

xi



Table des matières

xii



Table des figures
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1.17 Modèle de Wiener représentant le noyau de Volterra d’ordre i . . . . . . . 45
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trée reconstruite (courbe claire) . . . . . . . . . . . . . . . . . . . . . . . . 145
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Introduction générale

L’étude des systèmes est depuis longtemps une préoccupation majeure du monde de
la recherche et ce, quel que soit le domaine scientifique. La compréhension d’un sys-
tème permet en effet d’agir ensuite sur son comportement naturel et de lui imposer une
autre conduite répondant à des performances souhaitées par l’utilisateur. Afin de mieux
comprendre un système, une approche naturelle consiste à essayer d’en reproduire le com-
portement. Une telle démarche implique l’établissement d’un modèle du système étudié.
Selon la connaissance des phénomènes physiques mis en jeu dont on dispose, plusieurs pos-
sibilités de modélisation peuvent se présenter. Les modèles de connaissance reposent sur
une très bonne connaissance des lois physiques qui régissent le procédé étudié. A l’opposé,
les modèles de comportement sont purement mathématiques et ne nécessitent aucune
connaissance a priori sur la physique du système considéré. Il est évidemment possible
d’effectuer un compromis entre ces deux formes de modélisation lorsque la connaissance
physique du système est imparfaite.

Quelle que soit leur nature (physique, mathématique ou composition des deux), les mo-
dèles ont pour la plus grande partie un point commun : ils sont caractérisés par un certain
nombre de variables que l’on nomme communément paramètres. Ces paramètres peuvent
avoir une signification physique, en particulier dans le cas d’un modèle de connaissance. De
la valeur de ces paramètres dépend en grande partie la qualité du modèle et sa capacité à
représenter le comportement du système réel sur un domaine de fonctionnement spécifique.

Une fois définie la forme du modèle la plus apte à représenter correctement le fonction-
nement d’un système réel, l’identification des paramètres du modèle consiste à calculer
leur valeur optimale. Ces valeurs paramétriques optimales permettent au modèle de re-
présenter fidèlement le système sur le domaine de fonctionnement choisi. En l’absence de
connaissance du système, le choix de modélisation se porte naturellement sur un modèle
de comportement et l’identification paramétrique ne peut être effectuée qu’à l’aide des
seules données disponibles : des signaux d’entrée judicieusement choisis et la réponse du
système à ces signaux d’entrée. Une méthode bien connue d’identification paramétrique
est la méthode classique des moindres carrés, largement utilisée si le modèle employé peut
être exprimé sous forme linéaire par rapport à ses paramètres.

L’essentiel des systèmes réels sont non linéaires par nature. Pourtant, la complexité
d’étude et d’implémentation des modèles non linéaires ainsi que l’insuffisance des moyens
de simulation disponibles ont d’abord conduit à essayer d’approcher le comportement des
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systèmes réels par des modèles linéaires. Ce type de modèle peut s’avérer efficace si le
degré de non-linéarité du système reste faible ou bien si l’on ne s’éloigne pas d’un point de
fonctionnement particulier du système. On peut ensuite envisager l’implémentation d’une
loi de commande afin d’imposer un comportement au système réel. Cependant, il existe
de nombreux cas où les non-linéarités du système étudié ne sont pas négligeables. On
doit donc envisager une modélisation non linéaire. Ce domaine de recherche connâıt un
essor théorique et pratique important car les moyens technologiques actuels permettent la
simulation de modèles non linéaires complexes ainsi que la simulation et l’implémentation
de lois de commandes évoluées sur des systèmes non linéaires réels [Sjöberg et al., 1995].

Un système non linéaire se démarque d’un système linéaire dans le fait que sa dyna-
mique dépend étroitement du signal d’entrée, qui induit un comportement différent du
système non linéaire suivant sa variation d’amplitude et/ou de fréquence. Le comporte-
ment du système dépend à son tour des non-linéarités inhérentes à celui-ci. Le choix de la
structure du modèle non linéaire doit tenir compte à la fois des non-linéarités et du do-
maine de fonctionnement sur lequel le modèle doit être valide. Si le modèle est linéaire par
rapport aux paramètres, l’identification de ces derniers peut se faire par la méthode des
moindres carrés. Dans le cas où le modèle n’est plus linéaire par rapport aux paramètres,
un algorithme de programmation non linéaire doit être employé afin d’optimiser la va-
leur des paramètres. Un algorithme couramment utilisé est celui de Levenberg-Marquardt
[Marquardt, 1963], qui consiste en une recherche itérative des paramètres optimaux. Ce
type d’algorithme s’appuie lui aussi sur l’utilisation de signaux d’entrée et de sortie du
système réel.

L’identification paramétrique repose donc sur l’utilisation de signaux d’entrée et de
sortie du système réel [Ljung, 1987]. Dans beaucoup de cas, avec l’amélioration croissante
des moyens et des techniques de mesure, le nombre et la précision des capteurs permettent
à l’utilisateur de disposer d’un vaste choix de mesures des grandeurs d’entrée et de sor-
tie du système réel. Il peut passer directement à l’étape d’identification paramétrique du
modèle. Cependant, dans d’autres cas, la mesure de certaines grandeurs est difficile, voire
impossible, du fait de l’absence de capteur adéquat ou du coût prohibitif de ce dernier
ou de la mise en place d’un système de mesure. Une solution consiste alors à accéder
indirectement à la grandeur non mesurable en résolvant un problème inverse.

Un problème direct consiste à calculer la sortie d’un système lorsque l’on dispose d’un
signal d’entrée et d’un modèle suffisamment précis de ce système. Un problème inverse
consiste à faire le calcul opposé : étant donné une grandeur de sortie et le modèle du
système étudié, on cherche à calculer l’entrée du système. Résoudre un problème direct
consiste à déterminer une conséquence à partir d’une cause, résoudre un problème in-
verse consiste à déterminer une cause connaissant sa conséquence. Dans les deux cas, il
est nécessaire de disposer d’un modèle du système réel étudié. Différentes techniques de
résolution de problèmes inverses existent et peuvent être appliquées pour obtenir une gran-
deur non mesurable à partir d’une autre grandeur mesurable [Mohammad-Djafari, 1999b],
[Demoment et al.]. Etant donnée une grandeur mesurable facilement et un modèle qui la
relie à une grandeur non mesurable, la résolution du problème inverse consiste à détermi-
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ner la grandeur non mesurable à partir de la grandeur mesurable en inversant le modèle
qui les lie. La difficulté de cette méthode réside en l’inversion de modèle, qui peut occa-
sionner une mauvaise reconstruction de la grandeur non mesurable suivant la nature du
problème inverse.

La démarche globale entreprise dans ce mémoire peut se décomposer en deux grandes
étapes. La première étape consiste en la modélisation de systèmes non linéaires. La se-
conde étape consiste en l’inversion des modèles non linéaires obtenus afin de déterminer
des grandeurs non directement mesurables.

Ce mémoire se compose de trois chapitres.

Le premier chapitre est consacré à la modélisation de systèmes non linéaires par les sé-
ries de Volterra [Volterra, 1959], [Schetzen, 1980], [Doyle et al., 2002]. Présentées comme
une possibilité parmi d’autres [Chen, 1989], [Boukhris et al., 1999], [Hérault et Jutten, 1994]
pour modéliser les systèmes non linéaires, les séries de Volterra peuvent être considé-
rées comme un sous-ensemble des séries de fonctionnelles et un outil particulièrement
adapté à la représentation des systèmes non linéaires car elles généralisent la notion de
convolution utilisée pour la représentation de systèmes linéaires. Un certain nombre de
modèles classiques (Hammerstein, Wiener,...) utilisés depuis longtemps sont présentés
comme cas particuliers de modèles de Volterra [Billings et Fakhouri, 1979], [Rugh, 1981],
[Ralston et Zoubir, 1995]. Une série de Volterra est entièrement caractérisée par ses noyaux
que l’on peut difficilement exprimer de manière analytique et qu’il convient donc de modé-
liser. La modélisation des noyaux par développement sur une base de fonctions généralisée
[Ninness et Gustafsson, 1994], [Akçay et Ninness, 1999] est présentée et l’on met l’accent
sur une difficulté majeure de cette approche : une augmentation importante du nombre
de paramètres qui rend difficile la procédure d’identification et l’utilisation du modèle à
des fins de commande. Une seconde approche de modélisation des noyaux de Volterra
est proposée : leur développement sur des fonctions de transfert. Le modèle obtenu s’ins-
pire des séries génératrices non commutatives [Fliess et al., 1983] et permet d’obtenir une
parcimonie paramétrique satisfaisante. Afin d’améliorer cette parcimonie, nous proposons
également une méthode de développement du modèle de Volterra autour de la compo-
sante continue du signal d’entrée. Cette méthode permet de séparer la partie statique de
la partie dynamique du modèle. Seule cette dernière est identifiée, réduisant davantage la
complexité et le nombre de paramètres du modèle de Volterra global.

Le deuxième chapitre est consacré à l’inversion du modèle de Volterra présenté au
premier chapitre afin de reconstruire une grandeur d’entrée en utilisant la mesure de la
grandeur de sortie. La première partie est consacrée à la définition des problèmes inverses
et à la présentation succincte de quelques exemples. Un aperçu général non exhaustif
des méthodes de résolution de ce type particulier de problème est ensuite exposé, dans
lequel on distingue deux grandes catégories : les méthodes algébriques déterministes et
les méthodes probabilistes [Mohammad-Djafari, 1999b]. Notre choix se porte d’abord sur
la méthode d’inversion de modèle par régularisation de Tikhonov (développée à l’origine
dans le cas de modèles linéaires [Tikhonov et Arsénine, 1976]) dont nous élargissons le
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champ d’application au modèle de Volterra. Cette méthode nécessite un algorithme d’op-
timisation non linéaire afin de reconstruire une grandeur par minimisation de critère. La
somme de calcul nécessaire devenant importante, nous proposons d’adopter une démarche
de discrétisation du modèle de Volterra afin de simplifier le calcul de dérivation du critère
et ainsi diminuer la charge totale de calculs. L’influence du bruit de mesure sur les données
utilisées ainsi que celle des paramètres de régularisation de la solution au problème inverse
sont étudiées dans le cadre de la simulation. Une approche différente (et plus intuitive) est
ensuite proposée pour contourner certains inconvénients de la précédente : l’inversion du
modèle de Volterra par retour d’entrée reconstruite. Deux méthodes sont présentées, équi-
valentes dans le cas linéaire mais sensiblement différentes pour des systèmes non linéaires.
Elles utilisent toutes deux l’inverse implicite du modèle de Volterra afin de reconstruire
point par point une grandeur d’entrée à partir de la mesure d’une grandeur de sortie et
d’un modèle de Volterra suffisamment précis qui les relie. Ces deux méthodes possèdent
l’avantage de ne pas nécessiter d’étape d’optimisation lors de la procédure d’inversion,
diminuant ainsi de manière significative le temps total de calcul et laissant envisager leur
possible implémentation en temps réel.

Le troisième et dernier chapitre est consacré à l’application des méthodes de mo-
délisation et d’inversion proposées dans les deux premiers chapitres à des simulations
de procédés et des données expérimentales. Les deux procédés étudiés entrent dans le
cadre de la dépollution des eaux. Le premier procédé consiste en la neutralisation de
composés organiques considérés comme polluants dans des effluents industriels. L’étude
est effectuée dans le cas de l’atrazine, un herbicide systémique. Le procédé de dépol-
lution est le procédé Fenton : la décomposition du peroxyde d’hydrogène par des ions
ferreux (ou ferriques) permet la création de radicaux hydroxyle hautement réactifs qui
vont oxyder le polluant et le transformer en un produit sans danger pour l’environne-
ment [Barbeni et al., 1987], [Sedlak et Andren, 1991], [DeLaat et Gallard, 1999]. Un mo-
dèle cinétique du procédé a déjà été établi expérimentalement [Haber et Weiss, 1934],
[Barb et al., 1951], [Walling, 1975], [Gallard et DeLaat, 2000]. Dans un premier temps,
nous comparons ce modèle cinétique au modèle de Volterra afin de valider ce dernier dans
le cadre de la simulation. Dans un second temps, nous appliquons les méthodes d’inver-
sion proposées précédemment afin de reconstruire une grandeur difficilement accessible (la
concentration en atrazine) à partir de la connaissance d’autres grandeurs plus facilement
mesurables. Cette étude permet de valider en simulation les méthodes proposées dans les
chapitres précédents. Le deuxième cas d’étude est un procédé d’épuration biologique de
rejets industriels. L’étude porte sur un procédé dit anaérobie (absence d’oxygène) de dé-
gradation de composé organique : le carbone organique contenu dans l’effluent à traiter est
converti en biogaz par des flores bactériennes. Comme dans l’étude précédente, un modèle
dynamique du procédé a déjà été développé [Bernard et al., 2001], [Steyer et al., 2003].
Nous commençons par valider notre modèle de Volterra en le comparant à ce modèle établi
expérimentalement. Puis, de la même manière que précédemment, l’inversion du modèle
de Volterra permet la reconstruction d’une grandeur (la demande chimique en oxygène)
quasiment impossible à mesurer directement vu le coût et la complexité d’une telle procé-
dure. Les résultats des deux approches d’inversion du modèle de Volterra sont comparées
et validées à nouveau dans le cadre de la simulation. On utilise ensuite ces méthodes sur
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des données expérimentales provenant d’un digesteur anaérobie traitant des vinasses de
distilleries.

Une conclusion générale à ce travail, consacrée au rappel de la démarche globale de
recherche et des objectifs, s’attachera en outre à la présentation des différents prolonge-
ments et perspectives envisageables tant du point de vue théorique qu’appliqué.
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linéaires par les séries de Volterra
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Chapitre 1. Modélisation des systèmes non linéaires par les séries de Volterra

1.1 Introduction

Cette partie relève du domaine très vaste de la modélisation des systèmes et plus par-
ticulièrement de la modélisation de systèmes non linéaires.

Pour plusieurs raisons d’ordre pratique, la théorie de la commande s’est surtout déve-
loppée dans le cadre des systèmes linéaires. Bien que des travaux théoriques existent déjà
depuis longtemps dans le domaine des systèmes non linéaires, de nombreuses limitations
techniques, informatiques et financières ont freiné toute tentative d’application pratique
en modélisation, identification et commande de systèmes non linéaires. Depuis un certain
nombre d’années, la technologie et l’informatique ont comblé ce retard vis-à-vis de la théo-
rie. Le domaine particulier de la commande de systèmes non linéaires prend de plus en plus
d’importance, les problèmes posés étant de plus en plus nombreux et toujours ouverts, du
fait de la quasi absence de systèmes véritablement linéaires ou linéarisables à l’état naturel.

Une étape importante du processus qui conduit l’utilisateur à la commande de sys-
tèmes non linéaires est la modélisation de ces mêmes systèmes. La première section du
chapitre est consacrée à la présentation de différents modèles de systèmes non linéaires.
La spécification d’objectifs particuliers, tels la simplicité et la parcimonie paramétrique
du modèle employé ainsi que la possibilité d’inversion, nous conduira à envisager dans la
deuxième section du chapitre une classe particulière de modèles : les séries de Volterra.
Les deux dernières sections de ce chapitre sont consacrées à différentes manières de mo-
déliser les noyaux de Volterra en vue d’obtenir un modèle global à la fois simple dans son
utilisation et dans la procédure d’identification de ses paramètres.

1.2 Représentation des systèmes non linéaires

1.2.1 Introduction

La plupart des systèmes réels sont non linéaires à des degrés divers. Historiquement et
pour des raisons de commodité de mise en oeuvre, l’approche la plus répandue est d’ap-
proximer les systèmes non linéaires par des modèles linéaires. Un modèle linéaire suffit le
plus souvent à décrire avec une bonne précision le comportement général et la dynamique
moyenne d’un système faiblement non linéaire.

Cependant, si les non-linéarités deviennent trop importantes, il n’est plus possible de
se contenter d’approximer le comportement du système par un (ou des) modèle(s) li-
néaire(s). Il faut donc avoir recours à des modèles non linéaires, ce qui entrâıne un certain
nombre de difficultés, tant au niveau de l’identification paramétrique que de la commande.
Si l’on compare les deux types de représentation des systèmes (linéaire et non linéaire),
une des principales difficultés de la deuxième forme de représentation est due à l’absence
d’une théorie unifiée de représentation des non-linéarités, théorie qui existe dans le cas
des systèmes linéaires.
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Selon que l’on possède ou non des informations sur la structure du système non linéaire
étudié, plusieurs choix possibles de formes de modèles se présentent.

1.2.2 Modèles de comportement

Les modèles de comportement (ou modèles ”bôıte noire”) peuvent être utilisés dans le
cas particulier où l’objectif de l’utilisateur n’est pas la connaissance physique du système
réel mais plutôt la reproduction de son comportement. De manière générale, on peut dire
qu’un modèle est satisfaisant quand il prédit correctement certains phénomènes du monde
réel, même s’il n’est qu’une vision partielle de la réalité.

Un modèle de connaissance de type ”bôıte blanche”, construit à partir de lois de repré-
sentation de phénomènes physiques, sera plus ou moins satisfaisant en fonction du nombre
et de la précision de ces lois physiques.

La notion de modèle ”bôıte grise”provient du fait que l’utilisateur d’un système réel ne
connâıt a priori pas toutes les lois physiques qui régissent le comportement de ce système.
Certaines relations ou variables demeurent inconnues. D’où l’intérêt d’introduire dans le
modèle des relations mathématiques (sans forcément de sens physique) qui viennent com-
pléter les relations physiques connues. La mise au point d’un modèle ”bôıte grise”nécessite
donc une complémentarité entre l’ensemble des lois physiques et l’ensemble des lois ma-
thématiques à la disposition de l’utilisateur.

Les modèles de comportement, quant à eux, sont construits uniquement à partir de
lois mathématiques reliant les entrées aux sorties du système. Ils n’ont aucune significa-
tion physique particulière et pourront donc donner des résultats satisfaisants dans des
conditions beaucoup plus générales d’application. En théorie [Sjöberg et al., 1995], toute
structure ”bôıte noire” convenablement choisie doit pouvoir représenter n’importe quelle
forme de non-linéarité.

Parmi les modèles de comportement les plus utilisés, on distinguera entre autres les
modèles NARMAX [Chen, 1989], les multi-modèles [Murray-Smith et Johansen, 1997] et
les réseaux de neurones [Hérault et Jutten, 1994].

1.2.2.1 Les modèles NARMAX

La modélisation d’un système (linéaire ou non linéaire) nécessite l’identification des
paramètres du modèle. Le problème de l’identification est de trouver une ou plusieurs
relations entre des données d’entrée-sortie passées et la sortie à calculer. Si l’on dispose
d’un nombre fini nu d’entrées u(t− i) (1 ≤ i ≤ nu) et ny de sorties y(t− j) (1 ≤ j ≤ ny)
rassemblées dans un vecteur ϕ(t) :
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ϕ(t) = [−y(t− 1)...− y(t− ny) u(t− 1)...u(t− nu)]
T (1.1)

alors le problème est de trouver la relation f entre ŷ(t), prédiction de la sortie y(t) et
ϕ(t) :

ŷ(t) = f(ϕ(t), θ) (1.2)

la fonction f étant paramétrée par un vecteur θ.

Dans le cas où la fonction f est linéaire, différents modèles existent : modèles ARX,
ARMAX, Output Error ou Box-Jenkins. Dans le cas où f n’est plus une fonction linéaire,
l’approche polynomiale NARMAX (Nonlinear AutoRegressive Moving Average with eXo-
genous inputs) a été développée [Chen, 1989]. Le vecteur ϕ(t) comprend, en plus des
entrées et des sorties passées, les erreurs de prédiction passées ε(t− k) (1 ≤ k ≤ nε) :

ϕ(t) = [−y(t− 1)...− y(t− ny) u(t− 1)...u(t− nu) ε(t− 1)...ε(t− nε)]
T (1.3)

L’erreur de prédiction ε(t) est ajoutée au modèle pour tenir compte du fait que la
sortie ŷ(t) n’est pas fonction exacte des données d’entrée-sortie passées. L’erreur de pré-
diction doit être la plus faible possible afin que le modèle fournisse la meilleure prédiction
possible de la sortie réelle y(t) connaissant les données passées.

La fonction f , inconnue a priori, est choisie de manière à pouvoir représenter la dyna-
mique du système. Une expression possible (et relativement employée) de f est le déve-
loppement sur bases de fonctions :

f(ϕ(t), θ) =
M∑

i=1

θifi(ϕ(t)) (1.4)

où fi est une base de fonctions non linéaires et les termes θi sont les paramètres du
développement. Le choix des fonctions fi est très important pour assurer la qualité du
modèle. Dans la plupart des structures de modèles non linéaires considérées, les fonctions
fi sont obtenues en paramétrisant une fonction plus générale notée K(.). On écrit de
manière générale

fi(ϕ) = K(ϕ, βi, γi) = K(βi(ϕ− γi)) (1.5)

Les paramètres βi et γi peuvent être de nature différente selon les cas.

Si l’on pose K(.) = cos(.), on retrouve le développement de fi(ϕ) en série de Fourier,
les paramètres βi et γi étant respectivement la fréquence et la phase.

Dans le cas multidimensionnel, les fi sont des bases de fonctions multi-variables,
construites à partir de fonctions mono-variables du type K(.).
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Les bases de fonctions radiales sont couramment utilisées car relativement simples à
construire. Les fonctions fi ont la forme

fi(ϕ) = K(‖γi − ϕ‖βi
) (1.6)

où ‖.‖βi
représente une norme précédemment choisie (par exemple la norme euclidienne).

Le terme γi est ici appelé centre de la fonction fi.

La décomposition en ondelettes est un autre exemple typique. Dans ce cas précis, la
fonction mono-variable utilisée pour la construction de la base d’ondelettes est appelée
ondelette mère. L’expression est doublement indexée et on pose βi = 2i et γj = j pour
obtenir :

fi,j(ϕ) = 2
i
2K(2iϕ− j) (1.7)

Dans tous les cas considérés, le modèle NARMAX est linéaire par rapport aux para-
mètres. Les paramètres de ce modèle peuvent donc être estimés de manière relativement
simple par la méthode classique des moindres carrés.

Un autre point important, sujet à discussion, est la capacité qu’a le modèle NARMAX
à pouvoir représenter toutes les non-linéarités des systèmes considérés. Vu dans le contexte
de cette thèse, cet avantage n’en est pas forcément un car les modèles NARMAX utilisés
sont bien souvent complexes et surparamétrisés. Bien que l’on puisse envisager de réduire
leur complexité par la suite, cela ne répond pas à l’objectif de parcimonie paramétrique
que nous nous sommes fixés dès le départ.

Une solution envisageable est de découper l’espace des données entrées/sorties en sous-
espaces locaux pour lesquels un modèle plus simple (structure moins complexe et nombre
de paramètres moins important) peut être appliqué. Le modèle général consiste alors à
combiner les modèles locaux.

1.2.2.2 Les multi-modèles

L’approche multi-modèles [Murray-Smith et Johansen, 1997], [Boukhris, 1998] repose
sur l’établissement de plusieurs modèles simples, encore appelés modèles locaux. Chaque
modèle est valable autour d’un point de fonctionnement, dont la zone d’influence est dé-
finie au moyen d’une fonction poids. Tous les modèles locaux sont ensuite agrégés afin
d’obtenir un modèle global qui relie les entrées et les sorties du système.

Plusieurs problèmes se posent alors : la décomposition de l’espace global en différentes
zones, le choix du nombre de zones, le choix de la structure des modèles locaux et leur
agrégation.

De même que dans la section précédente, on représente la relation entrée-sortie du
système de la manière suivante
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ŷ(t) = f(ϕ(t), θ) (1.8)

avec

ϕ(t) = [−y(t− 1)...− y(t− ny) u(t− 1)...u(t− nu)]
T (1.9)

ϕ(t) représente le vecteur d’information et θ le vecteur paramètre.

Le problème de la modélisation locale consiste à décomposer le domaine global de fonc-
tionnement Φ du système en un ensemble de zones de fonctionnement Φi. Dans chaque
zone Φi de l’espace d’information, la fonction ŷ(t) est représentée par la fonction fi para-
métrée par le vecteur θi :

ŷ(t) = fi(ϕ(t), θi) (1.10)

La parcimonie paramétrique du modèle global dépend donc de celle de chaque modèle
local. Le choix de la structure des modèles locaux est donc crucial. De plus, le nombre
de paramètres à identifier dépend du nombre de modèles locaux employés, et donc de la
manière dont sera découpé l’espace global en zones de fonctionnement.

Dans un des cas les plus simples, on considère le système SISO statique représenté par
la fonction f :

ŷ(t) = f(u(t)) (1.11)

Le multi-modèle quasi-linéaire permettant de décrire le système représenté par f est
obtenu en décomposant le domaine de variation de la variable u en nu zones de fonction-
nement Φi où la fonction f est définie par le modèle linéaire :

ŷi(t) = biu(t) + ci (1.12)

Dans ce cas simple, le nombre total de paramètres du modèle global dépend du nombre
total nu de zones et de la forme du modèle employé dans chacune des zones. Cependant,
décomposer le domaine de fonctionnement en zones où le système peut être représenté par
un modèle linéaire peut s’avérer délicat, surtout si le système est fortement non linéaire
et si les variations de sa sortie y(t) sont importantes.

Si l’on considère un modèle dynamique du premier ordre

ŷ(t) = f(u(t− 1), y(t− 1)) (1.13)

alors, dans chaque zone de fonctionnement, le système est décrit par le modèle

ŷi(t) = −aiy(t− 1) + biu(t− 1) + ci (1.14)

ce qui augmente le nombre total de paramètres si l’on a conservé le même nombre nu de
zones de fonctionnement. Cependant, on s’aperçoit que plus la complexité d’un modèle
local augmente, plus il est à même de pouvoir représenter correctement le système étudié
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sur un domaine étendu. On peut donc diminuer le nombre nu de zones de fonctionne-
ment. L’objectif devient alors de trouver un compromis entre la complexité des modèles
employés et l’étendue de leur validité.

On peut bien évidemment complexifier davantage la structure des modèles locaux em-
ployés afin que le modèle global fournisse une approximation encore meilleure du système
réel. Selon les cas, on peut utiliser des fonctions de transfert, des fonctions de Laguerre
ou encore la structure d’Hammerstein généralisée. Il va sans dire que ces modèles locaux
nécessitent davantage de paramètres que les modèles simples que l’on vient d’évoquer.
Il ne répondent donc plus à l’objectif de parcimonie paramétrique. De plus, le problème
d’identification paramétrique devient de plus en plus complexe car on aboutit à un mo-
dèle global qui n’est plus linéaire par rapport aux paramètres, contraignant l’utilisateur à
recourir à des méthodes de programmation non linéaire.

La méthode multi-modèles ne répondra donc à l’objectif de parcimonie que dans le cas
de systèmes aux non-linéarités douces que l’on peut décrire localement par un ensemble
de modèles linéaires.

1.2.2.3 Les réseaux de neurones artificiels

Les réseaux de neurones sont à la base un outil d’analyse statistique que l’on peut
utiliser afin de construire un modèle de comportement de système. Les réseaux artificiels
neuronaux permettent de représenter des relations fonctionnelles complexes, difficiles à
décrire sous une forme analytique, de systèmes non linéaires ou de systèmes variables en
fonction du temps [Hérault et Jutten, 1994].

Le neurone biologique est une cellule vivante spécialisée dans le traitement des si-
gnaux électriques. Les neurones sont reliés entre eux par des liaisons particulières appe-
lées axones, qui conduisent les signaux électriques de la sortie d’un neurone vers l’entrée
(synapse) d’un autre neurone. Les neurones effectuent une sommation des signaux reçus
en entrée et, en fonction du résultat obtenu, vont fournir un signal électrique en sortie.

Par analogie, le neurone artificiel est un processeur élémentaire qui reçoit un certain
nombre de variables d’entrée en provenance d’autres neurones appartenant à un niveau
situé en amont. A chacune des entrées est associé un poids w représentatif de l’impor-
tance de la connexion. Chaque neurone est doté d’une sortie unique qui se ramifie pour
alimenter à son tour un certain nombre de neurones appartenant à un niveau situé en aval
(cf figure 1.1).
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Fig. 1.1 - Schéma d’un neurone artificiel

Les connexions entre les neurones qui composent le réseau décrivent la topologie du
modèle général. Cette topologie fait le plus souvent apparâıtre une certaine régularité et
l’on peut donc distinguer différentes sortes de réseaux :

– Les réseaux multicouches classiques : il n’y a pas de connexion entre les neurones
d’une même couche et les connexions ne se font qu’avec les neurones de la couche
aval. Tous les neurones de la couche amont sont connectés à tous les neurones de la
couche aval. Les couches extérieures du réseau sont appelées respectivement couches
d’entrée et de sortie. Les couches intermédiaires sont appelées couches cachées.

– Les réseaux à connexion locale : ce sont également des réseaux multicouches mais
tous les neurones d’une couche amont ne sont pas connectés à tous les neurones de
la couche aval. Le nombre de connexions est donc moins important que dans le cas
d’un réseau multicouches classique.

– Les réseaux à connexions récurrentes : une ou plusieurs sorties de neurones d’une
couche aval sont connectées aux entrées des neurones de la couche amont ou bien
de la même couche. Ces connexions récurrentes ramènent de l’information en arrière
par rapport au sens de propagation défini dans un réseau multicouches classique.

– Les réseaux à connexions complexes : chaque neurone est connecté à tous les neu-
rones du réseau, y compris lui-même. On ne fait plus de distinction entre les diffé-
rentes couches. Aucun sens général de propagation n’est défini. C’est la structure
d’interconnexion la plus générale possible.
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Afin de modéliser correctement un système, il est nécessaire que les sorties du réseau
de neurones soient aussi proches que possible des sorties réelles. Pour arriver à ce but, il est
nécessaire de passer par une phase d’apprentissage, durant laquelle on calcule le nombre
et/ou le poids de chacun des neurones. Cela équivaut à une identification paramétrique
de modèle.

Les réseaux artificiels neuronaux sont des outils permettant de représenter les rela-
tions fonctionnelles complexes nécessitées par les systèmes modernes. La plupart de ces
systèmes sont non linéaires. étant donné que les réseaux artificiels de neurones sont très
souples dans leur structure, on considère qu’ils constituent des modules universels de re-
présentation du comportement de systèmes réels, linéaires ou pas.

Cependant, un des inconvénients de cette universalité se traduit par une fréquente
surparamétrisation des modèles. Outre le fait que cette surparamétrisation ne répond pas
à l’objectif de parcimonie fixé au départ, le problème de l’apprentissage (ou identification
paramétrique) est généralement mal conditionné. On doit donc recourir à des méthodes
de régularisation pour transformer le problème mal posé en un problème bien posé et ainsi
obtenir une solution paramétrique optimale unique.

De par sa nature, le réseau de neurones permet donc de représenter un très grand
nombre de systèmes non linéaires, mais ceci au détriment de la simplicité et de la parci-
monie.

1.2.3 Conclusion

Au travers des trois exemples de modèles évoqués, on se rend compte que l’un des
problèmes majeurs entrâıné par la représentation précise du comportement de systèmes
non linéaires est la surparamétrisation des modèles employés. Par la suite, un trop grand
nombre de paramètres rend les modèles obtenus difficiles à manipuler et à identifier de ma-
nière globale. Certaines techniques permettent donc de simplifier les structures obtenues
en éliminant les paramètres non significatifs des modèles mais cette élimination nécessite
un volume et un temps de calcul supplémentaires. L’objectif de parcimonie des modèles
de systèmes non linéaires est donc largement justifié.

1.3 Les séries de Volterra

1.3.1 Introduction

La représentation des systèmes non linéaires est actuellement un problème ouvert aussi
bien du point de vue théorique qu’appliqué. On a vu que des méthodes nombreuses et
variées existent déjà et sont largement appliquées dans le domaine de la recherche. Tou-

15
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tefois, le manque de cohésion entre ces différentes méthodes de modélisation fait que leur
application pratique dans le domaine industriel pour la commande de procédés reste rela-
tivement marginale. Le principal obstacle est qu’il n’existe aucune approche systématique
pour la construction de modèles dynamiques non linéaires dédiés à la commande. A l’in-
verse, la modélisation des systèmes linéaires est très utilisée dans l’industrie. Et ceci car il
est aujourd’hui relativement simple d’obtenir des modèles linéaires à partir de méthodes
cohérentes, fiables et largement éprouvées.

Doyle [Doyle et al., 2002] fait remarquer que les systèmes non linéaires sont définis
en terme de manque : un système non linéaire ne répond pas à une propriété précise.
A l’opposé, un système linéaire est défini à partir d’une propriété mathématique extrê-
mement spécifique. Il existe de nombreuses formes de non-linéarités. Pour les modéliser
correctement, il faudra donc se focaliser sur des classes de modèles particulières, capables
de représenter les non-linéarités considérées. Toutes les classes de modèles non linéaires
ne sont pas capables de représenter tous les types de non-linéarités. Pour ces raisons, dans
le domaine industriel, la commande par modèle non linéaire est encore considérée comme
un concept théorique en développement plutôt qu’une stratégie de commande fiable.

Une approche possible pour remédier à cet état de fait pourrait être la modélisa-
tion des systèmes non linéaires par les séries de Volterra [Flake, 1963], [Schetzen, 1980],
[Rugh, 1981], [Doyle et al., 2002]. D’une part, les séries de Volterra sont un sous-ensemble
des séries de fonctionnelles et permettent de représenter un grand nombre de non-linéarités.
D’autre part, elles généralisent la notion de convolution utilisée dans l’analyse des sys-
tèmes linéaires. Le premier terme de la série de Volterra est une intégrale de convolution
qui représente un système linéaire (ou bien la partie linéaire d’un système non linéaire)
tandis que les autres termes, qui sont ajoutés, vont modéliser la partie non linéaire du
système considéré.

Les séries de Volterra peuvent donc être un moyen pratique et acceptable aux yeux des
utilisateurs (car elles généralisent une notion qu’ils connaissent bien : la convolution) de
représenter les systèmes non linéaires pour ensuite envisager la commande des procédés
modélisés.

1.3.2 Les séries de fonctionnelles

1.3.2.1 Présentation

Avant de parler des séries de Volterra, nous allons d’abord introduire les séries de fonc-
tionnelles, outil mathématique qui permet la représentation de dynamiques non linéaires
très variées. Les séries de Volterra trouvent leur origine dans les mathématiques de l’ana-
lyse fonctionnelle, née au début du XXe siècle. L’analyse fonctionnelle est la branche des
mathématiques consacrée à l’étude des espaces de fonctions.

Déjà mise en évidence par des précurseurs italiens (Ascoli et Arzela), l’analyse fonc-
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tionnelle et la notion même de fonctionnelle furent introduite par Jacques Hadamard en
1910. De nombreux mathématiciens vont ensuite développer cette nouvelle branche des
mathématiques : Frédéric Riesz, René Baire, Maurice Fréchet, Stephan Banach et Vito
Volterra.

Une fonctionnelle réelle est une fonction à valeurs réelles définie sur un espace linéaire.
Dans ce cas, l’espace linéaire est supposé être un espace de fonctions, à savoir les signaux
d’entrée u(t). A n’importe quel temps t, la sortie y(t) d’un système dépend des entrées
précédentes u(t − σ), σ ≥ 0. On dit que la sortie y(t) à un instant t particulier est une
fonctionnelle réelle du signal d’entrée u(t).

Une fonctionnelle régulière et homogène d’ordre i est donnée par l’expression générale

Hi[u(t)] =

∫ +∞

−∞
. . .

∫ +∞

−∞
hi(τ1, ..., τi)

i∏

j=1

u(t− τj)dτj (1.15)

On suppose que le noyau hi(τ1, ..., τi) est symétrique par rapport à ses i variables.

La somme de n fonctionnelles régulières et homogènes Hi, i = 1, ..., n est une fonction-
nelle H d’ordre n régulière et homogène. La fonctionnelle H qui relie l’entrée u(t) et la
sortie y(t) du système peut donc être notée sous la forme

y(t) = H[u(t)] =
∞∑

i=1

(∫ +∞

−∞
. . .

∫ +∞

−∞
hi(τ1, ..., τi)

i∏

j=1

u(t− τj)dτj

)
(1.16)

La réponse y(t) du système s’exprime plus simplement en fonction de l’entrée u(t)

y(t) =
∞∑

i=1

Hi[u(t)] (1.17)

Une fonctionnelle régulière et homogène d’ordre i vérifie la propriété suivante :

Hi[λu(t)] = λiHi[u(t)] (1.18)

λ étant un réel non nul et i un entier naturel.

Si i > 1 alors la fonctionnelle Hi[u(t)] est non linéaire. Elle admet la représentation
intégrale (1.15) où la fonction hi(τ1, ..., τi) : R

i −→ R, i = 1, 2, ... est localement bornée
et continue par morceaux.

On remarque que le premier terme de la somme

H1[u(t)] =

∫ +∞

−∞
h1(τ1)u(t− τ1)dτ1 (1.19)

n’est autre que l’intégrale de convolution utilisée pour représenter un système linéaire.
Dans un cadre plus général, ce premier terme représente le système linéarisé autour de
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son point de fonctionnement. h1(t) est donc la réponse impulsionnelle de la partie linéaire
du système considéré.

Les termes Hi[u(t)] (i > 1) généralisent la notion de convolution et permettent d’appli-
quer cette représentation aux systèmes non linéaires afin de représenter les non-linéarités
qui apparaissent au fur et à mesure que le système s’éloigne de son point de fonctionne-
ment. On pourra donc considérer les termes hi(t) (i > 1) comme des réponses impulsion-
nelles multidimensionnelles car chaque fonctionnelle Hi[u(t)] est obtenue par convolution
avec l’entrée u(t) du système.

1.3.2.2 Propriétés

L’outil mathématique que sont les séries de fonctionnelles doit être adapté à la re-
présentation des systèmes en général et des systèmes non linéaires dans le cas qui nous
concerne. Dans cette optique, une série de fonctionnelles possède deux propriétés très
intéressantes :

– Tout d’abord, la représentation d’un système non linéaire par une série de fonc-
tionnelles H possède une relation entrée-sortie explicite, qui se prête bien à la
représentation par schéma-bloc déjà utilisée pour la modélisation des systèmes li-
néaires.

– Ensuite, cette représentation par schémas-blocs autorise, comme dans le cas linéaire,
l’interconnexion en série, en parallèle ou en cascade de plusieurs modèles de systèmes
non linéaires. L’association de modèles linéaires et non linéaires est évidemment pos-
sible et nous verrons qu’elle était déjà employée depuis un certain temps (modèles
de Hammerstein-Wiener).

1.3.2.3 Conclusion

Le formalisme des séries de fonctionnelles, d’abord utilisé par Wiener dans le domaine
particulier de l’analyse des circuits électroniques non linéaires [Wiener, 1943], s’est depuis
étendu à tous les domaines de la physique. Mais la notion de système peut également
s’appliquer à d’autres domaines scientifiques (chimie, biologie,...).

Les méthodes de modélisation de systèmes non linéaires se sont donc récemment ”ex-
portées”avec succès vers des domaines auxquels elles n’étaient pas forcément prédestinées,
dont la chimie et la biochimie. La prévision du comportement de réacteurs chimiques ou
biochimiques, fermés ou continus, intéresse forcément les chercheurs de ces domaines et
cette prévision passe par une modélisation précise des phénomènes en jeu. Le lien entre
différentes espèces chimiques ou biochimiques peut être établi à l’aide de modèles linéaires
ou, dans la plupart des cas, non linéaires. Le formalisme des séries de fonctionnelles, qui
comprend une relation explicite entrée-sortie représentable sous forme de schéma-bloc,
peut donc être envisagé pour la modélisation de systèmes chimiques ou biochimiques
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[Corriou, 2001].

1.3.3 Définition des séries de Volterra

1.3.3.1 Introduction

Les travaux de Volterra (1860-1940) se sont portés, entre autres, sur la classe des équa-
tions intégrales qui porte son nom. Il a contribué de manière significative aux premiers
développements de ce qui allait plus tard devenir l’analyse fonctionnelle.

Les équations intégrales [Tricomi, 1985], de même que les équations différentielles et
les équations aux dérivées partielles, font partie de l’ensemble plus vaste des équations
fonctionnelles. Les équations intégrales de Volterra sont donc contenues dans l’ensemble
des équations fonctionnelles et les séries de Volterra qui découlent de ces équations inté-
grales peuvent être considérées comme un sous-ensemble des séries de fonctionnelles.

Les équations intégrales de Volterra proviennent naturellement de méthodes dévelop-
pées pour la résolution d’équations différentielles non linéaires ordinaires du type

dy

dx
= F (x, y) (1.20)

avec la condition initiale y(x0) = y0. Si l’on intègre cette équation entre x0 et x, on obtient
l’équation suivante

y(x) = y0 +

∫ x

x0

F [t, y(t)]dt (1.21)

Une forme plus générale de cette équation est l’équation non linéaire de Volterra

φ(x) = f(x) +

∫ x

0

F [x, y, φ(y)]dy (1.22)

où les fonctions f et F sont connues et la fonction φ inconnue et déterminée par l’équa-
tion (1.22). Ces équations sont résolues par l’approche itérative de substitution suivante
(Tricomi 85) : on pose

φn(x) = f(x) +

∫ x

0

F [x, y, φn−1(y)]dy (1.23)

pour n ≥ 1. Cette séquence est initialisée en définissant φ0(x) = f(x) et, pour n → ∞,
φn(x) converge vers la solution φ(x).

Si l’on considère maintenant le cas particulier où la fonction F peut être mise sous la
forme

F [x, y, φ(y)] = λK(x, y)φ(y) (1.24)
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avec K(x, y) fonction réelle (K(x, y) = 0 si y ≥ x), alors la résolution par approche
itérative de substitution conduit à l’équation de Volterra de deuxième espèce

φ(x) = f(x) +
∞∑

n=1

λn
∫ x

0

Kn(x, y)f(y)dy (1.25)

qui est une série infinie et où Kn(x, y) est un noyau itéré, défini par K1(x, y) = K(x, y)
pour n = 1 et, pour n > 1,

Kn(x, y) =

∫ x

0

K(x, z)Kn−1(z, y)dz (1.26)

Le noyau itéré d’ordre n est donc ici une intégrale d’ordre n (pour n ≥ 2).

On constate alors que la solution de l’équation intégrale, calculée de manière itérative,
prend la forme d’une série dont le terme d’ordre 1 est une intégrale simple

λ

∫ x

0

K1(x, y)f(y)dy (1.27)

Le terme d’ordre 2 est une intégrale double

λ2

∫ x

0

∫ x

0

K(x, z)K(z, y)f(y)dzdy (1.28)

Le terme général d’ordre n est donc une intégrale d’ordre n. On se rapproche donc du
formalisme des séries de fonctionnelles défini dans la section précédente. Pour retrouver le
formalisme plus exact des séries de fonctionnelles, on pose d’abord f(y) = 1, λ = 1, puis
pour le terme d’ordre 1

K1(x, y) = K(x, y) = h1(x− y)u(y) (1.29)

Pour le terme d’ordre 2

K2(x, y) =

∫ x

0

K(x, z)K(z, y)dz =

∫ x

0

h2(x− y, x− z))u(y)u(z)dz (1.30)

et ainsi de suite pour tous les termes d’ordre n > 2. On retrouve ainsi le formalisme des
séries de fonctionnelles défini précédemment. Cela confirme que les séries de Volterra sont
bien une classe particulière de séries de fonctionnelles, répondant à certaines propriétés.

1.3.3.2 Propriétés

De manière générale, on dira qu’une fonctionnelle Hi[u(t)] est réalisable et de type
Volterra [Volterra, 1959] si le terme hi(τ1, ..., τi) (pour i = 1, ...,∞) répond aux propriétés
suivantes :

Causalité :
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hi(t− τ1, ..., t− τi) = 0 pour τk > t, k = 1, ..., i (1.31)

Mémoire finie :

hi(τ1, ..., τi) = 0 pour τk > α, α > 0 et k = 1, ..., i (1.32)

Stationnarité :

Le noyau hi(τ1, ..., τi) est invariant dans le temps et ne dépend que des différences t−τi.

Si le noyau hi(τ1, ..., τi) répond à ces propriétés pour i = 1, ...,∞, alors l’ensemble
des noyaux, qu’on appellera désormais noyaux de Volterra, caractérise complètement le
système non linéaire considéré.

1.3.4 Cas particuliers

1.3.4.1 Introduction

Limiter la complexité des modèles de Volterra n’est pas un sujet nouveau. Nous allons
voir dans cette section que de nombreuses méthodes de représentation de systèmes non
linéaires existent déjà. Ces méthodes peuvent conduire à la synthèse de modèles non li-
néaires très efficaces et moins complexes que les modèles généraux de Volterra, mais ceci
uniquement dans certains cas particuliers. Nous verrons alors que ces classes particulières
de modèles ne sont que des sous-ensembles de la classe des modèles de Volterra.

1.3.4.2 Modèle de Hammerstein

Le modèle de Hammerstein est un des plus simples et des plus connus de la famille plus
générale des modèles non linéaires dynamiques orientés par blocs [Billings et Fakhouri, 1979],
[Ralston et Zoubir, 1995]. La structure du modèle de Hammerstein consiste en une non-
linéarité statique g(·) reliée en cascade avec un modèle linéaire dynamique défini par une
fonction de transfert notée A(s).

Dans le cas particulier où le modèle linéaire est à réponse impulsionnelle finie et si la
fonction g(·) est un polynôme de degré n, on parle de modèle de Hammerstein fini.

� !"#$%&
'()*+,-. /01φ

Fig. 1.2 - Modèle de Hammerstein
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D’après la figure 1.2, la sortie intermédiaire φ(t) peut s’écrire sous la forme

φ(t) = g(u(t)) =
n∑

i=1

γiu
i(t) (1.33)

De même, la sortie générale y(t) du modèle de Hammerstein s’écrit sous la forme

y(t) =

∫ ∞

0

α(τ)φ(t− τ)dτ (1.34)

où α(τ) est la réponse impulsionnelle de la fonction de transfert A(s).

Si l’on combine ces deux expressions, on obtient finalement l’expression de y(t) suivante

y(t) =
n∑

i=1

∫ ∞

0

γiα(τ)ui(t− τ)dτ (1.35)

Si l’on pose ensuite

hi(τ1, ..., τi) =

{
γiα(τ) si τ1 = ... = τi
0 sinon

(1.36)

le modèle obtenu peut être vu comme un modèle de Volterra ”diagonal” car les termes
hors diagonale, qui correspondent au cas où τi 6= τj (j 6= i), sont nuls. Les paramètres non
nuls du modèle non linéaire ainsi obtenu sont proportionnels aux paramètres du modèle
linéaire : hi(τ, ..., τ) = γih1(τ).

On peut donc considérer le modèle de Hammerstein comme une approximation du
modèle de Volterra. Cette approximation suffit à réduire la complexité du modèle de Vol-
terra. Cette classe de modèle est plus simple à utiliser et plus parcimonieuse dans les
paramètres que la classe des modèles de Volterra. Ces avantages sont obtenus au détri-
ment de la flexibilité du modèle : les restrictions inhérentes au modèle de Hammerstein
l’empêchent de représenter autant de non-linéarités différentes que le modèle plus général
de Volterra.

1.3.4.3 Modèle de Wiener

Le modèle de Wiener peut être vu comme le dual du modèle de Hammerstein [Rugh, 1981],
[Doyle et al., 2002]. Il comporte les deux mêmes composantes mais reliées dans l’ordre in-
verse. Le signal d’entrée u(t) passe d’abord par le modèle linéaire dynamique de fonction
de transfert A(s) pour donner le signal de sortie intermédiaire ψ(t), lui-même transformé
par la non-linéarité statique g(·) pour donner le signal de sortie y(t) du modèle.

De la même manière que pour le modèle de Hammerstein, on peut définir un modèle
de Wiener fini si le modèle linéaire est à réponse impulsionnelle finie, et si la fonction g(·)
est un polynôme de degré n.
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Fig. 1.3 - Modèle de Wiener

D’après la figure 1.3, la sortie intermédiaire ψ(t) peut s’écrire sous la forme

ψ(t) =

∫ ∞

0

α(τ)u(t− τ)dτ (1.37)

La sortie générale y(t) du modèle de Wiener s’écrit sous la forme

y(t) =
n∑

i=1

γiψ
i(t) (1.38)

En tenant compte des deux expressions précédentes, la sortie y(t) du modèle de Wiener
peut s’exprimer ainsi

y(t) =
n∑

i=1

∫ ∞

0

...

∫ ∞

0

γiα
i(τ)ui(t− τ)(dτ)i (1.39)

On définit ensuite, pour i = 1, ...,∞ :

hi(τ1, ..., τi) = γiα(τ1)...α(τi) (1.40)

Si l’on s’en tient aux schémas, la structure du modèle de Wiener est très proche de
celle du modèle de Hammerstein. Ils utilisent en effet les mêmes composantes, à savoir un
transfert linéaire et une non-linéarité statique.

Cependant, les équations (1.36) et (1.40) nous montrent que ces deux modèles sont
très différents car le seul cas où les coefficients hi(τ1, ..., τi) sont égaux est le cas linéaire
(n = 1) où la relation entre l’entrée u(t) et la sortie y(t) est un produit de convolution
classique. Le comportement des deux types de modèles dans le cas non linéaire et dyna-
mique ne sera donc pas le même.

On remarque également que, par construction, la complexité du modèle de Wiener est
du même ordre que celle du modèle de Hammerstein. Le modèle de Wiener peut donc
également être considéré comme une approximation du modèle de Volterra, approxima-
tion dont la complexité est réduite mais dont la flexibilité (la capacité à représenter une
large variété de non-linéarités) est moindre par rapport à celle du modèle de Volterra.
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1.3.4.4 Modèle d’Uryson

Le modèle d’Uryson est généralement moins connu que les modèles de Hammerstein et
de Wiener mais on peut considérer qu’il représente un sous-ensemble de la classe des mo-
dèles de Volterra [Doyle et al., 2002]. Il consiste à mettre en parallèle un certain nombre
de modèles de Hammerstein (r modèles dans notre cas).

1(.)g 1( )A s

( )y t
2 (.)g 2 ( )A s( )u t

(.)rg ( )rA s

∑
.

.

.

.

.

.

Fig. 1.4 - Modèle d’Uryson

On suppose que les non-linéarités statiques gi(·) sont des polynômes d’ordre ni (i =
1, ..., r) et que les modèles linéaires dynamiques peuvent être représentés par des fonctions
de transfert Ai(s) (i = 1, ..., r).

La sortie yi(t) du ième modèle de Hammerstein s’écrit :

yi(t) =

ni∑

j=1

∫ ∞

0

γ
(i)
j αi(τ)u

j(t− τ)dτ (1.41)

La sortie y(t) du modèle d’Uryson s’écrit donc sous la forme :

y(t) =
r∑

i=1

yi(t) =
r∑

i=1

ni∑

j=1

∫ ∞

0

γ
(i)
j αi(τ)u

j(t− τ)dτ (1.42)

Les coefficients de ce modèle sont les suivants :

hj(τ1, ..., τj) =

{ ∑r

i=1 γ
(i)
j αi(τ) si τ1 = ... = τj

0 sinon
(1.43)

Comme dans le cas du modèle de Hammerstein, on remarque que le modèle d’Uryson
peut être vu comme un modèle de Volterra ”diagonal”. Dans le cas où r = 1, on se ramène
à un modèle de Hammerstein classique, beaucoup plus flexible que le modèle de Volterra
classique mais moins efficace. Le fait de coupler plusieurs modèles de Hammerstein pallie
au problème d’efficacité car on peut ainsi représenter davantage de systèmes non linéaires
mais c’est au détriment de la simplicité de modélisation. En effet, le modèle d’Uryson

24
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comporte r fois plus de paramètres que celui de Hammerstein.

Le modèle d’Uryson est donc plus flexible que le modèle de Hammerstein, mais il reste
plus complexe et ne permet pas de représenter autant de types de non-linéarités que le
modèle de Volterra. Dans certains cas, le modèle d’Uryson peut apparâıtre comme un
bon compromis entre le modèle de Hammerstein (trop peu flexible) et celui de Volterra
(relativement complexe).

1.3.4.5 Modèle de projection-poursuite

Le modèle de projection-poursuite peut être vu comme le dual du modèle d’Uryson
[Doyle et al., 2002]. Le terme de projection-poursuite vient de la littérature consacrée aux
statistiques et se réfère à une classe de modèles de régression non linéaire. Le modèle de
projection-poursuite peut être obtenu à partir du modèle d’Uryson si l’on remplace cha-
cun des sous-modèles de Hammerstein par des modèles de Wiener (en intervertissant la
non-linéarité statique et le modèle linéaire dynamique).

Au final, cela revient à mettre en parallèle un nombre r de modèles de Wiener.

1(.)g
1( )A s

( )y t

2 (.)g2 ( )A s( )u t

(.)rg( )rA s

∑
.

.

.

.

.

.

Fig. 1.5 - Modèle de projection-poursuite

On suppose que les non-linéarités statiques gi(·) sont des polynômes d’ordre ni (i =
1, ..., r) et que les modèles linéaires dynamiques peuvent être représentés par des fonctions
de transfert Ai(s) (i = 1, ..., r).

La sortie yj(t) du j ème modèle de Wiener s’écrit :

yj(t) =

nj∑

i=1

∫ ∞

0

...

∫ ∞

0

γ
(j)
i αij(τ)u

i(t− τ)(dτ)i (1.44)

La sortie y(t) du modèle de projection-poursuite s’écrit donc sous la forme :
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y(t) =
r∑

j=1

yj(t) =
r∑

j=1

nj∑

i=1

∫ ∞

0

...

∫ ∞

0

γ
(j)
i αij(τ)u

i(t− τ)(dτ)i (1.45)

Les coefficients de ce modèle sont les suivants :

hi(τ1, ..., τi) =
r∑

j=1

γ
(j)
i αj(τ1)...αj(τi) (1.46)

Il a été démontré [Doyle et al., 2002] que si r est suffisamment grand, alors la classe
des modèles de projection-poursuite est équivalente à la classe des modèles de Volterra.

Comme dans le cas des modèles d’Uryson, l’efficacité des modèles de projection-
poursuite dépend du modèle considéré : si l’on prend r faible, le modèle de projection-
poursuite est plus efficace en termes de nombre de paramètres qu’un modèle de Volterra.
Cependant, le nombre de non-linéarités représentables est plus faible que dans le cas d’un
modèle de Volterra.

1.3.5 Conclusion

Les séries de Volterra apparaissent donc comme un moyen acceptable, pratique et
souple de modéliser un grand nombre de systèmes non linéaires. Leur formalisme permet
une représentation sous forme de schémas-blocs relativement aisée car déjà utilisée dans
la représentation de systèmes linéaires. Certaines méthodes de représentation de systèmes
non linéaires sont déjà utilisées avec succès depuis un certain nombre d’années, voire de
décennies, et apparaissent rétrospectivement comme des cas particuliers de modèles de
Volterra, justifiant ainsi le choix de ce type de modèle.

1.4 Détermination et modélisation des noyaux de Vol-

terra

1.4.1 Introduction

Dans tout ce qui suit, on considérera que les conditions initiales sont nulles. Lorsque
les conditions initiales sont non nulles, on montre que la connaissance de la réponse impul-
sionnelle et des noyaux de la réponse d’un système non linéaire en partant de conditions
initiales nulles permet d’évaluer les noyaux de la réponse de ce système avec des conditions
initiales non nulles [Hassouna, 2001].

On considère le système non linéaire mono entrée-mono sortie dont la représentation
d’état est la suivante :
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{
ẋ(t) = f(x(t)) + u(t)g(x(t))
y(t) = h(x(t))

(1.47)

où

f(x(t)) = [f 1(x(t)), ..., fn(x(t))]T

g(x(t)) = [g1(x(t)), ..., gn(x(t))]T
(1.48)

sont des vecteurs de fonctions analytiques et où x(t) ∈ R
n.

Dans le cas où l’entrée u(t) est bornée en amplitude, la sortie y(t) de ce système non
linéaire admet un développement en série de Volterra. Obtenir l’expression analytique des
noyaux de Volterra hk(t1, ..., tk) nécessite la connaissance des vecteurs de fonctions f et
g, et de la fonction analytique h. Ces expressions peuvent être relativement difficiles à
calculer selon la complexité des fonctions précédentes et le nombre de termes de degré
élevé souhaités dans le développement en série de Volterra.

Pour calculer analytiquement les noyaux de Volterra, on peut appliquer la transformée
de Laplace multidimensionnelle au système non linéaire global, décomposé sous forme de
blocs linéaires et non linéaires. La transformée de Laplace multidimensionnelle inverse
permet d’obtenir l’expression temporelle de la réponse impulsionnelle de chaque noyau de
Volterra [George, 1959], [Hassouna, 2001], [Hassouna et al., 2001].

1.4.2 Séries génératrices non commutatives

1.4.2.1 Expression analytique des noyaux de Volterra

La formule fondamentale de Fliess est l’équivalent pour une fonctionnelle de ce qu’est
la série de Taylor pour une fonction.

Théorème 1.1 [Lamnabhi-Lagarrigue, 1995]
Soit le système non linéaire mono-entrée mono-sortie (1.47). Dans le cas où l’entrée

u(t) du système est suffisamment bornée, on peut associer à la sortie y(t) le développement
en série suivant :

g = h(x0) +
∑

υ>0

1∑

j0,...,jυ=0

Ljυ ...Lj1h(x0)zj0 ...zjυ−1
zjν (1.49)

Les opérateurs L0 et L1 sont appelés opérateurs de Lie et définis de la manière sui-
vante :

L0 =
∑n

j=1 f
j(x) ∂

∂xj

L1 =
∑n

j=1 g
j(x) ∂

∂xj

(1.50)
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Les variables z0 et z1 correspondent respectivement à l’opérateur d’intégration par rap-
port au temps et à l’opérateur d’intégration par rapport au temps après multiplication par
l’entrée u(t) :

z0 ⇔
∫ t

0
·dτ

z1 ⇔
∫ t

0
·u(τ)dτ (1.51)

On remarque que les deux variables z0 et z1 ne sont pas commutatives. En effet, si on
pose u(t) = tα, α 6= 0, on obtient

z0z1 ⇔
∫ t

0

dτ2

∫ τ2

0

u(τ1)dτ1 =
tα+2

(α+ 2)(α+ 1)
(1.52)

qui est différent de

z1z0 ⇔
∫ t

0

u(τ2)dτ2

∫ τ2

0

dτ1 =
tα+2

α+ 2
(1.53)

A partir de ces définitions, le théorème suivant donne une expression explicite de la
série de Volterra :

Théorème 1.2 [Fliess et al., 1983]

La sortie y(t) du système non linéaire défini par (1.47) peut être développée en une
série de Volterra :

y(t) = h0(t) +
∞∑

i=1

∫ t

0

∫ τ2

0

. . .

∫ τi

0

hi(t, τi, ..., τ1)
i∏

j=1

u(τj)dτj (1.54)

où les noyaux de Volterra sont des fonctions analytiques. Le terme h0(t) correspond à la
réponse libre (c’est à dire en l’absence d’entrée u(t)) du système (1.47). Il a la forme :

h0(t) =
∞∑

k=0

Lk0h(x0)
tk

k!
= etL0h(x0) (1.55)

Le noyau h1(t, τ1) d’ordre 1 a la forme :

h1(t, τ1) =
∑∞

k0=0

∑∞
k1=0 L

k0
0 L1L

k1
0 h(x0)

(t−τ1)k1τ
k0
1

k1!k0!

= eτ1L0L1e
(t−τ1)L0h(x0)

(1.56)

Le noyau hn(t, τ1, ...τn) d’ordre n a la forme :

hn(t, τ1, ...τn) =
∞∑
k0=0

...
∞∑

kn=0

Lk00 L1L
k1
0 ...L1L

kn

0 h(x0)
(t−τn)kn ...τ

k0
1

kn!...k0!

= eτ1L0L1e
(τ2−τ1)L0 .....L1e

(t−τn)L0h(x0)
(1.57)
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1.4.2.2 Commentaire

Ces expressions analytiques des noyaux de Volterra ne sont pas utilisables telles quelles
car les opérateurs qu’elles comportent sont difficilement calculables. Le calcul effectif des
noyaux de Volterra reste donc un problème ouvert.

1.4.3 Modélisation des noyaux de Volterra sur bases de fonc-
tions orthonormées

Dans la majeure partie des cas considérés, on ne peut pas disposer d’une expression
analytique (ou d’un modèle de connaissance) des noyaux de Volterra car soit celle-ci ne
peut pas être calculée (structure des noyaux inconnue), soit cette expression est trop
complexe pour être ensuite utilisée (structure des noyaux trop complexe). Une manière
de traiter ce problème est de trouver un modèle paramétrique valide pour les noyaux de
Volterra sur une certaine plage de fonctionnement du système non linéaire. On utilisera
ensuite les données d’entrée et de sortie du système non linéaire considéré pour identifier
les noyaux de Volterra, même si la forme analytique de ces derniers reste inconnue.

Un moyen relativement courant de modéliser les noyaux de Volterra consiste en leur
développement sur des bases de fonctions orthonormées multidimensionnelles, elles-mêmes
obtenues à partir d’une ou de plusieurs bases de fonctions monodimensionnelles
[Wahlberg, 1991], [Lindskog et Wahlberg, 1993], [Ninness et Gustafsson, 1994],
[Akçay et Ninness, 1999].

Nous verrons ensuite qu’un autre moyen consiste en l’utilisation de la représentation
temporelle de la série génératrice à variables non commutatives (introduite par Fliess)
associée à la sortie y(t) du système non linéaire. Cette méthode conduit à un modèle
relativement parcimonieux pour chaque noyau de Volterra mais ceci au détriment d’une
complexité croissante du modèle au fur et à mesure que le nombre de noyaux augmente.

Un autre modèle, inspiré du précédent, sera ensuite présenté. Ce modèle consiste à
développer les noyaux de Volterra sur des produits de fonctions de transfert. Bien que la
parcimonie de ce nouveau modèle soit légèrement moindre, nous verrons que sa complexité
globale est considérablement diminuée, permettant ainsi une identification paramétrique
beaucoup plus aisée.

1.4.3.1 Introduction

Les bases de fonctions orthonormées sont couramment utilisées en matière d’approxi-
mation et d’analyse de fonctions complexes. Une des premières études sur le sujet est
l’oeuvre du mathématicien Yuk-Wing Lee, un des élèves de Wiener [Lee, 1932]. On consi-
dère aujourd’hui qu’il fut le premier à utiliser le terme de ”synthèse” pour décrire le
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rassemblement de divers éléments dans le but de répondre à un ensemble de performances.

Dans des domaines tels que la théorie de la commande, le traitement du signal et l’iden-
tification de systèmes, on utilise depuis longtemps les fonctions de Laguerre [Wahlberg, 1991],
développées par Laguerre à la fin du 19ème siècle, étendues ensuite par Kautz à l’ordre 2 afin
de modéliser des dynamiques non amorties [Wahlberg, 1994]. Les bases de fonctions or-
thonormées généralisées, introduites par Ninness et Akçay [Ninness et Gustafsson, 1994],
[Akçay et Ninness, 1999], permettent l’introduction de pôles réels ou complexes conjugués
afin de modéliser le plus grand nombre possible de dynamiques différentes.

1.4.3.2 Définition et propriétés

Une base de fonctions orthonormées est constituée de fonctions orthonormées entre
elles et normales à elles-mêmes. Si l’on considère une base de fonctions orthonormées Φ
définie par

{Φi(s)} i ∈ N (1.58)

et

Φi(s) ∈ H2(C+) (1.59)

où H2(C+) est l’espace de Hardy, espace des fonctions analytiques dans le demi-plan com-
plexe de Laplace C+ tel que Re(s) ≥ 0, et de carré sommable sur l’axe des imaginaires.

Ces fonctions Φi(s) sont orthonormées entre elles si leur produit interne à H2(C+) a
les propriétés suivantes :

〈Φi,Φj〉 =
1

2π

∫ +∞

−∞
Φi(jω)Φ∗

j(jω)dω

{
1 si i = j
0 sinon

(1.60)

où l’indice ∗ désigne le conjugué d’un nombre complexe.

Dans la suite du mémoire, on adopte les notations suivantes : Φ(s) représente une
fonction orthonormée dans le domaine de Laplace tandis que φ représente la réponse de
la fonction Φ à une excitation u(t).

1.4.3.3 Développement sur une base monovariable

On considère une fonction f(s) de l’espace de Hardy H2(C+). Cette fonction admet
un développement unique sur la base de fonctions Φ

f(s) =
∞∑

j=0

θejΦj(s) (1.61)
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Les coefficients θej sont les paramètres du développement.

Suivant le choix des fonctions Φj(s), les coefficients θej tendent plus ou moins rapide-
ment vers 0 lorsque j tend vers l’infini. Le développement (1.61) peut donc être tronqué
à ses M premiers termes

f̂(s) =
M∑

j=0

θejΦj(s) (1.62)

1.4.3.4 Développement sur une base multivariable

On considère maintenant l’espace L2(T n), T = [0,∞[, des fonctions mesurables et de
carré sommable. Toute fonction f(t1, ..., tn) de L2(T n), admet un développement unique
sur la base orthonormée {φm1...mn

} de la forme

f(t1, ..., tn) =
∞∑

m1=0

...
∞∑

mn=0

fm1...mn
φm1...mn

(t1, ...tn) (1.63)

où les termes fm1...mn
sont les paramètres du développement.

Proposition 1.1 : Une base orthonormée {φm1...mn
} de L2(T n) peut être obtenue à

partir de la base orthonormée {φm} de L2(T ) en formant les produits directs

φm1
⊗ ...⊗ φmn

=
n∏

i=1

φm1
avec m1 ≥ ... ≥ mn (1.64)

Preuve :
On considère un multi-index (m1, ...,mn) tel que m1 ≥ m2 ≥ ... ≥ mn et une base

orthonormée {φm} monodimensionnelle de l’espace L2(T ). On définit l’ensemble des fonc-
tions {φm1...mn

} de L2(T n) de la manière suivante :

φm1...mn
=

n∏

i=1

φmi
(1.65)

Calculons le produit scalaire 〈φm1...mn
, φp1...pn

〉 :

〈φm1...mn
, φp1...pn

〉 =
∫ j∞
−j∞ ...

∫ j∞
−j∞ Φm1...mn

(f1, ..., fn)Φ
∗
p1...pn

(f1, ..., fn)df1...dfn

=
∫ j∞
−j∞ ...

∫ j∞
−j∞

∏n

i=1 Φmi
(fi)

∏n

j=1 Φ∗
pj

(fj)df1...dfn

=
∏n

i=1

∫ j∞
−j∞ ...

∫ j∞
−j∞ Φmi

(fi)Φ
∗
pi

(fi)dfi
=
∏n

i=1 〈Φmi
,Φpi

〉
=
∏n

i=1 δmi,pi

= δm1...mn,p1...pn

(1.66)

où δm1...mn,p1...pn
est le symbole de Kronecker défini par
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δm1...mn,p1...pn
=

{
1 si m1 = ... = mn = p1 = ... = pn
0 sinon

(1.67)

Les fonctions φm1...mn
sont donc orthogonales entre elles et normales à elles-mêmes.

Par conséquent, {φm1...mn
} constitue une base orthonormée de L2(T n). �

Suivant le choix de la base de fonctions multivariables, les coefficients du développe-
ment peuvent tendre plus ou moins rapidement vers 0 lorsque le nombre de termes tend
vers l’infini. On peut donc, comme dans le cas monovariable, approximer le développement
(1.63) :

f̂(t1, ..., tn) =
M∑

m1=0

...
M∑

mn=0

fm1...mn
Φm1...mn

(t1, ...tn) (1.68)

1.4.3.5 Développement des noyaux de Volterra [Monsion, 1976]

Nous allons utiliser le résultat précédent pour approximer les noyaux de Volterra.
On rappelle que la sortie d’un système non linéaire mono entrée-mono sortie peut être
développée en une série de Volterra

y(t) =
∞∑

i=1

(∫ t

0

. . .

∫ t

0

hi(τ1, ..., τi)
i∏

j=1

u(t− τj)dτj

)
(1.69)

Dans le cas général, le noyau de Volterra hi(τ1, ..., τi) est une fonction multivariable et
admet donc un développement unique sur une base de fonctions {φm1...mi

} de L2(T i) :

hi(τ1, ..., τi) =
∞∑

m1=0

...

∞∑

mi=0

cm1...mi
φm1...mi

(τ1, ..., τi) (1.70)

Proposition 1.2 : en considérant les propriétés d’orthonormalité de la base de fonc-
tions {φm1...mi

}, la réponse Hi[u(t)] du noyau (1.70) à l’entrée u(t) peut être approximée
par

Ĥi[u(t)] =

Mi∑

m1=0

...

mi−1∑

mi=0

bm1...mi
Im1

(t)...Imi
(t) (1.71)

où le terme Imj
(t) est la réponse de la fonction orthonormée φmj

à l’entrée u(t).

Preuve : comme on l’a vu précédemment, le développement (1.70) peut être tronqué :

ĥi(τ1, ..., τi) =

Mi∑

m1=0

...

Mi∑

mi=0

cm1...mi
φm1...mi

(τ1, ..., τi) (1.72)
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La base de fonctions multidimensionnelles orthonormées {φm1...mi
} de L2(T i) étant

obtenue à l’aide de la base de fonctions monodimensionnelles orthonormées {φm} de L2(T ),
on peut réécrire l’approximation précédente du développement de la manière suivante :

ĥi(τ1, ..., τi) =
∑Mi

m1=0 ...
∑mi−1−1

mi=0 cm1...mi
(φm1

(τ1)...φmi
(τi) + ...+ φm1

(τi)...φmi
(τ1))

+
∑Mi

m1=0 cm1...m1
φm1

(τ1)...φm1
(τi)

(1.73)
La réponse Hi[u(t)] du noyau de Volterra d’ordre i à l’entrée u(t) du système s’écrit

de la manière suivante :

Hi[u(t)] =

∫ +∞

−∞
. . .

∫ +∞

−∞
hi(τ1, ..., τi)

i∏

j=1

u(t− τj)dτj (1.74)

On en déduit donc l’expression approchée Ĥi[u(t)] :

Ĥi[u(t)] =
∑Mi

m1=0 ...
∑mi−1

mi=0 cm1...mi∫ t
0
...
∫ t

0
(φm1

(τ1)...φmi
(τi) + ...+ φm1

(τi)...φmi
(τ1))

∏i

j=1 u(t− τj)dτj
+
∑Mi

m1=0 cm1...m1

∫ t
0
...
∫ t

0
φm1

(τ1)...φm1
(τi)

∏i

j=1 u(t− τj)dτj
(1.75)

Afin de simplifier les notations, on note Imj
(t) la réponse de la fonction orthonormée

φmj
à l’entrée u(t) :

Imj
(t) =

∫ t

0

φmj
(τ)u(t− τ)dτ (1.76)

L’expression approchée Ĥi[u(t)] de la réponse Hi[u(t)] peut donc s’écrire :

Ĥi[u(t)] =
∑Mi

m1=0 ...
∑mi−1

mi=0 cm1...mi
(i!)Im1

(t)...Imi
(t)

+
∑Mi

m1=0 cm1...m1
Im1

(t)...Im1
(t)

(1.77)

On peut uniformiser la notation des coefficients du développement de la manière sui-
vante :

bm1...mi
=

{
cm1...mi

si m1 = ... = mi

cm1...mi
(i!) sinon

(1.78)

avec m1 ≥ ... ≥ mi.
On obtient enfin l’expression approchée générale de la sortie Ĥi[u(t)] du noyau d’ordre

i :

Ĥi[u(t)] =

Mi∑

m1=0

...

mi−1∑

mi=0

bm1...mi
Im1

(t)...Imi
(t) (1.79)

�
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Considérons l’exemple du noyau de Volterra d’ordre 2 développé sur 2 fonctions ortho-
normées (troncature àM2 = 1). Sa représentation schématique est donnée sur la figure 1.6.

�
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∑
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Fig. 1.6 - Noyau d’ordre 2 développé sur 2 fonctions orthonormées

La représentation schématique générale du modèle Ĥi[u(t)] de la réponse du noyau
d’ordre i (1.79) est donnée sur la figure 1.7.
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Fig. 1.7 - Noyau d’ordre i développé sur une base de fonctions orthonormées
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Enfin, l’approximation ŷ(t) (troncature de l’expression (1.69) à l’ordre n) de la sortie
y(t) du système non linéaire est donnée par

ŷ(t) =
n∑

i=1

(
Mi∑

m1=0

...

mi−1∑

mi=0

bm1...mi
Im1

(t)...Imi
(t)

)
(1.80)

et représentée sur la figure 1.8.
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Fig. 1.8 - Approximation de la sortie y(t) du système non linéaire

Une fois le modèle du système non linéaire établi, l’étape suivante consiste à choisir la
forme des fonctions de la base orthonormée.

1.4.3.6 Choix des fonctions orthonormées

Le choix de la base orthonormée monodimensionnelle initiale Φn est primordial pour la
qualité du modèle. Les dynamiques des fonctions génératrices doivent être aussi proches
que possible de celles des noyaux de Volterra. Ces derniers dépendant du système non
linéaire considéré, le choix de la base de fonctions orthonormées devra donc se faire au
cas par cas parmi l’éventail des possibilités.

a) Fonctions de Laguerre

Les fonctions de Laguerre ont été les premières à être utilisées afin de modéliser les
systèmes (linéaires ou non linéaires). On les utilise plus particulièrement dans le cas de
systèmes apériodiques [Wahlberg, 1991]. Elles sont définies dans l’espace de Laplace de la
manière suivante :
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Ln(s) =

√
2α

s+ α
(
s− α

s+ α
)n−1 (1.81)

Ces fonctions sont composées d’un filtre passe-bas du premier ordre suivi d’une fonction
passe-tout. Le modèle de Volterra ainsi défini ne comporte dans ce cas qu’un seul pôle
réel multiple −α.

b) Fonctions de Kautz

Les fonctions de Kautz sont une extension des fonctions de Laguerre au deuxième
ordre afin de modéliser les systèmes oscillants [Wahlberg, 1994]. Elles sont définies dans
l’espace de Laplace de la manière suivante :





Ψ2k−1(s) =
√

2bs
s2+bs+c

[
s2−bs+c
s2+bs+c

]k−1

Ψ2k(s) =
√

2bc
s2+bs+c

[
s2−bs+c
s2+bs+c

]k−1 avec k ≥ 0, b > 0, c > 0 (1.82)

Les deux pôles conjugués sont calculés par résolution de l’équation s2 + bs+ c = 0.

On remarque que dans le cas où b = α et c = 0, on retrouve la fonction de Laguerre
définie au paragraphe précédent.

c) Fonctions orthonormées généralisées

Un des principaux inconvénients des deux types précédents de fonctions orthonormées
est que l’on ne peut introduire qu’un et deux pôles dans chaque fonction de Laguerre et
de Kautz respectivement. Dans le cas d’un système comportant plusieurs non-linéarités
différentes ou plus simplement des modes éloignées, on ne pourra pas introduire plu-
sieurs dynamiques. Il faut alors considérer un nombre suffisamment grand de fonctions
orthonormées, ce qui entrâınera un problème de surdimensionnement de modèle et de
surparamétrisation.

Pour remédier à ce problème, on dispose des fonctions orthonormées généralisées,
introduites par Ninness et Akçay [Ninness et Gustafsson, 1994], [Akçay et Ninness, 1999],
définies dans l’espace de Laplace de la manière suivante :

Φn(s) =

√
2Re{pn}
s+ pn

n−1∏

k=1

s− pk
s+ pk

(1.83)

où le terme pk désigne le conjugué du nombre complexe pk.

La construction de telles fonctions préserve l’orthonormalité et permet l’incorporation
d’une grande variété de pôles pk convenablement répartis afin de modéliser les différentes
dynamiques ou les non-linéarités du système considéré. Ces fonctions permettent de cor-
rectement décrire la dynamique de chaque noyau et d’éviter ainsi d’obtenir un modèle de
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dimension trop importante.

Un autre avantage de l’utilisation des fonctions orthonormées généralisées est la possi-
bilité d’introduire des pôles complexes afin de modéliser des dynamiques oscillantes. Ces
pôles complexes sont introduits par paires.

On introduit les fonctions Φ′
n(s) et Φ′′

n(s) définies de la manière suivante :

(
Φ′
n(s)

Φ”
n(s)

)
=

(
C0 C1

C ′
0 C ′

1

)(
Φn(s)

Φn+1(s)

)
(1.84)

où C0, C1, C
′
0 et C ′

1 sont des nombres complexes, la fonction Φn(s) est donnée par (1.83)
et la fonction Φn+1(s) est définie de la manière suivante :

Φn+1(s) =

√
2pn

s+ pn

n−1∏

k=1

(s− pk)

(s+ pk)
(1.85)

1.4.3.7 Identification

On considère le système non linéaire quadratique dont la représentation d’état est la
suivante :

{
ẋ(t) = −x(t) − x2(t) + u(t)
y(t) = x(t)

(1.86)

L’utilisation d’une série de Volterra pour modéliser un système non linéaire suppose
que l’on puisse identifier les termes de la série à partir d’un signal d’entrée u(t) quelconque
mais suffisamment riche pour pouvoir sensibiliser l’ensemble des paramètres. Dans le cas
du système non linéaire (1.86), l’utilisation d’une séquence pseudo aléatoire bornée en
amplitude (figure 1.11(a)) permet d’effectuer une identification globale des paramètres de
tous les termes du modèle de Volterra.
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Fig. 1.9 - Séquence pseudo-aléatoire bornée en amplitude
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Ce type d’excitation comporte un nombre suffisamment important de variations d’am-
plitude pour sensibiliser tous les termes de la série de Volterra.

La réponse du système non linéaire (1.86) au signal d’entrée défini par la figure 1.11(a)
est donnée par la figure 1.11(b).
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Fig. 1.10 - Réponse du système non linéaire

On utilisera ce signal d’entrée et cette réponse du système non linéaire afin d’identifier
les paramètres des modèles de Volterra dans toute la suite de ce chapitre.

La structure du modèle de Volterra est d’abord fixée en effectuant une troncature à
ses 2 premiers termes. Le premier terme permet de modéliser la partie linéaire du système
considéré. Le second terme prend en compte la non-linéarité. Nous verrons que cette tron-
cature, bien qu’arbitraire, peut cependant être suffisante pour une modélisation correcte
du système non linéaire.

Pour les raisons définies précédemment, nous choisissons de développer chaque noyau
de Volterra sur des fonctions orthonormées généralisées définies par (1.83). Le nombre
de fonctions orthonormées généralisées est d’abord arbitrairement fixé à 4 pour chaque
noyau de Volterra, ce qui fixe le nombre total de paramètres à 14.

On peut alors fixer la valeur des pôles des fonctions orthonormées généralisées à une
valeur arbitraire. En l’absence de connaissance a priori sur le système non linéaire, le pôle
de la première fonction est fixé à 10 et celui de la deuxième fonction à 20, celui de la
troisième à 30 et le dernier à 40.

A ce point de l’étude, on remarque que le modèle de Volterra développé sur des fonc-
tions orthonormées généralisées reste linéaire par rapport aux paramètres. La sortie y(t)
du modèle de Volterra peut donc s’écrire sous la forme du produit d’un régresseur ϕ(t)
par un vecteur paramètre θ :
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y(t) = ϕ(t)θ (1.87)

La solution optimale θopt à un tel problème est donnée par la méthode classique des
moindres carrés :

θopt = (ϕT (t)ϕ(t))−1ϕT (t)y(t) (1.88)

Une fois l’identification paramétrique achevée, on utilise un autre signal d’entrée (fi-
gure 1.11(a)) et la réponse correspondante (figure 1.11(b)) du système non linéaire (1.86)
afin de valider le modèle de Volterra obtenu.
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(a) Nouvelle séquence pseudo-aléatoire bornée
en amplitude
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(b) Réponse du système non linéaire

Fig. 1.11 - Signaux d’entrée et de sortie utilisés pour valider le modèle de Volterra

La figure 1.12(a) représente la sortie du système non linéaire (1.86) pour ce nouveau
signal d’entrée et la sortie du modèle de Volterra décrit précédemment (pour les valeurs
paramétriques optimales calculées par la méthode des moindres carrés).
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(a) Réponse du système non linéaire (ligne
continue) et du modèle de Volterra (ligne poin-
tillée)
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(b) Erreur quadratique

Fig. 1.12 - Modèle de Volterra tronqué à 2 noyaux développés sur 4 fonctions

La figure 1.12(b) représente l’erreur quadratique entre les deux courbes de la figure
1.12(a). Le critère quadratique J est égal à 8.95. La reconstruction est donc mauvaise, ce
qui ne surprend pas l’utilisateur car les choix de structure, de nombre de fonctions et de
valeur paramétriques du modèle de Volterra sont tous arbitraires.

Une structure complexe de modèle et un nombre important de paramètres ne suffisent
donc pas à représenter correctement le système non linéaire considéré.

Une première solution consiste à complexifier le modèle de Volterra en augmentant
soit le nombre de termes, soit le nombre de fonctions orthonormées généralisées utilisées
pour modéliser chaque noyau. On peut par exemple utiliser 5 fonctions orthonormées gé-
néralisées au lieu de 4. Le nombre total de paramètres est dorénavant de 20.

La figure 1.13(a) représente la sortie du système non linéaire (1.86) et la sortie du
modèle de Volterra complexifié. Le critère quadratique J est désormais égal à 8.04.
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continue) et du modèle de Volterra (ligne poin-
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(b) Erreur quadratique

Fig. 1.13 - Modèle de Volterra tronqué à 2 noyaux développés sur 5 fonctions

Un modèle de Volterra plus complexe est donc plus précis mais reste incapable de
représenter précisément la sortie du système non linéaire. La solution théorique consiste
donc à augmenter indéfiniment le nombre de termes du modèle ou bien le nombre de
fonctions orthonormées généralisées utilisées pour modéliser chaque noyau. Dans ces deux
cas, le nombre de paramètres augmente et le calcul de la solution optimale par la méthode
des moindres carrés devient problématique.

Une autre solution consiste à choisir d’autres valeurs de pôles tout en gardant la même
structure de modèle de Volterra. En l’absence de connaissance a priori sur le système non
linéaire considéré, le choix des valeurs paramétriques optimales doit se faire de manière
empirique. Mais, en pratique, il arrive souvent que l’on dispose de la réponse du système
non linéaire à différents signaux d’entrée. Ces réponses peuvent permettre à l’utilisateur
d’estimer le temps de réponse global du système non linéaire et ainsi d’approcher beau-
coup plus rapidement les valeurs optimales d’un ou plusieurs paramètres.

En conservant la même structure de modèle (2 noyaux de Volterra modélisés chacun
sur 4 fonctions orthonormées généralisées) et en fixant les valeurs des pôles des fonctions
à 1, 2, 3 et 4 on obtient la réponse de la figure 1.14(a).
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(b) Erreur quadratique

Fig. 1.14 - Modèle de Volterra tronqué à 2 noyaux développés sur 4 fonctions avec choix conve-
nable des pôles

L’erreur quadratique entre les deux courbes de la figure 1.14(a) est donnée par la figure
1.14(b). Le critère quadratique J est égal à 0.022.

La qualité du modèle de Volterra est dans ce cas bien meilleure que précédemment.
La connaissance a priori de la dynamique globale du système non linéaire peut donc aider
l’utilisateur à fixer convenablement la structure du modèle de Volterra développé sur une
base de fonctions orthonormées généralisée.

1.4.3.8 Discussion

Le modèle de Volterra dont les noyaux sont développés sur des bases de fonctions or-
thonormées généralisées apparâıt donc comme un très bon moyen de représenter un très
grand nombre de dynamiques différentes. Cependant, cette propriété intéressante entrâıne
un certain nombre de problèmes d’identification paramétrique :

– Problème du choix des ordres de troncature : la structure globale optimale du modèle
de Volterra n’est pas connue d’avance par l’utilisateur. Dans la plupart des cas, une
série de Volterra étant uniformément convergente, il n’est pas utile de conserver une
infinité de termes (donc une infinité de noyaux) pour modéliser correctement un sys-
tème non linéaire. Le problème du choix de l’ordre idéal de troncature se pose alors
pour chaque système non linéaire étudié. Dans l’état actuel des connaissances, seule
une connaissance a priori du système étudié permet de résoudre ce problème. De
plus, une fois l’ordre de troncature fixé, l’utilisateur doit également fixer le nombre
de fonctions orthonormées généralisées sur lesquelles sera développé chaque noyau
de Volterra. Ici également, la connaissance a priori du comportement du système
peut aider l’utilisateur à fixer des valeurs optimales du nombre de fonctions pour
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chaque noyau.

– Problème du choix des pôles des fonctions orthonormées généralisées : un des avan-
tages du modèle de Volterra développé sur bases de fonctions orthonormées générali-
sées est le grand nombre de pôles différents introduits dans les fonctions. Mais, dans
de nombreux cas, l’utilisateur n’a pas de connaissance a priori sur les dynamiques
du système étudié et doit fixer des valeurs de pôles a priori inexactes. Ceci pose
des problèmes d’identification si le nombre de fonctions de chaque développement a
été tronqué au départ par l’utilisateur : en effet, la procédure d’identification doit
s’adapter à ces valeurs de pôles, fixées dès le départ, et l’algorithme d’identification
par moindres carrés peut fournir un mauvais résultat d’identification des paramètres
si les valeurs de pôles ne correspondent pas aux dynamiques réelles du système étu-
dié.

– Problème du nombre de paramètres : ce troisième problème découle du précédent.
En effet, pour pallier au problème du choix des pôles en l’absence de connaissance
a priori sur les dynamiques du système non linéaire étudié, l’utilisateur peut choisir
d’introduire le plus de dynamiques différentes possibles dans le modèle de Volterra,
augmentant ainsi le nombre de fonctions sur lesquelles est développé chaque noyau
de Volterra. Ceci provoque une forte augmentation du nombre total de paramètres
du modèle de Volterra, sacrifiant ainsi l’objectif de parcimonie fixé au départ de
notre étude.

Un des objectifs essentiels de cette étude est de conserver une certaine parcimonie pa-
ramétrique dans le modèle étudié, à la différence des multi-modèles, du modèle NARMAX
et des réseaux artificiels de neurones évoqués précédemment. Une solution pour réduire le
nombre de paramètres nécessaires est le développement des noyaux de Volterra non plus
sur bases de fonctions orthonormées généralisées mais sur des fonctions de transfert.

1.4.4 Modélisation des noyaux de Volterra sur fonctions de trans-
fert

1.4.4.1 Introduction

L’objectif de parcimonie est difficilement réalisable en conservant la modélisation des
noyaux de Volterra établie à l’aide des fonctions orthonormées généralisées, en particulier
lorsque connaissance a priori sur le comportement du système non linéaire est faible.

Une solution à ce problème consisterait à optimiser le choix de pôles des fonctions de
la base orthonormée généralisée à l’aide d’un algorithme de programmation non linéaire.
Cependant, en l’absence de connaissance sur la structure globale optimale du modèle de
Volterra, cette optimisation devrait être effectuée pour différents ordres de troncature de
la série de Volterra utilisée et des développements de chaque noyau de Volterra. Une telle
procédure nécessiterait en outre un critère valable de comparaison des résultats d’optimi-
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sation obtenus pour chaque structure de modèle employée. Le volume de calcul nécessaire
deviendrait rapidement important et les résultats obtenus seraient difficilement exploi-
tables.

Pourtant, l’idée d’optimiser par programmation non linéaire tous les pôles et les zéros
des fonctions orthonormées généralisées afin de compenser le manque de connaissance a
priori sur le système non linéaire parâıt séduisante. Nous allons donc essayer d’effectuer
cette optimisation mais en remplaçant les fonctions orthonormées généralisées par des
fonctions de transfert classiques, dont la forme plus souple se prête davantage à la procé-
dure d’optimisation des gains et des pôles.

Le développement théorique que nous allons présenter est d’un abord difficile à cause
de calculs lourds et laborieux. Il conduit cependant à un modèle très parcimonieux des
noyaux de Volterra, répondant ainsi à l’un des objectifs que nous nous sommes fixés.

1.4.4.2 Cas particulier : modèle de Wiener

On reprend le modèle de Wiener (figure 1.15), qui n’est autre qu’un cas particulier du
modèle de Volterra, plus simple mais moins flexible.

( )u t ( )y t

(.)g

 ( )tψ

( )A s

Fig. 1.15 - Modèle de Wiener

Nous allons utiliser une forme particulière de ce type de structure pour modéliser
chaque noyau de Volterra.

Dans le modèle de Wiener, tout comme dans celui de Hammerstein, la partie linéaire
est séparée de la partie non linéaire.

Nous allons commencer par restreindre la partie non linéaire du modèle de Wiener à
un cas particulier, celui d’un gain g1 :

g(ψ(t)) = g1ψ(t) (1.89)

La partie linéaire dynamique peut être la réponse impulsionnelle h(t) d’une fonction
A(s). On peut alors se servir de ce cas particulier de modèle de Wiener pour représenter le
premier noyau de Volterra de signal d’entrée u(t) et de signal de sortie y1(t) = H1[u(t)] :
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( )u t 1( )y t

1g( )A s

Fig. 1.16 - Modèle de Wiener représentant le premier noyau de Volterra

Si on veut maintenant représenter le noyau de Volterra d’ordre i, on utilise le produit
de plusieurs réponses impulsionnelles, suivi d’un gain (figure 1.17).

( )u t

( )iy t

ig

( )A s

( )A s

( )A s

∏

( )u t

( )u t

.

.

.

Fig. 1.17 - Modèle de Wiener représentant le noyau de Volterra d’ordre i

Dans cette forme de représentation, les paramètres du modèle restent les gains gi uti-
lisés dans chaque noyau de Volterra. On se rapproche donc du modèle de Volterra dans
lequel chaque noyau est développé sur des fonctions orthonormées généralisées.

L’idée d’optimiser les pôles et les zéros des fonctions utilisées pour modéliser les noyaux
au lieu de les fixer d’avance et d’optimiser simplement les gains du modèle conduit aux
modifications suivantes : pour tous les noyaux de Volterra, on peut poser gi = 1 et
considérer ensuite que les termes h(t) sont les réponses de fonctions de transfert du premier
ordre du type :

A(s) =
b0

a0 + a1s
(1.90)

Si l’on considère ensuite une seule fonction de transfert du type (1.90) pour chaque
noyau de Volterra, on peut définir un modèle pour le système non linéaire, inspiré du
modèle particulier de Wiener.
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Par exemple, le modèle considéré pour le noyau d’ordre i serait représenté sur la figure
1.18.
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Fig. 1.18 - Noyau de Volterra d’ordre i modélisé par un produit de fonctions de transfert

Dans ce nouveau modèle, aucun paramètre n’est fixé au départ par l’utilisateur. Un
algorithme de programmation non linéaire permettra l’évaluation de chacun des gains et
des pôles de chacune des fonctions de transfert modélisant un noyau de Volterra.

Il s’agit maintenant d’essayer de généraliser cette forme de modèle afin de pouvoir
représenter le plus grand nombre possible de systèmes non linéaires.

1.4.4.3 Généralisation : utilisation des séries de Fliess

a) Introduction

Le modèle 1.18 présenté au paragraphe précédent peut être vu comme un cas par-
ticulier de modèle de Wiener, lui-même considéré comme cas particulier de modèle de
Volterra. Par contre, ce type de modèle répond bien à l’objectif d’identification globale
des paramètres que nous nous étions fixé afin que l’utilisateur n’ait pas décider lui-même
des valeurs de certains paramètres sans connaissance a priori sur le système non linéaire.

Un moyen de généraliser cette forme de modélisation des noyaux de Volterra sur des
fonctions de transfert est d’utiliser les séries génératrices non commutatives évoquées pré-
cédemment.

Nous avons vu qu’une méthode de résolution du système non linéaire (1.86) consiste
à utiliser la représentation temporelle de la série génératrice (1.49), développée en une
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somme de séries génératrices représentant chacune un terme de la série de Volterra.

Reprenons la série génératrice (1.49) associée au système non linéaire (1.86). Elle s’écrit
sous la forme :

g = h(x0) +
∑

υ>0

1∑

j0,...,jυ=0

Ljυ ...Lj1h(x0)zj0 ...zjυ−1
zjν

Afin de résoudre le système (1.86), il est possible de développer la série génératrice
(1.49) qui lui est associée en une somme de termes de la forme :

g =
∞∑

i=0

gi (1.91)

où gi regroupe tous les termes de la série g ayant exactement i occurrences en z1. Chaque
terme gi est lui-même une série génératrice qui représente le terme d’ordre i du développe-
ment en série de Volterra de la sortie y(t) du système non linéaire. On peut alors montrer
que tous les termes gi du développement admettent, dans le cas du système (1.86), une
représentation de la forme :

gi = (1 − ai0z0)
−pi0z1(1 − ai1z0)

−pi1z1...z1(1 − aiiz0)
−pii (1.92)

où ai0, ai1, ..., aii sont des nombres complexes et pi0, pi1, ..., pii sont des entiers naturels.

Notre objectif est de pouvoir modéliser chacun des noyaux de Volterra sous la forme
d’une somme de produits de réponses à des fonctions de transfert. Pour ce faire, nous
allons utiliser la représentation temporelle de chaque terme gi de la somme (1.91).

Considérons la série rationnelle

g1 = (1 − a0z0)
−1z1(1 − a1z0)

−1 (1.93)

qui peut se développer sous la forme

g1 =
∞∑

i=0

∞∑

j=0

ai0a
j
1z
i
0z1z

i
0 (1.94)

L’expression zi0z1z
i
0 peut être développée en explicitant les opérateurs z0 et z1 (1.51) :

zi0z1z
i
0 ⇔

∫ t

0

(dτ0)
i

∫ t

0

u(τ1)dτ1

∫ t

0

(dτ0)
j (1.95)

Cette intégrale itérée est égale à

∫ t

0

(t− τ1)
iτ j1

i!j!
u(τ1)dτ1 (1.96)

Par conséquent, la série rationnelle g1 est la représentation symbolique de
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∞∑

i=0

∞∑

j=0

ai0a
j
1

∫ t

0

(t− τ1)
iτ j1

i!j!
u(τ1)dτ1 (1.97)

Cette expression peut être vue comme le développement d’un produit de deux expo-
nentielles et peut donc être écrite sous la forme

∫ t

0

ea0(t−τ)ea1dτ (1.98)

Ce résultat peut être généralisé sans difficulté à tous les termes de la série génératrice g.

La représentation temporelle générale de chaque terme gi est la suivante :

∫ t

0

∫ τ2

0

...

∫ τi

0

fp0a0
(t− τi)...f

pi−1

ai−1
(τ2 − τ1)f

pi
ai

(τ1)
i∏

j=1

u(τj)dτj (1.99)

où les fonctions fpa (t) s’expriment de la manière suivante :

fpa (t) =

(
p−1∑

j=0

Cj
p−1

j!
ajtj

)
eat (1.100)

b) Séparation de l’intégrale multiple

Afin de modéliser le noyau de Volterra d’ordre n sous la forme d’une somme de pro-
duits de réponses de fonctions de transfert, il est nécessaire de séparer l’intégrale multiple
(1.99), que nous noterons yn(t), en une somme de produits d’intégrales de convolution
simples.

Théorème 1.3 Séparation de l’intégrale multiple yn(t) en une somme de produits d’in-
tégrales simples yn,r,i(t)

L’intégrale multiple (1.99) où les fonctions fpa (t) ont pour expression (1.100) peut être
réécrite sous la forme :

yn(t) =

∫ t

0

∫ τ2

0

...

∫ τn

0

D0D1...Dn−1e
(a0−a1)(t−τn)e(a1−a2)(t−τn−1)...ean−1(t−τ1)

n∏

i=1

u(τi)dτi

(1.101)
où chaque terme Di est fonction de t, τi, ai et pi (i = 1, ..., n).

Cette intégrale multiple peut se décomposer en une somme de Pn = p0

n−1∏
i=1

pi(pi+1)
2

intégrales multiples yn,r(t) de la forme :
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1.4. Détermination et modélisation des noyaux de Volterra

yn,r(t) =
∫ t
0

∫ τ2
0
...
∫ τn

0
αijk

∏n

i=1(t− τi)
qn,i,r

e(a0−a1)(t−τn)+(a1−a2)(t−τn−1)+...+an−1(t−τ1)
∏n

i=1 u(τi)dτi
(1.102)

Chacune de ces Pn intégrales multiples yn,r(t) est séparable en un produit de n inté-
grales simples yn,r,i(t) de la forme suivante :

yn,r,i(t) =

{ ∫ t
0
αn,i(t− τ)qn,n−i,re(ai−ai+1)(t−τ)u(τ)dτ, si 0 ≤ i ≤ n− 2∫ t

0
αn,i(t− τ)qn,n−i,reai(t−τ)u(τ)dτ, si i = n− 1

(1.103)

où les termes αn,i et qn,i,r sont des constantes réelles qui dépendent des termes pi et ai de
chaque fonction (1.100) de l’intégrale multiple (1.99).

Preuve : voir annexe.

Chacune des intégrales simples yn,r,i(t) est une réponse monodimensionnelle à l’entrée
u(t). Dans les conditions de stabilité classiques (ai−ai+1 ≥ 0 et ai ≥ 0), on peut appliquer
la transformée de Laplace à l’expression (1.103), et on obtient le résultat suivant :

Yn,r,i(s) =

{
αn,i

(s−(ai−ai+1))qn,n−i,r+1U(s) si 0 ≤ i ≤ n− 2 et 0 ≤ j ≤ pi − 1
αn,i

(s−ai)
qn,n−i,r+1U(s) si i = n− 1 et 0 ≤ j ≤ pi − 1

(1.104)

On peut donc utiliser la représentation par blocs pour dessiner le système non linéaire
ainsi modélisé.

c) Cas particulier : n = 3

Si l’on considère le cas particulier de la modélisation du noyau de Volterra d’ordre
3 sous la forme d’une somme de produits de fonctions de transfert, on doit effectuer la
séparation d’une intégrale multiple y3(t) d’ordre 3 en une somme de produits d’intégrales
simples y3,r,i(t).

L’intégrale multiple y3(t) où les fonctions fpa (t) ont pour expression (1.100) peut être
réécrite sous la forme :

y3(t) =

∫ t

0

∫ τ2

0

∫ τ3

0

D0D1D2e
(a0−a1)(t−τ3)e(a1−a2)(t−τ2)ea2(t−τ1)

3∏

i=1

u(τi)dτi (1.105)

où chaque terme Di est fonction de t, τi, ai et pi (i = 1, ..., 3).
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On peut ensuite séparer cette intégrale multiple en une somme de P3 = p0

2∏
i=1

pi(pi+1)
2

intégrales multiples y3,r(t) de la forme :

y3,r(t) =
∫ t
0
α3,0(t− τ3)

q3,3,re(a0−a1)(t−τ3)u(τ3)dτ3
∫ t

0
α3,1(t− τ2)

q3,2,re(a1−a2)(t−τ2)u(τ2)dτ2∫ t
0
α3,2(t− τ1)

q3,1,rea2(t−τ1)u(τ1)dτ1
(1.106)

Chacune de ces P3 intégrales multiples y3,r(t) est séparable en un produit de 3 intégrales
simples y3,r,i(t) de la forme suivante :

y3,r,i(t) =

{ ∫ t
0
α3,i(t− τ)q3,3−i,re(ai−ai+1)(t−τ)u(τ)dτ, si 0 ≤ i ≤ 1∫ t

0
α3,i(t− τ)q3,3−i,reai(t−τ)u(τ)dτ, si i = 2

(1.107)

où les termes α3,i et q3,i,r sont des constantes réelles qui dépendent des termes pi et ai de
chaque fonction (1.100) de l’intégrale multiple y3(t).

Preuve : voir annexe.

Chacune des intégrales simples y3,r,i(t) est une réponse monodimensionnelle à l’entrée
u(t). Dans les conditions de stabilité classiques (ai−ai+1 ≥ 0 et ai ≥ 0), on peut appliquer
la transformée de Laplace à l’expression (1.107), ce qui amène au résultat suivant :

Y3,r,i(s) =

{
α3,i

(s−(ai−ai+1)q3,3−i,r+1U(s) si 0 ≤ i ≤ 1
α3,i

(s−ai)
q3,3−i,r+1U(s) si i = 2

(1.108)

d) Représentation schématique pour n = 3

Dans le cas où n = 3, le modèle obtenu pour le noyau de Volterra d’ordre 3 avec un
ensemble de P3 = 18 schémas blocs interconnectés est représenté sur la figure 1.19.
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Fig. 1.19 - Modèle du noyau d’ordre 3

La structure de chaque schéma-bloc H3,r est relativement simple : il ne s’agit que de
mettre en parallèle 3 blocs représentant chacun une fonction de transfert d’ordre plus ou
moins élevé (figure 1.20).

±²³́ µ¶±²·̧́
∏
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α

+− −
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α

+− −
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α

+−

µ¶¶ÚÛÜ·ÝÞ

µ¶¶ß±²·̧́

µ¶¶µ±²·̧́

Fig. 1.20 - Structure d’un schéma-bloc

Nous avons adopté ici la notation a3,i au lieu de ai pour les pôles des fonctions afin de
différencier les pôles considérés pour chaque noyau de Volterra modélisé.

Nous verrons que dans le cas général, le noyau d’ordre n peut être modélisé par un
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ensemble interconnecté de Pn schémas blocs. Chacun de ces schémas-blocs mettra en pa-
rallèle n blocs représentant chacun une fonction de transfert d’ordre plus ou moins élevé.

La complexité du modèle vient du nombre de schémas-blocs nécessaires à la modélisa-
tion d’un noyau de Volterra. Dans le cas où n = 3, 18 schémas-blocs de structure identique
(mais dont la valeur des paramètres est différente) sont nécessaires.

e) Représentation schématique. Cas général

Dans le cas général, on peut représenter le modèle obtenu pour le noyau de Volterra
d’ordre n par un ensemble de Pn schémas blocs interconnectés (figure 1.21). La valeur
de Pn, et donc le nombre de schémas-blocs nécessaires, dépend bien sûr des valeurs des
termes pi, i = 0, ...n− 1.

àáâã àáäåã
∑

æçèéäêë

æàáäìåã

æàáíäîåã

ï

ð ï

ïï

ï

æçàáäñò

æàáäìñò

æèéóäîôõ

Fig. 1.21 - Modèle du noyau d’ordre n

Bien que sa représentation schématique paraisse lourde, la structure de chaque schéma-
bloc Hn,r est pourtant simple : il ne s’agit que de mettre en parallèle n blocs représentant
chacun une fonction de transfert d’ordre plus ou moins élevé (figure 1.22).
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Fig. 1.22 - Structure d’un schéma-bloc

Nous avons également adopté ici la notation an,i au lieu de ai pour différencier les
pôles des fonctions du modèle du noyau de Volterra d’ordre n.

1.4.4.4 Identification et discussion

a) Introduction

Les noyaux de Volterra sont modélisés par des sommes de produits de réponses au
signal d’entrée u(t). La modélisation de la série de Volterra utilisée pour représenter le
système non linéaire se ramène donc à un problème d’identification des paramètres du
modèle.

L’utilisation d’une série de Volterra pour modéliser un système non linéaire suppose
que l’on puisse identifier les termes de la série à partir d’un signal d’entrée u(t) quelconque
mais suffisamment riche pour pouvoir sensibiliser l’ensemble des paramètres. Dans le cas
du système non linéaire (1.86), l’utilisation d’une séquence pseudo aléatoire bornée en
amplitude (figure 1.11(a)) se révèle être un moyen idéal pour effectuer une identification
globale des paramètres de tous les termes du modèle de Volterra.

Ce type d’excitation comporte un nombre suffisamment important de variations d’am-
plitude pour sensibiliser tous les termes de la série de Volterra.

Un avantage du modèle de Volterra proposé est son faible nombre de paramètres. On
peut voir sur les figures 1.21 et 1.22 que le modèle du noyau d’ordre n comprend seulement
n+ 1 paramètres : les n termes an,0, ..., an,n−1 des fonctions et le nombre pn de termes de

53
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chaque développement Dn (qui permet de calculer le nombre Pn de ”blocs”). Si ce nombre
pn est fixé dès le départ pour que la structure du modèle soit adaptée au système non
linéaire considéré, le modèle de Volterra tronqué à ses n premiers termes comprend alors
n(n+1)

2
paramètres.

Considérons à nouveau l’exemple académique d’un système non linéaire quadratique
de représentation d’état suivante :

{ .
x(t) = −x(t) − x2(t) + u(t)
y(t) = x(t)

(1.109)

Rappelons que la réponse d’un tel système au signal d’entrée défini par la figure 1.11(a)
est donnée par la figure 1.23.

0 50 100 150 200 250 300 350 400
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Fig. 1.23 - Réponse du système non linéaire

La série de Volterra est tronquée à ses deux premiers termes. Le premier noyau est
modélisé par :

h1(t) =

∫ t

0

α1,0(t− τ)ea1,0(t−τ)u(τ)dτ (1.110)

et sa réponse représentée sur la figure 1.24
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Fig. 1.24 - Modélisation du premier noyau

Le terme p0 est fixé à 1. Par conséquent, le nombre P1 de termes de la somme (définie
dans l’annexe) est égal à 1. L’indice r ne prend que la valeur 1 et donc q1,1,r = 1.

Pour le deuxième noyau, on choisit de fixer p0 = 1 et p1 = 2. Le nombre P2 de termes
de la somme est égal à 3. L’indice r prend donc les valeurs 1 à 3. Le deuxième noyau est
ainsi modélisé par une somme de P2 = 3 blocs dont la forme est représentée sur la figure
(1.25) avec r = 1, ..., P2 = 3.
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Fig. 1.25 - Modélisation du deuxième noyau

Le modèle de Volterra global est constitué de la somme du modèle du premier noyau et
du modèle du deuxième noyau. Les paramètres du modèle global sont ici les pôles a1,0 pour
le bloc unique du premier noyau, a2,0 et a2,1 dans chacun des blocs du deuxième noyau.
Les gains αi,j (i = 1, 2 et j = 1, ..., i− 1) des fonctions ne sont pas considérés comme des
paramètres indépendants car les calculs présentés dans les sections précédentes montrent
qu’ils dépendent des pôles ai,j (i = 1, 2 et j = 1, ..., i− 1) et uniquement de ces pôles. On
notera la parcimonie du modèle global qui, malgré sa complexité, est entièrement carac-
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térisé par 3 paramètres.

Dans notre cas, le modèle de Volterra global n’est pas linéaire par rapport aux pa-
ramètres. Il est donc impossible d’utiliser un algorithme d’identification utilisant la mé-
thode des moindres carrés. La solution adoptée ici est l’utilisation d’un algorithme de
programmation non linéaire de type Levenberg-Marquardt [Marquardt, 1963], qui réalise
un compromis entre la stabilité de la méthode du gradient et la rapidité de la méthode
de Gauss-Newton.

b) Principe de l’identification paramétrique

Un algorithme d’identification non linéaire est basé sur une recherche itérative de
l’optimum paramétrique. Si l’on appelle θ le vecteur de paramètres à identifier, l’estimée
θ̂ de ce vecteur sera calculée itérativement. A l’itération i + 1, l’estimée, notée θ̂i+1, est
donnée par :

θ̂i+1 = θ̂i + αfi (1.111)

où fi est une direction de recherche calculée à partir de l’information sur le critère qua-
dratique J(θ) obtenue à l’itération i :

J(θ) = (y(θ) − ŷ(θ̂i))
T (y(θ) − ŷ(θ̂i)) (1.112)

Le terme α est une constante positive destinée à assurer la convergence de l’algorithme.
Cet incrément αfi est différent suivant les méthodes utilisées. La méthode du gradient est
basée sur le développement de la dérivée première du critère J(θ) :

θ̂i+1 = θ̂i − λ
∂J(θ)

∂θ

∣∣∣∣
θ=θ̂i

(1.113)

Le terme ∂J(θ)
∂θ

est appelé gradient du critère. La constante λ assure la stabilité de
l’algorithme.

Partant du même principe que la méthode du gradient, la méthode de Newton déve-
loppe le critère jusqu’au deuxième ordre et fait intervenir le gradient ∂J(θ)

∂θ
et le hessien

∂2J(θ)
∂θ∂θT . L’algorithme de Newton s’écrit :

θ̂i+1 = θ̂i −
[
∂2J(θ)

∂θ∂θT

∣∣∣∣
θ=θ̂i

]−1 [
∂J(θ)

∂θ

∣∣∣∣
θ=θ̂i

]
(1.114)

La méthode du gradient permet une convergence lente mais stable vers l’optimum
paramétrique tandis que la méthode de Newton converge rapidement au détriment de la
stabilité. La méthode dite de Levenberg-Marquardt permet de profiter des avantages des
deux algorithmes précédents par un compromis entre rapidité de convergence et stabilité.
L’algorithme de Levenberg-Marquardt est défini de la manière suivante :
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θ̂i+1 = θ̂i −
[
λiI +

∂2J(θ)

∂θ∂θT

∣∣∣∣
θ=θ̂i

]−1 [
∂J(θ)

∂θ

∣∣∣∣
θ=θ̂i

]
(1.115)

Le paramètre λi est un paramètre d’ajustement. étant donné que l’on cherche à mini-
miser le critère J(θ), deux cas peuvent se présenter. Si J(θ̂i+1) < J(θ̂i) alors l’algorithme
converge et on doit diminuer le terme λi+1 par rapport au terme λi afin de rendre le hessien
prépondérant et de tendre vers l’algorithme de Newton, qui convergera plus rapidement.
Mais si J(θ̂i) < J(θ̂i+1), l’algorithme ne converge pas et l’on doit augmenter le terme λi+1

par rapport au terme λi afin de tendre vers l’algorithme du gradient et d’assurer ainsi la
stabilité. On augmente la valeur du terme λi+1 jusqu’au retour de la convergence avant
de passer à l’itération suivante.

Ces algorithmes nécessitent le calcul du gradient, effectué de la manière suivante :

∂J(θ)

∂θ
= −2σT (θ)ε(θ) (1.116)

où ε(θ) = y(θ)− ŷ(θ̂i) est l’erreur et σ(θ) = ∂ŷ(θ̂)
∂θ

est le vecteur des fonctions de sensibilité
paramétrique.

Le hessien est très souvent approché par l’expression suivante :

∂2J(θ)

∂θ∂θT
' 2σ(θ)σT (θ) (1.117)

L’algorithme de Levenberg-Marquardt doit être initialisé en donnant une valeur de dé-
part θ0 aux paramètres du vecteur θ. L’inconvénient majeur de cette méthode est qu’elle
ne garantit pas la convergence globale des paramètres vers l’optimum. En effet, le pro-
blème peut admettre un certain nombre d’optima locaux et, selon la valeur initiale des
paramètres, l’algorithme pourra converger vers un minimum local. Certaines méthodes
ont été développées pour assurer la convergence de l’algorithme, comme l’utilisation d’al-
gorithmes génétiques afin de calculer des valeurs paramétriques qui assurent une valeur
du critère proche de l’optimum global. On peut alors utiliser ces valeurs paramétriques
obtenues pour initialiser l’algorithme de Levenberg-Marquardt et être certain qu’il va
converger vers l’optimum global.

c) Discussion

Reprenons l’exemple du système non linéaire (1.109). Le modèle de Volterra est tronqué
à ses deux premiers noyaux et on initialise les paramètres à la valeur −1. Les fichiers de
mesure du signal d’entrée u(t) et de sortie y(t) comportent 40000 points. La période
d’échantillonnage est égale à 0.01 s. Après 100 itérations, les valeurs des 3 paramètres
obtenues sont :
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a1,0 = −1.0635
a2,0 = −1.0097
a2,1 = −2.5121

(1.118)

et le critère quadratique est J = 0.1104.

La figure 1.26(a) compare la sortie du système non linéaire (1.109) et la sortie du
modèle de Volterra pour ces 3 valeurs paramétriques.
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(a) Sortie du système non linéaire (ligne conti-
nue) et du modèle de Volterra (ligne pointillée)
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(b) Evolution du paramètre a1,0 (courbe conti-
nue), a2,0 (courbe en pointillés longs) et a2,1
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(c) Erreur quadratique

Fig. 1.26 - Résultats de modélisation et d’identification paramétrique

On constate une bonne adéquation entre les deux courbes de la figure 1.26(a).

La figure 1.26(b) représente l’évolution des paramètres en fonction du nombre d’itéra-
tions.

On s’aperçoit que la valeur du premier paramètre a1,0 converge bien mais qu’on ne
peut rien affirmer pour les valeurs des 2 autres paramètres. Par conséquent, malgré le
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fait que les deux courbes de la figure 1.26(a) soient très proches l’une de l’autre, rien ne
garantit que l’algorithme de Levenberg-Marquardt nous ait fourni les valeurs optimales
des paramètres. En effet, un changement d’initialisation des paramètres conduit à d’autres
valeurs du critère J . Si l’on initialise les paramètres à la valeur −2, on obtient J = 0.4446 ;
si l’on initialise les paramètres à la valeur −10, on obtient J = 1.0521. Ces initialisations
conduisent donc à des minima locaux et les modèles ainsi obtenus fournissent donc une
réponse au signal d’entrée u(t) plus ou moins satisfaisante. On peut donc se rapprocher de
l’optimum global suivant l’initialisation paramétrique mais seule une démarche empirique
permet d’obtenir (ou pas) une initialisation paramétrique correcte.

Le plus gros avantage du modèle de Volterra proposé est son faible nombre de para-
mètres. Cette parcimonie entrâıne malgré tout une complexité importante du modèle de
Volterra, ce qui peut rendre délicate la procédure d’identification des paramètres.

D’autres contraintes doivent être considérées : d’une part, les termes ai et ai − ai+1,
i = 1, ..., n dans les fonctions qui modélisent le noyau d’ordre n (figure 1.22) doivent
respecter les conditions de stabilité :

{
an,i − an,i+1 < 0, i = 0, ..., n− 2
an,i < 0, i = n− 1

(1.119)

D’autre part, les valeurs des gains αn,i de chaque fonction dépendent des valeurs des
pôles an,i et sont donc ”fixées” par les valeurs des pôles obtenues lors de la procédure
d’identification. Dans la plupart des cas (comme dans le cas que nous venons de voir), les
contraintes sur les valeurs des pôles se répercutent sur les valeurs des gains et conduisent à
des minima locaux du critère. Cette convergence vers des minima locaux est également due
à l’initialisation paramétrique. Ainsi, malgré une parcimonie paramétrique intéressante,
on n’obtient le plus souvent que des solutions sous-optimales du problème non linéaire.

1.4.5 Modèle simplifié des noyaux de Volterra sur fonctions de
transfert

1.4.5.1 Introduction

Bien que parcimonieux, le modèle de Volterra inspiré des séries de Fliess proposé pré-
cédemment est assujetti à un certain nombre de contraintes qui peuvent conduire à des
solutions inacceptables du problème non linéaire. Si l’on considère des applications pra-
tiques, la complexité du modèle et les contraintes imposées sur ses paramètres peuvent se
révéler autant d’inconvénients qui prennent le pas sur sa parcimonie. Cependant, toute
l’étude effectuée montre bien que les séries de Volterra peuvent être développées sur des
fonctions de transfert.

Nous allons donc utiliser ce résultat pour concevoir un autre modèle plus flexible
[Bibes et al., 2003a] : il sera soumis à moins de contraintes et disposera de davantage
de degrés de liberté dans ses paramètres. Le but est également de conserver une certaine
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parcimonie du modèle de Volterra précédent afin de satisfaire au mieux l’objectif de départ.

1.4.5.2 Résultat préliminaire

Considérons une famille de fonctions ψj(t), j = 1, ..., k unidimensionnelles linéaires.
La réponse yψj

(t) de la fonction ψj(t) au signal d’entrée u(t) est donnée par l’équation
suivante :

yψj
(t) =

∫ ∞

0

ψj(τ)u(t− τ)dτ (1.120)

Soit yi(t) le produit de toutes les réponses yψj
(t) :

yi(t) =
i∏

j=1

yψj
(t) (1.121)

On développe cette expression :

yi(t) =
i∏

j=1

∫ ∞

0

ψj(τj)u(t− τj)dτj (1.122)

Si les variables τj sont indépendantes, on peut transformer ce produit d’intégrales
simples en une intégrale multiple :

yi(t) =

∫ ∞

0

...

∫ ∞

0

i∏

j=1

ψj(τj)u(t− τj)dτj (1.123)

Si l’on effectue alors l’analogie avec l’expression (1.15), on peut poser :

hi(τ1, ..., τi) =
i∏

j=1

ψj(τj) (1.124)

Cela revient à dire que sous certaines conditions, une fonction multidimensionnelle
hi(τ1, ..., τi) peut être représentée par un produit de fonctions unidimensionnelles ψj(τj).

L’expression (1.123) peut alors être réécrite sous la forme :

yi(t) =

∫ ∞

0

...

∫ ∞

0

hi(τ1, ..., τi)
i∏

j=1

u(t− τj)dτj (1.125)

Nous allons utiliser ce résultat afin de simplifier le modèle de Volterra développé sur
fonctions de transfert.
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1.4.5.3 Modèle de Volterra simplifié sur fonctions de transfert

Nous venons de voir que le noyau de Volterra hi(τ1, ..., τi) d’ordre i peut être repré-
senté par un produit de i fonctions unidimensionnelles ψj(τj). L’idée générale est donc
de représenter chaque noyau de Volterra du modèle par un tel produit. A ce point et
sans autre renseignement, toute la difficulté réside dans le choix de la forme des fonctions
unidimensionnelles ψj(τj).

Cependant, nous disposons d’un modèle de départ, défini dans la section précédente.
Nous avons vu que le noyau de Volterra d’ordre n peut être modélisé par une somme de
Pn produits de n intégrales simples de la forme :

yn,r,i(t) =

{ ∫ t
0
αn,i(t− τ)qn,n−i,re(ai−ai+1)(t−τ)u(τ)dτ, si 0 ≤ i ≤ n− 2∫ t

0
αn,i(t− τ)qn,n−i,reai(t−τ)u(τ)dτ, si i = n− 1

(1.126)

Dans cette forme de modèle, la constante αn,i est dépendante de la valeur de la
constante ai et la constante qn,n−i,r dépend des ordres pi de développement des fonctions :

{
0 ≤ qn,1,r ≤ pn−1 − 1
0 ≤ qn,i,r ≤ (pn−i − 1)(pn−i+1 − 1) pour i = 2, ..., n

(1.127)

Nous avons vu que ce modèle est soumis à des contraintes : les différences ai − ai+1

doivent obéir à la condition de stabilité et les valeurs des gains αn,i sont fixées par les
valeurs des pôles ai.

Nous proposons donc de modifier le modèle (1.126) précédemment présenté de telle
manière qu’il soit à la fois plus ”libre” (moins soumis à des contraintes paramétriques) et
plus facile à manipuler (en particulier à identifier), tout en gardant une relative parcimo-
nie paramétrique.

La nouvelle forme de modélisation du noyau de Volterra d’ordre n que nous présentons
est le produit de n intégrales simples de la forme :

ỹi,n(t) =

∫ t

0

pi,n−1∑

k=0

γk,i,n(t− τ)kean,i(t−τ)u(τ)dτ, pour 1 ≤ i ≤ n (1.128)

où les termes γk,i,n sont des constantes (indépendantes des termes an,i). Le terme pi,n est
également une constante.

Le noyau de Volterra d’ordre n est donc modélisé par l’expression :

yn(t) =
∏n

i=1 ỹi,n(t)

=
∏n

i=1

∫ t
0

∑pi,n−1
k=0 γk,i,n(t− τ)kean,i(t−τ)u(τ)dτ

(1.129)

Si l’on compare les expressions (1.126) et (1.128), on remarque bien évidemment cer-
taines similitudes mais également des différences, introduites dans un but bien précis.
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Tout d’abord, il ne faut pas perdre de vue que l’on cherche à améliorer la flexibilité
du modèle (1.126). Les termes αn,i de chaque dénominateur des fonctions de transfert
utilisées dans ce modèle dépendent des termes ai. Le nombre total de paramètres est donc
restreint car les termes αn,i, qui ne sont pas considérés comme des paramètres du modèle,
ne sont pas identifiés indépendamment des paramètres ai. Un moyen d’améliorer la flexi-
bilité du modèle global est de transformer ces termes αn,i en véritables paramètres γk,i,n
qui seront identifiés indépendamment des paramètres ai. Ces paramètres se rajoutent aux
paramètres an,i. On peut croire que cela tend à diminuer la parcimonie du modèle et
augmenter la difficulté d’identification paramétrique : ces deux problèmes seront discutés
par la suite.

La seconde modification est la disparition des différences de pôles ai − ai+1 au profit
d’un seul pôle an,i pour chaque fonction considérée. Cette modification permet de libérer le
nouveau modèle de Volterra d’une des contraintes principales du précédent : la condition
de stabilité an,i < 0 ne s’applique plus qu’aux seuls pôles des fonctions de transfert.

Enfin, l’introduction d’une somme dont l’indice k porte sur l’exposant du terme t− τ
ne modifie que formellement l’intégrale simple (1.126) : en effet, la valeur du terme k
dépend de la valeur du terme pi,n, tout comme la valeur des termes qn,i,r ne dépendait que
de la valeur des termes pn−i dans le modèle précédent. Les valeurs des termes pn−i (pour
le premier modèle) et pi,n (pour le deuxième modèle) sont données par l’utilisateur afin
de fixer la structure du modèle de Volterra dès le départ : ces termes indiquent l’ordre des
fonctions utilisées pour modéliser un noyau de Volterra.

Sous les conditions habituelles de stabilité, on peut appliquer la transformée de Laplace
à l’expression (1.128) et on obtient :

Ỹi,n(s) =

pi,n−1∑

k=0

γk,i,n
(s− an,i)k+1

U(s) (1.130)

Le nouveau modèle de Volterra proposé pour le noyau d’ordre n est représenté sché-
matiquement sur la figure 1.27.
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Fig. 1.27 - Représentation du noyau d’ordre n

On remarque les similitudes entre la modélisation du noyau de Volterra d’ordre n pro-
posée précédemment (figure 1.22) et cette forme de modélisation. Toutefois, il faut noter
que le modèle précédent du noyau de Volterra d’ordre n se compose d’une somme de Pn
schémas-blocs (figure 1.22) alors que le nouveau modèle du noyau de Volterra d’ordre n
présenté ici ne comporte que le seul schéma-bloc 1.27. La complexité du nouveau modèle
est ainsi fortement diminuée car chaque noyau de Volterra est modélisé par un seul pro-
duit de réponses de fonctions à l’entrée u(t) au lieu d’une somme de produits de réponses
à l’entrée u(t).

On introduit maintenant les notations simplificatrices suivantes :

di,n(t− τ) =

pi,n−1∑

k=0

γk,i,n(t− τ)kean,i(t−τ) (1.131)

Par calcul de la transformée de Laplace de cette expression, on obtient :

Din(an,i, pi,n) =

pi,n−1∑

k=0

γk,i,n
(s− an,i)k+1

(1.132)

Le modèle de Volterra global tronqué à l’ordre n représentant le système non linéaire
considéré est le suivant :
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y(t) =
n∑

j=1

yj(t) =
n∑

j=1

j∏

i=1

ỹi,j(t) =
n∑

j=1

j∏

i=1

∫ t

0

di,j(t− τ)u(τ)dτ (1.133)

On utilise les notations introduites pour schématiser le nouveau modèle de Volterra
tronqué à l’ordre n pour représenter un système non linéaire :

∏

∏

11 1,1 1,1( , )D a p

12 2,1 1,2( , )D a p

22 2,2 2,2( , )D a p

1 ,1 1,( , )n n nD a p

2 ,2 2,( , )n n nD a p

, ,( , )nn n n n nD a p

∑#

#

( )u t ( )y t

1( )y t

2 ( )y t

( )ny t

Fig. 1.28 - Modèle global développé sur des fonctions de transfert

1.4.5.4 Identification et discussion

Reprenons le cas du système non linéaire de représentation d’état :

{ .
x(t) = −x(t) − x2(t) + u(t)
y(t) = x(t)

(1.134)

Afin de comparer les deux structures de modèles de Volterra, nous allons reprendre
les mêmes signaux d’entrée u(t) et de sortie y(t) que ceux définis par les figures 1.11(a)
et 1.11(b).

La structure du modèle de Volterra est fixée de la même manière que précédemment, en
tronquant la série à ses deux premiers termes. Le modèle du premier noyau est développé
sur un seul terme (donc p1,1 = 1) :

D11(a1,1, p1,1) =
γ0,1,1

s− a1,1

(1.135)

Le deuxième noyau est modélisé par le produit de deux développements Dji, chacun
tronqué à ses deux premiers termes (p1,2 = 2 et p2,2 = 2) :
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D12(a2,1, p1,2) = γ0,2,1

s−a2,1
+ γ1,2,1

(s−a2,1)2

D22(a2,2, p2,2) = γ0,2,2

s−a2,2
+ γ1,2,2

(s−a2,2)2
(1.136)

Les paramètres de cette forme de modèle de Volterra sont donc au nombre de 8 : le
gain γ0,1,1 et le pôle a1,1 du modèle du premier noyau et les gains γ0,2,1, γ1,2,1, γ0,2,2 et γ1,2,2

ainsi que les pôles a2,1 et a2,2 du modèle du deuxième noyau.

Malgré ce nombre de paramètres plus important que celui du modèle précédent, l’ob-
jectif de parcimonie est relativement respecté. Nous verrons plus tard que l’on peut encore
diminuer ce nombre de paramètres en modifiant légèrement le modèle de Volterra présenté.

Le modèle de Volterra global n’est toujours pas linéaire par rapport aux paramètres.
La solution à nouveau adoptée ici est l’utilisation d’un algorithme d’identification non
linéaire de type Levenberg-Marquardt.

Les paramètres du modèle sont initialisés de la manière suivante :

a1,1 = −1; a2,1 = −1; a2,2 = −1
γ0,1,1 = 1; γ0,2,1 = 2; γ1,2,1 = 3; γ0,2,2 = 4; γ1,2,2 = 5

(1.137)

D’autres initialisations sont possibles mais on a vu que toutes ne mènent pas forcément
à l’optimum paramétrique. Nous allons voir que cette initialisation conduit à un résultat
tout à fait convenable.

Les fichiers de mesure du signal d’entrée u(t) et de sortie y(t) comportent 40000 points.
La période d’échantillonnage est égale à 0.01 s. Après 100 itérations, les valeurs des 8
paramètres sont :

a1,1 = −1.0841
a2,1 = −1.3270
a2,2 = −1.2682
γ0,1,1 = 1.0276
γ0,2,1 = 0.0020
γ1,2,1 = −0.2635
γ0,2,2 = 0.2499
γ1,2,2 = 4.7715

(1.138)

et le critère quadratique est J = 0.0432. En comparaison avec la valeur obtenue pour le
modèle de Volterra précédent (J = 0.1104), celle-ci est du même ordre de grandeur.

La figure 1.29(a) compare la sortie du système non linéaire (1.134) et la sortie du
modèle de Volterra pour ces 8 valeurs paramétriques. Les deux courbes sont quasiment
superposées.
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Fig. 1.29 - Résultats de modélisation et d’identification paramétrique

La figure 1.29(b) représente l’évolution des paramètres en fonction du nombre d’itéra-
tions.

Tous les paramètres ne convergent pas vers des valeurs stables. L’obtention de l’opti-
mum paramétrique n’est absolument pas garantie mais néanmoins, l’estimation donne un
résultat tout à fait satisfaisant.

1.4.5.5 Conclusion

Le modèle de Volterra développé sur fonctions de transfert est plus facilement iden-
tifiable et d’une précision tout à fait comparable à celle du modèle de Volterra inspiré
directement des séries de Fliess, malgré un nombre de paramètres plus important. La re-
lative souplesse de ce nouveau modèle compense donc la perte de parcimonie par rapport
au modèle précédent. Nous allons maintenant essayer de diminuer à nouveau ce nombre de
paramètres en introduisant un modèle de Volterra développé autour d’une valeur moyenne.
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1.5. Développement autour d’une composante continue

1.5 Développement autour d’une composante conti-

nue

1.5.1 Introduction

L’approche classique de représentation des systèmes non linéaires par les séries de
Volterra consiste à développer le modèle autour d’un point de fonctionnement particulier
relatif à chaque système non linéaire considéré. Dans le cas où les conditions initiales de
fonctionnement du système sont nulles, on se contente habituellement de considérer que
la composante continue est nulle et que les variations du signal d’entrée u(t) et de sortie
y(t) s’effectuent autour de cette valeur moyenne.

Nous avons vu que le premier noyau de Volterra modélise la partie linéaire du système
considéré. Dès que l’amplitude des signaux d’entrée et de sortie atteint une certaine va-
leur, le système commence à avoir un comportement non linéaire que le premier noyau
de Volterra seul ne peut modéliser. Il faut donc ajouter un second noyau de Volterra au
modèle pour tenir compte du comportement non linéaire du système. L’augmentation pro-
gressive de l’amplitude des signaux d’entrée et de sortie nécessite donc l’ajout progressif
de noyaux dans le modèle de Volterra pour tenir compte des non-linéarités introduites. Et
cela jusqu’au moment où les non-linéarités du système sont trop importantes pour être
convenablement modélisées par un nombre fini de noyaux de Volterra. On a alors atteint
les limites de cette forme de modélisation.

Nous venons de mettre l’accent sur un inconvénient du modèle classique de Volterra,
qui peut avoir des conséquences importantes sur le nombre de paramètres du modèle glo-
bal : si l’amplitude des signaux autour d’une valeur moyenne nulle devient importante, le
modèle de Volterra classique devra comporter un nombre important de noyaux afin de re-
présenter correctement les non-linéarités du système. Nous avons étudié plusieurs formes
de modélisation des noyaux de Volterra qui comportent chacune un certain nombre de
paramètres. Il va de soi que plus le nombre de noyaux de Volterra nécessaires est impor-
tant, plus le nombre de paramètres pour les modéliser va devenir important. On peut ainsi
aboutir à un modèle surparamétrisé qui pourra causer certaines difficultés dans l’identifi-
cation globale du vecteur des paramètres.

Nous proposons ici un moyen de pallier à ce problème : plutôt que de développer le
modèle de Volterra autour d’une valeur moyenne nulle, nous allons développer ce modèle
autour de la valeur moyenne u0 du signal d’entrée u(t) et ainsi séparer la partie statique
de la partie dynamique du modèle de Volterra. Seule la partie dynamique autour de la
composante continue sera identifiée. Ainsi, la structure du modèle de Volterra nécessaire
à une modélisation correcte du système non linéaire sera moins complexe et le nombre de
paramètres nécessaires pourra être diminué [Bibes et al., 2003b].

Remarquons que si l’on se contente d’ajouter la composante continue du signal de
sortie y(t) du système à la partie dynamique en sortie de notre modèle de Volterra, on ne
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reconstruit pas correctement le signal de sortie y(t) du système non linéaire. Cela parce
qu’on ne prend pas en compte les termes ”de couplage” (à savoir les termes comprenant à
la fois la partie statique et la partie dynamique du signal u(t)) pour reconstruire y(t). Il
ne suffit donc pas d’identifier la partie dynamique puis de lui rajouter la partie statique
pour reconstruire correctement un signal en sortie de modèle. D’où l’intérêt de développer
notre modèle de Volterra autour d’une composante continue non nulle du signal d’entrée
u(t).

1.5.2 Expression du modèle développé autour d’une composante
continue

On considère à nouveau le système non linéaire

{
ẋ(t) = f(x(t)) + u(t)g(x(t))
y(t) = h(x(t))

(1.139)

où x(t) ∈ R
n est le vecteur d’état, u(t) ∈ R le signal d’entrée et y(t) ∈ R le signal de

sortie. Les fonctions f , g et h sont des fonctions non linéaires de x(t).

On décompose le signal d’entrée u(t) de la manière suivante :

u(t) = u0 + ∆u(t) (1.140)

où u0 est un terme constant qui représente la partie statique du signal d’entrée et ∆u(t) est
un terme variant dans le temps qui représente la partie dynamique du signal d’entrée u(t).

La série de Volterra tronquée à l’ordre n représentant le système non linéaire (1.139)
a été définie de la manière suivante :

ŷ(t) =
n∑

i=1

∫ t

0

. . .

∫ t

0︸ ︷︷ ︸
i

hi (τ1, . . . , τi)
i∏

j=1

[u(t− τj)]dτj (1.141)

Si l’on applique la décomposition de l’entrée u(t) à ce modèle, on obtient :

ŷ(t) =
n∑

i=1

∫ t

0

. . .

∫ t

0︸ ︷︷ ︸
i

hi (τ1, . . . , τi)
i∏

j=1

[u0 + ∆u(t− τj)]dτj (1.142)

1.5.3 Bases de fonctions orthonormées

Proposition 1.3 : Le développement en série de Volterra de la sortie du système
(1.139) autour d’une composante continue u0 s’écrit, dans le cas où les noyaux de Volterra
sont eux-mêmes développés sur une base de fonctions orthonormées généralisée, sous la
forme :
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ŷ(t) =
n∑

i=1

(
Mi∑

ν1=1

...

νi−1∑

νi=1

ξν1...νi

[
ui0

i∏

j=1

φνj
(0) +

i∑

j=1

ui−j0 Ji,j(∆u(t))
]) (1.143)

où

Ji,j(∆u(t)) =

C
i−j
i∑
(
i−j∏

k=1

φνk
(0)

)(
j∏

l=1

Iνl
(∆u(t))

)
(1.144)

avec ∀ k ∈ [1, i− j], ∀ l ∈ [1, j] :

{
{νk} ∪ {νl} = {1, ..., i+ j}
{νk} ∩ {νl} = ∅ (1.145)

et où l’expression Iνl
(u(t)) est la réponse de la fonction orthonormée φνl

(t) à l’entrée
u(t) :

Iνl
(u(t)) =

∫ t

0

φνl
(τ)u(t− τ)dτ (1.146)

Preuve : le développement du noyau de Volterra hi (τ1, . . . , τi) sur une base de fonctions
orthonormées {φν} s’écrit :

ĥi(τ1, ..., τi) =

Mi∑

ν1=0

...

νi−1∑

νi=0

ξν1...νi

i∏

j=1

φνj
(τj) (1.147)

Par conséquent, l’expression (1.142) peut être développée de la manière suivante :

ŷ(t) =
∑n

i=1

(∑Mi

ν1=1 ...
∑νi−1

νi=1 ξν1...νi[∏i

j=1

∫ t
0
φνj

(τj)[u0 + ∆u(t− τj)]dτj)
]) (1.148)

On développe le calcul de l’expression entre crochets :

∏i

j=1

∫ t
0
φνj

(τj)[u0 + ∆u(t− τj)]dτj)

=
∏i

j=1

(
u0

∫ t
0
φνj

(τj)dτj +
∫ t
0
φνj

(τj)∆u(t− τj)dτj

) (1.149)

Le premier terme
∫ t
0
φνj

(τj)dτj correspond à la réponse d’une fonction orthonormée
φνj

à un signal d’entrée u(t) = 1, t ≥ 0. On peut donc considérer ce terme comme un gain
et l’écrire φνj

(0).

Le deuxième terme
∫ t
0
φνj

(τj)∆u(t− τj)dτj correspond à la réponse d’une fonction or-
thonormée φνj

à la partie dynamique de l’entrée. On peut donc noter ce terme Iνj
(∆u(t)),

conformément à la notation introduite précédemment.
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Le calcul devient :

∏i

j=1

∫ t
0
φνj

(τj)[u0 + ∆u(t− τj)]dτj)

=
∏i

j=1

(
u0φνj

(0) + Iνj
(∆u(t))

) (1.150)

On pose maintenant

{ ∫ t
0
φνj

(τj)dτj = φνj
(0) = aj∫ t

0
φνj

(τj)∆u(t− τj)dτj = Iνj
(∆u(t)) = bj

(1.151)

de manière à pouvoir appliquer la généralisation de la loi du binôme de Newton :

∏i

j=1(u0aj + bj) = ui0
∏i

j=1 aj+∑i

j=1 u
i−j
0

[∑C
i−j
i

(∏i−j
k1=1 ak1

)(∏j

k2=1 bk2

)] (1.152)

avec {k1} ∪ {k2} = {1, ..., k + j} et {k1} ∩ {k2} = ∅.

Cette généralisation nous permet donc d’obtenir, en remplaçant les termes aj et bj par
leur expression, le résultat que nous souhaitions démontrer :

ŷ(t) =
∑N

i=1

(∑Mi

ν1=1 ...
∑νi−1

νi=1 ξν1...νi[
ui0
∏i

j=1 φνj
(0) +

∑i

j=1 u
i−j
0 Ji,j(∆u(t))

]) (1.153)

�

1.5.4 Fonctions de transfert

Proposition 1.4 : Le développement en série de Volterra de la sortie du système
(1.139) autour d’une composante continue u0 s’écrit, dans le cas où les noyaux de Volterra
sont eux-mêmes développés sur des fonctions de transfert, sous la forme :

ŷ(t) =
n∑

i=1

(
ui0

i∏

j=1

dj,i(0) +
i∑

j=1

ui−j0 Ki,j(∆u(t))

)
(1.154)

où

Ki,j(∆u(t)) =

C
i−j
i∑
(
i−j∏

k=1

dk,i(0)

)(
j∏

l=1

Il,i(∆u(t))
)

(1.155)

avec ∀ k ∈ [1, i− j], ∀ l ∈ [1, j]

{
{k} ∪ {l} = {1, ..., i+ j}
{k} ∩ {l} = ∅ (1.156)

et où l’expression Il,i(u(t)) est la réponse du développement dl,i à l’entrée u(t) :

Il,i(u(t)) =

∫ t

0

dl,i(τ)u(t− τ)dτ (1.157)
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Preuve : en considérant le développement du noyau de Volterra hi (τ1, . . . , τi) sur des
fonctions de transfert (1.133), l’expression (1.142) peut être développée de la manière
suivante :

ŷ(t) =
n∑

i=1

∫ t

0

. . .

∫ t

0︸ ︷︷ ︸
i

i∏

j=1

dj,i(τj)
i∏

j=1

[u0 + ∆u(t− τj)]dτj (1.158)

où l’expression du terme dj,i est donnée par (1.131).

On développe ce calcul :

ŷ(t) =
n∑

i=1

∫ t

0

. . .

∫ t

0︸ ︷︷ ︸
i

i∏

j=1

dj,i(τj)
i∏

j=1

[u0 + ∆u(t− τj)]dτj (1.159)

Le premier terme
∫ t

0
dj,i(τj)dτj correspond à la réponse d’un développement dj,i de

fonctions de transfert à un signal d’entrée u(t) = 1, t ≥ 0. On peut donc considérer ce
terme comme un gain et l’écrire dj,i(0).

Le deuxième terme
∫ t
0
dj,i(τj)∆u(t − τj)dτj correspond à la réponse d’un développe-

ment dj,i à la partie dynamique de l’entrée. On peut noter ce terme Ij,i(∆u(t)).

Le calcul devient :

ŷ(t) =
n∑

i=1

i∏

j=1

[u0dj,i(0) + Ij,i(∆u(t))] (1.160)

On peut alors poser

{ ∫ t
0
dj,i(τj)dτj = dj,i(0) = aj∫ t

0
dj,i(τj)∆u(t− τj)dτj = Ij,i(∆u(t)) = bj

(1.161)

et appliquer la loi du binôme de Newton définie en (1.152) pour obtenir, en remplaçant
les termes aj et bj par leur expression, le modèle de Volterra sur fonctions de transfert et
développé autour de la composante continue de l’entrée :

ŷ(t) =
n∑

i=1

(
ui0

i∏

j=1

dj,i(0) +
i∑

j=1

ui−j0 Ki,j(∆u(t))

)
(1.162)

�

1.5.5 Identification du modèle sur fonctions de transfert et ap-
plication

Afin de comparer les performances du modèle défini en (1.133) et de ce même modèle
développé autour d’une composante continue (1.154), nous allons appliquer ce dernier
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modèle au système non linéaire de représentation d’état :

{ .
x(t) = −x(t) − x2(t) + u(t)
y(t) = x(t)

(1.163)

Tout comme le modèle défini en (1.133), le modèle développé autour d’une compo-
sante continue n’est pas linéaire par rapport aux paramètres. On utilise donc à nouveau
un algorithme d’identification non linéaire de type Levenberg-Marquardt.

On reprend les mêmes signaux d’entrée u(t) et de sortie y(t) que ceux définis par les
figures 1.11(a) et 1.11(b).

La structure du modèle de Volterra est fixée de la manière suivante : on tronque la
série à ses deux premiers termes. Le modèle du premier noyau est développé sur un seul
terme (donc p1,1 = 1) et le deuxième noyau est également développé sur un seul terme
(donc p1,2 = 1 et p2,2 = 1) :

D11(a1,1, p1,1) = γ0,1,1

s−a1,1

D12(a2,1, p1,2) = γ0,2,1

s−a2,1

D22(a2,2, p2,2) = γ0,2,2

s−a2,2

(1.164)

En comparaison avec le modèle de Volterra (1.133) développé sur des fonctions de
transfert, le nombre de paramètres de ce modèle est réduit de 8 à 6 : les pôles a1,1, a2,1 et
a2,2 ainsi que les gains γ0,1,1, γ0,2,1 et γ0,1,1.

Les paramètres du modèle sont initialisés de la manière suivante :

a1,1 = −1; a2,1 = −1; a2,2 = −1
γ0,1,1 = 1; γ0,2,1 = 1.1; γ0,2,2 = 1.2

(1.165)

Cette initialisation paramétrique nous permet d’atteindre une valeur acceptable des
paramètres, sans garantie qu’il s’agisse de l’optimum.

Le principe de cette méthode consiste à identifier uniquement la partie dynamique
du modèle. On n’utilise que les parties dynamiques des signaux d’entrée u(t) et y(t).
Pour cela, il suffit de retirer la valeur moyenne u0 = 0.2059 de u(t) et la valeur moyenne
y0 = 0.1692 de y(t). Cela revient à ramener ces signaux à une composante continue nulle.
Les signaux d’entrée et de sortie utilisés sont ceux des figures 1.30(a) et 1.30(b).
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Fig. 1.30 - Partie dynamique des signaux

Après 100 itérations, les valeurs des 6 paramètres obtenues sont :

a1,1 = −1.3070
a2,1 = −1.1917
a2,2 = −1.1917
γ0,1,1 = 0.9855
γ0,2,1 = −0.7806
γ0,2,2 = 0.8544

(1.166)

et le critère quadratique vaut J = 0.1114. En comparaison avec les valeurs obtenues pour
les modèles précédents, celui-ci est du même ordre de grandeur. On a donc obtenu les
mêmes performances avec 2 paramètres de moins que le modèle précédent.

Une fois la partie dynamique du système correctement identifiée, on utilise les valeurs
des paramètres et de la composante continue u0 du signal d’entrée u(t) pour reconstruire
la partie statique du modèle de Volterra global défini par (1.154).

La figure 1.31(a) illustre le cas d’une mauvaise reconstruction du signal de sortie ne
tenant pas compte des termes de couplage (à savoir les termes comprenant à la fois la
partie statique u0 et la partie dynamique ∆u(t) du signal u(t)).

La figure 1.31(b) compare la sortie du système non linéaire et la sortie du modèle de
Volterra correctement reconstruite pour les 6 valeurs paramétriques.
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Fig. 1.31 - Sortie du système non linéaire (ligne continue) et du modèle de Volterra (ligne poin-
tillée)
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(a) Sortie du système non linéaire (ligne conti-
nue) et du modèle de Volterra (ligne pointillée)
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(b) Evolution des paramètres ai,j (courbes
continues) et des gains γk,j,i (courbes poin-
tillées)

100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−5

(c) Erreur quadratique

Fig. 1.32 - Résultats de modélisation et d’identification paramétrique
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La figure 1.32(a) compare la sortie du système non linéaire (1.134) et la sortie du
modèle de Volterra pour ces 6 valeurs paramétriques. Les deux courbes sont quasiment
superposées.

La figure 1.32(b) représente l’évolution des paramètres en fonction du nombre d’itéra-
tions.

Dans ce cas aussi, tous les paramètres ne convergent pas vers des valeurs stables. L’ob-
tention de l’optimum paramétrique n’est pas garantie mais, malgré cela, les valeurs des
paramètres obtenues donnent un résultat tout à fait satisfaisant.

1.5.6 Conclusion

La séparation du signal d’entrée u(t) en une partie statique u0 et une partie dynamique
∆u(t) permet à l’utilisateur de diminuer la complexité et le nombre de paramètres du mo-
dèle de Volterra utilisé. La méthode proposée consiste à modéliser et identifier seulement
la partie dynamique du modèle de Volterra. On peut ensuite reconstruire le signal y(t)
complet en sortie du modèle de Volterra par l’ajout à la partie dynamique identifiée ∆y(t)
de la partie statique y0 et des termes ”de couplage” qui dépendent à la fois de la partie
statique et de la partie dynamique de l’entrée u(t).

Cette procédure permet donc d’utiliser un modèle de Volterra plus simple et plus
parcimonieux dans ses paramètres. Le fait de tronquer la série de Volterra à un nombre
moins important de termes implique un nombre de paramètres de modélisation des noyaux
moins important. On répond ainsi davantage à l’objectif de parcimonie paramétrique fixé
au début de cette étude.
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1.6 Comparaison des 4 modèles

Les courbes des figures 1.33 et 1.34 reprennent l’ensemble des résultats de modélisation
relatifs aux systèmes non linéaires quadratiques présentés dans ce chapitre.

La figure 1.33 reprend le cas de la modélisation des noyaux de Volterra par dévelop-
pement sur une base de fonctions généralisée. Le nombre total de paramètres du modèle
est égal à 14. Si l’on choisit correctement les pôles des fonctions de la base, le modèle
est suffisant pour représenter correctement le système non linéaire quadratique (critère
quadratique J = 0.022).
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(a) Modèle de Volterra développé sur base de
fonctions généralisées
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Fig. 1.33 - Résultats de modélisation sur bases de fonctions généralisée

Un des objectifs du chapitre est de réduire le nombre de paramètres du modèle tout
en conservant une précision satisfaisante du modèle. La figure globale 1.34 reprend les 3
formes de modélisation sur fonctions de transfert présentées dans le chapitre.

Le premier modèle développé sur fonctions de transfert (figure 1.34(a)) réduit consi-
dérablement le nombre de paramètres (égal à 3) et assure une bonne précision (critère
quadratique J = 0.1104). Cependant, la complexité de ce modèle rend difficile la procé-
dure d’identification paramétrique.
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(e) Modèle de Volterra développé autour d’une
composante continue
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Fig. 1.34 - Comparaison des résultats de modélisation sur fonctions de transfert

Le second modèle développé sur fonctions de transfert (figure 1.34(c)) est une simpli-
fication du premier. Le nombre total de paramètres augmente (il est égal à 8) mais reste
inférieur à celui du modèle développé sur une base de fonctions généralisée. La précision
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reste correcte (critère quadratique J = 0.0432).

Le troisième modèle développé autour d’une composante continue (figure 1.34(e)) est
introduit pour diminuer le nombre de paramètres du second. On passe ainsi de 8 para-
mètres à 6 et la précision reste correcte (critère quadratique J = 0.1114). Cette méthode
de modélisation peut également être appliquée aux autres modèles pour améliorer leur
parcimonie.
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1.7 Conclusion du chapitre

La modélisation de systèmes non linéaires est un domaine de recherche qui comporte
de nombreuses pistes encore inexplorées. Parmi les nombreuses possibilités de modélisa-
tion, nous avons opté pour la représentation du comportement d’un système non linéaire
par les séries de Volterra. Cet outil de modélisation permet en effet de modéliser le com-
portement d’une assez large variété de systèmes non linéaires et peut être vu comme une
généralisation de la relation de convolution, outil classique de modélisation des systèmes
linéaires.

Les noyaux de Volterra peuvent rarement être exprimés de manière analytique et l’on
doit avoir recours à leur modélisation. Nous avons évoqué un choix de modèles sur dif-
férentes bases de fonctions. L’utilisation de tels modèles montre toute la souplesse et
l’adaptabilité des modèles de Volterra à de nombreux systèmes non linéaires. Cependant,
l’absence de connaissance sur un système non linéaire ou la présence de non-linéarités
trop importantes font ressortir un inconvénient majeur de cette forme de modélisation :
l’augmentation du nombre de termes de la série de Volterra va de pair avec l’augmentation
du nombre de paramètres nécessaires à une modélisation correcte du système. Le nombre
total de paramètres peut ainsi varier du simple au double. Cette absence de parcimonie
rend le modèle de Volterra difficile à utiliser et engendre des problèmes d’identification.

Afin de pallier à cet inconvénient, nous avons proposé un modèle des noyaux de Vol-
terra développé sur fonctions de transfert. Cependant, la complexité de ce nouveau modèle
entrâıne également dans ce cas des difficultés d’identification. Nous avons donc envisagé
de simplifier le modèle développé sur fonctions de transfert et présenté une autre forme
de modèle sensiblement différente, moins complexe et plus flexible, tout en conservant
une parcimonie paramétrique meilleure que dans le cas du développement des noyaux de
Volterra sur bases de fonctions.

Afin d’améliorer à nouveau cette parcimonie, nous avons introduit une méthode qui
consiste à séparer la partie statique de la partie dynamique des signaux d’entrée et de sor-
tie utilisés pour l’identification des paramètres. L’identification paramétrique de la partie
dynamique seule permet de simplifier davantage le modèle de Volterra nécessaire et ainsi
de réduire le nombre de paramètres.

Cet ensemble de modélisations et d’améliorations permet d’obtenir un modèle de Vol-
terra suffisamment souple et parcimonieux. Nous allons donc ensuite pouvoir envisager
son inversion afin de reconstruire le signal d’entrée u(t) d’un système non linéaire à partir
de mesures du signal de sortie y(t) et de la connaissance de la structure et des paramètres
du modèle de Volterra utilisé pour représenter son comportement.
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Inversion d’un modèle de Volterra
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Chapitre 2. Inversion d’un modèle de Volterra

2.1 Introduction

La détermination d’une grandeur inconnue à partir de mesures est un problème qui
continue de se poser dans de nombreux domaines scientifiques (physique, chimie, biolo-
gie,...). Selon les cas, l’évaluation de la grandeur inconnue peut s’effectuer de manière
directe ou de manière indirecte. Les problèmes qui en découlent seront alors traités diffé-
remment.

Dans le cas d’une mesure directe, la précision avec laquelle sera déterminée la gran-
deur inconnue est avant tout un problème lié à la précision de l’instrumentation utilisée : il
s’agit de recueillir des mesures qui soient les plus précises et les plus informatives possible
afin de pouvoir quantifier la grandeur considérée dans les meilleures conditions possibles.

Dans le cas où la mesure ne peut pas s’effectuer directement, une solution est la mesure
d’une autre grandeur dont on sait qu’elle a un lien avec la grandeur inconnue à déterminer.
En plus d’une instrumentation précise nécessaire à la mesure de cette deuxième grandeur,
on doit également avoir une idée assez précise du lien qui unit les deux grandeurs, celle
que l’on mesure et celle que l’on veut déterminer. Ce lien peut être établi en utilisant les
lois physiques, chimiques ou mathématiques qui régissent le phénomène étudié (qui met en
jeu les grandeurs considérées). Dans la majeure partie des cas, on doit se contenter d’une
approximation plus ou moins satisfaisante du lien entre les deux grandeurs à cause d’un
manque de connaissance de l’ensemble des phénomènes physiques ou chimiques mis en jeu.

La détermination d’une grandeur inconnue à partir de la mesure d’une grandeur cor-
rélée et du lien qui unit ces deux grandeurs porte le nom de problème inverse.

Ce chapitre est constitué de trois grandes sections. La première section dresse un état
de l’art non exhaustif des problèmes inverses. Les deux sections suivantes décrivent l’ap-
port de ce mémoire quant aux techniques d’inversion du modèle de Volterra. La deuxième
section est consacrée à l’inversion du modèle de Volterra par régularisation de Tikhonov.
Une telle démarche a déjà été proposée par [Inglada, 2000] dans le cadre de la topographie
d’un milieu sous-marin. Différentes techniques d’inversion du modèle de Volterra ont été
présentées dans un cadre théorique rigoureux inspiré de l’approche de [Schetzen, 1980].
Cependant, ces techniques n’ont été ensuite appliquées qu’à un transfert linéaire, suffisant
pour correctement représenter les phénomènes physiques mis en jeu. La méthode d’in-
version du modèle de Volterra proposée dans ce mémoire sera appliquée à deux systèmes
chimiques aux non-linéarités avérées. La troisième section se démarque de l’approche pré-
cédente en introduisant deux techniques d’inversion du modèle de Volterra par retour
d’entrée reconstruite.
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2.2 Les problèmes inverses

2.2.1 Introduction

Dans le cadre général des sciences expérimentales, l’expérimentateur est souvent amené
à mesurer précisément une quantité donnée. Dans certains cas, cette quantité est direc-
tement accessible et mesurée par l’intermédiaire d’un simple capteur. On citera, dans
le domaine général de l’électricité, le cas de la tension ou de l’intensité d’un courant
électrique, mesurables facilement à l’aide d’un voltmètre ou d’un ampèremètre. Dans le
domaine général de la chimie, le pH d’une solution est facilement mesurable à l’aide d’un
pHmètre.

Mais il existe de nombreux cas où une grandeur, qu’elle soit physique ou chimique,
n’est pas directement accessible à la mesure. On doit dans ce cas se contenter de mesurer
d’autres quantités directement observables et, quand c’est possible, trouver un lien entre
la ou les grandeur(s) directement mesurable(s) et la grandeur non directement mesurable.
Ce lien, qui peut être analytique et que nous nommerons modèle, peut permettre d’obtenir
la grandeur non mesurable en la reconstruisant.

Jusqu’ici, nous avons employé le terme de ”modèle” pour qualifier le lien entre une
grandeur d’entrée et une grandeur de sortie (dans le cas mono-entrée mono-sortie). Nous
allons garder cette définition et donc faire l’analogie entre sortie du modèle et gran-
deur directement mesurable d’une part, et entrée du modèle et grandeur non directement
mesurable d’autre part. Par conséquent, étant donnés le modèle et la sortie, la détermi-
nation de l’entrée est ce que l’on appelle l’inversion ou encore, la résolution d’un pro-
blème inverse. Le champ d’application de ce type de problème est très vaste : géophysique
[Scales et Smith, 1996], thermique [Ghannam, 2000], médecine [Louis, 1992] [Louis, 1997],
topographie [Inglada, 2000], la liste étant loin d’être exhaustive. Suivant le domaine d’ap-
plication considéré, on utilise également le terme déconvolution ou restauration (cas du
traitement d’image et de signal) [Demoment, 1987].

Pour reconstruire une grandeur que l’on considère comme l’entrée d’un modèle, il faut
donc pouvoir mesurer la sortie du modèle, qui peut être vue comme une conséquence de
l’entrée. Un problème inverse peut donc être vu comme la reconstruction d’une cause à
partir de la mesure d’une ou plusieurs de ses conséquences et de la connaissance du modèle
qui les relie.

2.2.2 Cadre général : les problèmes mal posés

2.2.2.1 Introduction

Un grand nombre de problèmes en sciences expérimentales nous amène à déterminer
une grandeur non observable u à partir d’un ensemble fini de mesures d’une ou plusieurs
grandeurs observables y et de la connaissance du modèle qui les relie :
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H(u, y) = 0 (2.1)

H est un opérateur (linéaire ou non linéaire) qui décrit les relations théoriques entre
u et y. Il est en général caractérisé par un vecteur de paramètres θ.

Le problème direct consiste à calculer la grandeur y connaissant la grandeur u et le
modèle H. Il s’agit d’un problème d’identification paramétrique et de calcul de réponse
bien connu des automaticiens.

Le problème inverse consiste à calculer u connaissant les mesures y et, parfois, le mo-
dèle H. C’est un problème plus délicat car il est souvent mal posé ( nous verrons ce que
cela veut dire ) et la solution obtenue peut être extrêmement sensible aux erreurs et aux
perturbations sur les mesures des grandeurs observables y. N’importe quel dispositif expé-
rimental donne lieu à des incertitudes dues essentiellement à la précision finie des mesures
d’une part, et à la corruption des mesures par du bruit d’autre part. Il faut donc tenir
compte de ces imprécisions dans la résolution du problème inverse.

La résolution des problèmes inverses fait donc appel à la notion mathématique de pro-
blème mal posé au sens de Hadamard [Hadamard, 1923].

2.2.2.2 Cas linéaire

On garde les définitions de u, grandeur (ou vecteur de grandeurs) non directement
mesurable dans un ensemble F , et de y, grandeur (ou vecteur de grandeurs) observable
dans un ensemble G dont on possède un nombre fini de mesures. On suppose également
que ces deux grandeurs sont liées par un opérateur H linéaire de la manière suivante :

Hu = y (2.2)

Définition : d’après le mathématicien français Hadamard [Hadamard, 1923], un pro-
blème est dit bien posé s’il admet une solution et si cette solution est unique et stable.

a) Existence

La solution d’un problème existe si

∀y ∈ G, ∃u ∈ F : Hu = y (2.3)

b) Unicité

La solution d’un problème est unique si

Hu1 = y
Hu2 = y

}
⇒ u1 = u2 (2.4)
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c) Stabilité

La solution d’un problème est stable si une faible variation de y engendre une faible
variation de la solution u. Autrement exprimé :

δy << 1 ⇒ δu << 1 (2.5)

On peut également dire dans ce cas que la dépendance de u par rapport à y est conti-
nue. L’exigence de continuité est reliée à celle de stabilité ou de robustesse de la solution.
La continuité est cependant une condition nécessaire, mais pas suffisante, de stabilité. Un
problème bien posé pourra ainsi être mal conditionné. Cette notion est caractérisée par
le calcul d’un nombre de condition qui, suivant sa valeur, renseigne l’utilisateur sur la
stabilité numérique du problème.

Selon Hadamard [Hadamard, 1923], un problème est dit mal posé si au moins une des
3 conditions définies précédemment n’est pas vérifiée.

2.2.2.3 Application des notions précédentes au modèle non linéaire de Vol-
terra

Toutes les notions définies précédemment peuvent s’appliquer dans le cas où l’opérateur
H qui relie la grandeur u à la grandeur y est non linéaire. Nous nous limiterons au cas où
H est une fonctionnelle de Volterra. La relation entre u et y est la suivante :

H[u] = y (2.6)

Les conditions d’existence, d’unicité et de stabilité du problème inverse sont les mêmes
que dans le cas linéaire. Nous supposerons en outre que la relation 2.6 est stricte au sens
BIBO : l’entrée et la sortie sont bornées.

a) Existence

La solution du problème inverse non linéaire existe si

∀y ∈ G, ∃u ∈ F : H[u] = y (2.7)

b) Unicité

La solution du problème inverse non linéaire est unique si

H[u1] = y
H[u2] = y

}
⇒ u1 = u2 (2.8)

c) Stabilité
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Dans le cadre des hypothèses faites sur le système non linéaire direct 2.6, la solution
du problème inverse non linéaire est stable si une faible variation de y engendre une faible
variation de la solution u. Autrement exprimé :

δy << 1 ⇒ δu << 1 (2.9)

Un problème inverse non linéaire est dit mal posé si au moins une de ces 3 conditions
n’est pas vérifiée. Sa résolution au sens habituel du terme est alors impossible. Il faut
envisager d’autres techniques de résolution.

2.2.2.4 Quelques exemples de problèmes inverses

On rencontre de nombreux exemples de problèmes inverses dans des domaines très va-
riés des sciences expérimentales, en particulier celui de l’imagerie. L’intérêt des techniques
d’imagerie (tomographie à rayons X, à ultrasons, à émission de positons, tomographie
d’impédance, imagerie par résonance magnétique nucléaire,...) est qu’elles permettent de
voir (ou bien de reconstruire) ce qui ne peut être vu directement, et cela sans détruire
ce qui est observé (cas de l’imagerie médicale) et sans danger pour l’observateur (cas des
problèmes thermiques). L’objet dont on veut caractériser l’intérieur peut être le corps
humain (imagerie médicale : échographie, scanner, rayons X), l’écorce terrestre (prospec-
tion pétrolière par des méthodes sismiques ou magnétiques, hydrogéologie) ou une étoile
(astronomie). Il peut aussi s’agir de reconstruire des images (restauration d’images floues
dans le cas du télescope Hubble) ou des topographies inaccessibles (fonds sous-marins).

Du point de vue mathématique, ces problèmes se répartissent en deux grands groupes :
les problèmes linéaires qui se ramènent à la résolution d’équations intégrales de première
espèce, et les problèmes non linéaires qui aboutissent le plus souvent à l’estimation de
paramètres dans des équations différentielles ou aux dérivées partielles. Cette seconde ca-
tégorie peut être séparée en deux sous-catégories selon que l’on cherche à reconstruire un
vecteur (dimension finie) ou une fonction.

De manière générale, on rencontre des problèmes inverses dans les domaines particu-
liers suivants :

– Thermique : afin de déterminer la répartition de la température dans un matériau
hétérogène, on écrit la loi de conservation de l’énergie ainsi que la loi de Fourier qui
relie le flux de chaleur au gradient de température. Ces deux équations permettent
d’obtenir l’équation de la chaleur en milieu hétérogène. Cette équation aux dérivées
partielles doit ensuite être complétée par des conditions aux limites et une condition
initiale de température. Dans ce cas précis, le problème direct consiste à déterminer
la température T connaissant différents coefficients physiques (densité du fluide étu-
dié, chaleur spécifique et conductivité thermique), ainsi que la source de chaleur f .
Ce problème est bien connu, tant du point de vue théorique (existence et unicité de
la solution) que du point de vue numérique. Plusieurs problèmes inverses peuvent
se poser : la détermination de la température initiale étant donnée une mesure de la
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température à un instant tf (problème linéaire) ou bien la détermination de certains
des coefficients de l’équation de la chaleur étant donnée une mesure partielle de la
température (problème non linéaire).

– Hydrogéologie : l’hydrogéologie (science qui étudie entre autres les nappes phréa-
tiques) est une source abondante de problèmes inverses. Il est en effet difficile d’ac-
céder aux couches du sous-sol pour mesurer les propriétés aqueuses des roches. Un
problème actuel est le contrôle des polluants dans les nappes d’eau souterraines.
Un milieu poreux est constitué d’une matrice rocheuse, comprenant des pores qui
laissent passer l’eau. Il est impossible de décrire l’écoulement d’un fluide dans un
tel milieu hétérogène dans la mesure où l’on doit prendre en compte des échelles
spatiales allant du centimètre (dimension d’un pore) au kilomètre (modèle d’une ré-
gion), et sachant que la disposition des pores est a priori inconnue. On utilise alors
des modèles simplifiés (dont le plus courant est la loi de Darcy) afin de relier la
hauteur de l’eau dans le milieu (appelée charge piézométrique et notée h(x, y, z, t))
à la vitesse de filtration (notée −→q (x, y, z, t)). Cette loi établit que la vitesse de filtra-
tion est proportionnelle à l’opposé du gradient hydraulique. On exprime ensuite la
loi de conservation de la masse (le milieu étant par hypothèse incompressible). On
obtient alors une équation aux dérivées partielles à laquelle on rajoute une condition
initiale (h donné à t = 0) et des conditions aux limites (conditions de Dirichlet ou de
Neumann). Les problèmes de transport de contaminants font intervenir, en plus de
l’écoulement, l’évolution de la concentration des espèces (composés chimiques, hy-
drocarbures, radionucléides) contenues dans l’écoulement. Ce phénomène met en jeu
trois mécanismes : la convection (imposée par la vitesse de filtration −→q ), la diffusion
moléculaire et la dispersion cinématique. La quantité étudiée est la concentration
C(x, y, z, t) du polluant qui obéit à une équation de type convection-diffusion. Le
problème direct est constitué par l’équation aux dérivées partielles et l’équation de
type convection-diffusion. Ce problème couplé est en général non linéaire. On peut
mesurer la concentration en polluant en un certain nombre de points et à des ins-
tants discrets. Un problème inverse est alors de chercher la conductivité hydraulique
connaissant ces mesures. En pratique, il est rare que l’on ait suffisamment de me-
sures et le problème est donc sous-déterminé.

– Sismique : la prospection pétrolière par des méthodes sismiques donne lieu à un
problème inverse largement étudié en raison de l’intérêt économique rattaché à sa
solution. Il s’agit en réalité d’une famille de problèmes inverses dont le but commun
est de déterminer les propriétés élastiques du sous-sol (densité, vitesses de propa-
gation des ondes élastiques) à partir de mesures des champs de déplacement, ou
de pression, en surface. Lors d’une campagne sismique, une source (en général une
explosion) provoque un ébranlement des roches formant le sous-sol. L’écho est en-
registré par une série de capteurs placés en surface. Cette expérience est répétée
pour plusieurs positions de la source (de plusieurs centaines à plusieurs milliers).
On obtient de cette manière une très grande quantité de données. Le but est d’es-
timer les propriétés du milieu étant donné un modèle de propagation. Il existe un
grand nombre de méthode spécifiques pour traiter ce problème. Il existe également
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plusieurs modèles physiques pouvant rendre compte de l’expérience décrite ci-dessus
à des degrés divers d’approximation. Un des cas les plus simples consiste à supposer
que la région étudiée se compose d’un fluide (expérience de sismique sous-marine).
On peut démontrer dans ce cas que la propagation des ondes est régie par l’équation
des ondes acoustiques. La quantité mesurée est un champ scalaire de pression. Il est
commode de faire l’hypothèse que le domaine d’étude est le demi-espace {z > 0}. On
suppose donc que la terre est plane et infinie mais ces approximations sont justifiées
par l’échelle considérée, qui est de l’ordre du kilomètre, l’axe Oz étant orienté vers
le bas. Le problème direct est alors, connaissant la source d’ondes, leur vitesse de
propagation et la densité du milieu, de reconstruire le champ scalaire de pression.
Ce problème direct a été abondamment étudié, ses propriétés numériques sont bien
connues ainsi que des méthodes efficaces pour sa résolution numérique. Le problème
inverse consiste à déterminer la vitesse de propagation des ondes, leur source et la
densité du milieu (qu’il n’est pas réaliste de supposer connue) à partir des mesures,
c’est-à-dire de la connaissance de la pression en chaque point du milieu. Ce problème
est non linéaire puisque sa solution dépend de façon non linéaire de la vitesse de
propagation des ondes et de la densité du milieu. Dans la réalité, il faut tenir compte
d’un paramètre supplémentaire : l’expérience est répétée en déplaçant le dispositif
sources-récepteurs. L’ensemble des ”tirs” fournit une immense quantité de données,
rendant ainsi le problème inverse surdéterminé. Une information importante à ex-
ploiter est que tous ces enregistrements proviennent du même sous-sol.

– Imagerie médicale : les sciences médicales fournissent un grand nombre de pro-
blèmes inverses, dont l’importance pratique n’échappera à personne. Dans chacun
des cas que nous allons évoquer, la grandeur à reconstruire se situe bien évidemment
à l’intérieur du corps humain.

– tomographie par rayons X : la tomographie par rayons X est la principale tech-
nique utilisée par les scanners. Un tube à rayons X est monté sur un portique qui
entoure le patient. Les rayons émis sont mesurés par des détecteurs placés en face
de l’émetteur. On considère souvent la situation bidimensionnelle, où le domaine
représente une ”section transverse” du patient. On suppose que les rayons suivent
une ligne droite et sont atténués à la traversée des tissus proportionnellement à
leur intensité et à la distance parcourue (loi de Bouger). Les rayons X suivent des
lignes droites qui seront paramétrisées par leur vecteur normal et leur distance à
l’origine. Le problème direct consiste à déterminer l’intensité mesurée au détec-
teur connaissant celle à l’émetteur ainsi que la fonction d’atténuation du patient.
Le problème inverse consiste à déterminer la fonction d’atténuation connaissant
l’intensité mesurée à l’émetteur et au récepteur. En pratique, il faut que les don-
nées soient mesurées de façon uniforme sur un cercle autour du patient. Ce n’est
pas tout le temps réalisable et la fonction d’atténuation ne peut donc pas toujours
être reconstruite de manière stable. Par ailleurs, la formule de reconstruction fait
intervenir la dérivée des mesures, qui montre également son caractère instable, la
dérivation amplifiant le bruit des mesures.
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– échographie : cette méthode d’investigation présente l’avantage d’être sans risque
pour le patient. Les sources sont de brèves impulsions d’une onde acoustique à
très haute fréquence ; les mesures sont des échos acoustiques et l’on recherche les
discontinuités de la vitesse de propagation dans le milieu. Le problème direct est
de calculer une onde diffractée us connaissant le potentiel q (et l’onde plane inci-
dente ui) tandis que le problème inverse est de retrouver q à partir de mesures de
us effectuées loin de l’obstacle. Par rapport aux exemples précédents, le problème
est posé ici dans le domaine fréquentiel. Lorsque l’onde traverse le patient, elle est
réfléchie par les changements de la densité et des paramètres élastiques des tissus.

2.2.2.5 Conclusion

Cette liste d’exemple est loin d’être exhaustive. Le but était de montrer que la théorie
des problèmes inverses est très étendue et que des applications pratiques nombreuses et
variées existent.

Les méthodes de résolution des problèmes inverses sont elles aussi relativement variées
suivant les problèmes considérés et les approches adoptées pour les résoudre.

2.2.3 Méthodes algébriques déterministes

Un problème inverse est dit mal posé s’il ne satisfait pas à au moins une des conditions
suivantes : existence d’une solution, unicité de cette solution et stabilité de cette solution.

La nécessité d’approfondir des problèmes qui ne sont pas mathématiquement bien po-
sés, mais cependant d’un grand intérêt pour les sciences expérimentales, est à l’origine de
deux branches de l’analyse : la théorie de l’inversion généralisée et celle de la régularisation.

2.2.3.1 Moindres carrés et inversion généralisée

Lorsque la difficulté de résolution du problème inverse provient de la non-unicité de la
solution, la théorie de l’inversion généralisée permet de trouver une solution quel que soit
le cas envisagé. La résolution de l’équation linéaire y = Hu présente 3 possibilités : soit il
y a une solution au problème, soit il y a une infinité de solutions au problème, soit il n’y
a pas de solution au problème.

Dans le premier cas, on doit pouvoir directement calculer l’inverse de H pour obtenir
la solution u. Dans le deuxième cas, il faut choisir une solution optimale au problème
parmi un ensemble de solutions suivant un critère défini au préalable. Dans le troisième
cas, on ne peut pas trouver de solution exacte mais on essaie de définir une solution ap-
proximative qui minimise un critère de différence entre y et Hu. Dans le cas où le critère
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choisi est la norme euclidienne, la solution est dite solution des moindres carrés.

Considérons l’équation

y = Hu (2.10)

où y ∈ R
m et u ∈ R

n. Plaçons nous dans le cas général où H est une matrice de dimension
m× n.

L’inverse généralisée d’un tel système est notée H+ et satisfait les conditions suivantes
[Albert, 1972] :

HH+H = H
H+HH+ = H+

(HH+)T = HH+

(H+H)T = H+H

(2.11)

La solution du système linéaire s’écrit alors

u = H+y (2.12)

La résolution d’un tel système met en évidence 4 cas. Selon les dimensions m et n
et le rang de la matrice H, on définira les matrices inverse, pseudo-inverse à gauche et
pseudo-inverse à droite.

La matrice inverse est la solution d’un problème qui possède autant d’inconnues que
de contraintes. Selon les cas, il n’est pas pour autant certain qu’il existe une solution.

La matrice pseudo-inverse à gauche est une solution d’un problème sur-déterminé, qui
contient des informations redondantes. Elle minimise l’erreur quadratique moyenne.

La matrice pseudo-inverse à droite est une solution d’un problème sous-déterminé, qui
ne contient pas suffisamment d’information pour garantir une solution unique. Elle permet
d’obtenir une solution particulière qui minimise la norme quadratique.

Ces deux pseudo-inverses, qu’on appelle généralement matrice inverse généralisée au
sens défini par Moore et Penrose [Albert, 1972] [Ben-Israel et Greville, 2003], sont définies
par

H+ = lim
δ→0

(HTH + δ2I)−1HT = lim
δ→0

HT (HHT + δ2I)−1 (2.13)

Si les colonnes de H sont linéairement indépendantes, on peut poser δ = 0.

a) Cas où m=n et rang(H)=n

C’est le cas d’une matrice carrée (m = n) et non singulière (det(H) 6= 0). Dans ce cas
unique, H+ = H−1 est la matrice inverse de H. La matrice H−1 vérifie la propriété
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H−1H = HH−1 = In (2.14)

où In est la matrice identité de dimension n.

b) Cas où m<n et rang(H)=m

Il s’agit du cas où le problème est sous-déterminé : il y a plus d’inconnues que de
contraintes. Dans ce cas, la matrice inverse généralisée est de la forme H+ = HT (HHT )−1

et vérifie la propriété HH+ = Im. Il existe une infinité de solutions au problème inverse.
On note U l’ensemble des solutions u+ de l’équation u = H+y.

Parmi cet ensemble de solution, on retient la solution û qui minimise une norme
préétablie :

û = min
{
‖u‖ , u = H+y

}
(2.15)

c) Cas où m>n et rang(H)=n

Il s’agit du cas où le problème est surdéterminé : il y a plus de contraintes que d’in-
connues. La matrice inverse généralisée est de la forme H+ = (HTH)−1HT et vérifie la
propriété HH+ = In. Il n’existe pas de solution exacte au problème inverse et l’on doit
définir une quasi-solution û de l’équation y = Hu qui minimise une distance ∆(y,Hu)
entre y et Hu :

û = arg min
u

{∆(y,Hu)} (2.16)

Lorsque la distance choisie est une distance euclidienne ∆(y,Hu) = ‖y −Hu‖2, û est
la solution au sens des moindres carrés :

û = arg min
u

{
‖y −Hu‖2} (2.17)

Cet ensemble cöıncide avec l’ensemble des solutions de l’équation normale :

[HTH]û = HTy (2.18)

d) Cas où rang(H)=k<min(m,n)

Dans ce cas, la matrice H est singulière (det(H) = 0). Pour l’inverser, il faut faire
appel à une décomposition en valeurs singulières ou encore à des méthodes itératives.

i) Décomposition en valeurs singulières
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On considère l’équation y = Hu où rang(H) < min(m,n). On note {vj, j = 1, ..., k}
les vecteurs propres de la matrice HTH, {ui, i = 1, ..., k} les vecteurs propres de la matrice
HHT et λ2

j les valeurs propres correspondantes.

On a alors les relations suivantes :

HTHvj = λ2
jvj, j = 1, ..., k

HHTui = λ2
iui, i = 1, ..., k

Hvj = λjuj, j = 1, ..., k
HTui = λivi, i = 1, ..., k

(2.19)

et la matrice H peut se décomposer de la manière suivante :

H = UΛV T (2.20)

où U , Λ et V sont des matrices définies par

U = (u1 u2 · · · uk)
V = (v1 v2 · · · vk)
Λ = diag(λ1, λ2, ..., λk)

(2.21)

avec λ1 ≥ λ2 ≥ ... ≥ λk et k ≤ inf(m,n).

La solution inverse généralisée au sens de Moore et Penrose est définie par

u+ = H+y avec H+ = V Λ+U (2.22)

avec

Λ+ = diag{αi},
{
αi = 1

λi
si λi 6= 0

αi = 0 si λi ' 0
(2.23)

ii) Méthodes itératives

Ces méthodes permettent de calculer itérativement une solution u de norme minimale
au problème Hu = y. Elles sont couramment utilisées en raison de leur simplicité et de la
facilité d’incorporation de contraintes déterministes. Elles nécessitent cependant un gros
volume de calcul à cause du grand nombre d’itérations nécessaires à l’approximation opti-
male de la solution. Il est également nécessaire de fixer une règle d’arrêt qui peut reposer
sur l’estimation de l’erreur résiduelle. Un seuil d’arrêt est fixé au départ.

La méthode de reconstitution itérative la plus ancienne est celle de Van Cittert (qui
date des années 1930) [Demoment, 1987]. D’autres auteurs ont ajouté des modifications
afin d’accélérer la convergence vers la solution optimale et d’améliorer la solution recons-
truite. On citera les méthodes de Bialy et de Landweber [Demoment, 1987], la méthode
de Jansson [Jansson, 1984] et la méthode du gradient conjugué [Sullivan, 1990].
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2.2.3.2 Régularisation

La régularisation d’un problème mal posé consiste à le transformer en un problème
bien posé : étant donné les mesures et la connaissance du modèle dont on dispose, on
cherche à définir une solution unique et à assurer la stabilité de cette solution vis à vis
des erreurs de mesure [Tikhonov et Arsénine, 1976].

Si l’on considère à nouveau le problème

y = Hu (2.24)

où l’opérateur H est linéaire ou non linéaire, alors ce problème est bien posé au sens de
Tikhonov s’il répond aux trois conditions énumérées précédemment.

Dans le cas d’un problème linéaire, les principales difficultés sont la sur-détermination
et les valeurs singulières proches de 0 de la matrice H.

Suivant les connaissances dont on dispose, une estimation û de la grandeur u à recons-
truire est correcte si le terme ŷ = Hû est suffisamment proche de la grandeur mesurée y.
La qualité de la grandeur reconstruite peut donc être quantifiée en calculant l’adéquation
entre la grandeur mesurée y et la grandeur calculée Hu sous la forme d’un critère :

J(u) = ∆(y,Hu) (2.25)

où ∆ représente la distance entre y et Hu. Cette distance peut être la norme euclidienne
et le critère devient alors le critère quadratique classique :

J(u) = ‖y −Hu‖2 (2.26)

La minimisation de ce critère conduit à la solution û du problème inverse :

û = arg min
u

{J(u)} (2.27)

Cependant, on s’aperçoit rapidement que cette minimisation conduit rarement à une
estimation correcte û de la grandeur u à reconstruire. Nous avons déjà vu en effet que
si le rang de la matrice H de dimension m × n est inférieur à n, il existe une infinité de
solutions û. On utilise alors un critère de comparaison. Ce critère ne garantit en aucun cas
la stabilité de la solution obtenue car le mauvais conditionnement de la matrice H peut
la conduire à se comporter comme un filtre passe-haut qui va amplifier les plus petites
variations de la grandeur mesurée y. La condition de stabilité définie plus haut n’est donc
pas assurée.

La grandeur mesurée y ne donne aucun renseignement sur certains aspects de la gran-
deur u à reconstruire. Il est donc nécessaire d’ajouter des informations additionnelles sur
la grandeur u qui permettront de sélectionner la meilleure reconstruction parmi plusieurs
possibles. Une manière d’effectuer cette sélection consiste à introduire un second terme
Ω(u) au critère général (2.25) afin d’ajouter une information supplémentaire concernant la
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grandeur u à reconstruire et ainsi de régulariser le problème. On appelle ce terme ajouté
terme de pénalisation ou de régularisation. Le critère J(u) pénalisé devient :

J(u) = ∆(y,Hu) + Ω(u) (2.28)

Si l’on reprend le cas du critère (2.26), l’ajout du terme Ω(u) le transforme en un
critère des moindres carrés de norme minimale, car il ne s’agit plus ici de simplement
minimiser un seul terme mais de choisir parmi plusieurs possibilités une solution û qui
rendra le terme Ω(u) minimal. On peut choisir a priori une valeur constante particu-
lière J0 du critère Ju : à partir du moment où la valeur du critère est inférieure ou
égale à J0, on considérera qu’on a obtenu une solution acceptable au problème régularisé
[Tikhonov et Arsénine, 1976], [Ljung et al., 1992].

Un choix possible parmi les plus simples pour Ω(u) consiste à prendre la norme eucli-
dienne de la grandeur u à reconstruire :

Ω(u) = ‖u‖2 (2.29)

Dans le cas où l’on connâıtrait a priori une solution par défaut ud au problème inverse,
on peut l’intégrer au terme Ω(u) :

Ω(u) = ‖u− ud‖2 (2.30)

Plus généralement, dans beaucoup de cas, il ne suffit pas seulement de minimiser la
norme de la grandeur u à reconstruire mais d’un opérateur L (linéaire ou non) qui agit
sur cette grandeur. Il faut donc intégrer cet opérateur dans Ω(u) :

Ω(u) = ‖L(u)‖2 (2.31)

Dans le cas simple où l’opérateur L est linéaire, on peut écrire :

Ω(u) = ‖Lu‖2 = uLTLu (2.32)

Typiquement, l’opérateur L (dans le cas linéaire) est la matrice identité. Mais on peut
également choisir une approximation de la dérivée première L1 :

L1 =
1

∆T




−1 1 · · · 0

0 −1
. . .

...
...

. . . . . . 1
0 · · · 0 −1


 (2.33)

Il est également possible d’utiliser une approximation de la dérivée seconde :

L2 =
1

(∆T )2




1 −2 1 · · · 0

0 1 −2
. . .

...
... 0 1

. . . 1

0
. . . . . . −2

0 0 · · · 0 1




(2.34)
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Dans d’autres cas, on pourra utiliser une combinaison linéaire des dérivées

Ω(u) =

q∑

k=1

αk ‖Lku‖2 (2.35)

où Lk est une matrice d’approximation de la dérivée d’ordre k et les termes αk sont des
constantes positives.

Il existe de nombreuses méthodes de régularisation qui essaient de traiter à la fois le
problème de la fidélité aux données mesurées (correspondant au premier terme du critère
à minimiser) et celui de la fidélité à l’information a priori (correspondant au deuxième
terme du critère à minimiser). Ces deux problèmes étant bien souvent en conflit, il s’agit
alors de trouver une solution û qui soit un bon compromis entre les nécessités dues aux
grandeurs mesurées et aux données a priori [Ljung et al., 1992].

a) Régularisation de Tikhonov

La régularisation de Tikhonov est une des méthodes les plus connues et de nombreux
développements existent de nos jours [Tikhonov et Arsénine, 1976], [Chavent et Kunisch, 1994],
[Johansen, 1997]. Le critère à minimiser J(u) est défini de la manière suivante :

J(u) = ‖y −Hu‖2 + λ ‖L(u)‖2 (2.36)

où le terme λ est appelé coefficient de régularisation. Ce coefficient sert ici à pondérer
l’influence des connaissances a priori dont on dispose sur le problème à résoudre. La
solution ûλ du problème inverse y = Hu est définie de la manière suivante :

ûλ = arg min
u

{‖y −Hu‖2 + λ ‖L(u)‖2} (2.37)

On obtient donc ici une famille de solutions ûλ paramétrée par le coefficient de régu-
larisation λ. Si ce paramètre est très grand, l’effet du terme ‖y −Hu‖2 est négligeable
devant celui du terme ‖L(u)‖2. On néglige les données mesurées et on tient compte en
priorité de la connaissance a priori sur le problème. La solution ainsi obtenue peut être
correcte du point de vue de la minimisation du critère mais en inadéquation avec les don-
nées mesurées. Il faut par ailleurs être certain de l’exactitude des connaissances a priori
dont on dispose. C’est dans ce cas l’expertise de l’utilisateur qui est requise.

D’autre part, si le paramètre de régularisation est trop faible, on néglige la connaissance
a priori en donnant une plus grande importance aux grandeurs mesurées. Cependant, plus
la valeur du paramètre de régularisation diminue et plus on se rapproche d’un éventuel
mauvais conditionnement du problème. Il ne faut pas perdre de vue que le second terme
a été ajouté afin de transformer le problème mal posé en un problème bien posé.

Afin de calculer analytiquement la solution du problème, on dérive le critère (2.36)
par rapport à la grandeur à reconstruire :
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∂J

∂u
= 2λL(u)

∂L(u)

∂u
− 2HT (y −Hu) (2.38)

Ceci conduit à calculer la solution de l’équation :

2λL(u)
∂L(u)

∂u
− 2HT (y −Hu) = 0 (2.39)

On voit bien dans ce cas que si l’on pose λ = 0, on retrouve la solution des moindres
carrés. Si λ n’est pas nul, le terme additionnel λL(u)∂L(u)

∂u
modifie les valeurs propres de

la matrice HTH seule. A partir du moment où la matrice HTH + λL(u)∂L(u)
∂u

n’est plus
singulière, le problème a une solution unique.

b) Choix du coefficient de régularisation

Dans de nombreux problèmes inverses, un réglage précis du coefficient de régularisa-
tion λ est inutile, la solution ûλ n’étant sensible qu’à des variations importantes de λ.
Il est alors possible, avec un peu d’expérience, de choisir empiriquement λ. Dans le cas
contraire, il existe quelques méthodes de réglage automatique à partir des données mesu-
rées.

i) Contrôle de l’énergie de l’erreur résiduelle

Une des idées les plus intuitives et les plus anciennes pour régler la valeur de λ est de
considérer ce coefficient comme un multiplicateur de Lagrange [Demoment et al.]. Repre-
nons l’expression générale du critère pénalisé :

J(u) = ∆(y,Hu) + Ω(u) (2.40)

Dans le cadre de la régularisation de Tikhonov, ce critère peut s’exprimer sous la
forme :

J(u) = ‖y −Hu‖2 + λ ‖L(u)‖2 (2.41)

avec ici ∆(y,Hu) = ‖y −Hu‖2 et Ω(u) = λ ‖L(u)‖2.

Si l’on considère λ comme un multiplicateur de Lagrange, le problème de régularisation
est équivalent à l’énoncé suivant :

ûλ = arg min
u

{Ω(u)} sous la contrainte ∆(y,Hu) = c (2.42)

Le degré de régularisation est fixé par la valeur de c. Plus la valeur de c est faible, plus
on accorde d’importance aux données mesurées y car la condition ∆(y,Hu) = c devient
davantage contraignante. Par conséquent, la notion de compromis entre fidélité aux don-
nées mesurées et degré de pénalisation de la solution du problème apparâıt déjà dans ce
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contexte.

Lorsque le terme ∆ est quadratique, on préconise souvent de choisir c égal à la dimen-
sion de la grandeur u à reconstruire.

ii) Méthode de la courbe en ”L”

On peut également utiliser une méthode alternative qui a fait ses preuves dans des
problèmes inverses de la forme

J(u) = ‖y −Hûλ‖2 + λΩ(u) (2.43)

et dans le cas précis où Ω(u) est quadratique : la méthode de la courbe en L [Hansen, 2001].

Cette méthode consiste à tracer en échelle logarithmique le terme de régularisation
Ω(ûλ) en fonction du critère des moindres carrés ‖y −Hûλ‖2 en faisant varier le coeffi-
cient de régularisation λ.

Cette courbe a en général l’allure caractéristique d’un L et la valeur de λ correspon-
dant à l’angle de ce L fournit un bon compromis entre les exigences contradictoires de
fidélité aux grandeurs mesurées et de fidélité aux connaissances a priori.

On remarque que toutes les méthodes de choix du coefficient de régularisation λ expo-
sées ici n’ont de justification claire que dans le cas de critères quadratiques. De même que
pour le choix du terme de régularisation Ω(u), les justifications sont données de manière
empirique. Chaque solution de régularisation est à considérer selon la nature même du
problème inverse traité.

2.2.4 Méthodes probabilistes

Une autre classe de méthodes de résolution des problèmes inverses est la classe des
méthodes probabilistes. L’approche générale de ces méthodes consiste d’abord à prendre
en compte explicitement le plus grand nombre d’erreurs possible (erreur de mesure, de mo-
délisation et, éventuellement, de discrétisation du problème), ensuite à prendre en compte
les informations a priori dont on peut disposer et, enfin, une fois la solution du problème
inverse estimée, à caractériser l’incertitude même sur cette solution.

Un outil mathématique très utile pour représenter des erreurs de toute sorte est la
théorie des probabilités. En effet, une loi de probabilité permet de caractériser l’incerti-
tude sur les mesures et le manque de connaissance sur une grandeur.

Parmi les méthodes probabilistes de résolution des problèmes inverses du type y = Hu,
on distingue :
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– Les méthodes utilisant les moments : on cherche à lier les moments (d’ordre 1 et
2) des grandeurs mesurées y aux moments de la grandeur à calculer u. On obtient
ainsi un lien entre les deux grandeurs qu’il suffit d’inverser pour calculer u.

– Les méthodes statistiques classiques utilisant le maximum de vraisemblance : on
prend en compte explicitement le caractère incertain des mesures en le caractérisant
par une loi de probabilité conditionnelle p(y | u). On considère ensuite p(y | u)
comme une fonction de la grandeur u que l’on nomme fonction de vraisemblance
V (u). On définit alors un critère basé sur cette fonction, par exemple le maximum
de vraisemblance, qui permet d’obtenir une estimation de u.

– Les méthodes basées sur l’entropie : le principe ressemble à celui du maximum de
vraisemblance. On définit cette fois la fonction entropie S(u) que l’on va essayer de
maximiser sous certaines contraintes correspondant au lien entre u et y.

– L’approche statistique bayésienne où non seulement on prend en compte l’incertitude
sur les mesures de la grandeur y mais on attribue également une loi de probabilité
à la grandeur u qui traduit l’information a priori dont on dispose. On peut ainsi
combiner ces deux informations tout comme on le fait dans les méthodes de régula-
risation vues précédemment.

2.2.4.1 Utilisation des moments

Cette approche considère que les grandeurs observée y et mesurée u sont des fonctions
aléatoires [Mohammad-Djafari, 1999b]. On se limite donc à caractériser les lois de proba-
bilités de ces grandeurs par leurs moments jusqu’à l’ordre deux. Il suffit ensuite d’établir
un lien entre les moments de la grandeur observée et ceux de la grandeur inconnue à
reconstruire, puis d’essayer d’inverser ce lien.

Nous allons prendre l’exemple classique du filtrage optimal de Wiener appliqué au
problème de la déconvolution des signaux.

On considère le problème suivant (cf figure 2.1) :

y(t) = h(t) ∗ u(t) + b(t) (2.44)

où les fonctions y(t), u(t) et b(t) sont aléatoires et représentent respectivement la grandeur
mesurée, la grandeur inconnue à reconstruire et le bruit.
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Fig. 2.1 - Modèle d’observation

Les moments d’ordre 1 de ces grandeurs sont leur moyenne (ou espérance mathéma-
tique) :

E [y(t)] , E [u(t)] et E [b(t)] (2.45)

Rappelons que la moyenne E[x(t)] d’une grandeur x(t) est calculée à chaque instant t.
Si cette moyenne ne dépend pas de t, le signal est dit stationnaire au premier ordre. Si le
signal est ”ergodique” (ses moyennes statistiques sont égales à ses moyennes temporelles,
propriété généralement admise), on peut remplacer le calcul sur différentes réalisations à
un instant t donné par une moyenne temporelle.

E[x(t)] =
1

2T
lim
t→∞

∫ T

−T
x(t)dt (2.46)

Les moments d’ordre 2 de ces grandeurs sont leurs fonctions d’autocorrélation tempo-
relle (Ryy(τ) et Ruu(τ)) et leurs fonctions d’intercorrélation temporelle (Rbu(τ) et Ryu(τ))
définis de la manière suivante :

Ryy(τ) = E[y(t)y(t+ τ)]
Ruu(τ) = E[u(t)u(t+ τ)]
Rbu(τ) = Rub(−τ) = E[b(t)u(t+ τ)]
Ryu(τ) = Ruy(−τ) = E[y(t)u(t+ τ)]

(2.47)

On fait l’hypothèse que u(t) et b(t) sont indépendants (non corrélés), ce qui nous
permet d’obtenir les relations suivantes :

E[y(t)] = h(t) ∗ E[u(t)] + E[b(t)]
Ryy(τ) = h(t) ∗ h(t) ∗Ruu(τ) +Rbb(τ)
Ryu(τ) = h(t) ∗Ruu(τ)

(2.48)

La transformée de Fourier de certaines des précédentes relations donne :

Syy(ω) = |H(ω)|2 Suu(ω) + Sbb(ω)
Syu(ω) = H(ω)Suu(ω)
Suy(ω) = H∗(ω)Suu(ω)

(2.49)

L’objectif du filtrage optimal est de fournir une solution û(t) obtenue par filtrage
linéaire de y(t) :
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û(t) = w(t) ∗ y(t) (2.50)

nopqrstω u
novq

Fig. 2.2 - Déconvolution par filtrage de Wiener

Il s’agit donc d’obtenir la réponse impulsionnelle du filtre w(t) telle que l’erreur qua-
dratique moyenne E[(u(t) − û(t))2] soit minimale. Après diverses manipulations mathé-
matiques, on obtient l’expression de la transformée de Fourier de w(t) :

W (ω) =
H∗(ω)Suu(ω)

|H(ω)|2 Suu(ω) + Sbb(ω)
=

1

H(ω)

|H(ω)|2

|H(ω)|2 + Sbb(ω)
Suu(ω)

(2.51)

Un autre problème réside en la détermination de Syy(ω) et Suy(ω), qui nécessite la
connaissance a priori de Suu(ω) et de Sbb(ω). On peut faire l’hypothèse que le rapport de
ces deux dernières grandeurs est égal à l’inverse du rapport signal sur bruit (hypothèse
peu réaliste) ou bien au carré du module de la fonction de transfert d’un filtre passe-haut.

Une fois obtenue l’expression de W (ω), on peut estimer la solution û(t) du problème
inverse en calculant l’expression temporelle du filtre de Wiener par transformée de Fourier
inverse.

2.2.4.2 Critère du maximum de vraisemblance

La méthode du maximum de vraisemblance repose sur une idée de base assez intui-
tive : la meilleure estimée d’une grandeur à reconstruire u est celle qui permet d’obtenir la
plus grande probabilité d’obtention de la grandeur mesurée y. Cette méthode prend donc
en compte explicitement le caractère incertain de la grandeur mesurée en la caractérisant
par une loi de probabilité p(y | u) [Demoment et al.].

On considère ensuite cette loi de probabilité comme une fonction V (u) = p(y | u)
appelée fonction vraisemblance.

La solution û du problème inverse maximise cette fonction vraisemblance :

û = arg max
u

{p(y | u)} (2.52)
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Pour des raisons calculatoires (nous verrons plus tard que la loi de probabilité p(y | u)
s’exprime souvent sous la forme d’une exponentielle), il est souvent préférable de maxi-
miser le logarithme népérien de la fonction vraisemblance :

û = arg max
u

{ln p(y | u)} (2.53)

Le logarithme népérien étant une fonction monotone, le maximum de ln p(y | u) cöın-
cide avec le maximum de p(y | u).

On note qu’il est évidemment possible d’obtenir la solution û du problème inverse en
estimant non pas le maximum du logarithme népérien mais le minimum de son opposé :

û = arg min
u

{− ln p(y | u)} (2.54)

Il est en effet parfois plus simple de minimiser une grandeur plutôt que de la maximiser.

L’estimateur du maximum de vraisemblance possède quelques propriétés intéressantes :
c’est un estimateur à variance minimale (on parle d’efficacité de cet estimateur) et si le
nombre de mesures de la grandeur observable y augmente alors l’estimateur converge
asymptotiquement vers la solution du problème inverse.

Nous allons maintenant nous intéresser à la forme que peut prendre la loi de probabilité
p(y | u).

a) Loi gaussienne

On considère le modèle général y = H(u) + b et on suppose que le bruit b peut être
modélisé par un vecteur aléatoire centré, blanc et gaussien. On le représente alors par une
loi normale (ou de Gauss) N(0, σ2

bI) d’espérance nulle et de variance σ2
b .

On en déduit alors la loi de probabilité :

p(y | u) = K exp

(−1

2σ2
b

[y −H(u)]T [y −H(u)]

)
(2.55)

où K est une constante non nulle.

On peut donc calculer une estimation de la grandeur u au sens du maximum de
vraisemblance :

û = arg min
u

{− ln p(y | u)} (2.56)

On obtient l’expression suivante :

û = arg min
u

{‖y −H(u)‖2} (2.57)
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On remarque que, dans ce cas précis, on aboutit à l’estimateur des moindres carrés.

b) Loi gaussienne généralisée

On suppose maintenant que chaque mesure bi du bruit b obéit à une loi gaussienne
généralisée :

p(bi) = A exp [−β |bi|p] , β > 0, 1 ≤ p ≤ 2 (2.58)

où A est une constante.

Si on fait l’hypothèse que b est un bruit blanc, l’estimation de la grandeur u au sens
du maximum de vraisemblance a pour expression analytique :

û = arg min
u

{
n∑

i=1

|yi − [H(u)]i|p
}

(2.59)

On peut écrire cette expression sous la forme :

û = arg min
u

{‖y −H(u)‖p} (2.60)

Lorsque p = 2, on retrouve à nouveau l’estimation au sens des moindres carrés.

c) Loi Gamma

A présent, voyons le cas où chaque mesure bi du bruit b obéit à une loi gamma :

p(bi) = Kib
−α
i exp (−βbi) (2.61)

On fait également l’hypothèse que le bruit est blanc. On en déduit la loi gamma
associée au logarithme népérien de p(y | u) :

ln p(y | u) = K +
n∑

i=1

α log(yi − [H(u)]i) + β(yi − [H(u)]i) (2.62)

La solution û = arg minu{− ln p(y | u)} n’a pas d’expression analytique dans ce cas.
Elle peut toutefois être calculée par un algorithme itératif.

En conclusion, un des défauts de l’approche du maximum de vraisemblance est qu’elle
fournit des résultats rarement satisfaisants pour la résolution de problèmes inverses dans le
cadre algébrique où le nombres de grandeurs à reconstruire est du même ordre de grandeur,
voire plus grand, que le nombre de mesures. Une solution est l’approche du maximum
de vraisemblance pénalisé qui consiste à définir la solution û du problème inverse de la
manière suivante :

û = arg min
u

{− ln p(y | u) + φ(u)} (2.63)

102



2.2. Les problèmes inverses

où φ(u) est une fonction de pénalisation qui permet d’obtenir une solution beaucoup plus
satisfaisante. Ce principe de pénalisation est dans l’idée semblable à celui de régularisation
vu dans la section précédente.

2.2.4.3 Critère du maximum d’entropie

a) Définitions

La notion d’entropie peut être introduite de la manière suivante [Mohammad-Djafari, 1999b],
[Mohammad-Djafari, 1999a] : plus un événement est rare et plus le gain d’information ob-
tenu par sa réalisation est grand. On considère donc une variable aléatoire discrète X
produisant des réalisations x = {x1, x2, ..., xn} auxquelles on attribue les probabilités
p = {p1, p2, ..., pn} pour représenter une information partielle sur la variable X. On définit
ensuite la quantité

Ii = ln

(
1

pi

)
(2.64)

comme étant la quantité d’information apportée par la réalisation xi de la variable X.
L’utilisation du logarithme rend additif le gain total d’information obtenu par la réalisa-
tion de plusieurs événements indépendants.

On définit alors l’entropie S(p) d’un processus par la somme pondérée des informations
apportées par chaque réalisation (définition de l’entropie donnée par Shannon) :

S(p) =
n∑

i=1

pi ln

(
1

pi

)
= −

n∑

i=1

pi ln pi (2.65)

L’entropie S peut être vue comme une mesure d’incertitude de la distribution p =
{p1, p2, ..., pn}.

Ce concept peut être généralisé en définissant le terme − ln(pi/qi) comme étant le gain
d’information, sur une probabilité a priori qi, apporté par la connaissance de la probabilité
pi de réalisation d’un événement xi. On définit alors :

S(p, q) =
n∑

i=1

pi ln

(
pi
qi

)
(2.66)

comme étant l’entropie croisée (ou relative) de la distribution p = {p1, p2, ..., pn} par rap-
port à la distribution a priori q = {q1, q2, ..., qn}.

Moyennant quelques précautions de calcul, on peut généraliser ces définitions au cas
continu et définir l’entropie par :

S(p) = −
∫
p(x) ln p(x)dx (2.67)
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et l’entropie croisée par

S(p, q) =

∫
p(x) ln

p(x)

q(x)
dx (2.68)

On définit maintenant la meilleure estimée Φ̂ d’une fonction Φ(X) de la variable aléa-
toire discrète X au sens du minimum de l’erreur quadratique moyenne :

Φ̂ = E[Φ(X)] =
n∑

i=1

piΦ(xi) (2.69)

Il s’agit ici d’un problème direct et bien posé. Mais il existe en général beaucoup de
distributions p qui satisfont cet ensemble de contraintes. Le problème inverse considéré
est donc mal posé au sens de la non-unicité de sa solution. Le principe du maximum
d’entropie permet alors de choisir une solution : la meilleure solution sera celle qui a l’en-
tropie maximale (c’est-à-dire celle qui satisfait toutes les contraintes) et qui est la moins
compromettante vis-à-vis de toute autre information inconnue (information apportée par
aucune des réalisations de la variable aléatoire).

Le problème inverse se formule donc ainsi :

maximiser S(p) = −∑n

i=1 pi ln pi
sous les contraintes

∑n

i=1 piΦk(xi) = dk, k = 1, ...,m
(2.70)

Dans le cas de l’entropie croisée, le problème se formule ainsi : étant donnée une dis-
tribution de probabilités a priori q = {q1, q2, ..., qn}, il s’agit de déterminer la distribution
de probabilités a posteriori p = {p1, p2, ..., pn} qui minimise le terme

S(p, q) =
n∑

i=1

pi ln

(
pi
qi

)
(2.71)

et qui satisfait les contraintes

n∑

i=1

piΦk(xi) = dk, k = 1, ...,m (2.72)

Ces deux définitions de problèmes inverses peuvent être étendues au cas continu. Le
premier problème (2.70) est défini en continu par :

maximiser S(p) = −
∫
p(x) ln p(x)dx

sous les contraintes
∫

Φk(x)p(x)dx = dk, k = 1, ...,m
(2.73)

Dans le cas de l’entropie croisée, le deuxième problème (2.71) est défini ainsi : étant
donnée une densité de probabilité a priori p(x), il s’agit de déterminer la densité de
probabilité a posteriori q(x) qui minimise l’entropie croisée

S(p, q) =

∫
p(x) ln

p(x)

q(x)
dx (2.74)
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et qui satisfait les m contraintes

∫
Φk(x)p(x)dx = dk, k = 1, ...,m (2.75)

b) Application à des problèmes inverses

L’approche de base (maximum d’entropie classique) consiste à considérer la grandeur à
reconstruire u comme une distribution de probabilités et les données mesurées y comme un
ensemble de contraintes sur cette distribution de probabilités. En général, ces contraintes
ne sont pas suffisantes pour définir une solution unique au problème inverse.

On utilise donc le principe du maximum d’entropie pour choisir une solution parmi
l’ensemble des solutions admissibles défini par :

{u : J = ‖y −H(u)‖ ≤ J0} (2.76)

On choisit dans cet ensemble la solution qui maximise l’entropie S(u) définie par :

S(u) = −
n∑

j=1

uj ln uj (2.77)

On peut définir l’entropie de manière plus générale :

S(u) = −
n∑

j=1

[
uj ln

(
uj
mj

)
+ (uj −mj)

]
(2.78)

où m est une solution par défaut (a priori) que l’on considère également comme une dis-
tribution de probabilités.

2.2.4.4 Approche bayésienne des problèmes inverses

L’approche bayésienne pour la résolution de problèmes inverses permet de prendre en
compte et de traiter de la même manière l’information a priori sur la grandeur à recons-
truire u et sur les grandeurs mesurées y [Mohammad-Djafari, 1998], [Mohammad-Djafari, 1999b].
On tient compte non seulement de l’incertitude des mesures en leur attribuant une loi de
probabilité mais également de l’incertitude concernant l’information a priori au travers
d’une loi de probabilité a priori que l’on attribue à la grandeur inconnue du problème. La
règle de Bayes permet de tenir compte en les fusionnant de ces deux sources d’information.
Ainsi, le cadre bayésien offre les réponses les plus cohérentes et les plus complètes à des
problèmes laissés ouverts dans les autres approches. D’une certaine manière, l’approche
bayésienne généralise la régularisation déterministe.

a) Introduction
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La démarche correspondant à l’approche bayésienne peut se scinder en différentes
étapes. La toute première de ces étapes consiste bien sûr à expliciter le problème lui-même.
On définit un modèle H reliant la grandeur mesurée y et la grandeur à reconstruire u :

y = H(u) + b (2.79)

Le terme b étant le bruit qui entache inévitablement y.

On peut ensuite définir de manière explicite les connaissances a priori dont on dispose
(et si on peut en disposer) sur u et sur le bruit de mesure b. Cette étape est cruciale pour
la suite du problème car la qualité de l’estimation û de u dépend directement de la qualité
(et parfois de la quantité) des informations que l’on aura pu rassembler.

La deuxième étape de la démarche consiste en l’attribution d’une loi de probabilité a
priori p(u, θu) à la grandeur inconnue du problème afin de traduire la connaissance dont
on dispose sur cette grandeur avant même d’essayer de l’estimer. Cette loi de probabilités
peut dépendre d’un vecteur de paramètres θu.

On attribue également une loi de probabilité conditionnelle p(y | u, θy) à y afin de
traduire l’incertitude sur les mesures. Ces incertitudes sont dues en partie au manque de
précision de l’appareil de mesure et au bruit environnant qui s’ajoute aux mesures. De
même que la précédente, cette loi de probabilité peut dépendre d’un vecteur de paramètres
θy. L’ensemble θ = [θu, θy] est appelé vecteur des hyperparamètres du problème.

La troisième étape de la démarche consiste à utiliser la règle de Bayes pour combiner
les deux sources d’information : l’information contenue dans y et celles contenues dans la
loi de probabilité a priori sur u. On calcule ainsi une loi de probabilité a posteriori :

p(u | y, θ) =
p(y | u, θy)p(u, θu)

p(y, θ)
(2.80)

avec

p(y, θ) =

∫
p(y | u, θy)p(u, θu)du (2.81)

Cette loi de probabilité p(u | y, θ) dépend des hyperparamètres du problème et contient
toute l’information disponible sur la grandeur inconnue u. Elle permet donc de choisir la
meilleure estimée û de u suivant un critère prédéfini. Une fois cette solution choisie, il est
impératif de lui attribuer un degré de confiance et de déterminer sa sensibilité vis-à-vis
des erreurs de mesure et de modélisation. L’approche bayésienne nous permet de répondre
à ces attentes car on dispose de la loi de probabilité a posteriori sur u qui permet de ca-
ractériser l’erreur d’estimation.

Tous les problèmes de cette approche résident dans le choix des lois de probabilités a
priori p(u, θu), p(y | u, θy) et des hyperparamètres θ, ainsi que dans le calcul effectif de la
loi de probabilité a posteriori p(u | y, θ).
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b) Un exemple simple : le cas linéaire gaussien

Afin de mieux comprendre la démarche exposée en introduction, nous allons l’appliquer
à un cas simple : celui où le modèle reliant u et y est linéaire et où l’on peut attribuer des
lois de probabilités gaussiennes à u et y. Le problème est donc le suivant :

y = Hu+ b (2.82)

où b représente le bruit de mesure (bruit additif dans ce cas particulier). La matrice H
est une matrice de dimension [m× n].

Faisons d’abord l’hypothèse que l’on connâıt de la grandeur u a priori sa moyenne
E[u] = u0 et sa matrice de covariance E[(u− u0)(u− u0)

T ] = Ru = σ2
uP0. On peut alors

en déduire que la loi de probabilité attribuée à u est une loi gaussienne :

p(u) = A exp

[−1

2
(u− u0)R

−1
u (u− u0)

T

]
(2.83)

que l’on peut aussi écrire

p(u) = A exp

[−1

2σ2
u

(u− u0)P
−1
0 (u− u0)

T

]
(2.84)

avec

A = (2π)
−n
2 |Ru|

−1

2 = (2πσ2
u)

−n
2 |P0|

−1

2 (2.85)

On suppose ensuite que la valeur moyenne E[b] du bruit est nulle et que sa matrice de
covariance est définie par E[bbT ] = Rb = σ2

bI. Cela signifie bien sûr que le bruit est blanc
et non corrélé et qu’il n’y a pas d’erreur systématique lorsqu’on le mesure. On peut donc
attribuer au bruit b une loi gaussienne :

p(b) = A1 exp

[−1

2σ2
b

uuT
]

(2.86)

avec

A1 = (2π)
−n
2 |Rb|

−1

2 = (2πσ2
b )

−n
2 (2.87)

En faisant de plus l’hypothèse que le bruit b est indépendant de la grandeur inconnue
u, on peut déduire la loi de probabilité conditionnelle :

p(y | u) = B exp

[−1

2
(y −Hu)TR−1

b (y −Hu)

]
(2.88)

que l’on peut également écrire

p(y | u) = B exp

[−1

2σ2
b

(y −Hu)T (y −Hu)

]
(2.89)

avec
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B = (2π)
−m
2 |Rb|

−1

2 = (2πσ2
b )

−m
2 (2.90)

On peut maintenant utiliser la règle de Bayes :

p(u | y) =
p(y | u)p(u)

p(y)
(2.91)

et on obtient au final :

p(u | y) = C exp

[−1

2
J(u)

]
(2.92)

avec

J(u) = (y −Hu)TR−1
b (y −Hu) + (u− u0)

TR−1
u (u− u0)

= 1
σ2

b

[
(y −Hu)T (y −Hu) + λ(u− u0)

TP−1
0 (u− u0)

] (2.93)

où λ =
σ2

b

σ2
u
.

On peut montrer a posteriori que la loi de probabilité p(u | y) est gaussienne de valeur

moyenne û et de matrice de covariance P̂ :

{
û = (HTH + λP−1

0 )−1HTy

P̂ = σ2
b (H

TH + λP−1
0 )−1 (2.94)

On a ainsi obtenu une loi de probabilité a posteriori et l’on peut en déduire une estimée
û qui n’est autre que la valeur moyenne a posteriori et qui peut aussi être calculée par

û = arg max
u

{p(u | y)} = arg min
u

{J(u) = Q(u) + λΩ(u)} (2.95)

avec

{
Q(u) = (y −Hu)T (y −Hu)
Ω(u) = (u− u0)

TP−1
0 (u− u0)

(2.96)

On peut aussi remarquer que si l’on pose P−1
0 = DTD, on obtient :

J(u) = ‖y −Hu‖2 + λ ‖D(u− u0)‖2 (2.97)

On retrouve donc la notion de solution régularisée et de régularisation quadratique
avec cependant quelques différences dans le choix des distances et du coefficient de régu-
larisation.

Dans l’approche de régularisation déterministe, le choix des distances ∆1(y,Hu) et
∆2(u, u0) était arbitraire alors que l’approche bayésienne permet de définir rigoureuse-
ment ces termes comme étant les conséquences des hypothèses faites respectivement sur
la loi de probabilité attribuée au bruit b et sur la loi de probabilité a priori attribuée à u.
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Dans l’approche de régularisation déterministe, le coefficient de régularisation λ est
déterminé de manière empirique alors que l’approche bayésienne le définit comme étant le
rapport de la variance du bruit b par la variance de u. Si l’on connâıt ces deux variances,
la valeur de λ est déterminée mais ce n’est bien sûr pas le cas en pratique. Par contre,
cette expression indique bien que plus la variance du bruit est importante, plus la valeur
de λ doit être grande pour obtenir un résultat satisfaisant.

L’approche bayésienne permet de quantifier le degré de confiance que l’on attribue à la
solution estimée û en offrant la possibilité de calculer la matrice de covariance a posteriori
E[(u− û)2] de la solution.

c) Choix de la loi de probabilité a priori

Le problème de la conversion d’une information a priori en une loi de probabilité est
un problème encore largement ouvert. La principale difficulté est qu’une information a
priori se présente rarement directement sous une forme probabiliste. On peut par exemple
savoir par avance que la grandeur u à reconstruire est positive ou bien bornée entre 0 et
1. Il faut ensuite pouvoir construire des lois de probabilité qui puissent incorporer une ou
plusieurs de ces informations.

Les méthodes existantes peuvent être regroupées en trois grandes classes.

Certaines reposent sur la théorie des groupes de transformation pour déterminer la
mesure de référence ”naturelle” pour la grandeur à reconstruire. On utilise ce genre de
méthode lorsqu’on sait peu de choses, c’est-à-dire lorsque l’information a priori se limite
à une connaissance qualitative sur la nature de la grandeur à reconstruire.

D’autres méthodes reposent sur des principes informationnels. Il s’agit principalement
des méthodes dites ”̀a maximum d’entropie” dans lesquelles on recherche une distribution
qui soit la plus proche (au sens d’une distance) d’une distribution de référence (souvent
choisie par l’approche précédente) tout en vérifiant une information incomplète connue a
priori sous la forme de contraintes sur la loi recherchée. Cette approche n’est véritable-
ment applicable que lorsque l’information a priori est faite de contraintes linéaires sur la
distribution recherchée.

Il existe enfin une dernière classe de méthodes, celle des constructions faites ”̀a la
main”. Elles permettent d’incorporer dans une distribution a priori des propriétés locales
essentielles que doit posséder la grandeur à reconstruire. Ces méthodes de construction
reposent en grande partie sur l’expérience personnelle et demandent beaucoup de savoir-
faire.

d) Calcul de la loi de probabilité a posteriori

109



Chapitre 2. Inversion d’un modèle de Volterra

Nous avons vu que dans le cas d’un modèle linéaire gaussien H, la loi de probabi-
lité a posteriori est également gaussienne et donc définie par ses deux premiers moments
(moyenne et matrice de covariance). On dispose donc d’expressions analytiques qui nous
permettent de calculer l’estimée û de la grandeur u et de quantifier le degré de confiance
que l’on peut lui attribuer.

Dans le cas général, le calcul analytique de la loi de probabilité a posteriori p(u | y)
peut devenir plus délicat et on doit souvent se contenter de l’approximer par une loi
gaussienne ou bien de se limiter au calcul de sa moyenne et de sa matrice de covariance
(quand c’est possible). On peut également essayer de définir un estimateur ponctuel à
partir de cette loi, comme le maximum a posteriori :

û = arg max
u

{p(u | y)} = arg min
u

{− ln p(u | y)} (2.98)

ou bien la moyenne a posteriori

û =

∫
up(u | y)du (2.99)

Le calcul du maximum a posteriori est plus souvent utilisé car il ne nécessite qu’une
optimisation alors que le calcul de la moyenne a posteriori fait intervenir la résolution
d’une intégrale de dimension élevée. Dans le cas du modèle linéaire gaussien, cela ne pose
pas de problème car ces deux calculs aboutissent au même résultat. Mais ils peuvent four-
nir des résultats très différents dans le cadre général. Il convient donc d’être prudent dans
les hypothèses de départ et dans les approximations faites ensuite pour le loi de probabilité.

2.2.5 Conclusion

Les différentes approches évoquées dans cette partie permettent la résolution de nom-
breux problèmes inverses bien ou mal posés. Pour des raisons de clarté et de simplicité,
nous n’avons évoqué jusqu’à maintenant que des approches d’inversion destinées à ré-
soudre des problèmes inverses dans le cadre linéaire. Cependant, la majeure partie des
systèmes naturels étant non linéaires, les méthodes d’inversion employées dans le cas de
systèmes linéaires doivent être étendues dans ce cadre plus général. De telles démarches de
généralisation des méthodes d’inversion à des problèmes non linéaires constituent encore
de nos jours une partie importante de la recherche fondamentale.

2.3 Inversion du modèle de Volterra par régularisa-

tion de Tikhonov

2.3.1 Introduction

Nous avons vu qu’une méthode d’inversion bien connue et couramment employée est
la régularisation de Tikhonov [Tikhonov et Arsénine, 1976], [Chavent et Kunisch, 1994],

110
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[Johansen, 1997]. Dans le cas d’un modèle linéaire y = Hu, cette méthode consiste à
minimiser un critère composite J(u) (2.36). Le propos de cette partie est d’adapter cette
technique d’inversion en l’appliquant à un modèle non linéaire : le modèle de Volterra
décrit dans le premier chapitre de ce mémoire [Bibes et al., 2003c], [Bibes et al., 2004].
Cette approche d’inversion du modèle de Volterra a déjà été proposée par [Inglada, 2000]
dans le cadre théorique. Cependant, le modèle obtenu est quasi-linéaire et l’estimation
de la grandeur inconnue revient à une inversion de filtre linéaire. Les différents systèmes
étudiés dans notre travail de thèse possèdent des non-linéarités importantes. Les méthodes
d’inversion proposées seront donc appliquées à des systèmes aux non-linéarités avérées,
participant ainsi à l’originalité de notre approche.

2.3.2 Principe de la méthode

2.3.2.1 Modèle de Volterra

Reprenons la série de Volterra décrite dans le premier chapitre :

y(t) =
∞∑

i=1

(∫ +∞

−∞
. . .

∫ +∞

−∞
hi(τ1, ..., τi)

i∏

j=1

u(t− τj)dτj

)
(2.100)

Cette série peut s’écrire de manière plus synthétique :

y(t) = H[u(t)] (2.101)

Si la (ou les) non-linéarité(s) du système considéré sont relativement douces, la série
de Volterra peut être tronquée à ses premiers termes et utilisée pour modéliser la sortie
y(t) du système. Le modèle ŷ(t) de la sortie s’écrit :

ŷ(t) =
n∑

i=1

(∫ +∞

−∞
. . .

∫ +∞

−∞
hi(τ1, ..., τi)

i∏

j=1

u(t− τj)dτj

)
(2.102)

On notera donc :

ŷ(t) = Ĥ[u(t)] =
n∑

i=1

Hi[u(t)] (2.103)

Nous avons décrit deux manières de modéliser les noyaux de Volterra en les déve-
loppant soit sur des fonctions de transfert, soit sur une base de fonctions orthonormées
multidimensionnelles {Φm1...mi

}.

Dans toute la suite de cette partie, c’est cette dernière méthode de modélisation que
nous utiliserons. En ce qui concerne les fonctions de la base, le choix le plus judicieux est
celui des fonctions orthonormées généralisées unidimensionnelles définies de la manière
suivante :
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Φn(s) =

√
2Re{pn}
s+ pn

n−1∏

k=1

s− pk
s+ pk

(2.104)

Chaque terme Hi[u(t)] sera modélisé ainsi :

Ĥi[u(t), θi] =

Mi∑

m1=0

...

mi−1∑

mi=0

bm1...mi
Im1

(t)...Imi
(t) (2.105)

où le terme Imi
(t) représente la réponse de la fonction Φmi

(s) à l’entrée u(t) du système
non linéaire :

Imi
(t) =

∫ t

0

φmi
(τ)u(t− τ)dτ (2.106)

et où les paramètres bm1...mi
composent le vecteur θi des paramètres qui caractérisent le

modèle du noyau de Volterra d’ordre i.

Le modèle global de Volterra utilisé pour représenter le système non linéaire est donc
le suivant :

ŷ(t, θ) = Ĥ[u(t), θ] =
n∑

i=1

(
Mi∑

m1=0

...

mi−1∑

mi=0

bm1...mi
Im1

(t)...Imi
(t)

)
(2.107)

Le vecteur θ rassemble tous les paramètres de modélisation de chaque noyau de Vol-
terra : θ = [θ1, ..., θn].

2.3.2.2 Inversion du modèle de Volterra

A partir de la connaissance du modèle non linéaire ŷ(t, θ) qui relie la grandeur d’entrée
u(t) à la grandeur de sortie y(t) et d’un vecteur fini y∗ de mesures de la sortie y(t), on

cherche à obtenir une reconstruction correcte Û de l’entrée u(t) du système par la mé-
thode de régularisation de Tikhonov. Remarquons ici que la qualité de la reconstruction
peut être caractérisée par l’erreur quadratique entre l’entrée réelle et l’entrée reconstruite
mais que l’appréciation de la qualité de reconstruction reste à la discrétion de l’utilisateur.

Comme on l’a vu précédemment, la méthode consiste en la minimisation d’un critère
composite défini comme suit :

Jλ(u) =
∥∥∥y − Ĥ[u, θ]

∥∥∥
2

+ λ ‖L(u)‖2 (2.108)

où λ est appelé paramètre de régularisation.

La solution reconstruite Ûλ au sens de la minimisation du critère Jλ(u) est donnée par
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Ûλ = arg min
u

{∥∥∥y − Ĥ[u, θ]
∥∥∥

2

+ λ ‖L(u)‖2

}
(2.109)

a) Cas linéaire

Dans le cas d’un système causal linéaire mono-entrée mono-sortie, la relation liant
l’entrée u(t) à la sortie y(t) du système peut être écrite sous la forme d’un produit de
convolution :

y(t) =

∫ t

0

h(t− τ)u(τ)dτ (2.110)

où h(t), réponse impulsionnelle du système linéaire, est supposée connue.

L’ensemble des mesures y∗ de la sortie y(t) du système est effectué sur un horizon
temporel fini. En d’autres termes, chaque fichier de mesures de la sortie y(t) ne comporte
qu’un nombre fini N de points et représente la sortie y(t) avec une périodicité finie donnée.
C’est à l’utilisateur de s’assurer que ce nombre fini de mesures est suffisant pour repré-
senter avec précision la sortie y(t) du système. La dimension du vecteur y∗ est donc fixée
dès le départ par l’utilisateur, qui choisit lui-même l’horizon des mesures et la période
d’échantillonnage Te.

Ce passage d’une dimension a priori infinie vers une dimension finie N de la sortie y(t)
justifie donc la discrétisation du modèle linéaire (2.110). Une représentation discrète de
la sortie peut être donnée par :

yk =
I∑

i=0

hk−iui =
I∑

i=0

hiuk−i (2.111)

où 1 ≤ k ≤ N .

Les termes hi sont les coefficients de la réponse impulsionnelle discrète du modèle.
Leur expression dépend de la méthode de discrétisation utilisée. Dans l’immense majorité
des cas, la réponse impulsionnelle est supposée finie :

hi ' 0, i > I, i ∈ N (2.112)

Le vecteur y∗ des mesures peut donc s’écrire

y∗ = HU (2.113)

avec

y∗ = [y1, ..., yN ]T

U = [u1, ..., uN ]T
(2.114)
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où ui = u(iTe) pour i = 1, ..., N .

H est une matrice N ×N donnée par

H =




h0 0 · · · · · · · · · · · · 0

h1 h0
. . .

...
...

. . . . . . . . .
...

hI
. . . . . . . . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . h0 0
0 · · · · · · hI · · · h1 h0




(2.115)

Sous cette forme, le problème change de nature car il revient à reconstruire une entrée
U de dimension finie. Dans le cas classique où le paramètre de régularisation λ est nul,
l’entrée reconstruite Ûλ=0 est la solution du problème au sens des moindres carrés :

Ûλ=0 = (HTH)−1HTy∗ (2.116)

Toute les difficultés de ce problème viennent d’un éventuel mauvais conditionnement
de la matrice HTH. L’inversion d’une matrice HTH mal conditionnée et un ensemble de
mesures y∗ de la sortie y(t) entaché d’erreur pourront conduire à une mauvaise recons-

truction Û de l’entrée U . D’où l’intérêt de la méthode de régularisation de Tikhonov qui
conduit, dans le cas linéaire, à la solution suivante :

Ûλ = [HTH + λ(LU)TLU ]−1HTy∗ (2.117)

où L est soit la matrice identité, soit la matrice des dérivées secondes et λ le paramètre
de régularisation.

b) Cas non linéaire : modèle de Volterra

Dans le cas d’un système causal mono-entrée mono-sortie non linéaire par rapport à
l’entrée, la relation liant l’entrée u(t) à la sortie y(t) du système peut également être écrite
sous la forme d’un modèle de Volterra (2.107). Ce modèle est toujours linéaire par rapport
aux paramètres, ce qui facilite l’identification du vecteur θ, mais il devient non linéaire
par rapport à l’entrée u(t).

La reconstruction de l’entrée u(t) par minimisation du critère composite Jλ(u) (2.108)
nécessite alors un algorithme d’optimisation non linéaire. Nous allons utiliser l’algorithme
de Levenberg-Marquardt (1.115) déjà décrit et employé dans le chapitre précédent. Cet
algorithme, ainsi que la plupart des algorithmes de programmation non linéaire, nécessite
la dérivation par rapport à l’entrée u(t) du critère Jλ(u) afin d’obtenir le vecteur gradient
∂Jλ(u)
∂u(t)

et une approximation de la matrice hessienne ∂2Jλ(u)
∂u2(t)

. L’expression du critère com-
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posite Jλ(u) (2.108) montre que le calcul du vecteur gradient et de la matrice hessienne
requiert le calcul des fonctions de sensibilité par rapport à l’entrée u(t) :

∂H[u(t)]

∂u(t)
(2.118)

D’après l’expression du modèle de Volterra (2.107), ce calcul des fonctions de sensibilité
nécessite à son tour le calcul de chaque dérivée de la forme

∂Im1
(t)

∂u(t)
, ...,

∂Imi
(t)

∂u(t)
(2.119)

et de la forme

∂Imi
(t)Imj

(t)

∂u(t)
(2.120)

Le modèle de Volterra développé sur une base de fonctions orthonormées généralisée
(2.107) est suffisamment explicite pour permettre d’effectuer analytiquement le calcul des
fonctions de sensibilité mais le problème du calcul et de la simulation numérique du vec-
teur gradient et de la matrice hessienne se pose : la dimension du vecteur y∗ des mesures
de la sortie y(t) peut considérablement alourdir la somme de calculs numériques nécessaire
à la résolution du problème inverse.

Afin de diminuer la somme de calculs, l’idée est d’adopter une démarche de discréti-
sation semblable à celle présentée dans le cas linéaire : nous choisissons de simuler chaque
fonction φn de la base orthonormée généralisée par l’utilisation de la convolution discrète
et des coefficients ϕi de la réponse impulsionnelle discrète de la fonction Φn(s).

L’expression de la réponse d’une fonction généralisée à l’entrée u(t)

In(t) =

∫ t

0

φn(τ)u(t− τ)dτ (2.121)

devient, après discrétisation

In = φnU (2.122)

où In et U sont des vecteurs de N valeurs données en fonction de la période d’échantillon-
nage Te choisie :

In = [In(kTe)], k = 0, ..., N − 1
U = [u(kTe)], k = 0, ..., N − 1

(2.123)

Le terme φn est une matrice N ×N , analogue à la matrice (2.115) définie dans le cas
linéaire, et donnée par
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φn =




ϕ0 0 · · · · · · · · · · · · 0

ϕ1 ϕ0
. . .

...
...

. . . . . . . . .
...

ϕI
. . . . . . . . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . ϕ0 0
0 · · · · · · ϕI · · · ϕ1 ϕ0




(2.124)

où les coefficients ϕi sont les coefficients de la réponse impulsionnelle discrète de la fonc-
tion Φn(s).

La réponse impulsionnelle de la fonction Φn(s) est finie :

ϕi ' 0, i > I, i ∈ N (2.125)

Une fois cette discrétisation effectuée, le modèle de Volterra global discrétisé, tronqué
à l’ordre n, est donc défini par :

ŷ(θ) = Ĥ[U, θ] =
n∑

i=1

(
Mi∑

m1=0

...

mi−1∑

mi=0

bm1...mi
(φm1

U) � ...� (φmi
U)

)
(2.126)

L’opération � est le produit de Hadamard entre deux matrices A et B défini de la
manière suivante :

A =

[
a1 a2

a3 a4

]
, B =

[
b1 b2
b3 b4

]
, A�B =

[
a1b1 a2b2
a3b3 a4b4

]
(2.127)

Cette discrétisation du modèle de Volterra présente deux avantages. D’abord, la simu-
lation numérique du modèle non linéaire ne comporte que des produits matriciels, ce qui
permet d’alléger la charge de calculs. Ensuite, le calcul du vecteur gradient est grandement
simplifié puisque le calcul des dérivées (2.119) devient

∂Im1

∂U
= φm1

, ...,
∂Imi

∂U
= φmi

(2.128)

et celui des dérivées (2.120) devient

∂(Imi
�Imj

)

∂U
=

∂Imi

∂U
� Imj

+
∂Imj

∂U
� Imi

= φmi
� Imj

+ φmj
� Imi

(2.129)

Le vecteur gradient est donc donné par l’expression

∂Jλ(U)

∂U
= −2ε

∂Ĥ[U, θ]

∂U
+ 2λLTLU (2.130)

où
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ε = y∗ − Ĥ[U, θ] (2.131)

La matrice hessienne est obtenue par l’approximation de Gauss-Newton :

∂2Jλ(U)

∂U2
' 2

(
∂Ĥ[U, θ]

∂U

)T

∂Ĥ[U, θ]

∂U
+ 2λLTL (2.132)

Une fois ces calculs effectués, la reconstruction du signal d’entrée U est donc assurée
par la minimisation du critère composite Jλ(U) (2.108). Un des inconvénients de l’algo-
rithme ci-dessus est qu’il ne garantit pas l’optimalité de la solution, à savoir une entrée
reconstruite Ûλ qui minimise globalement le critère Jλ(U). La reconstruction optimale Ûλ
de l’entrée U dépend du paramètre de régularisation λ et de l’initialisation de l’algorithme
de Levenberg-Marquardt. Le problème d’initialisation de l’algorithme a déjà été discuté
au premier chapitre. Le problème du choix du paramètre λ est inhérent à la méthode de
régularisation de Tikhonov.

2.3.3 Application en simulation

Nous allons maintenant appliquer cette méthode d’inversion du modèle de Volterra
par régularisation de Tikhonov au système non linéaire dont la représentation d’état est
la suivante :

{ .
x(t) = −x(t) − x2(t) + u(t)
y(t) = x(t)

(2.133)

La non-linéarité est introduite par le terme quadratique x2(t). Le modèle de Volterra
utilisé pour représenter la relation entrée/sortie de ce système est développé sur ses 2
premiers noyaux. Ces 2 noyaux sont à leur tour modélisés par un développement sur 4
fonctions orthonormées généralisées. Les pôles des fonctions généralisées sont fixées aux
valeurs −0.5, −1, −1.5 et −2. Le nombre total de paramètres est égal à 14. La période
d’échantillonnage est fixée à 0.01s. La figure 2.3(a) représente la sortie du système non
linéaire (2.133) et la sortie du modèle de Volterra proposé.
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Fig. 2.3 - Comparaison entre sortie du système non linéaire (ligne continue) et sortie du modèle
de Volterra (ligne pointillée)

L’erreur quadratique entre les deux courbes, présentée sur la figure 2.3(b), est très
faible. L’adéquation entre le système et le modèle de Volterra est donc suffisamment
bonne pour envisager l’inversion du modèle de Volterra afin de correctement reconstruire
le signal d’entrée u(t) du système non linéaire connaissant sa sortie y(t).

a) Cas déterministe

Afin de valider la méthode d’inversion et le modèle de Volterra choisi, on commence
par effectuer une minimisation du critère Jλ(u) (2.108) sans paramètre de régularisation,
soit λ = 0, et sans ajouter de bruit au vecteur y∗ des sorties mesurées. Les résultats ob-
tenus sont les suivants :

La figure 2.4(a) compare l’entrée U du système non linéaire et l’entrée reconstruite

Ûλ=0 par la méthode décrite précédemment.
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Fig. 2.4 - Entrée du système non linéaire (ligne continue) et entrée reconstruite (ligne pointillée)

La figure 2.4(b) nous donne l’erreur quadratique entre les deux courbes précédentes.

Ce résultat permet donc de valider le bon fonctionnement de l’algorithme de recons-
truction de l’entrée d’un système non linéaire par régularisation de Tikhonov.

b) Cas stochastique

A la différence du signal de sortie y(t) précédent, tout signal de sortie mesuré est in-
évitablement entaché d’un bruit de mesure. Cette constatation s’étend à tous les types
de signaux mesurés. Ce bruit de mesure a évidemment une influence sur la qualité de
la reconstruction de l’entrée u(t) du système non linéaire et cela même si le modèle de
Volterra est suffisamment précis.

On considère donc dans cette partie un signal y(t) simulé auquel on a ajouté un bruit
blanc gaussien. Le rapport signal sur bruit est fixé à 100. Le modèle de Volterra défini
précédemment (2 noyaux, 14 paramètres) permet un bon compromis entre l’erreur de mo-
délisation (due aux troncatures) et l’erreur de variance (due au bruit) comme le montre
la figure 2.5.
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Fig. 2.5 - Comparaison entre les sorties du système non linéaire et du modèle de Volterra

Nous conservons donc le même modèle de Volterra dans les différentes études qui
suivent : d’abord, l’étude de l’influence du paramètre de régularisation λ ; ensuite l’étude
de l’influence de l’amplitude du bruit de mesure ; et enfin l’étude de l’influence du choix
de l’opérateur L de régularisation qui, dans notre étude, sera une matrice.

i) Influence du paramètre de régularisation λ

Afin d’étudier l’importance du paramètre de régularisation λ dans la reconstruction
de l’entrée u(t) du système non linéaire, nous allons fixer le rapport signal sur bruit à la
valeur 100 et prendre comme opérateur L le plus simple qui soit : la matrice identité I.

On effectue donc la reconstruction de l’entrée u(t) à partir de mesures de la sortie
bruitée y∗ et du modèle de Volterra pour différentes valeurs de λ échelonnées entre 10−5

et 1 (figure 2.6).

120
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(e) λ=10−1
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Fig. 2.6 - Reconstruction de l’entrée u(t) pour différentes valeurs de λ

L’augmentation progressive de la valeur du paramètre de régularisation λ permet de
constater l’influence du deuxième terme du critère composite Jλ(u) (2.108) sur la qualité

de la reconstruction Ûλ de l’entrée u(t).

De manière générale, on retrouve sur l’entrée reconstruite le bruit ajouté à la sortie
y(t) du système, mais d’autant plus amplifié que la valeur de λ est faible. Ceci montre
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bien que, dans le cas où l’on ne régularise que très peu ou pas du tout, l’inversion du
modèle de Volterra est équivalente à un filtrage passe-haut : les composantes en haute
fréquence (c’est à dire le bruit) sont amplifiées. Il en résulte une reconstruction de l’en-
trée u(t) fidèle au données mesurées mais fortement bruitée. On constate à nouveau que
l’absence totale de régularisation est équivalente à reconstruire l’entrée par la méthode
classique des moindres carrés.

L’ajout du terme de régularisation λ ‖L(u)‖2 et l’augmentation progressive de la va-
leur du paramètre λ permet de vérifier son influence sur la qualité de la reconstruction
de l’entrée u(t). Si la valeur de λ augmente trop, ce n’est plus l’adéquation aux données
mesurées qui est privilégiée mais plutôt l’information a priori que l’on possède sur l’en-
trée u(t). Il en résulte une atténuation importante du bruit sur la solution reconstruite
mais on observe également que le signal reconstruit U n’est plus du tout en adéquation
avec l’entrée réelle u(t) du système non linéaire : la régularisation a occasionné une perte
d’information par rapport aux données mesurées.

Ces observations indiquent donc qu’il est nécessaire de trouver un compromis entre
l’importance accordée aux données et celle accordée à la régularisation de la solution. Ce
compromis doit donc être effectué sur le choix de la valeur du paramètre λ.

Différents essais de reconstruction de l’entrée u(t) montrent que la meilleure valeur du
paramètre de régularisation λ se situe aux alentours de 0.005 comme le montre la figure
2.7. Ceci est conforme au résultat de l’approche bayésienne qui définit le coefficient de
régularisation optimal comme étant le rapport λopt = σ2

b/σ
2
u de la variance du bruit par

la variance de l’entrée u(t) à reconstruire. Dans notre application, ce rapport est égal à
0.0049.
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Fig. 2.7 - Reconstruction de l’entrée u(t) pour λ = 0.005

On remarque que cette valeur λopt, qui offre pourtant un compromis entre le niveau de

bruit de l’entrée reconstruite Ûλ et sa régularisation, ne permet pas d’obtenir une recons-
truction totalement satisfaisante car cette dernière reste relativement bruitée. Le niveau
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de bruit des données mesurées a donc une importance capitale pour la reconstruction de
l’entrée d’un système par inversion de modèle. Le paragraphe suivant propose donc d’ob-
server l’influence du bruit de mesure sur la qualité de la reconstruction de l’entrée u(t) du
système non linéaire.

ii) Influence du bruit de mesure

Afin d’observer l’influence du bruit de mesure, nous allons ajouter aux données de
sortie mesurées y∗ un bruit d’amplitude croissante. Dans chaque cas, on fixe le paramètre
de régularisation λ à une valeur optimale λopt et on garde L = I comme opérateur de ré-
gularisation agissant sur l’entrée u(t). On fait varier le rapport signal sur bruit de manière
à obtenir des données de sortie faiblement bruitées (rapport S/B égal à 10000) jusqu’à des
données fortement bruitées (rapport S/B égal à 20). L’ensemble de figures 2.8 représente
l’entrée reconstruite pour ces différents niveaux de bruit.
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(a) Rapport signal/bruit égal à 10000 ; λopt =
4.91e − 5
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(b) Rapport signal/bruit égal à 1000 ; λopt =
4.91e − 4
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(c) Rapport signal/bruit égal à 100 ; λopt =
4.91e − 3
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(d) Rapport signal/bruit égal à 20 ; λopt =
2.45e − 2

Fig. 2.8 - Reconstruction de l’entrée u(t) pour différents niveaux de bruit de la sortie mesurée
y(t)
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Malgré une valeur du paramètre λ qui respecte au mieux le compromis entre adéqua-
tion aux données et régularisation de l’entrée reconstruite, on constate qu’un fort niveau
de bruit ajouté aux données mesurées y(t) dégrade considérablement le signal reconstruit
jusqu’à le rendre inutilisable (cas d’un rapport signal sur bruit égal à 20 sur la figure
2.8(d)).

La mesure du signal de sortie doit donc être la plus précise possible. Cependant, dans
certains cas de figure, il n’est pas possible d’éliminer complètement le bruit de mesure sans
perdre d’information sur le signal de sortie y(t). Le filtrage des données ne suffit pas à
obtenir une entrée reconstruite suffisamment proche de la véritable entrée du système non
linéaire. Il faut donc trouver un autre moyen de limiter l’amplification du bruit de mesure.

Une solution consiste à modifier le critère composite Jλ(u) en choisissant une matrice
de régularisation L autre que la matrice identité.

iii) Influence du choix de la matrice de régularisation L

Nous venons de voir que le problème de l’amplification du bruit de mesure ne peut être
évité lors de l’inversion du modèle de Volterra (ou de n’importe quel modèle linéaire ou
non linéaire). On peut cependant modifier la deuxième partie du critère composite Jλ(u)

pour agir sur l’entrée reconstruite Ûλ et tenter de minimiser l’importance du bruit.

Jusqu’ici, la matrice de régularisation L considérée était la matrice identité. On se
contentait donc de minimiser la norme ‖.‖2 de l’entrée reconstruite U . Un autre choix
possible est de minimiser non pas la norme de l’entrée reconstruite mais celle de la dérivée
seconde de l’entrée reconstruite afin d’adoucir les variations brusques occasionnées par le
bruitage des données mesurées.

Le critère composite Jλ(u) devient donc :

Jλ(u) = ‖y −H[u]‖2 + λ

∥∥∥∥
d2u

dt2

∥∥∥∥
2

(2.134)

étant donné que l’on travaille sur des mesures discrètes et sur un modèle de Volterra
discrétisé qui nous a conduit au critère composite discrétisé suivant :

Jλ(U) =
∥∥∥y − Ĥ[U, θ]

∥∥∥
2

+ λ ‖LU‖2 (2.135)

il est nécessaire de discrétiser l’opérateur dérivée seconde d2

dt2
afin de l’appliquer au vecteur

U de dimension finie.

Considérons une fonction f(t) échantillonnée avec une période Te sur un horizon de N
points. Sur cet horizon, la fonction f(t) est représentée par le vecteur fini :

[f1, f2, ..., fi, ..., fN ] (2.136)
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avec

fi = f(iTe) (2.137)

Selon la méthode d’Euler, une approximation de la dérivée seconde de la fonction f(t)
au temps t = iTe est donnée par :

(
d2f

dt2

)

t=iTe

' f((i− 1)Te) − 2f(iTe) + f((i+ 1)Te)

T 2
e

(2.138)

que l’on peut écrire plus simplement

fi−1 − 2fi + fi+1

T 2
e

(2.139)

On peut donc écrire une approximation de la dérivée seconde de l’entrée reconstruite
U au temps t = kTe de la manière suivante :

U((k − 1)Te) − 2U(kTe) + U((k + 1)Te)

T 2
e

(2.140)

ou, plus simplement

Uk−1 − 2Uk + Uk+1

T 2
e

(2.141)

A partir de l’approximation de la dérivée seconde de chaque composante du vecteur
U , on peut donc définir une matrice L d’approximation de la dérivée seconde de l’entrée
reconstruite U :

L =
1

T 2
e




1 −2 1 0 0 · · · 0

0 1 −2 1
. . .

...

0
. . . 1 −2 1

. . . 0
...

. . . . . . . . . . . . 0
0 · · · 0 0 1 −2 1




(2.142)

On appelle plus communément matrice des dérivées secondes la matrice L ainsi définie.

Si l’on multiplie cette matrice par le vecteur U , on obtient un vecteur d’approximations
de la dérivée seconde de chaque composante :

1

T 2
e




U1 − 2U2 + U3
...

Uk−1 − 2Uk + Uk+1
...

UN−2 − 2UN−1 + UN




(2.143)

On peut maintenant utiliser cette discrétisation de l’opérateur dérivée seconde dans
le critère composite Jλ(U) afin d’en observer les effets sur la qualité de la reconstruction
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de l’entrée u(t) du système non linéaire. On va dans un premier temps se placer dans les
mêmes conditions de simulation que dans le cas des figures 2.6(a) à 2.6(f). Le rapport
signal sur bruit reste égal à 100. Selon différentes valeurs du coefficient de régularisation
λ, les résultats obtenus sont ceux de l’ensemble de figures 2.9.
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Fig. 2.9 - Reconstruction de l’entrée u(t) pour différentes valeurs de λ et L matrice des dérivées
secondes
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On remarque tout d’abord que les valeurs considérées du coefficient de régularisation
λ sont différentes des valeurs utilisées dans le cas de l’ensemble des figures 2.6(a) à 2.6(f).
Ceci peut s’expliquer par la forme de la matrice L des dérivées secondes (2.142) appliquée
au vecteur d’entrée discrétisé U . En effet, les coefficients de cette matrice sont multipliés
par le coefficient 1

T 2
e

qui dépend de la période d’échantillonnage Te. Puisque la période
d’échantillonnage est Te = 0.01s, la matrice L se retrouve multipliée par un coefficient
1
T 2

e
= 10000. Le deuxième terme du critère composite Jλ(u) (2.134) prend donc beaucoup

plus d’importance que le premier dans la reconstruction de l’entrée U . Afin de relativiser
l’importance de ce second terme, il faudra donc considérer des valeurs de λ très faibles,
de l’ordre de 10−4.

Comparons maintenant la reconstruction de l’entrée U en utilisant la matrice identité
(figures 2.6(a) à 2.6(f)) à celle qui utilise la matrice des dérivées secondes (figures 2.9(a)
à 2.9(f)). On peut constater d’une part que l’effet de filtrage introduit par l’utilisation de
la dérivée seconde de l’entrée reconstruite U est visible à partir d’une certaine valeur du
paramètre λ située autour de la valeur 10−7. Le terme λ

T 2
e

qui multiplie la matrice L est

donc égal à 10−3, valeur du même ordre de grandeur que celle optimale λ = 0.005 que
nous avons considéré lors de l’utilisation de la matrice identité.

Mais, d’autre part, on constate que l’augmentation de la valeur du paramètre λ (figure
2.9(f)) n’occasionne pas de dégradation de la reconstruction de l’entrée comme c’était le
cas lors de l’utilisation de la matrice identité.

2.3.4 Volume de calcul

Un problème qui n’a pas été abordé jusqu’à maintenant est celui du temps de calcul
et de simulation nécessaire pour l’inversion du modèle de Volterra. En effet, suivant la
dimension du vecteur U à reconstruire (généralement fixée par la dimension du vecteur
y∗ des données mesurées), ce temps peut devenir prohibitif, de l’ordre de plusieurs heures
de calcul. Cette charge de calcul s’explique en grande partie par la dimension du vecteur
y∗ des points de mesure. De manière générale, il n’est pas rare de travailler sur des vec-
teurs de points dont la dimension atteint facilement 1000, voire davantage, selon l’horizon
temporel et la période d’échantillonnage Te choisis par l’utilisateur. Les matrices φn et L
considérées pour simuler la sortie ŷ(θ) du modèle de Volterra et pour minimiser le cri-
tère composite Jλ(U) sont donc également de dimension très importante. Par conséquent,
effectuer une simulation de sortie de modèle de Volterra ainsi qu’une minimisation de
critère sur toute l’étendue de l’horizon des mesures coûte très cher en temps de calcul,
même pour les processeurs actuels dont la puissance de calcul augmente régulièrement.
En outre, la charge de calcul nécessaire, si on utilise la méthode telle quelle, ne permet
pas d’envisager la reconstruction d’un signal d’entrée en temps réel.

Une solution consiste donc à ne pas envisager la minimisation du critère Jλ(U) sur
l’ensemble N des points de mesure mais plutôt sur un horizon donné I � N (figure 2.10).
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Fig. 2.11 - Horizon J + I de reconstruction

A l’instant k, l’entrée a déjà été reconstruite pour k−1 échantillons et on la reconstruit
pour l’échantillon k après minimisation du critère Jλ(U) sur l’horizon [k, k+I]. On déplace
ensuite l’horizon I en introduisant une nouvelle mesure, d’où le nom de reconstruction
sur fenêtre glissante. Une fois qu’on a atteint la valeur I = N , le signal d’entrée u(t) est
reconstruit sur l’horizon entier.

La charge de calcul liée à l’optimisation sur I points est ainsi limitée.

Cependant, le nombre de points sur lesquels on reconstruit l’entrée augmente à chaque
nouvelle mesure considérée. Par conséquent, l’horizon de simulation du modèle de Volterra
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est en perpétuelle augmentation. Là aussi, une solution consiste à envisager la reconstruc-
tion de l’entrée sur un horizon donné J + I < N dont la largeur est fixée par l’utilisateur
(figure 2.11).

La figure 2.12 illustre cette technique de reconstruction par minimisation de critère
sur une fenêtre glissante.

A l’instant k, l’entrée u(t) a déjà été reconstruite sur l’horizon [0, k − 1]. On dispose
donc d’un vecteur

Ûk−1 = [U(0), ..., U(iTe), ..., U((k − 1)Te)] (2.144)

On note ce vecteur plus simplement

Ûk−1 = [U0, ..., Ui, ..., Uk−1] (2.145)

L’étape suivante est de déterminer la reconstruction optimale Uopt de l’entrée u(t) sur
l’horizon [k, k + I] par minimisation du critère composite :

Jλ,k(U) =
k+I∑

i=k

(y∗i − ŷi)
2 + λ

k+I∑

i=k

U2
i (2.146)

où les termes y∗i sont les mesures de la sortie y(t) du système non linéaire sur l’horizon
[k, k + I].

Le terme ŷ = Ĥ[U, θ] est la réponse simulée du modèle de Volterra à l’entrée U sur
l’horizon [k − J, k + I]. Cette simulation n’est donc pas effectuée sur l’horizon global
[0, k + I] mais sur un horizon réduit afin de diminuer la charge de calcul nécessaire.

On utilise un algorithme de programmation non linéaire de type Levenberg-Marquardt
pour minimiser le critère Jλ,k(U). Le vecteur U est initialisé à la valeur 0 à chaque instant
k.

La minimisation du critère Jλ,k(U) permet d’obtenir la reconstruction Uopt de l’entrée
u(t) sur l’horizon [k − J, k + I] mais on ne conserve que l’échantillon correspondant à
l’instant k :

Uk = Uopt(k) (2.147)

On dispose maintenant du vecteur

Ûk = [U0, ..., Ui, ..., Uk] (2.148)

L’étape suivante consiste à incrémenter la valeur de k et minimiser le critère Jλ,k+1(U).
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Fig. 2.12 - Reconstruction de l’entrée u(t) sur une fenêtre glissante

Cette technique permet donc de réduire le temps de calcul global en limitant le temps
consacré à la minimisation du critère composite Jλ,k(U) et à la simulation de la sortie ŷ
du modèle de Volterra. L’entrée u(t) n’est plus reconstruite globalement sur l’horizon des
mesures mais de manière itérative, point par point, en considérant un horizon de simu-
lation réduit à I + J points et un horizon de minimisation de critère réduit à I points.
On peut ainsi passer de plusieurs heures de calcul à seulement quelques minutes. On peut
encore diminuer ce temps en choisissant des valeurs de I et J faibles et ainsi envisager une
exploitation en temps réel mais un choix de valeurs trop faibles peut dégrader la qualité
de reconstruction de l’entrée à cause de l’étroitesse de l’horizon d’optimisation I et de
simulation [I +J ]. Il est donc nécessaire de respecter un compromis entre temps de calcul
et qualité de reconstruction. Ce compromis peut empêcher d’implémenter cette méthode
en temps réel pour des systèmes rapides.

Si les valeurs de I et J sont convenablement choisies, cette technique de reconstruction
de l’entrée u(t) n’affecte en rien la qualité de l’entrée reconstruite Û sur l’horizon global.
On peut reprendre le cas où la valeur du paramètre de régularisation λ est fixé à la valeur
0.001 et la matrice L est celle des dérivées secondes (cf figure 2.13).
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Fig. 2.13 - Reconstruction de l’entrée u(t) sur une fenêtre glissante pour λ = 0.001

La méthode présentée permet donc de diminuer considérablement le volume de calcul
nécessaire à la reconstruction du signal d’entrée.

2.3.5 Conclusion

L’étude de l’inversion d’un modèle par la méthode de régularisation de Tikhonov ap-
pliquée dans un cas non linéaire (celui du modèle de Volterra) fait ressortir un certain
nombre de problèmes ouverts, dont la plupart concernent également les modèles linéaires.

Tout d’abord, la question de la forme du modèle employé et le fait qu’il puisse correc-
tement représenter le système réel étudié doivent rester au centre des préoccupations de
l’utilisateur car ces deux considérations doivent être antérieures au problème de l’inver-
sion. Le modèle de Volterra considéré dans cette étude est un type particulier de modèle
parmi d’autres. Nous verrons dans la partie de ce mémoire consacrée aux applications
qu’il convient dans les deux cas considérés mais d’autres modèles pourraient bien sûr re-
présenter tout aussi correctement le comportement des systèmes réels étudiés. Par contre,
la méthode d’inversion par régularisation ne pourra peut-être pas s’appliquer à ces autres
formes de modèle. Ceci met l’accent sur la difficulté à définir une méthode d’inversion
globale, que ce soit dans le cas linéaire ou non linéaire.

Un autre problème ouvert aussi bien en linéaire qu’en non linéaire est la détermina-
tion du paramètre de régularisation optimal. Dans notre cas, cette détermination n’a pu
se faire qu’à la suite de différents essais/erreurs et de comparaisons entre l’entrée réelle du
système et l’entrée reconstruite. La présence de bruit sur les données mesurées ne facilite
pas ce choix optimal du paramètre.

Un problème n’a pas été soulevé dans cette partie mais reste d’une importance capitale
dans le cas non linéaire et ne se limite pas qu’au problème d’inversion de système. Il s’agit
bien sûr de la minimisation de critère. La méthode employée dans notre cas est celle de
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Levenberg-Marquardt. Les résultats obtenus sont relativement satisfaisants mais, comme
on l’a vu dans la première partie du mémoire, cette méthode ne garantit pas un résultat
optimal. La reconstruction de l’entrée réelle du système non linéaire après minimisation
du critère régularisé nous fournit un résultat correct mais qui peut se révéler sous-optimal.

Cette étude a donc montré que la méthode d’inversion de modèle par régularisation
de Tikhonov peut s’appliquer en utilisant un modèle de Volterra discrétisé et une fenêtre
d’optimisation glissante.

2.4 Inversion du modèle de Volterra par retour d’en-

trée reconstruite [George, 1959]

2.4.1 Introduction

Une alternative possible à la régularisation de Tikhonov appliquée à l’inversion d’un
système non linéaire consiste en l’utilisation d’une représentation implicite de l’inverse
du modèle non linéaire considéré. Les deux méthodes que nous allons décrire sont très
proches l’une de l’autre dans leur principe et nécessitent toutes deux un retour additif de
l’entrée reconstruite sur le signal mesuré utilisé pour reconstruire cette même entrée. De
même que la régularisation de Tikhonov, ces deux méthodes ne nécessitent en aucun cas
de procéder à une inversion explicite du modèle non linéaire considéré.

Ces deux approches sont relativement intuitives et permettent la reconstruction point
par point d’un signal d’entrée en utilisant uniquement la sortie mesurée et un modèle du
système non linéaire. La forme de modèle que nous utiliserons est une série de Volterra
dont chaque noyau est approché par un développement sur des fonctions de transfert.
Afin d’assurer une reconstruction de qualité, le modèle doit représenter le plus précisé-
ment possible la sortie du système non linéaire.

L’application de ces deux méthodes de reconstruction à un système non linéaire en
simulation permettra de constater que les résultats de reconstruction obtenus sont précis
et tout à fait comparables entre eux et à ceux obtenus par régularisation.

2.4.2 Première approche

2.4.2.1 Principe

Les conditions de départ sont les mêmes que dans la partie précédente : on considère
un système non linéaire dont l’entrée est notée u(t) et la sortie y(t), modélisé par un
développement tronqué en série de Volterra. Nous utiliserons dans toute la suite de cette
partie le modèle de Volterra développé sur fonctions de transfert. Cette forme de modéli-
sation a été étudiée au chapitre 1. L’ensemble des résultats présentés peuvent également
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s’appliquer au modèle de Volterra développé sur bases de fonctions orthonormées.

Dans toute la suite de cette partie, on utilise la forme de modèle définie par la figure
1.28 du premier chapitre. Chaque terme Dji(ai,j, pj,i) représente donc une fonction de
transfert d’ordre pj,i ∈ N (somme de fonctions de transfert d’ordre k ∈ N, k = 0, ..., pj,i)
et est donné par l’expression (1.132).

La première approche considérée afin d’obtenir une reconstruction acceptable û de
l’entrée u(t) à partir de la sortie mesurée y(t) et du modèle de Volterra H[u(t)] d’un
système non linéaire repose sur le schéma d’inversion en boucle fermée donné sur la figure
2.14.

·̧¹º »¼+

+

½¾
−

Fig. 2.14 - Schéma de reconstruction de l’entrée u(t)

La fonctionnelle H qui relie la sortie y(t) du système non linéaire à son entrée u(t) est
définie par l’expression

y(t) =
∞∑

i=1

Hi[u(t)] (2.149)

avec

Hi[u(t)] =

∫ +∞

−∞
. . .

∫ +∞

−∞
hi(τ1, ..., τi)

i∏

j=1

u(t− τj)dτj (2.150)

On peut définir la fonctionnelle I de la manière suivante :

I[u(t)] =
∞∑

i=1

Ii[u(t)] (2.151)

On considère une fonction multidimensionnelle x(t1, ..., ti) et on lui applique la fonc-
tionnelle Ii de la manière suivante :

Ii[x(t1, ..., ti)] =

∫ t1

0

. . .

∫ ti

0

δ(t1 − τ1, ..., ti − τi)x(t1, ..., ti)
i∏

j=1

dτj (2.152)
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La fonction δ est une impulsion de Dirac. Par définition, l’impulsion de Dirac est
l’élément neutre du produit de convolution. L’expression (2.152) est donc égale à :

Ii[x(t1, ..., ti)] = x(t1, ..., ti) (2.153)

Si l’on remplace maintenant la fonction x par le signal d’entrée u du système non
linéaire et que l’on se place dans le cas particulier où t1 = ... = ti = t, l’expression (2.152)
peut s’écrire :

Ii[u(t, ..., t)] =
i∏

j=1

u(t) = ui(t) (2.154)

La somme de deux fonctionnelles étant une fonctionnelle, on peut par conséquent
développer le terme (I −H)[u(t)] comme une fonctionnelle classique :

(I −H)[u(t)] =
∞∑

i=1

(Ii −Hi)[u(t)] (2.155)

avec

(Ii −Hi)[u(t)] = ui(t) −Hi[u(t)] (2.156)

L’expression de Hi[u(t)] est donnée par (2.150).

Le schéma de la figure 2.14 est équivalent à la figure 2.15 où la fonctionnelle L relie
l’entrée reconstruite û à la sortie mesurée y(t).

¿
ÀÁÂÃ ÄÅ

Fig. 2.15 - Schéma équivalent de reconstruction de l’entrée u(t)

La fonctionnelle L peut être développée de manière classique en une somme de fonc-
tionnelles :

L[y(t)] =
∞∑

i=1

Li[y(t)] (2.157)

Nous allons maintenant montrer que la fonctionnelle L (qui associe l’entrée recons-
truite û(t) à la sortie y(t) du système non linéaire) est l’inverse de la fonctionnelle de
Volterra H (qui associe la sortie y(t) à l’entrée u(t) du système non linéaire).
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Considérons d’abord le cas simple où la sortie mesurée y(t) n’est pas bruitée. Le schéma
de la figure 2.14 permet d’écrire la relation :

û = y(t) + (I −H)[û(t)] (2.158)

Le schéma équivalent 2.15 nous donne la relation û = L[y(t)] que l’on peut introduire
dans la relation (2.158) :

L[y(t)] = y(t) + (I −H)[L[y(t)]] (2.159)

La fonctionnelle I −H peut être développée en une somme de deux fonctionnelles :

L[y(t)] = y(t) + I[L[y(t)]] −H[L[y(t)]]
= y(t) + L[y(t)] −H[L[y(t)]]

(2.160)

Après simplification, on obtient :

y(t) = H[L[y(t)]] (2.161)

On en déduit donc que la fonctionnelle L est l’inverse de la fonctionnelle H. Le prin-
cipe du schéma 2.14 peut donc être utilisé pour reconstruire l’entrée u(t) du système non
linéaire à partir de la connaissance du modèle de Volterra et de la mesure de la sortie y(t).

2.4.2.2 Application à un système non linéaire

Afin de valider en simulation cette méthode d’inversion, on prend l’exemple d’un sys-
tème non linéaire quadratique dont la représentation d’état est la suivante :

{ .
x(t) = −10−6x(t) − x2(t) + 10−6u(t)
y(t) = 250x(t)

(2.162)

Ce système est différent de celui utilisé précédemment afin d’éviter certains problèmes
numériques lors des simulations. On considère comme signal d’entrée la séquence pseudo-
aléatoire variable en amplitude présenté sur la figure 2.16(a). La période d’échantillonnage
est cette fois fixée à Te = 1s.

135



Chapitre 2. Inversion d’un modèle de Volterra

0 1 2 3 4 5 6 7 8

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

(a) Entrée u(t)

0 1 2 3 4 5 6 7 8

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(b) Sortie y(t)

Fig. 2.16 - Simulation du système non linéaire (2.162)

La réponse du système non linéaire (2.162) est représentée sur la figure 2.16(b).

Afin de représenter correctement le lien entre ces deux signaux, le modèle de Volterra
utilisé est développé sur ses deux premiers noyaux. Le premier noyau de Volterra est en-
suite modélisé par un développement sur une fonction de transfert tandis que le deuxième
est modélisé par un développement sur deux fonctions de transfert. Le nombre total de
paramètres du modèle est égal à 8.

La sortie du modèle de Volterra et du système non linéaire (2.162) sont proches comme
le montrent les figures 2.17(a) et 2.17(b).
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(b) Erreur quadratique

Fig. 2.17 - Sortie du système non linéaire (ligne continue) et du modèle de Volterra (ligne poin-
tillée)

On dispose donc d’un modèle de Volterra suffisamment précis et d’une mesure non
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bruitée de la sortie y(t) du système non linéaire étudié. On peut donc appliquer la mé-
thode d’inversion proposée afin de la valider.

Le modèle de Volterra tronqué à ses deux premiers noyaux étant suffisant pour cor-
rectement représenter la sortie du système non linéaire, on tronque également à ses deux
premiers termes la fonctionnelle I définie par (2.151) :

I[u(t)] = I1[u(t)] + I2[u(t)]
= u(t) + u2(t)

(2.163)

Remarquons que l’augmentation de l’ordre de troncature du modèle de Volterra et
de la fonctionnelle I n’apporte rien de plus à la précision des résultats obtenus par cette
méthode.

Cette première méthode de reconstruction de l’entrée u(t) donne les résultats figurant
sur les courbes de la figure 2.18.
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Fig. 2.18 - Comparaison de l’entrée du système non linéaire (courbe continue) avec l’entrée
reconstruite (ligne pointillée)

La qualité de la reconstruction de l’entrée est donc satisfaisante. Toutefois, on re-
marque certaines différences entre l’entrée u(t) réelle et l’entrée reconstruite û malgré la
précision du modèle de Volterra. De plus, l’apparition de pics dans la reconstruction de
l’entrée peut gêner l’utilisateur si leur amplitude prend trop d’importance par rapport à
celle du signal d’entrée réel. Une solution pourrait être le filtrage des composantes haute
fréquence du signal reconstruit afin d’atténuer le plus possible ces ”effets de bord”gênants.

Un avantage de cette approche par rapport à la méthode d’inversion par régularisation
de Tikhonov est le faible temps de calcul qu’elle nécessite. En effet, le temps total néces-
saire à la reconstruction de l’entrée u(t) ne dépasse pas ici quelques dizaines de secondes.
Cette différence s’explique en grande partie par l’utilisation nécessaire d’un algorithme
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de programmation non linéaire, très coûteux en temps de calcul, qui ralentit donc la pro-
cédure de reconstruction de l’entrée par minimisation de critère. La première approche
proposée dans cette partie ne possède pas cet inconvénient, ce qui permet de se rapprocher
davantage de l’objectif de reconstruction de l’entrée du système non linéaire en temps réel.

Cette première application nous a donc permis de valider la méthode d’inversion pro-
posée.

2.4.2.3 Influence du bruit de mesure sur la reconstruction

La sortie mesurée y∗(t) du système non linéaire et un modèle de Volterra suffisamment
précis permettent la reconstruction rapide de l’entrée par la méthode proposée. Cepen-
dant, nous avons déjà vu que toute mesure est inévitablement entachée de bruit. Afin
de valider complètement la méthode proposée et de pouvoir la comparer à la méthode
d’inversion par régularisation de Tikhonov, il est donc nécessaire d’étudier l’influence du
bruit de mesure de la sortie sur la reconstruction û de l’entrée u(t).

On ajoute à la grandeur de sortie du système un bruit gaussien b2(t) (figure 2.19).
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Fig. 2.19 - Ajout de bruit sur le signal de sortie du système

Le signal de sortie y∗(t) utilisé pour reconstruire l’entrée est donc différent de celui
utilisé en l’absence de bruit.

Le signal û∗ reconstruit par inversion du modèle de Volterra sera lui aussi différent à
la fois du véritable signal d’entrée u(t) et du signal reconstruit û en l’absence de bruit.
On peut noter ce signal reconstruit û∗ comme la somme du véritable signal d’entrée u(t)
et d’une erreur de reconstruction que l’on nomme b1(t) (figure 2.19).

û∗ = u(t) + b1(t) (2.164)
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En l’absence de bruit de mesure, on a déjà montré que la reconstruction û est identique
à l’entrée u(t) car la fonctionnelle L est l’inverse exacte de la fonctionnelle H.

y(t) = H[u(t)]
û = u(t) = L[y(t)]

(2.165)

En présence d’un bruit de mesure b2(t) ajouté au signal de sortie y(t), la reconstruction
û∗ ne sera pas exactement identique au signal d’entrée u(t). On peut écrire :

û∗ = L[y∗(t)] = L[y(t) + b2(t)] (2.166)

On peut développer cette expression en la séparant en deux termes :

û∗ = L[H[u(t)] + b2(t)] = u(t) + L[b2(t)] (2.167)

En considérant les expressions (2.164) et (2.167), on obtient finalement :

b1(t) = L[b2(t)] (2.168)

Ceci confirme que l’erreur de reconstruction b1(t) dépend uniquement du bruit de me-
sure b2(t). Nous verrons par la suite quelle est l’influence de la fonctionnelle L (inverse
exacte de H) sur l’amplitude de l’erreur de reconstruction en fonction de celle du bruit
de mesure.

On reprend l’exemple du système non linéaire quadratique (2.162) mais en utilisant
un signal de sortie bruité (rapport signal/bruit égal à 100) et on identifie à nouveau les
paramètres du modèle de Volterra. La sortie bruitée du système quadratique et celle du
modèle de Volterra sont présentées sur la figure 2.20.
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Fig. 2.20 - Sortie bruitée (courbe claire) et sortie du modèle de Volterra (courbe foncée

139



Chapitre 2. Inversion d’un modèle de Volterra

Le résultat de la reconstruction û∗ de l’entrée u(t) par la méthode présentée précé-
demment est donné sur la figure 2.21(a).
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(a) Entrée réelle (courbe foncée) et entrée re-
construite (courbe claire)

0 1 2 3 4 5 6 7 8

x 10
4

0

0.5

1

1.5

2

2.5
x 10

−3

(b) Erreur quadratique

Fig. 2.21 - Comparaison de l’entrée du système non linéaire (courbe foncée) avec l’entrée re-
construite (courbe claire)

L’erreur quadratique entre les courbes de la figure 2.21(a) est représentée sur la figure
2.21(b).

La variance du bruit b2(t) ajouté au signal de sortie est égale à 5.38e − 6 tandis que
la variance du ”bruit” qui entache le signal d’entrée reconstruit est égale à 4.28e − 5. La
procédure d’inversion a donc multiplié par un facteur d’ordre 10 le bruit de mesure ajouté
au signal de sortie y(t).

Malgré la présence de bruit et de pics de reconstruction, la qualité de reconstruction
de l’entrée u(t) est tout à fait correcte. Cette technique de reconstruction peut donc per-
mettre de contourner le problème d’amplification de bruit dû à l’inversion de modèle.

2.4.3 Deuxième approche

2.4.3.1 Principe

On se place dans les mêmes conditions que la première approche : on utilise la forme
de modèle de Volterra définie par la figure 1.28, où chaque terme Dji(ai,j, pj,i) repré-
sente une fonction de transfert d’ordre pj,i ∈ N (somme de fonctions de transfert d’ordre
k ∈ N, k = 0, ..., pj,i) et est donné par l’expression (1.132).

La deuxième approche de reconstruction de l’entrée u(t) à partir de la sortie mesurée
y(t) et du modèle de Volterra H[u(t)] repose également sur un schéma d’inversion en
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boucle fermée présenté par la figure 2.22.
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Fig. 2.22 - Schéma de reconstruction de l’entrée u(t)

Les termes K1 et K2 sont des constantes positives et l’on suppose que K1 = 1/K2.
Nous verrons que le choix des valeurs de ces deux constantes est important pour la qualité
de la reconstruction de l’entrée u(t) et que ce choix peut s’apparenter à celui du paramètre
λ de la méthode d’inversion par régularisation de Tikhonov.

La fonctionnelle H qui relie la sortie y(t) du système non linéaire à son entrée u(t) est
définie par les expressions (2.149) et (2.150).

Ce schéma présente des caractéristiques similaires au schéma de la figure 2.14 étudié
dans la section précédente. Nous verrons plus tard que, dans certains cas, ces deux sché-
mas sont équivalents.

De même que la première approche étudiée, le schéma 2.22 est équivalent à la figure
2.23 où la fonctionnelle M relie l’entrée reconstruite û à la sortie mesurée y(t).

Ñ
ÒÓÔÕ Ö×

Fig. 2.23 - Schéma équivalent de reconstruction de l’entrée u(t)
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La fonctionnelle M possède les mêmes propriétés que la fonctionnelle L et peut être
développée en une somme de fonctionnelles :

M [y(t)] =
∞∑

i=1

Mi[y(t)] (2.169)

De même que dans l’approche précédente, on va montrer que la fonctionnelle M est
l’inverse de la fonctionnelle de Volterra H.

On considère d’abord le cas où la sortie mesurée y(t) n’est pas bruitée. D’après le
schéma 2.22, l’entrée reconstruite peut s’écrire :

û = K1[y(t) −H[û] +K2[û]] (2.170)

Développons cette relation :

û = K1y(t) −K1[H[û]] +K1K2û (2.171)

Les termes K1 et K2 étant des coefficients, on a bien les relations K1[y(t)] = K1y(t)
et K2[û] = K2û.

étant donné que K1K2 = 1, on peut simplifier la relation (2.171) :

K1y(t) = K1[H[û]] (2.172)

On peut également simplifier par le coefficient K1 et d’après le schéma équivalent 2.23,
on a dans le cas d’un signal de sortie non bruité y(t) la relation û = M [y(t)], que l’on
peut introduire dans la relation (2.172) :

y(t) = H[M [y(t)]] (2.173)

On en déduit que la fonctionnelle M est l’inverse de la fonctionnelle H. Le schéma
2.22 peut donc également être utilisé pour obtenir une reconstruction exacte û de l’entrée
u(t) du système non linéaire à partir de la sortie y(t) non bruitée et du modèle de Volterra.

2.4.3.2 Application à un système non linéaire

Afin de valider cette deuxième approche et de pouvoir la comparer à la première, on
utilise les mêmes signaux d’entrée et de sortie (figures 2.16(a) et 2.16(b)) que pour la
première approche. La période d’échantillonnage est toujours égale à 1s et la structure du
modèle de Volterra reste la même : la série est tronquée à ses deux premiers termes et le
nombre de paramètres est égal à 8.

Pour différents choix de valeur des coefficients K1 et K2, la deuxième approche utilisée
pour la reconstruction de l’entrée u(t) donne les résultats figurant sur les courbes de la
figure 2.24.
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(b) Erreur quadratique
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(c) K1 = 0.1 et K2 = 10
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(d) Erreur quadratique
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(e) K1 = 0.01 et K2 = 100
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(f) Erreur quadratique

Fig. 2.24 - Entrée du système non linéaire (ligne continue) et entrée reconstruite (ligne poin-
tillée) pour différentes valeurs de K1 et K2

La qualité de reconstruction varie selon les valeurs données aux coefficients K1 et K2.
Afin de mieux comprendre, on reprend l’expression (2.171) de l’entrée reconstruite et on
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l’exprime de la manière suivante :

û = K1(y(t) − [H[û]]) +K1K2û (2.174)

L’expression (2.174) est analogue à l’expression de l’entrée u(t) reconstruite par la
méthode de régularisation de Tikhonov. Le premier terme K1(y(t)− [H[û]]) représente la
fidélité aux données dont on dispose, tandis que le second est un terme de régularisation
de la solution û. Faire varier les valeurs des coefficients K1 et K2 revient à accorder plus
ou moins d’importance à l’un des deux termes de l’expression (2.174) : si la reconstruction
est trop régularisée, on observe une perte d’information ; si le terme de régularisation est
négligé, on observe des oscillations indésirables en haute fréquence. Les valeurs optimales
de K1 et K2 semble se situer autour de 0.1 et 10 respectivement. Cette seconde méthode
d’inversion est donc comparable à celle par régularisation étudiée précédemment dans le
chapitre.

On remarque cependant que le temps de calcul nécessaire à l’inversion du modèle de
Volterra par cette deuxième méthode est équivalent à celui de la première méthode et
reste largement inférieur au volume de calcul occasionné par la méthode d’inversion par
régularisation de Tikhonov.

Cette application nous a donc permis de valider la deuxième méthode d’inversion
proposée et de constater une analogie avec la méthode d’inversion par régularisation de
Tikhonov.

2.4.3.3 Influence du bruit de mesure sur la reconstruction

En l’absence de bruit de mesure, la reconstruction û est théoriquement identique à
l’entrée u(t) car la fonctionnelle M est l’inverse exacte de la fonctionnelle H.

y(t) = H[u(t)]
û = u(t) = M [y(t)]

(2.175)

De même que dans l’approche précédente, en présence d’un bruit de mesure b2(t)
ajouté au signal de sortie y(t), la reconstruction û∗ ne sera pas exactement identique au
signal d’entrée u(t). On peut écrire :

û∗ = M [y∗(t)] = M [y(t) + b2(t)] (2.176)

On peut développer cette expression :

û∗ = M [H[u(t) + b2(t)] (2.177)

On sépare alors l’expression en 2 termes pour finalement obtenir :

û∗ = u(t) +M [b2(t)] (2.178)

144
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Cette expression est tout-à-fait similaire à l’expression (2.167). On obtient finalement :

b1(t) = M [b2(t)] (2.179)

De même que dans l’approche précédente, on a montré que l’erreur de reconstruction
dépend de la fonctionnelle inverse M et du bruit de mesure b2(t).

En se plaçant dans les mêmes conditions que dans la première approche (même mo-
dèle de Volterra, bruit de mesure ajouté au signal de sortie y(t)), on obtient sur la figure
2.25(a) le résultat de reconstruction û∗ de l’entrée réelle u(t) par la deuxième approche
pour des valeurs optimales de K1 et K2 fixées à 0.1 et 10.
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(b) Erreur quadratique

Fig. 2.25 - Comparaison de l’entrée du système non linéaire (courbe foncée) avec l’entrée re-
construite (courbe claire)

L’erreur quadratique entre les courbes de la figure 2.25(a) est représentée sur la figure
2.25(b).

La variance de l’erreur de reconstruction b1(t) est égale à 1.11e − 5. Cette valeur est
supérieure à celle de la variance du bruit de mesure 6.19e− 6. Le bruit de mesure a donc
été ici aussi amplifié par la procédure d’inversion du modèle de Volterra.

2.4.4 Comparaison des deux approches

Les deux approches proposées d’inversion du modèle de Volterra reposent sur deux
schémas (2.14 et 2.22) en apparence différents mais qui peuvent se révéler équivalents
dans un cas particulier.
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Considérons le cas où les constantes K1 et K2 du schéma 2.22 sont égales à 1. Ce
schéma est alors équivalent à celui de la figure 2.26.

ØÙÚÛ ÜÝ

+ Þ

+

−

−

Fig. 2.26 - Schéma de reconstruction de l’entrée u(t) par la deuxième approche avec K1 = K2 =
1

L’expression de l’entrée reconstruite û est la suivante :

û = y(t) + û−H[û] (2.180)

Le schéma d’inversion de la première approche est celui de la figure 2.27.

ßàáâ ãä+

+

åæ
−

Fig. 2.27 - Schéma de reconstruction de l’entrée u(t) par la première approche

L’expression de l’entrée reconstruite û est dans ce cas :

û = y(t) + I[û] −H[û] (2.181)

Rappelons que l’expression de la fonctionnelle I est donnée par les expressions (2.151)
et (2.152) :
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I[u(t)] =
∞∑

i=1

Ii[u(t)] (2.182)

avec

Ii[u(t)] =
i∏

j=1

u(t) = ui(t) (2.183)

Par conséquent, les deux expressions (2.180) et (2.181) sont identiques si et seulement
si on a l’égalité I[û] = û.

Cette égalité ne peut avoir lieu que si I est une fonctionnelle linéaire. Par conséquent,
les deux schémas d’inversion 2.14 et 2.22 sont identiques uniquement dans le cas d’un sys-
tème linéaire (et dans l’hypothèse où les constantes K1 et K2 sont égales à 1).

On a cependant constaté que, dans le cas d’un système non linéaire, les deux approches
d’inversion fournissent des résultats satisfaisants et comparables.

2.4.5 Conclusion

Les deux approches d’inversion d’un modèle de Volterra que nous venons de présenter
sont semblables dans leur principe mais ne sont véritablement équivalentes que dans le
cas d’un système linéaire.

Si l’on considère un système non linéaire, les deux approches fournissent des résultats
d’inversion comparables. La première méthode présente un avantage par rapport à la tech-
nique d’inversion par régularisation de Tikhonov : l’absence de paramètre de régularisa-
tion. On retrouve cependant sur le signal d’entrée reconstruit une erreur de reconstruction
dont la variance est supérieure à celle du bruit de mesure. La seconde méthode permet
une reconstruction de meilleure qualité que celle obtenue par la première méthode mais
elle ne s’affranchit pas d’une des difficultés de la méthode de régularisation de Tikhonov,
à savoir le choix des valeurs de certains paramètres afin de régulariser le signal reconstruit.

Un avantage commun aux deux méthodes proposées est le temps de calcul, sensible-
ment inférieur à celui nécessité par la méthode d’inversion par régularisation de Tikhonov :
il est égal à quelques dizaines de secondes et dépend de l’importance des fichiers de me-
sures utilisés et de la complexité du modèle de Volterra à inverser. Un des objectifs de ce
travail étant la conservation de la simplicité des modèles de Volterra et de leur parcimonie
paramétrique, le temps de calcul dépend à la fois du modèle et des fichiers de points de
mesure. De plus, la procédure d’optimisation paramétrique, nécessaire à chaque itération
lors de l’inversion par régularisation de Tikhonov et par conséquent très coûteuse en temps
de calcul, est ici effectuée seulement une fois afin de modéliser correctement le système
avant d’inverser le modèle. Ceci explique également la diminution notable du temps de
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calcul nécessité par les deux méthodes d’inversion par retour d’entrée reconstruite.
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2.5 Conclusion du chapitre

L’inversion du modèle d’un système réel est un problème largement étudié et élucidé
dans le cas linéaire. On peut cependant considérer que la résolution de problèmes inverses
linéaires n’est dans certains cas que la première étape d’un domaine de recherche plus
vaste et plus général, celui de la résolution de problèmes inverses non linéaires.

Dans le premier chapitre de ce mémoire, nous avons proposé la représentation de sys-
tèmes non linéaires par les séries de Volterra, modèle non linéaire que l’on peut considérer
comme une généralisation du produit de convolution utilisé pour représenter un système
linéaire. L’inversion d’un produit de convolution a fait l’objet de nombreuses études et
une solution particulièrement connue est la méthode d’inversion par régularisation de Ti-
khonov, qui permet entre autres d’atténuer les effets des perturbations dues au bruit de
mesure.

Nous avons dans un premier temps proposé d’appliquer la méthode d’inversion par
régularisation de Tikhonov au modèle de Volterra décrit dans le premier chapitre. Cette
démarche correspond à l’approche de généralisation d’une méthode qui a fait ses preuves
dans le domaine linéaire. La reconstruction de l’entrée du système étudié par minimisa-
tion d’un critère composite nécessite la simulation de la sortie du modèle et l’optimisation
des paramètres par un algorithme de programmation non linéaire, deux procédures très
coûteuses en temps de calcul. Nous avons donc utilisé une méthode de discrétisation du
modèle de Volterra afin de diminuer le temps de calcul du vecteur gradient et de la matrice
hessienne, couplée à un algorithme d’optimisation et de simulation sur fenêtre glissante,
qui permettent de considérablement diminuer le temps de calcul global nécessaire à l’in-
version du modèle de Volterra.

Le temps de calcul reste cependant trop important et une exploitation en temps réel
de la méthode d’inversion du modèle de Volterra par régularisation de Tikhonov ne peut
être envisagée que pour des systèmes lents tels certains procédés chimiques. Nous avons
donc présenté et étudié deux autres méthodes d’inversion du modèle de Volterra par re-
tour d’entrée reconstruite qui permettent d’éviter la procédure d’optimisation de critère
quadratique et ainsi de gagner un temps de calcul important. Ces deux méthodes néces-
sitent cependant une modélisation précise du système étudié ainsi qu’une identification
paramétrique rigoureuse, conditions qui sont difficilement remplies si la non-linéarité du
système réel étudié est importante, provoquant des instabilités numériques lors de la pro-
cédure de reconstruction de la grandeur d’entrée.

Les applications présentées dans le chapitre suivant vont permettre d’appliquer et de
tester les différentes méthodes d’inversion présentées dans ce chapitre et de constater les
qualités et défauts de chacune dans le cas d’un système simulé (oxydation d’un composé
organique par le procédé Fenton) et d’un système réel (élimination de composés orga-
niques par digestion anaérobie).
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3.1 Introduction

Les différents modèles de Volterra présentés dans le chapitre 1 et les méthodes d’in-
version étudiées dans le chapitre 2 vont à présent être testés en simulation sur un procédé
chimique d’oxydation de polluant puis validés sur un procédé biochimique expérimental
de digestion anaérobie.

Les procédés chimiques et biochimiques ont été utilisés par l’homme bien avant que
les notions de génie chimique ou biochimique ne soient apparues, même si les installations
ou les appareils utilisés avaient fait l’objet d’une réflexion avant leur conception. Le génie
chimique est né avec la notion de modélisation, nécessaire à la compréhension et à la re-
production de phénomènes chimiques ou biochimiques, et déjà largement employée dans
le domaine de la physique. Afin de modéliser les opérations unitaires qui constituent un
procédé complet, le génie chimique fait appel aux principes fondamentaux de conserva-
tion (matière, énergie, quantité de mouvement) ainsi qu’à d’autres branches scientifiques
telles la thermodynamique et la mécanique des fluides, sans oublier les mathématiques.
L’extension des concepts du génie chimique à des domaines connexes pouvant relever de la
même méthodologie a permis de définir, entre autres, le génie biochimique. Ces catégories
font partie de l’ensemble plus vaste du génie des procédés [Corriou, 2001].

Les deux études présentées dans ce chapitre relèvent donc du génie des procédés et
plus particulièrement du génie des procédés de traitement des eaux. La première partie est
consacrée à l’étude d’un simulateur d’oxydation de composé organique considéré comme
polluant (l’atrazine) par le procédé Fenton. La deuxième partie est consacrée à l’étude
d’un procédé biochimique réel de digestion anaérobie.

3.2 Généralités à propos du traitement des eaux

Le traitement des eaux, et en particulier la neutralisation de polluants dans les eaux
résiduaires industrielles, est actuellement un domaine de recherche ouvert [ESIP, 2000].
Les activités industrielles génèrent selon le ou les types de fabrication des rejets pol-
luants continus ou discontinus d’une extrême diversité. La finalité du traitement des eaux
résiduaires industrielles est essentiellement la protection du milieu naturel, c’est-à-dire
l’obtention d’une eau épurée qui satisfait aux normes de rejet édictées par la législation,
mais aussi la réutilisation en usine de l’eau traitée, en particulier pour le refroidissement
et certains lavages. Selon la nature ou l’importance de la pollution, différents procédés de
neutralisation peuvent être envisagés et mis en oeuvre. Il faut également noter que, pour
un même type de pollution, différentes solutions peuvent être envisagées [Boeglin, 1997].

D’une manière générale, une installation de traitement centralisée des rejets industriels
comporte classiquement la succession de stades de traitement suivants :

– une série de traitements préliminaires, souvent liée au type d’activité industrielle :
rétention par dégrillage automatique et tamisage des matières volumineuses
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susceptibles de gêner les étapes ultérieures de traitement, dessablage assurant l’éli-
mination des particules grossières par décantation ou encore élimination des pro-
duits insolubles de faible densité (huiles, graisses) par flottation.

– des traitements physico-chimiques, qui assurent la séparation physique des insolubles
solides (matières en suspension) et liquides (substances huileuses, hydrocarbures...)
de l’eau avec pour objectif une clarification plus ou moins poussée des rejets. Ce
traitement peut, suivant les cas, constituer un stade intermédiaire ou un stade final
du traitement. Il suppose un maintien du pH dans une zone assez étroite. Selon les
circonstances, l’épuration physico-chimique peut être simultanée à d’autres proces-
sus comme la neutralisation des rejets, l’oxydation et la réduction de certains
composés.

– des traitements biologiques, qui constituent le mode classique d’épuration de la pol-
lution organique des eaux résiduaires industrielles. Les procédés les plus couramment
mis en oeuvre pour la dépollution des rejets industriels sont de type aérobie (pré-
sence d’air ou d’oxygène), car la cinétique du processus s’avère beaucoup plus rapide
et les rendements plus élevés qu’avec les traitements biologiques anaérobies. Selon
les cas, on distingue les procédés aérobies utilisant une culture bactérienne libre en
suspension de ceux qui utilisent une culture bactérienne fixée sur un support. Mais
il faut noter que l’élimination de la pollution organique concentrée de certains rejets
industriels biodégradables (en particulier dans l’industrie agroalimentaire) se fait de
plus en plus par des procédés anaérobie de méthanisation pouvant également fonc-
tionner avec une biomasse en suspension ou fixée sur un support.

– des traitements de finition, ou complémentaires, qui permettent d’obtenir une qua-
lité d’effluent supérieure à celle obtenue par les procédés physico-chimiques et/ou
biologiques classiques : il s’agit d’affiner l’eau en poussant l’épuration le plus loin
possible par amélioration des performances des paramètres classiques et par l’action
spécifique sur des paramètres qui ne sont que peu ou pas du tout affectés par les
traitements classiques.

3.3 Etude en simulation : procédé d’oxydation de

polluant

Le type de procédé de traitement des eaux que nous allons étudier ici en simulation
correspond à un traitement physico-chimique de neutralisation de polluant par oxyda-
tion. Ce traitement peut constituer dans notre cas le stade final du procédé de neu-
tralisation d’un polluant particulier ou bien un stade intermédiaire d’un procédé glo-
bal d’épuration complète d’effluent industriel. Le procédé de traitement de l’eau mis en
oeuvre est le procédé Fenton qui consiste en la neutralisation par oxydation d’un com-
posé organique considéré comme polluant [Barbeni et al., 1987], [Sedlak et Andren, 1991],
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[DeLaat et Gallard, 1999].

3.3.1 Description du procédé étudié

A l’intérieur d’un réacteur chimique, on mélange de façon homogène à l’effluent à trai-
ter un certain nombre de réactifs chimiques. L’effluent à traiter est de l’eau contenant
une ou plusieurs sortes de composés organiques considérés comme polluants. Le procédé
étudié consiste à neutraliser un composé organique particulier.

Dans cette étude, le composé organique considéré est l’atrazine (2-chloro-4-éthylamino-
6-isopylamino-1, 3, 5-triazine), un herbicide systémique principalement utilisé pour mâı-
triser les mauvaises herbes graminöıdes et à feuilles larges dans les champs de mäıs, de
colza et de bleuet nain, et pour détruire les mauvaises herbes en général. L’atrazine peut
avoir des effets sur la santé des personnes exposées à des concentrations supérieures à
celles recommandées. Une exposition à des concentrations élevées d’atrazine dans l’eau
potable peut provoquer des nausées et des étourdissements. L’atrazine est toxique pour
les poissons et les invertébrés d’eau douce et plus particulièrement pour les plantes aqua-
tiques. La famille des triazines est le pesticide le plus employé. Introduits en 1962, ce
sont des produits assez bon marché et simples à utiliser. Ils sont utilisés massivement par
les producteurs de mäıs conventionnel qui traitent la plus grande partie de leurs surfaces
à l’atrazine. Les triazines sont les substances les plus fréquemment rencontrées dans les
nappes d’eau souterraines et dans les eaux de surfaces. En Bretagne, comme dans le Sud-
Ouest et l’Ile de France, il est courant de trouver, dans des prélèvements d’eau potable,
des taux de triazine dix fois plus élevés que le seuil autorisé de 0, 1 microgramme par litre.
L’atrazine et toute la famille des triazines ont été bannies par l’Allemagne en mars 2001,
et depuis le 28 septembre 2001 par la France. Cette décision devait prendre effet le 30 juin
2003.

La neutralisation d’un composé organique (par exemple l’atrazine) consiste en son
oxydation par le radical hydroxyle OH̊ suivant la réaction chimique :

Atrazine+ OHo → Pi (3.1)

Le produit Pi obtenu après réaction pourra à nouveau réagir avec un radical hydroxyle
OHo mais on ne le considère plus comme un polluant. Cette seule réaction chimique suffit
donc à neutraliser un composé organique considéré comme polluant. Un autre problème,
situé en amont de celui-ci, est la production de ces radicaux hydroxyles OHo extrêmement
réactifs.

Fenton a montré en 1894 que l’ion ferreux, dont il existe cinq formes ([FeII ]2+, [FeIIOH]+,
[FeII(OH)2]

o, [FeII(OH)3]
− et [FeII(OH)4]

2−), accélérait l’oxydation de l’acide maléique
par le peroxyde d’hydrogène H2O2. Depuis cette date, l’étude de la décomposition du per-
oxyde d’hydrogèneH2O2 par les ions ferreux et ferriques ainsi que l’oxydation de composés
organiques par le système Fe(II)/H2O2 (connu sous le nom de réactif de Fenton) a fait
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l’objet de nombreux travaux. Une des réactions produisant des radicaux hydroxyles est la
suivante :

[FeII ]2+ + H2O2 → FeIII +OHo +OH− (3.2)

Les réactifs utilisés lors du procédé Fenton sont donc les ions ferreux Fe(II) (ou fer-
riques Fe(III)) et le peroxyde d’hydrogène H2O2 qui, en réagissant entre eux, produisent
les radicaux hydroxylesOHo nécessaires à l’oxydation du (ou des) composé(s) organique(s)
considéré(s) comme polluant(s).

De nombreuses études ont montré qu’une irradiation UV-visible pouvait augmenter
de façon importante les vitesses d’oxydation des composés organiques par le réactif de
Fenton. Le système oxydant Fe(II)/H2O2 auquel se rajoute l’irradiation est donc com-
munément appelé Photo-Fenton.

Des installations industrielles utilisant le procédé Fenton existent. Cependant, pour
s’assurer que la concentration en polluant en sortie de réacteur respecte les normes de re-
jet, les réactifs en entrée sont introduits en excès. Cette étude s’inscrit dans un projet du
programme Eaux du 12ème Contrat de Plan état-Région de l’Université de Poitiers dont
l’objectif à terme est d’optimiser le dosage en fer ferreux (ou ferrique) et en peroxyde
d’hydrogène en entrée du réacteur chimique.

3.3.2 Modèle cinétique établi expérimentalement

A partir de connaissances expérimentales sur le mécanisme d’oxydation de l’atra-
zine par le procédé Photo-Fenton, un modèle cinétique du taux d’oxydation de l’atrazine
par le système Fe(II)/H2O2 a pu être établi [Haber et Weiss, 1934], [Barb et al., 1951],
[Walling, 1975], [Gallard et DeLaat, 2000] :
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



I : [FeIII ]3+ +H2O ⇔ [FeIIIOH]2+ +H+

II : [FeIII ]3+ + 2H2O ⇔ [FeIII(OH)2]
+ + 2H+

III : 2[FeIII ]3+ + 2H2O ⇔ [FeIII2 (OH)2]
4+ + 2H+

IV : [FeIII ]3+ +H2O2 ⇔ [FeIII(HO2)]
2+ +H+

V : [FeIIIOH]2+ +H2O2 ⇔ [FeIII(OH)(HO2)]
+ +H+

c : [FeIII(HO2)]
2+ −→ [FeII ]2+ +HOo

2

c : [FeIII(OH)(HO2)]
+ −→ [FeII ]2+ +HOo

2 +OH−

o : [FeII ]2+ +H2O2 −→ FeIII +OHo +OH−

1 : [FeII ]2+ +OHo −→ FeIII +OH−

2 : OHo +H2O2 −→ HOo
2 +H2O

3 : [FeII ]2+ +HOo
2 −→ [FeIII(HO2)]

2+

3′ : [FeII ]2+ +Oo−
2 +H+ −→ [FeIII(HO2)]

2+

4 : FeIII +HOo
2 −→ [FeII ]2+ +O2 +H+

4′ : FeIII +Oo−
2 −→ [FeII ]2+ +O2

5 : HOo
2 −→ Oo−

2 +H+

5′ : Oo−
2 +H+ −→ HOo

2

6 : HOo
2 +HOo

2 −→ H2O2 +O2

7 : HOo
2 +Oo−

2 +H2O −→ H2O2 +O2 +OH−

8 : OHo +HOo
2 −→ H2O +O2

9 : OHo +Oo−
2 −→ OH− +O2

10 : OHo +OHo −→ H2O2

11 : Atrazine+OHo −→ Pi

12 : Pi+OHo −→ Pi′

13 : Pi′ +OHo −→ Produits

(3.3)
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Ce modèle cinétique prend en compte les réactions d’hydrolyse de Fe(III) (réactions
I à III), les réactions de complexation de Fe(III) avec H2O2 (réactions IV et V ), la
réaction de décomposition des hydroperoxydes de fer en Fe(II) et HOo

2 (réaction c) qui
représente l’étape d’initiation du mécanisme de décomposition de H2O2 par Fe(III), les
réactions de propagation (réactions o, 1 à 5), les réactions de terminaison (réactions 6 à
10) et les réactions d’oxydation de l’atrazine et du produit Pi de l’oxydation (réactions
11 à 13).

Les 5 premières réactions de la liste (hydrolyse et complexation) sont des équilibres
chimiques. En d’autres termes, si l’on prend le cas de la première réaction de la liste

[FeIII ]3+ +H2O ⇔ [FeIIIOH]2+ +H+ (3.4)

les deux réactions suivantes ont lieu :

[FeIII ]3+ +H2O −→ [FeIIIOH]2+ +H+

[FeIIIOH]2+ +H+ −→ [FeIII ]3+ +H2O
(3.5)

Les 19 autres réactions chimiques sont complètes. Chacune de ces réactions est ca-
ractérisée par une vitesse v de réaction et, plus particulièrement, par une constante de
réaction k dont nous allons voir le principe de calcul.

On considère la réaction chimique complète suivante :

aA+ bB 
 cC + dD (3.6)

A et B sont les réactifs et C et D sont les produits de la réaction. La vitesse v de cette
réaction chimique dépend de facteurs cinétiques tels la température et la concentration
des réactifs. On peut la définir de la manière suivante :

v = k[A]a[B]b (3.7)

Le terme k est la constante de la réaction. a + b est appelé ordre de la réaction. k, a
et b sont déterminés expérimentalement.

Dans le cas d’un équilibre chimique, on définit donc deux vitesses v et v′ ainsi que
deux constantes de réaction k et k′, une pour chaque ”sens” de réaction :

{
v = k[A]a[B]b

v′ = k′[C]c[D]d
(3.8)

On définit ensuite la constante d’équilibre K = k
k′

en fonction de la concentration des
réactifs et des produits ainsi que des coefficients a, b, c et d (loi de Guldberg et Waage) :

K =
[C]c[D]d

[A]a[B]b
(3.9)
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Dans le cas des équilibres chimiques, si la constante K est grande, on tend vers une
réaction complète (disparition des réactifs A et B) tandis que si K est faible, on tend vers
une réaction impossible (non apparition des produits C et D). Dans le cas des réactions
complètes, la valeur de la constante k permet de calculer la vitesse d’apparition des pro-
duits ou de disparition des réactifs.

Un récapitulatif des constantes de chaque réaction du modèle cinétique établi expéri-
mentalement est présenté en (3.10) et (3.11).

Constantes associées aux équilibres chimiques :

kI = 2.291 × 107 k′I = 1 × 1010 K1 = 2.291 × 10−3

kII = 4.571 × 103 k′II = 1 × 1010 K2 = 4.571 × 10−7

kIII = 1.122 × 107 k′III = 1 × 1010 K2,2 = 1.122 × 10−3

kIV = 3.1 × 107 k′IV = 1 × 1010 KI1 = 3.1 × 10−3

kV = 2.0 × 106 k′V = 1 × 1010 KI2 = 2.0 × 10−4

(3.10)

Constantes associées aux réactions chimiques :

kc = 2.7 × 10−3 ko = 63.0 k1 = 3.2 × 108

k2 = 3.3 × 107 k3 = 1.2 × 106 k′3 = 1.0 × 107

k4 = 1 × 104 k′4 = 5 × 107 k5 = 1.58 × 105

k′5 = 1 × 1010 k6 = 8.3 × 105 k7 = 9.7 × 107

k8 = 0.71 × 1010 k9 = 1.01 × 1010 k10 = 5.2 × 109

kAt = (1.2 − 3) × 109 kPi ≈ kAt k′Pi < 105

(3.11)

Une fois établi le modèle cinétique du taux d’oxydation de l’atrazine par le système
Fe(II)/H2O2, on peut le transformer en un système d’équations différentielles du premier
ordre traduisant la variation de concentration de chaque espèce et sous-espèce chimiques
présentes à un moment ou à un autre lors du processus :
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



d[Fe(II)]
dt

= kc([I1] + [I2]) − k0.[Fe(II)].[H2O2] − k1.[Fe(II)].[OH
o]

−k3.[Fe(II)].[HO
o
2] − k′3.[Fe(II)].[O

o
2
−] + k4.[Fe(III)].[HO

o
2]

+k′4.[Fe(III)].[O2
o−]

d[Fe(III)T ]
dt

= −d[Fe(II)]
dt

− k
II

[Fe(III)] + k
′

II [Fe(III)OH][H+]

d[H2O2]
dt

= −k0.[Fe(II)].[H2O2] − k2.[OH
o].[H2O2] + k6.[HO

o
2].[HO

o
2]

+k7.[O
o−
2 ].[HOo

2] + k10.[OH
o].[OHo] − kIII [Fe(III)][H2O2]

+k′III [Fe(III)HO2][H
+]

d[HOo
2
]

dt
= kc([I1] + [I2]) + k2.[OH

o].[H2O2] − k3.[Fe(II)].[HO
o
2]

−k4.[Fe(III)].[HO
o
2] − k5.[HO

o
2] + k′5.[O

o
2
−].[H+]

−2k6.[HO
o
2].[HO

o
2] − k7.[O

o
2
−].[HOo

2] − k8.[OH
o].[HOo

2]

d[Oo
2
−]

dt
= −k′3.[Fe(II)].[Oo

2
−] − k′4.[Fe(III)].[O

o
2
−] + k5.[HO

o
2]

−k′5.[Oo
2
−].[H+] − k7.[O

o
2
−].[HOo

2] − k9.[O
o
2
−].[OHo]

d[OHo]
dt

= k0.[Fe(II)].[H2O2] − k1.[Fe(II)].[OH
o] − k2.[OH

o].[H2O2]
−k8.[OH

o].[HOo
2] − k9.[O

o
2
−].[OHo] − 2k10.[OH

o].[OHo]
−kAt.[At].[OHo] − kPi.[Pi].[OH

o]

d[At]
dt

= −kAt.[At].[OHo]

d[Pi]
dt

= kAt.[At].[OH
o] − kPi.[Pi].[OH

o]
(3.12)

Dans la première équation différentielle de la liste, les concentrations [I1] = [Fe(III)(HO2)
2+]

et [I2] = [Fe(III)(OH)(HO2)
+] des complexes en Fe(III) dépendent des concentrations

en Fe(III) et H2O2, et sont calculées analytiquement en utilisant les constantes d’équi-
libre de leur formation (KI1 et KI2) ainsi que celles des autres réactions de formation des
différentes espèces de Fe(III) (K1, K2 et K2,2).
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A chaque instant de la réaction entre H2O2, Fe(III) et Fe(II), les concentrations des
différentes espèces de fer peuvent être calculées à partir des constantes d’équilibre :

K1 =
[Fe(OH)2+][H+]

[Fe3+]

K2 =
[Fe(OH)+

2 ][H+]2

[Fe3+]

K2,2 =
[Fe2(OH)4+

2 ][H+]2

[Fe3+]2

KI1 =
[I1][H

+]

[Fe3+][H2O2]

KI2 =
[I2][H

+]

[Fe(OH)2+][H2O2]

(3.13)

En considérant l’équation de conservation de la matière

[Fe]T = [Fe(III)] + [I1] + [I2] + [Fe(II)] (3.14)

où le terme [Fe]T représente la quantité totale de fer, et en exprimant chaque forme de fer
ferrique par son équation en fonction de la forme [FeIII ]3+, on obtient la relation suivante :

[Fe(III)] = [Fe3+] +
K1[Fe

3+]

[H+]
+
K2[Fe

3+]

[H+]2
+

2K2,2[Fe
3+]2

[H+]2
+
KI1[Fe

3+][H2O2]

[H+]

+
K1KI2[Fe

3+][H2O2]

[H+]2

(3.15)

La racine positive de cette équation correspond à la concentration en [FeIII ]3+ et
dépend des concentrations initiales [H+], [Fe(III)] et H2O2 :

[Fe3+] =

−
(

1 +
K1

[H+]
+

K2

[H+]2
+
KI1[H2O2]

[H+]
+
K1KI2[H2O2]

[H+]2

)
+
√

∆Fe

4K2,2

[H+]2

(3.16)

avec

∆Fe =

(
1 +

K1

[H+]
+

K2

[H+]2
+
KI1[H2O2]

[H+]
+
K1KI2[H2O2]

[H+]2

)2

+8[Fe(III)]
K2,2

[H+]2
(3.17)

On calcule ensuite les concentrations des autres formes de fer ferrique à partir des
équations (3.13), dont [I1] et [I2] qui nous intéressent plus particulièrement :
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[I1] =
KI1[Fe

3+][H2O2]

[H+]

[I2] =
KI2K1[Fe

3+][H2O2]

[H+]2

(3.18)

avec [H+] = 10−pH .

L’influence du pH sur la vitesse de décomposition de l’atrazine a été étudiée dans un
domaine de valeurs de pH compris entre 1 et 3 avec différentes concentrations initiales
en fer ferreux et en peroxyde d’hydrogène H2O2. Les résultats expérimentaux concernant
l’évolution de la concentration en composé organique et du fer ferreux en fonction du
temps de réaction montrent que la vitesse d’élimination de l’atrazine augmente lorsque
le pH passe de 1 à 3, vraisemblablement en raison d’une différence de réactivité des ra-
dicaux hydroxyle OHo vis-à-vis de l’atrazine. D’autres résultats montrent que la vitesse
de décomposition de H2O2 passe par une valeur optimale pour une valeur de pH située
autour de 3. Le pH à l’intérieur du réacteur chimique sera donc maintenu autour de la
valeur 3 durant tout le temps de réaction.

3.3.3 Modèle cinétique d’un réacteur chimique continu

3.3.3.1 Présentation

Le modèle cinétique du réacteur chimique utilisé par la suite s’inspire du système
d’équations différentielles (3.12) pour décrire à chaque instant la concentration de 8 dif-
férentes espèces chimiques présentes lors du procédé d’oxydation : concentration en Fer
II (variable X1), concentration totale en Fer III (variable X2), concentration en H2O2

(variable X3), concentration en HOo
2 (variable X4), concentration en Oo−

2 (variable X5),
concentration en radicaux OHo (variable X6), concentration en atrazine (variable X7) et
en produit dérivé de son oxydation (variable X8).

Le modèle proposé (d’après [Gallard et DeLaat, 2000]) est donné par l’ensemble d’équa-
tions (3.19).
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



·
X1 = kc([I1] + [I2]) − k0.X1.X3 − k1.X1.X6

−k3.X1.X4 − k′3.X1.X5 + k4.[Fe(III)].X4

+k′4.[Fe(III)].X5+
X0

1 .Q1in

VR
− X1.Qout

VR
·
X2 = −

·
X1+

X0
2 .Q2in

VR
− X2.Qout

VR
·
X3 = −k0.X1.X3 − k2.X6.X3 + k6.X4.X4+k7.X5.X4

+k10.X6.X6+
X0

3 .Q3in

VR
− X3.Qout

VR
·
X4 = kc([I1] + [I2]) + k2.X6.X3 − k3.X1.X4

−k4.[Fe(III)].X4 − k5.X4 + k′5.X5.[H
+]

−2k6.X4.X4 − k7.X5.X4 − k8.X6.X4
·
X5 = −k′3.X1.X5 − k′4.[Fe(III)].X5 + k5.X4

−k′5.X5.[H
+] − k7.X5.X4 − k9.X5.X6

·
X6 = k0.X1.X3 − k1.X1.X6 − k2.X6.X3−k8.X6.X4

−k9.X5.X6 − 2k10.X6.X6 − kAt.X7.X6

−kPi.X8.X6
·
X7 = −kAt.X7.X6+

X0
7 .Q4in

VR
− X7.Qout

VR
·
X8 = kAt.X7.X6 − kPi.X8.X6 −

X8.Qout

VR

(3.19)

Les concentrations des autres formes de fer ferrique I1 et I2 sont calculées avec les équa-
tions (3.18). La concentration en fer ferrique [Fe(III)] est obtenue par le calcul (3.14).
La concentration en ions H+ est calculée d’après l’expression [H+] = 10−pH .

Les termes Q1in, Q2in, Q3in et Q4in représentent respectivement le débit d’entrée en
fer ferreux Fe(II), en fer ferrique Fe(III), en peroxyde d’hydrogène H2O2 et en atrazine
At. Le terme Qout représente le débit global de sortie du réacteur avec la relation de
conservation de débit :

Qout = Q1in +Q2in +Q3in +Q4in (3.20)

Les termes X0
1 , X0

2 , X0
3 et X0

7 représentent respectivement les concentrations en entrée
en fer ferreux, en fer ferrique, en peroxyde d’hydrogène et en atrazine.

Le terme VR représente le volume du réacteur.

Les non-linéarités du procédé d’oxydation de l’atrazine apparaissent de manière évi-
dente sur le modèle proposé : elles sont matérialisées par des produits de variables d’état
Xi.Xj. En outre, il faut tenir compte d’autres non-linéarités introduites par le calcul ana-
lytique des différentes formes de fer ferrique (3.14).
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Ces constatations justifient l’utilisation d’un modèle de Volterra pour représenter les
liens existant entre les différentes grandeurs d’entrée possibles (débit d’entrée en fer fer-
reux, en fer ferrique, en peroxyde d’hydrogène et en atrazine) et la grandeur de sortie
qui nous intéresse : la quantité d’atrazine présente dans les effluents en sortie de procédé
[Bibes et al., 2003a].

La mesure de la quantité d’atrazine étant par ailleurs très coûteuse et très difficile,
voire impossible, à mettre en oeuvre, l’inversion du modèle de Volterra reliant la quantité
d’atrazine et une autre grandeur, dont un protocole de mesure existe (par exemple la
concentration en peroxyde d’hydrogène), permettra éventuellement la reconstruction de
la quantité d’atrazine. Cette solution pourra permettre d’accéder à une grandeur chimique
à moindre coût, le procédé d’inversion de modèle et de reconstruction de la grandeur pou-
vant être entièrement géré informatiquement.

3.3.3.2 Utilisation du modèle cinétique du réacteur chimique

Afin de comparer dans un premier temps les deux procédés d’oxydation H2O2/Fe(II)
et H2O2/Fe(III), nous allons nous placer dans un cas idéal : le volume global est fixé à
1 litre et on suppose que le liquide à l’intérieur du réacteur est parfaitement homogène,
les réactifs et l’atrazine étant mélangés instantanément.

Considérons le procédé d’oxydation H2O2/Fe(II). On commence par appliquer le
modèle cinétique (3.19) dans les conditions suivantes : on suppose d’abord constante la
concentration en atrazine dans l’effluent à traiter ([At] = 8.10−7mol/l) ainsi que son débit
(Q4in = 8.10−3l/s). Cette valeur de débit assure un temps de séjour de l’atrazine dans
le réacteur à peu près égal à 20 minutes, ce qui est très suffisant pour l’ensemble des
réactions chimiques.

La période d’échantillonnage Te est fixée à 10s et ce pour toute la suite de cette étude.

On fait varier le débit de peroxyde d’hydrogène (figure 3.1(a)) en maintenant constante
sa concentration ([H2O2] = 1.10−2mol/l) . La concentration en fer ferreux reste égale à
[Fe(II)] = 2.10−4mol/l et son débit d’entrée est fixé à Q1in = 2.10−4l/s. La concentration
en atrazine en sortie du procédé est présentée sur la figure 3.1(b).
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Fig. 3.1 - Procédé d’oxydation H2O2/Fe(II) pour [At]in = 8.10−7mol/l et [Fe(II)] =
2.10−4mol/l

La variation de concentration en atrazine est l’inverse de celle en peroxyde d’hydro-
gène. Comme on l’a déjà vu, le procédé Fenton consiste ici en la création de radicaux
OHo à partir du fer ferreux et du peroxyde d’hydrogène. La concentration en fer ferreux
étant constante, chaque augmentation de la concentration en peroxyde d’hydrogène oc-
casionne la création de davantage de radicaux OHo qui vont oxyder l’atrazine, faisant
ainsi diminuer sa concentration. Le modèle cinétique du réacteur représente donc bien le
comportement du procédé réel.

Comparons maintenant ces résultats à ceux du procédé d’oxydation H2O2/Fe(III).
Le débit d’atrazine reste constant en entrée, on conserve la même variation de débit de
peroxyde d’hydrogène (figure 3.2(a)) et on introduit à la place du fer ferreux une certaine
quantité de fer ferrique (même concentration [Fe(III)] = 2.10−4mol/l). La concentration
en atrazine en sortie du procédé est présentée sur la figure (3.2(b)).
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Fig. 3.2 - Procédé d’oxydation H2O2/Fe(III) pour [At]in = 8.10−7mol/l et [Fe(III)] =
2.10−4mol/l

Les résultats obtenus semblent montrer qu’à concentration égale, l’action du fer fer-
reux est plus significative que celle du fer ferrique sur la production de radicaux OHo et
l’oxydation de l’atrazine qui en résulte. Différentes mesures expérimentales confirment que
la cinétique de décomposition du peroxyde d’hydrogène par le fer ferreux est beaucoup
plus rapide qu’avec le fer ferrique [Gallard, 1998].

C’est pourquoi nous nous limiterons dans la suite de cette étude aux résultats d’oxy-
dation de l’atrazine obtenus en utilisant le procédé Fenton H2O2/Fe(II).

Afin d’étudier le procédé d’oxydation H2O2/Fe(II) de l’atrazine dans des conditions
relativement proches de celles qui seront utilisées sur le futur pilote expérimental (en cours
de réalisation sur la plate-forme Eaux de l’Université de Poitiers), nous allons modifier les
conditions de simulation. Le volume global du réacteur chimique est désormais fixé à 10
litres. On conserve également l’hypothèse de départ d’un réacteur parfaitement agité et
d’un mélange homogène instantané des différentes espèces chimiques introduites.

On fait maintenant varier le débit d’atrazine à l’entrée du réacteur chimique (figure
3.3(a)) afin d’assurer un temps de séjour compris entre 5 et 10 minutes. Le débit et
la concentration en peroxyde d’hydrogène sont maintenus constants (Q3in = 2.10−2l/s
et [H2O2] = 1.10−2mol/l) ainsi que le débit et la concentration en fer ferreux (Q1in =
4.10−4l/s et [Fe(II)] = 2.10−4mol/l). La concentration en atrazine en sortie du procédé
est présentée sur la figure 3.3(b).
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Fig. 3.3 - Procédé d’oxydation H2O2/Fe(II) pour [H2O2]in = 1.10−2mol/l et [Fe(II)]in =
2.10−4mol/l

On observe également la concentration en peroxyde d’hydrogène H2O2 dans le réac-
teur durant le procédé d’oxydation (figure 3.3(c)). Cela permet de constater que seule une
partie du peroxyde d’hydrogène (entre 40% et 60%) a été utilisée afin de produire des
radicaux OHo.

La concentration en atrazine après traitement chimique est donc divisée par un facteur
moyen de 2 par rapport à la quantité d’atrazine présente dans l’effluent à traiter. Le débit
des réactifs de Fenton restant constant, toute augmentation du débit d’atrazine à l’entrée
du réacteur a une répercussion sur la quantité d’atrazine après traitement à partir du
moment où une partie de la quantité de réactif a été utilisée lors du procédé.

Nous nous sommes bornés jusqu’ici à ne faire varier qu’une seule concentration à l’en-
trée du réacteur (ou bien le débit de peroxyde d’hydrogène, ou bien celui d’atrazine). La
quantité considérée à chaque fois dans le réacteur est soit la concentration en atrazine
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après traitement par le procédé d’oxydation H2O2/Fe(II), soit la concentration restante
enH2O2. Dans ces conditions idéales, on peut donc considérer le réacteur chimique continu
comme un système mono-entrée mono-sortie et ainsi justifier la représentation du lien entre
la grandeur d’entrée et la grandeur de sortie par un modèle de Volterra.

Remarquons que le cas idéal du système mono-entrée mono-sortie dans lequel on se
place ici limite les possibilités de commande du procédé car on ne pourra agir que sur le
dosage d’un seul des deux réactifs, soit celui de peroxyde d’hydrogène, soit celui de fer.
La commande du dosage optimal des deux réactifs nécessite un modèle à deux entrées et
une sortie, ou plus généralement un modèle multi-entrées mono-sortie, que l’on pourrait
envisager dans la suite directe de ce travail de recherche.

De plus, on a vu qu’il est impossible dans notre cas de mesurer directement la quan-
tité d’atrazine présente dans l’effluent à traiter. La connaissance d’un modèle de Volterra
reliant le débit d’atrazine (grandeur d’entrée) à la concentration en peroxyde d’hydro-
gène permet d’envisager l’inversion de ce modèle pour estimer par reconstruction le débit
d’atrazine à l’entrée du réacteur. Une méthode satisfaisante d’analyse en continu de l’évo-
lution de la concentration en H2O2 existe [Audebrand et al., 2002]. Le temps nécessaire
à cette analyse a été optimisé et réduit à quelques minutes, ce qui laisse envisager une
utilisation en temps réel de ce type de méthode de mesure.

3.3.4 Application du modèle de Volterra
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Fig. 3.4 - Débit d’atrazine en entrée du réacteur (l/s)

Considérons le cas du procédé d’oxydation H2O2/Fe(II) pour une variation de débit
d’atrazine en entrée représentée sur la figure 3.4.

Les variations de concentration en atrazine et en peroxyde d’hydrogène H2O2 données
par le modèle cinétique du procédé sont représentées par les courbes continues de la figure
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Fig. 3.5 - Variations de concentrations (mol/l) donnée par le modèle cinétique du réacteur
(courbe continue) et le modèle linéaire (courbe pointillée)

On montre d’abord qu’un modèle linéaire ne suffit pas à représenter correctement le
lien entre la variation d’atrazine en entrée et la variation d’atrazine et de peroxyde d’hy-
drogène dans le réacteur. A cet effet, le modèle de Volterra est tronqué à son premier
terme et le noyau de Volterra (qui correspond dans ce cas à la réponse impulsionnelle
du modèle linéaire) est développé sur 10 fonctions généralisées dont les valeurs des pôles
sont fixées de −0.001 à −0.01. Le modèle linéaire comporte donc 10 paramètres et les
courbes de la figure 3.5 prouvent l’insuffisance d’un modèle linéaire. On note que l’ajout
de fonctions dans chacun des développements n’apporte aucune amélioration au modèle
linéaire.

On peut alors envisager la représentation par un modèle de Volterra du lien entre la
variation d’atrazine en entrée et la variation d’atrazine dans le réacteur d’une part, puis
la variation de peroxyde d’hydrogène dans le réacteur d’autre part. Dans chacun des deux
cas, on utilise maintenant une série de Volterra tronquée à ses trois premiers termes. On
utilise dans un premier temps la modélisation des noyaux de Volterra par développement
sur une base de fonctions généralisée. Le premier noyau de Volterra est développé sur une
fonction de la base. Le deuxième et le troisième noyau sont développés sur deux fonctions
de la base. Les valeurs des pôles sont fixées à −0.005 et −0.01. Dans chacun des deux cas,
le modèle de Volterra global comporte 8 paramètres.
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Fig. 3.6 - Variations de concentrations (mol/l) donnée par le modèle cinétique du réacteur
(courbe continue) et par le modèle de Volterra (courbe pointillée)

Les sorties de chacun des deux modèles de Volterra sont représentées sur la figure
3.6 et comparées aux résultats correspondants donnés par le modèle cinétique (3.19) du
réacteur chimique.

Considérons maintenant le cas d’une variation de débit de peroxyde d’hydrogène H2O2

en entrée du modèle cinétique représentée sur la figure 3.7(a).

La variation de concentration en atrazine donnée par le modèle cinétique du procédé
et en sortie du modèle de Volterra est représentée sur la figure 3.7(b).
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Le modèle de Volterra utilisé est tronqué à ses 3 premiers noyaux, développés respec-
tivement sur une, deux et deux fonctions orthonormées généralisées. Les valeurs des pôles
des fonctions sont fixées à −0.005 et −0.01. Le nombre total de paramètres du modèle est
égal à 8.

Divers modèles de Volterra peuvent donc être établis faisant le lien entre les variations
de différentes espèces chimiques mises en jeu lors du procédé d’oxydation. Ces modèles
de Volterra sont suffisamment précis et parcimonieux pour que l’on puisse envisager leur
inversion par les deux méthodes présentées et étudiées dans le deuxième chapitre de ce
mémoire : inversion du modèle de Volterra par régularisation de Tikhonov et par retour
d’entrée reconstruite.

L’inversion du modèle de Volterra permet, à partir de la grandeur de sortie, de re-
construire la grandeur d’entrée. Dans le cadre du procédé d’oxydation H2O2/Fe(II), la
reconstruction d’une grandeur possède un double intérêt :

– la reconstruction de la quantité d’atrazine par l’inversion du modèle de Volterra
qui la relie à la concentration en peroxyde d’hydrogène H2O2 : l’intérêt de cette re-
construction réside dans le fait que la quantité d’atrazine (ou, de manière générale,
en composant organique polluant) est difficilement mesurable durant le procédé. Le
procédé de mesure de la concentration en H2O2 est lui relativement simple en mettre
en oeuvre. La connaissance du lien qui unit ces deux grandeurs permet donc, par
l’inversion de ce lien, de s’affranchir du problème de mesure de la quantité d’atrazine.

– la commande du dosage des réactifs (peroxyde d’hydrogène ou fer ferreux) à l’entrée
du réacteur : le but du procédé d’oxydation H2O2/Fe(II) est la neutralisation de
l’atrazine présente dans l’effluent à traiter. L’objectif final est l’optimisation de la
quantité de réactif à ajouter en entrée de réacteur à partir de la connaissance de la
quantité maximale d’atrazine que l’on désire en sortie du réacteur. L’intérêt est ici
purement économique.

3.3.5 Inversion de modèle de Volterra par régularisation de Ti-
khonov

Afin de valider la méthode de reconstruction de la quantité d’atrazine par régulari-
sation de Tikhonov, nous allons envisager l’inversion du modèle de Volterra reliant le
débit d’atrazine à l’entrée (figure 3.4) et la concentration en H2O2 dans le réacteur (figure
3.6(b)). Le modèle de Volterra est tronqué à ses 3 premiers noyaux développés respecti-
vement sur une, deux et deux fonctions orthonormées. Les pôles des fonctions sont fixés
aux valeurs −0.01 et −0.05. Le modèle possède au total 8 paramètres. Dans le cas où la
mesure de la concentration en H2O2 n’est pas bruitée, le modèle de Volterra utilisé est
suffisamment précis pour que l’on puisse envisager son inversion sans avoir à régulariser la
quantité reconstruite (λ = 0). Le résultat de reconstruction est représenté sur la figure 3.8.
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Fig. 3.8 - Débit d’atrazine (l/s) (courbe continue) et sa reconstruction (ligne pointillée)

Malgré l’absence de bruit de mesure, on constate l’apparition de pics de reconstruc-
tion d’amplitude non négligeable. La qualité de reconstruction est cependant correcte.
L’augmentation du nombre de noyaux ou de fonctions modélisant ces noyaux n’apporte
aucune amélioration ni à la précision du modèle ni à la qualité de la reconstruction du
débit d’atrazine.

Considérons maintenant le cas où la mesure de la concentration en H2O2 est bruitée
(rapport signal sur bruit égal à 100). La figure 3.9 montre la sortie du modèle de Volterra,
dont les paramètres ont été réidentifiés pour représenter la concentration en peroxyde
d’hydrogène dans le réacteur.
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Fig. 3.9 - Concentration en H2O2 (mol/l) dans le réacteur (courbe claire) et en sortie du modèle
de Volterra (courbe foncée)

Afin de reconstruire correctement la quantité d’atrazine à l’entrée du réacteur, il est
maintenant nécessaire de régulariser la solution du problème inverse. La figure 3.10 re-
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présente la reconstruction pour deux valeurs du paramètre de régulation (λ = 10000 et
λ = 100000). Dans chacun des cas, la matrice de régulation utilisée est la matrice des dé-
rivées secondes, qui offre les résultats de reconstruction les plus probants (cf le deuxième
chapitre du mémoire).
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Fig. 3.10 - Comparaison entre le débit d’atrazine (l/s) (courbe foncée) et sa reconstruction
(courbe claire) pour différentes valeurs de λ avec utilisation de la matrice des dé-
rivées secondes

Le terme λ prend des valeurs très importantes, étant donné qu’il est proportionnel à
l’inverse de la période d’échantillonnage. On constate un bon comportement par rapport
à l’amplitude du bruit sans qu’il y ait pour autant une perte d’information sur le signal
reconstruit.

Ces différents essais en présence de bruit de mesure permettent de valider la méthode
d’inversion par régularisation dans le cas du modèle cinétique du procédé d’oxydation
H2O2/Fe(II).

Cet exemple de reconstruction de la quantité d’atrazine valide la méthode de recons-
truction par régularisation de Tikhonov et confirme donc l’intérêt de cette méthode pour
la reconstruction de grandeurs non directement mesurables à partir de la connaissance de
grandeurs mesurables et d’un modèle qui les relie. On peut également constater l’influence
de l’amplitude du bruit de mesure et de la précision du modèle de Volterra sur la qualité
de reconstruction de la quantité d’atrazine.

3.3.6 Inversion de modèle de Volterra par retour d’entrée re-
construite

Les résultats de reconstruction par régularisation de Tikhonov montrent que la mé-
thode employée est satisfaisante pour inverser un modèle de Volterra. Nous allons à présent
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les comparer aux résultats obtenus par les deux méthodes d’inversion par retour d’entrée
reconstruite décrites dans le deuxième chapitre du mémoire.

On utilise cette fois la modélisation des noyaux de Volterra par développement sur des
fonctions de transfert afin de montrer que les méthodes d’inversion proposées fonctionnent
quel que soit le choix de modélisation des noyaux de Volterra.

On considère toujours le cas du procédé d’oxydation H2O2/Fe(II) pour une variation
du débit d’atrazine en entrée représenté par la figure 3.4.

Dans tout ce qui suit, le modèle de Volterra est tronqué à ses 2 premiers noyaux,
développés respectivement sur une et deux fonctions de transfert. Le modèle de Volterra
global comporte 8 paramètres.

Dans le cas où les mesures de concentration ne sont pas bruitées, les variations de
concentration en atrazine et en peroxyde d’hydrogène H2O2 données par le modèle ciné-
tique du réacteur et le modèle de Volterra sont représentées sur la figure 3.11.
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Fig. 3.11 - Variations de concentrations (mol/l) donnée par le modèle cinétique du réacteur
(courbe continue) et le modèle de Volterra (courbe pointillée)

Si les mesures de concentration sont bruitées (rapport signal/bruit égal à 100), la fi-
gure 3.12 montre qu’après une nouvelle identification, le modèle de Volterra proposé reste
valable pour représenter les variations de concentration en atrazine et en peroxyde d’hy-
drogène H2O2 données par le modèle cinétique du réacteur.
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Fig. 3.12 - Variations de concentrations (mol/l) données par le modèle cinétique du réacteur
(courbe claire) et le modèle de Volterra (courbe foncée)

Le modèle de Volterra développé sur des fonctions de transfert comporte autant de
paramètres que celui développé sur base de fonctions généralisée mais sa complexité est
moindre car il ne comporte que deux noyaux. Les résultats obtenus dans les deux cas sont
pourtant tout à fait comparables.

Remarquons que la parcimonie du modèle de Volterra développé sur une base de
fonctions généralisée n’est garantie que dans le cas d’un choix convenable des pôles des
fonctions, ce qui était le cas dans l’étude précédente : les valeurs ont été fixées à −0.005
et −0.01 après divers essais.

Quoi qu’il en soit, le modèle développé sur fonctions de transfert est ici aussi suffisam-
ment précis et parcimonieux pour que l’on puisse envisager son inversion.

On envisage directement la reconstruction du débit d’atrazine en entrée de réacteur
(figure 3.4) par les deux méthodes d’inversion par retour d’entrée reconstruite dans le cas
de mesures bruitées de la concentration en peroxyde d’hydrogène H2O2 dans le réacteur
(rapport signal/bruit=100).

Les paramètres du modèle de Volterra sont à nouveau identifiés dans le cas où la me-
sure de la concentration en peroxyde d’hydrogène est bruitée (figure 3.12(b)). Lors de
l’utilisation de la deuxième méthode, les valeurs des paramètres K1 et K2 sont respective-
ment fixées à 0.05 et 20 pour une reconstruction optimale. Les résultats de reconstruction
sont représentés sur la figure 3.13.
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0 5 10 15 20 25 30
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Temps (heures)

Q
A

t (
l/s

)

(b) Deuxième méthode

Fig. 3.13 - Débit d’atrazine (l/s) en entrée du réacteur (courbe foncée) et sa reconstruction
(courbe claire)

Malgré la présence de pics de reconstruction, la qualité de reconstruction semble
meilleure que celle obtenue dans le meilleur des cas par régularisation de Tikhonov (figure
3.10), ceci à cause de la faible amplitude de l’erreur de reconstruction. Ces résultats ont été
obtenus sans avoir eu à tenir compte d’une éventuelle amplification du bruit de mesure
ajouté à la grandeur de sortie. L’amplitude du bruit (ou erreur de reconstruction) que
l’on retrouve sur le signal reconstruit est ici plus faible que l’amplitude du bruit ajouté à
la mesure de la concentration en H2O2 utilisée. Chacune des deux méthodes d’inversion
par retour d’entrée reconstruite joue implicitement le rôle d’un filtre passe-bas, atténuant
l’amplitude du bruit.

Un autre avantage de ces deux méthodes d’inversion par rapport à la méthode par
régularisation de Tikhonov est une diminution importante du temps de calcul nécessaire,
qui est réduit à quelques dizaines de secondes au plus, suivant la taille du signal de sortie
mesuré et la complexité du modèle de Volterra.

3.3.7 Conclusion

Cette étude d’un procédé chimique de traitement des eaux permet de valider dans le
cadre de la simulation les modèles de Volterra et les différentes techniques d’inversion non
linéaire proposés dans les deux premiers chapitres du mémoire.

La nature des non-linéarités inhérentes au procédé Fenton d’oxydation de composés
organiques permet l’utilisation d’un modèle de Volterra. L’étape d’inversion du modèle de
Volterra est d’autant plus rapide et efficace que le modèle possède une structure simple
(i.e. un faible nombre de noyaux) et une bonne parcimonie paramétrique. L’objectif de
reconstruction d’une concentration non mesurable à partir de la mesure de concentration
d’une autre espèce chimique est donc atteint dans le cadre de la simulation. Partant des
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constatations effectuées en simulation, une implémentation en temps réel du procédé de
reconstruction de la concentration en composé organique polluant est envisageable.

L’étape suivante de cette étude consistera en l’application de ces méthodes de modé-
lisation et d’inversion sur des données réelles.

3.4 Etude expérimentale : procédé de digestion anaé-

robie

Les traitements biologiques ou biochimiques constituent le mode classique d’épuration
de la pollution organique des eaux résiduaires industrielles. Ces techniques d’épuration
reposent sur les conditions qui permettent aux flores bactériennes de se développer et
d’assurer la dégradation des matières organiques polluantes, éliminées dans la mesure où
elles servent d’aliments aux bactéries. Le recours à l’épuration biologique ou biochimique
dépend étroitement de la biodégradabilité des rejets industriels [Boeglin, 1997].

Les procédés d’épuration biologiques ou biochimiques les plus utilisés sont de type
aérobie (présence d’air ou d’oxygène) car la cinétique du processus s’avère beaucoup plus
rapide et les rendements d’épuration plus élevés qu’avec les traitements biologiques anaé-
robies.

Cependant, les procédés anaérobies, tout en assurant une élimination de la pollution
organique carbonée, présentent quand même un certain nombre d’avantages par rapport
aux traitements biologiques aérobies : une faible consommation d’énergie pour les besoins
du procédé, une faible production de boues biologiques en excès et la récupération pos-
sible d’un biogaz (constitué en grande partie de méthane) pouvant être utilisé comme
source d’énergie. Ce type de traitement, communément appelé ”digestion anaérobie” est
utilisé surtout pour des effluents très concentrés en pollution carbonée, de type industriel
(brasserie, sucrerie, conserverie, distillerie,...).

3.4.1 Description du procédé étudié

La digestion anaérobie assure la conversion de la majeure partie du carbone organique
contenu dans les effluents en un biogaz combustible composé en grande partie de méthane
CH4. Vu le coût actuel de l’énergie, la digestion anaérobie est un procédé bien adapté
au traitement d’effluents industriels concentrés en pollution organique et produits à des
débits moyens. En contrepartie de certains avantages par rapport aux traitements aérobies
classiques, la cinétique des réactions mises en jeu est lente (en particulier lors de l’étape
de méthanisation), ce qui se traduit par un investissement de départ élevé compte tenu
du volume important nécessaire des réacteurs biologiques anaérobies.
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La digestion anaérobie s’effectue spontanément lorsqu’une pollution organique concen-
trée est maintenue en l’absence d’oxygène. Le processus de dégradation des composés
organiques s’opère en deux étapes essentielles :

– une phase acide de liquéfaction des composés organiques aboutissant à la formation
d’acides gras volatils (AGV). Cette phase fait intervenir des bactéries anaérobies
qui sécrètent des enzymes extracellulaires capables d’hydrolyser les macromolécules
organiques complexes (protéines, lipides, hydrates de carbone) de l’eau résiduaire
en molécules plus petites, appelées acides volatils (acide acétique, propionique, bu-
tyrique,...) qui sont essentiellement gras et qui serviront de substrat aux bactéries
méthanogènes.

– une phase de gazéification ou méthanogénèse dont les produits finaux sont le mé-
thane (CH4) et le dioxyde de carbone (CO2). L’acétogénèse permet d’abord la trans-
formation des acides volatils en acide acétique et en hydrogène. La méthanogénèse
assure ensuite par des bactéries anaérobies la transformation des acides volatils en
produits gazeux finaux (méthane et dioxyde de carbone).

La digestion anaérobie est un processus lent à démarrer. La cinétique des réactions
mises en jeu est principalement gouvernée par la méthanogénèse, étape relativement lente.
Le fonctionnement global est fortement influencé par la sensibilité de la masse bactérienne
au pH (la vitesse de production de méthane décrôıt rapidement en dehors d’une zone de
pH allant de 6 à 8), à la température (chute de la production de méthane en dessous de
30̊ C), aux variations de pollution et à la présence en quantité trop importante de cer-
tains toxiques, comme les métaux lourds ou les sulfures. De manière générale, on vérifie
la bonne marche du procédé de digestion anaérobie en mesurant la production de biogaz,
elle-même fonction de la qualité du substrat entrant en fermentation lorsque toutes les
conditions biologiques sont satisfaites.

On peut classer les différents digesteurs anaérobies mis en oeuvre industriellement en
deux grandes catégories selon l’intervention dans la dégradation des polluants organiques
de cultures bactériennes anaérobies libres ou fixées :

– les digesteurs à cultures libres dans lesquels la biomasse est en suspension. On as-
sure un brassage puissant pour homogénéiser le milieu, le plus souvent par recyclage
d’une fraction du biogaz produit. Pour optimiser le fonctionnement de la méthani-
sation, on peut procéder à la séparation des deux processus d’acidogénèse (réalisé
dans un bassin) et de méthanisation (dans le réacteur proprement dit)

– les digesteurs à cultures fixées dans lesquels on s’efforce de fixer la culture bacté-
rienne anaérobie sur un support solide. Le matériau est choisi en fonction de sa
surface spécifique, afin de fixer le maximum de biomasse, et de son indice de vide,
afin de limiter les risques de colmatage.

Le procédé étudié est un digesteur anaérobie en lit fixe à flux ascendant traitant
des vinasses de distilleries de la région de Narbonne (figure 3.14) [Bernard et al., 2001],
[Steyer et al., 2003].
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Le réacteur est une colonne circulaire de 3.5m de hauteur et de 0.6m de diamètre, ce
qui donne un volume total de 0.989m3. Le support utilisé pour fixer la biomasse est du
CloisonyleTM, matériau dont la surface spécifique est de 180m2/m3. Ce support occupant
un certain volume, le volume utile du réacteur est de 0.948m3.

Fig. 3.14 - Digesteur anaérobie en lit fixe à flux ascendant

Le liquide à l’entrée du réacteur est obtenu par dilution de 20l de vinasses dans un
réservoir de 200l. Ce réservoir d’alimentation est équipé de capteurs de niveau permet-
tant d’obtenir une concentration donnée en matière carbonée à l’entrée du réacteur. Le
pH est également mesuré (figure 3.15(a)) et régulé dans le réservoir d’alimentation par
l’ajout de soude à l’aide d’une pompe doseuse. La température à l’intérieur du réacteur
est maintenue à 35̊ C par une boucle de régulation constituée d’une résistance chauffante,
d’un circuit d’eau chaude et d’une sonde de température.
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Fig. 3.15 - Mesures effectuées en ligne

Le débit de liquide à l’entrée du réacteur est mesuré à l’aide d’un capteur électroma-
gnétique (figure 3.15(d)). Une fois dans le réacteur, le liquide monte jusqu’à la sortie en
passant par le support sur lequel est fixée la biomasse. A la sortie du réacteur, un sépa-
rateur permet le dégazage du milieu liquide et la décantation des solides en suspension,
qui seront ensuite recyclés. Le liquide est ensuite recyclé à l’entrée du réacteur à l’aide
d’une pompe de recirculation. Un analyseur permet de mesurer le pourcentage (et donc le
débit) d’hydrogène, de méthane (figure 3.15(c)) et de dioxyde de carbone (figure 3.15(b))
du gaz en sortie de réacteur.

D’autres mesures, habituellement obtenues hors-ligne et manuellement, sont effectuées
en ligne dans le cadre spécifique de ce réacteur :
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Fig. 3.16 - Autres mesures effectuées en ligne

– la concentration en acides gras volatils (AGV - figure 3.16(b)) mesurée à l’aide d’un
capteur industriel ;

– la demande chimique en oxygène (DCO - figure 3.16(a)) mesurée par titrimétrie ;

– l’alcalinité totale (AT - figure 3.16(c)) et partielle (AP - figure 3.16(d)) mesurées
par titrimétrie.

Une deuxième mesure de la DCO et de la concentration en AGV est effectuée par
spectrométrie infrarouge. Ces mesures sont représentées sur la figure 3.17.
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Fig. 3.17 - Mesures effectuées par spectrométrie infrarouge

3.4.2 Le modèle dynamique

La modélisation dynamique du processus de digestion anaérobie, sujet abordé depuis
près de 30 ans, a d’abord été envisagée du point de vue de la précision. Les modèles pro-
posées avaient pour objectif principal de représenter le mieux possible le comportement
du réacteur. Les modèles mis au point étaient relativement simples et ne comportaient
qu’une seule population de bactéries. Ils ont été complexifiés en y incluant davantage de
populations de bactéries différentes et en décomposant le procédé total en plusieurs étapes
intermédiaires. Il résulte de cette augmentation de la précision des modèles une complexité
et une absence de parcimonie paramétrique qui rendent difficile, voire impossible, toute
tentative d’utilisation à des fins de commande du procédé.

Le modèle dynamique développé par [Bernard et al., 2001] suppose deux populations
de bactéries différentes (X1 et X2) ainsi qu’une séparation du procédé de digestion anaé-
robie en deux phases distinctes :

– une phase d’acidogénèse durant laquelle la population de bactéries acidogéniques
X1 consomme le substrat organique S1 pour produire du dioxyde de carbone CO2

et des acides gras volatils (S2) selon la réaction

S1 −→ X1 + S2 + CO2 (3.21)

– une phase de méthanogénèse durant laquelle la seconde population de bactéries
X2 utilise les acides gras volatils comme substrat afin de crôıtre et de produire du
dioxyde de carbone CO2 et du méthane CH4 selon la réaction

S2 −→ X2 + CH4 + CO2 (3.22)

Le carbone inorganique total C est stocké sous forme de bicarbonate et de CO2 dis-
sout. Une variable Z est introduite pour représenter l’alcalinité totale dans le digesteur.
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Le modèle dynamique est donc constitué d’un ensemble d’équations différentielles du
premier ordre qui représentent, pour un débit de liquide en entrée D, l’évolution des deux
populations de bactéries (X1 et X2), des substrats organiques (S1 et S2), de l’alcalinité
totale Z et de la concentration en carbone inorganique C :





dX1

dt
= (µ1(S1) − αD)X1

dX2

dt
= (µ2(S2) − αD)X2

dS1

dt
= D(S1in − S1) − k1µ1(S1)X1

dS2

dt
= D(S2in − S2) + k2µ1(S1)X1 − k3µ2(S2)X2

dZ

dt
= D(Zin − Z)

dC

dt
= D(Cin − C) + k4µ1(S1)X1 + k5µ2(S2)X2 − qCO2

(3.23)

Les termes S1in, S2in, Zin et Cin représentent respectivement les concentrations en
entrée de substrat organique, d’acides gras volatils (AGV), l’alcalinité et le carbone inor-
ganique total.

Les taux de croissance bactérienne µ1(S1) et µ2(S2) sont représentés respectivement
par le modèle de Monod et celui de Haldane .

µ1(S1) = µ1max
S1

S1 +KS1

(3.24)

µ2(S2) = µ2max
S2

S2 +KS2
+

S2
2

KI2

(3.25)

Les paramètres µ1max et µ2max représentent le taux de croissance maximal de la bio-
masse acidogénique et méthanogénique respectivement. Les termesKS1

etKS2
sont des pa-

ramètres de saturation associés respectivement à S1 et S2. Le terme KI2 est une constante
d’inhibition associée à S2.

Le terme α représente une fraction supposée constante des bactéries attachée au sup-
port. Cette fraction n’est pas affectée par le phénomène de dilution.

Le terme qCO2
est le débit molaire en CO2. On le calcule de manière analytique en

utilisant l’expression

qCO2
= k7(k8PCO2

+ Z − C − S2) (3.26)

où le terme PCO2
est la pression partielle en CO2 donnée par l’expression
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PCO2
=

Φ −
√

Φ2 − 4k8PT [CO2]

2k8

(3.27)

avec

Φ = k8PT + [CO2] +
k6µ2(S2)X2

k7

(3.28)

La concentration en dioxyde de carbone [CO2] est donnée par [CO2] = C + S2 − Z.
Le terme PT est la pression totale en sortie du réacteur.

Les valeurs identifiées de toutes les constantes définies figurent dans [Bernard et al., 2001].

L’utilisation de ce modèle dynamique permet de comparer les mesures obtenues en
ligne aux résultats de simulation. On suppose tout au long du procédé que la biomasse,
après sa croissance initiale, est maintenue constante : la concentration X1 en bactéries
acidogènes et X2 en bactéries méthanogènes reste les mêmes tout au long des 30 jours
d’expérimentation (figure 3.18). Du fait de la croissance initiale des populations de bac-
téries, le volume total utilisé est de 350 litres sur les 948 utilisables à l’origine.
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Fig. 3.18 - Concentrations en biomasse

La comparaison des résultats expérimentaux et des résultats fournis par le modèle
dynamique est présentée sur l’ensemble de figures 3.19.
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(d) Débit de CO2
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Fig. 3.19 - Comparaison des mesures obtenues en ligne (courbes claires) avec les résultats de
simulation (courbes foncées)

Le modèle dynamique est donc valide sur un large domaine d’application du procédé
de digestion anaérobie. Nous allons donc pouvoir comparer les résultats de simulation
fournis par le modèle non linéaire de Volterra à ceux fournis par ce modèle dynamique en
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plus des résultats expérimentaux afin de valider à la fois le modèle de Volterra présenté
dans la première partie du mémoire et les techniques d’inversion de ce modèle décrites
dans la deuxième partie du mémoire.

3.4.3 Application du modèle de Volterra au digesteur anaérobie

Le procédé de digestion anaérobie considéré ici présente, comme de nombreux autres
procédés biologiques et biochimiques, un comportement dynamique fortement non linéaire
dû en grande partie aux taux de croissance bactérienne µ1(S1) et µ2(S2) (3.24) et (3.25).
Un tel comportement justifie l’utilisation de modèles non linéaires pour représenter le pro-
cédé dans son entier ou bien les relations entre les différentes grandeurs mesurées en ligne
sur le pilote expérimental. Nous allons donc appliquer au digesteur anaérobie le modèle
de Volterra décrit dans la première partie du mémoire [Bibes et al., 2003b].

Si l’on envisage ensuite la commande du procédé de digestion anaérobie, il est impor-
tant de pouvoir disposer en temps réel d’une mesure de grandeur d’entrée du réacteur.
Bien souvent, en pratique, on ne dispose pas d’un capteur adéquat pour des raisons tech-
nologiques aussi bien qu’économiques. Et dans le cas où l’on dispose d’un capteur, il est
souvent impossible de l’implémenter à l’entrée du réacteur. Une solution est alors d’effec-
tuer des mesures de grandeurs en sortie du procédé et d’estimer la grandeur d’entrée en
inversant le modèle qui la relie à une ou plusieurs des grandeurs mesurables. Sachant que
la grandeur d’entrée peut être liée à d’autres grandeurs de sortie par un modèle de Vol-
terra, nous allons appliquer les techniques d’inversion présentées dans la deuxième partie
du mémoire afin de reconstruire la grandeur d’entrée souhaitée.

3.4.3.1 Modélisation

Les modèles de Volterra décrits dans le premier chapitre de ce mémoire sont des mo-
dèles mono-entrée mono-sortie. Il convient donc dans un premier temps de définir les
grandeurs que nous considérons comme entrées et sorties du digesteur anaérobie. La des-
cription du réacteur en lit fixe (figure 3.14) amène naturellement à définir comme grandeur
d’entrée le débit D(t) de liquide pollué à l’entrée (figure 3.15(d)), avant son traitement
par digestion anaérobie. Les autres grandeurs mesurées en ligne (débit de méthane, de
dioxyde de carbone, demande chimique en oxygène, concentration en acides gras volatils,
alcalinité totale, pH) pourront être considérées comme des grandeurs de sortie liées à la
grandeur d’entrée. La demande chimique en oxygène (DCO) et la concentration en acides
gras volatils (AGV) sont les principales mesures de la pollution et donc les témoins les
plus important de la dégradation de cette dernière par digestion anaérobie. On s’attachera
donc particulièrement à la modélisation du lien entre débit d’entrée D(t) et DCO et du
lien entre D(t) et AGV.

a) Identification de modèles de Volterra
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Nous allons dans un premier temps utiliser le modèle dynamique (3.23) du procédé
pour identifier différents modèles de Volterra entre la grandeur d’entrée D(t) et les diffé-
rentes grandeurs de sortie. La première étape est de créer un fichier d’entrée D(t) (figure
3.20) et d’utiliser le modèle dynamique pour simuler les grandeurs de sortie (DCO, AGV,
différents débits, alcalinité totale, pH).
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Fig. 3.20 - Débit d’entrée

Les conditions de simulation sont les suivantes : la période d’échantillonnage est
fixée à 2 minutes (ce sera le cas dans toutes les simulations qui suivent). Les concen-
trations S1in, S2in, Zin et Cin en entrée sont maintenues constantes (S1in = 6.86g/l,
S2in = 110.06mmol/l, Zin = 138.27meq/l, Cin = 32.27mmol/l).

Les valeurs des constantes utilisées dans le modèle dynamique (3.23) sont :

α = 0.5
k1 = 42.14
k2 = 116.5
k3 = 268
k4 = 50.6
k5 = 343.6
k6 = 453
k7 = 19.8
k8 = 16

(3.29)

Les valeurs des constantes utilisées pour le calcul des taux de croissance bactérienne
sont :
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µ1max = 1.2
µ2max = 0.74
KS1

= 8.9
KS2

= 25
KI2 = 256

(3.30)

On en déduit les taux de croissance bactérienne µ1(S1) et µ2(S2) (figure 3.21).
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Fig. 3.21 - Taux de croissance bactérienne

Les différentes grandeurs de sortie obtenues par simulation (selon les conditions que
l’on vient de décrire) sont données sur la figure 3.22.

187



Chapitre 3. Application à des procédés
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Fig. 3.22 - Fichiers de points utilisés pour l’identification de modèles de Volterra

Nous considérons des modèles de Volterra tronqués aux deux premiers termes. Chaque
noyau est ensuite modélisé par un développement sur des fonctions de transfert. Le pre-
mier noyau est développé sur une seule fonction de transfert tandis que le deuxième noyau
est développé sur deux fonctions de transfert. Dans chaque cas le modèle comporte donc
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au total 8 paramètres (3 pôles a1,1, a2,1, a2,2 et 5 gains γ0,1,1, γ0,2,1, γ1,2,1, γ0,2,2, γ1,2,2) et
peut être schématisé comme l’indique la figure 3.23.

Les différents modèles de Volterra identifiés possèdent tous la même structure. Nous
allons voir que ce choix de structure garantit dans chacun des cas une précision suffisante
des résultats. L’augmentation de la complexité du modèle (et donc la diminution de sa
parcimonie paramétrique) n’améliore pas les résultats.
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Fig. 3.23 - Structure du modèle de Volterra

Une fois l’identification paramétrique achevée (par programmation non linéaire), on
dispose de 5 modèles de Volterra de la forme présentée par la figure (3.23) reliant le
débit d’entrée D(t) à la DCO, à la concentration en AGV , au débit de CO2, au débit
de CH4 et au pH respectivement. L’ensemble des figures 3.24 est une comparaison de la
sortie de chaque modèle de Volterra avec les résultats de simulation du modèle dynamique.
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0 20 40 60 80 100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Temps (jours)

D
C

O
 (

g/
l)

(a) Demande chimique en oxygène

0 20 40 60 80 100
2

4

6

8

10

12

14

16

18

Temps (jours)

A
G

V
 (

g/
l)

(b) Acides gras volatils

0 10 20 30 40 50 60 70 80
7.174

7.175

7.176

7.177

7.178

7.179

7.18

7.181

Temps (jours)

pH

(c) pH

0 10 20 30 40 50 60 70 80
2.5

3

3.5

4

4.5

5

5.5

Temps (jours)

Q
C

O
2 (

l/h
)
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Fig. 3.24 - Comparaison entre sorties des modèles de Volterra (ligne pointillée) et sorties du
modèle dynamique (ligne continue)

Dans chacun des 5 cas, le modèle de Volterra identifié fournit une bonne approximation
de la sortie du modèle dynamique malgré un nombre de paramètres relativement faible.
L’ajout d’un troisième terme dans le modèle de Volterra n’améliore pas la précision des
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résultats obtenus, malgré un nombre plus important de paramètres.

Par contre, l’alcalinité Z (figure 3.22(f)) semble avoir un comportement indépendant
de celui du débit d’entrée D(t). Une fois passé un régime transitoire, la valeur de Z(t) se
stabilise autour d’une valeur constante. Sans comportement dynamique autour de cette
valeur, il n’est pas possible de modéliser le lien entre D(t) et Z(t) par une série de Volterra.

b) Test sur les données mesurées

L’étape suivante consiste à valider les modèles de Volterra identifiés en comparant les
sorties obtenues pour le débit d’entrée D(t) (figure 3.15(d)) aux données expérimentales.

On applique donc le débit d’entrée D(t) aux différents modèles de Volterra identifiés
dans la partie précédente. L’ensemble de figures 3.25 compare les sorties de chacun des
modèles de Volterra aux données expérimentales.
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Fig. 3.25 - Validation expérimentale des modèles de Volterra (courbes claires : données expéri-
mentales - courbe foncée : sortie du modèle de Volterra)

Dans chacun des cas, on constate une assez bonne adéquation entre mesures expéri-
mentales et résultats de simulation des modèles de Volterra pour un même débit d’entrée.
Quelques remarques sont cependant nécessaires :
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– dans le cas de la DCO (figure 3.25(a)) et de la concentration en AGV (figure 3.25(b),
il a été nécessaire de multiplier la sortie du modèle de Volterra par un gain dont
la valeur est 2.3 et 0.8 respectivement. Cette différence entre la sortie du modèle
de Volterra et les données expérimentales peut s’expliquer : le modèle dynamique
que nous avons utilisé pour identifier les modèles de Volterra a été établi à partir de
données expérimentales datant du début d’utilisation du digesteur anaérobie. A ce
moment, le volume utile du réacteur était de 948l. Toutes les valeurs des paramètres
du modèle ont été identifiés à partir de ces données. Par contre, les données expéri-
mentales utilisées ici correspondent à une utilisation plus récente du digesteur. Les
conditions expérimentales ont changé : entre autres changements, le volume utile
du réacteur a diminué jusqu’à 350l à cause de la croissance bactérienne. De plus,
les valeurs de certains paramètres ont dû (ou doivent) être à nouveau identifiées.
Le modèle dynamique (3.23) qui a servi à identifier les paramètres des différents
modèles de Volterra a donc été utilisé dans des conditions où il ne correspond pas
exactement aux données expérimentales, ce qui explique la différence entre les me-
sures et les sorties du modèle de Volterra. Cette sensibilité du modèle de Volterra
aux changements de conditions expérimentales pourrait être étudiée afin d’être uti-
lisée à la mise en évidence de problèmes pratiques, tel le colmatage du réacteur.

– ce problème de gain n’apparâıt pas dans le cas du débit de CO2 et de CH4 (courbes
3.25(c) et 3.25(d)).

– dans le cas du pH, on constate sur la courbe de mesures expérimentales (figure
3.15(a)) que sa variation est l’inverse de celle du débit d’entrée (figure 3.15(d)). Ceci
justifie le gain unitaire négatif par lequel on doit multiplier la sortie du modèle de
Volterra pour qu’elle corresponde au pH mesuré expérimentalement. On constate
tout de même une différence de gain marquée à certains endroits entre les deux
courbes de la figure 3.25(e). Cependant, la variation expérimentale de pH étant
faible (le pH est régulé autour de la valeur optimale de 7 pour des conditions idéales
de fonctionnement des cultures bactériennes), le modèle de Volterra peut suffire à
prévoir cette variation en fonction de celle du débit d’entrée.

– dans tous les cas de figure, les résultats de simulation obtenus à l’aide des modèles
de Volterra sont tout à fait comparables à ceux obtenus par le modèle dynamique
(figures 3.19(a) à 3.19(e)).

Cet ensemble de résultats de comparaison permet ici de valider l’approche de repré-
sentation des liens entre le débit d’entrée et différentes grandeurs de sortie par modèles de
Volterra. La précision de ces modèles est suffisante pour ensuite envisager leur inversion
et permettre ainsi la reconstruction du débit d’entrée (ou de la DCO en entrée) à partir
de la mesure de grandeurs de sortie.
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3.4.3.2 Reconstruction de grandeurs par inversion du modèle de Volterra

a) Régularisation de Tikhonov

La méthode de régularisation de Tikhonov présentée dans le deuxième chapitre de ce
mémoire est utilisée afin d’inverser les modèles de Volterra reliant le débit d’entrée D(t)
du digesteur anaérobie aux différentes mesures de sorties (DCO, AGV, débit de CO2,
débit de CH4, pH). Ainsi, les mesures de grandeurs les plus accessibles permettront, par
inversion de modèle, de reconstruire une des grandeurs d’entrée, comme le débit (faci-
lement mesurable) ou la DCO en entrée (dont le protocole de mesure est difficile, voire
impossible à implémenter). La reconstruction du débit d’entrée D(t) permettra de valider
la méthode employée en comparant la grandeur reconstruite à la mesure du débit d’entrée.

Dans toute la partie qui suit, on utilise le modèle de Volterra développé sur base de
fonctions orthonormées généralisée.

Considérons le débit d’entrée D(t) représenté sur la figure 3.26(a). La figure 3.26(b)
représente la sortie du modèle dynamique du digesteur (3.23) et la sortie du modèle de
Volterra représentant le lien entre débit d’entrée et DCO en sortie : ce modèle de Vol-
terra est tronqué à ses deux premiers noyaux, développés respectivement sur une et trois
fonctions de la base orthonormée généralisée. Les pôles des fonctions sont tous fixés à 10.
Le nombre total de paramètres est égal à 7. Les deux courbes de la figure 3.26(b) sont
suffisamment proches pour envisager ensuite l’inversion du modèle de Volterra.
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(courbe pointillée)

Fig. 3.26 - Modélisation du lien entre débit d’entrée et DCO en sortie

Dans le cas où aucun bruit de mesure ne s’ajoute à la DCO en sortie, aucune régulari-
sation de l’entrée D(t) reconstruite n’est nécessaire. On fixe donc la valeur du paramètre
λ à 0. Le résultat de la reconstruction est représenté sur la figure 3.27.
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Fig. 3.27 - Comparaison entre D(t) (courbe continue) et sa reconstruction (courbe pointillée)

Malgré la présence de plusieurs pics de reconstruction sur une partie du signal re-
construit, les deux courbes sont pratiquement superposées, attestant de la qualité de
reconstruction du débit d’entrée D(t).

On ajoute maintenant un bruit de mesure à la DCO en sortie (rapport signal/bruit égal
à 100). Le modèle de Volterra est à nouveau identifié et l’on conserve le même débit d’en-
trée (figure 3.26(a)). La comparaison entre les deux courbes de la figure 3.28 montre que le
modèle de Volterra est suffisamment précis pour modéliser correctement la DCO en sortie.

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

Temps (jours)

D
C

O
 (

g/
l)

Fig. 3.28 - Comparaison entre DCO bruitée (courbe claire) et DCO en sortie du modèle de Vol-
terra (courbe foncée)

Afin de reconstruire correctement le débit d’entrée, il est maintenant nécessaire de ré-
gulariser la solution du problème inverse. La figure 3.29 représente le débit d’entrée D(t)
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reconstruit pour deux valeurs du paramètre de régularisation (λ = 0.01 et λ = 0.1). Dans
chacun des deux cas, la matrice de régulation utilisée est la matrice des dérivées secondes.
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Fig. 3.29 - Comparaison entre D(t) (courbe foncée) et sa reconstruction (courbe claire) pour
différentes valeurs de λ

L’utilisation de la matrice des dérivées secondes permet une bonne reconstruction du
débit d’entrée sans qu’il y ait pour autant une perte d’information sur le signal reconstruit.

Ces différents essais en présence de bruit de mesure permettent de valider la méthode
d’inversion par régularisation dans le cas du modèle du digesteur anaérobie. On utilise
maintenant le débit d’entrée D(t) et la DCO en sortie mesurés expérimentalement (figure
3.30).
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Fig. 3.30 - Mesures expérimentales du débit d’entrée et de la DCO en sortie
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Le modèle de Volterra utilisé reste le même que précédemment (troncature aux deux
premiers noyaux). Malgré une différence notable entre la DCO mesurée et la sortie du
modèle de Volterra entre 20 et 25 jours (figure 3.30(b)), le modèle de Volterra est suffi-
samment précis pour envisager la reconstruction du débit d’entrée.

L’application de la méthode d’inversion conduit aux résultats présentés sur les courbes
de la figure 3.31.
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Fig. 3.31 - Débit d’entrée expérimental (courbe foncée) et sa reconstruction (courbe claire)

Si l’on compare les deux courbes, l’influence du paramètre de régularisation est nette-
ment visible. La valeur optimale de λ se situe à nouveau autour de 0.1.

La méthode d’inversion du modèle de Volterra par régularisation de Tikhonov peut
donc s’appliquer à des fichiers de points expérimentaux. Les résultats de reconstruction
du débit d’entrée D(t) sont de bonne qualité malgré là aussi une différence notable entre
les deux courbes de la figure 3.31(b) entre 20 et 25 jours.

La deuxième étape consiste maintenant à reconstruire une grandeur d’entrée dont le
protocole de mesure est difficile, voire impossible à implémenter : la DCO en entrée du
réacteur biologique. L’accès à la mesure de la DCO en entrée est important dans le cas
du digesteur anaérobie étudié car cette grandeur permet de quantifier le taux de pollution
présent dans le liquide en entrée du réacteur.

La figure 3.32(a) représente la DCO en entrée DCOin du modèle dynamique et la
figure 3.32(b) la DCO obtenue en sortie comparée à la sortie du modèle de Volterra. Dans
ce cas, le modèle de Volterra est tronqué à ses 3 premiers noyaux, chacun développé res-
pectivement sur une, une et deux fonctions de la base orthonormée généralisée. Les pôles
des fonctions sont fixés à 5. Le nombre total de paramètres est égal à 6.
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Fig. 3.32 - Modélisation du lien entre DCO en entrée et DCO en sortie

La reconstruction de la DCO en entrée peut être effectuée sans régularisation (λ=0).
Le résultat est représenté sur la figure 3.33.
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Fig. 3.33 - Comparaison entre la DCO en entrée (courbe continue) et sa reconstruction (courbe
pointillée)

On constate également dans ce cas la présence de pics de reconstruction mais la qualité
de reconstruction de la DCO en entrée reste tout à fait correcte.

On ajoute à nouveau un bruit de mesure à la DCO en sortie (rapport signal/bruit égal
à 100). Le modèle de Volterra est à nouveau identifié et l’on conserve la même DCO en en-
trée (figure 3.32(a)). La comparaison entre les deux courbes de la figure 3.34 montre que le
modèle de Volterra est suffisamment précis pour modéliser correctement la DCO en sortie.
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Fig. 3.34 - Comparaison entre DCO bruitée (courbe claire) et DCO en sortie du modèle de Vol-
terra (courbe foncée)

La figure 3.35 représente la DCO en entrée reconstruite pour deux valeurs du para-
mètre de régulation (λ = 10−5 et λ = 10−4). Dans chacun des cas, la matrice de régulation
utilisée est la matrice des dérivées secondes.
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Fig. 3.35 - Comparaison entre la DCO en entrée (courbe foncée) et sa reconstruction (courbe
claire) pour différentes valeurs de λ

La valeur optimale du coefficient de régularisation se situe autour de 10−4. On obtient
pour cette valeur une bonne reconstruction de la DCO sans dégradation.

Cette méthode d’inversion du modèle de Volterra par régularisation de Tikhonov peut
donc être appliquée à la reconstruction de grandeurs non mesurables directement.

La concentration en polluant étant beaucoup plus importante dans le liquide à l’en-
trée du réacteur, cette méthode pourrait éventuellement être utilisée en lieu et place d’un
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capteur. Nous avons constaté que le temps de calcul nécessaire à l’inversion du modèle
de Volterra était au mieux égal à quelques minutes, pour une durée globale du procédé
qui s’étend sur plusieurs jours. Ceci permet d’envisager une reconstruction de la DCO
d’entrée en temps réel.

b) Inversion par retour d’entrée reconstruite

Les résultats de reconstruction par régularisation de Tikhonov étant probants, nous
allons à présent les comparer à ceux obtenus par les deux méthodes d’inversion par retour
d’entrée reconstruite décrites dans le deuxième chapitre du mémoire.

On utilise le débit d’entrée D(t) de la figure 3.36(a). La DCO en sortie du modèle
dynamique à laquelle s’ajoute un bruit de mesure (rapport signal sur bruit égal à 100)
(3.23) est représentée sur la figure 3.36(b).
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Fig. 3.36 - Signaux d’entrée et de sortie

On cherche ensuite à représenter le lien entre le débit d’entrée D(t) et la DCO en
sortie par un modèle de Volterra développé sur fonctions de transfert. On utilise dans
toute cette partie un modèle de Volterra tronqué à ses deux premiers termes, le premier
noyau est modélisé par une fonction de transfert tandis que le deuxième noyau est modé-
lisé par un développement sur deux fonctions de transfert. Le nombre total de paramètres
du modèle est égal à 8. La figure 3.36(b) compare la sortie du modèle de Volterra avec la
DCO en sortie du modèle dynamique. On constate à nouveau que la modèle de Volterra
est suffisamment précis pour envisager son inversion et ainsi reconstruire le débit d’entrée
D(t) à partir de la DCO en sortie.

On applique alors les deux méthodes de reconstruction d’un signal par retour d’entrée
reconstruite décrites dans le premier chapitre. Le résultat des deux reconstructions est
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représenté sur la figure 3.37.
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0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Temps (jours)

D
(t

) 
(l/

h)
(b) Reconstruction par la méthode 2

Fig. 3.37 - Comparaison entre débit d’entrée reconstruit (courbe claire) et mesuré (courbe fon-
cée) pour les 2 méthodes de reconstruction

Malgré une qualité de reconstruction qui peut sembler moindre par rapport à celle ob-
tenue par régularisation (figure 3.29(a)), les résultats obtenus restent satisfaisants et cela
sans que nous ayons eu à tenir compte d’une éventuelle amplification du bruit de mesure
ajouté à la DCO en sortie. L’amplitude du bruit (ou erreur de reconstruction) que l’on
retrouve sur le signal D(t) reconstruit est du même ordre de grandeur que l’amplitude du
bruit de mesure ajouté à la DCO utilisée pour reconstruire D(t).

Afin d’appliquer ces deux méthodes sur les données expérimentales, on utilise main-
tenant le débit d’entrée D(t) et la DCO en sortie mesurés expérimentalement (figure 3.38).

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Temps (jours)

D
(t

) 
(l/

h)
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Fig. 3.38 - Mesures expérimentales du débit d’entrée et de la DCO en sortie
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Le modèle de Volterra utilisé reste le même que précédemment (troncature aux deux
premiers noyaux).

L’application des deux méthodes d’inversion conduit aux résultats présentés sur les
courbes de la figure 3.39.
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Fig. 3.39 - Débit d’entrée expérimental (courbe claire) et sa reconstruction (courbe foncée)

De manière plus précise, la figure 3.40 compare la reconstruction du débit d’entrée par
les deux méthodes avec le débit d’entrée mesuré expérimentalement et filtré.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Temps (jours)

D
(t

) 
(l/

h)
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Fig. 3.40 - Débit d’entrée expérimental filtré (courbe claire) et sa reconstruction (courbe foncée)

Les résultats obtenus sur des fichiers de points expérimentaux sont de bonne qualité et
restent tout à fait comparables à ceux obtenus par la méthode d’inversion par régularisa-
tion (figure 3.31(b)). En comparaison avec cette dernière méthode, on note également une
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nette amélioration de la rapidité des calculs (moins d’une minute) lors de l’application de
ces deux méthodes.

La deuxième étape consiste maintenant à appliquer ces deux méthodes afin de recons-
truire la DCO en entrée du réacteur.

La figure 3.41(a) représente la DCO en entrée (DCOin) du modèle dynamique et la fi-
gure 3.41(b) la DCO bruitée obtenue en sortie comparée à la sortie du modèle de Volterra.
Le modèle de Volterra qui relie ces deux grandeurs est tronqué à ses 2 premiers noyaux,
chacun développé respectivement sur une et deux fonctions de transfert. Le nombre total
de paramètres est égal à 8.
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Fig. 3.41 - Modélisation du lien entre DCO en entrée et DCO en sortie

Le résultat de la reconstruction de la DCO en entrée par chacune des deux méthodes
est représenté sur la figure 3.42.
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Fig. 3.42 - DCO en entrée (courbe foncée) et DCO reconstruite (courbe claire)

Dans le cas de la reconstruction de la DCO en entrée à partir de la DCO en sortie
bruitée, il apparâıt en plus de l’erreur de reconstruction due au bruit de mesure, des pics
d’amplitude importante qui nuisent à la qualité de la DCO en entrée reconstruite. Ce
phénomène est atténué lorsque l’on utilise la deuxième méthode de reconstruction.

3.4.4 Conclusion

L’utilisation du modèle dynamique du procédé et des données expérimentales per-
mettent dans ce cas d’étude de valider en simulation les méthodes de modélisation et
d’inversion non linéaire présentées dans les deux premiers chapitres du mémoire.

La modélisation des liens non linéaires entre la variation de débit de liquide pollué en
entrée du procédé et différentes grandeurs en sortie (DCO, AGV, pH, débits de gaz) est
réalisée à l’aide de modèles de Volterra dont on s’est attaché à réduire la complexité et le
nombre de paramètres. Cette simplification des modèles permet ensuite d’envisager leur
inversion en un temps relativement réduit.

Le deuxième objectif de l’étude était celui de la reconstruction de grandeurs non me-
surables par l’inversion du modèle de Volterra et l’utilisation de grandeurs plus facilement
mesurables. La DCO en entrée du réacteur a été reconstruite à partir de la mesure de
la DCO en sortie et l’inversion par deux approches différentes du modèle de Volterra.
L’approche d’inversion par régularisation de Tikhonov offre des résultats de reconstruc-
tion satisfaisants au détriment d’une charge de calcul importante. Cependant, le procédé
étudié possède une dynamique globale lente par rapport au temps de calcul nécessaire. On
peut donc envisager l’implémentation du procédé de reconstruction. En outre, l’approche
d’inversion par retour d’entrée reconstruite ne repose pas sur une optimisation itérative
et permet donc de limiter davantage la charge de calcul : une implémentation en temps
réel est donc tout à fait concevable.
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3.5 Conclusion du chapitre

Les deux procédés de traitement des eaux étudiés dans ce chapitre font appel à des
principes différents : un processus chimique d’oxydation dans le premier cas et un pro-
cessus biologique de digestion dans le deuxième cas. Cependant, l’objectif final reste le
même, la neutralisation d’un composé organique potentiellement dangereux pour l’envi-
ronnement. Ces deux procédés comportent d’autres points communs, mis en évidence lors
de leur étude. Il s’agit avant tout de deux procédés continus : la mise en oeuvre de la
neutralisation du composé organique est envisagée dans chacun des cas sur une longue
durée, pouvant aller jusqu’à plusieurs mois. La modélisation de chacun des deux procédés
tient compte de ce fait et les structures des deux modèles cinétiques obtenus sont donc
très proches : on aboutit dans chacun des cas à un ensemble d’équations différentielles
dans lequel des non-linéarités sont mises en évidence.

Les résultats fournis par le modèle de Volterra sont suffisamment proches de ceux ob-
tenus en utilisant les modèles cinétiques des deux procédés pour justifier son utilisation et
valider la méthode de modélisation proposée. Ceci montre s’il en est besoin qu’un modèle
de comportement peut-être utilisé dans les domaines de la chimie et de la biochimie afin
de prévoir le comportement d’un procédé continu, assimilable à un système mono-entrée
mono-sortie.

La reconstruction de grandeurs chimiques non directement mesurables a, dans les deux
cas d’étude, un objectif semblable (l’accès à une grandeur) et des motivations d’ordre
économique : l’optimisation de la quantité de réactif dans le cas du procédé chimique
d’oxydation et la possibilité d’éviter la mise en place onéreuse d’un protocole de mesure
directe en entrée du réacteur dans le cas du procédé biologique de digestion. Les méthodes
présentées permettent d’obtenir des grandeurs reconstruites tout à fait satisfaisantes. On
a montré que la méthode de régularisation de Tikhonov, le plus souvent employée dans
le cadre de systèmes linéaires, peut voir son utilisation élargie au domaine plus vaste des
systèmes non linéaires si ceux-ci sont modélisables par une série de Volterra. Les deux
méthodes d’inversion par retour d’entrée reconstruite permettent de s’affranchir d’un cer-
tain nombre de calculs et d’obtenir une rapidité satisfaisante si l’on désire ensuite utiliser
ces méthodes sur une application en temps réel.
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Le double objectif de ce travail de thèse s’inscrit dans la mise en place actuelle d’un
pôle innovant de traitement des eaux, ceci dans le cadre du 12ème Contrat de Plan État-
Région de l’Université de Poitiers.

Le premier objectif du travail de recherche consistait en la modélisation de procédés
chimiques et biologiques de traitement des eaux. Dans le domaine plus général du gé-
nie des procédés, de telles tentatives de modélisation sont depuis longtemps l’objet de
recherches. La modélisation des deux procédés de traitement des eaux par les séries de
Volterra présentée dans ce mémoire est dans chaque cas la première étape d’un projet
global : le modèle du procédé d’oxydation de composé organique polluant doit ensuite
permettre d’envisager la commande de ce procédé en agissant sur certaines grandeurs ;
le modèle du procédé de digestion anaérobie permet, en faisant le lien entre différentes
grandeurs, d’envisager la reconstruction d’une de ces grandeurs par inversion de modèle.
Il s’agit là du deuxième objectif de cette thèse. Un des objectifs à terme du projet global
de recherche dans lequel figure ce travail est la création d’un capteur intelligent capable
de reconstruire une grandeur non directement mesurable. Ce type de capteur pourra être
ensuite utilisé lors de la synthèse et de la mise en place d’un dispositif de commande du
procédé de traitement des eaux.

Le premier chapitre répond à l’objectif de modélisation de systèmes non linéaires. Les
différentes formes de modélisation et techniques présentées contribuent à augmenter le plus
possible la parcimonie paramétrique du modèle de Volterra. C’est la principale contribu-
tion de ce chapitre. L’utilisation des séries de Volterra pour représenter un système non
linéaire fournit un modèle souple et abordable car il généralise la notion de convolution,
très utilisée pour la représentation de systèmes linéaires. Nous avons tenté de répondre
à l’un des inconvénients du modèle de Volterra développé sur bases de fonctions géné-
ralisées : la forte augmentation du nombre de paramètres en l’absence de connaissance
a priori sur le système étudié. La première solution proposée consiste à développer les
noyaux de Volterra sur des fonctions de transfert : on obtient ainsi un modèle plus souple
dont les paramètres sont tous identifiés à partir de signaux d’entrée et de sortie du sys-
tème. Le problème de l’absence de connaissance a priori sur le système est éludé et la
parcimonie globale du modèle de Volterra est augmentée. La deuxième solution proposée,
que l’on peut coupler à la première, consiste à séparer la partie statique et la partie dy-
namique du signal d’entrée considéré. Le modèle de Volterra ne représente alors que la
partie dynamique du système, ce qui permet de réduire le nombre total de noyaux et donc
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de paramètres.

Le deuxième chapitre s’attache à l’objectif de reconstruction de grandeurs non di-
rectement mesurables. De nombreuses méthodes d’inversion de modèles linéaires et non
linéaires existent, dont la méthode de régularisation de Tikhonov. Une des contributions
de ce chapitre consiste en l’application de cette méthode de régularisation au modèle de
Volterra défini dans le premier chapitre. Des difficultés similaires à celles du cas linéaire
se posent (choix du paramètre et de la matrice de régularisation) et sont solutionnées
de manière satisfaisante. Un problème supplémentaire se pose dans le cas du modèle de
Volterra : l’augmentation du temps de calcul dû à la procédure d’optimisation non linéaire
des paramètres. Une solution classique que nous proposons consiste en la discrétisation
du modèle de Volterra afin de limiter le volume de calcul nécessaire à la simulation des
sorties. Une solution moins classique consiste à coupler cette discrétisation à l’optimisa-
tion paramétrique et à la simulation de modèle sur un horizon fuyant, réduisant encore
davantage le temps de calcul global. Cependant, l’optimisation et la simulation restent
des étapes nécessaires de la procédure d’inversion par régularisation de Tikhonov. Nous
avons alors proposé deux méthodes calculatoires d’inversion au principe différent de celui
de la régularisation afin de contourner l’optimisation paramétrique. Ces deux méthodes
d’inversion par retour d’entrée reconstruite sont équivalentes dans le cas d’un système
linéaire mais donnent des résultats sensiblement différents dans le cas d’un système non
linéaire. Dans les deux cas, le gain en temps de calcul est relativement important mais au
prix de certaines difficultés numériques qui n’apparaissent pas dans le cas de la régulari-
sation de Tikhonov.

Le troisième chapitre est consacré à l’étude de deux procédés de traitement des eaux
aux objectifs semblables (la neutralisation de composés organiques) mais dont les tech-
niques mises en oeuvre diffèrent (utilisation de réactifs chimiques dans un cas et de po-
pulations de bactéries dans l’autre). Nous nous sommes efforcés de montrer qu’un modèle
de Volterra (modèle de comportement) est capable de représenter correctement le fonc-
tionnement de ces deux procédés, dont deux modèles de connaissance avaient déjà été
développés sous forme d’un ensemble d’équations différentielles. La validation du modèle
de Volterra montre qu’un procédé chimique ou biologique peut être considéré comme un
système comportant une ou plusieurs entrées et sorties sur lesquelles on peut agir afin de
commander (et d’optimiser) son fonctionnement. Cependant, il n’est possible d’agir sur
ces entrées et sorties qu’à la condition de pouvoir les mesurer à n’importe quel instant
du processus. L’étude des deux procédés a montré que la mesure directe de certaines
grandeurs était trop complexe et/ou trop coûteuse à mettre en oeuvre. Nous avons donc
proposé une méthode indirecte de mesure de ces grandeurs par l’utilisation des méthodes
d’inversion exposées dans le deuxième chapitre. Ces méthodes font appel à la mesure di-
recte de grandeurs accessibles à l’aide de capteurs et à la reconstruction des grandeurs non
directement mesurables par des moyens informatiques. Les temps de mesure et de calcul
sont suffisamment faibles pour envisager d’implémenter ces méthodes de mesure indirecte
en temps réel.

On peut envisager différents prolongements à ce travail de thèse.
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Tout d’abord, l’étude effectuée dans le troisième chapitre pourrait aboutir à la mise
au point d’un capteur logiciel dédié à la mesure de grandeurs physico-chimiques par une
méthode indirecte comme nous l’avons vu précédemment. Un tel capteur présenterait
l’avantage de pouvoir être implémenté directement sur un pilote expérimental et cela à
moindre coût. Une autre possibilité consisterait à ajouter à un capteur déjà existant une
composante informatique afin de reconstruire une ou plusieurs grandeurs à partir des me-
sures de ce capteur et d’un modèle préétabli reliant les grandeurs entre elles. Une telle
démarche réduirait encore davantage le coût de mise en place, celui-ci se limitant au ma-
tériel informatique et d’interfaçage nécessaire.

La suite logique de la mise en place d’un tel capteur pourra être la synthèse de lois
de commandes visant à optimiser le fonctionnement des procédés de traitement des eaux,
particulièrement dans le cas de l’oxydation de composés organiques par le procédé Fenton,
pour lequel aucune méthode de dosage optimal de réactif en entrée du processus n’a été
développée. Le dosage optimal conduirait également à une diminution du coût global du
procédé, tout en assurant un taux de neutralisation de polluant conforme aux normes
préétablies.

Nous nous sommes limités dans notre étude au cas de systèmes mono-entrée mono-
sortie. Les modèles de Volterra n’ont donc été développés que dans ce cas. Or, les deux
études effectuées au troisième chapitre montrent qu’il serait souhaitable d’un point de vue
pratique de pouvoir agir sur plusieurs entrées des procédés. Dans le cas de l’oxydation
par le procédé Fenton, une action simultanée sur le dosage des deux réactifs pourrait être
envisagée. Elle implique donc la représentation du procédé par un modèle multi-entrées
mono-sortie. Le modèle de Volterra est généralisable à plusieurs entrées il n’existe pas
de moyen certain de quantification de l’influence de chacune des entrées sur la sortie,
ceci à cause de nombreux termes de couplage présents dans le développement en série
de Volterra. De plus, le nombre de paramètres augmente proportionnellement au nombre
d’entrées du modèle, sacrifiant ainsi à l’objectif de parcimonie du modèle global. Un étude
de pertinence des paramètres du modèle de Volterra multi-entrées mono-sortie serait donc
nécessaire afin d’en réduire le nombre.

Enfin, un problème beaucoup plus délicat serait l’application de techniques d’inversion
au modèle de Volterra multi-entrées mono-sortie. La reconstruction de plusieurs signaux
d’entrée à partir d’un seul signal de sortie nécessiterait de connâıtre exactement l’influence
de chacune des entrées du système. Cette information pourrait être déduite de connais-
sances a priori sur le système étudié. Les recherches dans ce domaine particulier ne se
limitent pas au cadre du traitement des eaux mais à l’ensemble des problèmes inverses.
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Annexe

1 Preuve du théorème 1.3

La première étape du calcul consiste à réécrire l’intégrale multiple yn(t) (1.99) en rem-
plaçant les fonctions fpa (t) par leur expression (1.100).

∫ t
0

∫ τ2
0
...
∫ τn

0

(∑p0−1
j=0

C
j
p0−1

j!
aj0(t− τn)

j

)
ea0(t−τn)...

...

(∑pn−1−1
j=0

C
j
pn−1−1

j!
ajn−1(τ2 − τ1)

j

)
ean−1(τ2−τ1)

(∑pn−1
j=0

C
j
pn−1

j!
ajnτ1

j

)
eanτ1

∏n

i=1 u(τi)dτi

(1)
Afin de simplifier les calculs, nous allons poser :

γi,j = γi,j(a
j
i ) =

Cj
pi−1

j!
aji pour 0 ≤ i ≤ n et 0 ≤ j ≤ pi − 1 (2)

L’équation (1) devient :

∫ t
0

∫ τ2
0
...
∫ τn

0

(∑p0−1
j=0 γ0,j(t− τn)

j
)
ea0(t−τn)...

...
(∑pn−1−1

j=0 γn−1,j(τ2 − τ1)
j
)
ean−1(τ2−τ1)

(∑pn−1
j=0 γn,jτ1

j
)
eanτ1

∏n

i=1 u(τi)dτi
(3)

Posons maintenant

Di =





∑p0−1
j=0 γ0,j(t− τn)

j pour i = 0∑pi−1
j=0 γi,j(τn−i+1 − τn−i)

j pour 1 ≤ i ≤ n− 1∑pn−1
j=0 γn,jτ1

j pour i = n

(4)

On obtient donc comme nouvelle expression de yn(t) :

∫ t

0

∫ τ2

0

...

∫ τn

0

D0D1...Dne
a0(t−τn)...ean−1(τ2−τ1)eanτ1

n∏

i=1

u(τi)dτi (5)

que l’on peut également écrire :
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∫ t

0

∫ τ2

0

...

∫ τn

0

D0D1...Dne
(a0−a1)(t−τn)+...+(an−1−an)(t−τ1)+ant

n∏

i=1

u(τi)dτi (6)

A ce stade, il faut faire la remarque que l’intégrale multiple (1.99) comporte n + 1
fonctions (1.100) et seulement n termes u(τi). Si l’on parvient à décomposer l’intégrale
multiple en un produit d’intégrales simples, nous aboutirons à un produit de n + 1 in-
tégrales, dont les n premières seront des intégrales de convolution simples alors que la
dernière sera indépendante des variables τi et pourra s’écrire sous la forme eant. Dans le
cas général, cette exponentielle peut être considérée comme un facteur de pondération ou
un coefficient d’amortissement.

Afin de simplifier les calculs, nous allons poser pn = 0. Il est important de noter que
cette simplification n’aura pas d’importance dans la suite des calculs, la séparation de
l’intégrale multiple ou l’identification paramétrique.

Nous obtenons bien dans l’intégrale multiple (6) un terme eant indépendant des va-
riables τi que l’on peut donc considérer comme un facteur constant et ”sortir”de l’intégrale
multiple :

eant

∫ t

0

∫ τ2

0

...

∫ τn

0

D0D1...Dne
(a0−a1)(t−τn)+...+(an−1−an)(t−τ1)

n∏

i=1

u(τi)dτi (7)

Posons pn = 0 pour obtenir :

(
pn−1∑

j=0

Cj
pn−1

j!
ajnτ1

j

)
eanτ1 = 1 (8)

et ainsi simplifier le calcul sans affecter la suite des manipulations mathématiques.
L’intégrale multiple yn(t) s’écrira donc au final :

∫ t

0

∫ τ2

0

...

∫ τn

0

D0...Dn−1e
(a0−a1)(t−τn)...ean−1(t−τ1)

n∏

i=1

u(τi)dτi (9)

Le but étant de séparer l’intégrale multiple (9), il reste à déterminer si le produit

D0D1...Dn−1 =
n−1∏

i=0

Di (10)

peut être séparé en un produit de termes qui ne dépendent que des différences t− τi.
La séparation de l’intégrale multiple nécessite donc la connaissance du produit (10) quelle
que soit la valeur du coefficient pi de chaque développement Di défini par (4).

Les termes Di s’écrivent de manière générale :

Di =

{ ∑p0−1
j=0 γ0,j(t− τn)

j pour i = 0∑pi−1
j=0 γi,j(τn−i+1 − τn−i)

j pour 1 ≤ i ≤ n− 1
(11)
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Afin de simplifier les formules théoriques, on a posé

γi,j = γi,j(a
j
i ) =

Cj
pi−1

j!
aji pour 0 ≤ i ≤ n− 1 et 0 ≤ j ≤ pi − 1 (12)

En ajoutant et en retranchant la variable t, l’expression (11), pour 1 ≤ i ≤ n−1, peut
s’écrire

Di =

pi−1∑

j=0

γij((t− τn−i) − (t− τn−i+1))
j (13)

Afin de développer cette expression, on considère la loi du binôme de Newton :

(a− b)j =

j∑

k=0

(−1)kCk
j a

j−kbk (14)

On obtient ainsi

Di =

pi−1∑

j=0

γij

j∑

k=0

(−1)kCk
j (t− τn−i)

j−k(t− τn−i+1)
k (15)

On utilise également la simplification suivante pour alléger les notations :

{
ηijk = γij(−1)kCk

j pour i = 1, ..., n− 1
ηij = γij pour i = 0

(16)

L’expression (15) devient donc

Di =

pi−1∑

j=0

j∑

k=0

ηijk(t− τn−i)
j−k(t− τn−i+1)

k (17)

Le produit
∏n−1

i=0 Di (généralisé à l’ordre n et pour des valeurs quelconques mais entières
des termes pi) s’exprime alors de la manière suivante

n−1∏

i=0

Di =

(
p0−1∑

j=0

η0j(t− τn)
j

)(
n−1∏

i=1

pi−1∑

j=0

j∑

k=0

ηijk(t− τn−i)
j−k(t− τn−i+1)

k

)
(18)

Le produit
∏n−1

i=0 Di (avec pi quelconque, i = 0, ..., n − 1) peut donc s’écrire sous la
forme d’une somme de termes de la forme αijk(t−τ1)qn,1,r(t−τ2)qn,2,r ...(t−τn)qn,n,r , où αijk
est une constante qui ne dépend que des constantes ηijk et où les termes qn,i,r, i = 1, ..., n
sont des entiers positifs ou nuls qui dépendent des valeurs des termes pi, i = 0, ..., n− 1.

n−1∏

i=0

Di =
Pn∑

r=1

αijk(t− τ1)
qn,1,r(t− τ2)

qn,2,r ...(t− τn)
qn,n,r (19)

On notera chacun des termes du produit de la manière suivante :
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Kr(t, τ1, ..., τn) = αijk

n∏

i=1

(t− τi)
qn,i,r (20)

avec

{
0 ≤ qn,1,r ≤ pn−1 − 1
0 ≤ qn,i,r ≤ (pn−i − 1)(pn−i+1 − 1) pour i = 2, ..., n

(21)

On a donc transformé un produit en somme :

n−1∏

i=0

Di =
Pn∑

r=1

Kr(t, τ1, ..., τn) (22)

Le nombre Pn de termes de la somme peut s’exprimer de manière générale en fonction
des termes pi, i = 1, ..., n :

Pn = p0

n−1∏

i=1

pi(pi + 1)

2
(23)

L’intégrale multiple yn(t) (1.99)

∫ t

0

∫ τ2

0

...

∫ τn

0

D0D1...Dn−1e
(a0−a1)(t−τn)e(a1−a2)(t−τn−1)...ean−1(t−τ1)

n∏

i=1

u(τi)dτi (24)

se décompose alors en une somme de Pn intégrales multiples :

yn(t) =
Pn∑

r=1

yn,r(t) (25)

que l’on peut expliciter davantage :

yn(t) =
∑Pn

r=1

∫ t
0

∫ τ2
0
...
∫ τn

0
αijk

∏n

i=1(t− τi)
qn,i,r

e(a0−a1)(t−τn)+(a1−a2)(t−τn−1)+...+an−1(t−τ1)
∏n

i=1 u(τi)dτi
(26)

Chacune de ces Pn intégrales multiples yn,r peut ensuite être exprimée sous la forme
d’un produit de n intégrales simples :

yn,r(t) =
∫ t

0
αn,0(t− τn)

qn,n,re(a0−a1)(t−τn)u(τn)dτn
∫ t

0
αn,1(t− τn−1)

qn,n−1,re(a1−a2)(t−τn−1)u(τn−1)dτn−1...

...
∫ t

0
αn,n−1(t− τ1)

qn,1,rean−1(t−τ1)u(τ1)dτ1
(27)

avec αijk = αn,0αn,1...αn,n−1.

De manière générale, chacune des intégrales simples du produit précédent aura la forme
suivante :

yn,r,i(t) =

{ ∫ t
0
αn,i(t− τ)qn,n−i,re(ai−ai+1)(t−τ)u(τ)dτ, si 0 ≤ i ≤ n− 2∫ t

0
αn,i(t− τ)qn,n−i,reai(t−τ)u(τ)dτ, si i = n− 1

(28)

ce que nous voulions montrer.
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2 Cas particulier du théorème 1.3

On reprend le calcul pour un cas particulier : n = 3.
La première étape du calcul consiste à réécrire l’intégrale multiple y3(t) (1.99) en rem-

plaçant les fonctions fpa (t) par leur expression (1.100).

∫ t
0

∫ τ2
0

∫ τ3
0

(∑p0−1
j=0

C
j
p0−1

j!
aj0(t− τ3)

j

)
ea0(t−τ3)

(∑p1−1
j=0

C
j
p1−1

j!
aj1(τ3 − τ2)

j

)
ea1(τ3−τ2)

(∑p2−1
j=0

C
j
p2−1

j!
aj2(τ2 − τ1)

j

)
ea2(τ2−τ1)

(∑p3−1
j=0

C
j
p3−1

j!
aj3τ1

j

)
ea3τ1

∏3
i=1 u(τi)dτi

(29)

Afin de simplifier les calculs, on pose :

γi,j = γi,j(a
j
i ) =

Cj
pi−1

j!
aji pour 0 ≤ i ≤ 3 et 0 ≤ j ≤ pi − 1 (30)

L’équation (29) devient :

∫ t
0

∫ τ2
0

∫ τ3
0

(∑p0−1
j=0 γ0,j(t− τ3)

j
)
ea0(t−τ3)

(∑p1−1
j=0 γ1,j(τ3 − τ2)

j
)
ea1(τ3−τ2)

(∑p2−1
j=0 γ2,j(τ2 − τ1)

j
)
ea2(τ2−τ1)

(∑p3−1
j=0 γ3,jτ1

j
)
ea3τ1

∏3
i=1 u(τi)dτi

(31)

Posons maintenant

Di =





∑p0−1
j=0 γ0,j(t− τ3)

j pour i = 0∑pi−1
j=0 γi,j(τ3−i+1 − τ3−i)

j pour 1 ≤ i ≤ 2∑p3−1
j=0 γ3,jτ1

j pour i = 3

(32)

On obtient donc comme nouvelle expression de y3(t) :

∫ t

0

∫ τ2

0

∫ τ3

0

D0D1D2D3e
a0(t−τ3)ea1(τ3−τ2)ea2(τ2−τ1)ea3τ1

3∏

i=1

u(τi)dτi (33)

que l’on peut également écrire :

∫ t

0

∫ τ2

0

∫ τ3

0

D0D1D2D3e
(a0−a1)(t−τ3)+(a1−a2)(t−τ2)+(a2−a3)(t−τ1)+a3t

3∏

i=1

u(τi)dτi (34)

A ce stade, il faut faire la remarque que l’intégrale multiple (1.99) comporte 4 fonctions
(1.100) et seulement 3 termes u(τi). Si l’on parvient à décomposer l’intégrale multiple en
un produit d’intégrales simples, nous aboutirons à un produit de 4 intégrales, dont les
3 premières seront des intégrales de convolution simples alors que la dernière sera indé-
pendante des variables τi et pourra s’écrire sous la forme eant. Dans le cas général, cette
exponentielle peut être considérée comme un facteur de pondération ou un coefficient
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d’amortissement.

Afin de simplifier les calculs, nous allons poser p3 = 0. Il est important de noter que
cette simplification n’aura pas d’importance dans la suite des calculs, la séparation de
l’intégrale multiple ou l’identification paramétrique.

Nous obtenons bien dans l’intégrale multiple (34) un terme ea3t indépendant des va-
riables τi que l’on peut donc considérer comme un facteur constant et ”sortir”de l’intégrale
multiple :

ea3t

∫ t

0

∫ τ2

0

∫ τ3

0

D0D1D2D3e
(a0−a1)(t−τ3)+(a1−a2)(t−τ2)+(a2−a3)(t−τ1)

3∏

i=1

u(τi)dτi (35)

Posons p3 = 0 pour obtenir :

(
p3−1∑

j=0

Cj
p3−1

j!
aj3τ1

j

)
ea3τ1 = 1 (36)

et ainsi simplifier le calcul sans affecter la suite des manipulations mathématiques. L’in-
tégrale multiple y3(t) s’écrira donc au final :

∫ t

0

∫ τ2

0

∫ τ3

0

D0D1D2e
(a0−a1)(t−τ3)e(a1−a2)(t−τ2)ea2(t−τ1)

3∏

i=1

u(τi)dτi (37)

Le but étant de séparer l’intégrale multiple (37), il reste à déterminer si le produit

D0D1D2 =
2∏

i=0

Di (38)

peut être séparé en un produit de termes qui ne dépendent que des différences t− τi. La
séparation de l’intégrale multiple nécessite donc la connaissance du produit (38) quelle
que soit la valeur du coefficient pi de chaque développement Di défini par (32).

Les termes Di s’écrivent dans ce cas :

D0 =
∑p0−1

j=0 γ0j(t− τ3)
j

D1 =
∑p1−1

j=0 γ1j(τ3 − τ2)
j

D2 =
∑p2−1

j=0 γ2j(τ2 − τ1)
j

(39)

Afin de simplifier les formules théoriques, on a posé

γi,j = γi,j(a
j
i ) =

Cj
pi−1

j!
aji pour 0 ≤ i ≤ 2 et 0 ≤ j ≤ pi − 1 (40)

En ajoutant et en retranchant la variable t, les expressions (39), pour 1 ≤ i ≤ 2, peut
s’écrire
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D0 =
∑p0−1

j=0 γ0j(t− τ3)
j

D1 =
∑p1−1

j=0 γ1j((t− τ2) − (t− τ3))
j

D2 =
∑p2−1

j=0 γ2j((t− τ1) − (t− τ2))
j

(41)

Afin de développer cette expression, on considère la loi du binôme de Newton :

(a− b)j =

j∑

k=0

(−1)kCk
j a

j−kbk (42)

On obtient ainsi

D0 =
∑p0−1

j=0 γ0j(t− τ3)
j

D1 =
∑p1−1

j=0 γ1j

∑j

k=0(−1)kCk
j (t− τ2)

j−k(t− τ3)
k

D2 =
∑p2−1

j=0 γ2j

∑j

k=0(−1)kCk
j (t− τ1)

j−k(t− τ2)
k

(43)

On utilise également la simplification suivante pour alléger les notations :

{
ηijk = γij(−1)kCk

j pour i = 1, ..., 2
ηij = γij pour i = 0

(44)

On peut réécrire les expressions (43) sous la forme :

D0 =
∑p0−1

j=0 η0j(t− τ3)
j

D1 =
∑p1−1

j=0

∑j

k=0 η1jk(t− τ2)
j−k(t− τ3)

k

D2 =
∑p2−1

j=0

∑j

k=0 η2jk (t− τ1)
j−k(t− τ2)

k

(45)

Dans le cas particulier où l’on pose p0 = p1 = p2 = 2, l’expression (43) devient

D0 = η00 + η01(t− τ3)
D1 = η100 + η110(t− τ2) + η111(t− τ3)
D2 = η200 + η210(t− τ1) + η211(t− τ2)

(46)

et le produit D0D1D2 s’exprime alors de la manière suivante

D0D1D2 = (η00 + η01(t− τ3))(η100 + η110(t− τ2) + η111(t− τ3))
(η200 + η210(t− τ1) + η211(t− τ2))

(47)

Une fois ce produit développé, on obtient une expression du type

2∏

i=0

Di =

(
p0−1∑

j=0

η0j(t− τ3)
j

)(
2∏

i=1

pi−1∑

j=0

j∑

k=0

ηijk(t− τ3−i)
j−k(t− τ3−i+1)

k

)
(48)

Le produit D0D1D2 peut donc s’écrire sous la forme d’une somme de 18 termes de la
forme αijk(t− τ1)

q3,1,r(t− τ2)
q3,2,r(t− τ3)

q3,3,r , où αijk est une constante qui ne dépend que
des constantes ηijk et où les termes q3,i,r, i = 1, ..., 3 sont des entiers positifs ou nuls qui
dépendent des valeurs des termes pi, i = 0, ..., 2.
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L’intégrale multiple y3(t) peut alors être développée en une somme de P3 intégrales
multiples :

y3(t) =

P3∑

r=1

y3,r(t) (49)

que l’on peut expliciter davantage :

y3(t) =
∑P3

r=1

∫ t
0

∫ τ2
0

∫ τ3
0
αijk

∏3
i=1(t− τi)

q3,i,r

e(a0−a1)(t−τ3)+(a1−a2)(t−τ2)+a2(t−τ1)
∏3

i=1 u(τi)dτi
(50)

Le nombre P3 d’intégrales multiples est défini en fonction des constantes p0, p1, p2

(toutes trois égales à 2) de la manière suivante :

P3 = p0
p1(p1 + 1)

2

p2(p2 + 1)

2
(51)

Chacune des P3 = 18 intégrales multiples y3,r peut ensuite être exprimée sous la forme
d’un produit de 3 intégrales simples :

y3,r(t) =
∫ t
0
α3,0(t− τ3)

q3,3,re(a0−a1)(t−τ3)u(τ3)dτ3
∫ t

0
α3,1(t− τ2)

q3,2,re(a1−a2)(t−τ2)u(τ2)dτ2∫ t
0
α3,2(t− τ1)

q3,1,rea2(t−τ1)u(τ1)dτ1
(52)

avec αijk = α3,0α3,1α3,2.

On voit bien maintenant que chacune des intégrales simples du produit précédent aura
la forme suivante :

y3,r,i(t) =

{ ∫ t
0
α3,i(t− τ)q3,3−i,re(ai−ai+1)(t−τ)u(τ)dτ, si 0 ≤ i ≤ 1∫ t

0
α3,i(t− τ)q3,3−i,reai(t−τ)u(τ)dτ, si i = 2

(53)

ce que nous voulions montrer pour le cas particulier où n = 3.
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Problèmes Mal Posés. Editions Mir - Moscou, 1976.

222



[Tricomi, 1985] F.G. Tricomi. Integral Equations. Dover Publications Inc., 1985.

[Volterra, 1959] V. Volterra. Theory of Functionnals and of Integral and Integro-
Differential Equations. Dover Publications, 1959.

[Wahlberg, 1991] B. Wahlberg. System identification using Laguerre models. IEEE Trans.
Automat. Contr., 36(5) :551–562, mai 1991.

[Wahlberg, 1994] B. Wahlberg. System identification using Kautz models. IEEE Trans.
Automat. Contr., 39(6) :1276–1282, 1994.

[Walling, 1975] C. Walling. Fenton’s reagent revisited. Accounts of chemical research,
8 :125–131, 1975.

[Wiener, 1943] M. Wiener. Nonlinear problems in random theory. MIT Press, 1943.

223



Bibliographie

224



Résumé

Ce mémoire de thèse est consacré à la modélisation de systèmes non linéaires par les
séries de Volterra ainsi qu’à la reconstruction de grandeurs non directement mesurables
par inversion du modèle de Volterra. Le premier chapitre aborde la modélisation par-
cimonieuse de systèmes non linéaires. Les noyaux de la série de Volterra sont d’abord
développés sur une base de fonctions généralisée. On se propose de limiter le nombre total
de paramètres en développant les noyaux de Volterra sur des fonctions de transfert d’une
part, puis en séparant la partie statique de la partie dynamique du modèle de Volterra. Le
deuxième chapitre traite de l’inversion du modèle de Volterra. On utilise d’abord la mé-
thode de régularisation de Tikhonov puis deux méthodes d’inversion par retour d’entrée
reconstruite. Afin de limiter le volume de calcul nécessaire à la régularisation de Tikhonov,
nous proposons de discrétiser le modèle de Volterra et d’effectuer les procédures d’opti-
misation et de simulation sur un horizon fuyant. Dans le troisième chapitre, les méthodes
de modélisation et d’inversion sont appliquées à un procédé chimique, l’oxydation d’un
composé organique par le réactif de Fenton, puis à un procédé biologique, la digestion
anaérobie d’un composé carboné.

Mots-clés: système non linéaire, modélisation, identification, série de Volterra, problème
inverse, régularisation de Tikhonov, oxydation composé organique, réactif de Fenton, di-
gestion anaérobie.

Abstract

This PhD thesis is dedicated to nonlinear system modelling using Volterra series and
to Volterra model inversion in order to restore quantities which are not directly mea-
surable. First chapter is about parsimonious modelling for nonlinear systems. Volterra
series kernels are first expanded on a generalized function basis. In order to limit the total
number of parameters we propose to expand Volterra kernels on transfer functions on the
one hand, and to separate Volterra model static part from its dynamic part on the other
hand. Second chapter deals with Volterra model inversion. First, we use Tikhonov’s regu-
larization method, then we propose two inversion methods using restored input feedback.
In order to reduce the necessary computational burden for Tikhonov regularization, we
suggest a Volterra model discretization combined with optimization and simulation proce-
dures performed on a sliding window. In third chapter, modelling and inversion methods
are put into practice with a chemical process, organic compound oxidation with Fenton
reagent, and a biological process, anaerobic digestion of a carbonaceous compound.

Keywords: nonlinear system, modelling, identification, Volterra series, inverse problem,
Tikhonov regularization, organic compound oxidation, Fenton’s reagent, anaerobic diges-
tion.
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