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Introduction

Context

Since they appeared, databases have been continuously evolving. Relational databases were the most
popular databases to store data. With the emergence of the object-oriented paradigm, both relational-
object databases and object-oriented databases were introduced to support some object-oriented features
such as the inheritance relationship. Then, the same pattern can be observed with the emergence of other
types of databases such as XML databases, document-oriented databases or graph-oriented databases.
Nowadays, the notion of model is used more than ever in software engineering and the produced models
are more and more growing in size. Thus, a new generation of databases, called model repositories
(also called model stores or metadata repositories), has emerged to store metamodels, models and their
instances. Improving existing model repositories is the main goal of our thesis. Before presenting more
precisely our objectives, let us first detail why the need of model repositories is becoming increasingly
crucial.

The design of complex software systems are often based on different programming languages and
platforms. In order to cope with this challenge, a software development methodology called Model-
Driven Engineering (MDE) has been proposed. In this methodology, the design of complex systems
use a set of heterogeneous models. These models represent a system from different viewpoints. For
example, the modeling and analysis of embedded systems rely on different modeling languages such as
SysML, UML/MARTE or AADL. The management of the models used to design a system is based on
model management operations such as the generation of part of or of the complete software source code
from models, or the transformation of a model in one modeling language into another model in another
modeling language. By decoupling the system functionalities from the platform specific implementation,
the goal of MDE is to improve the software development process and to ease software maintenance and
reuse.

MDE has gained a lot of interest in industrial contexts thanks to the advantages it offers. MDE
is widely used in various areas such as aeronautics and automotive and contributes to build multiple
types of applications such as databases, domain specific languages (DSLs), Computer-Aided Software
Engineering (CASE) tools and information systems. Moreover, MDE has been used to develop IT1
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solutions for systems integration and data exchange. The success of MDE has led to the development of
several standards, tools, languages, etc. For instance, the Object Management Group (OMG) proposed
the Model-Driven Architecture (MDA) [mda, 2003] as a standard specialization (i.e., implementation)
of MDE. MDA is a software development methodology built around a set of standards (e.g., MOF [mof,
2011], UML [uml, 2011]), languages (e.g., ATL [Jouault and Kurtev, 2005], OCL [Cabot and Gogolla,
2012]) and tools (e.g., Eclipse Modeling Framework [emf, 2013a], Acceleo [acc, 2013]).

With the increasing usage of MDE, the management of very large models has appeared as one of the
major challenge faced by this methodology. This challenge needs to be tackled when MDE has to be
extensively used in industrial contexts [Clasen et al., 2012]. Indeed, a lot of domains such as e-commerce
or engineering produce over-sized models and data. For instance, models may contain millions of ele-
ments (e.g., case of the reverse-engineering of big systems) and may describe large scale datasets (e.g.,
in genomics, the Uniprot2 dataset gathers more than 200 GB of protein sequence resources). As most
MetaModeling Systems (MMS) were initially designed for a management of models in main-memory,
they fail to manage so large data and models.

To address the scalability problem of MDE, most of the proposed approaches aimed at improving the
scalability of existing metamodeling and model management tools evolving in main memory. Different
approaches arose such as:

• performing an incremental and partial management of large models [Jouault and Tisi, 2010]. The
idea is to load in main memory, the required part of a large model only. Of course, this approach
cannot be followed if an operation applies to the whole model;

• performing the management of large models in distributed settings [Clasen et al., 2012]. The idea
consists in decomposing a management task into smaller tasks that can be performed on existing
tools. This approach is limited to operations that can be decomposed into smaller and independent
tasks;

• using a database as a back-end repository. This approach consists in equipping metamodeling sys-
tems with persistence solutions using object-relational mappings (e.g., Teneo [ten, 2013]) to store
metamodels, models and instances in dedicated repositories called model repositories or metadata
repositories (e.g., EMFStore [Koegel and Helming, 2010]). However, this approach has two main
drawbacks: (i) repositories are only model warehouses since they are equipped with languages
limited only to querying capabilities, so (ii) all model management tasks (transformation, code
generation, etc.) require loading models in main memory in order to be processed.

Contrary to other paradigms (e.g., XML or the object-oriented paradigm), few work have been con-
ducted to extend relational databases to manage models and metamodels as first-class entities. Con-
ceptBase [Jarke et al., 2009b], OntoDB/OntoQL [Dehainsala et al., 2007, Jean et al., 2006a] and Rondo
[Melnik et al., 2003] are examples of this approach which consists in defining systems for metamodeling
and model management evolving completely in a database environment. These systems, called Persistent
MetaModeling Systems (PMMSs), consist in (1) a model repository that stores metamodels, models and

2www.uniprot.org
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instances while respecting the separation between the different metadata layers and preserving the con-
formity at the different abstraction levels, and (2) an associated exploitation language capable to create
and manipulate the different model layers. PMMSs have been proposed to:

• get benefit from database scalability by exploiting the considerable amount of work that goes into
data organization and query optimization in DBMS;

• offer a common repository for sharing models and data since DBMS provide the mechanisms to
secure data access to the shared models;

• provide a declarative language allowing users to define models conforming to various metamodels.

Yet, if existing PMMSs exploit the characteristics of DBMS not yet supported by classical MMS,
the arising question concerns the ability of PMMSs to provide the same functional capabilities offered
by classical MMS. Indeed, in the literature we find that existing PMMSs support mostly the defini-
tion and the storage of structural and descriptive semantics of models by providing constructors of
(meta)classes, (meta)attributes, primitives for expressing inheritance and association relationships, etc.
However, PMMSs provide limited capabilities to define functions and procedures (behavioral semantics)
that could be useful to handle advanced model management tasks such as model transformation or code
generation. Currently, existing PMMSs use either low-level procedural languages (e.g., PL/SQL) which
do not support the manipulation of high-level concepts (e.g., classes) [Dehainsala et al., 2007], or pro-
vide a fixed set of hard-coded operators (e.g., Match, Merge, Compose [Melnik et al., 2003]) devoted
to specific model management tasks. ConceptBase remains the most advanced PMMS since it supports
user-defined functions with membership constraints and external implementations. But, one of the limi-
tations of ConceptBase is that it imposes a frozen deductive language to implement functions and thus, it
cannot integrate programs defined in other languages (e.g., Java) nor web services. Moreover, it requires
restarting the server each time a new external function is introduced which limits the availability of the
PMMS (cold start).

Our proposal

The aim of our work is to integrate the benefits of classical MMS together with the advantages of DBMS.
Our approach claims the extension of database perspective. Our idea is to define a multi-level DBMS to
store metamodels, models and instances with an associated SQL-like declarative exploitation language
which provides the capability to define, manipulate (query, update and delete) these different abstraction
layers. The different model management operations (e.g., model transformation) should also be available
in PMMSs using flexible procedural mechanisms such as external programs (e.g., Java, C++) or web
services. Thus, our approach focuses on the capability to dynamically define operators that could be
exploited by the PMMS exploitation language. In particular, such operators could be implemented with
internal database mechanisms (e.g., triggers, stored procedures) or external programs stored outside the
database (e.g., Java or C++ programs), or with web services. As a consequence of this extension, we
will be able to perform advanced model management tasks such as model transformations in database,
trigger web services from databases. Information exchange and data integration could be also supported
in this context.
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To reach this objective, our work proposes to use a persistent solution within database systems.
More precisely, the solution we suggest is based on the OntoDB/OntoQL PMMS but it can be applied
to any other PMMS. If the OntoDB/OntoQL PMMS supports the structural manipulation of models
and metamodels through its associated language (OntoQL), the definition of the behavior of models
elements is not yet supported. Consequently, this system is not complete (in the computational sense)
and needs to be extended in order to support the expression of behavioral semantics (e.g., operations,
constraints, expressions, derivations, etc.). Since this system supports the manipulation of models as
first-class objects through its metamodeling capabilities, this extension will enrich the OntoDB/OntoQL
PMMS and will support models processing in order to achieve operations such as model transformations,
data integration, constraints checking, etc. In this thesis, our work contributes to:

• the definition of a set of requirements for a complete PMMS and a state of the art that shows that
existing PMMSs do not fulfill them;

• the formal definition of a PMMS data model and an associated exploitation language which include
the procedural concepts of models and metamodels;

• the implementation of our proposition (the BeMoRe PMMS) with some preliminary experiments
on its scalability;

• the development of three complete use cases in different domains to show the validity and useful-
ness of our approach.

Structure of the thesis

This thesis is structured as follows.

Chapter 1 introduces the notion of Model-Driven Engineering (MDE) including the concepts of
metamodeling and model management which are of particular interest in this thesis.

Chapter 2 presents existing persistence solutions dedicated to metamodeling and models manage-
ment. We first describe the approaches used by classical MMS to overcome the scalability problem of
MDE. Then, we introduce the notion of Persistent MetaModeling System (PMMS), on which we focus
our work, and we discuss the capabilities and limitations of existing systems.

Chapter 3 defines the requirements for a complete PMMS. These requirements integrate metamod-
eling and model management capabilities together with benefits of database systems (e.g., scalability,
querying capability). Finally, we analyze the existing PMMSs according to the defined requirements.

Chapter 4 exposes the formal extension of the PMMS metametamodel with new concepts to sup-
port the definition of model management operations that can be implemented using flexible mechanisms.
Then, this chapter presents the extension of the logical metametamodel and metamodel schema of the
PMMS repository. Finally, we introduce the formal extension of the algebra of the PMMS exploita-
tion language with operators for the definition and the exploitation of operations and their associated
implementations.
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Chapter 5 presents the extension of the OntoQL language with new instructions to define model and
data management operations and implementations, and with the capability to invoke the defined opera-
tions in OntoQL statements. Besides, this chapter presents the technical aspects of the implementation of
our approach, especially the execution process of OntoQL statements including operations invocations.
Furthermore, this chapter proposes a small study of the scaling of our approach which is a part of the
perspectives of our work.

Chapter 6 presents a use case of our approach for managing non canonical concepts i.e., derived
concepts in Ontology-Based DataBases (OBDBs) which are databases dedicated to the storage of on-
tologies.

Chapter 7 presents the utilization of our proposition to improve an OBDB design methodology using
the work achieved in Chapter 6.

Chapter 8 addresses a use case of our approach which consists in using operations to perform model
transformations and model analysis within PMMSs in the context of real-time systems design and anal-
ysis.

Finally, we list the conclusions of our proposition and we expose some future directions opened by
our work.
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Abstract. Recently, Model-Driven Engineering (MDE) has been widely used in order to
(i) build high quality software, (ii) improve the development process of software and (iii)
facilitate their maintenance. With the emergence of MDE, several architectures, standards,
tools and languages have been developed. In this chapter, we present the different notions
of MDE relevant to our problem. These notions relate to the MOF architecture defined to
manipulate models and metamodels as well as the model management operations that can
be performed on them.

9





1. Introduction

1 Introduction

During the recent years, model-driven engineering (MDE) has gained a lot of interest as it has the po-
tential to speed up the software development process. MDE is applied in various engineering fields like
aeronautics and automotive, and used to build different types of applications such as databases, domain
specific languages (DSLs), CASE (Computer-Aided Software Engineering) tools and information sys-
tems. Moreover, MDE plays a central role in multiple IT solutions such as systems integration and data
exchange. MDE includes various techniques devoted to the definition and the exploitation of metamod-
els and models. It involves two main activities: (1) metamodeling and modeling for defining models to
describe the different aspects of systems, and (2) model management to represent the different models
processings such as transformation, comparison, source code generation, archiving and model annota-
tion.

The emergence of MDE has lead to the Model-Driven Architecture (MDA) [mda, 2003] which is a
specialization of MDE. MDA has been proposed by the Object Management Group (OMG) and defined
around many standards (e.g., UML [uml, 2011], MOF [mof, 2011], XMI [xmi, 2011]), languages (e.g.,
ATL [Jouault and Kurtev, 2005], Acceleo [acc, 2013], OCL [Cabot and Gogolla, 2012]) and tools (e.g.,
EMF [emf, 2013a] (Eclipse Modeling Framework), Kermeta [Jézéquel et al., 2009], Epsilon [Kolovos
et al., 2013], Topcased [top, 2013]) that are dedicated to metamodeling and/or to accomplish specific
model management tasks.

This chapter overviews metamodeling and model management techniques addressed in this thesis.
Indeed, we start by introducing a background on MDE (Section 2). Then, we present the MOF meta-
modeling architecture (Section 3). Section 4 presents an overview of two model management activities:
model transformation and code generation. Section 5 discusses specific issues related to metamodeling
and model management and concludes this chapter.

2 Background on MDE

The main purposes of Model-Driven Engineering (MDE) are (i) to define models describing precisely
real systems according to different viewpoints, and (2) to exploit the defined models in order to speed up
the software development process. MDE relies on the notion of model which is a key element around
which this discipline has been defined. Next section presents the notion of model and gives its different
semantics.

2.1 The notion of model

The notion of model is a key element in MDE. A model depends on the viewpoint and the purpose.
Several definitions of the notion of model exist in the literature. Misnky defines a model as follows: For
an observer B, an object A* is a model of an object A to the extent that B can use A* to answer questions
of interest about A [Minsky, 1968]. We adopt this definition in our work. Models are characterized by
different semantics [Pierra et al., 1995]:

• structural semantics: one of the ways of understanding the real world is the formulation of cate-

11
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gories (i.e., classes, types of entities) of objects (instances), their representation and differentiation.
These categories are organized through relationships. A particularly important relationship is the
generalization/specialization that goes from the general to the particular and defines hierarchies or,
more generally acyclic graphs;

• descriptive semantics: associates properties (or attributes) to classes so that it differentiates be-
tween instances of classes;

• behavioral semantics: corresponds to the expression of objects behaviors and reasoning rules that
can be applied to the different objects of each class. This type of semantics is represented by rules,
functions and procedures.

Next subsection presents the vision of models and their classification according to the Model-Driven
Architecture (MDA) approach.

2.2 The MDA approach

Model-Driven Architecture (MDA) [mda, 2003] is a software development methodology proposed by
the Object Management Group (OMG). The purpose of MDA is to build high quality software based
on models. Several standards have been defined in the context of the MDA approach. For instance, the
Meta-Object Facility [mof, 2011] has been proposed by the OMG. It defines a four-layered metamodeling
architecture gathering all the abstraction layers. UML (Unified Modeling Language) [uml, 2011] has
been proposed as an object-oriented modeling language standard. XMI [xmi, 2011] defines an XML-
based exchange format for UML models and instances. QVT [qvt, 2011] sets up the specifications for
model transformation languages.

The objective of MDA is to separate the specification and the implementation of systems. In this
context, MDA distinguishes three types of models illustrated in Figure 1.1 (the Y schema).

PIM PDM

PSM

Processing

Figure 1.1: The Y schema of the MDA approach

• Platform Independent Model (PIM): represents the system independently of the platform that im-
plements it.

• Platform Dependent Model (PDM): specifies the platform model of implementation (e.g., .NET,
CORBA).

12



3. Metamodeling

• Platform Specific Model (PSM): is the obtained executable model resulting from the transforma-
tion combining PIM and PDM.

Class diagram Java template

Transformation

Generated Java code

Figure 1.2: An instance of the Y schema

Example. Figure 1.2 shows an example illustrating the Y schema of the MDA approach. In this example,
the PIM is represented by the UML class diagram while the PDM is the model that specifies mappings
between the class diagram concepts and Java concepts i.e., the template that specifies how to generate
the Java code from the class diagram. The PSM is the resulting generated Java code.

The definition of a model requires the knowledge of the metamodel that describes the modeling for-
malism used to design the model. The task of defining a metamodel is called metamodeling. Next section
introduces the notion of metamodeling and presents in particular the MOF [mof, 2011] metamodeling
architecture which is a standard of the OMG.

3 Metamodeling

Metamodeling is the task that consists in defining a model that describes precisely a modeling lan-
guage. This model is called metamodel. In our work, we use extensively the notions of metamodel and
metametamodel. These notions are presented in the next sections.

3.1 Definitions

3.1.1 Metamodel

A metamodel is a model that describes a modeling formalism. It explicits the constructors, the relation-
ships between concepts and the rules and the constraints that models (instances of metamodels) must
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satisfy. A model conforms to a metamodel as a program conforms to a grammar or as an XML file con-
forms to an XML schema. The definition of metamodel that we adopt in our work is the one proposed
by Pierra and al. [Pierra et al., 1995].

Definition 1
Metamodel: is a set of precise notations, associated to a semantics and reasoning rules so that it is
able to represent a model [Pierra et al., 1995].

3.1.2 Metametamodel

A metamodel is designed using a language devoted to define modeling languages. This language is itself
described through a model called metametamodel. A metametamodel is a model that has the ability to
define metamodels and to describe itself (reflexivity).

Definition 2
Metametamodel: is a model that provides primitives to define and describe metamodels.

Next section presents the MOF metamodeling architecture that defines different abstraction layers.

3.2 The MOF metamodeling architecture

MOF

Meta meta-model 

layer (M3)

Meta-model layer (M2)

Model layer (M1)

Instance layer (M0)

E.g., UML meta-model, 

DBM system catalog

E.g., UML models, DB schema

E.g., source code, data

conforms to
conforms to

conforms to

represented by
Figure 1.3: The MOF architecture

The Meta-Object Facility (MOF) [mof, 2011] is a metamodeling architecture standard proposed by
the Object Management Group (OMG). It consists in four layers of metadata (Figure 1.3) corresponding
to the different levels of abstraction: the instance layer (M0), the model layer (M1), the metamodel layer
(M2) and the metametamodel layer (M3).
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PLIBMetaModel
isA0..1 * *1 PLIBProperty-name: StringisCaseOf ** domain

PLIBOntology-name: StringPLIBClass-name: String*1
PLIBMetaModel

isA0..1 * *1 PLIBProperty-name: StringisCaseOf ** domain
PLIBOntology-name: StringPLIBClass-name: String*1isA0..1 * *1 PLIBProperty-name: StringPLIBProperty-name: StringisCaseOf ** domain
PLIBOntology-name: StringPLIBOntology-name: StringPLIBClass-name: StringPLIBClass-name: String*1

OWLMetaModel
OWLClass-name: StringOWLProperty-name: String superClasses* **ObjectPropertyDatatypeProperty

*
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OWLOntology-uri: String
**domain unionOf* *OWLMetaModel

OWLClass-name: StringOWLProperty-name: String superClasses* **ObjectPropertyDatatypeProperty
*

UnionClass…1ref*
OWLOntology-uri: String

**domain unionOf* *OWLClass-name: StringOWLClass-name: StringOWLProperty-name: StringOWLProperty-name: String superClasses* **ObjectPropertyDatatypeProperty
*

UnionClass…1ref*
OWLOntology-uri: StringOWLOntology-uri: String

**domain unionOf* *
Meta-model lay
er (M2)

<<instanceOf>>
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M0)
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el layer (M3) MOFMetaMetaModel

1<<DatatypeProperty>>name
<<OWLClass>>O_University<<OWLClass>>O_Student <<ObjectProperty>>itsUniversity1
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Figure 1.4: A running modeling example
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Figure 1.4 gives a modeling example conforming to these four layers of the MOF architecture. Each
of these layers is detailed below.

3.2.1 The metametamodel layer (M3)

Class
Operation+isOrdered: Boolean = false+isUnique: Boolean = true+lower: Integer [0..1] = 1+upper: UnlimitedNatural [0..1] = 1… Parameter+direction: ParameterDirectionKind = in…Type

MultiplicityElement TypedElementAssociation
TypedElementFeature
StructuralFeature+isReadOnly: Boolean = false

MultiplicityElement+isOrdered: Boolean = false+isUnique: Boolean = true+upper: UnlimitedNatural [0..1] = 1+lower: Integer [0..1] = 1
Property+isDerived: Boolean = false+aggregation: AggregationKind = none+isComposite: Boolean+isId: Boolean = false…

1Generalization Classifier+isAbstract: Boolean = false…
Type+generalization +general+generalization +specific0..*0..* 1 +class +ownedAttribute

+class+superClass0..*0..*+class0..* +ownedOperation0..*  {ordered}
0..*  {ordered}0..* +property 0..1+/opposite 0..1

+operation +raisedException0..* 0..*+ownedParameter+operation0..1 0..* {ordered}
+association  0..1+owningAssociation 0..1+memberEnd 2..* {ordered}+ownedEnd 0..* {ordered}Class

Operation+isOrdered: Boolean = false+isUnique: Boolean = true+lower: Integer [0..1] = 1+upper: UnlimitedNatural [0..1] = 1… Parameter+direction: ParameterDirectionKind = in…Parameter+direction: ParameterDirectionKind = in…Type
MultiplicityElement TypedElementAssociation

TypedElementFeature
StructuralFeature+isReadOnly: Boolean = falseStructuralFeature+isReadOnly: Boolean = false

MultiplicityElement+isOrdered: Boolean = false+isUnique: Boolean = true+upper: UnlimitedNatural [0..1] = 1+lower: Integer [0..1] = 1MultiplicityElement+isOrdered: Boolean = false+isUnique: Boolean = true+upper: UnlimitedNatural [0..1] = 1+lower: Integer [0..1] = 1
Property+isDerived: Boolean = false+aggregation: AggregationKind = none+isComposite: Boolean+isId: Boolean = false…Property+isDerived: Boolean = false+aggregation: AggregationKind = none+isComposite: Boolean+isId: Boolean = false…

1Generalization Classifier+isAbstract: Boolean = false…Classifier+isAbstract: Boolean = false…
TypeType+generalization +general+generalization +specific0..*0..* 1 +class +ownedAttribute

+class+superClass0..*0..*+class0..* +ownedOperation0..*  {ordered}
0..*  {ordered}0..* +property 0..1+/opposite 0..1

+operation +raisedException0..* 0..*+ownedParameter+operation0..1 0..* {ordered}
+association  0..1+owningAssociation 0..1+memberEnd 2..* {ordered}+ownedEnd 0..* {ordered}

Figure 1.5: The MOF metametamodel

A metametamodel is the language facility used to define metamodels. The metametamodel layer is
the last level of the MOF architecture. Indeed, this metametamodel is reflexive i.e., it describes itself.
The metametamodel of the MOF architecture is presented in Figure 1.5.

The MOF metametamodel provides the essential concepts to define any modeling formalism (meta-
model). In particular, it provides constructors for structural elements (e.g., the Class, Classifier and
Type classes) organized in a hierarchy using the inheritance relationship. These structural elements are
described by properties (the Property class). The concept of Property has different features. For
instance, a property may be derived from one or many other properties (the isDerived attribute) and
may be an identifier of the class it belongs to (the isId attribute). Moreover, a property may have an
inverse property. The MOF metametamodel supports the definition of operations (the Operation class)
i.e., functions and procedures with membership constraints. An operation may have ordered parameters
(the Parameter class). Operations are useful for different tasks such as computing derived properties.

3.2.2 The metamodel layer (M2)

A metamodel is a conceptualization of a modeling language. The metamodel layer (M2) provides the
structural description of modeling formalisms/languages and the rules that these languages shall respect.
For instance, the descriptions of modeling formalisms like UML [uml, 2011], PLIB [Pierra and Sardet,
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2010] or OWL [Dean and Schreiber, 2004] are defined at the metamodel layer.

The metamodel layer (M2) of the example in Figure 1.4 defines two metamodels: a part of a sim-
plified metamodel of the Ontology Web Language (OWL) [Dean and Schreiber, 2004] (A) and a part
of a simplified metamodel of the Parts LIBrary (PLIB) language (B) [Pierra and Sardet, 2010]. Both
languages are used to design ontologies. In particular, OWL is dedicated to design ontologies for the Se-
mantic Web whereas PLIB is devoted to design ontologies in engineering domains such as mechanics or
aeronautics. PLIB and OWL possess different features. For instance, an OWL ontology is defined using
classes and properties. An OWL property may be either a data type property (the DatatypeProperty
class) i.e., a property whose range is a simple type (e.g., string, boolean), or an object property (the
ObjectProperty class) referencing an OWL class instance. An OWL property may have several classes
as domain and can be sub properties of several properties. Besides, OWL supports derived classes. For
example, the notion of UnionClass represents an OWL class defined by the union of several OWL
classes. A PLIB ontology is defined by classes and properties. Each property has a domain (the class it
belongs to) and a range i.e., the type of the property. A simple inheritance relationship between classes
is permitted in PLIB.MMBSchedulableResource-name: String-execTime: Duration (s) resources 0..1* Scheduler-name: StringMMBSchedulableResource-name: String-execTime: Duration (s)SchedulableResource-name: String-execTime: Duration (s) resources 0..1* Scheduler-name: StringScheduler-name: String MMAProcess-name: String subComp0..1* Thread-name: String-executionTime: Duration (ms)Thread-name: String-executionTime: Duration (ms)<<SchedulableResource>>Task1-host = Scheduler1-execTime = 0.02s<<SchedulableResource>>Task1-host = Scheduler1-execTime = 0.02s

host
<<SchedulableResource>>Task2-host = Scheduler1-execTime = 0.03s<<SchedulableResource>>Task2-host = Scheduler1-execTime = 0.03s <<SchedulableResource>>Task3-host = Scheduler1-execTime = 0.025s<<SchedulableResource>>Task3-host = Scheduler1-execTime = 0.025s

<<Scheduler>>Scheduler1-resources = [Task1, Task2,Task3]<<Scheduler>>Scheduler1-resources = [Task1, Task2,Task3]instanceOf
Figure 1.6: A metamodeling example

Figure 1.6 represents another metamodeling example . It shows two metamodels (MMA and MMB) and
a model conforming to the MMB metamodel. Both metamodels can be used, for instance, to design real-
time tasks that are processed by schedulers. The MMB metamodel defines a system as a set of schedulable
resources (the SchedulableResource class) i.e., tasks, and schedulers (the Scheduler class) that pro-
cess tasks. Each schedulable resource is characterized by a name and an execution time expressed in
second, while each scheduler is characterized by a name. The MMA metamodel defines a system as a set
of threads (the Thread class) i.e., tasks, and processes (the Process class). Each thread is characterized
by a name and an execution time, expressed in millisecond, while each process is described by a name.

Note. The MOF architecture defines an extensible metamodel layer where several metamodels can be
defined simultaneously .
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3.2.3 The model layer (M1)

The model layer (M1) represents models. A model is expressed using a modeling language/formalism
(metamodel) defined at the metamodel layer (M2). The model layer (M1) of the example in Figure 1.4
sketches the models (C) and (D) conforming respectively to the OWL metamodel and the PLIB meta-
model. Both models represent the same ontology which defines 3 classes (Student, Professor and
University) described by different properties. This ontology is expressed using the PLIB and the
OWL formalisms.

The model of Figure 1.6 is an instance of the MMB metamodel. This model defines three schedulable
resources (Task1, Task2 and Task3) and a scheduler (Scheduler1).

3.2.4 The instance layer (M0)

The instance layer (M0) represents the real world. This level can support for example data, traces of a
program execution, etc. Elements of the instance layer are instances of models (defined at the model
layer (M1)). The instance layer (M0) of our example in Figure 1.4 defines two instances: (E) instance of
the model (C), and (F) instance of the model (D).

The examples of Figure 1.4 and Figure 1.6 show the multiplicity of formalisms available to design
and manage ontologies and real-time systems. Metamodels, models and instances of our examples can
be designed using CASE tools such as Eclipse Modeling Framework (EMF) or starUML [sta, 2013], etc.

With the development of software engineering tools and techniques, models are subjects to multiple
and different manipulations [Paige et al., 2011]. Indeed, models can be transformed (e.g., UML class
diagram to DBMS schema), used for source code generation (e.g., generate the corresponding Java code
of a class diagram), archived, compared, analyzed, etc. In the next section, we present an overview of
two model management activities: model transformation and code generation since they are important
model management activities.

4 Model management

The purpose of MDE is the exploitation of models once they are defined. In this section, we overview
two model management activities which are model to model transformations and model to text transfor-
mations which correspond to code generation.

4.1 Model to model transformation

Model to model transformation or M2M (Model to Model) transformation consists in transforming, with
a set of transformation rules, or a program, a source model (Ms), conforming to a source metamodel
(MMs), to a target model (Mt), conforming to a target metamodel (MMt). Query View Transforma-
tion (QVT) [qvt, 2011] is the standard specification proposed by the OMG for model transformation
languages. Two types of model transformation can be distinguished:
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MM

Ms Mtinput output
Conforms to usesMTL

MTLp
Figure 1.7: Endogenous model transformation

• endogenous model transformation (Figure 1.7): concerns the model transformation where the
source and target models (MMs and MMt) conform to the same metamodel (MM). Figure 1.7
illustrates this notion;

• exogenous model transformation (Figure 1.8): is a model transformation where the source and
target models conform to distinct metamodels (MMs ‰ MMt). Figure 1.8 conceptualizes the
notion of exogenous model transformation.

MT L and MT Lp represent respectively the model transformation language and the model transfor-
mation program.

MMs MMt
Ms Mtinput output

uses usesConforms to MTL
MTLp

Figure 1.8: Exogenous model transformation

Example. Listing 1.1 presents an extract of a model transformation program that transforms PLIB mod-
els to OWL. This program is expressed with the ATL (Atlas Transformation Language) language
[Jouault and Kurtev, 2005] which is a declarative and imperative M2M transformation language.

Listing 1.1: An example of an exogeneous model transformation program with ATL
module PLIB2OWL ;

c r e a t e OUT: OWL from IN : PLIB ;

r u l e PLIBClass2OWLClass {
from

s : PLIB ! PLIBClass
to

t : OWL! OWLClass (
name <́ s . name ,
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comment <́ s . remark
)

}

r u l e PLIBProper ty2OWLProper ty {
from

s : PLIB ! PLIBPrope r ty
to

t : OWL! OWLProperty (
name <́ s . name ,
comment <́ s . remark

)
}

Meaning. This program transforms PLIB models to OWL ones as it takes as input a PLIB model and re-
turns an OWL model as output. This program defines two rules. The first rule (PLIBClass2OWLClass)
transforms a PLIB class to an OWL class. Indeed, the name attribute of a PLIB class is transformed
to the name attribute of the OWL class while the remark attribute of PLIB class is transformed to the
comment attribute of the OWL class. The second rule (PLIBProperty2OWLProperty) transforms a
PLIB property to an OWL property in the same way as the first rule. Using this model transformation
program, we can transform the PLIB model (D) of our example to the OWL model (C).

Example. Listing 1.2 presents an extract of the ATL transformation program of MMB models to MMA.

Listing 1.2: An example of an exogeneous model transformation program with ATL
module MMB2MMA;

c r e a t e OUT: MMA from IN : MMB;

r u l e S c h e d u l a b l e R e s o u r c e 2 T h r e a d {
from

s : MARTE! S c h e d u l a b l e R e s o u r c e
to

t : AADL! Thread (
name <́ s . name ,
e x e c u t i o n T i m e <́ s . execTime ∗1000

)
}

r u l e S c h e d u l e r 2 P r o c e s s {
from

s : MARTE! S c h e d u l e r
to

t : AADL! P r o c e s s (
name <́ s . name ,
subComp <́ s . r e s o u r c e s

)
}

Meaning. The first rule (SchedulableResource2Thread) transforms schedulable resources to threads.
The name of a schedulable resource is transformed to the name of the corresponding thread. As the
execution time of schedulable resources is expressed in second, the execution time of threads is
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multiplied by 1000 (the execution time of threads is expressed in millisecond). The second rule
(Scheduler2Process) transforms a scheduler to a process. The resources of a scheduler are trans-
formed to subcomponents of the process. The produced model is given in Figure 1.9.<<Process>>Scheduler1-subComp = [Task1, Task2,Task3]<<Process>>Scheduler1-subComp = [Task1, Task2,Task3]<<Thread>>Task1-executionTime = 20ms<<Thread>>Task1-executionTime = 20ms<<Thread>>Task2-executionTime = 30ms<<Thread>>Task2-executionTime = 30ms <<Thread>>Task3-executionTime = 25ms<<Thread>>Task3-executionTime = 25ms

Figure 1.9: The resulting model of the model transformation MMB2MMA

Several tools and languages are dedicated to model-to-model transformations such as ATL [Jouault
and Kurtev, 2005]. Besides, some metamodeling languages offering procedural capabilities (e.g., Ker-
meta [Jézéquel et al., 2009]) can be used to achieve model-to-model transformations. Next section
presents the notion of model to text transformation.

4.2 Model to text transformation

Model to text transformation (M2T) consists in generating text from a source model (Ms), conforming
to a source metamodel (MMs), using a text generation template (program). Figure 1.10 illustrates this
notion.

MMs
Ms input output

usesConforms to SourcecodeM2TLp
M2TL

Figure 1.10: M2T transformation

Several languages have been proposed for code generation. For instance, Acceleo [acc, 2013] is a
M2T transformation language devoted to define templates for code generation. Besides, Acceleo pro-
vides predefined code generation templates (e.g., to generate the Java code of UML class diagrams).

Example. Listing 1.3 presents a part of a model to text transformation program that generates the Java
code of UML class diagrams.
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Listing 1.3: An example of code generation template
[ f i l e ( aEClas s . name . concat ( ’ . j ava ’ ) , . . . ) ]

p u b l i c c l a s s [ aEClas s . name / ] {

[ f o r ( a E A t t r i b u t e : E A t t r i b u t e | aEClas s . e A l l A t t r i b u t e s ) ]
[ a E A t t r i b u t e . eType . i n s t a n c e C l a s s N a m e / ] [ a E A t t r i b u t e . name / ] ;

[ / f o r ]
}

Meaning. This program creates a Java file corresponding to each class of an UML class diagram. Each
generated Java class corresponds to a class of the model on which the generation is applied. The
generated code defines Java classes with attributes.

The execution of the code generation template creates Java files containing the generated Java code
corresponding to the classes of our model (Figure 1.4). For instance, the generated Java code of the
Student class is given in Listing 1.4.

Listing 1.4: The generated Java code of the Student class
p u b l i c c l a s s S t u d e n t {

S t r i n g name ;
S t r i n g g en de r ;
S t r i n g b i r t h d a y ;

}

5 Conclusion

In this chapter we have introduced the notions of metamodeling and model management. Concerning
metamodeling, we have seen that the MOF provides a four-layered metadata architecture that supports
the different levels of abstraction. Moreover, models have different semantics (structural, descriptive
and behavioral). Regarding model management, we have seen that models can be subjects to different
manipulations like transformation and source code generation. However, existing metamodeling and
model management tools and systems may show some limitations when they have to treat large scale and
voluminous models. Indeed, the increasing size of models and their instances in industrial contexts raises
the issue of scalability as one of the major challenges of MDE. Indeed, most of metamodeling and model
management tools show limitations when they face large-scale models and data because large models and
instances do not fit in main memory. Moreover, simple exchange files may not be sufficient for sharing
large scale models and data. Likewise, industries need common platforms to share heterogeneous models
and data. Thus, persistent solutions (based on databases) offering an efficient exploitation are required to
store and manipulate oversized metamodels, models and data.

Next chapter is dedicated to the presentation of the existing solutions based on databases to store and
manipulate models together with their instances. We focus on solutions based on databases as we follow
this approach in our work.
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Abstract. In the previous chapter, we have explained that classical metamodeling and
model management tools (evolving in central memory) show some insufficiencies related to
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scalability. This issue is raised especially when classical metamodeling and model manage-
ment systems face over sized models. One approach to solve this problem consists in op-
timizing existing main-memory metamodeling systems or associating them with databases.
In this chapter we present the different database-based solutions that have been proposed in
the literature to overcome the problem of scalability faced by classical metamodeling and
model management tools.
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1 Introduction

In the previous chapter we have presented the main notions of MDE that we use in this thesis. These
notions encompass the MOF architecture defined for metamodeling and model management platforms
as well as the main operations that are usually performed on metamodels and models (model transforma-
tion and code generation). As several studies pointed out the increasing adoption of MDE in industrial
contexts, they highlight scalability as an important challenge [Clasen et al., 2012]. Indeed, existing meta-
modeling and model management tools evolving in main memory face scalability problems when they
need to manage large models composed of a big amount of elements. These over-sized models are not
unusual in practice. For example, this kind of models are produced when complex systems are defined
(e.g., in aeronautics) or when available large datasets are reused (e.g., open data, social networks or
scientific repositories).

Two main approaches have been followed to overcome the scalability issues raised by the manage-
ment of large models. The first approach consists in improving the scalability of existing metamodeling
and model management tools evolving in main memory using different mechanisms (e.g., incremental
model management [Jouault and Tisi, 2010], model stores [Koegel and Helming, 2010]). The second
approach that we followed in our work, consists in defining systems for metamodeling and model man-
agement evolving completely in a database environment (e.g., ConceptBase [Jarke et al., 2009b], On-
toDB/OntoQL [Dehainsala et al., 2007, Jean et al., 2006a], Rondo [Melnik et al., 2003]). These systems,
called Persistent MetaModeling Systems, consist in (1) a model repository that stores metamodels, mod-
els and instances while respecting the separation between the different metadata layers and preserving
the conformity at the different abstraction levels, and (2) an associated exploitation language possessing
the capability to create and manipulate the different model layers. Additionally, PMMSs can be used as
common settings to share voluminous and heterogeneous models since simple exchange files may not
always be sufficient. PMMSs have been proposed to:

• overcome issues related to scalability: database environments are able to store and manage over-
sized models and instances;

• avoid problems related to the heterogeneity of metamodels and models: in software engineering,
models are defined using different formalisms, and consequently a PMMS shall support different
models whatever are the formalisms used to design them;

• offer a common repository for sharing models and data: DBMSs are enough mature to guarantee
a secured sharing of models and data while respecting accessibility constraints.

Yet, if existing PMMSs overcome some issues faced by MMS, the question that arises concerns the
capability of PMMSs to fulfill the functional capabilities offered by classical metamodeling and model
management tools evolving in main memory. Indeed, existing PMMSs focus more on the structural
and descriptive semantics, but they provide restricted capabilities to define procedural semantics. For in-
stance, some of the existing PMMSs use either low-level procedural languages (e.g., PL/SQL) or provide
hard-coded operators (e.g., Match, Compose [Melnik et al., 2003]) that are dedicated to specific model
management activities.
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Figure 2.1: Architecture of the CDO model repository

This chapter introduces some of the existing model repositories and their associated exploitation
languages (Section 2). Then, it presents the most relevant PMMSs and discusses their strengths and their
limitations according to the metamodeling architecture they support and to their model management
capabilities (Section 3). Section 4 devotes a most detailed presentation to the OntoDB/OntoQL PMMS
that we have extended to implement our approach. Finally, Section 5 concludes this chapter.

2 Model repositories and their exploitation languages

One of the proposed solutions to overcome the problem of scalability faced by classical metamodel-
ing and model management systems running in main memory was to equip these systems with object-
relational mapping frameworks (e.g., Hibernate [hib, 2012], EclipseLink [ecl, 2013]) to persist meta-
models, models and instances in dedicated databases called model repositories or metadata repositories.
These persistence frameworks play the role of the intermediate between the metamodeling or the model
management tool and the model repository.

2.1 Model repositories

Several model repositories have been proposed to store large scale models and data. We list below a non
exhaustive list of such model repositories.

• CDO [cdo, 2013] is a model repository associated to the Eclipse Modeling Framework (EMF)
tool. It supports the storage of EMF metamodels and models and can be used in a distributed
environment for persisting metamodels, models and instances. Figure 2.1 illustrates the CDO
architecture.

CDO offers the capability to use different back-end databases to persist metamodels, models and
instances such as NoSQL, relational or object databases. Moreover, it provides the possibility of
multiuser access to the model repository and ensures the ACID (Atomicity, Consistency, Isolation,
Durability) properties for transactions.

• EMFStore [Koegel and Helming, 2010] is a model repository associated to the EMF tool. This
model repository has been proposed for collaborative editing of models and for model versioning.
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EMFStore possesses an architecture similar to the one of the CDO model repository presented in
Figure 2.1. However, EMFStore provides some features that are not available in CDO such as
the possibility to work in an off-line mode or to detect the eventual conflicts raised by changing
models from different users [emf, 2013b].

• Morsa [Espinazo-Pagán et al., 2011] is a NoSQL-based solution for persisting and accessing very
large models. This model repository stores metamodels, models and data and provides the capa-
bility to update, delete and query metamodels, models and data using its associated exploitation
language. Moreover, Morsa supports incremental storage and update of models, and offers the
possibility to partially or totally load models and data. Yet, all the modifications and the model
management tasks, that may concern a model stored in Morsa, require loading the model into the
modeling tool (evolving in main memory).

2.2 Exploitation languages

Model repositories are equipped with declarative query languages (e.g., mSQL [Grant et al., 1993]).
These languages are restricted to querying capabilities so that they support neither metamodeling nor
model management capabilities. For instance, mSQL [Grant et al., 1993] is a declarative query lan-
guage for MOF-based model repositories. It provides the capability to define higher-order and model-
independent queries. mSQL is restricted to querying capabilities and does not offer any ability to perform
model management tasks such as model transformation.

Thus, model repositories query languages remain only high-level query languages since they do not
offer the capability to perform operations on models and data. Consequently, persistent model reposito-
ries remain simple model warehouses used to store very large models.

In this section we have presented several approaches to equip classical metamodeling and model
management tools with a database repository and an exploitation language. In the next section, we study
the dual approach which consists in extending a database with metamodeling capabilities. We call these
systems Persistent MetaModeling Systems (PMMSs) as they provide an extended database environment
for metamodeling and model management.

3 Persistent metamodeling and model management systems

Several PMMSs have been proposed in the literature. Each PMMS has been set up for specific model
management operations. This section lists and analyzes the most relevant ones regarding the metamod-
eling architecture they support and the model management capabilities they propose.

3.1 ConceptBase and GeRoMe

ConceptBase [Jarke et al., 2009b] is an object-oriented and deductive PMMS based on an object-oriented
database and the Telos language [Mylopoulos et al., 1990] defined for designing applications. It claims
the concept of next generation databases which shall in particular integrate different programming lan-
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guages (e.g., imperative, declarative) that can be interoperable. This PMMS has been set up for meta-
modeling and model management.

Metamodeling architecture

ConceptBase supports an unlimited metadata hierarchy i.e., the instance level, the model level, the
metamodel level, the metametamodel level and so on. This approach is illustrated in Figure 2.2.

Telos levelTelos level

Meta meta-model levelMeta meta-model level

Meta-model levelMeta-model level

Model levelModel level

Instance levelInstance level

Proposition

Class

attribute

PLIBClass Datatype

Student String

Student1 Dupond

Domain
classAttribute

PLIBProperty
name

association
«instance of»Inheritancerelationship

Attribute

Figure 2.2: metadata hierarchy of ConceptBase

In this example, the Telos level defines the concept of Proposition which is characterized by a
set of attributes. In the metametamodel level we define the metametamodel used to set up and describe
modeling formalisms. This metametamodel defines the concept of Class that is described by a set of
attributes (classAttribute). A class may have super classes and may also have association relation-
ships with other classes. The metamodel level sketches a simple metamodel composed of two classes
(PLIBClass and PLIBProperty) where each PLIB class is characterized by a set of PLIB properties.
The Model level defines a PLIB model with a PLIB class (Student) described by a string PLIB property
(name). Finally, the Instance level defines an instance of the defined model. The textual definition of this
example using the Telos language is given below.

Concept Class with

attribute

isA: Class;

association: Class;

classAttribute: Domain

end

Class PLIBClass with

classAttribute

PLIBProperty: Datatype
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end

PLIBClass Student with

PLIBProperty

name: String

end

Student1 in Student with

name

n: ’Dupond’

end

Note. ConceptBase supports the heterogeneity of models since it is able to manage models expressed
with different formalisms.

We have seen through this example that besides the support of an unlimited number of abstrac-
tion layers, ConceptBase provides object-oriented constructors to define models at the different levels.
Indeed, ConceptBase supports constructors of structural elements (e.g., classes, entities), description el-
ements (e.g., attributes, properties) and the other object-oriented features such as the inheritance and the
association relationships. Thus, ConceptBase supports the structural and descriptive semantics of models
at the different metadata layers. Now, we will analyze the model management capabilities of this PMMS.

Model management capabilities

ConceptBase proposes several mechanisms for model management. Indeed, ConceptBase provides
the capability to define deductive rules and views. Moreover, it offers a set of predefined functions such as
aggregation functions (e.g., count, avg, max, min), arithmetic functions (e.g., sum), string manipulation
functions (e.g., concat), etc.

ConceptBase authorizes the integration of user-defined functions and supports advanced program-
ming features like recursion. The user-defined functions may be defined with membership constraints
and may be implemented by external programs. However, the external implementations of the user-
defined functions can only be expressed using the Prolog language. Besides, external programs have to
be stored in a special and internal file system, and require restarting the server (cold start) in order to
support the functions newly introduced or modified [Jeusfeld et al., 2013]. The cold start aspect restricts
the availability and the performance of the PMMS.

The following example shows the definition of a function using ConceptBase. This function trans-
forms a PLIB class to an OWL class.

PLIBClass2OWLClass in Function isA PLIBClass with

parameter

oc: OWLClass

comment

c: transforms a PLIB class to an OWL class

constraint

...

end

GeRoMe [Kensche et al., 2007] is a PMMS that has been proposed for model management. This
PMMS extends ConceptBase with an algebra of atomic model management operators dedicated to model
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transformation and to import and export models in their native format. In addition, GeRoMe offers the
possibility to define derived operators by combining existing ones [Jarke et al., 2009a]. This enables
reusing existing operators in multiple model management contexts.

However, GeRoMe did not bring a more flexible programming environment to ConceptBase. Indeed,
even if we can introduce user-defined operations (which is allowed by ConceptBase), the implementation
of these operations has to be done with the Prolog language and consequently, we cannot get benefit from
the power and the coverage of other programming languages nor web services.

3.2 Rondo

Rondo [Melnik et al., 2003] is a generic model management system that has been proposed for model
mappings. This PMMS is based on a relational database (SQL DBMS) to store models and instances.

Metamodeling architecture

Rondo supports a modeling architecture with a hard-coded metamodel layer so that we cannot in-
troduce new modeling formalisms. Rondo supports the structural and descriptive semantics of models
using three conceptual constructors:

• models: represented by graphs where nodes define models concepts (classes, attributes, etc.) and
edges represent relationships between models elements. Each model element is identified with a
unique object identifier;

• morphisms: define the set of binary mapping relationships between elements of two models which
can be useful for data warehousing or data integration;

• selectors: represent a set of model elements that can be issued from different models.

Model management capabilities

Rondo provides an algebra of primitive high-level operators for model management and model map-
pings such as Match, Delete, Extract, Domain, RestrictDomain and Compose. These operators are hard-
coded and thus their implementation is not flexible in the sense that it cannot be done with external
programs or web services. Moreover, Rondo supports the definition of derived operators by composing
existing ones (e.g., Range, RestrictRange). Nonetheless, implementing model management tasks such as
model transformation with this set of limited operators is not an easy task.

3.3 Microsoft repository

Microsoft repository [Bernstein et al., 1999] is a PMMS implemented on the top of a relational database
and SQL system. The Microsoft repository has a hard-coded metamodel layer so that it is compatible
only with the Microscoft’s Component Object Model (COM). Consequently, this PMMS does not sup-
port models expressed in other formalisms. Moreover, the Microsoft repository provides the capability
to define models and instances, and manage them in the repository. Especially, this PMMS offers the
ability to manage reusable model components and to exchange models and data.
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3.4 Clio

Clio [Hernández et al., 2001] is a PMMS defined for facilitating the tasks of heterogeneous data transfor-
mation and integration and model mappings. These tasks are accomplished by mapping a source schema
to a target schema using SQL statements. Thus, to accomplish the example which transforms a PLIB
class into an OWL class, the usage of SQL is not adapted since it is not an object-oriented language, and
it does not provide the capability to create and manipulate (update, delete and query) high-order objects
(e.g., classes, metaclasses). Indeed, SQL remains a low-level database exploitation language restricted
only to manipulate the database schema and the system catalog.

3.5 DB-MAIN

DB-MAIN [Hick and Hainaut, 2003] is a PMMS designed for the management of database evolution. It
is based on a fixed hard-coded metamodel and offers a set of built-in high-level operators for modifying
the database structure and contents when an evolution is required.

DB-MAIN uses classical mechanisms of databases for model management like triggers, stored proce-
dures and views. It supports some programming features like recursion. Moreover, DB-MAIN provides
the capability to store and invoke C++ programs that are pre-compiled and stored in a special file system.

3.6 OntoDB/OntoQL

OntoDB/OntoQL [Dehainsala et al., 2007] is a PMMS initially defined for the management of ontolo-
gies. It includes the OntoDB model repository which is able to store various metamodels, models and
instances, and the OntoQL exploitation language handling metamodeling and model management capa-
bilities.

Metamodeling architecture

OntoDB/OntoQL supports a four-layered metamodeling architecture so that it enables the introduc-
tion of multiple modeling formalisms. This PMMS provides concepts to define the structural and de-
scriptive semantics of metamodels and models, and supports object-oriented modeling features such as
inheritance and association relationships.

Model management capabilities

OntoDB/OntoQL uses only the predefined operators and the PgPL/SQL procedural language of its
back-end DBMS (PostgreSQL) for managing models and their instances. The usage of the SQL operators
and PgPL/SQL is limited to the manipulation of low-level data i.e., simple types. Indeed, PgPL/SQL
cannot manipulate complex types (e.g., metaclasses, classes) and does not possess the same coverage
as other programming languages (e.g., Java) and web services. Consequently, OntoDB/OntoQL cannot
define high-level operators that can manage metamodels and models concepts.

Next section details the OntoDB/OntoQL PMMS we have used for setting up our proposition.
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4 The OntoDB/OntoQL PMMS
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Figure 2.3: The architecture of OntoDB/OntoQL

OntoDB/OntoQL is a PMMS that supports a four-layered metamodeling architecture (Figure 2.3).
This PMMS includes the OntoDB model repository and the OntoQL metamodeling language.

This section exposes the architecture of the OntoDB model repository. Then, it presents the OntoQL
language and its metamodeling and model management capabilities. Finally, this section raises some
limitations of the OntoDB/OntoQL PMMS to motivate our proposition.

4.1 The OntoDB model repository

4.1.1 Architecture

The architecture of the OntoDB repository consists in four parts as shown in Figure 2.3. The Data layer
and the System catalog are the classical parts of traditional databases. The instance part stores instance
data while the system catalog stores the descriptions of all structures existing in the database (i.e., tables,
views, indexes, etc.). The Meta-model layer and the Model layer store respectively metamodels and
models. OntoDB respects the separation of the different abstraction levels and satisfies the conformity of
instances to models, models to metamodels and metamodels to the OntoDB/OntoQL metametamodel.
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Figure 2.4: Representing the different metadata layers in OntoDB

4.1.2 Representation of the different abstraction layers

OntoDB stores all the concepts of the different abstraction levels in relational tables since this PMMS is
based on the PostgreSQL DBMS. Figure 2.4 shows the main tables used to store metamodels, models
and data of our example in OntoDB.

The metamodel layer of OntoDB contains two main tables: Entity and Attribute that store re-
spectively entities and attributes of the different metamodels. For instance, the PLIBClass and PLIBPro-
perty entities are stored in the Entity table whereas attributes describing these two entities are stored
in the Attribute table.

Each entity of the metamodel layer is associated to a corresponding table, at the model level, where
concepts of the model layer are stored. Attributes describing the defined entities are represented by
columns in the tables persisting models concepts. For instance, the PLIBClass entity is associated to
a corresponding table at the model layer to store the different PLIB classes (in our case Student and
University classes). This table has two columns (name, itsClass) corresponding to the attributes of
the PLIBClass.

Similarly, each concept of the model layer is associated to a table at the data level to store models
instances. For example, the Student and University PLIB classes are associated to tables that persist
instances of these two classes.

4.2 The OntoQL exploitation language

Once data of the different abstraction levels are stored in OntoDB, traditional database exploitation lan-
guages such as SQL are not suitable for their management. Indeed, these languages require a deep
knowledge of the database representation used by the model repository for the different layers of data.
In this context, the OntoQL language [Jean et al., 2006b] has been proposed to manipulate metamodels,
models and data making abstraction of the database representation used for storing all data.
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OntoQL is a declarative and object-oriented language used to create, manipulate (modify, drop)
and query metamodels, models and data. In this section, we present the grammar and examples of the
OntoQL statements used for defining metamodels, models and data.

4.2.1 Metamodel definition

The metamodel part of OntoDB can be enriched to support new metamodels using the OntoQL language.
The grammar used to create a new metamodel entity is:

<entity definition> ::= CREATE ENTITY <entity id> [<under clause>] <attribute clause>

<under clause> ::= UNDER <entity id list>

<attribute clause> ::= <attribute definition list>

<attribute definition> ::= <attribute id> <datatype>

Example. The metamodel of our example (Figure 1.4) can be created with the statements of Listing 2.1.

Listing 2.1: Statements for creating metamodels elements
CREATE ENTITY # PLIBClass (

#name STRING ,
# s u p e r C l a s s REF (# PLIBClass ) ) ;

CREATE ENTITY # PLIBPrope r ty (
#name STRING ,
# domain REF (# PLIBClass ) ) ;

CREATE ENTITY # PLIBOntology (
#name STRING ,
# c l a s s e s REF (# PLIBClass ) ARRAY) ;

. . .

Meaning. These statements create the elements of the PLIB metamodel. For instance, the first statement
creates the PLIBClass and associates two attributes (name and superClass) to this class.

Note. In this statement the # prefix indicates that the definition of an element must be inserted in the
metamodel level of OntoDB (an element of the model level does not have a # prefix). Moreover, the
UNDER keyword denotes the inheritance relationship, and the REF keyword the aggregation relation-
ship.

4.2.2 Model definition

Once a metamodel is defined, models conforming to that metamodel can be created. The OntoQL gram-
mar used to instanciate an entity of a metamodel is:

<class definition> ::= CREATE <entity id> <class id> [<under clause>] [<descriptor clause>]

[<properties clause list>]

<under clause> ::= UNDER <class id list>
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<descriptor clause> ::= DESCRIPTOR (<attribute value list>)

<attribute value> ::= <attribute id> = <value expression>

<properties clause> ::= <entity id> (<property definition list>)

<properties definition> ::= <prop id> <datatype> [<descriptor clause>]

Example. The model of our example can be created using the statements defined in Listing 2.2.

Listing 2.2: Statements for creating the model of our example
CREATE # PLIBClass U n i v e r s i t y
PROPERTIES ( name STRING ) ;

CREATE # PLIBClass S t u d e n t
PROPERTIES ( name STRING ,

g en de r STRING ,
b i r t h d a y STRING ,
i t s U n i v e r s i t y REF ( U n i v e r s i t y ) ) ;

Meaning. These two statements create a model conforming to the PLIB metamodel (previously created).
The first statement creates the University PLIB class characterized by a property (name). The
second statement creates the Student PLIB class described by several properties.

4.2.3 Instance definition

Similarly to the previous step, once models have been created with OntoQL and stored in OntoDB, they
can be instantiated to create instances. The OntoQL grammar to create an instance of a model element
is similar to the SQL one:

<insert statement> ::= INSERT INTO <class id> <insert description and source>

<insert description and source> ::= <from subquery> | <from constructor>

<from subquery> ::= [(<property id list>)] <query expression>

<from constructor> ::= [(<property id list>)] <value clause>

<values clause> ::= VALUES (<values expression list>)

Example. Instances of our example can be created using the statements defined in Listing 2.3.

Listing 2.3: Statements for creating instances
INSERT INTO U n i v e r s i t y
VALUES ( ’ ISAE ÉNSMA’ ) ;

INSERT INTO S t u d e n t
VALUES ( ’ Dupond ’ , ’M’ , ’ 0 6 / 2 1 / 1 9 8 6 ’ , 1 2 3 ) ;

Meaning. The first statement creates an instance of the University class while the second one defines
an instance of the Student class.

This presentation of OntoQL shows its capability to define metamodels, models and instances with
modeling features such as the inheritance relationship. OntoQL supports as well the other basics tasks
like accessing, modifying and deleting metamodels, models and data.
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4.3 Limitations of OntoDB/OntoQL

The OntoDB/OntoQL PMMS provides the capability to use only the user-defined stored procedures
(PL/pgSQL procedures) and the predefined operators of its back-end DBMS (PostgreSQL) to manage
models and data. For instance, the OntoQL statement of Listing 2.4 uses the CONCAT operator, predefined
in SQL and provided with the DBMS, to concatenate the firstname and the lastname properties of
the Student class.

Listing 2.4: Statements for creating the model of our example
SELECT CONCAT( f i r s t n a m e , l a s t n a m e )
FROM S t u d e n t ;

Currently, the OntoDB/OntQL does not provide any mechanism for high-level model management.
Indeed, the stored procedures and the predefined operators do not support the manipulation of high-level
concepts (e.g., classes, metaclasses) since they support only simple types data (e.g., string, integer). Let
us consider, for example, the definition of an OWL class as the result of the transformation of a PLIB
class. Here appears the need of computing a new concept from an existing one. Such a construction is
not available in OntoDB/OntoQL as it does not provide the capability to introduce dynamically model
management operations that manipulate such high-level concepts.

5 Conclusion

With the development of large models, the scalability of MDE is becoming a crucial challenge. In this
chapter we have overviewed the efforts made to address this challenge using database technologies. Cur-
rently most of the efforts have been made to improve metamodeling systems evolving in main memory
by associating them to database repositories. The data necessary for a model management operation is
loaded into the metamodeling system which performs the desired operation. Thus, metamodeling sys-
tems must usually develop their own optimizations to perform model management operations on large
models. The reverse approach followed by PMMSs consists in extending databases with model man-
agement capabilities. But currently, the functionalities offered by existing PMMSs are limited. Our
idea is that PMMSs shall provide advanced capabilities for metamodeling and model management such
as those provided by classical metamodeling and model management tools evolving in main memory.
Particularly, we focus on the capability of PMMSs to define model management operations that can be
implemented using different mechanisms like external programs or web services. This capability is nei-
ther covered by existing PMMSs nor partially fulfilled. Thus, in the next part of this thesis, we address
the extension of PMMSs with the capability to handle model management operations.
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Abstract. In the first part of this thesis, we have introduced some basic notions around
metamodeling and model management. Then, we have presented existing PMMSs and dis-
cussed their advantages and limitations. Based on this study, we present in this chapter the
requirements we have defined for complete PMMSs. These requirements combine benefits
of classical metamodeling and model management systems together with those of database
environments.
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1 Introduction

As claimed throughout this thesis, our objective is to have a metamodeling and model management
system (1) satisfying metamodeling and model management features, and (2) handling the capability to
store and to manipulate large-scale and heterogeneous models and data. We observed that a database
environment enabling metamodeling and model management characteristics could fit with our needs in
terms of metamodeling and model management. We called this type of systems Persistent MetaModeling
Systems (PMMSs).

In this sense, a PMMS shall satisfy metamodeling features since it shall enable expressing the struc-
tural semantics of metamodels and models (e.g., by providing factories of classes, metaclasses, entities,
etc.). As well, a PMMS shall provide elements to describe these structural concepts. This can be done
using, for example, attributes, metaattributes, properties, etc. These elements are supported by classical
metamodeling systems evolving in main memory such as Eclipse Modeling Framework (EMF) [emf,
2013a].

Another aspect that a PMMS shall satisfy is the capability to manage models and data in the same
environment. Indeed, models and data can be subjects to different manipulations such as transformation
(e.g., UML class diagram to relational database scheme), code generation (e.g., generating the Java or
C++ code of an UML class diagram), storing, annotating, archiving, retrieving, etc. Basically, several
dedicated tools, languages and platforms have been set up in order to accomplish such model manage-
ment tasks (e.g., ATL [Jouault and Kurtev, 2005] for model transformation, Acceleo [acc, 2013] for code
generation).

At this level, all these aspects cited so far, which are metamodeling and model management capa-
bilities, are supported by existing tools evolving in main memory. However, knowing that models and
data in real contexts, especially in industrial ones, may be composed of thousands of classes and prop-
erties, and may describe millions of data instances, the modeling and model management tools using
main memory may not handle these over-sized models and data. Moreover, exchange files may also be
not efficient enough for exchanging large scale models and data, and consequently we need a common
repository for sharing models and data. These features are available in database systems which can offer
at the same time the scalability and a common platform to share data and models.

Thus, our objective is to gather strengths of classical metamodeling and model management tools
together and those of database environments in order to provide a complete PMMS supporting all meta-
modeling and model management features. Moreover, the PMMS shall ensure the scalability, support
the heterogeneity of models and data and serve as a common repository for sharing models and data.
Furthermore, a PMMS shall satisfy additional technical requirements related to the flexibility and to the
performance such the hot start criterion ensuring the permanent availability of the system. These techni-
cal aspects are important in the sense that they will give PMMSs more flexibility and a further expressive
power.

In this chapter we define the requirements for a complete PMMS (Section 2). Each requirement
is presented and justified. Then, we analyze existing PMMSs presented in Chapter 2 according to the
defined requirements (Section 3). In Section 4, we introduce the objective of our work in this thesis in
order to fulfill the defined requirements. Finally, Section 5 concludes this chapter.
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2 Requirements for complete PMMS

2.1 Database persistence

Requirement 1
A PMMS shall offer a database environment to store and to manipulate different metamodels, models
and instances while respecting the separation of the different abstraction layers and preserving the
conformity of models to metamodels and instances to models. Moreover, a PMMS shall be equipped
with an exploitation language enabling the definition and the manipulation, of metamodels, models
and instances.

Justification

Over-sized metamodels, models and instances should be stored and managed in a database environ-
ment. Designed carefully, the database guarantees the absence of redundancy, the integrity, the confiden-
tiality and the continuity of data. In our work we focus on two aspects.

• Scalability: database systems are the best infrastructure that can support the efficient storage of
large-scale models and instances. This approach has been followed for specific models such as
ontologies. Indeed, multiple dedicated databases called semantic databases or ontology-based
databases (e.g., OntoDB [Dehainsala et al., 2007]) have been set up to store and manipulate large
ontologies and instances efficiently and in a scalable way. Thus, by using a database, we can par-
tially load models and/or instances in main memory to process them using the query optimization
engine of the DBMS.

• Sharing models and data: database environments offer a common repository for sharing models
and data. Moreover, DBMSs offer mechanisms for ensuring all security properties in order to
avoid potential conflicts of data modification. Nowadays, existing DBMSs are enough mature to
secure the access and the manipulation of data.

2.2 Extensible metamodel layer

Requirement 2
A PMMS shall offer an extensible metamodel layer so that multiple modeling formalisms can be
supported. Moreover, a PMMS shall conform to a metamodeling architecture standard in order to
guarantee aspects such as the interoperability and the portability of models and data. Nowadays,
the Meta-Object Facility (MOF) [mof, 2011] architecture is a standard adopted in most of the cur-
rent metamodeling and model management systems. Thus, we suggest that a metamodeling system
should support the four-layered MOF architecture which offers an extensible metamodel layer.

Justification

Software engineering uses a lot of different models (e.g., entity-relationship, functional or state tran-
sition models). Thus, a PMMS shall support the definition of an unlimited number of metamodels.
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2.3 Support of structural and descriptive semantics

Requirement 3
The PMMS exploitation language shall support the definition of structural and descriptive seman-
tics of metamodels and models elements. Indeed, the PMMS exploitation language shall provide
constructors of structural elements of models and metamodels. In particular, it shall support the def-
inition of classes, metaclasses, entities, metaentities, etc. of metamodels and models. Furthermore,
it shall enable the definition of descriptive elements to characterize structural concepts. These de-
scriptive elements could be attributes, metaattributes, properties, metaproperties, etc. Moreover, the
PMMS exploitation language shall provide primitives to express the other object-oriented modeling
features such as inheritance and association relationships.

Justification

Following the MOF specification, most models and metamodels can be expressed with object-oriented
constructors.

Example. In our example of Chapter 1 (Figure 1.4), the PLIB and OWL metamodels are composed of
a set of classes that are described by attributes. A simple inheritance relationship is permitted in the
PLIB language while multiple inheritance is authorized in the OWL language.

2.4 Support of behavioral semantics

Requirement 4
The PMMS exploitation language shall provide the capability to introduce operations (functions,
procedures) on the fly. Particularly, these operations shall be able to manipulate models and instances.
Besides, the PMMS shall offer the possibility to invoke the defined operations using the PMMS
exploitation language.

Justification

Operations on models and instances are important to accomplish advanced model and data manage-
ment tasks such as model transformation or code generation, checking constraints on models elements,
storing, archiving, retrieving, etc.

Example. In our example of Chapter 1 (Figure 1.4), an operation could be defined to transform PLIB
models to OWL ones. Other operations could also be set up, for instance, to export the OWL models
into the XML format, or to compute derived classes or properties. For example, the age prop-
erty of the Student class could be computed using the computeAge operation. Another operation
(unionOf) could be defined in order to compute the union of OWL classes.
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2.5 Flexible programming environment

Requirement 5
A PMMS shall provide an heterogeneous programming environment to implement operations. Par-
ticularly, a PMMS shall be able to use existing external programs written in any language (e.g., Java,
C++) or web services in order to profit from their coverage and completeness. This aspect brings
large flexibility to metamodeling systems and a strong power of expressiveness.

Justification

As it is better to reuse existing pieces of software instead of rewriting them, a PMMS should be able
to integrate existing implementations of operations whatever is the programming language used.

Example. It is easy to find an existing code that exports an OWL model in XML. Thus, a PMMS should
allow users to reuse (to envelop) this piece of software to implement an operation.

2.6 Hot-plug of implementations

Requirement 6
A PMMS shall support an immediate usage of the external or remote implementations of operations
without restarting the system (warm start). Moreover, a PMMS should not constrain users to store
implementations in a specific file system.

Justification

Restarting the PMMS should be avoided for high availability applications. Thus, the definition of an
implementation for an operation should not require restarting the PMMS (warm start).

3 Synthesis and discussion

Table 3.1: Synthesis of the state of the art

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 Req. 6
ConceptBase Yes restricted Yes restricted restricted No

GeRoMe Yes restricted Yes restricted restricted No
Rondo Yes No Yes hard-coded No No

Clio Yes No No restricted No No
DB-MAIN Yes No Yes restricted No No

OntoDB/OntoQL Yes Yes Yes restricted No No

As the previous overview of the state of the art (presented in Chapter 2) shows, each one of the
existing PMMSs present some strengths and some limitations regarding the requirements we have defined
in this chapter. The identified limitations are presented in Table 3.1. A result of our study is that existing
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PMMSs focus mainly on the support of structural and descriptive semantics of metamodels and models,
while they pay less attention to behavioral semantics which is essential for model management. Hence,
PMMSs should offer resources to be extended in order to support behavioral semantics offering advanced
features.

4 Objectives

Our objective is to define a PMMS satisfying all the requirements defined in this chapter. Although, some
existing PMMSs support some of the defined requirements, we focus in our thesis on the requirements
that are not sufficiently addressed.

4.1 Handling behavioral semantics

Definition of model management operation

Practically, we would like to extend PMMSs to be able to define model management operations with
statements that might look like the one of Listing 3.1.

Listing 3.1: Statement for creating a model management operation
CREATE OPERATION # PLIBClass2OWLClass
INPUT (REF (# PLIBClass ) )
OUTPUT (REF (# OWLClass ) ) ;

Meaning. This statement is supposed to create a model management operation that transforms a PLIB
class to an OWL one. This operation takes as input a PLIB class and returns an OWL class.

Definition of data management operation

We also would like to extend PMMSs with the support of data management operations with state-
ments that might look like the one of Listing 3.2.

Listing 3.2: Statement for creating a data management operation
CREATE #OPERATION computeAge
INPUT (REF ( Pe r s on ) )
OUTPUT (INTEGER ) ;

Meaning. This statement is supposed to create a data management operation that computes the age of
the Person class. This operation takes as input a the Person class and returns an integer value.

Exploitation of the defined operations

Moreover, we would like to be able to exploit the defined operations within the PMMS exploitation
language i.e., to invoke the defined operations using the PMMS exploitation language.

Example. Exploitation examples of the operations defined above are given in Listing 3.3.
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Listing 3.3: Example of exploiting operations
CREATE #OWLClass O_Person
AS (SELECT # PLIBClass2OWLClass ( P )

FROM # PLIBClass AS P
WHERE P . # name = ’ Person ’ ) ;

SELECT computeAge ( P )
FROM Pe r s on ;

Meaning. The first statement is supposed to create an OWL class (O_Person) by transforming the
Person PLIB class using the PLIBClass2OWLClass operation. The second statement is supposed
to compute the age of all the instances of the Person class.

Supporting these behaviors by a PMMS should satisfy only requirement 4 which is related to the
support of operations for model and data management.

4.2 Flexibility of implementation

In order to satisfy requirement 5, an operation shall be implemented by a program internal to the database
system (e.g., a PL/SQL stored procedure) or external to the PMMS. For instance, by using external pro-
grams written in a given programming language (e.g., Java, C++) or web services. An implementation
of an operation should be defined with a statement looking like the one of Listing 3.4.

Listing 3.4: Example of defining an implementation of an operation
CREATE IMPLEMENTATION # PLIBClass2OWLClassJavaImp
DESCRIPTORS ( t y p e = ’ j ava ’ ,

l o c a t i o n = ’ h t t p : / / . . . / programs . j a r ’ ,
c l a s s = ’ f r . ensma . l i a s . myClass ’ ,
method = ’ PLIBClass2OWLClass ’ )

IMPLEMENTS # PLIBClass2OWLClass ;

Meaning. This statement associates a Java implementation to the PLIBClass2OWLClass operation (pre-
viously defined). It gives the necessary metadata (of the Java program) for the execution of that pro-
gram. In particular, it provides the location of the Java archive (JAR) file where the external program
is defined, the class name where the method is defined and the method name.

This extension is close to the notion of Interface of the Java programming language. Indeed, the defi-
nition of an operation with a PMMS is similar to the definition of the signature of an interface. Likewise,
the definition of an associated implementation to a PMMS operation is equivalent to the definition of a
method of a Java class implementing a Java interface. Besides, our proposition brings to PMMSs the
capability to define heterogeneous implementations (external programs and web services).

4.3 Warm start

Finally, to support requirement 6, the introduction of a new operation with a PMMS shall not require
restarting the system (cold start) as it will affect its performance. Indeed, web services will be invoked
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from the PMMS without requiring to restart it. As well, external programs will be loaded automatically
to the PMMS each time they are invoked without restarting the PMMS (warm start). Next chapters show
how the objectives defined in this section are reached.

5 Conclusion

In this chapter, we have defined requirements for complete PMMSs. These requirements gather at the
same time metamodeling and model managements features and benefits of database systems for an effi-
cient storage and exploitation of large scale and heterogeneous metamodels, models and instances. The
analysis of the studied PMMSs according to the defined requirements concludes to that these PMMSs do
not meet all these requirements. Thus, PMMSs have to be extended in order to fulfill the missing require-
ments, especially the behavioral semantics. This proposal has been validated in [Bazhar, 2012, Bazhar
et al., 2013a].

Next chapter presents the formal extension of PMMSs to support behavioral semantics. This propo-
sition includes the extension of the PMMS metametamodel and metamodel layers, the logical extension
of the PMMS model repository, and the extension of the algebra of the PMMS exploitation language.
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Abstract. In the previous chapter, we have defined the requirements for complete PMMSs.
In this chapter, we present the formal extension of PMMSs in order to fulfill the defined re-
quirements. Indeed, this chapter addresses (1) the extension of the PMMS metametamodel
and metamodel layers to support model and data management operations, (2) the logical
extension of the PMMS model repository to store operations signatures and implementa-
tions descriptions, and (3) the extension of the algebra of the PMMS exploitation language
to support the definition and the exploitation of operations.
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1 Introduction

As claimed in Chapter 3, a PMMS shall support a set of requirements that cover different aspects. These
requirements concern mainly (i) the support of an extensible metamodeling architecture to enable dif-
ferent modeling formalisms, (ii) the support of structural and descriptive semantics to express the static
part of metamodels and models, and finally (iii) the support of heterogeneous and flexible behavioral
semantics to support operations that can be useful to perform model management tasks suchs as model
transformations or code generation. An operation may be implemented using different mechanisms like
internal stored procedures (e.g., PL/SQL procedures), external programs (e.g., Java programs) or web
services.

Through an overview of the state of the art, we have seen that existing PMMSs (presented in Chap-
ter 2) do not fulfill all the requirements defined in Chapter 3 since they mainly focus on the support
of structural and descriptive semantics of metamodels and models. Moreover, existing PMMSs do not
handle sufficiently behavioral semantics (in terms of our requirements) neither in their data models nor
in their exploitation languages.

Our objective is to support all the requirements defined in Chapter 3 in PMMSs. This includes the
integration of the missing requirements in the data model of the PMMS and its associated exploita-
tion language. In our case we have chosen to base our approach on the OntoDB/OntoQL PMMS that
was originally defined in our laboratory to manage ontologies and their instances. This PMMS, as it is
presented in Chapter 2, does not fulfill the set of requirements we have defined and in particular require-
ments 4, 5 and 6. Thus, we have extended the data model of OntoDB and the algebra of its associated
exploitation language (OntoQL) so that all the defined requirements can be supported.

The support of the defined requirements by PMMSs goes through three parts. The first one, presented
in Section 2, concerns the extension of the PMMS conceptual model with new elements to support
particularly model management operations as most of PMMSs have a data model supporting only the
structural and descriptive semantics of metamodels and models. The second part, described in Section 3,
addresses the logical extension of the PMMS model repository in order to support the storage of the
signatures of operations and the descriptions of their associated implementations. Then, we describe the
formal extended data model of PMMSs in set theory (Section 4). The third part (Section 5) relates to
the extension of the algebra of the PMMS exploitation language with operators supporting the definition
(create and delete) and the exploitation of model management operations. Although our proposition has
been implemented on the OntoDB/OntoQL PMMS, this proposition is generic in the sense that it can be
supported by any PMMS. Indeed we present in this chapter the different steps to extend a PMMS with
behavioral semantics.

2 Conceptual extension

Figure 4.1 gives an overview of the extended PMMS data model we propose. Our model defines the
concept of metamodel that includes a set of classes which are described by attributes, and single class in-
heritance relationships are allowed. This part of our data model is usually available in all PMMSs which,
as we have seen in Chapter 2, focus mainly on the structural and descriptive semantics of metamodels
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Figure 4.1: The proposed PMMS data model
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elements. The dashed area of the metametamodel layer in Figure 4.1 gives an overview of our proposed
extension for the definition of behavioral semantics. Our model supports the definition of operations
with a list of input and an output data types. Furthermore, an operation can be associated to multiple
implementations. Each implementation is itself described by a set of descriptors (pairs of key, value).
With these generic set of descriptors, different programming environments can be easily integrated in our
approach.

The extension achieved at the metametamodel layer enables the support of model management op-
erations dedicated to manipulate only models elements. This kind of operations can be used to process
operations only on models such as model transformations. Thus, to be able to manipulate instances el-
ements, we have reproduced the same extension (made at the metametamodel layer) at the metamodel
level in order to support operations for data management. Indeed, data management operations can be
used to achieve tasks such as data transformation or data integration.

The metamodel level defines metamodels as instances of the metametamodel. Similarly, the model
level defines models as instances of metamodels. Each layer of the architecture presented in Figure 4.1
is represented in the PMMS model repository. The metametamodel layer is hard-coded in term of tables.
Indeed, each concept of the metametamodel is represented by a table to store metamodels elements where
each attribute is represented by a column. Similarly, each concept of the metamodel layer is associated
to a table to store concepts of the model level. Finally, each concept of the model level is associated to a
table to save data of the instance layer.

Once the conceptual elements, that are necessary for metamodeling and model management, are
defined, we need to extend the logical metametamodel and the logical metamodel of the PMMS model
repository with structures (tables) to store the signatures of the defined operations and the descriptions
of their associated implementations. Next section gives the details of the extension of the PMMS model
repository.

3 Logical extension

The logical extension of the PMMS model repository consists in adding new structures (tables) in order
to store the signatures of operations and their associated implementations. Two logical extension are
distinguished:

• the extension of the logical metametamodel to handle the storage of model management opera-
tions operating at the model level. These operations can be, for instance, model transformation
operations, code generation operations, etc.;

• the extension of the logical metamodel level to handle the storage of data management operations
evolving at the data level. These operations can be used for example to migrate instances, compute
derive properties, transform data, etc.
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Figure 4.2: Extension of the logical metametamodel of the OntoDB architecture

3.1 Extension of the logical metametamodel

Figure 4.2 represents the extension of the logical metametamodel of the OntoDB architecture in terms of
relational tables (dashed part). This extension adds 3 main tables to the metamodel layer of OntoDB (as
showed in the dashed area): Operation, Implementation and Descriptor which store respectively
signatures of operations, implementations and implementations descriptions.

3.1.1 Operation table

The Operation table stores the signatures of the defined operations. Particularly, it stores names of the
defined operations and their input and output data types. This table contains 3 attributes (columns):

• the name attribute represents the name of an operation. This attribute is used as the identifier of an
operation;

• the input attribute represents the input parameters data types of an operation;

• the output attribute represents the return data type of an operation.

In the example of Figure 4.2, the Operation table stores the signature of the PLIBClass2OWLClass
operation i.e., its name, its input and output data types (respectively PLIBClass and OWLClass).
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3.1.2 Implementation table

The Implementation table indicates the implementation relationship between an operation and an im-
plementation. This table contains 2 attributes:

• the name attribute represents the name of an implementation. This attribute is used as the identifier
of an implementation;

• the implements attribute specifies the operation to which the current implementation is associ-
ated.

In the example of Figure 4.2, the Implementation table indicates that the PLIBClass2OWLClass-
Imp implementation implements the PLIBClass2OWLClass operation.

3.1.3 Descriptor table

The Descriptor table stores metadata of programs implementing operations. This table contains 3
attributes:

• the implementation attribute represents the name of an implementation;

• the key attribute specifies an attribute of an implementation type;

• the value attribute represents the value of the key attribute.

In the example of Figure 4.2, the Descriptor table stores descriptors of the PLIBClass2OWLClass-
Imp implementation. Here PLIBClass2OWLClassImp is an external Java program described by 4 at-
tributes: type defines the implementation type which is in this example a Java program, location
specifies the location of the file containing the Java program, class characterizes the class name con-
taining the method to execute and finally method which represents the name of the Java method that will
be executed.

Note. As a future work, we can envision to associate a program (instance of a metaprogram or a BNF)
that could be interpreted. We will address this point in the perspectives of this work.

3.2 Extension of the logical metamodel

Figure 4.3 represents the extension of the logical metamodel of the OntoDB architecture expressed in
terms of relational tables (the dashed part). Similarly to the extension of the logical metametamodel, this
extension adds the corresponding tables to the model layer of OntoDB (as shown in the dashed area).

Notice that the metamodel and the model parts of OntoDB store different types of operations. Indeed,
the metamodel part contains model management operations handling models elements and operating at
the model level, while data management operations stored at the model level act at the data layer and
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Figure 4.3: Extension of the metamodel level of the OntoDB architecture

relate to instances. For example, PLIBClass2OWLClass is a model management operation whereas
computeAge is a data management operation.

Next section presents the formalization of the PMMS data model.

4 Formalization of the conceptual extension

The obtained extension of PMMSs can be formally defined by theă MM,CL, ATT,DT,OP, IMP,Desc,M, Inst ą
structure where MM, CL, ATT , DT , OP, IMP, Desc, M, Inst are respectively sets of metamodels,
classes, attributes, data types, operations, implementations, implementation descriptors, models and
models instances. Next subsections give the definition of each one of these sets as well as rules con-
cerning these sets described in set theory.

Note. We used the EXPRESS language [Pierra et al., 1995] to represent the proposed model. Unlike
some languages, such as the B language, where the nature of any function must be specified, the
EXPRESS language considers all functions total, and does not support other types of functions (e.g.,
partial, surjective). Thus, to complete the semantics of our model, the EXPRESS language provides
the ability to define constraints to enrich the model.
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4. Formalization of the conceptual extension*MetaModel- name: String 1 Class- name: Stringclasses
Figure 4.4: A metamodel is composed of a set of classes

4.1 Metamodels

A metamodel corresponds to a modeling formalism. It offers constructors of structural and descrip-
tive concepts and defines rules and constraints that must be respected when designing models. Indeed,
metamodels must have a unique name and a set of classes. These rules are formally defined in Table 4.1.

Table 4.1: Main rules of metamodels

A metamodel is characterized by a unique name:
mmName : MM Ñ S tring
WhereÑ represents a total function
@pmmi,mm jq P MM, i ‰ j ñ mmNamepmmiq ‰ mmNamepmm jq

A metamodel has a set of classes (see Figure 4.4):
classes : MM Ñ PpCLq

4.1.1 Classes

* *1
1

superClass 0..1* Class- name: StringClass- name: String Datatype
Attribute- name: StringAttribute- name: Stringrelationship** definedAttributes

Figure 4.5: The Class and Attribute concepts

A class (see Figure 4.5) represents concepts having the same characteristics. A class is described by
a set of attributes and is subject to several rules such as the uniqueness of the name as the class name
represents the identifier of the class in a metamodel. Moreover, a class may have at most one superclass
since only a simple inheritance relationship between classes is authorized. This relationship implies that
the subclass inherits attributes of the superclass. Furthermore, the subclass may define its own attributes.
These rules are formally defined in Table 4.2.

4.1.2 Attributes

An attribute is a description element that defines a characteristic of a class. An attribute belongs to a
class and is characterized by a data type. Moreover, the attribute concept is as well subject to some rules
such as the uniqueness of the name in a class. These rules are described in Table 4.3.
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Table 4.2: Main rules of classes

A class belongs to a unique metamodel.
@pmmi,mm jq P MM, i ‰ j ñ classespmmiq X classespmm jq “ H

A class is characterized by a unique name in a metamodel.
clName : CL Ñ S tring
@mm P MM,@pcli, cl jq P CL, i ‰ j, pcli, cl jq P classespmmq ñ
clNamepcliq ‰ clNamepcl jq

A class may have at most one superclass (single inheritance relationship).
superClass : CL Û CL
WhereÛ is a partial function
A class may inherit attributes from its super class.
inheritedAttributes : CL Ñ PpATT q
@cl P CL, if superClasspclq P CL then: inheritedAttributespclq “ attributespsuperClasspclqq
else: inheritedAttributespclq “ H
The attributes function is defined below
A class may be described by additional attributes.
de f inedAttributes : CL Ñ PpATT q
@cl P CL ñ de f inedAttributespclq X inheritedAttributespclq “ H
@pcli, cl jq P CL, i ‰ j ñ de f inedAttributespcliq X de f inedAttributespcl jq “ H

The set of attributes of a class.
attributes : CL Ñ PpATT q
@cl P CL ñ attributespclq “ inheritedAttributespclq Y de f inedAttributespclq

Table 4.3: Main rules of attributes

An attribute is characterized by a unique name in a class.
attName : ATT Ñ S tring
@cl P CL,@patti, att jq P ATT, i ‰ j, patti, att jq P attributespclq ñ
attNamepattiq ‰ attNamepatt jq

An attribute has a data type.
typeO f : ATT Ñ DT
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4.2 Datatypes DatatypeRefType SimpleType RealTypeIntegerTypeStringTypeBooleanType … CollectionTypeArrayType ListType …
1 ofType *

Figure 4.6: The PMMS data types system

Table 4.4: Main rules of data types

S impleType “ BooleanTypeY IntegerTypeY S tringTypeY RealType
CollectionType “ ArrayTypeY ListType
DT “ Re f TypeY S impleTypeYCollectionType
Re f TypeX S impleType “ H
Re f TypeXCollectionType “ H
CollectionTypeX S impleType “ H
A RefType references one unique class.
re f : Re f Type Ñ CL
A CollectionType is characterized by a unique datatype.
typeO fCollection : CollectionType Ñ DT

Figure 4.6 represents the data types system that shall be supported by a PMMS. For the purpose of
this thesis, we consider the data types system of the OntoDB/OntoQL PMMS on which we have based
our approach. This data types system includes simple types (i.e., string, integer, boolean and real), the
complex type that references a class of a metamodel and the aggregate type which may be an array, a
list, a bag, etc. of a data type. We assume that the considered data types system are gathered in the set
DT defined in Table 4.4.

4.3 Model management operations DatatypeOperation-name: String 0..1 1..*** output inputImplementationDescriptor * 1* 1
Figure 4.7: Elements extending the PMMS data model to handle behavioral semantics

Figure 4.7 represents the extension of the basic PMMS data model. This extension consists in three
main classes detailed in the following subsections.
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4.3.1 Operations

An operation is a model management function or procedure dedicated to accomplish advanced compu-
tations like model transformation, code generation, derivation, etc. An operation is characterized by a
unique name as this attribute represents the identifier of the operation. Moreover, an operation is charac-
terized by parameter types representing the input of the operation, and the return type corresponding to
the output of the operation. These rules are formally defined in Table 4.5.

Table 4.5: Main rules of operations

An operation is characterized by a unique name.
opName : OP Ñ S tring
@popi, op jq P OP, i ‰ j ñ opNamepopiq ‰ opNamepop jq

An operation has a list of input parameters.
input : OP x N` Ñ DT
An operation returns a result or void.
output : OP Ñ DT Y void

4.3.2 Implementations

Table 4.6: Main rules of implementations

An operation may have several implementations.
implementations : OP Ñ PpIMPq
@popi, op jq P OP, i ‰ j ñ implementationspopiq X implementationspop jq “ H

Each operation can be implemented by one or many implementations. An implementation must
satisfy the rules of Table 4.6.

4.3.3 Descriptors

Each implementation is described by a set of descriptors that indicate the necessary metadata for the
execution of the program. An implementation is concerned by the rules of Table 4.7.

Table 4.7: Main rules of implementations descriptors

An implementation is described by a set of descriptors.
descriptors : IMP Ñ PpDescq
@pimpi, imp jq P IMP, i ‰ j ñ descriptorspimpiq X descriptorspimp jq “ H

Example. To execute a web service implementation, multiple descriptors are needed such as the URL
(Uniform Resource Locator), the namespace and the operation name of the web service. To execute
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a Java implementation, other descriptors are needed such as the location of the Jar (Java archive) file
where the program is defined, the name of the class containing the method to invoke and the name of
the method to invoke.

4.4 Models

A model is an abstraction of concepts having the same characteristics. A model is an instance of a
metamodel which plays the role of the modeling language or the modeling formalism. Relationships
between models and metamodels are described in Table 4.8.

Table 4.8: Main rules of models

A model is an instance of a unique metamodel.
MMinstO f : MM Ñ PpMq
MMinstO f is a function that returns the set of instances of a metamodel.
@pmmi,mmiq P MM, i ‰ j ñ MMinstO f pmmiq X MMinstO f pmm jq “ H

4.5 Instances

An instance represents data of the real world that are described by models. Relationships between models
and instances are defined by the rules presented in Table 4.9.

Table 4.9: Main rules of instances

A data instance is an instance of only one model.
MinstO f : M Ñ PpInstq
MinstO f is a function that returns the set of instances of a model.
@pmi,miq P M, i ‰ j ñ MinstO f pmiq X MinstO f pm jq “ H

Once the conceptual elements, that are necessary for metamodeling and model management, are
defined, we need to extend the algebra of the PMMS exploitation language with operators for supporting
the definition (i.e., create and delete) of operations and implementations and an operator permitting the
execution of the defined operations. Next section gives the details of the extension of the algebra of the
PMMS exploitation language.

5 Extension of the algebra of the PMMS exploitation language

As we have used the OntoDB/OntoQL PMMS, we propose to extend the algebra of its associated ex-
ploitation language defined in [Jean et al., 2007]. We notice that this algebra covers the main operators
of PMMS exploitation language. Thus, our proposition can be applied to other PMMS exploitation
languages. Our extension consists in 2 parts:
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• the first one addresses the definition of creation and delete operators to create and delete operations
and implementations;

• the second one focuses on the definition of the RUN operator for the exploitation of the defined
operations. The purpose of defining such operator is to equip the model and data manipulation
language with the capability to execute the user-defined operations. In other words, this operator
is the interpreter associated to the defined operations.

Next subsections introduce respectively the creation, the delete and the RUN operators. These actions
are defined by a signature (SIG), a precondition (PRE) and a postcondition (POST). We use the prime (’)
notation to describe the variables before (x) and after (x’) operations executions.

5.1 Creation and delete operators

5.1.1 Creation actions

The main creation actions that a PMMS definition language should fulfill are defined below. The creation
of an element implies, each time, the update of the concerned sets and the functions where an updated
set is a domain and/or a range.

Creation of a metamodel.
SIG: addMetaModel : S tring Ñ void
void represents the null type
addMetaModelpsq
PRE: @mmi P MM, s ‰ mmNamepmmiq

POST: Dmm such that: MM1 “ MM Y tmmu ^ pmmName : MM1 Ñ S tringq^
pmmNamepmmq “ sq ^ pclasses : MM1 Ñ PpCLqq ^ pclassespmmq “ Hq

The creation of a new metamodel implies the update of the MM set and of the mmName and classes
functions.

Creation of a class of a metamodel.
SIG: addClass : MM x S tring Ñ void
addClasspmm, sq
PRE: pmm P MMq ^ p@cli P classespmmq, s ‰ clNamepcliqq
POST: Dcl such that: CL1 “ CLY tclu ^ pclName : CL1 Ñ S tringq ^ pclNamepclq “ sq^
psuperClass : CL1 Û CL1q^
pinheritedAttributes : CL1 Ñ PpATT qq ^ pinheritedAttributespclq “ Hq
pde f inedAttributes : CL1 Ñ PpATT qq ^ pde f inedAttributespclq “ Hq
pattributes : CL1 Ñ PpATT qq ^ pattributespclq “ Hq

The creation of a new class of a metamodel implies the update of the CL set and the clName,
superClass, inheritedAttributes, de f inedAttributes and attributes functions. A newly created class
has no super class and no defined attributes by default.

Creation of an attribute of a class.
SIG: addAttribute : CL x S tring x DT Ñ void
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addAttributepcl, s, dtq
PRE: pcl P CLq ^ p@atti P de f inedAttributespclq, s ‰ attNamepattiqq ^ pdt P DT q
POST: Datt such that: ATT 1 “ ATT Y tattu ^ pattName : ATT 1 Ñ S tringq^
pattNamepattq “ sq ^ ptypeO f : ATT 1 Ñ DT q ^ ptypeO f pattq “ dtq^
pde f inedAttributes : CL Ñ PpATT 1qq ^ pde f inedAttributes1pclq “ de f inedAttributespclq Y tattuq^
pinheritedAttributes : CL Ñ PpATT 1qq^
pattributes : CL Ñ PpATT 1qq ^ pattributes1pclq “ attributespclq Y tattuq

The creation of a new defined attribute of a class implies the update of the ATT set and the attName,
typeO f , inheritedAttributes, de f inedAttributes and attributes functions.

Creation of an operation.
SIG: addOperation : S tring x DT n x pDT Y voidq Ñ void
addOperationps, pdti1, dti2, ..., dtinq, dtoq
PRE: p@opi P OP, s ‰ opNamepopiqq ^ ppdti1, dti2, ..., dtinq P DT nq ^ pdto P DT Y voidq
POST: Dop such that: OP1 “ OPY topu ^ popName : OP1 Ñ S tringq ^ popNamepopq “ sq^
pimplementations : OP1 Ñ PpIMPqq ^ pimplementationspopq “ Hq^
pinput : OP1 x N` Ñ DT q ^ p@ j P 1..n, inputpop, jq “ dti jq^

poutput : OP1 Ñ DT Y voidq ^ poutputpopq “ dtoq

The creation of a new operation extends the OP set and updates the opName, input, output and
implementations functions. When an operation is created, it has no implementation.

Creation of an implementation of an operation.
SIG: addImplementation : OP Ñ void
addImplementationpopq
PRE: pop P OPq
POST: Dimp such that: IMP1 “ IMPY timpu^
pimplementations : OP Ñ PpIMP1qq ^ pimplementations1popq “ implementationspopq Y timpuq
pdescriptors : IMP1 Ñ PpDescqq ^ pdescriptorspimpq “ Hq

The definition of a new implementation of an operation leads to the extension of the IMP set and the
update of the implementations and descriptors functions.

5.1.2 Delete actions

The main delete actions that a PMMS definition language should fulfill are presented below. Similarly to
the creation actions, the removal of an element involves the update of the concerned sets and functions.
For readability, we update only a subset of functions for each action.

Delete a metamodel.
SIG: deleteMetaModel : MM Ñ void
deleteMetaModelpmmq
PRE: pmm P MMq ^ pclassespmmq “ Hq
POST: pMM1 “ MMztmmuq

The removal of a metamodel implies the update of the MM set.
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Delete a class of a metamodel.
SIG: deleteClass : MM x CL Ñ void
deleteClasspmm, clq
PRE: pmm P MMq ^ pcl P classespmmqq ^ pde f inedAttributespclq “ Hq
POST: pCL1 “ CLztcluq ^ pclasses : MM Ñ PpCL1qq^
pclName : CL1 Ñ S tringq ^ psuperClass : CL1 Û CL1q^
pre f : Re f Type Ñ CL1q

The delete of a class implies the update of the CL set. All the associated functions are updated as
well and all the subclasses of cl are deleted.

Delete an attribute of a class.
SIG: deleteAttribute : CL x ATT Ñ void
deleteAttributepcl, attq
PRE: pcl P CLq ^ patt P de f inedAttributespclqq
POST: pATT 1 “ ATTztattuq ^ pinheritedAttributes : CL Ñ PpATT 1qq^
pde f inedAttributes : CL Ñ PpATT 1qq ^ pattributes : CL Ñ PpATT 1qq^
pattName : ATT 1 Ñ S tringq ^ ptypeO f : ATT 1 Ñ DT q

The deletion of an attribute implies the update of the ATT set and the attName, typeO f functions.
Moreover, only the defined attributes can be deleted from a class as a class is not allowed to delete the
inherited attributes which belong to its super class. Then, the deletion of a defined attribute leads to
update the de f inedAttributes, inheritedAttributes and attributes functions.

Delete an operation.
SIG: deleteOperation : OP Ñ void
deleteOperationpopq
PRE: pop P OPq ^ pimplementationspopq “ Hq
POST: pOP1 “ OPztopuq ^ popName : OP1 Ñ S tringq^
pinput : OP1 x N` Ñ DT q ^ poutput : OP1 Ñ DT Y voidq

The removal of an operation implies the update of the OP set and of the opName, input, output
functions.

Delete an implementation of an operation.
SIG: deleteImplementation : OP x IMP Ñ void
deleteImplementationpop, impq
PRE: pop P OPq ^ pimp P implementationspopqq
POST: pIMP1 “ IMPztimpuq ^ pDesc1 “ Desczdescriptorspimpqq^
pimplementations : OP Ñ PpIMP1qq ^ pdescriptors : IMP1 Ñ PpDesc1qq

The delete of an implementation leads to update of the IMP and Desc sets. When an implementation
is deleted, all its corresponding descriptors are also deleted. Consequently, the implementations and
descriptors functions are updated.
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5.2 Run operator

Most PMMSs are equipped with a language whose algebra includes relational-like operators (e.g., pro-
jection or selection) for models and metamodels and built-in operators whose interpretation is fixed. The
extension we propose makes possible to define new operations that could be executed. Therefore, there is
a need to add, to the current algebra, a higher order operator capable to run model and data management
operations given as parameters and whose implementation is defined. This algebra should be extended
to be able to execute the operations that can be defined in our proposed extension. To fulfill this need,
we define the RUN operator. We only give the signature of this operator in table 4.10 since its semantics
depends on the processing defined in the implementation associated to the corresponding operation.

Table 4.10: Formalization of the RUN operator

SIG: RUN : OP x IMP x pInst ‘ M ‘CLq˚ Ñ pInst ‘ M ‘CLq
Where ‘ represents the disjoint union
RUNpop, imp, tparam1, param2, ..., paramnuq “ j
PRE: pimp P implementationspopqq ^ ptypeO f pparamiq “ inputpop, iq, i P 1..nq
POST: typeO f p jq “ outputpopq

Example. Let us consider the PLIBClass2OWLClass operation that transforms a PLIB class to an OWL
one. This operation can be used, for instance, to transform the Student PLIB class (of the example
presented in Chapter 1) to the O_Student OWL class. Thus, in this case, the RUN operator is
invoked as follows:

RUNpPLIBClass2OWLClass, PLIBClass2OWLClassImp, S tudentq.

Meaning. The RUN operator takes as input the PLIBClass2OWLClass operation, an associated imple-
mentation (PLIBClass2OWLClassImp) and the Student PLIB class to transform. It returns the
O_S tudent OWL class.

The RUN operator can operate at both model and data layers as it can execute operations of model
management as well as operations of data management.

Example. If we consider that age is a derived property computed from the birthday property of the
Student class, the invocation of the RUN operator to compute the age of the Student1 instance is:

RUNpcomputeAge, computeAgeImp, S tudent1q.

Meaning. The RUN operator takes as input the computeAge operation, an implementation (compute-
AgeImp) and the Student1 instance to which we compute the age property. The RUN operator
returns the value corresponding to the age of the instance Student1.
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6 Conclusion

In this chapter we have presented the formal model, using set theory, of the extension of PMMSs in
order to integrate flexible behavioral semantics. This extension has addressed the PMMS data model
which has been extended with new concepts to support the dynamic introduction of model management
operations. Then, we have extended the logical metametamodel and the logical metamodel of the PMMS
model repository in order to store the signatures of the defined operations and the descriptions of their
associated implementations. Finally, our extension has focused on the algebra of the PMMS exploitation
language which has been enriched with new operators to enable the definition and the exploitation of
model and data management operations. Our approach is implemented on a relational database but can
as well be implemented on other types of DBMSs provided that the PMMS API is implemented for the
targeted DBMS.

Next chapter presents the extension of the OntoQL grammar with instructions for the definition and
the exploitation of model management operations. Besides, it introduces the prototyping of our approach.

68



Chapter 5
BeMoRe : extension of the exploitation language and

prototyping

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2 Extension of the OntoQL language . . . . . . . . . . . . . . . . . . . . . . . . 71

2.1 Extension with model management operations . . . . . . . . . . . . . . . 71

2.1.1 Model behavior definition language . . . . . . . . . . . . . . . 72

2.1.2 Extension of the model manipulation language . . . . . . . . . 75

2.2 Extension with data management operations . . . . . . . . . . . . . . . . 75

2.2.1 Instance behavior definition language . . . . . . . . . . . . . . 76

2.2.2 Extension of the data manipulation language . . . . . . . . . . 78

3 The BeMoRe prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.1 The OntoDB layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 The OntoQL layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 The behavior API layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Handling operations invocations in OntoQL . . . . . . . . . . . . . . . . 82

4 A preliminary performance evaluation . . . . . . . . . . . . . . . . . . . . . . 84
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
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1. Introduction

1 Introduction

In Chapter 4 we have presented the generic and formal extension of PMMSs in order to handle behav-
ioral semantics. This concerns the extension of the PMMS metametamodel with new concepts in order
to support operations that can be implemented using flexible mechanisms such as stored procedures, ex-
ternal programs and web services. Furthermore, we have presented the logical extension of the PMMS
model repository in order to store signatures of operations and their associated implementations. Then,
we have introduced the extension of the algebra of the PMMS exploitation language with new operators
to create, manipulate and exploit operations.

This chapter presents the extension of the OntoQL syntax and the BeMoRe prototype. The imple-
mentation of our approach under the OntoQL language is presented through two parts. The first part
is dedicated to the extension of OntoQL in order to support model management operations operating
at the model level and addressing model elements. The second part is devoted to the extension of the
OntoQL to support data management operations operating at the data level. This kind of operations can
be useful for instance for data migration. Nonetheless, the extension of the PMMS model repository and
its exploitation language is not sufficient since we need a mechanism to run external program and web
services for the PMMS. To do so, we have set up an API, called the behavior API, which is a part of the
BeMoRe prototype and which we present in this chapter.

The remainder of this chapter is as follows. Section 2 introduces the extension of the OntoQL syntax
to handle model and data management operations. Section 3 exposes the BeMoRe prototype. Section 4
presents a small performance evaluation of the BeMoRe prototype. Finally, Section 4 concludes this
chapter.

2 Extension of the OntoQL language

2.1 Extension with model management operations

This section presents the extension of the OntoQL language with the capability to define, manipulate
and exploit operations and their implementations. The extension made on the OntoQL language can be
decomposed into 2 parts:

• the first part concerns the extension of OntoQL with the Model Behavior Definition Language
(MBDL) for the definition of operations and implementations. It is an extension of the OntoQL
language with new statements to create and delete operations and implementations; and associate
implementations to the operations they implement. Furthermore, we have extended OntoQL with
the capability to choose a default implementation in the case where multiple implementations are
available for an operation. Another feature we have introduced covers the possibility to explicit,
in an OntoQL statement, the implementation to execute for an invoked operation;

• the second part is related to the extension of the Model Manipulation Language of OntoQL to
include the capability to invoke operations in OntoQL statements. This consists in the capability
to make operations calls in OntoQL queries.
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Each of these two parts is detailed below.

2.1.1 Model behavior definition language

Create Operation Statement

We have extended the OntoQL grammar with the capability to create operations at the metamodel
level. These operations are dedicated to operate at the model level and address models elements. Each
operation is characterized with a name and has a set of inputs and an output data types as it is defined in
the following grammar. The syntax to create a model management operation is given below.

<m2 operation definition> ::= CREATE OPERATION <operation name> [<descriptors clause>]

[<input clause>] [<output clause>]

<descriptors clause> ::= DESCRIPTOR (<descriptors list>)

<descriptor> ::= <descriptor name> = <descriptor value>

<input clause> ::= INPUT (<datatype list>)

<output clause> ::= OUTPUT (<datatype>)

Example. The syntax to create the PLIBClass2OWLClass operation is given by Listing 5.1.

Listing 5.1: Statement for creating the PLIBClass2OWLClass operation
CREATE OPERATION # PLIBClass2OWLClass
INPUT (REF (# PLIBClass ) )
OUTPUT (REF (# OWLClass ) ) ;

Meaning. This OntoQL statement defines a model management operation prefixed with the # character to
distinguish model management operations and data management as in OntoQL models and instance
elements are differentiated by the # character. The defined operation has as input a PLIBClass and
returns an OWLClass. The keyword REF indicates that the data type is a complex type that references
a metamodel element.

Create Implementation Statement

Once an operation is defined, one or many associated implementations can be defined. Yet, knowing
that heterogeneous types of implementations may be set up (e.g., external programs, web services), these
implementations are described by different descriptors which are metadata of programs that are necessary
for the execution of implementations. For instance, to execute a Java external program, we need to know
the location of the Java archive (JAR) file where the implementation is defined, the class name and the
method name. And to execute a web service, we need to know the URL3 of the web service and the web
service operation name. Thus, the OntoQL instruction to create an implementation should be generic
in the sense that it shall support the creation of any type of implementation that can be described using
different descriptors. Thus, as presented in the previous chapter, an implementation is characterized
by a name and a set of descriptors represented by pairs of (key, value). The statement for creating an
implementation should specify the operation that is implemented. Thus, the OntoQL syntax to create an
implementation at the metamodel level is given below.

3Unified Resource Locator

72



2. Extension of the OntoQL language

<m2 implementation definition> ::= CREATE IMPLEMENTATION <mimplementation name>

<descriptors clause> <implements clause>

<implements clause> ::= IMPLEMENTS <moperation or operation name>

Example. Listing 5.2 statement creates an implementation of the PLIBClass2OWLClass operation.

Listing 5.2: Statement for creating an implementation of PLIBClass2OWLClass
CREATE IMPLEMENTATION # PLIBClass2OWLClassImp
DESCRIPTORS ( t y p e = ’ j ava ’ ,

l o c a t i o n = ’ h t t p : / / . . . / programs . j a r ’ ,
c l a s s = ’ f r . ensma . l i a s . myClass ’ ,
method = ’ PLIBClass2OWLClass ’ )

IMPLEMENTS # PLIBClass2OWLClass ;

Meaning. this statement creates an implementation of the PLIBClass2OWLClass operation (PLIB-
Class2OWLClassImp). It provides descriptors of a Java program stored outside the database. In
particular, these descriptors specify the file location of the external program, the Java class where the
method is defined and the method to execute. Besides, the create statement indicates the implemented
operation (PLIBClass2OWLClass).

Delete Operation Statement

We have also extended the OntoQL grammar with instructions permitting to delete operations and
implementations. The syntax for deleting an operation is defined as follows.

<m2 operation removal> ::= DELETE OPERATION <operation name>

Example. The syntax to delete the PLIBClass2OWLClass operation is defined by Listing 5.3.

Listing 5.3: Statement for deleting the PLIBClass2OWLClass operation
DELETE OPERATION # PLIBClass2OWLClass

Note. When a model management operation is deleted, its associated implementations are also removed.

Delete Implementation Statement

The syntax for deleting an implementation is given below.

<m2 implementation removal> ::= DELETE IMPLEMENTATION <implementation name>

Example. The syntax to delete the PLIBClass2OWLClassImp implementation is given by Listing 5.4.
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Listing 5.4: Statement for deleting the PLIBClass2OWLClassImp implementation
DELETE IMPLEMENTATION # PLIBClass2OWLClassImp

Note. If an implementation of an operation is removed, the operation can use other implementations if
they exist.

Set Default Implementation Statement

If an operation is associated to several implementations, the implementation to execute is chosen
randomly by the behavior API. However, the execution of some implementations may be faster than the
execution of other ones, or some implementations may be not available, etc. Thus, the OntoQL language
has also been extended with the possibility to define a default implementation. If several implementations
are available for an operation, the default implementation is used for the execution of the operation. The
syntax to define a default implementation for an operation is given below.

<set default implementation definition> ::= SET DEFAULT IMPLEMENTATION

<implementation name> <for operation clause>

<for operation clause> ::= FOR <operation name>

This syntax is the same to set the default implementation for model management and data manage-
ment operations.

Example. Listing 5.5 statement defines a default implementation for the PLIBClass2OWLClass opera-
tion.

Listing 5.5: Set a default implementation for a model management operation
SET DEFAULT IMPLEMENTATION # PLIBClass2OWLClassImp
FOR # PLIBClass2OWLClass ;

Meaning. The first statement defines PLIBClass2OWLClassImp as the default implementation for the
PLIBClass2OWLClass operation.

Assigning a specific implementation

If, for instance, the default implementation is not available, the execution of the invoked operations
cannot be achieved. Thus, the solution is to change the default implementation and execute again the
query. To avoid this kind of problems, we have extended OntoQL with the capability to assign a specific
implementation to be executed for an operation directly in an OntoQL select statement. The associated
syntax is defined below.

<select statement> ::= <select clause> <from clause> <where clause> ...

<using implementation clause>

<using implementation clause> ::= USING IMPLEMENTATION <implementation operation list>

<implementation operation> ::= <implementation name> -> <operation name>

74



2. Extension of the OntoQL language

Example. Listing 5.6 shows an example of this behavior.

Listing 5.6: Specifying the implementation to run in a select statement
CREATE #OWLClass O_Student AS

SELECT # PLIBClass2OWLClass ( c )
FROM # PLIBClass AS c
WHERE c . # name = S t u d e n t
USING IMPLEMENTATION #PLIBClass2OWLClassImp´>#PLIBClass2OWLClass ;

Meaning. This statement creates an OWL class (O_Student) by transforming the Student PLIB class
using the PLIBClass2OWLClass operation. The USING IMPLEMENTATION clause indicates explic-
itly that the implementation to be executed for the PLIBClass2OWLClass operation is PLIBClass-
2OWLClassImp.

The USING IMPLEMENTATION clause is helpful only when multiple implementations are available
for an operation. In the case where it is not present, either the assigned implementation or the default
implementation is run.

2.1.2 Extension of the model manipulation language

When an operation and at least one associated implementation are defined, the operation can be invoked
in an OntoQL select statement. Thus, the OntoQL Model Manipulation Language (MML) has been
extended in order to make possible operations invocations in OntoQL select statements. Listing 5.7
shows an example of such a behavior.

Listing 5.7: Example of an operation invocation
CREATE #OWLClass O_Student AS

SELECT # PLIBClass2OWLClass ( c )
FROM # PLIBClass AS c
WHERE c . # name = ’ S t u d e n t ’ ;

Meaning. This statement shows the creation of a derived OWL class (O_Student) from an existing
PLIB class (Student).

Next section presents the extension of the OntoQL language with data management operations.

2.2 Extension with data management operations

Similarly to the extension presented in the last section, the extension of the model level of the On-
toDB/OntoQL PMMS consists in extending firstly the model layer of the OntoDB architecture before
extending the OntoQL language. Next subsections expose both extensions.
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2.2.1 Instance behavior definition language

Create Operation Statement

We have equipped OntoQL with the capability to create operations at the model level. These oper-
ations are dedicated to act at the instance level and relate to instance elements only. Each operation is
characterized by a name and has a set of inputs and an output as defined in the following BNF rule.

<m1 operation definition> ::= CREATE #OPERATION <operation name> [<descriptors clause>]

[<input clause>] [<output clause>]

Example. Listing 5.8 statement creates the computeAge operation defined at the model level.

Listing 5.8: Statement for creating the computeAge operation
CREATE #OPERATION computeAge
INPUT (REF ( Pe r s on ) )
OUTPUT (INTEGER ) ;

Meaning. This statement creates an operation which computes the age of a person. This operation has
as a parameter the Person class and returns an integer corresponding to the type of the age property.

Note. We differentiate operations of the metamodel level and those of the model level with the # charac-
ter. This is conform to the OntoQL grammar which separates concepts of the different model layers
i.e., concepts of the metamodel and the model layers.

Create Implementation Statement

The BNF rule defining the creation of an implementation at the model level is described as follows.

<m1 implementation definition> ::= CREATE #IMPLEMENTATION <implementation name>

<descriptors clause> <implements clause>

Example. Listing 5.9 statement creates an implementation of the computeAge operation.

Listing 5.9: Statement for creating an implementation of computeAge
CREATE #IMPLEMENTATION computeAgeImp
DESCRIPTORS ( t y p e = ’ j ava ’ ,

l o c a t i o n = ’ h t t p : / / . . . / programs . j a r ’ ,
c l a s s = ’ f r . ensma . l i a s . myClass ’ ,
method = ’ computeAge ’ )

IMPLEMENTS computeAge ;

Meaning. The previous statement creates an implementation of the computeAge operation. This im-
plementation is a Java program characterized by 4 descriptors: type determines the type of the
implementation which is Java in this case, location indicates the location of the Java archive file
containing the Java program, class represents the class name where the Java method is defined and
method defines the method name to run.
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Delete Operation Statement

The BNF rule for deleting a data management operation is defined as follows.

<m1 operation removal> ::= DELETE #OPERATION <operation name>

Example. Listing 5.10 statement deletes the computeAge operation.

Listing 5.10: Statement for deleting the ComputeAge operation
DELETE #OPERATION ComputeAge

Note. Similarly to model management operations, when a data management operation is deleted, its
associated implementations are implicitly deleted as well.

Delete Implementation Statement

The BNF rule for deleting an implementation of the model level is:

<m1 implementation removal> ::= DELETE #IMPLEMENTATION <implementation name>

Example. Listing 5.11 statement deletes the computeAgeImp implementation.

Listing 5.11: Statement for deleting the computeAgeImp implementation
DELETE #IMPLEMENTATION ComputeAgeImp

Note. Similarly to implementations for model management, if the default implementation of a data man-
agement operation is removed, the operation can use other implementations if they exist.

Set Default Implementation Statement

OntoQL language is also extended with the possibility to define a default implementation if several
implementations are available for a data management operation. The syntax to define a default imple-
mentation for a data management operation is similar to the one related to model management operations.

Example. Listing 5.12 statement defines a default implementation for the computeAge operation.

Listing 5.12: Set a default implementation for a data management operation
SET DEFAULT IMPLEMENTATION computeAgeImp
FOR computeAge ;

Meaning. This statement defines the computeAgeImp as the default implementation of the computeAge
operation.
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Assigning a specific implementation

We can also assign a specific implementation to be executed for an operation directly in an OntoQL
select statement. The associated syntax is similar to the one addressed for model management operations.

Example. Listing 5.13 shows an example of this behavior.

Listing 5.13: Specifying the implementation to run in a select statement
SELECT computeAge ( P )
FROM Pe r s on AS P
WHERE P . name = ’ Dupond ’
USING IMPLEMENTATION computeAgeImp >́computeAge ;

Meaning. This statement computes the age of a person p whose name is ’Dupond’. The USING IMPLE-
MENTATION clause indicates explicitly that the implementation to be executed for the computeAge
operation is computeAgeImp.

2.2.2 Extension of the data manipulation language

When a data management operation and at least one associated implementation are defined, the operation
can be invoked in an OntoQL select statement of the data manipulation language (DML). Thus, the
OntoQL DML has been extended in order to make possible operations invocations in OntoQL select
statements. Listing 5.14 shows an example of data management operation invocation.

Listing 5.14: Example of an operation invocation
SELECT computeAge ( P )
FROM Pe r s on AS P
WHERE P . name = ’ Dupond ’

Meaning. This statement computes a derived property. It computes the age property of the Person class
using the computeAge operation.

In the next section, we present the general architecture of the BeMoRe prototype including the be-
havior API we have set up. Then, we describe the execution process of OntoQL statements taking into
account operations invocations. At the end, we introduce a preliminary performance evaluation of the
BeMoRe prototype to show the scaling of our approach.

3 The BeMoRe prototype

The BeMoRe prototype is built on top of the OntoDB/OntoQL prototype. Indeed, BeMoRe enriches
OntoDB/OntoQL with the capability to define and exploit model and data management operations. Par-
ticularly, the logical extension of the OntoDB equips the model repository with tables to store signa-
tures of operations and metadata for the description of their associated implementations. Moreover, the
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extension of the OntoQL grammar adds new instructions to define (create and delete) operations and
implementations, and to support operations invocations in OntoQL statements. Indeed, the support of
operations invocations within OntoQL statements (1) modifies the execution process of OntoQL queries
as we have to take into account the possibility to have operations invocations in OntoQL statements,
and (2) adds to the OntoDB/OntoQL prototype a new component which is the behavior API. This API
bridges the OntoDB/OntoQL environment and the external environments (e.g., web services, external
programs). Specifically, this API makes data types correspondences (e.g., using XML file) between On-
toDB/OntoQL data types and those of external environments, and invokes the external programs and/or
the remote services.

PostgreSQL

RDBMS
OntoDB layer

OntoQL layer

Behavior API

WS

API

Java

API

WebservicesJavaprograms

Figure 5.1: The architecture of the BeMoRe prototype

Figure 5.1 presents the general architecture of the BeMoRe prototype. This prototype is composed
of 3 main layers: the OntoDB layer, the OntoQL layer and the behavior API layer.

3.1 The OntoDB layer

The OntoDB layer is implemented on top of the PostgreSQL DBMS. It defines an API to store and ma-
nipulate metamodels, models and data in the PostgreSQL DBMS. The OntoDB layer defines primitives
to create, update, query and delete metamodels, models and instances using Entreprise JavaBeans (EJBs).
Indeed, an EJB corresponds to an entity of the PMMS metametamodel and maps the entity to a table in
the database using the Java Persistence API (JPA). JPA provides primitives to persist objects in rela-
tional databases. Moreover, it offers a query language called JPQL (Java Persistence Query Language)
to retrieve the persisted objects.

Extension with model management operations

To be able to define and persist the signatures of model management operations and the descriptions
of their associated implementations, we have extended the OntoDB metametamodel package with the
procedural package (see Figure 5.2).

The added EJBs classes (MOperation, MImplementation) correspond respectively to the concepts
of operation and implementation. Each EJB is mapped to a table using JPA to persist operations and
implementations.
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Figure 5.2: Extension of the OntoDB metamodel package with the procedural package

Figure 5.3: Extension of the OntoDB model package with the procedural package

Extension with data management operations

The extension of OntoDB with data management operations is similar to the extension of OntoDB
with model management operations. Thus, in order to store the signatures of data management operations
and the descriptions of their associated implementations, we have extended the OntoDB metamodel
package with the procedural package (see Figure 5.3). The procedural package defines EJBs which
play the role of operation and implementation.

3.2 The OntoQL layer

The OntoQL layer is an API that defines the syntactic and the semantic rules of OntoQL queries. Besides,
it processes the syntactic and semantic analysis of the executed OntoQL queries. Then, an OntoQL query
is translated to a native query (e.g., SQL, JPQL) and transmitted to the OntoQL interpreter to be executed.

At this stage, OntoQL language supports definition and querying of structural elements of metamod-
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Figure 5.4: Grammar files of OntoQL

els and models besides of supporting querying of instances (Select clause). Our objective is to be able to
define operations and implementations and to make operations invocations in OntoQL statements. Yet,
to support these capabilities, we have extended the OntoQL grammar to support these capabilities. In
particular, we extended the OntoQL-syntaxic and OntoQL-semantic ANTLR4 grammar files shown
in Figure 5.4. The OntoQL-syntaxic file defines the syntactic rules of OntoQL queries. For instance, a
part of the syntax to support the creation of model management operations is given in Listing 5.15.

Listing 5.15: Example of the extension of the OntoQL syntax
c r e a t e S t a t e m e n t

: CREATE^ ( e n t i t y D e f i n i t i o n | m B e h a v i o r D e f i n i t i o n | . . . )
;

m B e h a v i o r D e f i n i t i o n
: m O p e r a t i o n D e f i n i t i o n
| m I m p l e m e n t a t i o n D e f i n i t i o n
;

m O p e r a t i o n D e f i n i t i o n
: OPERATION^ i d e n t i f i e r ( i n p u t C l a u s e ) ? ( o u t p u t C l a u s e ) ?
;

Meaning. The first clause defines the create statement of the OntoQL language (createStatement).
Among the possible choices of this clause, we find mBehaviorDefinition which represents the
definition of a model management operation (mOperationDefinition) or an implementation of a
model management operation (mImplementationDefinition). The definition clause of a model
management operation clause is characterized by the keyword OPERATION, the identifier (the name)
of the operation, its input and output data types.

The syntactic extension of OntoQL is not sufficient to precise the semantics of OntoQL statements
creating model management operations and implementations. Thus, we have extended OntoQL-semantic
with new clauses in order to retrieve different concepts when creating a model management operation.
The semantic extension generates a tree, corresponding to the query, from which different concepts can
be distinguished. For instance, an OntoQL query to create an operation is transformed by the compiler

4http://www.antlr.org/
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to a tree from which the operation name, its input and output data types can be retrieved. A part of the
semantic extension of the OntoQL grammar for creating operations is given in Listing 5.16.

Listing 5.16: Example of the extension of the OntoQL semantic
m B e h a v i o r D e f i n i t i o n

: m O p e r a t i o n D e f i n i t i o n
| m I m p l e m e n t a t i o n D e f i n i t i o n
;

m O p e r a t i o n D e f i n i t i o n
: # (OPERATION i d e n t i f i e r ( i n p u t C l a u s e ) ? ( o u t p u t C l a u s e ) ? )
;

The proposition made in this thesis faces three technical challenges:

• the first one is related to the capability of PMMSs to invoke external programs and web services
since current PMMSs did not address this aspect. This challenge leads to the second one;

• the second challenge concerns the data exchange format between PMMSs and the external envi-
ronments (i.e., web services and external programs). Indeed, data types of the BeMoRe prototype
and those of the external environments are not similar. Thus, data types mappings are required;

• the third challenge relates to the process that can be followed to answer OntoQL queries containing
invocations of the defined operations.

To meet these challenges, we have set up an API, that we have called behavior API, which fulfills
these needs. This API is presented in the next section.

3.3 The behavior API layer

The behavior API defines a new application programming interface (API), called Behavior API, which
plays the role of the bridge between the OntoDB/OntoQL environment and the external environments. In-
deed, this API makes data types correspondences between data types of the OntoDB/OntoQL PMMS and
data types of the different implementation types. Moreover, the behavior API has been implemented to
run external programs and remote services. The behavior API defines primitives for data types mappings
and the execution of any type of implementation (e.g., web services, Java, Ada). Indeed, the integration
of a new type of implementation requires the implementation of (1) the primitive for data types corre-
spondences between OntoDB/OntoQL data types and the data types of the new implementation, and (2)
the implementation of the primitive to execute the remote program and to return the result.

3.4 Handling operations invocations in OntoQL

When an OntoQL query is executed, the process to run this query follows different steps (Figure 5.5).

• Syntactic analysis: the OntoQL API processes at first the syntactic analysis to check if the query
respects the OntoQL grammar. If the step of the syntactic analysis is passed, the query goes
through a semantic analysis.

82



3. The BeMoRe prototype

OntoQL query with

operation(s) invocation(s)

Syntactic analysis

Semantic analysis

Execute OntoQL query

without operations

Apply operations on result

OntoQL

OntoDB

Behavior API

ResultSet

Figure 5.5: Execution process of OntoQL statements containing operations invocations

• Semantic analysis: at this step, the OntoQL layer verifies, for instance, if the queried classes exist
in the PMMS, or if the invocation of an operation conforms to its definition, etc .Then, the OntoQL
query is translated to a native query (e.g., SQL, JPQL) omitting operations. This allows to get all
the data before applying operations on these data.

• Native query execution: the OntoDB layer executes the native query provided by the OntoQL layer
and returns the corresponding result set.

• Operations invocations: when the OntoDB layer gets the result of the execution of the native
query, the data are transmitted to the behavior API in order to process operations on these data.
Thus, the behavior run the external program(s) and/or the web service(s) using the data result set
provided by the execution of generated native query. Next, the behavior API returns the result to
the OntoDB layer which stores the result of the initial OntoQL query in the database.

To illustrate the execution process of OntoQL queries containing operations invocations, we explain
how the OntoQL statement of Listing 5.17 is answered.

Listing 5.17: An OntoQL with an operation invocation
SELECT name , computeAge ( b i r t h d a y )
FROM S t u d e n t

If the syntactic analysis of the query is successful, this query is translated to the SQL statement of
Listing 5.18 omitting the invocation of the computeAge operation.
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Figure 5.6: Performance evaluation of BeMoRe

Listing 5.18: The resulting SQL query
SELECT name , b i r t h d a y
FROM S t u d e n t

Then, the OntoQL layer transmits to the OntoDB layer (1) the generated native query (of List-
ing 5.18), (2) the invoked operation (computeAge) and (3) and indicates that the operation is applied
to the birthday property. Next, the OntoDB layer executes the generated SQL query and transmits to
the behavior API the result set of the SQL query and the metadata of the computeAge implementation.
Finally, the behavior API runs the external implementation of the invoked operation and returns the re-
sults to the OntoDB layer which persists the final result in the OntoDB repository. Next section presents
a preliminary performance evaluation of the BeMoRe prototype.

4 A preliminary performance evaluation

As a first step to study the scalability of our implementation we compare the execution time of the model
query of Listing 5.19 (similar results were obtained for a metamodel query).

Listing 5.19: Queries used for our experimentations
SELECT computeAge ( s )
FROM S t u d e n t AS s

We execute these queries using three types of implementations of the computeAge function: native
stored procedure (NSP), external Java program (EJP) and local web service (LWS) on three different
sizes of data (1000, 100000 and 300000 instances). These experiments were run on the OntoDB/OntoQL
PMMS based on PostgreSQL 8.2 installed on a standard Intel Core Duo E6550 2.33 Ghz 3GB of RAM
desktop machine.

The performance numbers for the query on the three data sizes and for the three implementations are
shown in Figure 5.6. All times presented (in seconds) are the average of three runs of the queries.

As expected the invocation of NSP performs a factor of 4-5 faster than EJP and largely faster than
LWS. As the EJP and LWS are called one time for each instance, the time of queries increases nearly
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linearly with the size of data. To optimize this process, this result suggests to design a Java method or a
Web services that takes as input a set of data instead of an individual data. A more complete study of the
problem of query optimization for PMMSs is part of our future work.

5 Conclusion

In this chapter we have presented our modification of the syntactic part of the OntoQL language in order
to support behavioral semantics. Our extension concerns both the metamodel and the model parts of the
OntoQL language in order to support model management and data management operations. Multiple
implementations can be called in the same statement using the USING IMPLEMENTATION clause. More-
over, as OntoQL can be used to query both the metamodel and model levels, operations at both levels can
be combined in a query. Furthermore, we have exposed the technical aspects of the BeMoRe prototype,
an extension of the OntoDB/OntoQL prototype. Our prototype extends the OntoDB layer with structures
(tables) to store operations and implementations, and extends the OntoQL language with statements to
create and exploit operations for model and data management. We have also shown that this extension
modifies the architecture of the OntoDB/OntoQL prototype since the architecture of BeMoRe includes
an API, called behavior API, that makes the bridge between the OntoDB/OntoQL environment and the
external environment. This API makes data types correspondences between the two environments and
runs external programs and remote services. Moreover, we have presented our extension of the OntoQL
query language with the capability to invoke operations in OntoQL queries. This extension modifies the
execution process of the OntoQL statement. The contribution presented in this part of our thesis has been
validated in [Bazhar et al., 2013a].

The next part of this thesis presents use cases of our approach which consists in extending PMMSs
with behavioral semantics. These use cases concern the usage of our proposition to compute derived
ontologies concepts and its usage to enhance a methodology to design databases storing ontologies and
data. Finally, the last use case addresses model transformation and model analysis using the proposition
we have made in this thesis.
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Abstract. In the previous part of this thesis, we have presented the different concepts of
our proposition to extend PMMSs with behavioral semantics. To show the usefulness of
this proposition, we apply our approach to a first case study related to Ontology-Based
DataBases (OBDBs) which are specific PMMSs dedicated to store and manipulate on-
tologies (conceptual models shared over large communities) together with the data they
describe. If existing OBDBs support canonical (primitive) concepts, they do not address
sufficiently non canonical concepts (derived or defined concepts). Indeed, existing OBDBs
provide specific and hard-coded mechanisms to compute these non canonical concepts. In
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this chapter we show how our approach is used to support non canonical concepts in OB-
DBs in a dynamic and flexible way. As a running example, we consider the support of non
canonical constructors of the Ontology Web Language (OWL) in the OntoDB platform.
This application has been validated in [Bazhar et al., 2012a].
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1 Introduction

Since its introduction, the notion of ontology has been widely used and has regained a lot of interests with
the recent development of the Semantic Web. Indeed, ontologies are defined in a lot of domains such as
engineering, medicine, biology or chemistry and are set up for a wide range of applications like natural
language processing, information retrieval, electronic commerce, software component specification or
information systems integration.

The intensive use of ontologies in a large number of domains leads to two main difficulties. (1) The
amount of data described by ontologies can be huge, especially in domains like e-commerce, engineering
or Semantic Web. (2) Diverse ontology formalisms (ontology models) exist to define different types of
ontologies. For example, a lot of ontologies in engineering are defined with the PLIB (Parts LIBrary)
ontology language [Pierra, 2007], [Pierra and Sardet, 2010] whereas most ontologies in the Semantic
Web are defined with languages such as RDF Schema (or RDFS) [Brickley and Guha, 2004] or OWL
(Ontology Web Language) [Dean and Schreiber, 2004]. The first difficulty has been overcome with the
introduction of a new type of databases, called Ontology-Based DataBases (OBDBs), that store both
data and the ontologies which define the meaning of these data. An OBDB is a specific PMMS dedicated
to store and manage ontologies and their data instances. Several OBDBs have been proposed in the
literature (e.g., Jena [Carroll et al., 2004], Sesame [Broekstra et al., 2002], Oracle [Chong et al., 2005],
RStar [Lu et al., 2007]). The second issue (the wide diversity of existing ontologies) has been overcome
thanks to metamodeling capabilities provided by some OBDBs. For example, OntoDB [Dehainsala et al.,
2007] provides the capacity to introduce and support multiple ontology formalisms, and thus the storage
and the manipulation of ontologies expressed with different formalisms.

However, OBDBs remain incomplete since they do not address sufficiently non canonical concepts
(derived concepts) i.e., concepts defined by a complete axiomatic definition expressed in terms of other
concepts [Gruber, 1995]. This kind of concepts are particularly important in the OWL ontology model.
For example, with this ontology formalism, non canonical classes can be defined as union of other classes
or as a restriction on a property value, etc. As existing OBDBs are usually defined to store ontologies
expressed with specific formalisms, they handle non canonical concepts using hard-coded mechanisms
(e.g., internal reasoners, predefined operators) which are not always suitable for computing non canonical
concepts of all types of ontologies.

Our claim is that non canonical concepts (NCCs) can be handled in a dynamic and flexible way in an
OBDB. This goes by exploiting our proposition, presented in the previous chapters, to extend PMMSs
dynamically with model management operations that can be implemented using internal mechanisms
(e.g., database procedural language, predefined operators, internal reasoners) as well as external ones
such as web services, external reasoners, external programs (e.g., Java programs), etc. The work achieved
in this chapter has been validated in [Bazhar et al., 2012a].

In this chapter, we consider the OntoDB OBDB [Dehainsala et al., 2007]. This OBDB has origi-
nally been defined for the PLIB ontology model but can support other ontology formalisms thanks to the
metamodeling capabilities it provides. However, OntoDB did not provide, before our proposition, flexi-
ble mechanisms to support the definition of non canonical concepts. Thus, we show in this chapter how
the extension made under the OntoDB/OntoQL platform can be exploited to compute derived ontologies
concepts. As a proof of concepts, we show how the non canonical constructors of the OWL language
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can be defined and implemented on OntoDB.

The remainder of this chapter is organized as follows. Section 2 introduces a background on the
notion of ontology. Section 3 presents a state of the art of OBDBs and shows their limitations regarding
the support of non canonical concepts. Section 4 presents the support of structural concepts of the
OWL formalism in the OntoDB/OntoQL platform. Section 5 exposes the support the non canonical
constructors of OWL using our approach. Finally, Section 6 concludes this chapter.

2 Background on ontologies

Ontologies are used in different domains like the Semantic Web, engineering and e-commerce, and are
set up for several types of applications like systems integration, databases, etc. Various definitions of an
ontology have been proposed in the literature but the most used one is the definition of Gruber an explicit
specification of a conceptualization [Gruber, 1993].

Different languages have been proposed to design ontologies. These languages are often devoted
to design ontologies of a specific domain. For instance, OWL (Ontology Web Language) [Dean and
Schreiber, 2004], RDF (Resource Description Framework) [Manola and Miller, 2004] and RDF Schema
[Brickley and Guha, 2004] are dedicated to design ontologies of the Semantic Web, while PLIB (Parts
LIBrary) [Guy et al., 2003] is devoted to design ontologies in engineering especially in mechanics.

2.1 Characteristics of an ontology

An ontology is characterized by the 3 following features.

• Formal: an ontology is defined using a formal language that provides the capability to express
logical axioms. This makes possible automatic processing on ontologies (e.g., reasoning, checking
the conformity of concepts).

• Consensual: an ontology is accepted by and shared over a large community in a domain.

• Referenced: each concept of an ontology has a unique identifier to identify this concept whatever
is the formalism used to design the ontology. This aspect is useful for the interoperability of the
ontology which eases tasks such as systems integration and data exchange.

2.2 Taxonomy of ontologies

Different types of ontologies exist, and 3 types are distinguished as represented in the Figure 6.1 [Jean
et al., 2006c]:

• Canonical ontologies (COs): define primitive concepts i.e., primitive classes and properties. These
primitive concepts cannot be computed nor derived from other concepts. For instance, the example
of Figure 6.1 defines a canonical class (Student) and a canonical property (gender) at the CO
layer.
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CO

NCO

LO

Classes expression:description logic

Properties expression:description logic
Others…

: operations computingNCO from CO: operations computingLO from CO or NCOgender (P)Student (C) MaleStudent(C) Etudiant(FR)= Student(EN)

Figure 6.1: Taxonomy of ontologies

• Non canonical ontologies (NCOs): besides of defining primitive concepts, a non canonical ontol-
ogy defines derived (non canonical) concepts i.e., elements of the ontology which are expressed
in terms of other ones (derived classes and properties). The example of Figure 6.1 defines at the
NCO layer a non canonical class (MaleStudent) which is a restriction of the Student class on
the property gender having the value Male.

• Linguistic ontologies(LOs): establish textual terms for each concept of an ontology and relation-
ships between these terms (e.g., hyponym, antonym, synonym). The LO layer of Figure 6.1 deter-
mines textual terms associated to the Student class in French and English.

Next section introduces the notion of OBDB.

3 Ontology-based databases (OBDBs)

An OBDB is a database system that stores, in the same repository, ontologies together with the data
they describe. An OBDB is equipped with an exploitation language that supports the creation and the
manipulation (read, update and delete) of ontologies and their instances. As cited in Section 1 of this
chapter, an OBDB is a specific PMMS dedicated to ontologies.

Different types of OBDBs have been proposed. We classify them into 3 types regarding their archi-
tecture and the capabilities provided for the support of non canonical concepts.

3.1 Type1 OBDBs

Type1 OBDBs (Figure 6.2) are used to store RDF data that may contain ontology descriptions together
with their instances. Main RDF OBDBs are 3Store [Harris and Gibbins, 2003], Jena [Carroll et al.,
2004], Oracle [Chong et al., 2005] or Sward [Petrini and Risch, 2007]. These OBDBs follow the simple
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Studentrdf:types1 Malegenders1 ………
rdf:propertyrdf:typegender rdf:classrdf:typeStudent objectpredicatesubject

Studentrdf:types1 Malegenders1 ………
rdf:propertyrdf:typegender rdf:classrdf:typeStudent objectpredicatesubject System catalogData

Figure 6.2: Type1 OBDB

model of RDF to store data. Indeed, a single schema composed of a unique triple table (subject,
predicate, object) is used to store both ontology descriptions and instance data. For ontology
descriptions, the three columns of this table represent respectively subject ontology element identi-
fier, predicate and object ontology element identifier. For example, the triple (Student, rdf:type,
rdf:class) states that Student is an RDF class. Concerning instances data, which are stored in the
same table, the three columns of this table represent respectively the instance identifier, the characteristic
of an instance (i.e., property or class belonging) and the value of that characteristic. For example, the
triple (s1, gender, Male) states that male is the gender of s1 (an instance of the Student class). As
RDF data may include RDFS or OWL ontology descriptions, most of these OBDBs provide a support
for the semantics of RDFS or OWL. This semantics is usually hard-coded and thus non canonical con-
cepts are supported using deductive rules [Chong et al., 2005] or external reasoners [Harris and Gibbins,
2003].

3.2 Type2 OBDBs

System catalog Data
…… …Student …nameClass …… …Student …nameClass …… Studentgender itsClassnameProperty…… Studentgender itsClassnameProperty …Males1 ……… …genderoid Student …Males1 ……… …genderoid StudentOntologies

Figure 6.3: Type2 OBDB

Type2 OBDBs (Figure 6.3) store separately ontology descriptions and instance data in two differ-
ent schemes. Type2 OBDBs are PMMSs where the metamodel layer is hard-coded i.e., they support
a fixed modeling formalisms. Main examples of type2 OBDBs are RDF Suite[Alexaki et al., 2001],
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Sesame [Broekstra et al., 2002], RStar [Lu et al., 2007], DLDB [Pan and Heflin, 2003] or OntoMS [Park
et al., 2007]. The schema for ontology descriptions depends upon the ontology model used to represent
ontologies (e.g., RDFS, OWL, PLIB). It is composed of tables used to store each ontology modeling
primitive such as classes, properties and subsumption (inheritance) relationships. Concerning instance
data, different schemes have been proposed that have different scalability characteristics. These OBDBs
support mainly the usual subsumption semantics as specified in the RDFS semantics [Hayes, 2004] (i.e.,
subClassOf and instanceOf relationships).

To compute non canonical concepts, type2 OBDBs use different mechanisms like views [Pan and
Heflin, 2003], labeling schemes [Park et al., 2007] or the subtable relationships issued from object-
relational databases [Alexaki et al., 2001, Broekstra et al., 2002]. Some OBDBs address more complex
reasoning using logic-based engines (e.g., Datalog engine) of deductive databases or OWL reasoners
[Mei et al., 2006, Volz et al., 2005, Borgida and Brachman, 1993, Pan and Heflin, 2003].

3.3 Type3 OBDBs

System catalog

Data
……

…Student …nameClass
……

…Student …nameClass
……

Studentgender itsClassnameProperty
……

Studentgender itsClassnameProperty
…Males1 …genderoid Student
…Males1 …genderoid StudentOntologies……

…Property …Class …nameEntity
……

…Property …Class …nameEntity
………

…PropertyitsClass …Propertyname …Classname …itsEntityname Attribute
………

…PropertyitsClass …Propertyname …Classname …itsEntityname AttributeMeta-schema

Figure 6.4: Type3 OBDB

Type3 OBDBs are PMMSs supporting an extensible metamodel layer so that we can define multiple
modeling formalisms. The main example of Type3 OBDBs is OntoDB [Dehainsala et al., 2007]. This
OBDB (Figure 6.4) proposes to add another schema to type2 OBDBs. This schema called meta-schema
records metamodels of the supported ontology formalisms. For the ontology schema, the role played by
the meta-schema is similar to the one played by the system catalog in traditional databases.

Before our extension of OntoDB, this OBDB used views and the associated database procedural
language (PL/pgSQL) to compute non canonical concepts.
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3.4 Synthesis

As we have seen in this section, studies on OBDBs have been mainly focused on the scalability of these
new types of databases. Different types of representation of data have been proposed. Considering
support of ontology, each OBDB supports the semantics of a given ontology model using hard-coded
techniques either by using database mechanisms (e.g, views or relational-object operators) or by relying
on an external logical engine. The aim of our work is to show the interest of our proposition by providing
a more flexible approach that can be followed to support the semantics of several ontology models in
different ways (e.g., with an internal procedure in the database system, with a call to an external reasoner
or with the invocation of a web service).

As stated previously, OntoDB provides an interesting part, the meta-schema part, to support the
evolution of the used ontology models. Thus, we suggest to exploit this schema for encoding the OWL
formalism in OntoDB as it is presented in the next section.

4 Encoding the structural semantics of the OWL language

As we have previously outlined, we have chosen, as a running example, to show how OWL can be
supported by the OntoDB/OntoQL system. In particular, we would like to show how this system can
manage the behavior of non canonical concepts using our approach. This section shows how the OWL
canonical (primitive) concepts of the OWL metamodel can be represented with OntoDB/OntoQL. For
the sake of clarity, we take a simplified OWL metamodel which is presented in the figure 6.5.

EnumeratedClass
OWLRestriction

IntersectionClass

SomeValuesFromRestriction

OWLPropertyuri : STRING OWLClassuri : STRINGonProperty domain unionOf
intersectionOf

superClassessubClasses
UnionClass ComplementClass

HasValueRestriction AllValuesFromRestrictionCardinalityRestriction MinCardinalityRestrictionMaxCardinalityRestriction

complementOf** * *
* ***1

*

* *
EnumeratedClass

OWLRestriction
IntersectionClass

SomeValuesFromRestriction

OWLPropertyuri : STRINGOWLPropertyuri : STRING OWLClassuri : STRINGOWLClassuri : STRINGonProperty domain unionOf
intersectionOf

superClassessubClasses
UnionClass ComplementClass

HasValueRestriction AllValuesFromRestrictionCardinalityRestriction MinCardinalityRestrictionMaxCardinalityRestriction

complementOf** * *
* ***1

*

* *

Figure 6.5: A simplified OWL metamodel

This metamodel contains two canonical concepts: OWLClass and OWLProperty. These concepts are
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primitive and cannot be derived from other concepts. Conversely, all the other concepts of this metamodel
are non canonical. Indeed, they are derived concepts and have to be computed from other concepts. For
instance, the result of an OWL union of classes is an OWL class made from the union of a set of OWL
classes. Thus, UnionClass for instance is a non canonical concept. We use the proposition made in this
thesis in order to compute these ontologies non canonical concepts.

The OntoQL language allows a user to create ontology models, ontologies and their instances, and
to store the whole data related to these three levels in the corresponding parts of OntoDB. At this level,
we are able to encode the statements that support the description of structural and descriptive semantics
of the OWL metamodel. Listing 6.1 presents the statements for creating and storing the OWLClass and
OWLProperty concepts.

Listing 6.1: Statements for creating the OWL metamodel
CREATE ENTITY #OWLClass (

# u r i STRING ,
# s u p e r C l a s s e s REF (# OWLClass ) ARRAY,
# s u b C l a s s e s REF (# OWLClass ) ARRAY) ;

CREATE ENTITY #OWLProperty (
# u r i STRING ,
# domain REF (# OWLClass ) ARRAY) ;

These statements create structures (tables) to store OWL classes and properties in OntoDB. Indeed,
the OWLClass entity defines the concept of OWL class. It is described by an uri, a set of superclasses
(superClasses) and a set of subclasses (subClasses). The OWLProperty defines the concept of OWL
property that is characterized by an uri and has a domain (the classes which the property belongs to).

Now, let us consider the following example: a class SchoolMember could be defined from the
union of Professor and Student classes. One possible semantics of the union of classes induces
that the SchoolMember class becomes a super class of Professor and Student classes and con-
versely, Professor and Student become subclasses of SchoolMember. Besides, instances of the
SchoolMember resulting class are obtained by computing the union of instances of Professor and
Student. Here appears the need of an operator for computing the SchoolMember class. Next section
exposes the support of non canonical concepts in OntoDB using our proposition.

5 Encoding operations for computing OWL non canonical concepts

Using the approach presented in Part II, we can define operations to compute the different OWL non
canonical concepts. To illustrate our approach, we present the implementation of three chosen OWL
non canonical constructors (UnionClass, IntersectionClass and HasValueRestriction) as the
implementation of the other non canonical constructors is similar to the ones we present in this section.

5.1 Union of classes

UnionClass is an OWL class obtained from the union of a set of OWL classes. For instance, let us we
consider that a class C1 is the union of two classes C2 and C3 (C1 = C2 U C3). In the chosen semantics,
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C2 C3

C1

C2 C3

C1

Figure 6.6: The OWL union class structure

the consequence of this union is that C1 becomes a super class of C2 and C3: SubClasses(C1) = {C2,
C3} (Figure 6.6). Moreover, individuals (instances) of C1 are the union of the individuals of C2 and C3
(Individuals(C1) = Individuals(C2) U Individuals (C3)). Computing the OWL union of classes can be
achieved using a semantic reasoner (e.g., Jena [Carroll et al., 2004]) or a program.

Listing 6.2 presents the OntoQL statement which creates the UnionClass concept.

Listing 6.2: Statement for creating the structure of the UnionClass structure
CREATE ENTITY # UnionClas s
UNDER #OWLClass

(# unionOf REF (# OWLClass ) ARRAY) ;

This OntoQL statement defines the structure of this concept (i.e., an UnionClass has the same
attributes of OWLClass and is defined by a set of classes).

In order to show the complete process of defining an union of classes, we create 2 OWL classes
(Professor and Student). Listing 6.3 presents OntoQL statements creating these 2 classes.

Listing 6.3: Statements for defining OWL classes
CREATE #OWLClass P r o f e s s o r
PROPERTIES (
u r i = ’ h t t p : / / www. l i s i . ensma . f r / o w l o n t o l o g y 1 # p r o f e s s o r ’ ) ;

CREATE #OWLClass S t u d e n t
PROPERTIES (
u r i = ’ h t t p : / / www. l i s i . ensma . f r / o w l o n t o l o g y 1 # s t u d e n t ’ ) ;

Before processing the union of the Professor and Student classes, we need to define an operation
for that purpose (Listing 6.4).

Listing 6.4: Statement for creating the unionOf operator
CREATE OPERATION # unionOf
INPUT (REF (# OWLClass ) ARRAY)
OUTPUT (REF (# OWLClass ) ) ;

CREATE IMPLEMENTATION # unionOfImp
DESCRIPTORS (
t y p e = ’ Java ’ ,
c l a s s = ’ f r . ensma . l i s i . owlncconcep t s ’ ,
method = ’ owlUnionOfClasses ’ ,
p a t h = ’D : \ \ o w l n c o p e r a t o r s . j a r ’ )
IMPLEMENTS # unionOf ;

The first statement defines an operation unionOf that takes an array of OWLClass as input and
returns an OWLClass. Furthermore, we have set up an implementation (unionOfImp) of the defined
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operation. This implementation gives the metadata of a Java program allowing to process the union of
classes. These metadata are necessary for the remote invocation of the Java program. The pseudo code
of this program is given in Listing 6.5.

Listing 6.5: Extract of the pseudocode of the OWL union of classes operator
OWLClass owlUnionOfClasses ( OWLClass [ ] C) {

OWLClass c l = new UnionClas s (C ) ;
re turn c l ;

}

UnionClas s ( OWLClass [ ] C) {
unionOf = C ;
u p d a t e O n t o l o g y S t r u c t u r e (C ) ;
c o m p u t e U n i o n I n d i v i d u a l s (C ) ;

}

void u p d a t e O n t o l o g y S t r u c t u r e ( ) {

/ / u p d a t e o n t o l o g y s t r u c t u r e : c l a s s e s o f C as s u p e r C l a s s e s o f c l
f o r Ci in C {

e x e c u t e Q u e r y ( " SELECT # s u p e r C l a s s e s FROM #OWLClass WHERE #name= ’" + c l . getName ( ) + " ’ " ) ;
r e s u l t S e t . n e x t ( ) ;
S t r i n g s u p e r C l a s s e s = r e s u l t S e t . g e t S t r i n g ( 1 ) . r e p l a c e ( " { " , " " ) . r e p l a c e ( " } " , " " ) ;
e x e c u t e U p d a t e ( "UPDATE #OWLClass SET # s u p e r C l a s s e s =ARRAY[ " +

s u p e r C l a s s e s . c o n c a t ( " , " ) . c o n c a t ( c l . g e t O id ( ) ) +

" ] WHERE #name= ’" + Ci . getName ( ) + " ’ " ) ;
}

}

void c o m p u t e U n i o n I n d i v i d u a l s ( OWLClass [ ] C) {
f o r Ci in C {

c l . a d d I n d i v i d u a l s ( Ci . g e t I n d i v i d u a l s ( ) ) ;
}

}

Meaning. This program computes the OWL union of classes. Indeed, the updateOntologyStructure
procedure organizes the classes in a hierarchy respecting the defined semantics of the union of
classes. Besides, the computeUnionIndividuals procedure processes instances of the resulting
class from the union operation.

Once the unionOf operation is defined and at least one associated implementation is set up, we can
invoke this operation in OntoQL statements. Thus, the OntoQL statement for creating the SchoolMember
class from the union of Student and Professor is presented in Listing 6.6.

Listing 6.6: Statement for creating a non canonical concept using a defined operator
CREATE # UnionClas s SchoolMember
PROPERTIES (
u r i = ’ h t t p : / / www. l i s i . ensma . f r / o w l o n t o l o g y 1 # schoolmember ’ )
AS # unionOf ( P r o f e s s o r , S t u d e n t ) ;

Notice that the way the operation is implemented is completely hidden to the OntoQL user.

The consequence of the execution of the previous statement is the modification of the structure of the
ontology. Indeed, SchoolMember becomes a super class of Professor and Student, and conversely
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Professor and Student classes become subclasses of SchoolMember. Moreover, the OWL unionOf
operator defines SchoolMember individuals as the union of Professor and Student individuals.

Next subsection exposes the definition of the intersection of classes operator.

5.2 Intersection of classes

C2C3

C1

C2C3

C1

Figure 6.7: The OWL intersection class structure

IntersectionClass represents an OWL class that is obtained from the intersection of a set of OWL
classes. The resulting class becomes a subclass of all the classes taking part of the intersection. Figure 6.7
illustrates the IntersectionClass concept with an example of a class C1 that is an intersection of C2
and C3 classes. Notice that in the chosen semantics, C1 is a subclass of C2 and C3 (SuperClasses(C1) =
{C2, C3}). Therefore, C1 inherits the C2 and C3 properties.

Listing 6.7 presents the OntoQL statement which creates the IntersectionClass concept.

Listing 6.7: OntoQL statement for defining the structure of the IntersectionClass concept
CREATE ENTITY # I n t e r s e c t i o n C l a s s
UNDER #OWLClass

(# i n t e r s e c t i o n O f REF (# OWLClass ) ARRAY) ;

To be able to achieve intersection of classes, we need to define an operation for that purpose (List-
ing 6.8).

Listing 6.8: Statement for creating the unionOf operator
CREATE OPERATION # i n t e r s e c t i o n O f
INPUT (REF (# OWLClass ) ARRAY)
OUTPUT (REF (# OWLClass ) ) ;

CREATE IMPLEMENTATION # i n t e r s e c t i o n O f I m p
DESCRIPTORS (
t y p e = ’ Java ’ ,
c l a s s = ’ f r . ensma . l i s i . owlncconcep t s ’ ,
method = ’ o w l I n t e r s e c t i o n O f C l a s s e s ’ ,
p a t h = ’D : \ \ o w l n c o p e r a t o r s . j a r ’ )
IMPLEMENTS # i n t e r s e c t i o n O f ;

The first statement defines an operation intersectionOf that takes an array of OWLClass as input
and returns an OWLClass. The second statement defines an implementation (intersectionOfImp) of
the defined operation. Listing 6.9 presents a part of the pseudo-code of the intersection operator.

Listing 6.9: Extract of the pseudocode of the OWL intersection of classes operator
OWLClass o w l I n t e r s e c t i o n O f C l a s s e s ( OWLClass [ ] C) {

OWLClass c l = new I n t e r s e c t i o n C l a s s (C ) ;
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re turn c l ;
}

I n t e r s e c t i o n C l a s s ( OWLClass [ ] C) {
i n t e r s e c t i o n O f = C ;
u p d a t e O n t o l o g y S t r u c t u r e (C ) ;
c o m p u t e I n t e r s c t i o n I n d i v i d u a l s (C ) ;

}

void u p d a t e O n t o l o g y S t r u c t u r e ( ) {

/ / u p d a t e o n t o l o g y s t r u c t u r e : c l a s s e s o f C as s u b C l a s s e s o f c l
f o r Ci in C {

e x e c u t e Q u e r y ( " SELECT # s u b C l a s s e s FROM #OWLClass WHERE #name= ’" + c l . getName ( ) + " ’ " ) ;
r e s u l t S e t . n e x t ( ) ;
S t r i n g s u b C l a s s e s = r e s u l t S e t . g e t S t r i n g ( 1 ) . r e p l a c e ( " { " , " " ) . r e p l a c e ( " } " , " " ) ;
e x e c u t e U p d a t e ( "UPDATE #OWLClass SET # s u b C l a s s e s=ARRAY[ " +

s u b C l a s s e s . c o n c a t ( " , " ) . c o n c a t ( c l . g e t O id ( ) ) +

" ] WHERE #name= ’" + Ci . getName ( ) + " ’ " ) ;
}

}

If we consider that the class StudentEmployee is an intersection class of Student and Employee
classes, the OntoQL statement executing the intersection is given in Listing 6.10.

Listing 6.10: Statement for computing an intersection class
CREATE # I n t e r s e c t i o n C l a s s S tuden tEmployee
PROPERTIES (
u r i = ’ h t t p : / / www. l i s i . ensma . f r / o w l o n t o l o g y 1 # s t u d e n t e m p l o y e e ’ )
AS # i n t e r s e c t i o n O f ( S t u d e n t , Employee ) ;

The execution of the previous statement modifies the structure of the ontology. Indeed, Student-
Employee becomes a subclass of Employee and Student, and conversely Employee and Student
classes become super classes of StudentEmployee. Individuals of StudentEmployee are instances
that are at the same time individuals of Employee and Student classes.

Next subsection exposes the definition of the has value restriction operator.

5.3 Has value restriction

C2

C1

C2

C1

Figure 6.8: The OWL HasValueRestriction class structure

HasValueRestriction corresponds to an OWL class obtained by restricting an OWL class to a
value of one of its properties. In the chosen semantics, the resulting class becomes a subclass of the
class for which we apply the restriction. For instance, if C1 is a restriction of C2 on a property p, then
C1 becomes a subclass of C2: SuperClass(C1) = C2 (Figure 6.8), and instances of C1 are those of C2
having a fixed value for the property on which the restriction is applied.
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Listing 6.11 presents the OntoQL statement which creates the HasValueRestriction concept.

Listing 6.11: Statement for defining the structure of the HasValueRestriction concept
CREATE ENTITY # H a s V a l u e R e s t r i c t i o n
UNDER #OWLClass

(# o n P r o p e r t y REF (# OWLProperty ) ) ;

To be able to process a has value restriction, we need to define an operation for that purpose (List-
ing 6.12).

Listing 6.12: Statement for creating the unionOf operator
CREATE OPERATION # h a s V a l u e R e s t r i c t i o n O p
INPUT (REF (# OWLClass ) ,

REF (# OWLProperty ) ,
STRING v a l u e )

OUTPUT (REF (# OWLClass ) ) ;

CREATE IMPLEMENTATION # h a s V a l u e R e s t r i c t i o n O p I m p
DESCRIPTORS (
t y p e = ’ Java ’ ,
c l a s s = ’ f r . ensma . l i s i . owlncconcep t s ’ ,
method = ’ o w l h a s V a l u e R e s t r i c t i o n ’ ,
p a t h = ’D : \ \ o w l n c o p e r a t o r s . j a r ’ )
IMPLEMENTS # h a s V a l u e R e s t r i c t i o n O p ;

The pseudo-code of the has value restriction operation is given in Listing 6.13.

Listing 6.13: Extract of the pseudocode of the OWL has value restriction operator
OWLClass o w l H a s V a l u e R e s t r i c t i o n ( OWLClass C , OWLProperty P , S t r i n g V) {

OWLClass c l = new H a s V a l u e R e s t r i c t i o n (C , P , V ) ;
re turn c l ;

}

H a s V a l u e R e s t r i c t i o n ( OWLClass C , OWLProperty P , S t r i n g V) {
c l a s s = C ;
p r o p e r t y = P ;
v a l u e = V;
u p d a t e O n t o l o g y S t r u c t u r e (C ) ;
c o m p u t e I n t e r s c t i o n I n d i v i d u a l s (C , P , V ) ;

}

void u p d a t e O n t o l o g y S t r u c t u r e ( ) {

/ / u p d a t e o n t o l o g y s t r u c t u r e : C as s u p e r C l a s s e s o f c l

e x e c u t e Q u e r y ( " SELECT # s u p e r C l a s s e s FROM #OWLClass WHERE #name= ’" + c l . getName ( ) + " ’ " ) ;
r e s u l t S e t . n e x t ( ) ;
S t r i n g s u p e r C l a s s e s = r e s u l t S e t . g e t S t r i n g ( 1 ) . r e p l a c e ( " { " , " " ) . r e p l a c e ( " } " , " " ) ;
e x e c u t e U p d a t e ( "UPDATE #OWLClass SET # s u p e r C l a s s e s =ARRAY[ " +

s u p e r C l a s s e s . c o n c a t ( " , " ) . c o n c a t ( c l . g e tO id ( ) ) +

" ] WHERE #name= ’" + Ci . getName ( ) + " ’ " ) ;
}

void c o m p u t e H a s V a l u e R e s t r i c t i o n I n d i v i d u a l s ( OWLClass C , OWLProperty P , S t r i n g V) {

f o r i n d i v in (C . g e t I n d i v i d u a l s ( ) ) {
i f ( i n d i v . P == v a l u e ) {

c l . a d d I n d i v i d u a l s ( i n d i v ) ;
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}
}

}
}

Let us consider that the MaleStudent class as a has value restriction of Student on the property
gender having the value ’Male’. The OntoQL statement which creates the MaleStudent class is given
in Listing 6.14.

Listing 6.14: Statement for computing a has value restriction class
CREATE # H a s V a l u e R e s t r i c t i o n MaleS tuden t
PROPERTIES (
u r i = ’ h t t p : / / www. l i s i . ensma . f r / o w l o n t o l o g y 1 # m a l e s t u d e n t ’ )
AS # h a s V a l u e R e s t r i c t i o n O p ( S t u d e n t , gender , ’ Male ’ ) ;

The result of the execution of the previous statement modifies the structure of the ontology such
that MaleStudent becomes a subclass of Student, and conversely Student becomes a super class
of MaleStudent. Furthermore, individuals of MaleStudent are instances of Student having ’Male’
value for the gender property.

6 Conclusion

In this chapter, we have presented a use case to show the interest of our approach which consists in
extending PMMSs with behavioral semantics. This case study concerns the support of ontologies non
canonical (derived) concepts in OBDBs which are specific PMMSs devoted to store and manipulate on-
tologies together with their instance data. In this work, we have shown that our proposition introduces
dynamically operations that compute the derived concepts in the OBDB. These operations can be imple-
mented differently e.g., with external reasoners, external programs, web services. This possibility can be
useful as these implementations are adapted to specific settings (e.g., reasoners for small ontologies, or
web services for distributed settings). The work presented in this chapter has been validated in [Bazhar
et al., 2012a].

In the next chapter we go further this use case by showing how the approach of our thesis and the
work accomplished in this chapter can be used to improve the design and the building of OBDBs.
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Abstract. As shown in the previous chapter, OBDBs can benefit from our approach to
support non canonical concepts. These concepts are particularly important when designing
OBDBs. Indeed, they have to be carefully managed in order to obtain a database in 3NF.
Currently, most OBDB design methodologies process non canonical concepts with ad hoc
programs which do not take into account the modifications that can be made in the ontology
once the OBDB has been designed. Thus, in this chapter, we go further in our use case on
OBDBs by showing how our proposition and the work accomplished in the previous chapter
can be used to enhance an OBDB design methodology. This application has been validated
in [Bazhar et al., 2012b].
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1 Introduction

In the previous chapter, we have presented a use case of our proposition for the support of non canonical
(derived) concepts in OBDBs. Indeed, we have shown that operations of PMMSs can be used to compute
these non canonical concepts in OBDBs. In this chapter, we go further in this use case. We focus on the
design of OBDBs, and particularly handling non canonical concepts in the OBDB design process.

Since an OBDB is a database, it shall be built following the classical steps of building traditional
databases i.e., the conceptual, then the logical and finally the physical design. However, two main dif-
ferences exist between the design of a traditional database and the design of an OBDB. Indeed, (1) a
specific part of or the complete ontology plays the role of the conceptual model for designing the OBDB,
and (2) both data and the ontology that describes the semantics of these data are stored in the OBDB.

Knowing that ontologies may be composed of canonical (primitive) and non canonical concepts,
these non canonical concepts need to be identified. Indeed, some existing OBDB design approaches
(e.g., [Chakroun et al., 2011]) use generally reasoners to compute the derived classes and properties be-
fore building the OBDB. But, when the original ontology is updated (e.g., a new derived class added),
the existing OBDBs do not provide any mechanism to update the new structure of the ontology. Con-
sequently, the OBDB design process has to be completely replayed taking into account the ontology
updates.

Even if updates occur on an ontology, the OBDB shall offer flexible mechanisms to update the struc-
ture of the ontology while keeping the database in 3NF. In this chapter, we show that the support of
operations in OBDBs (as OBDBs are specific PMMSs) can be useful to offer a flexible solution to com-
pute non canonical concepts both in the design process and also if updates occur on ontologies. The
work achieved in this chapter has been validated in [Bazhar et al., 2012b].

The remainder of this chapter is organized as follows. Section 2 presents the OBDB design method-
ology considered to support non canonical concepts using ad hoc mechanisms. Then, Section 3 shows
an application of our approach to improve this OBDB design methodology. Finally, Section 4 concludes
this chapter.

2 The considered OBDB design methodology

Since an OBDB is a database, it should be designed according to the classical design process dedicated
to the development of databases identified in the ANSI/X3/SPARC architecture [ans, 1975]. However,
when exploring the database literature, most of the research efforts were concentrated on the physical de-
sign phase, where various storage models for ontological data were given. Rdfsuite [Alexaki et al., 2001],
Jena [Carroll et al., 2004], OntoDB [Dehainsala et al., 2007], Sesame [Broekstra et al., 2002], Owlgres
[Stocker and Smith, 2008], SOR [Lu et al., 2007], Oracle [Das et al., 2004], etc. are examples of these
systems. As OBDBs are more and more used, the proposition of a concrete design methodology, as in
traditional databases, becomes a crucial issue. This development needs to follow the main steps of tradi-
tional database design approaches: conceptual, logic and physical designs. Chakroun and al. [Chakroun
et al., 2011] proposed a five steps methodology for designing OBDBs. It starts from a conceptual model
to provide logic and physical models following a five steps method. In this work, two types of onto-
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logical classes are identified: (1) canonical (primitive) and (2) non canonical (derived) classes. For the
first type of classes, Chakroun and al. proposed a complete mechanism to manage canonical concepts
structure and instances. Conversly, for non canonical concepts, Chakroun and al. proposed only the
placement of classes in a subsumption hierarchy and the representation of non canonical instances using
views. This placement is done after an inference step on the ontology achieved by a semantic reasoner.
This proposition misses an OBDB-integrated mechanism for representing non canonical classes struc-
ture and instances views. Thus, we propose in this chapter, to extend OBDBs design methodology with
a generic support of non canonical concepts based on our proposition that could be used to complete this
methodology.

In this section, we introduce essential concepts to facilitate the understanding of the enhanced OBDB
design methodology. Then, we describe the proposed methodology with its limitations. Finally, we show
the interest of the OBDB extension we have achieved through a scenario.

2.1 Ontology dependencies

Functional dependencies play a key role in traditional database design. Since ontologies include classes
and properties, two categories of dependencies are identified: (1) Class dependencies and (2) Property
dependencies [Chakroun et al., 2011].

2.1.1 Class dependencies

Two types of class dependencies are distinguished.

• Instance Driven Class Dependencies (IDCDs): a functional dependency among two concepts C1

and C2 (C1 Ñ C2) exists if each instance of C1 determines one and only one instance of C2.
[Romero et al., 2009] proposed an algorithm to discover IDCDs among concepts of an ontology
by exploiting the inference capabilities of DL-Lite. For instance, if we consider a functional role
mastersDegreeFrom with the Person and University classes as domain and range respectively,
the functional dependency (FD) Person Ñ University is defined. It means that the knowledge of
a person with a valued property masterDegreeFrom determines a knowledge of one instance of
University class.

• Static Dependencies (SDs): In SD, FD are defined between classes based on their definitions. A SD
between two concepts Ci and C j (Ci ÞÝÑ C j) exists if C j can be derived from Ci. This definition
can be based on a set of OWL [Dean and Schreiber, 2004] constructors (e.g., owl:unionOf,
owl:intersectionOf, owl:hasValue). For example, if we consider a level property having as
domain the S tudent class, a class MasterStudent may be defined as a restriction on the S tudent
class having the value master for the level property. Therefore, the dependency S tudent ÞÝÑ
MasterS tudent is obtained. It means that the knowledge of the whole instances of the S tudent
class determines the knowledge of the whole instances of the MasterS tudent class.

108



2. The considered OBDB design methodology

2.1.2 Property dependencies

As in traditional databases, functional dependencies between properties have been identified in the on-
tology context [Bellatreche et al., 2011, Calbimonte et al., 2009]. In [Calbimonte et al., 2009], authors
proposed a formal framework for handling FD constructors for any type of OWL ontology. In [Bella-
treche et al., 2011], the existence of FDs involving simple properties of each ontology class is assumed.
For instance, if we consider the properties idPro f and name having as domain the Pro f essor class and
describing respectively the professor identifier and name, the FD idPro f Ñ name may be defined. It
means that the knowledge of the value of the professor identifier idPro f determines the knowledge of a
single value of name.

2.2 Description of the design methodology

Generation of Normalized

Logical Model

Placement of 

NCC

OBDBOBDB

CC NCC

Deployment

Domain Ontology

Local Ontology

Conceptual Model

Logical Model

Step 2

Step 4 Step 3

Physical Model

Local ontology analysis

Step 1

Step 5

Figure 7.1: OBDB design approach

In [Chakroun et al., 2011], Chakroun and al. proposed a methodology which enriches the tradi-
tional database design process. It starts from a conceptual model to provide logical and physical models
following a five steps method as described in Figure 7.1.

• step1: the designer extracts a fragment of a domain ontology O (assumed available) (called Local
Ontology(LO)) according to his/her requirements. The LO plays the role of the conceptual model
(CM).
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input : O: a domain ontology ;
output: normalized OBDB

Extract the local ontology LO;
Analyse the LO and identify CCLO and NCCLO;
Place the NCCLO in the appropriate subsumption hierarchy using an external reasoner;
foreach CCLO

i P CCLO do
Generate the normalized tables (3NF);
Generate a relational view defined on these tables;

end
foreach NCCLO

i P NCCLO do
Generate a class view (a DL expression) on its related canonical class(es) ;

end
Choose any existing database architecture;
Deploy ontological data;

Algorithm 1: OBDB design algorithm

• step2: the resulting local ontology is then analyzed automatically to identify canonical (CCLO) and
non canonical classes (NCCLO) by exploiting class dependencies. Based on the obtained CCLO

and NCCLO, two further steps are defined in parallel (steps 3 and 4).

• step3: concerns the placement of the NCCLO in the OBDB taking into account the subsumption
hierarchy of classes. The complete subsumption relationship for the ontology classes is produced
by a reasoner such as Racer5, Pellet [Sirin and Parsia, 2004], etc.

• step4: addresses the generation of the normalized logical model for each ontological class where:
(i) a set of normalized tables (3NF) are generated for each CCi; (ii) a relational view is associated
to each CCi PCCLO and (iii) a class view (a DL expression) on the canonical class(es) is associated
to each NCCi P NCCLO.

• step5: once the normalized logical model is obtained and NCCLO are placed in the subsumption
relationship, the database administrator may choose an existing database architecture offering the
storage of ontology and ontological data (Step5) for making persistent data describing metamodel,
model and instances.

Algorithm 1 summarizes these steps. The following observations on this approach can be made:

• the designer needs to be familiar with the use of reasoners in order to establish the complete
subsumption relationships between ontological classes;

• once the class hierarchy is persisted in the target database, no updates to the original ontology can
be made;

• no detail has been given for class views computation.

Thus the defined approach has been hard-coded in the OBDB management system. In next section,
we show how our proposition to define behavioral semantics of models elements can be used to enhance
this methodology.

5http://www.racer-systems.com/
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3 Enhancing the OBDB design methodology

In this section, we show how the proposed methodology to design OBDBs taking into account (1) the
different phases of classical design approach and (2) offering the definition of the behavioral semantics
of model elements, can be handled by the approach defined in Chapter 6. We focus only on classes
and properties dependencies and how these concepts can be enriched using operations. Note that the
OntoDB/OntoQL PMMS is used as storage model architecture for the physical design phase.
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Figure 7.2: Our initial OBDB design methodology

Basically, the OBDB design methodology uses reasoners on ontologies to infer the non canonical
concepts instances before building the logical model (Figure 7.2).
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Figure 7.3: OBDB design methodology supporting non canonical concepts

By exploiting the support of non canonical concepts defined in Chapter 6 in the OBDB design
methodology, we offer a dynamic and a flexible way to compute non canonical concepts (Figure 7.3).
Indeed, if the ontology is updated, we can use the defined operators to infer on the ontology and/or cal-
culate the new eventual derived concepts. This approach avoids to restart the OBDB design process in
order to rebuild the logical model.

3.1 Explicit class dependencies with operations.

To show a real use case of the proposed methodology, the extension of the initial ontology model stored
in the meta-schema part of OntoDB is required. Thus, we first enrich the meta-schema to handle (a) class
dependencies, and (b) operations expressing behavioral semantics of non canonical concepts.

In order to handle class dependencies in the OntoDB/OntoQL PMMS, we extend the meta-schema
part using statements of Listing 7.1.

Listing 7.1: Statements for creating class dependency elements
CREATE ENTITY # C L e f t P a r t (
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# i t s C l a s s e s REF (# OWLClass ) ARRAY) ;

CREATE ENTITY # C R i g h t P a r t (
# i t s C l a s s REF (# OWLClass ) ) ;

CREATE ENTITY # CDependency (
# r i g h t P a r t REF (# C R i g h t P a r t ) ,
# l e f t P a r t REF (# C L e f t P a r t ) ,
# o p e r a t o r REF (# O p e r a t i o n ) ) ;

These statements extend the meta-schema part of OntoDB with three entities in order to handle class
dependencies including the left parts, the right part and the operation used to compute the right part class.
Indeed, operations help us to define precisely the nature of the defined class dependencies and indicate
the operators used to compute the resulting class of the dependency. As example, the statement of
Listing 7.2 expresses and stores the class dependency (Pro f essor, S tudent Ñ S choolMember). It states
that Professor and Student classes determine together the SchoolMember class using the unionOf
operator.

Listing 7.2: Statement for defining a class dependency
CREATE # CDependency (

# l e f t P a r t ( P r o f e s s o r , S t u d e n t ) ,
# r i g h t P a r t ( SchoolMember ) ,
# o p e r a t o r ( unionOf ) ) ;

System catalog

DataOntologies

CDependency4

FDependency3

……

OWLProperty2 OWLClass1 nameID Entity
CDependency4

FDependency3

……

OWLProperty2 OWLClass1 nameID Entity
………

FDependencyitsLeftPart FDependencyitsRightPart11

OWLClassname10

itsEntitynameID

Attribute
………

FDependencyitsLeftPart FDependencyitsRightPart11

OWLClassname10

itsEntitynameID

Attribute

Meta-schema

OWLClassOWLClass[]unionOf outputinputname Operation OWLClassOWLClass[]unionOf outputinputname Operation unionOfunionOfImp ImplementsnameImplementationunionOfunionOfImp ImplementsnameImplementation
unionOfImpfr.ensma.lias.myClassclass unionOfImphttp://.../programs.jarlocation unionOfImpunionOfOwlClassesmethod unionOfImpjavatype implementationvaluekey Descriptors
unionOfImpfr.ensma.lias.myClassclass unionOfImphttp://.../programs.jarlocation unionOfImpunionOfOwlClassesmethod unionOfImpjavatype implementationvaluekey Descriptors

Figure 7.4: Extract of the meta-schema deployment
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This dependency will be used to derive the non canonical SchoolMember class as the union of
Professor and Student classes.

3.2 Explicit property dependencies with operations.

To support functional dependencies, the meta-schema part has to be extended with entities storing func-
tional dependencies (Listing 7.3).

Listing 7.3: Statements for creating property dependency elements
CREATE ENTITY # F L e f t P a r t (

# i t s P r o p s REF (# OWLProperty ) ARRAY) ;

CREATE ENTITY # F R i g h t P a r t (
# i t s P r o p REF (# OWLProperty ) ) ;

CREATE ENTITY # FDependency (
# r i g h t P a r t REF (# F R i g h t P a r t ) ,
# l e f t P a r t REF (# F L e f t P a r t ) ,
# o p e r a t o r REF (# O p e r a t i o n ) ,
# i t s C l a s s REF (# OWLClass ) ) ;

Similarly to class dependencies, the statements above extend the meta-schema with three entities to
handle functional dependencies between properties of a given class. A functional dependency is char-
acterized by a left part which is defined by one or many properties, a right part property, an eventual
operator to calculate the right part property if it is a derived property and the class on which the depen-
dency is defined.

The statements of Listing 7.4 create two functional dependencies. The first one expresses the depen-
dency between idProf and name properties of the Professor class, and the second one expresses the
dependency between birthday and age properties of Professor. In the second dependency, the age
property is computed using the calculateAge operator. This dependency will be used to derive a 3NF
schema of tables associated to the Professor class.

Listing 7.4: Statements for defining a property dependency
CREATE # FDependency (

# l e f t P a r t ( i d P r o f ) ,
# r i g h t P a r t ( name ) ,
# i t s C l a s s ( P r o f e s s o r ) ) ;

CREATE # FDependency (
# l e f t P a r t ( b i r t h d a y ) ,
# r i g h t P a r t ( age ) ,
# o p e r a t o r ( c a l c u l a t e A g e ) ,
# i t s C l a s s ( P r o f e s s o r ) ) ;

Figure 7.4 shows the meta-schema deployment in which the ontology model and operations are
stored, and Figure 7.5 shows the deployment of the ontology in which ontologies together with classes
and property dependencies are stored.
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OntologyOWLPropertyOID Name55 IdUniv… …OWLPropertyOID Name55 IdUniv… … Professor70
OWLClassOID Name60 SchoolMember.. ..69 Student… …Professor70
OWLClassOID Name60 SchoolMember.. ..69 Student… …CDependencyOID itsRightP itsLeftP100 67 76… … …CDependencyOID itsRightP itsLeftP100 67 76… … …

CD.RightPartOID itsClass67 60… …CD.RightPartOID itsClass67 60… …CD.LeftPartOID itsClasses76 {69, 70}… …CD.LeftPartOID itsClasses76 {69, 70}… …
Meta-baseMeta-schema

Data 

Figure 7.5: Extract of the ontology deployment

3.3 Generating the logical model of an OBDB.

Once operations are created and stored in the OBDB, and classes and property dependencies are ex-
pressed, we can generate a complete logical model of the OBDB including both a 3NF schema for each
canonical class and a class view for each non canonical class.

To compute non canonical concepts, we invoke an existing operation. For example, the SchoolMember
non canonical class is computed using the statement of Listing 7.5.

Listing 7.5: Statement for defining a non canonical concept
CREATE #OWLClass SchoolMember
AS unionOf ( P r o f e s s o r , S t u d e n t ) ;

To generate the logical model of the OBDB, we invoke an operation which executes a program
implementing the algorithm 1. The logical model of the OBDB under design could be obtained with the
statement of Listing 7.6.

Listing 7.6: Statements for building the OBDB schema
CREATE # Logica lSchema
AS a l g o r i t h m ( ) ;

With regard to the SchoolMember class, a class view is computed based on its definition (S choolMember ”
Pro f essor Y S tudent). This view is associated to the non canonical concept. Figure 7.6 shows an ex-
ample of the deployment of the generated normalized logical model of the Professor, Student and
SchoolMember classes in the OntoDB/OntoQL PMMS.

4 Conclusion

In this chapter, we have shown that our proposition to manage the behaviors of models elements can be
useful for designing OBDBs. Indeed, existing OBDB design methodologies do not handle the modifi-
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Figure 7.6: Extract of the data deployment
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cation of the original ontology. By attaching operations to functional dependencies, this problem can
be solved. Moreover, as these operations can be implemented in different manners, the enhanced design
methodology is not restricted to the usage of reasoners which do not scale for large ontologies. The work
presented in this chapter has been validated in [Bazhar et al., 2012b].

Having shown the interest of our proposition in the context of OBDB in the two last chapters, we
present another case study in the next chapter which aims at transforming models for real-time applica-
tions.
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Abstract. In the two previous chapters, we have seen the interest of our approach (pre-
sented in Part II) for specific cases of PMMSs which are ontology-based databases. To
show that our approach can be used in a wide range of contexts, we propose in this chapter
a case study concerning a model transformation and model analysis applied to real-time
model analysis. This use case has been validated in [Bazhar et al., 2013b].
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1. Introduction

1 Introduction

In the two previous chapters, we have shown the usefulness of our proposition in the context of ontology-
based databases (OBDBs) which are specific PMMSs dedicated to store and manipulate ontologies.
Indeed, we have seen that, thanks to our approach, OBDBs become able to compute non canonical
(derived) concepts using flexible mechanisms. Then, we have shown that our proposition is useful to
improve the OBDB design process by integrating the dynamic mechanisms offered by our approach. A
last use case showing the utility of our proposition is presented in this chapter.

In the context of real-time and embedded systems, different languages and formalisms are dedicated
to design models of real-time and embedded systems (e.g., MARTE [mar, 2011] and AADL [aad, 2012]).
These formalisms provide different points of view of real-time systems. For instance, AADL is dedicated
to design the architecture of embedded systems while MARTE is devoted to design the hardware and
software aspects of real-time systems and to provide capabilities for real-time analysis (particularly the
analysis of the schedulability of real-time systems). As a consequence, such formalisms propose various
methodologies and provide different constructors to design real-time systems leading to the heterogeneity
of models concerning the same system.

However, real applications use models for multiple purposes like data exchange, models and data
sharing, analysis, etc., and these tasks have to be accomplished independently of the formalisms used to
design models. For instance, the analysis of an AADL model must go through a model transformation to
MARTE since AADL does not offer analysis capabilities. Achieving such tasks requires model mappings
and/or transformations.

In this chapter, we show the usefulness of our proposition for model transformation and model analy-
sis. Indeed, we show how our approach supports the transformation of AADL models to MARTE models
in PMMSs, then we demonstrate how this approach can be used to analyze models of real-time systems
from the PMMS. This work has been validated in [Bazhar et al., 2013b].

The remainder of this chapter is organized as follows. Section 2 introduces a motivating example
that shows the difference of AADL and MARTE formalisms. Section 3 presents the persistence of
AADL and MARTE in OntoDB for the support of both modeling formalisms. Section 4 introduces
model transformation examples that show the usefulness of extending PMMSs with operations. Section 5
addresses the use of operations for model analysis. Finally, section 6 is devoted to a conclusion.

2 Motivating example

This section presents the example we use throughout this chapter. We use this example as a case study
to show the need of handling behavioral semantics in PMMSs.

2.1 A real-time system example

The aim of this example is to design an uniprocessor system with three periodic tasks (T1, T2 and T3).
Each task is characterized by a period P, a deadline D, and a worst-case execution time ET. The system
scheduling follows the EDF (Earliest Deadline First) scheduling policy. This system is defined as a set
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of tasks: S “ T1,T2,T3, where:

T1 “ă P “ 29ms,D “ 29ms, ET “ 7ms ą

T2 “ă P “ 5ms,D “ 5ms, ET “ 1ms ą

T3 “ă P “ 10ms,D “ 10ms, ET “ 2ms ą

This kind of systems can be designed using languages dedicated to design real-time and embedded
systems like AADL [aad, 2012] or MARTE [mar, 2011]. We represent the system described above using
both languages in order to show the difference of representing the same system using different languages.
Before this, next sections expose briefly the AADL and MARTE languages.

2.2 The AADL language

AADL (Architecture Analysis and Design Language) is an architecture description language. The archi-
tecture description through AADL consists in describing components and their hierarchical composition.
Indeed, three categories of components exist: software, hardware and system components. Moreover,
AADL provides three equivalent modeling supports: the textual format, the graphical notation, and the
XML format that eases processing AADL models with external tools.

Figure 8.1: Part of the architecture of an application designed with AADL

In our example, we only use a subset of AADL elements. Figure 8.1 represents these AADL ele-
ments and their interactions. A system in AADL is defined a set of processes and a set of processors.
Each process may contain multiple threads. Each element (in Figure 8.1) is itself represented by a clas-
sifier, an element type and its implementations. For instance, the Thread element is represented by
ThreadClassifier, ThreadType and ThreadImpl (Figure 8.1), and only implementations can have
subcomponents.

We use the textual format of AADL to design our system S using OSATE editor6. Figure 8.3 shows
the representation of our system using the textual format of AADL. The system implementation is called
embSys.Impl (system component) and contains two subcomponents. The first one is the cpu processor
(hardware component) which is an instance of the cpu_embSys.Impl processor implementation. The
second subcomponent is the proc process (software component) which is allocated to the cpu proces-

6http://www.aadl.info
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Thread

System Process Processor

Thread

System Process Processor

Figure 8.2: A subset of AADL metamodel for threads

sor for execution. proc is an instance of the process_embSys.Impl process implementation which
contains three tasks: T1, T2 and T3 (software components), where each task is an instance of a thread
implementation. All threads implementations of our example implement the same thread type. How-
ever, each thread implementation is characterized by different properties (period, deadline and execution
time).

Figure 8.3: The system S “ T1,T2,T3 expressed in an AADL

2.3 The MARTE language

While AADL is dedicated to design system architectures, MARTE is structured around two main con-
cerns: (i) to design the features of real-time and embedded systems and (ii) to annotate application
models in order to support the analysis of the system properties.
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Figure 8.4: A subset of the MARTE metamodel

MARTE (Modeling and Analysis of Real Time and Embedded systems) is a modeling language
dedicated to design both software and hardware aspects of real-time and embedded systems and en-
ables schedulability analysis. The MARTE metamodel contains more than 130 classes [mar, 2011]. In
the context of our work, we use only a subset of this metamodel that is shown in Figure 8.4 where
SwSchedulableResource and SaStep express the elements of the software architecture of a real-time
system. MemoryPartition and Scheduler express the operating system. This latter plays the role of a
mapping layer between the software and the hardware architecture described by HwProcessor.

Since MARTE provides the facility to design models for real-time analysis, SaAnalysisContext
and GaResourcePlatform concepts are dedicated to accomplish this task by instantiating elements of
the software and hardware models according to a specific analysis context chosen by the designer.

The MARTE model corresponding to the system of our example is given in Figure 8.5.

2.4 AADL to MARTE transformation

As we have seen in the previous section, AADL and MARTE can express the same system using differ-
ent constructors and following different methodologies. One of the major differences between these two
languages is that AADL is more oriented towards architecture description and does not offer the capa-
bility to analyze the schedulability of systems, while MARTE meets this need. This example shows the
problem of heterogeneous modeling that appears in the design of complex systems. Indeed, analyzing
an AADL model schedulability must go through a model transformation to MARTE.
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Figure 8.5: Our system expressed with MARTE

AADL MARTE
rule 1 SystemType and SystemImpl saAnalysisContext and

gaResourcesPlatform classes
rule 2 SystemClassifier subcomponent Specified by Resources property

of gaResourcesPlatform class
rule 2.1 ProcessType and ProcessImpl MemoryPartition and Scheduler classes
rule 2.2 ProcessorType and ProcessorImpl hwProcessor class
rule 2.3 ProcessorImpl properties Specified by the schedPolicy property

of Scheduler class.
scheduling_protocol property

rule 2.3.1 ProcessClassifier subcomponent SchedulableResources property
of Scheduler class

rule 2.3.1.1 ThreadType and ThreadImpl swSchedulableResource and
saStep classes

rule 2.3.1.2 ThreadImpl properties: Properties of swSchedulableResource
class:

- dispatch_protocol and period - Specified by type property which
is a type of ArrivalPattern

- deadline In this case: properties of saStep
class:

- compute_execution_time - Specified by deadline property
- Specified by execTime property

rule 2.4 SystemImpl properties Specified by processingUnits property
of Scheduler class

- actual_procesor_binding

Table 8.1: AADL to MARTE transformation rules
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Table 8.1 summarizes the different rules for transforming AADL models to MARTE. These trans-
formation rules are introduced in order to justify the operations, we define later in the chapter, for trans-
forming AADL models to MARTE ones. For instance, in rule1 an AADL system (the SystemType and
SystemImp concepts) is transformed to saAnalysisContext and gaResourcesPlatform concepts in
MARTE.

In the next section, we show how our approach can be used to handle the heterogeneity of real-time
models (using model transformation operations) and process their schedulability in a PMMS.

3 Supporting AADL and MARTE in PMMS

3.1 Metamodels definition

The metamodel part of the OntoDB model repository can be enriched to support new metamodels using
the OntoQL language. For each resource in the metamodel, an OntoQL statement is defined. Below we
give the OntoQL statements for defining both AADL metamodel (Listing 8.1) and MARTE metamodel
(Listing 8.2).

Listing 8.1: A subset of OntoQL statements for creating the AADL metamodel
CREATE CLASS # P r o p e r t y (

#name STRING ,
# v a l u e STRING ) ;

CREATE CLASS # SystemSubComponent ;

CREATE CLASS # ProcessSubComponent ;

/ / c r e a t e t h e T h r e a d C l a s s i f i e r c o n c e p t
CREATE CLASS # T h r e a d C l a s s i f i e r
UNDER # ProcessSubComponent ;

/ / c r e a t e t h e ThreadType c o n c e p t
CREATE CLASS # ThreadType
UNDER # T h r e a d C l a s s i f i e r (

#name STRING
# e x t e n d s REF (# ThreadType ) ) ;

/ / c r e a t e t h e ThreadImpl c o n c e p t
CREATE CLASS # ThreadImpl
UNDER # T h r e a d C l a s s i f i e r (

#name STRING ,
# p r o p e r t i e s REF (# P r o p e r t y ) ARRAY,
# imp lemen t s REF (# T h r e a d C l a s s i f i e r ) ,
# e x t e n d s REF (# ThreadImpl ) ) ;

CREATE CLASS # P r o c e s s C l a s s i f i e r
UNDER # SystemSubComponent ;

CREATE CLASS # Proces sType
UNDER # P r o c e s s C l a s s i f i e r (

#name STRING ) ;

CREATE CLASS # P r o c e s s I m p l
UNDER # P r o c e s s C l a s s i f i e r (
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#name STRING ,
# subComponents REF (# T h r e a d C l a s s i f i e r ) ARRAY,
# imp lemen t s REF (# P roces sType ) ) ;

CREATE CLASS # P r o c e s s o r C l a s s i f i e r
UNDER # SystemSubComponent ;

CREATE CLASS # P r o c e s s o r T y p e
UNDER # P r o c e s s o r C l a s s i f i e r (

#name STRING ) ;

CREATE CLASS # P r o c e s s o r I m p l
UNDER # P r o c e s s o r C l a s s i f i e r (

#name STRING ,
# imp lemen t s REF (# P r o c e s s o r T y p e ) ) ;

CREATE CLASS # S y s t e m C l a s s i f i e r ;

CREATE CLASS # SystemType
UNDER # S y s t e m C l a s s i f i e r (

#name STRING ) ;

CREATE CLASS # SystemImpl
UNDER # S y s t e m C l a s s i f i e r (

#name STRING ,
# subComponents REF (# SystemSubComponent ) ARRAY,
# p r o p e r t i e s REF (# P r o p e r t y ) ARRAY,
# imp lemen t s REF (# SystemType ) ) ;

Listing 8.2: A subset of OntoQL statements for creating the MARTE metamodel
CREATE CLASS # S c h e d u l a b l e R e s o u r c e ;

CREATE CLASS # s w S c h e d u l a b l e R e s o u r c e
UNDER # S c h e d u l a b l e R e s o u c e , # swConcur ren tResouce ;

CREATE CLASS # HwProcessor
UNDER # HwComputingResouce ;

CREATE CLASS # M e m o r y P a r t i t i o n ;

CREATE CLASS # P r o c e s s i n g R e s o u c e ;

CREATE CLASS # HwResource ;

CREATE CLASS # Resource ;

CREATE CLASS # S c h e d u l e r (
# s c h e d u l a b l e R e s o u r c e s REF (# swSchedu lab l eResouce ) ) ;

3.2 Model definition

Once a metamodel is defined and supported by the PMMS, it becomes possible to create models con-
forming to that metamodel. Statements of Listing 8.3 create the AADL model of our example.

Listing 8.3: A subset of OntoQL statements to create the AADL model
/ / c r e a t e a ThreadType ( Task )
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CREATE # ThreadType Task ;

/ / c r e a t e a ThreadImpl ( Task . Impl1 )
CREATE # ThreadImpl Task . Impl1

#PROPERTIES (
D i s p a t c h _ P r o t o c o l = P e r i o d i c ,
Compute_Execut ion_Time = 7Ms . . 7 Ms ,
D e a d l i n e = 29Ms ,
P e r i o d = 29Ms)

#IMPLEMENTS Task ;

/ / c r e a t e a P roces sType ( process_embSys )
CREATE # Proces sType process_embSys ;

/ / c r e a t e a P r o c e s s I m p l ( process_embSys . impl )
CREATE # P r o c e s s I m p l process_embSys . impl

#SUBCOMPONENTS (
T1 = Task . Impl1 ,
T2 = Task . Impl2 ,
T3 = Task . Impl3 )

#IMPLEMENTS process_embSys ;

CREATE # P r o c e s s o r T y p e cpu_embSys ;

CREATE # P r o c e s s o r I m p l cpu_embSys . Impl
#PROPERTIES ( S c h e d u l i n g _ P r o t o c o l = EDF)
#IMPLEMENTS cpu_embSys ;

CREATE # SystemType embSys ;

CREATE # SystemImpl embSys . Impl (
#SUBCOMPONENTS (

cpu = cpu_embSys . Impl ,
p roc = process_embSys . Impl )

#PROPERTIES (
A c t u a l _ P r o c e s s o r _ B i n d i n g = ( cpu , p roc ) )

#IMPLEMENTS embSys ;

Next section shows how our proposition can be used to transform AADL models to MARTE.

4 Transforming models within PMMS

This section shows how transformation operations of AADL models to MARTE ones can be defined. We
precise that our objective is not to propose a new transformation approach, neither to guarantee a safe
transformation from AADL to MARTE. Several work have addressed the transformation form AADL to
MARTE. Our transformation is based on the work of [Mallet et al., 2009, mar, 2011].

Our objective is to use the possibility to introduce operations on the fly in the PMMS in order to
transform AADL models into MARTE ones. To do so, we firstly create model transformation operations
that will transform AADL concepts to MARTE ones, then we create corresponding implementations.
These two steps are explained below in detail.
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4.1 Definition of transformation operations

The definition of AADL to MARTE transformation operations consists in specifying for each operation
its name, its eventual input and output types. The statements of Listing 8.4 define some of the essential
transformation operations based on rules defined in Table 8.1.

Listing 8.4: AADL to MARTE transformation operations
CREATE OPERATION # r u l e 1
INPUT (REF (# SystemType ) , / / AADL s o u r c e e l e m e n t s

REF (# SystemImpl ) )
OUTPUT (REF (# s a A n a l y s i s C o n t e x t ) , / / MARTE t a r g e t e l e m e n t s

REF (# g a R e s o u r c e s P l a t f o r m ) ) ;

CREATE OPERATION # r u l e 2
INPUT (REF (# SystemSubComponent ) ARRAY)
OUTPUT (REF (# Resource ) ARRAY) ;

CREATE OPERATION # r u l e 2 . 1
INPUT (REF (# P roces sType ) ,

REF (# P r o c e s s I m p l ) )
OUTPUT (REF (# M e m o r y P a r t i t i o n ) ,

REF (# S c h e d u l e r ) ) ;

CREATE OPERATION # r u l e 2 . 2
INPUT (REF (# P r o c e s s o r T y p e ) ,

REF (# P r o c e s s o r I m p l ) )
OUTPUT (REF (# hwProces so r ) ) ;

The #rule1 operation transforms a SystemType and its associated SystemImpl of an AADL model
to their corresponding concepts in MARTE (saAnalysisContext and gaResourcesPlatform). The
#rule2 operation transforms SystemClassifier subcomponents of an AADL model to Resouce ele-
ments of the gaResourcesPlatform.

4.2 Definition of implementations

Once we have defined model transformation operations, we establish their associated implementations
descriptions. Statements of Listing 8.5 define implementations descriptions of the operations previously
defined.

Listing 8.5: A subset of OntoQL statements to define implementations of AADL2MARTE transformation
CREATE IMPLEMENTATION # r u l e 1 J a v a I m p
DESCRIPTORS (

t y p e = ’ j ava ’ ,
l o c a t i o n = ’ 1 9 3 . 5 5 . . . / programs . j a r ’ ,
c l a s s = ’ f r . ensma . l i a s . AadlToMarte ’
method = ’ ru le1Imp ’ )

IMPLEMENTS # r u l e 1 ;

CREATE IMPLEMENTATION # r u l e 2 J a v a I m p
DESCRIPTORS (

. . .
method = ’ ru le2Imp ’ )

IMPLEMENTS # r u l e 2 ;
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CREATE IMPLEMENTATION # r u l e 2 . 1 JavaImp
DESCRIPTORS (

. . .
method = ’ r u l e 2 . 1 Imp ’ )

IMPLEMENTS # r u l e 2 . 1 ;

CREATE IMPLEMENTATION # r u l e 2 . 1 JavaImp
DESCRIPTORS (

. . .
method = ’ r u l e 2 . 2 Imp ’ )

IMPLEMENTS # r u l e 2 . 2 ;

For instance the pseudocode of the rule1 is given in Listing 8.6.

Listing 8.6: Pseudocode of rule1
S a A n a l y s i s C o n t e x t r u l e 1 I m p ( SytemType sType , SystemImp sImp ) {

r e t u r n S a A n a l y s i s C o n t e x t ( sType , sImp ) ;
}

G a R e s o u r c e s P l a t f o r m r u l e 1 I m p ( SytemType sType , SystemImp sImp ) {
r e t u r n G a R e s o u r c e s P l a t f o r m ( sType , sImp ) ;

}

S a A n a l y s i s C o n t e x t ( SytemType sType , SystemImp sImp ) {
S a A n a l y s i s C o n t e x t s = new S a A n a l y s i s C o n t e x t ( ) ;
s . setName ( sType . getName ( ) ) ;
. . .
r e t u r n s ;

}

G a R e s o u r c e s P l a t f o r m ( SytemType sType , SystemImp sImp ) {
G a R e s o u r c e s P l a t f o r m g = new G a R e s o u r c e s P l a t f o r m ( ) ;
g . setName ( sType . getName ( ) ) ;
. . .
r e t u r n g ;

}

4.3 Exploitation of the defined operations

After defining operations and their implementations descriptions, the defined operations can be invoked
in order to transform AADL concepts to MARTE ones. For instance, we can use the established opera-
tions for obtaining our AADL source model expressed in the MARTE formalism. We can also transform
the same model to a MARTE model in order to have two representations of our system (Listing 8.7).

Listing 8.7: A subset of OntoQL statements to transform AADL models to MARTE
CREATE # s a A n a l y s i s C o n t e x t marte_embSys
AS SELECT # r u l e 1 ( embSys , embSys . Impl )

FROM # S y s t e m C l a s s i f i e r ;

CREATE # g a R e s o u r c e s P l a t f o r m marte_embSys
AS SELECT # r u l e 1 ( embSys , embSys . Impl )

FROM # S y s t e m C l a s s i f i e r ;

CREATE # M e m o r y P a r t i t i o n marte_memory
AS SELECT # r u l e 2 . 1 ( proc_embSys , proc_embSys . Impl )

FROM # P r o c e s s C l a s s i f i e r ;
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CREATE # S c h e d u l e r m a r t e _ s c h e d u l e r
AS SELECT # r u l e 2 . 1 ( proc_embSys , proc_embSys . Impl )

FROM # P r o c e s s C l a s s i f i e r ;

CREATE # g a R e s o u r c e s P l a t f o r m marte_embSys_cpu
AS SELECT # r u l e 2 ( embSys_cpu )

FROM # P r o c e s s o r ;

The first statement selects the MARTE system resulting from the transformation of the AADL model
of our example, while the second statement reads the resulting MARTE memory and scheduler con-
cepts from the transformation of the proc_embSys process element of the AADL model of our system.
Whereas, the last statement creates a gaResourcesPlatform instance from the resulting transformation
of the embSys_cpu processor of the AADL model. The MARTE model resulting from the transforma-
tion of the AADL model of our example (Figure 8.3) is the represented in Figure 8.5

These are only examples of the multiple transformation operations and operation invocations we have
written in order to permit a complete transformation and mapping from AADL to MARTE. This eases
accessing, updating, deleting and transforming AADL models even if we do not adopt AADL as a main
language for design real-time and embedded system. We can also go further by setting up an operation
that analyzes the schedulability of our AADL model. We detail this aspect in the next section.

5 Using operations for model analysis

Once the MARTE model is obtained after the transformation described in the previous section, it be-
comes possible to trigger scheduler analysis on these MARTE models. To do so, we define an operation
whose objective is to analyze the schedulability of our system. To achieve this task, we create an opera-
tion isSchedulable that takes as input a MARTE model and returns as output a boolean value which
states whether the systems is schedulable or not. This operation is implemented with a Java program that
invokes the MAST7 analysis tool (Listing 8.8).

Listing 8.8: Definition of the analysis operation and its implementation
CREATE OPERATION # i s S c h e d u l a b l e
INPUT (REF (#MARTEModel ) )
OUTPUT (BOOLEAN) ;

CREATE IMPLEMENTATION # i s S c h e d u l a b l e J a v a I m p
DESCRIPTORS (

t y p e = ’ Java ’ ,
l o c a t i o n = ’ 1 9 3 . 5 5 . . . / programs . j a r ’ ,
c l a s s = ’ f r . ensma . l i a s . Analyzer ’
method = ’ i s S c h e d u l e r I m p ’ )

IMPLEMENTS # i s S c h e d u l a b l e ;

The isSchedulableJavaImp implementation corresponds to a Java program that invokes the MAST
real-time analysis tool. A part of the code of this Java program is defined in Listing 8.9.

Listing 8.9: The Java implementation of the analysis operation

7http://mast.unican.es/
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p u b l i c vo id i s S c h e d u l e r I m p ( MarteModel model ) {
. . .
b u i l d I n p u t F i l e _ m a s t ( model ) ;
Runtime . ge tRun t ime ( ) . exec ( " m a s t _ a n a l y s i s d e f a u l t ´c ´p ´ t monoprocesso r

i n p u t F i l e _ m a s t . t x t o u t p u t F i l e _ m a s t . o u t . xml " ) ;
. . .

}

Now, it becomes possible to run the analysis by invoking the defined operation in the statement of
Listing 8.10.

Listing 8.10: Example of an OntoQL statement to analyze an AADL model
SELECT # i s S c h e d u l a b l e (# a a d l 2 M a r t e ( embSys . Impl ) )
FROM # SystemImpl

This statement asserts whether the embSys system type, transformed from AADL to MARTE by
the #aadl2marte operation, is schedulable or not. Here, we analyze the schedulability of the corre-
sponding MARTE model of our system. Note also that the invocation of the isSchedulable operation
needs a MARTE model as input and thus, we provide an operation invocation as an argument of the
#isSchedulable operation since the BeMoRe PMMS supports such manipulation. The previous state-
ment invokes the isSchedulable analysis operation which is specific to MARTE, using an AADL
resource hiding the transformation process to the user.

6 Conclusion

As a further step to validate our approach, we have shown in this chapter two applications. The first
application consists in transforming AADL models, representing real-time and embedded systems, to
their corresponding MARTE ones by using operations that can be implemented with external programs
or web services. This application can be used to share real-time and embedded systems regardless of the
language used to design them. The second application consists in defining an operation to analyze the
schedulability of a real-time system. This operation is implemented by an external program that invokes a
real-time models analysis tool. Moreover, we have shown through this work that different heterogeneous
models associated to complex systems can be stored, manipulated, retrieved and analyzed in a persistent
setting offering a hosting infrastructure for model repositories. The work presented in this chapter has
been validated in [Bazhar et al., 2013b].
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Conclusion

In our work, we have defined the notion of Persistent MetaModeling System (PMMS) as a database
environment dedicated to metamodeling and model management gathering, in the same setting, meta-
modeling and model management features together with database characteristics. Thus, a PMMS con-
sists in (1) a database (or a model repository) to store metamodels, models and instances, and (2) an
associated exploitation language to define and to manipulate different abstraction layers data stored in
the database. As we have outlined, if existing PMMSs provide the capability to define metamodels,
models and instances, they do not offer the same flexibility than classical MMS to define and implement
model manipulations such as transformation, mapping or source code generation. For instance, some
PMMSs provide a fixed set of hard-coded operators that are not always suited to achieve the desired
model management tasks. Other PMMSs provide the capability to set up user-defined operations (func-
tions and procedures). Yet, the implementation of these operations can only be achieved with a given
programming language and thus, it makes it difficult to reuse existing pieces of software. Furthermore,
the implementations of operations have to be stored in a special file system. Restarting the PMMS is
required each time a new operation is introduced. In the work presented in this thesis, we have designed
and prototyped the BeMore PMMS as an answer to these limitations. As most PMMSs only define
the structural and descriptive semantics of metamodels and models, the focus of our work was to equip
BeMore with various programming capabilities to express the procedural semantics. This procedural
semantics is mandatory to achieve model management tasks such as model transformation or analysis.
Our contributions are summarized bellow.

Contributions

Definition of a set of requirements for a complete PMMS

After the study of the related work, the first contribution of our thesis is the definition of a set of require-
ments for a complete PMMS. Indeed, as PMMSs are database environments dedicated to metamodeling
and model management, they shall gather in an integrated manner metamodeling and model manage-
ment features and database characteristics. Thus, we claimed that a PMMS shall evolve in a database
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environment offering a persistent environment for metamodeling and model management. This means
that metamodels, models and instances should all be persisted in a database and managed using the as-
sociated PMMS exploitation language in order to handle metamodeling and model management tasks.
A PMMS shall also support an extensible metamodeling architecture such that multiple metamodels can
be defined. With this functionality, a PMMS can support different modeling languages and approaches.
To define metamodels and models, the PMMS shall provide primitives to express the structural and de-
scriptive semantics of metamodels and models in terms of conceptual elements (e.g., classes, entities,
attributes, properties). Besides, a PMMS shall offer the capability to introduce dynamically model and
data management operations, and to exploit the defined operations for model and data management tasks
such as transformation or data integration. To ease the reuse of existing code, the implementation of
these operations should be possible using different mechanisms. For instance, the classical database in-
ternal mechanisms (e.g., stored procedures, triggers) could be used as well as external mechanisms such
as external programs (e.g., Java or C++ programs) or web services in order to get benefits from their
coverage and their completeness. Finally, to guarantee a high availability of the PMMS, introducing a
user-defined operation should not require restarting the PMMS as this may affect the robustness of the
system.

Formal extension of PMMS to support procedural semantics

To fulfill all the defined requirements, our approach consists in extending an existing PMMS to support
the procedural semantics that most PMMSs do not provide. Thus, we have achieved a formal extension
of PMMS related to its metametamodel and to the algebra of the PMMS exploitation language.

To support model management operations, we have extended the metametamodel supported by sev-
eral PMMSs with new concepts. This extension introduced the concepts of Operation and Implem-
entation to the PMMS metametamodel which represent respectively a model management operation,
and its associated implementations. In order to guarantee the flexibility of implementations, we have
associated the concept of Descriptor to Implementation. The Descriptor concept associates pairs
of (key, value) elements where each element represent respectively an implementation descriptor and its
value. Furthermore, we have performed the same extension at the metamodel level in order to define
operations and implementations at the data level as well.

The algebra of the PMMS exploitation language has been enriched with operators to define model
and data management operations. This extension consists in the RUN operator which invokes a given
operations in a statement of the PMMS exploitation language.

In order to store operations signatures and the descriptions of their associated implementations, we
have extended the logical metamodel and the logical model of the PMMS model repository with new
structures (tables) corresponding to the concepts added to the PMMS metametamodel.

Prototyping

Our proposition to extend PMMSs with procedural semantics has been implemented on the OntoD-
B/OntoQL PMMS. The extension of this PMMS, called BeMoRe, has been performed in three steps:
extension of the OntoDB platform, extension of the OntoQL language and definition of the behavior API
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The need to invoke external programs and web services from the PMMS environment raised two
main issues. The first one is the difference between data types of the PMMS and those of the different
external environments (type mismatch). The second problem concerned the necessity to bridge PMMSs
and external environments. To address these two issues, we have set up an Application Programming
Interface (API), called the behavior API, as a mapping between the BeMoRe data types and the data
types of the external environments. Furthermore, this API invokes external programs and web services.

We have implemented the logical extension of the PMMS model repository on the OntoDB platform.
This implementation added tables to store signatures of operations and descriptions of their associated
implementations with metadata.

To be able to define and exploit operations within the PMMS, the PMMS exploitation language has
been extended with such capabilities. The OntoQL grammar has been extended with new instructions
to define model and data management operations and implementations. Moreover, invoking model and
data management operations in OntoQL statements became possible.

Use cases

To validate the proposition we make in this thesis, we have used our approaches in three use cases to
show the usefulness of our proposition.

The first use case concerns the management of ontologies. Ontologies are specific domain models
that are composed by primitive and derived concepts (classes and attributes) i.e., concepts defined in
terms of other ones. Usually, the derived concepts, also called non canonical concepts are computed
using semantic reasoners. During the recent years, a new type of databases, called Ontology-Based
DataBase (OBDB) has been proposed to store and to manipulate ontologies together with the data they
describe. OBDBs are specific PMMSs dedicated to ontologies. Yet, existing OBDBs provide hard-
coded mechanisms to compute non canonical concepts. For instance, some OBDBs use the database
procedural language to compute non canonical concepts and others use their own semantic reasoners.
These solutions are not always suitable for computing any derived concept. To solve this issue, we firstly
raised the need of a more flexible management of non canonical concepts in OBDBs. Then, we have
defined operations to compute non canonical concepts concepts within our PMMS.

Our approach and the work accomplished in Chapter 6 have been used in the context of an OBDB
design methodology. Indeed, this methodology includes a step in which non canonical concepts are
identified. These non canonical concepts are computed using semantic reasoners before building the
database. Yet, the update of the ontology (e.g., adding derived classes or properties) requires replaying
the OBDB design process from scratch since OBDBs lack the support of flexible operators to compute
non canonical concepts. We have deployed our approach in this context in order to offer the capability to
compute the derived classes and properties if they are introduced even after building the OBDB.

The last use case concerns real-time and embedded systems. These systems can be designed using
different languages (e.g., AADL, MARTE) that have different purposes. For instance, AADL is oriented
towards the definition of the architecture of a system, while MARTE is oriented towards real-time analy-
sis of embedded systems which is not supported by AADL. Thus, to analyze an AADL model we should
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go through a model transformation from AADL to MARTE. We have used our proposition firstly to show
how we can establish transformation rules between AADL and MARTE models. Then, we have set up a
model analysis operation to analyze MARTE models. The last step was the analysis of an AADL model
through a model transformation from AADL to MARTE.

Perspectives

Our work opens many perspectives. Some of these perspectives are related to the functional capabilities
of PMMSs, and others address non functional issues. These perspectives are presented below.

The definition of a generic procedural language for PMMS

The objective of this perspective is to define a generic imperative and object-oriented language to express
the body of model and data management operations instead of the behavior API which is currently
frozen. This requires the definition of the metamodel (the abstract syntax) and the concrete syntax of
the language. Thus, a program expressed within this language will be an instance of the metamodel of
the language. Moreover, a program could be exported to other languages (e.g., Java, C++) by defining
modules to export model and data management operations to other languages. An API will be generated
for each specific language defined as an instance of this metamodel. Here the challenge concerns the
storage of the defined programs and the virtual machine where this program will be executed.

Orchestration of heterogeneous operations

The purpose of this perspective is to provide the capability to define derived operations composed from
other ones. If this perspective is achieved, we will be able to compose heterogeneous operations. For
instance, we may have a derived operation composed of a Java operation and a web service. Yet, the
difficulty to accomplish this perspective is to manage the data flow between the different operations
composing the derived one. The work achieved for web services orchestration may be exploited to
address this issue.

Optimizations of our approach

In our work, our focus was more on functionalities of the proposed BeMoRe PMMS than on its scala-
bility. Thus, further investigations need to be done in this direction. A thorough evaluation of the scal-
ability of BeMoRe as well as its optimization is a short term perspective. As the MapReduce paradigm
is a promising direction providing scalability and massively parallel processing of large-volume data,
an interesting long-term perspective consists in exploring how this technology can be combined with
PMMSs. An extensive performance evaluation and comparison with the existing approaches are parts of
our future work as well. It will also be interesting to explore the optimizations that can be done on the
PMMS query language, and to consider other non functional properties such as transactions and security.
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Résumé étendu

Contexte

Depuis leur apparition, les bases de données sont en constante évolution. Même si les bases de don-
nées relationnelles demeurent celles qui sont jusqu’à présent les plus utilisées, l’émergence de différents
paradigmes a entraîné le développement d’autres types de base de données. Ainsi, lorsque le paradigme
orienté objet est apparu, les bases de données relationnel-objet et les bases de données orientées objet
ont été introduites pour supporter les particularités de ce formalisme comme par exemple la relation
d’héritage. Nous pouvons constater la même tendance avec l’émergence d’autres types de bases de
données tels que les bases de données XML, les bases de données orientées document ou les bases de
données orientées graphe. Aujourd’hui, la notion de modèle est utilisée plus que jamais en génie logiciel
et les modèles produits sont de plus en plus volumineux. Ainsi, une nouvelle génération de bases de
données, appelées bases de données de modèles a vu le jour. Ce nouveau type de base de données est
dédié au stockage des méta-modèles, des modèles et des instances. L’objectif principal de notre thèse est
d’étendre ces bases de données de modèles avec des fonctionnalités avancées. Mais avant de présenter
plus précisément nos objectifs, nous motivons en détail, dans ce qui suit, la nécessité de cette nouvelle
génération de bases de données.

La conception des systèmes complexes utilise souvent différentes méthodologies, plateformes, lan-
gages, etc. Pour faire face à ce défi, une méthodologie de développement logiciel, appelée l’Ingénierie
Dirigée par les Modèles (IDM), a été proposée. Dans cette méthodologie, la conception des systèmes
complexes est basée sur l’utilisation d’un ensemble de modèles hétérogènes. Ces modèles représentent
un système suivant différent points de vue. Par exemple, la modélisation et l’analyse des systèmes em-
barqués s’appuient sur différents langages de modélisation tels que SysML, UML/MARTE ou AADL.
L’exploitation des modèles utilisés pour concevoir un système est basée sur des analyses telles que la
génération du code source du logiciel ou la transformation d’un modèle dans un autre langage. L’objectif
de l’IDM est ainsi d’améliorer le processus de développement logiciel et de faciliter la maintenance des
logiciels en découplant la conception d’un système de sa mise en oeuvre.

L’IDM a suscité un grand d’intérêt dans l’industrie grâce aux avantages qu’elle offre. L’IDM est
largement utilisée dans divers domaines tels que l’aéronautique ou l’automobile et contribue à la créa-
tion de différents types d’applications telles que les bases de données, les langages dédiés (DSL), ou
les systèmes d’information. En outre, l’IDM est utilisée pour développer des solutions d’intégration de
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systèmes et d’échange de données. Le succès de l’IDM a conduit à l’élaboration de plusieurs normes,
outils, langages, etc. Par exemple, l’OMG (Object Management Group) a proposé l’architecture stan-
dard MDA (Model-Driven Architecture) comme une spécialisation (c’est-à-dire une mise en oeuvre)
de l’IDM. MDA est une méthodologie de développement logiciel développée autour d’un ensemble de
normes (par exemple, le MOF ou le langage UML), langages (par exemple, ATL ou OCL) et outils (par
exemple, Eclipse Modeling Framework, Acceleo).

Avec l’utilisation croissante de l’IDM, l’exploitation des modèles volumineux (de très grande taille)
est apparue comme l’un des plus grand défis rencontrés. En effet, des modèles surdimensionnés sont
produits dans des domaines tels que le commerce électronique. Par exemple, les modèles peuvent con-
tenir des millions d’éléments (par exemple, lorsqu’ils résultent de la rétro-ingénierie de grands systèmes)
et peuvent décrire des données de grande taille (par exemple, Uniprot est une base de connaissance en
génomique qui regroupe plus de 200 Go de séquences de protéines). Comme la plupart des systèmes
de méta-modélisation (MMS) ont été initialement conçus pour une exploitation de modèles en mémoire
centrale, les MMS ont certaines difficultés à gérer des modèles de grande taille. Pour résoudre le prob-
lème du passage à l’échelle de l’IDM, la plupart des approches proposées visent à améliorer le passage à
l’échelle des outils d’exploitation des modèles en mémoire centrale au travers des approches qui consis-
tent à :

• effectuer une exploitation progressive et partielle des grands modèles. L’idée est de charger, en
mémoire centrale, la partie requise d’un grand modèle uniquement. Bien sûr, cette approche ne
peut être suivie si une opération s’applique à l’ensemble du modèle;

• effectuer l’exploitation des grands modèles dans un contexte distribué. L’idée consiste à décom-
poser une tâche d’exploitation en sous-tâches. Cette approche est limitée aux opérations qui peu-
vent être décomposées en sous-tâches indépendantes;

• équiper les systèmes de méta-modélisation avec des bases de données dédiées pour stocker les
méta-modèles, les modèles et les instances. Ces bases de données sont appelés bases de modèles
(par exemple, EMFStore). Cependant, cette approche présente deux inconvénients majeurs : (i) les
bases de modèles sont équipées de langages limités seulement à l’interrogation, de sorte que (ii)
toutes les tâches d’exploitation de modèles (transformation, génération de code, etc.) nécessitent
le chargement des modèles en mémoire principale pour qu’ils soient traités.

Contrairement à d’autres paradigmes (comme XML ou le paradigme orienté objet), peu de travaux
ont été menés pour étendre les bases de données relationnelles pour gérer des modèles et méta-modèles
comme des entités de première classe. ConceptBase, OntoDB/OntoQL et Rondo sont des exemples de
cette approche qui consiste à définir des systèmes de méta-modélisation et d’exploitation de modèles
évoluant complètement dans un environnement de base de données. Ces systèmes, appelés systèmes
de méta-modélisation persistants (PMMS), consistent en (1) une base de modèles qui stocke des méta-
modèles, des modèles et des instances tout en respectant la séparation entre les différents couches de
métadonnées et la préservation de la conformité aux différents niveaux d’abstraction, et (2) un langage
d’exploitation associé capable de créer et de manipuler les méta-modèles, les modèles et les données.
Les PMMS ont été proposés pour :
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• bénéficier des capacités de passage à l’échelle des bases de données et en particulier de l’optimisation
des requêtes faites dans les Système de Gestion de Base de Données (SGBD);

• offrir une plateforme commune pour le partage des modèles et des données puisque les SGBD
fournissent des mécanismes pour sécuriser l’accès aux données partagées;

• fournir un langage déclaratif permettant de définir des modèles conformes aux différents méta-
modèles.

Si les PMMS existants exploitent les caractéristiques des SGBD, ils n’offrent pas les mêmes fonc-
tionnalités que les MMS classiques. En effet, dans la littérature, nous constatons que les PMMS proposés
supportent principalement la définition de la sémantique structurelle et descriptive des modèles en four-
nissant des constructeurs de (méta-)classes, de (méta-)attributs ainsi que des primitives pour exprimer
les relations d’héritage et d’association. Par contre, les PMMS offrent des capacités limitées pour définir
des fonctions et des procédures (sémantique comportementale) qui pourraient être utiles pour accomplir
des tâches comme la transformation de modèles ou la génération de code. Actuellement, les PMMS ex-
istants utilisent des langages procéduraux de base de données (par exemple, PL/SQL) qui ne supportent
pas la manipulation des concepts de haut niveau (par exemple, les classes), ou fournissent un ensemble
d’opérateurs prédéfinis (par exemple Compose, Match, Merge) pour effectuer des opérations très spéci-
fiques sur les modèles. Jusque là, ConceptBase reste le PMMS le plus complet car il supporte la notion
de fonction. En effet, une fonction dans ConceptBase peut être implémentée en utilisant un langage
déductif imposé. Par contre, ce système ne permet ni d’utiliser des programmes externes implémentés
dans d’autres langues (par exemple, Java), ni des services web. Par ailleurs, ConceptBase requiert le
redémarrage du PMMS à chaque fois qu’une nouvelle fonction externe est introduite, ce qui limite la
disponibilité des PMMS (démarrage à froid).

Notre proposition

Le but de notre travail est de concevoir un PMMS qui rassemble les caractéristiques fonctionnelles des
MMS classiques et les avantages des SGBD. Notre approche vise ainsi à définir un SGBD permettant
de stocker des méta-modèles, des modèles et des instances qui soit associé à un langage d’exploitation
déclaratif. Ce langage doit offrir la possibilité de définir, manipuler (mettre à jour, supprimer et inter-
roger) ces différents niveaux d’abstraction. De plus, ce PMMS devrait permettre de réaliser des opéra-
tions avancées sur les modèles comme la transformation de modèles ou le calcul des concepts dérivés
en utilisant des mécanismes procéduraux flexibles tels que des programmes externes (par exemple, Java,
C++) ou des services Web.

Pour atteindre cet objectif, notre travail se propose d’utiliser une plateforme de méta-modélisation
persistante. Plus précisément, la solution que nous proposons est basée sur le PMMS OntoDB/OntoQL
mais elle peut être appliquée à d’autres PMMS. Si le PMMS OntoDB/OntoQL supporte la sémantique
structurelle et descriptive des modèles et des méta-modèles à travers son langage associé (OntoQL), la
définition du comportement des éléments de modèles n’est pas encore supportée. Par conséquent, ce sys-
tème n’est pas complet et doit être étendu afin de supporter la sémantique comportementale (par exemple,
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les opérations, les contraintes, les expressions, les dérivations, etc.). Comme ce système supporte la ma-
nipulation des modèles comme des objets de première classe grâce à ses capacités de méta-modélisation,
cette extension permettra d’enrichir le PMMS OntoDB/OntoQL en permettant différents traitements sur
les modèles tels que des transformations de modèles, l’intégration de données, la vérification de con-
traintes, etc. Dans cette thèse, notre travail contribue à :

• la définition d’un ensemble d’exigences pour un PMMS complet et un état de l’art qui montre que
les PMMS existants ne remplissent pas les exigences définies;

• la définition formelle d’un modèle de données des PMMS et du langage d’exploitation associé
supportant la sémantique comportementale;

• la mise en oeuvre de notre proposition (le PMMS BeMoRe) avec quelques expérimentations
préliminaires sur ses capacités pour le passage à l’échelle;

• le développement de trois cas d’utilisation complets dans différents domaines pour montrer la
validité et l’utilité de notre démarche.

Structure du mémoire

Cette thèse est structurée comme suit.

• Le Chapitre 1 introduit la notion de l’IDM, y compris les concepts de métamodélisation et
l’exploitation des modèles qui sont d’un intérêt particulier dans cette thèse.

• Le Chapitre 2 présente les solutions de persistance existantes dédiées à la métamodélisation et
à l’exploitation des modèles. Nous décrivons d’abord les approches utilisées par les MMS clas-
siques pour surmonter le problème du passage à l’échelle. Ensuite, nous introduisons la notion
de système de métamodélisation persistant (PMMS), sur lequel nous concentrons notre travail, et
nous discutons les avantages et les limites des PMMS existants.

• Le Chapitre 3 définit les exigences d’un PMMS complet. Ces exigences incluent les différentes
caractéristiques de métamodélisation et d’exploitation des modèles ainsi que les avantages des
systèmes de base de données (par exemple, le passage à l’échelle, les capacités d’interrogation).
Enfin, nous analysons les PMMS existants en fonction des exigences définis.

• Le Chapitre 4 expose l’extension formelle du métamétamodèle des PMMS avec de nouveaux
concepts pour supporter la définition d’opérations pour l’exploitation des modèles. Ces opérations
peuvent être mis en oeuvre en utilisant des mécanismes flexibles tels que les programmes ex-
ternes ou les services web. Ensuite, nous introduisons l’extension formelle de l’algèbre du langage
d’exploitation des PMMS avec les opérateurs de définition et d’exploitation des opérations.

• Le Chapitre 5 présente l’extension de la syntaxe du langage OntoQL avec de nouvelles instruc-
tions pour permettre la définition d’opérations. Par ailleurs, ce chapitre présente les aspects tech-
niques de la mise en oeuvre de notre approche, en particulier le processus d’exécution des instruc-
tions OntoQL comportant des invocations d’opérations. En outre, ce chapitre propose une petite
étude du passage à l’échelle de notre approche qui fait partie des perspectives de notre travail.
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• Le Chapitre 6 présente un premier cas d’utilisation de notre approche. Cette étude de cas porte sur
l’exploitation des concepts non canoniques (dérivés) dans les bases de données à base ontologique
(BDBOs) qui sont des bases de données dédiées au stockage des ontologies.

• Le Chapitre 7 présente un deuxième cas d’utilisation de notre proposition pour améliorer une
méthodologie de conception BDBOs.

• Le Chapitre 8 traite un cas d’utilisation de notre approche qui consiste à utiliser les opérations
pour effectuer des transformations et des analyses de modèles temps réel au sein du PMMS.

• Enfin, nous listons les conclusions de notre proposition et nous exposons les travaux en cours et
les perspectives ouvertes par notre travail.
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Abstract

During the recent years, modeling and model management have taken a great interest in software de-
velopment since they accelerate the software development process and facilitate their maintenance. But,
with the increasing size of models and their instances, especially in industrial contexts, the management
of models and their instances with tools evolving in main memory presents some insufficiencies related
to scalability. Indeed, classical modeling and model management tools using the central memory have
showed their limits when they face large scale models and instances. Thus, to overcome the problem of
scalability the management of models in databases becomes a necessity. Indeed, two solutions were pro-
posed. The first one consists in equipping modeling and model management tools with specific databases
called model repositories (e.g., EMFStore) dedicated to store metamodels, models and instances. These
model repositories are equipped with exploitation languages restricted only to querying capabilities such
that model repositories serve only as model warehouses as processing model management tasks require
loading the whole model to the central memory. The second solution, on which we focus our approach,
consists in defining database environments for metamodeling and model management. These systems,
called Persistent metamodeling Systems (PMMSs), aim at providing a database environment for meta-
modeling and model management. Indeed, a PMMS consists in (i) a database that stores metamodels,
models their instances while respecting the separation of the different abstraction layers, and (ii) an as-
sociated exploitation language possessing metamodeling and model management capabilities. Several
PMMSs have been proposed (e.g., ConceptBase, OntoDB/OntoQL) and focus mainly on the structural
definition of metamodels and models in terms of (meta-)classes, (meta-)attributes, etc. Yet, existing
PMMSs provide limited capabilities to define behavioral semantics for model and data management.
Indeed, behavioral semantics could be useful to compute derivations, perform model transformations,
generate source code, etc. In our work, we propose to extend PMMSs with the capability to introduce
dynamically user-defined model and data management operations. These operations can be implemented
using flexible and heterogeneous mechanisms. Indeed, they can use internal database mechanisms (e.g.,
stored procedures, views) as well as external mechanisms such as web services or external programs (e.g.,
Java, C++). As a consequence, this extension enhances PMMSs giving them more coverage and further
flexibility. This extension has been implemented on the OntoDB/OntoQL prototype, and experimented
to check the scaling of our approach. Moreover, our proposition has been used in three different contexts.
In particular, (1) to compute derived concepts of ontologies, (2) to enhance an ontology-based database
design methodology and (3) to transform and analyze models of real-time and embedded systems.

Keywords : metamodeling, model management, structural and descriptive semantics, behavioral seman-
tics, model repository, model persistence.
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Abstract. Modeling and model management have taken a great interest in software development since they accelerate the 
software development process and facilitate their maintenance. But, with the increasing size of models and their instances, 
the management of models and their instances with tools evolving in main memory presents some insufficiencies related 
to scalability. Indeed, classical tools using the central memory have shown their limits when they face large scale models 
and instances. Thus, to overcome the problem of scalability, the management of models in databases becomes a necessity. 
Indeed, two solutions were proposed. The first one consists in equipping modeling and model management tools with 
specific databases, called model repositories, (e.g., EMFStore) dedicated to store metamodels, models and instances. 
These model repositories are equipped with exploitation languages restricted only to querying capabilities such that model 
repositories serve only as model warehouses as processing model management tasks require loading the whole model to 
the central memory. The second solution, on which we focus our approach, consists in defining database environments for 
metamodeling and model management. These systems, called Persistent MetaModeling Systems (PMMSs), aim at 
providing a database environment for metamodeling and model management. Indeed, a PMMS consists in (i) a database 
that stores metamodels, models their instances, and (ii) an associated exploitation language possessing metamodeling and 
model management capabilities. Several PMMSs have been proposed (e.g., ConceptBase, OntoDB/OntoQL) and focus 
mainly on the structural definition of metamodels and models in terms of (meta-)classes, (meta-)attributes, etc. Yet, 
existing PMMSs provide limited capabilities to define behavioral semantics for model and data management. Indeed, 
behavioral semantics could be useful to compute derivations, perform model transformations, generate source code, etc. 
In our work, we propose to extend PMMSs with the capability to introduce dynamically user-defined model and data 
management operations. These operations can be implemented using flexible and heterogeneous mechanisms. Indeed, 
they can use internal database mechanisms (e.g., stored procedures) as well as external mechanisms such as web services 
or external programs (e.g., Java, C++). As a consequence, this extension enhances PMMSs giving them more coverage 
and further flexibility. This extension has been implemented on the OntoDB/OntoQL prototype, and experimented to 
check the scaling of our approach. Moreover, our proposition has been used in three different contexts. In particular, (1) 
to compute derived concepts of ontologies, (2) to enhance an ontology-based database design methodology and (3) to 
transform and analyze models of real-time and embedded systems. 
Keywords: meta-modeling, model management, structural and descriptive semantics, behavioral semantics, model 
repository, model persistence. 

 
Résumé. L’Ingénierie Dirigée par les Modèles (IDM) a suscité un grand intérêt grâce aux avantages qu’elle offre. En 
particulier, l’IDM vise à accélérer le processus de développement et à faciliter la maintenance des logiciels. Mais avec 
l'augmentation permanente de la taille des modèles et de leurs instances, l’exploitation des modèles et de leurs instances, 
en utilisant des outils classiques présente des insuffisances liées au passage à l’échelle. L’utilisation des bases de données 
est une des solutions proposées pour répondre à ce problème. Dans ce contexte, deux approches ont été proposées. La 
première consiste à équiper les outils de modélisation avec des bases de données dédiées au stockage de modèles, 
appelées model repositories (p. ex. EMFStore). Ces bases de données sont équipées de langages d’exploitation limités 
seulement à l’interrogation des modèles et des instances. Par conséquent, ces langages n’offrent aucune capacité pour 
effectuer des opérations avancées sur les modèles telles que la transformation de modèles ou la génération de code. La 
deuxième approche, que nous suivons dans notre travail, consiste à définir des environnements persistants en base de 
données dédiés à la méta-modélisation. Ces environnements sont appelés systèmes de méta-modélisation persistants 
(PMMS). Un PMMS consiste en (i) une base de données dédiée au stockage des méta-modèles, des modèles et de leurs 
instances, et (ii) un langage d'exploitation associé possédant des capacités de méta-modélisation et d’exploitation des 
modèles. Plusieurs PMMS ont été proposés tels que ConceptBase ou OntoDB/OntoQL. Ces PMMS supportent 
principalement la définition de la sémantique structurelle et descriptive des méta-modèles et des modèles en terme de 
(méta-)classes, (méta-)attributs, etc. Par contre, ces PMMS fournissent des mécanismes limités pour définir la sémantique 
comportementale nécessaire à l’exploitation des modèles et des instances. En effet, la sémantique comportementale 
pourrait être utile pour calculer des concepts dérivés, effectuer des transformations de modèles, générer du code source, 
etc. Ainsi, nous proposons dans notre travail d'étendre les PMMS avec la possibilité d'introduire dynamiquement des 
opérations qui peuvent être implémentées en utilisant des mécanismes hétérogènes. Ces opérations peuvent ainsi utiliser 
des mécanismes internes au système de gestion de base de données (p. ex. les procédures stockées) tout comme des 
mécanismes externes tels que les services web ou les programmes externes (p. ex. Java, C++). Cette extension permet 
d’améliorer les PMMS en leur donnant une plus large couverture de fonctionnalités et une plus grande flexibilité. Pour 
valider notre proposition, elle a été implémentée sur le prototype OntoDB/OntoQ et a été mise en œuvre dans trois 
contextes différents : (1) pour calculer les concepts dérivés dans les bases de données à base ontologique, (2) pour 
améliorer une méthodologie de conception de base de données à base ontologique et finalement (3) pour faire de la 
transformation et de l’analyse des modèles des systèmes embarqués temps réel. 
Mots clés : méta-modélisation, model management, sémantique structurelle et descriptive, sémantique comportementale, 
base de données, persistance des modèles. 
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